WO2014129030A1 - 排ガス処理システム及び排ガス処理方法 - Google Patents

排ガス処理システム及び排ガス処理方法 Download PDF

Info

Publication number
WO2014129030A1
WO2014129030A1 PCT/JP2013/081051 JP2013081051W WO2014129030A1 WO 2014129030 A1 WO2014129030 A1 WO 2014129030A1 JP 2013081051 W JP2013081051 W JP 2013081051W WO 2014129030 A1 WO2014129030 A1 WO 2014129030A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
dust
spray
boiler
powder
Prior art date
Application number
PCT/JP2013/081051
Other languages
English (en)
French (fr)
Inventor
俊大 福田
晴治 香川
佐藤 淳
進 沖野
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PL13875542T priority Critical patent/PL2959959T3/pl
Priority to US14/764,078 priority patent/US9700839B2/en
Priority to ES13875542.6T priority patent/ES2687241T3/es
Priority to EP13875542.6A priority patent/EP2959959B1/en
Publication of WO2014129030A1 publication Critical patent/WO2014129030A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/504Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/16Evaporating by spraying
    • B01D1/18Evaporating by spraying to obtain dry solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/505Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound in a spray drying process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/003Arrangements of devices for treating smoke or fumes for supplying chemicals to fumes, e.g. using injection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L11/00Arrangements of valves or dampers after the fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/04Arrangements of recuperators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/10Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour carrying the materials or objects to be dried with it
    • F26B3/12Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour carrying the materials or objects to be dried with it in the form of a spray, i.e. sprayed or dispersed emulsions or suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/65Employing advanced heat integration, e.g. Pinch technology
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/10Nitrogen; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/20Sulfur; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/40Sorption with wet devices, e.g. scrubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to an exhaust gas treatment system and an exhaust gas treatment method for treating exhaust gas discharged from a boiler.
  • an exhaust gas treatment system for treating exhaust gas discharged from a boiler installed in a thermal power generation facility or the like.
  • the exhaust gas treatment system includes a denitration device that removes nitrogen oxides from exhaust gas from a boiler, an air heater that recovers the heat of exhaust gas that has passed through the denitration device, a dust collector that removes soot and dust in the exhaust gas after heat recovery, and after dust removal And a desulfurization device for removing sulfur oxides in the exhaust gas.
  • a desulfurization apparatus a wet desulfurization apparatus that removes sulfur oxide in the exhaust gas by bringing the lime absorbing liquid or the like into gas-liquid contact with the exhaust gas is generally used.
  • Patent Document 1 The present applicant previously proposed a technology for spray-drying desulfurized wastewater using boiler exhaust gas, using a spray drying device for drying dehydrated filtrate obtained by separating gypsum from desulfurized wastewater as equipment for carrying out drainage elimination.
  • SO 3 gas is contained in the exhaust gas.
  • high-concentration SO 3 gas is contained in the exhaust gas of coal-fired boilers using high sulfur (S) content fuel as fuel.
  • S sulfur
  • the spray drying apparatus that spray-drys using the branch gas branched from the main flue, the exhaust gas temperature decreases and the moisture concentration increases as the spray droplets evaporate, so the SO 3 gas reaches the dew point. There is a possibility of condensation.
  • This condensed SO 3 comes to the equipment on the downstream side of the spray dryer as sulfuric acid mist.
  • the branch gas used in the spray dryer is returned to the main flue again, so if sulfuric acid mist adheres to the internal parts, ducts, downstream devices, internal parts of the duct, etc. May cause.
  • sulfuric acid mist having a fine particle size may be released into the atmosphere without being collected.
  • an object of the present invention is to provide an exhaust gas treatment system and method for efficiently collecting sulfuric acid mist generated during spray drying.
  • a first invention of the present invention for solving the above-described problems includes a boiler that burns fuel, an air heater that recovers heat of exhaust gas from the boiler, and a dust collector that removes dust in the exhaust gas after heat recovery.
  • a desulfurizer that removes sulfur oxides contained in the exhaust gas after dust removal with an absorbent, a dehydrator that removes gypsum from the absorption tower slurry discharged from the desulfurizer, and a dehydrated filtrate from the dehydrator
  • a spray drying device provided with spraying means, an exhaust gas introduction line for introducing a part of the branched gas from the exhaust gas into the spray drying device from the main flue, and an exhaust gas after drying the dehydrated filtrate in the spray drying device.
  • An exhaust gas treatment system comprising an exhaust gas supply line that returns to the main flue and a powder supply device that supplies powder to the exhaust gas introduction line.
  • the second invention is the exhaust gas treatment system according to the first invention, wherein the powder is one or both of dust collection ash collected by a dust collector and powder separately added.
  • a third invention includes a boiler that burns fuel, an air heater that recovers heat of exhaust gas from the boiler, a dust collector that removes dust in the exhaust gas after heat recovery, and sulfur oxides contained in the exhaust gas after dust removal
  • a desulfurization apparatus for removing matter with an absorption liquid, a dehydrator for removing gypsum from the absorption tower slurry discharged from the desulfurization apparatus, and a spray drying apparatus provided with a spraying means for spraying the dehydrated filtrate from the dehydrator,
  • An exhaust gas introduction line for introducing a part of the branched gas from the exhaust gas into the spray drying device from the main flue, and an exhaust gas supply line for returning the exhaust gas after drying the dehydrated filtrate in the spray drying device to the main flue;
  • the exhaust gas treatment system includes dust supply means for forcibly supplying dust in the exhaust gas to the exhaust gas introduction line.
  • an exhaust gas treatment method for removing sulfur oxides contained in exhaust gas after heat recovery with an absorbent in a desulfurization apparatus after recovering heat of exhaust gas from a boiler that burns fuel with an air heater.
  • the exhaust gas treatment method is characterized in that it is introduced into a spray dryer while increasing the amount of dust into the branch gas, spray-dried with a gas having a large amount of dust, and the generated sulfuric acid mist is collected.
  • the sulfuric acid mist generated during the spray drying treatment is adhered to the powder, Mist can be collected.
  • FIG. 1 is a schematic configuration diagram of an exhaust gas treatment system according to a first embodiment.
  • FIG. 2 is a schematic configuration diagram of an exhaust gas treatment system according to a second embodiment.
  • FIG. 3 is a schematic configuration diagram of an exhaust gas treatment system according to a third embodiment.
  • FIG. 4 is a schematic configuration diagram of an exhaust gas treatment system according to a fourth embodiment.
  • FIG. 5 is a schematic configuration diagram of another exhaust gas treatment system according to the fourth embodiment.
  • FIG. 6A is a schematic diagram of a distribution unit according to the fifth embodiment.
  • FIG. 6-2 is a side view of the distributing means according to the fifth embodiment.
  • FIG. 6-3 is a front view of the distribution unit according to the fifth embodiment.
  • FIG. 6-4 is a plan view of the distributing means according to the fifth embodiment.
  • FIG. 7 is a schematic diagram of a dehydrated filtrate spray drying apparatus according to the first embodiment.
  • FIG. 1 is a schematic configuration diagram of an exhaust gas treatment system according to a first embodiment.
  • An exhaust gas treatment system 10A illustrated in FIG. 1 is a boiler exhaust gas from a boiler 11 such as a coal-fired boiler that uses coal, residual solid material, or the like as a fuel, or an oil-fired boiler that uses heavy oil, residual oil, or the like as a fuel.
  • exhaust gas is a device that removes harmful substances such as nitrogen oxides (NO x ), sulfur oxides (SO x ), dust (PM), mercury (Hg), and the like.
  • An exhaust gas treatment system 10A includes a boiler 11 that burns fuel F, a denitration device 12 that removes nitrogen oxides in the exhaust gas 18 from the boiler 11, and an air heater that recovers the heat of the exhaust gas 18 after denitration. 13, a dust collector 14 that removes dust in the exhaust gas 18 after heat recovery as dust collection ash 16, and a desulfurizer 15 that removes sulfur oxides contained in the exhaust gas 18 after dust removal with a lime slurry 20 that is an absorbent.
  • a dehydrator 32 that removes gypsum 31 from the absorption tower slurry discharged from the desulfurizer 15, a spray dryer 50 that includes a spraying means for spraying the dehydrated filtrate 33 from the dehydrator 32, and a spray dryer 50.
  • the exhaust gas introduction line L 11 for introducing the branch gas 18a that branches from the exhaust gas 18, the exhaust gas 18b after drying the dehydrated filtrate 33 by the spray-drying apparatus 50 in the main flue And to an exhaust gas feed line L 12, it is intended to provided the exhaust gas introduction line L 11 and the powder feeder 60 for feeding a pulverized 61, a.
  • Denitration device 12 is a device for removing nitrogen oxides in the exhaust gas 18 supplied from the boiler 11 through the gas supply line L 1, and has inside thereof denitration catalyst layer (not shown).
  • a reducing agent injector (not shown) is disposed upstream of the denitration catalyst layer, and the reducing agent is injected into the exhaust gas 18 from the reducing agent injector.
  • ammonia, urea, ammonium chloride or the like is used as the reducing agent.
  • the nitrogen oxides in the exhaust gas 18 introduced into the denitration device 12 come into contact with the denitration catalyst layer, so that the nitrogen oxides in the exhaust gas 18 are decomposed and removed into nitrogen gas (N 2 ) and water (H 2 O). Is done.
  • the mercury in the exhaust gas 18 increases in the chlorine (Cl) content, the proportion of divalent mercury chloride that is soluble in water increases, and mercury is easily collected by the desulfurization device 15 described later.
  • the denitration device 12 is not essential, and when the nitrogen oxide concentration or mercury concentration in the exhaust gas 18 from the boiler 11 is very small, or when these substances are not contained in the exhaust gas 18, denitration is performed. It is also possible to omit the device 12.
  • the air heater 13 is a heat exchanger that recovers heat in the exhaust gas 18 supplied through the exhaust gas supply line L 2 after nitrogen oxides are removed by the denitration device 12. Since the temperature of the exhaust gas 18 that has passed through the denitration device 12 is as high as about 300 ° C. to 400 ° C., heat exchange is performed between the high temperature exhaust gas 18 and the normal temperature combustion air 70 by the air heater 13. Combustion air 70 ⁇ / b> H that has reached a high temperature due to heat exchange is supplied to boiler 11 via air supply line L 21 . On the other hand, the exhaust gas 18 subjected to heat exchange with the combustion air 70 at normal temperature is cooled to about 150 ° C.
  • the dust collector 14 removes the dust in the exhaust gas 18 supplied through the gas supply line L 3 after heat recovery by the air heater 13.
