WO2014128995A1 - パッシブレーダ装置 - Google Patents

パッシブレーダ装置 Download PDF

Info

Publication number
WO2014128995A1
WO2014128995A1 PCT/JP2013/072423 JP2013072423W WO2014128995A1 WO 2014128995 A1 WO2014128995 A1 WO 2014128995A1 JP 2013072423 W JP2013072423 W JP 2013072423W WO 2014128995 A1 WO2014128995 A1 WO 2014128995A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
frequency band
cross
unit
search system
Prior art date
Application number
PCT/JP2013/072423
Other languages
English (en)
French (fr)
Inventor
正資 大島
照幸 原
龍平 高橋
岡村 敦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/761,861 priority Critical patent/US20150355322A1/en
Priority to JP2015501245A priority patent/JPWO2014128995A1/ja
Priority to EP13875429.6A priority patent/EP2960675A1/en
Publication of WO2014128995A1 publication Critical patent/WO2014128995A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/288Coherent receivers
    • G01S7/2883Coherent receivers using FFT processing

Definitions

  • the present invention is a passive radar device that realizes detection and tracking of a target such as an aircraft or a ship by using an existing radio wave source as a radiation source without emitting radio waves by itself, and by detecting a plurality of frequency bands in a coherent manner.
  • the present invention relates to a passive radar device that improves tracking performance.
  • a passive radar device does not emit radio waves, but uses existing radio wave sources used for communications and broadcasting as a transmission source, and receives and processes radio waves radiated from them and waves reflected by the target. As a result, target tracking of an aircraft, a ship, or the like is realized.
  • a radio wave radiated from the transmission source directly reaches the receiving means is called a direct wave, and a radio wave reflected by the target is called a reflected wave. Then, the cross-correlation between the direct wave and the reflected wave is calculated, and the target is detected and tracked by detecting the peak.
  • An antenna that receives a direct wave, a receiving unit, and the like are referred to as a reference system, and an antenna that receives a reflected wave, the receiving unit, and the like are referred to as a search system.
  • a signal having a plurality of frequency bands is received by a broadband receiver, the Doppler frequency of the received signal of the reference system is compensated, the correlation processing with the received signal of the search system is performed, and the delay / Doppler frequency Is calculated. Then, the target is detected by detecting the peak.
  • Patent Document 1 has the following two problems.
  • the first problem is that a broadband receiver is required, and the cost is higher than that of a narrowband receiver.
  • the amount of calculation of cross-correlation increases.
  • the second problem is that the Doppler frequency is different for each frequency band. Therefore, when the Doppler frequency of a signal in multiple frequency bands is compensated simultaneously by one Doppler frequency, accurate compensation cannot be performed and the loss in the cross-correlation processing is lost. Is generated.
  • the target bistatic Doppler velocity V (the sum of the target velocity target-transmitter direction component and the target-receiver direction component) and the transmission carrier frequency have the relationship of the following equation (1).
  • fd (n) is the Doppler frequency in the nth frequency band
  • fc (n) is the carrier frequency of the signal in the nth frequency band
  • c is the speed of light.
  • a long-time cross-correlation process is generally used to extend the detection distance.
  • the frequency resolution ⁇ fd after the cross-correlation process can be expressed by the following equation (2).
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a passive radar device that can suppress integration loss due to different Doppler frequencies among a plurality of frequency bands.
  • a passive radar device includes a search system receiving antenna that receives a reflected wave transmitted from a radio wave source and reflected by a target, a reference system receiving antenna that receives a direct wave transmitted from the radio wave source, and a search system Search system band dividing means for dividing the received signal of the reflected wave received by the receiving antenna for each frequency band, and reference system band dividing means for dividing the received signal of the direct wave received by the reference system receiving antenna for each frequency band And a search system receiving means for receiving a reflected wave reception signal for each frequency band divided by the search system band dividing means and performing A / D conversion, and a direct for each frequency band divided by the reference system band dividing means.
  • Reference system receiving means for receiving a received signal of a wave and performing A / D conversion, a received signal of a reflected wave A / D converted by a search system receiving means, and A / D converted by a reference system receiving means
  • Cross-correlation processing means for performing cross-correlation for each frequency band with the received signal of the direct wave
  • band synthesis means for performing band synthesis on the cross-correlation result for each frequency band by the cross-correlation processing means, and band synthesis result by the band synthesis means
  • target detection means for detecting a target based on the above.
  • the passive radar device includes a search system reception antenna that receives a reflected wave transmitted from a radio wave source and reflected by a target, a reference system reception antenna that receives a direct wave transmitted from the radio wave source, Search system broadband receiving means for receiving the reflected wave received by the search system reception antenna in a wide band, performing A / D conversion, and dividing each frequency band; and direct wave received by the reference system reception antenna
  • a reference system wideband receiving means for receiving a received signal in a wideband, performing A / D conversion, and dividing it for each frequency band, a reflected wave reception signal divided by the search system wideband receiving means, and a reference system wideband receiving means
  • Cross-correlation processing means for performing cross-correlation for each frequency band with the divided direct wave reception signal, and band for combining the cross-correlation results for each frequency band by the cross-correlation processing means.