  • Examples of the dust collector 14 include an inertial dust collector, a centrifugal dust collector, a filtration dust collector, an electric dust collector, and a cleaning dust collector, but are not particularly limited.
  • the desulfurization device 15 is an example of a device that removes sulfur oxide in the exhaust gas 18 supplied via the gas supply line L 4 in a wet manner after the dust is removed.
  • lime slurry an aqueous solution in which limestone powder is dissolved in water
  • the lime slurry 20 is supplied from the lime slurry supply device 21 to the liquid reservoir in the tower bottom 22 of the desulfurization device 15.
  • the lime slurry 20 supplied to the tower bottom 22 of the desulfurization apparatus 15 is sent to a plurality of nozzles 23 in the desulfurization apparatus 15 via an absorption liquid supply line (not shown), and ejected from the nozzle 23 toward the tower top 24 side. Is done.
  • an absorption liquid supply line not shown
  • sulfur oxide and mercury chloride in the exhaust gas 18 are absorbed by the lime slurry 20, It is separated from the exhaust gas 18 and removed.
  • the exhaust gas 18 purified by the lime slurry 20 is discharged from the tower top 24 side of the desulfurization device 15 as the purified gas 26 and is discharged out of the system from the chimney 27.
  • the sulfur oxide SO x in the exhaust gas 18 causes a reaction represented by the lime slurry 20 and the following formula (1).
  • the lime slurry 20 that has absorbed SO x in the exhaust gas 18 is oxidized by air (not shown) supplied to the tower bottom 22 of the desulfurization device 15, and the reaction represented by the following equation (2) with air.
  • air (not shown) supplied to the tower bottom 22 of the desulfurization device 15, and the reaction represented by the following equation (2) with air.
  • SO x in the exhaust gas 18 is captured in the form of gypsum CaSO 4 .2H 2 O in the desulfurization apparatus 15.
  • the lime slurry 20 is obtained by pumping the liquid stored in the tower bottom 22 of the desulfurization device 15, and the lime slurry 20 to be pumped is accompanied by the operation of the desulfurization device 15.
  • Gypsum CaSO 4 .2H 2 O is mixed according to the reaction formulas (1) and (2).
  • this lime-gypsum slurry (lime slurry mixed with gypsum) to be pumped is referred to as an absorbent.
  • the absorption liquid 30 which is the absorption tower slurry used for the desulfurization is discharged to the outside from the tower bottom 22 of the desulfurization apparatus 15 and sent to the dehydrator 32 via the absorption liquid line L 20 where it is dehydrated.
  • the dehydrated filtrate 33 serves as a desulfurization drain, and contains heavy metals such as mercury and halogen ions such as Cl ⁇ , Br ⁇ , I ⁇ and F ⁇ .
  • the dehydrator 32 separates the solid content containing the gypsum 31 in the absorbent 30 and the dehydrated filtrate 33 of the liquid.
  • the dehydrator 32 for example, a belt filter, a centrifugal separator, a decanter type centrifugal sedimentator or the like is used.
  • the absorbent 30 discharged from the desulfurization device 15 is separated from the gypsum 31 by a dehydrator 32.
  • mercury chloride in the absorbing liquid 30 is separated from the liquid together with the gypsum 31 in a state of being adsorbed on the gypsum 31.
  • the separated gypsum 31 is discharged to the outside of the system (hereinafter referred to as “outside system”).
  • the dehydrated filtrate 33 which is the separated liquid from the dehydrator 32, is sent to the spray drying device 50, where it is evaporated and dried by the branch gas 18a to eliminate drainage.
  • spray-drying apparatus 50 through the exhaust gas introduction line L 11 branched from the exhaust gas supply line L 2 which is the main flue of the exhaust gas 18 from the boiler 11, a gas introducing means for branching gas 18a from the exhaust gas 18 is introduced And a spraying means 52 for spraying or spraying the dehydrated filtrate 33. Then, the dehydrated filtrate 33 sprayed or sprayed by the heat of the introduced branch gas 18a is evaporated and dried.
  • the exhaust gas introduction line L 11 and the exhaust gas supply line L 12 are provided with damper means 59 for stopping the inflow / exhaust of the branch gas 18a and the exhaust gas 18b.
  • the branch gas 18a flowing into the air heater 13 is branched from the exhaust gas supply line L 2 via the exhaust gas introduction line L 11 , the gas temperature is high (300 to 400 ° C.), and the dehydrated filtrate 33 Can be efficiently spray-dried.
  • FIG. 7 is a schematic diagram illustrating an example of a dehydrating filtrate spray drying apparatus according to the present embodiment.
  • the spray drying apparatus 50 of the present embodiment is provided in the spray drying apparatus main body 51, the spray means 52 for spraying the dehydrated filtrate 33, and the spray drying apparatus main body 51 to dry the spray liquid 33 a.
  • An inlet 51a for introducing the branch gas 18a, a drying region 53 for drying the dehydrated filtrate 33 by the branch gas 18a, and an outlet 51b for discharging the exhaust gas 18b contributing to drying.
  • the adhering matter monitoring means 54 for monitoring the adhering state of the adhering matter of the spraying means 52 is provided.
  • Reference numeral 57 denotes a separated solid substance, and V 1 and V 2 denote flow rate adjusting valves.
  • the dehydrated filtrate 33 is sprayed by the spray means 52 at a predetermined flow rate and a predetermined spray droplet diameter into the spray drying apparatus main body 51 by the air 56 supplied from the compressor 55.
  • the form of the spray means 52 is not limited as long as the sprayed dehydrated filtrate 33 is sprayed so as to have a predetermined spray droplet diameter.
  • a spraying means such as a two-fluid nozzle or a rotary atomizer can be used.
  • the two-fluid nozzle is suitable for spraying a relatively small amount of the dehydrated filtrate 33
  • the rotary atomizer is suitable for spraying a relatively large amount of the dehydrated filtrate 33.
  • the number of nozzles is not limited to one, and a plurality of nozzles may be provided according to the processing amount.
  • the dust concentration in the branch gas 18a can be increased by supplying the powder 61 to the branch gas 18a supplied to the spray drying apparatus 50 by the blower 62.
  • the powder 61 to be supplied for example, limestone used in the desulfurization device 15, dust collected at another plant, or other one having an action of adsorbing sulfuric acid mist such as gypsum and activated carbon is used. Can do.
  • the powder 61 is accompanied by the branch gas 18a introduced into the main body of the spray drying apparatus 50.
  • the amount of sulfuric acid mist can be reduced, and corrosion or the like on the downstream side by sulfuric acid mist can be prevented. Further, it is possible to prevent the release of sulfuric acid mist that has a small particle diameter and is difficult to be collected.
  • FIG. 2 is a schematic configuration diagram of an exhaust gas treatment system according to a second embodiment.
  • symbol is attached
  • the amount of sulfuric acid mist is reduced by adhering the generated sulfuric acid mist to the powder 61 and the dust collecting ash 16 when spray-drying with the spray drying apparatus 50 using the branch gas 18a. Corrosion and the like on the downstream side can be prevented.
  • FIG. 3 is a schematic configuration diagram of an exhaust gas treatment system according to a third embodiment.
  • Spray-drying apparatus of the present embodiment is from the boiler 11 is the main flue so promote the introduction of the branch gas 18a at the branch portion from the exhaust gas supply line L 2.
  • the exhaust gas 18 is discharged through the exhaust gas supply line L 2 from the side wall 12a of the denitration apparatus 12.
  • the exhaust gas supply line L 2 is then bent at a right angle, and the exhaust gas 18 is introduced into the air heater 13 disposed downstream thereof.
  • the normal-temperature combustion air 70 introduced from the outside and the exhaust gas 18 are subjected to heat exchange, and the combustion air 70 ⁇ / b> H having a high temperature is supplied to the boiler 11 side via the air supply line L 21.
  • the exhaust gas supply line L 2 extending from the denitration device 12 and the exhaust gas introduction line L 11 to be connected are connected, the gas without a bent portion is provided so that the branch gas 18 a can go straight.
  • the dust supply means is configured so as to be connected in the straight direction in which the flow proceeds.
  • the air supply line L 21 and the exhaust gas introduction line L 11 are offset so as not to cross each other.
  • the exhaust gas 18 when the exhaust gas 18 is branched, a large amount of dust in the exhaust gas is forcibly fed to increase the amount of dust in the branch gas 18a so as to promote the introduction of the branch gas 18a in the branch portion. and that although, from example 1 or the powder supply device separately powder 61 and fly ash 16 in 2 60 may be used in combination be introduced through the supply line L 30.
  • FIG. 4 is a schematic configuration diagram of an exhaust gas treatment system according to a fourth embodiment.
  • Spray-drying apparatus of the present embodiment is from the boiler 11 is the main flue so promote the introduction of the branch gas 18a at the branch portion from the exhaust gas supply line L 2.
  • the gas supply line L 2 from the boiler 11, the air 66 by introducing the air supply line L 21 by pushing the blower 65 constitute a dust supply means.
  • the opening of the air supply line L 21 on the pushing blower 65 side and the exhaust gas introduction line L 11 are provided so as to face each other in the flue, and the dust in the exhaust gas 18 is forcibly branched by the pushing air 66 by the pushing blower 65. It will push into the gas 18a side. As a result, a large amount of dust in the exhaust gas 18 is sent to the spray drying apparatus 50 side by the pushing force.
  • the air supply line L 21 on the pushing blower 65 side is obliquely installed on the upstream side
  • the exhaust gas introduction line L 11 is obliquely installed on the downstream side, thereby preventing dust from being introduced to the pushing blower 65 side. ing.
  • the ratio of the amount of dust in the branch gas 18a is increased so as to promote the introduction of the branch gas 18a in the branch portion.
  • the separate powder 61 and dust collection ash 16 may be introduced from the powder supply device 60 together.
  • FIG. 5 is a schematic configuration diagram of an exhaust gas treatment system according to a fifth embodiment.
  • Spray-drying apparatus of the present embodiment is from the boiler 11 is the main flue so promote the introduction of the branch gas 18a at the branch portion from the gas supply line L 2.
  • a curved guide vane 73 is installed from the boiler 11 to the exhaust gas supply line L 2 , and the exhaust gas introduction line L 11 is maintained while holding a part of the exhaust gas as it is with the guide of the guide vane 73.
  • the dust supply means is constituted.
  • FIG. 6A is a schematic diagram of a distribution unit according to the fifth embodiment.
  • FIG. 6-2 is a side view of the distributing means according to the fifth embodiment.
  • FIG. 6-3 is a front view of the distribution unit according to the fifth embodiment.
  • FIG. 6-4 is a plan view of the distributing means according to the fifth embodiment.
  • one guide vane 73 is shown for explanation, but it is more preferable to provide at least three guide vanes 73 as shown in FIG.
  • Guide vanes 73 is supported by the support rod 71, 72 which are arranged at a predetermined distance in the flue side wall of the gas supply line L 2.
  • the dust concentration in the exhaust gas 18 becomes high by forcibly pushing the dust in the exhaust gas 18 toward the branch gas 18a.
  • the separate introduction of the powder 61 and the dust collection ash 16 from the powder supply device 60 in the first or second embodiment may be used in combination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Treating Waste Gases (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Treatment Of Sludge (AREA)
  • Chimneys And Flues (AREA)