  • forming means in which a target detection means for detecting a target based on the band synthesis result by band synthesizing means
  • the present invention since it is configured as described above, it is possible to suppress the integral loss due to the difference in Doppler frequency between a plurality of frequency bands.
  • FIG. 1 is a diagram showing a configuration of a passive radar device according to Embodiment 1 of the present invention.
  • the passive radar device includes receiving antennas 101 and 102, band dividing means 103 and 104, receiving means 105 and 106, cross-correlation processing means 107, band synthesizing means 108, and peak detecting means 109. Yes.
  • the receiving antenna 101, the band dividing means 103, the receiving means 105, the cross correlation processing means 107, the band synthesizing means 108 and the peak detecting means 109 constitute a search system
  • the receiving means 106 constitutes a reference system.
  • the receiving antenna (search system receiving antenna) 101 receives a radio wave (reflected wave) transmitted from a transmission source 201 which is an existing radio wave source and reflected by a target 202 to be detected such as an aircraft or a ship.
  • the reception antenna (reference system reception antenna) 102 receives radio waves (direct waves) transmitted from the transmission source 201.
  • the search system that detects the target 202 since direct waves interfere with each other, it is desirable to consider that direct waves are not mixed as much as possible.
  • the direct wave received by the reference system is cross-correlated with the received signal of the search system in the cross-correlation processing means 107, it is desirable that the multi-scattered wave generated in a multipath environment or the like is not included. Therefore, the receiving antenna 102 is installed in a place where the transmitting source 201 can be seen as much as possible.
  • the band dividing means (search system band dividing means) 103 divides the reception signal (RF signal) of the reflected wave received by the receiving antenna 101 for each frequency band.
  • the band dividing means (reference system band dividing means) 104 divides the direct wave reception signal (RF signal) received by the receiving antenna 102 for each frequency band.
  • the band dividing means 103 and 104 generally, a component called a demultiplexer, a separator, an antenna duplexer or the like is used, and as shown in FIG. Divide by analog stage. Since the duplexer separates signals by frequency, the loss of SNR (Signal to Noise Ratio) is small. However, since the SNR loss at the time of division may increase depending on the frequency bandwidth, a configuration may be adopted in which division is performed for each of a plurality of frequency bandwidths.
  • SNR Signal to Noise Ratio
  • the band dividing means 103, 104 is provided with a local signal transmission source, and by changing the frequency from the local signal transmission source in time series and the received signal, the band to be extracted is changed, The received signal may be divided for each frequency band.
  • the receiving means (search system receiving means) 105 receives the received signal of the reflected wave for each frequency band divided by the band dividing means 103 and performs A / D conversion.
  • the receiving means (reference system receiving means) 106 receives the direct wave reception signal for each frequency band divided by the band dividing means 104 and performs A / D conversion.
  • the receiving means 105 and 106 do not need to be wideband receivers, but may be narrowband receivers (low speed A / D converters).
  • the cross-correlation processing unit 107 performs cross-correlation for each frequency band between the reflected wave reception signal A / D converted by the reception unit 105 and the direct wave reception signal A / D converted by the reception unit 106. It is. The configuration of the cross correlation processing means 107 will be described later.
  • the band synthesizing unit 108 synthesizes the cross correlation result for each frequency band by the cross correlation processing unit 107.
  • the peak detection means (target detection means) 109 detects the target 202 based on the band synthesis result by the band synthesis means 108.
  • the cross-correlation processing unit 107 includes a Doppler frequency shift unit 1071, FFT units 1072 and 1073, a complex conjugate multiplication unit 1074, and an IFFT unit 1075 for each frequency band.
  • the Doppler frequency shift unit 1071 shifts the direct wave reception signal for each frequency band from the receiving unit 106 by the Doppler frequency calculated from the assumed target bistatic Doppler speed and the carrier frequency for each frequency band. It is.
  • the FFT unit 1072 performs a fast Fourier transform (FFT) on the received signal of the reflected wave for each frequency band from the receiving unit 105.
  • the FFT unit 1073 performs fast Fourier transform (FFT) on the direct wave reception signal for each frequency band frequency-shifted by the Doppler frequency shift unit 1071.
  • the complex conjugate multiplier 1074 takes the complex conjugate of the received signal of the direct wave for each frequency band fast Fourier transformed by the FFT unit 1073 and the received signal of the reflected wave for each frequency band fast Fourier transformed by the FFT unit 1073 Multiply.
  • the IFFT unit 1075 performs an inverse fast Fourier transform (IFFT: Inverse FFT) on the output signal that is a result of the complex conjugate multiplication by the complex conjugate multiplication unit 1074.
  • IFFT inverse fast Fourier transform
  • the receiving antenna 101 receives a reflected wave transmitted from the transmission source 201 and reflected by the target 202 (step ST1). Moreover, the receiving antenna 102 receives the direct wave transmitted from the transmission source 201 (step ST2).
  • the band dividing means 103 divides the received signal of the reflected wave received by the receiving antenna 101 for each frequency band (step ST3). Further, the band dividing means 104 divides the direct wave reception signal received by the receiving antenna 102 for each frequency band (step ST4).