Abstract

 ボイラ11からの排ガス18中の窒素酸化物を除去する脱硝装置12と、脱硝後の排ガス18の熱を回収するエアヒータ13と、熱回収後の排ガス18中の煤塵を集塵灰16として除去する集塵機14と、除塵後の排ガス中に含まれる硫黄酸化物を吸収液である石灰スラリー20で除去する脱硫装置15と、脱硫装置15から排出される吸収塔スラリーから石膏31を除去する脱水機32と、脱水機32からの脱硫排水となる脱水濾液33を噴霧する噴霧手段を備えた噴霧乾燥装置50と、前記噴霧乾燥装置50に排ガス18から分岐した分岐ガス18aを導入する排ガス導入ラインL11と、噴霧乾燥装置で脱水濾液を乾燥した後の排ガス18bを主煙道に戻す排ガス送給ラインL12と、排ガス導入ラインL11に粉体61を供給する粉体供給装置60と、を具備する。

Description

排ガス処理システム及び排ガス処理方法
 本発明は、ボイラから排出される排ガスを処理する排ガス処理システム及び排ガス処理方法に関する。
 従来、火力発電設備等に設置されるボイラから排出される排ガスを処理するための排ガス処理システムが知られている。排ガス処理システムは、ボイラからの排ガスから窒素酸化物を除去する脱硝装置と、脱硝装置を通過した排ガスの熱を回収するエアヒータと、熱回収後の排ガス中の煤塵を除去する集塵機と、除塵後の排ガス中の硫黄酸化物を除去するための脱硫装置とを備えている。脱硫装置としては、石灰吸収液等を排ガスと気液接触させて排ガス中の硫黄酸化物を除去する湿式の脱硫装置が一般的に用いられる。
 近年、排水規制強化のために、排ガス処理設備における無排水化が切望されており、安定して操業することができる無排水化を図る排ガス処理設備の出現が切望されている。
 本出願人は、先に無排水化を実施する設備として、脱硫排水から石膏を分離した脱水濾液を乾燥する噴霧乾燥装置を用い、ボイラ排ガスを用いて脱硫排水を噴霧乾燥する技術を提案した(特許文献1)。
特開2012-196638号公報
 ところで、排ガス中にはSO3ガスが含まれている。特に、高硫黄分(S分)含有燃料を燃料として用いた石炭焚きボイラの排ガスには、高濃度のSO3ガスが含まれる。この際、主煙道から分岐した分岐ガスを用いて噴霧乾燥する噴霧乾燥装置では、噴霧液滴の蒸発と共に、排ガス温度が低下し、水分濃度が上昇するため、SO3ガスは露点に到達し凝縮する可能性がある。
 この凝縮したSO3は、硫酸ミストとして噴霧乾燥装置の後流側の機器に飛来する。その際、噴霧乾燥装置で用いた分岐ガスは、再度主煙道に戻されるので、噴霧乾燥装置の内部品、ダクト、後流機器、ダクト内内部品等に硫酸ミストが付着すると、腐食や閉塞を引き起こす可能性がある。
 また、噴霧乾燥装置の後流側に、集塵器や吸収塔が設置されていても、微小粒径である硫酸ミストは捕集されずに大気中に放出される可能性がある。
 そこで、脱硫装置からの脱硫排水の無排水化を実施する際、発生する硫酸ミストを効率よく捕集することができる排ガス処理システムの出現が切望されている。
 本発明は、前記問題に鑑み、噴霧乾燥の際に発生する硫酸ミストを効率よく捕集する排ガス処理システム及び方法を提供することを課題とする。
 上述した課題を解決するための本発明の第1の発明は、燃料を燃焼させるボイラと、前記ボイラからの排ガスの熱を回収するエアヒータと、熱回収後の排ガス中の煤塵を除去する集塵機と、除塵後の排ガス中に含まれる硫黄酸化物を吸収液で除去する脱硫装置と、前記脱硫装置から排出される吸収塔スラリーから石膏を除去する脱水機と、前記脱水機からの脱水濾液を噴霧する噴霧手段を備えた噴霧乾燥装置と、前記噴霧乾燥装置に排ガスからの一部の分岐ガスを主煙道から導入する排ガス導入ラインと、前記噴霧乾燥装置で脱水濾液を乾燥した後の排ガスを前記主煙道に戻す排ガス送給ラインと、前記排ガス導入ラインに粉体を供給する粉体供給装置と、を具備することを特徴とする排ガス処理システムにある。
 第2の発明は、第1の発明において、前記粉体が、集塵機で捕集した集塵灰、別途投入する粉体のいずれか一方又は両方であることを特徴とする排ガス処理システムにある。
 第3の発明は、燃料を燃焼させるボイラと、前記ボイラからの排ガスの熱を回収するエアヒータと、熱回収後の排ガス中の煤塵を除去する集塵機と、除塵後の排ガス中に含まれる硫黄酸化物を吸収液で除去する脱硫装置と、前記脱硫装置から排出される吸収塔スラリーから石膏を除去する脱水機と、前記脱水機からの脱水濾液を噴霧する噴霧手段を備えた噴霧乾燥装置と、前記噴霧乾燥装置に排ガスからの一部の分岐ガスを主煙道から導入する排ガス導入ラインと、前記噴霧乾燥装置で脱水濾液を乾燥した後の排ガスを前記主煙道に戻す排ガス送給ラインと、前記排ガス導入ラインに、排ガス中の煤塵を強制的に供給する煤塵供給手段と、を具備することを特徴とする排ガス処理システムにある。
 第4の発明は、燃料を燃焼させるボイラからの排ガスの熱をエアヒータにより回収した後、脱硫装置において、熱回収後の排ガス中に含まれる硫黄酸化物を吸収液で除去する排ガス処理方法において、分岐ガス中への粉塵量を増大させつつ噴霧乾燥装置へ導入し、粉塵量の多いガスで噴霧乾燥し、発生する硫酸ミストを捕集することを特徴とする排ガス処理方法にある。
 本発明によれば、脱硫排水を乾燥するための排ガスから分岐する分岐ガス中に、粉体量を増大させることにより、噴霧乾燥処理する際に発生する硫酸ミストを粉体に付着させて、硫酸ミストを捕集することができる。
図1は、実施例1に係る排ガス処理システムの概略構成図である。 図2は、実施例2に係る排ガス処理システムの概略構成図である。 図3は、実施例3に係る排ガス処理システムの概略構成図である。 図4は、実施例4に係る排ガス処理システムの概略構成図である。 図5は、実施例4に係る他の排ガス処理システムの概略構成図である。 図6-1は、実施例5に係る分配手段の概略図である。 図6-2は、実施例5に係る分配手段の側面図である。 図6-3は、実施例5に係る分配手段の正面図である。 図6-4は、実施例5に係る分配手段の平面図である。 図7は、実施例1に係る脱水濾液の噴霧乾燥装置の概略図である。
 以下に添付図面を参照して、本発明の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
 図1は、実施例1に係る排ガス処理システムの概略構成図である。図1に例示される排ガス処理システム10Aは、例えば石炭や残渣固体物質等を燃料として使用する石炭焚きボイラや、重油や残渣油等を燃料として使用する油焚きボイラ等のボイラ11からのボイラ排ガス(以下「排ガス」という。)18から、窒素酸化物(NO)、硫黄酸化物(SO)、煤塵(PM)、水銀(Hg)等の有害物質を除去する装置である。
 本実施例に係る排ガス処理システム10Aは、燃料Fを燃焼させるボイラ11と、ボイラ11からの排ガス18中の窒素酸化物を除去する脱硝装置12と、脱硝後の排ガス18の熱を回収するエアヒータ13と、熱回収後の排ガス18中の煤塵を集塵灰16として除去する集塵機14と、除塵後の排ガス18中に含まれる硫黄酸化物を吸収液である石灰スラリー20で除去する脱硫装置15と、脱硫装置15から排出される吸収塔スラリーから石膏31を除去する脱水機32と、前記脱水機32からの脱水濾液33を噴霧する噴霧手段を備えた噴霧乾燥装置50と、噴霧乾燥装置50に排ガス18から分岐した分岐ガス18aを導入する排ガス導入ラインL11と、前記噴霧乾燥装置50で脱水濾液33を乾燥した後の排ガス18bを主煙道に戻す排ガス送給ラインL12と、排ガス導入ラインL11に粉体61を供給する粉体供給装置60と、を具備するものである。