  • the receiving means 105 receives the received signal of the reflected wave for each frequency band divided by the band dividing means 103 and performs A / D conversion (step ST5).
  • the receiving means 106 receives the direct wave reception signal for each frequency band divided by the band dividing means 104 and performs A / D conversion (step ST6).
  • receiving means 105 and 106 perform amplification of the received signal by LNA (Low Noise Amplifier), mixing with a local signal by a mixer, and the like. Then, the signal is converted into a digital signal by performing A / D conversion after being converted into an IF (intermediate frequency) band signal.
  • the mixer is an orthogonal mixer
  • the signal after A / D conversion has an I signal and a Q signal, and can be handled as a complex signal.
  • the signal after A / D conversion can be converted into a baseband signal by multiplying exp ( ⁇ j ⁇ 2 ⁇ ⁇ fIF ⁇ t). Note that fIF is the IF center frequency.
  • the mixer is not a quadrature mixer, the signal after A / D conversion has only an I signal, so it is converted to a complex signal by Hilbert transform or the like, and exp ( ⁇ j ⁇ 2 ⁇ ⁇ fIF ⁇ t) is By multiplication, it is converted into a baseband signal.
  • the cross-correlation processing unit 107 calculates the cross-correlation for each frequency band between the reception signal of the reflected wave A / D converted by the reception unit 105 and the reception signal of the direct wave A / D converted by the reception unit 106. Perform (step ST7).
  • the received signals (baseband signals) of the search system and the reference system in a certain frequency band #n are s sur (n, t) and s ref (n, t), respectively.
  • the baseband signal of the search system is frequency-shifted by the bistatic Doppler frequency fd (n) generated with the movement of the target expressed by the equation (1). ing.
  • This fd (n) is usually unknown. Therefore, the Doppler frequency shift unit 1071 prepares a bistatic Doppler velocity V (l) corresponding to the assumed bistatic Doppler frequency range, and shifts the frequency of the reference baseband signal.
  • the shifted signal s ref (n, l, t) is given by the following equation (3).
  • V (1) is the initial value of the bistatic Doppler velocity to be observed
  • ⁇ V is the bistatic Doppler interval, and is desirably 1 / T or less in order to reduce the loss in the cross-correlation processing.
  • the FFT unit 1072, 1073, the complex conjugate multiplication unit 1074, and the IFFT unit 1075 use the following equation (5) as a cyclic correlation calculation using a fast Fourier transform (FFT) and an inverse fast Fourier transform (IFFT).
  • FFT fast Fourier transform
  • IFFT inverse fast Fourier transform
  • the band synthesizing unit 108 synthesizes the cross-correlation result CCF (n, l, m) for each frequency band by the cross-correlation processing unit 107 between the bands as shown in the following equation (6), thereby improving the SNR. (Step ST8).
  • the peak detection unit 109 calculates the square of the absolute value of CCCF (k, l, m), which is the band synthesis result by the band synthesis unit 108, and detects the target 202 by detecting the peak (step) ST9).
  • a peak detection method a method of detecting as a target when the square of the absolute value exceeds a predetermined value set in advance, or a value obtained by multiplying the average value of the cell peripheral range of interest of the square of the absolute value by a coefficient
  • CA-CFAR Cell Averaging-Constant False Alarm Rate
  • the received signal is divided into signals for each frequency band and A / D converted, and then configured to perform band synthesis by cross-correlation for each frequency band. Since a wideband receiver is not required and cross-correlation with low loss can be realized with a low-speed A / D converter, integration loss due to a difference in Doppler frequency among a plurality of frequency bands can be suppressed.
  • Embodiment 2 shows a configuration that solves the above problem by dividing the received signal into blocks, performing cross-correlation in each block, and performing fast Fourier transform between the blocks.
  • FIG. 5 is a diagram showing the configuration of the cross-correlation processing means 107 in the second embodiment of the present invention.
  • the block division unit 1076 divides the reception signal of the reflected wave for each frequency band from the reception unit 105 for each block.
  • the block division unit 1077 divides the direct wave reception signal for each frequency band from the reception unit 106 for each block.
  • the FFT unit 1072b performs a fast Fourier transform (FFT) on the received signal of the reflected wave for each frequency band and each block divided by the block dividing unit 1076.
  • the FFT unit 1073b performs fast Fourier transform (FFT) on the frequency band divided by the block division unit 1077 and the direct wave reception signal for each block.
  • the complex conjugate multiplier 1074 takes the complex conjugate of the received signal of the direct wave for each frequency band and block that has been fast Fourier transformed by the FFT unit 1073b, and for each frequency band and each block that has been fast Fourier transformed by the FFT unit 1072b. Multiply by the received signal of the reflected wave.
  • the inter-block FFT unit 1078 performs a fast Fourier transform (FFT) in the block direction on the inverse fast Fourier transform result from the IFFT unit 1075.
  • FFT fast Fourier transform
  • the correlation calculation using the fast Fourier transform results in a cyclic cross-correlation, but the transmission signal in the passive radar device is generally not a repetitive signal. Therefore, in order to perform the sliding correlation in the correlation calculation using the fast Fourier transform, the received signals of the search system and the reference system are divided as shown in FIG. That is, as shown in FIG. 6A, the block dividing unit 1076 divides the received signal for each time interval Tb, and then adds the received signal of the next block to the received signal of each divided block. A block having a time interval of 2 Tb is generated. On the other hand, as shown in FIG.
  • the block dividing unit 1077 divides the received signal every time interval Tb, and then adds a 0 signal corresponding to the time interval Tb to the received signal of each divided block. Thus, a block having a time interval of 2 Tb is generated.
  • the target delay time ⁇ is sufficiently smaller than the time interval Tb in order to reduce the amount of correlation calculation, the correlation calculation is performed on the received signal divided for each time interval Tb in both the search system and the reference system. It is also possible to adopt a configuration to perform.
  • the fast Fourier transform between the blocks may be configured to perform a Fourier transform on the target bistatic Doppler velocity V (l), as in the equation (3) in the first embodiment.
  • the band synthesizing unit 108 synthesizes CCF (n, q, m) in the direction of the frequency band n in the same manner as Expression (6) in the first embodiment as a result of the cross correlation processing unit 107.
  • the cross-correlation processing unit 107 divides both the search system and reference system received signals into blocks and performs cross-correlation for each block, and then performs high speed between blocks. Since the configuration is such that the Fourier transform is performed, in addition to the effect in the first embodiment, an increase in the amount of calculation can be avoided even if the cross-correlation time T becomes long.
  • the bistatic Doppler velocity V matches or A configuration for synthesizing close cross-correlation functions is described.
  • the ratio between the frequency bands of the Doppler frequency is determined by only the ratio of the carrier frequency without depending on the bistatic Doppler velocity V. Therefore, as shown in CCF (n, q * fc (n) / f1 (n), m), a cross-correlation function in which the ratio of the carrier frequency for each frequency band and the ratio of the Doppler frequency are identical or close is synthesized. Also good.
  • FIG. 7 is a diagram showing a configuration of a passive radar device according to Embodiment 3 of the present invention.
  • the passive radar device according to the third embodiment shown in FIG. 7 deletes the band dividing means 103 and 104 and the receiving means 105 and 106 from the passive radar device according to the first embodiment shown in FIG. 111 is added.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the broadband receiving means (search system broadband receiving means) 110 receives a reflected wave reception signal (RF signal) received by the receiving antenna 101 in a wide band, performs A / D conversion, and divides the signal into frequency bands. is there.
  • the wideband receiving means (reference system wideband receiving means) 111 receives a direct wave reception signal (RF signal) received by the receiving antenna 102 in a wide band, performs A / D conversion, and divides it into frequency bands. is there.
  • signals in a plurality of frequency bands are collectively A / D converted by the broadband receiving means 110 and 111 and then divided into signals for each band by digital processing.
  • a broadband receiver and a broadband A / D converter are required as the broadband receiving means 110 and 111.
  • the wideband receiving means 110 and 111 are used in place of the band dividing means 103 and 104 and the receiving means 105 and 106, it is possible to use a plurality of frequency bands.
  • the integral loss due to the different Doppler frequencies can be suppressed.
  • Embodiment 4 FIG.
  • the amplitude / phase fluctuations of the transmission signals in a plurality of frequency bands and the amplitude / phase fluctuations due to the frequency characteristics of the receiver are estimated in real time with a simple configuration, so that the signals in the plurality of frequency bands are synthesized without loss.
  • the method to do is shown.
  • s n (t) is a modulation sequence (broadcast / communication data, etc.) of frequency channel #n
  • fc a modulation sequence (broadcast / communication data, etc.) of frequency channel #n
  • n is a center frequency (carrier frequency) of frequency channel #n
  • ⁇ n is a signal of frequency channel #n. Is the initial phase.
  • a receiving antenna / receiver that receives a direct wave of a satellite is called a reference system
  • a receiving antenna / receiver that receives a target scattered wave is called a search system. It is assumed that the reference system and search system are synchronized.
  • ⁇ n is a complex amplitude at the time of direct wave reception of frequency channel #n
  • ⁇ D is a propagation delay time from the satellite to the reference system.
  • the received signal of Expression (9) is converted to a baseband signal by multiplying it by a local signal exp (j2 ⁇ fc , nt).
  • phi ⁇ n is the phase of a frequency channel #n including the initial phase of the local signal.
  • the received signal of Expression (11) is converted to a baseband signal by multiplying the local signal exp (j2 ⁇ fc , nt) as in the reference system.
  • T is an integration time
  • Pn is the average power of frequency band #n.
  • ⁇ t a sampling period and ⁇ f is a Doppler frequency resolution
  • the cross-correlation values can be combined coherently by IFFT in the frequency channel direction as follows.
  • K having the peak in the absolute value of the equation (16) is as follows. Further, the frequency characteristic of the target of the RCS, if only phase amplitude is constant varies linearly, i.e., the target also by the frequency channel direction of the IFFT when written as exp (j2 ⁇ f c, n ⁇ RCS ) is integral You can see that In this case, however, it should be noted that the peak delay time index is shifted by ⁇ RCS .