 これにより、噴霧乾燥装置50に供給する分岐ガス18a中に粉体61を供給することで、煤塵濃度を高くすることができる。
 この結果、分岐ガス18aを用いて噴霧乾燥装置50で噴霧乾燥する際に、発生する硫酸ミストを粉体61に付着させることで、硫酸ミストの量を低減させることができる。よって、噴霧乾燥装置50から排出される排ガス18b中の硫酸ミスト量を低減し、硫酸ミストによる後流側の腐食等を防止することができる。
 脱硝装置12は、ボイラ11からガス供給ラインL1を介して供給される排ガス18中の窒素酸化物を除去する装置であり、その内部に脱硝触媒層(図示せず)を有している。脱硝触媒層の前流には還元剤注入器(図示せず)が配置され、この還元剤注入器から排ガス18に還元剤が注入される。ここで還元剤としては、例えばアンモニア、尿素、塩化アンモニウムなどが用いられる。脱硝装置12に導入された排ガス18中の窒素酸化物は、脱硝触媒層と接触することにより、排ガス18中の窒素酸化物が窒素ガス(N)と水(HO)に分解・除去される。また排ガス18中の水銀は、塩素(Cl)分が多くなると、水に可溶な2価の塩化水銀の割合が多くなり、後述する脱硫装置15で水銀が捕集しやすくなる。
 なお、上記の脱硝装置12は必須のものではなく、ボイラ11からの排ガス18中の窒素酸化物濃度や水銀濃度が微量、あるいは、排ガス18中にこれらの物質が含まれない場合には、脱硝装置12を省略することも可能である。
 エアヒータ13は、脱硝装置12で窒素酸化物が除去された後、排ガス供給ラインL2を介して供給される排ガス18中の熱を回収する熱交換器である。脱硝装置12を通過した排ガス18の温度は300℃~400℃程度と高温であるため、エアヒータ13により高温の排ガス18と常温の燃焼用空気70との間で熱交換を行う。熱交換により高温となった燃焼用空気70Hは、空気供給ラインL21を介して、ボイラ11に供給される。一方、常温の燃焼用空気70との熱交換を行った排ガス18は150℃程度まで冷却される。
 集塵機14は、エアヒータ13での熱回収後、ガス供給ラインL3を介して供給される排ガス18中の煤塵を除去するものである。集塵機14としては慣性力集塵機、遠心力集塵機、濾過式集塵機、電気集塵機、洗浄集塵機等が挙げられるが、特に限定されない。
 脱硫装置15は、煤塵が除去された後、ガス供給ラインL4を介して供給される排ガス18中の硫黄酸化物を湿式で除去する装置の一例である。この脱硫装置15では、アルカリ吸収液として例えば石灰スラリー(水に石灰石粉末を溶解させた水溶液)20が用いられ、装置内の温度は例えば30~80℃程度に調節されている。石灰スラリー20は、石灰スラリー供給装置21から脱硫装置15の塔底部22内の液溜に供給される。脱硫装置15の塔底部22に供給された石灰スラリー20は、図示しない吸収液送給ラインを介して脱硫装置15内の複数のノズル23に送られ、ノズル23から塔頂部24側に向かって噴出される。脱硫装置15の塔底部22側から上昇してくる排ガス18がノズル23から噴出する石灰スラリー20と気液接触することにより、排ガス18中の硫黄酸化物及び塩化水銀が石灰スラリー20により吸収され、排ガス18から分離、除去される。石灰スラリー20により浄化された排ガス18は、浄化ガス26として脱硫装置15の塔頂部24側より排出され、煙突27から系外に排出される。
 脱硫装置15の内部において、排ガス18中の硫黄酸化物SOは石灰スラリー20と下記式(1)で表される反応を生じる。
CaCO+SO+0.5HO → CaSO・0.5HO +CO・・・(1)
 さらに、排ガス18中のSOを吸収した石灰スラリー20は、脱硫装置15の塔底部22に供給される空気(図示せず)により酸化処理され、空気と下記式(2)で表される反応を生じる。
CaSO・0.5HO+0.5O+1.5HO → CaSO・2HO・・・(2)
 このようにして、排ガス18中のSOは、脱硫装置15において石膏CaSO・2HOの形で捕獲される。
 また、上記のように、石灰スラリー20は、脱硫装置15の塔底部22に貯留した液を揚水したものが用いられるが、この揚水される石灰スラリー20には、脱硫装置15の稼働に伴い、反応式(1)、(2)により石膏CaSO・2HOが混合される。以下では、この揚水される石灰石膏スラリー(石膏が混合された石灰スラリー)を吸収液と呼ぶ。
 脱硫に用いた吸収塔スラリーである吸収液30は、脱硫装置15の塔底部22から外部に排出され、吸収液ラインL20を介して脱水機32に送られ、ここで脱水処理される。この脱水濾液33が脱硫排水となるが、水銀等の重金属やCl-、Br-、I-、F-等のハロゲンイオンが含まれている。
 脱水機32は、吸収液30中の石膏31を含む固体分と液体分の脱水濾液33とを分離するものである。脱水機32としては、例えばベルトフィルタ、遠心分離機、デカンタ型遠心沈降機等が用いられる。脱硫装置15から排出された吸収液30は、脱水機32により石膏31が分離される。その際、吸収液30中の塩化水銀は石膏31に吸着された状態で石膏31とともに液体と分離される。分離した石膏31は、システム外部(以下、「系外」という。)に排出される。
 一方、脱水機32からの分離液である脱水濾液33は、噴霧乾燥装置50に送られ、ここで分岐ガス18aにより蒸発乾燥させて、無排水化を図るようにしている。
 また、噴霧乾燥装置50は、ボイラ11からの排ガス18の主煙道である排ガス供給ラインL2から分岐した排ガス導入ラインL11を介し、排ガス18からの分岐ガス18aが導入されるガス導入手段と、脱水濾液33を散布又は噴霧する噴霧手段52とを具備している。そして、導入される分岐ガス18aの熱により散布又は噴霧された脱水濾液33を蒸発乾燥させている。なお、排ガス導入ラインL11及び排ガス送給ラインL12には、分岐ガス18a及び排出ガス18bの流入・排出を停止するためのダンパ手段59が介装されている。
 なお、本実施例では、エアヒータ13へ流入する分岐ガス18aを排ガス供給ラインL2から排ガス導入ラインL11を介して分岐しているので、ガス温度が高く(300~400℃)、脱水濾液33の噴霧乾燥を効率よく行うことができる。
 図7は、本実施例に係る脱水濾液の噴霧乾燥装置の一例を示す概略図である。図7に示すように、本実施例の噴霧乾燥装置50は、噴霧乾燥装置本体51内に、脱水濾液33を噴霧する噴霧手段52と、噴霧乾燥装置本体51に設けられ、噴霧液33aを乾燥する分岐ガス18aを導入する導入口51aと、噴霧乾燥装置本体51内に設けられ、分岐ガス18aにより脱水濾液33を乾燥する乾燥領域53と、乾燥に寄与した排ガス18bを排出する排出口51bと、前記噴霧手段52の付着物の付着状態を監視する付着物監視手段54とを具備するものである。なお、符号57は分離された固形物、V1、V2は流量調整バルブを図示する。
 なお、脱水濾液33は圧縮器55から供給される空気56により、噴霧乾燥装置本体51内部へ所定の流量と所定の噴霧液滴粒径とで噴霧手段52により噴霧されている。
 ここで、噴霧手段52としは、脱水濾液33を所定の噴霧液滴粒径となるように噴霧するものであれば、その形式は限定されるものではない。例えば2流体ノズルや、ロータリーアトマイザ等の噴霧手段を用いることができる。なお、2流体ノズルは比較的少量の脱水濾液33を噴霧するのに適しており、ロータリーアトマイザは、比較的多量の脱水濾液33を噴霧するのに適している。
 また、ノズルの数も1基ではなく、その処理量に応じて複数基設けるようにしてもよい。
 本実施例では、噴霧乾燥装置50に供給する分岐ガス18a中に粉体61を、ブロワ62により供給することで、分岐ガス18a中の煤塵濃度を高めることができる。