  • FIG. 8 shows the configuration of the passive radar device according to the fourth embodiment.
  • the passive radar device according to Embodiment 4 shown in FIG. 8 is obtained by adding interband compensation means 112 to the passive radar device according to Embodiment 1 shown in FIG.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the inter-band compensation unit 112 compensates the amplitude and phase fluctuation for each frequency band with respect to the cross-correlation result for each frequency band by the cross-correlation processing unit 107.
  • Band synthesizing means 108 synthesizes the cross-correlation result for each frequency band after compensation by interband compensating means 112.
  • the direct wave from the transmission source 201 generally has high power, it is mixed from the side lobe or back lobe of the receiving antenna 101 which is a search system.
  • compensation of amplitude / phase characteristics between bands is performed using a direct wave mixed in the receiving antenna 101.
  • the search antenna 101 that is the search system and the receive antenna 102 that is the reference system are placed in substantially the same place (within the reciprocal of the signal band ⁇ the speed of light), and the transmission source 201 is stationary when viewed from the receiver.
  • the power of the direct wave mixed from the side lobe or back lobe of the receiving antenna 101 is small, it appears as a peak if the integration time T of the cross-correlation function is long.
  • the target reflected received power is several tens of times smaller. Therefore, when performing a cross-correlation function with an integration time such that a target reflected signal is detected, a direct wave leakage peak occurs and a high SNR is often obtained.
  • the inter-band compensation unit 112 calculates the correction coefficient based on the band # 1 as follows, for example. To do.
  • the inter-band compensation unit 112 compensates the cross-correlation function as follows using the correction coefficient calculated as described above, so that the signal power fluctuation between the bands of the transmission signal and the frequency characteristics between the receivers. Can be compensated. Thereafter, the inter-band compensation unit 112 sends the cross-correlation function that has been inter-band compensated as shown in Expression (20) to the band synthesizing unit 108. Thereby, it can synthesize
  • the interband compensation unit 112 can obtain the correction coefficient as follows.
  • the interband compensation unit 112 compensates for amplitude and phase fluctuations for each frequency band using the amplitude ratio and phase difference of the direct wave leakage component in the cross correlation result for each frequency band by the cross correlation processing unit 107.
  • the correction coefficient to be calculated is calculated, and the cross-correlation result is compensated by the correction coefficient.
  • a correction coefficient is calculated by temporarily directing the reception antenna 101 toward the transmission source 201, and the reception antenna 101 is set to the target again.
  • the inter-band compensation unit 112 uses the amplitude ratio and the phase difference between the reflected wave reception signal and the direct wave reception signal for each frequency band acquired with the receiving antenna 101 directed in the direct wave direction as a correction coefficient, and the correction coefficient.
  • the cross-correlation result for each frequency band may be compensated.
  • the correction coefficient may be obtained by simply comparing the amplitude and phase between the band of the search system reception signal and the reference system reception signal.
  • a correction coefficient between bands is calculated in a series of conventional target detection processes without adding a new device as a compensation means between bands. Therefore, it is possible to compensate for the amplitude / phase fluctuation between the bands in real time while suppressing the expansion of the apparatus scale, and to improve the target SNR in the band synthesizing unit 108.
  • Embodiment 5 FIG.
  • band synthesizing means 108 in the first embodiment shown in FIG. 1 obtains a high-resolution cross-correlation function by rearranging data in the delay time direction.
  • the passive radar device according to the fifth embodiment is the same as the configuration of the passive radar device according to the first embodiment shown in FIG. 1, and only the different parts will be described with the same reference numerals.
  • the cross-correlation result for each frequency band by the cross-correlation processing unit 107 is compensated for the phase fluctuation for each frequency band depending on the delay time index of the cross-correlation result,
  • the cross-correlation results after inter-band synthesis performed by inverse fast Fourier transform for each frequency band are rearranged in the delay time direction.
  • the delay time ambiguity is eliminated by performing band synthesis after compensating for the phase corresponding to the delay using the delay time index of the cross-correlation processing result, so that the accurate delay time is obtained.
  • the purpose is to obtain.
  • phase compensation is performed using the delay time index l T after cross-correlation processing as follows.
  • the intercorrelation function after the phase compensation is subjected to IFFT in the band direction as follows, thereby performing synthesis between bands.
  • the delay time range to be estimated in the band synthesizing unit 108 is limited to ⁇ t.
  • Equation (26) a cross-correlation function with improved delay time resolution can be obtained. here, It is.
  • the band synthesizing unit 108 is configured to perform the inter-band synthesizing process after compensating for the phase depending on the delay time of the cross-correlation function.
  • the delay time ambiguity after synthesis is eliminated, and a high-resolution cross-correlation function can be obtained.
  • FIG. Embodiments 1 to 5 show the case where the search system is one system, but Embodiment 6 shows a configuration including a plurality of systems.
  • FIG. 9 is a diagram showing the configuration of a passive radar device according to Embodiment 6 of the present invention.
  • the passive radar apparatus according to the sixth embodiment shown in FIG. 9 includes the receiving antenna 101, the band dividing means 103, the receiving means 105, the cross-correlation processing means 107, and the band synthesis of the passive radar apparatus according to the first embodiment shown in FIG.
  • a plurality of means 108 and peak detection means 109 are provided, and a beam forming means 113 is added.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the beam forming unit 113 performs beam forming by combining the band combining results obtained by the plurality of band combining units 108 between the plurality of receiving antennas 101.
  • the plurality of target detection means 109 detect a target based on the beam forming result by the beam forming means 113.
  • the beam forming unit 113 synthesizes the cross-correlation function after band synthesis between the receiving antennas 101 of the search system as follows. That is, the beam forming unit 113 performs beam forming on the band synthesis result by the band synthesizing unit 108 so as to compensate the phase difference depending on the carrier frequency, the beam directing direction, and the positional relationship of the receiving antenna 101.
  • the receiving antenna 101 forms an equally spaced array antenna (antenna spacing d, number of antennas p)
  • the beam forming process of the cross-correlation function ⁇ com, p [l T , k b, n , m] is as follows: You can write Here, ⁇ q is the beam pointing direction.
  • an SNR improvement gain corresponding to the number of antennas is expected. Further, the absolute value (amplitude value) or power value of ⁇ [l T , kb , n , m] may be calculated and then combined (added or averaged) by the number of antennas.
  • the beam forming unit 113 may be configured to perform beam forming immediately after the processing by the cross correlation processing unit 107.
  • a plurality of search systems are provided, and beam forming is performed by combining the processing results obtained by the cross-correlation processing unit 107 or the band combining unit 108 between the plurality of receiving antennas 101. Since the beam forming means 113 is provided, it is possible to expect SNR improvement gains corresponding to the number of antennas.
  • Embodiment 7 shows a configuration in which long-time integration is efficiently performed by integrating the cross-correlation function after band synthesis in the time direction.
  • 10 is a diagram showing the configuration of a passive radar device according to Embodiment 7 of the present invention.
  • the passive radar device according to the seventh embodiment shown in FIG. 10 is obtained by adding long-time integrating means 114 to the passive radar device according to the first embodiment shown in FIG.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the long time integration unit 114 integrates the band synthesis result by the band synthesis unit 108 for a long time.
  • the target detection unit 109 detects the target based on the integration result by the long time integration unit 114.
  • Non-Patent Document 1 As a long-time integration method by the long-time integration means 114, for example, there is a method disclosed in Non-Patent Document 1.
  • a radar reception signal for each pulse hit is divided into several CPIs (Coherent Pulse Intervals). Then, a range Doppler map integrated by FFT between pulse hits in the divided CPI is generated. Then, when integrating it between CPIs, a plurality of hypotheses corresponding to the movement of the target are established and integrated in the time direction. Thereby, the integration loss due to the target range-Doppler frequency shift can be reduced.
  • CPIs Coherent Pulse Intervals
  • the range Doppler map for each pulse hit can be replaced with the cross-correlation function for each block in the second embodiment. That is, some of the blocks shown in FIG. 5 are combined into one CPI, and a plurality of CPI data is created. In 1 CPI, as shown in the second embodiment, it is considered to perform integration between blocks by FFT to calculate a cross-correlation function, and to make a plurality of hypotheses when integrating them between CPIs.
  • the number of delay time (range) indexes after cross-correlation within 1 CPI is L t
  • the number of Doppler frequency indexes is K D
  • the number of hypotheses accompanying the movement of the target is N HY
  • the number of CPI is N CPI
  • the computation amount of the band synthesis process may be an N-point IFFT of L t K D N CPI times, and the number of IFFT computations decreases by the number of hypotheses N HY.
  • the long-time integration unit 114 that performs long-time integration between the CPIs of the cross-correlation function after the band synthesis processing is provided, the band synthesis processing is performed after the long-time integration. Compared with the configuration, the number of IFFT operations can be reduced by the number of hypotheses.
  • the passive radar device can suppress integration loss due to different Doppler frequencies among a plurality of frequency bands, and does not radiate radio waves by itself using an existing radio wave source as a radiation source, such as an aircraft or a ship.
  • a passive radar device that realizes target detection and tracking is suitable for use in a passive radar device that improves detection and tracking performance by coherently combining a plurality of frequency bands.