 ここで、供給する粉体61としては、例えば脱硫装置15で使用する石灰石や、他のプラントで捕集された煤塵、その他、石膏、活性炭等の硫酸ミストを吸着する作用があるものを用いることができる。
 この結果、分岐ガス18aを用いて噴霧乾燥装置50で噴霧乾燥する際に、噴霧乾燥装置50の本体内に導入される分岐ガス18aに粉体61が同伴されるので、発生する硫酸ミストを該粉体61に付着させることができ、この結果、硫酸ミストの量を低減させ、硫酸ミストによる後流側の腐食等を防止することができる。また、微小粒径であり捕集されにくい硫酸ミストの大気放出を防止することができる。
 図2は、実施例2に係る排ガス処理システムの概略構成図である。なお、実施例1の排ガス処理システムと同一部材については、同一符号を付してその説明は省略する。
 図2に示すように、本実施例の排ガス処理システム10Bは、集塵機14で捕集した集塵灰16をブロワ62により、集塵灰供給ラインL31を介して、排ガス導入ラインL11に供給するようにしている。
 この結果、分岐ガス18aを用いて噴霧乾燥装置50で噴霧乾燥する際に、発生する硫酸ミストを粉体61及び集塵灰16に付着させることで、硫酸ミストの量を低減させ、硫酸ミストによる後流側の腐食等を防止することができる。
 図3は、実施例3に係る排ガス処理システムの概略構成図である。なお、実施例1の排ガス処理システムと同一部材については、同一符号を付してその説明は省略する。
 本実施例の噴霧乾燥装置は、主煙道であるボイラ11から排ガス供給ラインL2からの分岐部における分岐ガス18aの導入の促進を図るようにしている。
 本実施例では、脱硝装置12の側壁12aから排ガス18が排ガス供給ラインL2を介して排出されている。この排ガス供給ラインL2は、その後直角に屈曲されており、その下流に配置したエアヒータ13へ排ガス18を導入している。
 エアヒータ13では、外部より導入される常温の燃焼用空気70と排ガス18とを熱交換し、高温となった燃焼用空気70Hは、空気供給ラインL21を介して、ボイラ11側に供給される。
 そして、本実施例では、脱硝装置12から延びる排ガス供給ラインL2と、連結する排ガス導入ラインL11とを連結する際、分岐ガス18aが直進できるように、屈曲部を有さずに、ガス流れが進行する直進方向に連結するようにして、煤塵供給手段を構成している。なお空気供給ラインL21と、排ガス導入ラインL11とは、交差しないようにオフセット配置されている。
 これにより、排ガス18が分岐ガス18aに流れ込む際、煤塵がその慣性力で、連結した排ガス導入ラインL11内に導入されるので、噴霧乾燥装置50側に送られる煤塵量が増大することとなる。
 この結果、排ガス18中の煤塵が分岐ガス18a中により多く送られることとなり、分岐ガス18a中の煤塵濃度を高めることができる。
 よって、分岐ガス18aを用いて噴霧乾燥装置50で噴霧乾燥する際に、発生する硫酸ミストを粉体61に付着させることで、硫酸ミストの量を低減させ、硫酸ミストによる後流側の腐食等を防止することができる。
 本実施例では、排ガス18を分岐する際に、分岐部における分岐ガス18aの導入の促進を図るようにして、排ガス中の煤塵を強制的に多く送り込み、分岐ガス18a中の煤塵量を増加させているが、実施例1又は2における別途粉体61や集塵灰16を粉体供給装置60から、供給ラインL30を介して導入することを併用するようにしてもよい。
 図4は、実施例4に係る排ガス処理システムの概略構成図である。なお、実施例1の排ガス処理システムと同一部材については、同一符号を付してその説明は省略する。
 本実施例の噴霧乾燥装置は、主煙道であるボイラ11から排ガス供給ラインL2からの分岐部における分岐ガス18aの導入の促進を図るようにしている。
 本実施例では、ボイラ11からガス供給ラインL2に、押し込みブロワ65により空気66を空気供給ラインL21から導入することで、煤塵供給手段を構成している。
 押し込みブロワ65側の空気供給ラインL21と、排ガス導入ラインL11との開口を煙道内で相対向させるように設け、押し込みブロワ65による押し込み空気66により、排ガス18中の煤塵を強制的に分岐ガス18a側へ押し込むこととなる。この結果、排ガス18中の煤塵がその押し込み力により多量に噴霧乾燥装置50側に送られることとなる。
 この結果、排ガス18中の煤塵が分岐ガス18a中により多く送られることとなり、分岐ガス18a中の煤塵濃度を高めることができる。
 この結果、分岐ガス18aを用いて噴霧乾燥装置50で噴霧乾燥する際に、発生する硫酸ミストを粉体61に付着させることで、硫酸ミストの量を低減させ、硫酸ミストによる後流側の腐食等を防止することができる。また、微小粒径であり捕集されにくい硫酸ミストの大気放出を防止することができる。
 また、押し込みブロワ65側の空気供給ラインL21を上流側に斜めに設置し、排ガス導入ラインL11を下流側に斜めに設置することで、押し込みブロワ65側に煤塵が導入することを防止している。
 本実施例では、排ガス18を分岐する際に、分岐部における分岐ガス18aの導入の促進を図るようにして、分岐ガス18a中の煤塵量の割合を増加させているが、実施例1又は2における別途粉体61や集塵灰16を粉体供給装置60から導入することを併用するようにしてもよい。
 図5は、実施例5に係る排ガス処理システムの概略構成図である。なお、実施例1の排ガス処理システムと同一部材については、同一符号を付してその説明は省略する。
 本実施例の噴霧乾燥装置は、主煙道であるボイラ11からガス供給ラインL2からの分岐部における分岐ガス18aの導入の促進を図るようにしている。
 本実施例では、ボイラ11から排ガス供給ラインL2に、湾曲したガイドベーン73を設置し、ガイドベーン73のガイドにより排ガスの一部をそのままの粉塵量を保持時しつつ、排ガス導入ラインL11へ導入するようにし、煤塵供給手段を構成している。
 図6-1~図6-4を用いて、ガイドベーンの設置状態について説明する。図6-1は、実施例5に係る分配手段の概略図である。図6-2は、実施例5に係る分配手段の側面図である。図6-3は、実施例5に係る分配手段の正面図である。図6-4は、実施例5に係る分配手段の平面図である。
 図6-1~6-4において、ガイドベーン73はその説明のため、一つとしているが、図5に示すように、少なくとも3つ以上設けることがより好ましい。
 ガイドベーン73は、排ガス供給ラインL2の煙道側壁内に所定距離をもって配置された支持棒71、72に支持されている。
 これにより、排ガス18中の煤塵を強制的に分岐ガス18a側へ押し込むことで、排ガス18中の煤塵濃度が高いものとなる。
 この結果、分岐ガス18aを用いて噴霧乾燥装置50で噴霧乾燥する際に、発生する硫酸ミストを粉体61に付着させることで、硫酸ミストの量を低減させ、硫酸ミストによる後流側の腐食等を防止することができる。また、微小粒径であり捕集されにくい硫酸ミストの大気放出を防止することができる。
 本実施例では、排ガス18を分岐する際に、分岐部における分岐ガス18aの導入の促進を図るようにして、排ガス18中の煤塵を多く送り込み、分岐ガス18a中の煤塵量の割合を増加させているが、実施例1又は2における別途粉体61や集塵灰16を粉体供給装置60から導入することを併用するようにしてもよい。
 10A、10B 排ガス処理システム
 11 ボイラ
 12 脱硝装置
 13 エアヒータ
 14 集塵機
 15 脱硫装置
 16 集塵灰
 18 排ガス
 32 脱水機
 33 脱水濾液