  • 101 receiving antenna (search system receiving antenna), 102 receiving antenna (reference system receiving antenna), 103 band dividing means (search system band dividing means), 104 band dividing means (reference system band dividing means), 105 receiving means (search system) Receiving means), 106 receiving means (reference system receiving means), 107 cross-correlation processing means, 108 band synthesizing means, 109 peak detecting means (target detecting means), 110 wide band receiving means (search system wide band receiving means), 111 wide band receiving Means (reference system broadband receiving means), 112 Interband compensation means, 113 Beam forming means, 114 Long-time integration means, 201 Transmission source (radio wave source), 202 Target, 1071, Doppler frequency shift unit, 1072, 1072b, 1073, 1073b FFT unit, 1074 complex conjugate multiplication unit, 10 5 IFFT unit, 1076 block division unit (search-based block division unit), 1077 block dividing unit (see system block division unit), between 1078 block FFT unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 送信源201から送信されて目標202で反射された反射波を受信する受信アンテナ101と、送信源201から送信された直接波を受信する受信アンテナ102と、反射波の受信信号を周波数帯域毎に分割する帯域分割手段103と、直接波の受信信号を周波数帯域毎に分割する帯域分割手段104と、周波数帯域毎の受信信号を受信しA/D変換する受信手段105と、周波数帯域毎の受信信号を受信しA/D変換する受信手段106と、反射波の受信信号と直接波の受信信号とを周波数帯域毎に相互相関する相互相関処理手段107と、周波数帯域毎の相互相関結果を帯域合成する帯域合成手段108と、帯域合成結果を基に目標202を探知するピーク検出手段109とを備えた。

Description

パッシブレーダ装置
 この発明は、自らは電波を放射せずに既存電波源を放射源として、航空機や船舶等の目標の探知追尾を実現するパッシブレーダ装置において、複数の周波数帯域をコヒーレントに合成することにより、探知追尾性能の改善を図るパッシブレーダ装置に関するものである。
 パッシブレーダ装置とは、自らは電波を放射せずに、通信・放送等に用いられる既存電波源を送信源として、それらから放射された電波と目標に反射された電波を受信して処理することにより、航空機や船舶等の目標の探知追尾を実現するものである。送信源から放射された電波が直接受信手段に到達した電波を直接波と呼び、目標により反射された電波を反射波と呼ぶ。そして、直接波と反射波の相互相関を計算し、そのピークを検出することで目標の探知追尾を行う。直接波を受信するアンテナ、受信手段等を参照系と呼び、反射波を受信するアンテナ、受信手段等を捜索系と呼ぶ。
 パッシブレーダにおいて放射源となる既存電波源は、多くの場合、複数の周波数帯域を有し、それらをコヒーレントに合成することにより探知追尾性能の向上が可能である。複数周波数帯域を有する電波を利用したパッシブレーダの例として、以下の特許文献1がある。
 この特許文献1では、複数の周波数帯域を有する信号を広帯域受信機で受信し、参照系の受信信号のドップラー周波数を補償して、捜索系の受信信号との相関処理を行い、遅延/ドップラー周波数の2次元相互相関を算出する。そして、そのピークを検出することで、目標の探知を行う。
特表2005-517190号公報
K.S.Kulpa,J.Misiurewicz,"Stretch Processing for Long Integration Time Passive CovertRadar,"CIE’06.International Conf.,Radar,Oct.2006.
 しかしながら、上記特許文献1の構成では下記2点の課題がある。
 1つ目の課題は、広帯域受信機が必要であり、狭帯域受信機と比較して高コストとなる点である。また、A/D変換後のサンプルデータ数も増加するため、相互相関の演算量が増加する。
 2つ目の課題は、周波数帯域毎にドップラー周波数が異なるので、一つのドップラー周波数により同時に複数周波数帯域の信号のドップラー周波数を補償した場合に、正確な補償ができずに、相互相関処理における損失が発生するという点である。
 以下に、2つ目の課題について説明する。
 目標のバイスタティックドップラー速度V(目標速度の目標-送信機方向成分と目標-受信機方向成分との和)と送信搬送波周波数には下式(1)の関係がある。
Figure JPOXMLDOC01-appb-I000001
 ここで、fd(n)は、n番目周波数帯域におけるドップラー周波数、fc(n)は、n番目周波数帯域の信号の搬送波周波数、cは光速である。
 パッシブレーダにおいて、探知距離を延伸するために、一般に長時間の相互相関処理が用いられる。相互相関時間をTとすると、相互相関処理後の周波数分解能Δfdは次式(2)で表せる。
Figure JPOXMLDOC01-appb-I000002