Claims (4)

  1.  燃料を燃焼させるボイラと、
     前記ボイラからの排ガスの熱を回収するエアヒータと、
     熱回収後の排ガス中の煤塵を除去する集塵機と、
     除塵後の排ガス中に含まれる硫黄酸化物を吸収液で除去する脱硫装置と、
     前記脱硫装置から排出される吸収塔スラリーから石膏を除去する脱水機と、
     前記脱水機からの脱水濾液を噴霧する噴霧手段を備えた噴霧乾燥装置と、
     前記噴霧乾燥装置に排ガスからの一部の分岐ガスを主煙道から導入する排ガス導入ラインと、
     前記噴霧乾燥装置で脱水濾液を乾燥した後の排ガスを前記主煙道に戻す排ガス送給ラインと、
     前記排ガス導入ラインに粉体を供給する粉体供給装置と、を具備することを特徴とする排ガス処理システム。
  2.  請求項1において、
     前記粉体が、集塵機で捕集した集塵灰、別途投入する粉体のいずれか一方又は両方であることを特徴とする排ガス処理システム。
  3.  燃料を燃焼させるボイラと、
     前記ボイラからの排ガスの熱を回収するエアヒータと、
     熱回収後の排ガス中の煤塵を除去する集塵機と、
     除塵後の排ガス中に含まれる硫黄酸化物を吸収液で除去する脱硫装置と、
     前記脱硫装置から排出される吸収塔スラリーから石膏を除去する脱水機と、
     前記脱水機からの脱水濾液を噴霧する噴霧手段を備えた噴霧乾燥装置と、
     前記噴霧乾燥装置に排ガスからの一部の分岐ガスを主煙道から導入する排ガス導入ラインと、
     前記噴霧乾燥装置で脱水濾液を乾燥した後の排ガスを前記主煙道に戻す排ガス送給ラインと、
     前記排ガス導入ラインに、排ガス中の煤塵を強制的に供給する煤塵供給手段と、を具備することを特徴とする排ガス処理システム。
  4.  燃料を燃焼させるボイラからの排ガスの熱をエアヒータにより回収した後、
     脱硫装置において、熱回収後の排ガス中に含まれる硫黄酸化物を吸収液で除去する排ガス処理方法において、
     分岐ガス中への粉塵量を増大させつつ噴霧乾燥装置へ導入し、粉塵量の多いガスで噴霧乾燥し、発生する硫酸ミストを捕集することを特徴とする排ガス処理方法。
PCT/JP2013/081051 2013-02-25 2013-11-18 排ガス処理システム及び排ガス処理方法 WO2014129030A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PL13875542T PL2959959T3 (pl) 2013-02-25 2013-11-18 Układ do obróbki gazu spalinowego
US14/764,078 US9700839B2 (en) 2013-02-25 2013-11-18 Air pollution control system and air pollution control method
ES13875542.6T ES2687241T3 (es) 2013-02-25 2013-11-18 Sistema de tratamiento de gases de escape
EP13875542.6A EP2959959B1 (en) 2013-02-25 2013-11-18 Exhaust gas treatment system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013035164A JP5984712B2 (ja) 2013-02-25 2013-02-25 排ガス処理システム及び排ガス処理方法
JP2013-035164 2013-02-25

Publications (1)

Publication Number Publication Date
WO2014129030A1 true WO2014129030A1 (ja) 2014-08-28

Family

ID=51390845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081051 WO2014129030A1 (ja) 2013-02-25 2013-11-18 排ガス処理システム及び排ガス処理方法

Country Status (6)

Country Link
US (1) US9700839B2 (ja)
EP (3) EP3332863A1 (ja)
JP (1) JP5984712B2 (ja)
ES (1) ES2687241T3 (ja)
PL (1) PL2959959T3 (ja)
WO (1) WO2014129030A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104776412A (zh) * 2015-04-14 2015-07-15 余传林 一种高温超细粉体余热回收锅炉
CN104785087A (zh) * 2015-04-01 2015-07-22 东北大学 一种海水脱硫辅机***及脱硫方法
CN104941424A (zh) * 2015-06-02 2015-09-30 成都虹华环保科技股份有限公司 一种酸碱废气处理***
CN105066660A (zh) * 2015-08-13 2015-11-18 广西鹿寨县金达珑茧丝有限责任公司 缫丝厂锅炉尾气处理装置
CN105148707A (zh) * 2015-08-31 2015-12-16 太仓英达锅炉设备有限公司 一种锅炉烟气脱硫装置
CN105498505A (zh) * 2016-02-17 2016-04-20 徐州工程学院 一种工业废气除尘脱硫装置以及除尘脱硫方法
CN105967420A (zh) * 2016-06-17 2016-09-28 国网河南省电力公司电力科学研究院 基于电厂废水零排放技术的气液固污染物协同处理***
CN106178940A (zh) * 2016-07-29 2016-12-07 中冶宝钢技术服务有限公司 用于湿法脱硫的钢渣基改性脱硫剂及其制备方法和应用
CN106563343A (zh) * 2015-10-10 2017-04-19 余姚市婉珍五金厂 一种喷漆废气的净化处理方法
CN107405654A (zh) * 2015-02-27 2017-11-28 三菱日立电力***株式会社 废弃物的水泥固化处理装置及其方法、无排水化废气处理***及其方法
CN107875825A (zh) * 2017-12-28 2018-04-06 聂玲 烟尘除硝除硫环保设备
CN109200788A (zh) * 2018-10-31 2019-01-15 广州博昊信息科技有限公司 一种煤电厂用耐高温可压缩烟气的脱硫脱硝装置
CN110015798A (zh) * 2019-04-08 2019-07-16 上海电力学院 应用于燃煤电厂的脱硫废水处理装置
CN111056631A (zh) * 2019-12-16 2020-04-24 福建农林大学 一种应用裂解气厌氧反硝化的方法
CN111760437A (zh) * 2020-07-09 2020-10-13 陈焕林 一种新型烟气脱硫方法
WO2021090847A1 (ja) * 2019-11-07 2021-05-14 三菱パワー株式会社 石膏スラリー脱水システム