 例えば、CS放送信号(右旋偏波)を送信源とすることを考えると、T=1秒間の場合、Δfd=1Hzとなる。バイスタティックドップラー速度V=300m/sを想定し、fc(n)=12.291GHz+(n-1)×40MHzであることを考慮すると、CS放送信号の各周波数帯域間で生じるドップラー周波数差は、(V/c)×40MHz=40Hzとなり、容易にドップラー周波数分解能1Hzを超えてしまうことが分かる。つまり、各周波数帯域の信号を一つのドップラー周波数により同時に補償した場合に、正確な補償が実現されずに、相互相関損失が発生する。
 この発明は、上記のような課題を解決するためになされたもので、複数周波数帯域間でドップラー周波数が異なることによる積分損失を抑制することができるパッシブレーダ装置を提供することを目的としている。
 この発明に係るパッシブレーダ装置は、電波源から送信されて目標で反射された反射波を受信する捜索系受信アンテナと、電波源から送信された直接波を受信する参照系受信アンテナと、捜索系受信アンテナにより受信された反射波の受信信号を周波数帯域毎に分割する捜索系帯域分割手段と、参照系受信アンテナにより受信された直接波の受信信号を周波数帯域毎に分割する参照系帯域分割手段と、捜索系帯域分割手段により分割された周波数帯域毎の反射波の受信信号を受信してA/D変換を行う捜索系受信手段と、参照系帯域分割手段により分割された周波数帯域毎の直接波の受信信号を受信してA/D変換を行う参照系受信手段と、捜索系受信手段によりA/D変換された反射波の受信信号と、参照系受信手段によりA/D変換された直接波の受信信号との周波数帯域毎の相互相関を行う相互相関処理手段と、相互相関処理手段による周波数帯域毎の相互相関結果を帯域合成する帯域合成手段と、帯域合成手段による帯域合成結果に基づいて目標を探知する目標探知手段とを備えたものである。
 また、この発明に係るパッシブレーダ装置は、電波源から送信されて目標で反射された反射波を受信する捜索系受信アンテナと、電波源から送信された直接波を受信する参照系受信アンテナと、捜索系受信アンテナにより受信された反射波の受信信号を広帯域で受信してA/D変換を行い、周波数帯域毎に分割する捜索系広帯域受信手段と、参照系受信アンテナにより受信された直接波の受信信号を広帯域で受信してA/D変換を行い、周波数帯域毎に分割する参照系広帯域受信手段と、捜索系広帯域受信手段により分割された反射波の受信信号と、参照系広帯域受信手段により分割された直接波の受信信号との周波数帯域毎の相互相関を行う相互相関処理手段と、相互相関処理手段による周波数帯域毎の相互相関結果を帯域合成する帯域合成手段と、帯域合成手段による帯域合成結果に基づいて目標を探知する目標探知手段とを備えたものである。
 この発明によれば、上記のように構成したので、複数周波数帯域間でドップラー周波数が異なることによる積分損失を抑制することができる。
この発明の実施の形態1に係るパッシブレーダ装置の構成を示す図である。 この発明の実施の形態1における帯域分割手段による処理を示す図である。 この発明の実施の形態1における相互相関処理手段の構成を示す図である。 この発明の実施の形態1に係るパッシブレーダ装置の動作を示すフローチャートである。 この発明の実施の形態2における相互相関処理手段の構成を示す図である。 この発明の実施の形態2における相互相関処理手段による処理を示す図である。 この発明の実施の形態3に係るパッシブレーダ装置の構成を示す図である。 この発明の実施の形態4に係るパッシブレーダ装置の構成を示す図である。 この発明の実施の形態6に係るパッシブレーダ装置の構成を示す図である。 この発明の実施の形態7に係るパッシブレーダ装置の構成を示す図である。
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係るパッシブレーダ装置の構成を示す図である。
 パッシブレーダ装置は、図1に示すように、受信アンテナ101,102、帯域分割手段103,104、受信手段105,106、相互相関処理手段107、帯域合成手段108及びピーク検出手段109から構成されている。このパッシブレーダ装置のうち、受信アンテナ101、帯域分割手段103、受信手段105、相互相関処理手段107、帯域合成手段108及びピーク検出手段109は捜索系を構成し、受信アンテナ102、帯域分割手段104及び受信手段106は参照系を構成する。
 受信アンテナ(捜索系受信アンテナ)101は、既存の電波源である送信源201から送信され、航空機や船舶等の探知したい目標202により反射された電波(反射波)を受信するものである。
 受信アンテナ(参照系受信アンテナ)102は、送信源201から送信された電波(直接波)を受信するものである。
 なお、目標202の探知を行う捜索系では、直接波は干渉となるため、極力直接波が混入しないように配慮することが望ましい。また、参照系で受信した直接波は、相互相関処理手段107において、捜索系の受信信号との相互相関を行うため、マルチパス環境等において発生した多重散乱波が含まれていないことが望ましい。従って、受信アンテナ102は極力、送信源201を見通せる場所に設置する。
 帯域分割手段(捜索系帯域分割手段)103は、受信アンテナ101により受信された反射波の受信信号(RF信号)を周波数帯域毎に分割するものである。
 帯域分割手段(参照系帯域分割手段)104は、受信アンテナ102により受信された直接波の受信信号(RF信号)を周波数帯域毎に分割するものである。
 なお、帯域分割手段103,104として、一般には、分波器やセパレータ、アンテナ共用器等と呼ばれている部品を使用して、図2に示すように、受信信号を所定の周波数帯域毎にアナログ段で分割する。分波器は周波数で信号を分離するため、SNR(Signal to Noise Ratio)の損失が少ない。ただし、周波数帯域幅によっては分割した際のSNR損失が大きくなる場合もあるので、複数の周波数帯域幅毎に分割する構成としてもよい。
 また、帯域分割手段103,104にローカル信号発信源を備え、当該ローカル信号発信源からの周波数を時系列に変更した信号と、受信信号とのミキシングを行うことで、抽出する帯域を変更し、当該受信信号を周波数帯域毎に分割する構成としてもよい。
 受信手段(捜索系受信手段)105は、帯域分割手段103により分割された周波数帯域毎の反射波の受信信号を受信してA/D変換を行うものである。
 受信手段(参照系受信手段)106は、帯域分割手段104により分割された周波数帯域毎の直接波の受信信号を受信してA/D変換を行うものである。
 なお、受信手段105,106は、広帯域受信機である必要はなく、狭帯域受信機(低速なA/