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6504856B2 (ja) * 2015-02-27 2019-04-24 三菱日立パワーシステムズ株式会社 無排水化排ガス処理システム及び方法
CN105879640B (zh) * 2016-05-24 2018-06-29 盐城中创环保科技有限公司 脱硫脱硝一体化装置
CN106268133A (zh) * 2016-08-28 2017-01-04 浙江浩普环保工程有限公司 烟气污染物协同深度净化***
KR101727257B1 (ko) 2016-09-09 2017-04-14 주식회사 지스코 보일러 설비 및 이의 운전 방법
CN106322415A (zh) * 2016-09-29 2017-01-11 杭州创屹机电科技有限公司 烟气污染物协同深度净化***
JP6666231B2 (ja) * 2016-11-14 2020-03-13 三菱日立パワーシステムズ株式会社 噴霧乾燥システム
CN106474905A (zh) * 2016-12-29 2017-03-08 焦作和信冶金科技有限责任公司 一种煅烧烟气脱硫除尘工艺
CN107213785B (zh) * 2017-05-25 2020-08-07 江苏新世纪江南环保股份有限公司 一种fcc尾气氨法脱硝脱硫除尘的方法及装置
CN108889070A (zh) * 2018-07-19 2018-11-27 江苏安纳泰环保科技有限公司 一种化工废气吸附塔
CN109630768B (zh) * 2018-12-29 2020-08-07 浙江德创环保科技股份有限公司 一种脱硫喷淋管道及其生产工艺
CN109821415B (zh) * 2019-02-20 2023-12-08 山东莱钢永锋钢铁有限公司 一种燃煤锅炉scr烟气脱硝双流体加热喷枪***
CN110482630B (zh) * 2019-09-25 2021-03-16 清华大学 利用烟气热量的直接接触蒸发处理设备及其方法
CN110511040A (zh) * 2019-09-27 2019-11-29 梁凤鸣 一种环保型陶粒及其制备方法
CN111589290B (zh) * 2020-05-27 2024-02-20 新疆天富环保科技有限公司 一种节能型锅炉尾气净化***及方法
CN111928286B (zh) * 2020-08-14 2021-09-14 西安热工研究院有限公司 一种适应多工况的脱硫废水零排放处理方法及***
CN112354352B (zh) * 2020-10-22 2022-06-24 国能哈尔滨热电有限公司 一种提高烟气强制氧化脱硫脱硝一体化装置
CN114763909B (zh) * 2021-01-14 2024-06-14 中工国际工程股份有限公司 一种循环流化床耦合离子瀑的锅炉***
CN113142632B (zh) * 2021-02-05 2022-06-21 湖北省烟草科学研究院 一种燃煤烤房自动进煤和减排设备同步控制***及方法
CN113244760A (zh) * 2021-04-15 2021-08-13 珠海市建华锅炉机械工程有限公司 一种工业锅炉尾气处理装置及其处理方法
CN114699893A (zh) * 2022-02-28 2022-07-05 华电水务工程有限公司 一种高硫酸根纳滤浓水资源化利用方法
CN114562867A (zh) * 2022-03-04 2022-05-31 温州市金榜轻工机械有限公司 真空***中高效率回收氟化锂中氟化氢的固体干燥机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021442A (ja) * 2005-07-20 2007-02-01 Mitsubishi Heavy Ind Ltd 排ガス処理方法及び設備
JP2010227749A (ja) * 2009-03-26 2010-10-14 Jfe Engineering Corp 排ガス処理方法
JP2012196638A (ja) 2011-03-22 2012-10-18 Mitsubishi Heavy Ind Ltd 排ガス処理システム及び排ガス処理方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200818A (ja) * 1987-02-16 1988-08-19 Mitsubishi Heavy Ind Ltd 湿式排ガス処理装置における排液の処理方法
JPH09313881A (ja) * 1996-05-31 1997-12-09 Ishikawajima Harima Heavy Ind Co Ltd ボイラ排煙脱硫装置の無排水化装置
JP2001179047A (ja) * 1999-12-24 2001-07-03 Toshiba Corp 排水処理装置
JP2002204925A (ja) * 2001-01-15 2002-07-23 Electric Power Dev Co Ltd 排ガス処理システム及びその運転方法
WO2008078722A1 (ja) * 2006-12-27 2008-07-03 Babcock-Hitachi Kabushiki Kaisha 排ガス処理方法と装置
JP5221885B2 (ja) * 2007-03-07 2013-06-26 三菱重工業株式会社 排煙処理方法および設備
JP5350996B2 (ja) * 2009-11-25 2013-11-27 バブコック日立株式会社 酸素燃焼システムの排ガス処理装置
US8715402B2 (en) * 2011-03-22 2014-05-06 Mitsubishi Heavy Industries, Ltd. Air pollution control system and air pollution control method, spray drying device of dewatering filtration fluid from desulfurization discharged water, and method thereof
JP2012200657A (ja) * 2011-03-24 2012-10-22 Mitsubishi Heavy Ind Ltd 脱硫排液からの脱水濾液の噴霧乾燥装置、排ガス処理システム及び方法
JP5888878B2 (ja) * 2011-05-31 2016-03-22 三菱日立パワーシステムズ株式会社 脱硫排水からの脱水濾液の噴霧乾燥装置及び排ガス処理システム
JP5773756B2 (ja) * 2011-05-31 2015-09-02 三菱日立パワーシステムズ株式会社 脱水濾液の噴霧乾燥装置及び排ガス処理システム
US8883099B2 (en) * 2012-04-11 2014-11-11 ADA-ES, Inc. Control of wet scrubber oxidation inhibitor and byproduct recovery
US8535626B1 (en) * 2012-11-28 2013-09-17 Mitsubishi Heavy Industries, Ltd. Exhaust gas treatment apparatus and exhaust gas treatment method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021442A (ja) * 2005-07-20 2007-02-01 Mitsubishi Heavy Ind Ltd 排ガス処理方法及び設備
JP2010227749A (ja) * 2009-03-26 2010-10-14 Jfe Engineering Corp 排ガス処理方法
JP2012196638A (ja) 2011-03-22 2012-10-18 Mitsubishi Heavy Ind Ltd 排ガス処理システム及び排ガス処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2959959A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107405654A (zh) * 2015-02-27 2017-11-28 三菱日立电力***株式会社 废弃物的水泥固化处理装置及其方法、无排水化废气处理***及其方法
US10780473B2 (en) 2015-02-27 2020-09-22 Mitsubishi Hitachi Power Systems, Ltd. Cement solidification device for waste and method therefor, and zero-liquid discharge air pollution control system and method therefor
EP3263238A4 (en) * 2015-02-27 2018-10-24 Mitsubishi Hitachi Power Systems, Ltd. Cement solidification device for waste and method therefor, and zero liquid discharge exhaust gas processing system and method therefor
CN104785087A (zh) * 2015-04-01 2015-07-22 东北大学 一种海水脱硫辅机***及脱硫方法
CN104776412A (zh) * 2015-04-14 2015-07-15 余传林 一种高温超细粉体余热回收锅炉
CN104941424A (zh) * 2015-06-02 2015-09-30 成都虹华环保科技股份有限公司 一种酸碱废气处理***
CN105066660A (zh) * 2015-08-13 2015-11-18 广西鹿寨县金达珑茧丝有限责任公司 缫丝厂锅炉尾气处理装置
CN105148707A (zh) * 2015-08-31 2015-12-16 太仓英达锅炉设备有限公司 一种锅炉烟气脱硫装置
CN106563343A (zh) * 2015-10-10 2017-04-19 余姚市婉珍五金厂 一种喷漆废气的净化处理方法
CN105498505A (zh) * 2016-02-17 2016-04-20 徐州工程学院 一种工业废气除尘脱硫装置以及除尘脱硫方法
CN105967420A (zh) * 2016-06-17 2016-09-28 国网河南省电力公司电力科学研究院 基于电厂废水零排放技术的气液固污染物协同处理***
CN106178940A (zh) * 2016-07-29 2016-12-07 中冶宝钢技术服务有限公司 用于湿法脱硫的钢渣基改性脱硫剂及其制备方法和应用
CN107875825A (zh) * 2017-12-28 2018-04-06 聂玲 烟尘除硝除硫环保设备
CN109200788A (zh) * 2018-10-31 2019-01-15 广州博昊信息科技有限公司 一种煤电厂用耐高温可压缩烟气的脱硫脱硝装置
CN110015798A (zh) * 2019-04-08 2019-07-16 上海电力学院 应用于燃煤电厂的脱硫废水处理装置
WO2021090847A1 (ja) * 2019-11-07 2021-05-14 三菱パワー株式会社 石膏スラリー脱水システム
JP2021074660A (ja) * 2019-11-07 2021-05-20 三菱パワー株式会社 石膏スラリー脱水システム
JP7293086B2 (ja) 2019-11-07 2023-06-19 三菱重工業株式会社 石膏スラリー脱水システム
CN111056631A (zh) * 2019-12-16 2020-04-24 福建农林大学 一种应用裂解气厌氧反硝化的方法
CN111056631B (zh) * 2019-12-16 2022-04-19 福建农林大学 一种应用裂解气厌氧反硝化的方法
CN111760437A (zh) * 2020-07-09 2020-10-13 陈焕林 一种新型烟气脱硫方法

Also Published As

Publication number Publication date
US20150360174A1 (en) 2015-12-17
EP3332864A1 (en) 2018-06-13
ES2687241T3 (es) 2018-10-24
EP2959959A4 (en) 2016-01-06
EP3332863A1 (en) 2018-06-13
EP2959959B1 (en) 2018-08-15
US9700839B2 (en) 2017-07-11
PL2959959T3 (pl) 2019-01-31
JP2014161799A (ja) 2014-09-08
JP5984712B2 (ja) 2016-09-06
EP2959959A1 (en) 2015-12-30

Similar Documents

Publication Publication Date Title
JP5984712B2 (ja) 排ガス処理システム及び排ガス処理方法
JP5384799B2 (ja) 排ガス処理装置および排ガス処理方法
JP6087959B2 (ja) 排ガス処理システム及び排ガス処理方法
JP6665011B2 (ja) 排ガス処理方法およびシステム
US9943804B2 (en) Air pollution control system and air pollution control method
WO2011104841A1 (ja) 排ガス処理システム及び排ガス処理方法
US20160325203A1 (en) Spray drying apparatus and air pollution control system
JP6212401B2 (ja) 排ガス処理装置
WO2009093576A1 (ja) 石炭焚ボイラの排ガス処理システム及びその運転方法
JP2006326575A (ja) 排ガス処理装置および排ガス処理方法
JP2018171583A (ja) 無排水化排ガス処理システム及び無排水化排ガス処理方法
JP2012196638A (ja) 排ガス処理システム及び排ガス処理方法
US10005026B2 (en) Limestone supply device and air pollution control system
WO2014103682A1 (ja) 排ガス処理設備およびこれを用いるガスタービン発電システム
JP2016120480A (ja) 湿式排煙脱硫装置の廃水からのガス排出を低減するためのシステム及び方
JPH10305210A (ja) 排煙処理方法及び設備
US10617999B2 (en) Process for removing SO2 from flue gases using liquid sorbent injection
KR19980079806A (ko) 배연 처리방법 및 설비
JPH1133349A (ja) 排煙処理方法及び設備
CN109260920A (zh) 烟气处理***
MXPA98001386A (en) Procedure and system to treat hum gas
MXPA99001738A (es) Proceso y sistema para tratar gas de humero

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875542

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14764078

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013875542

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE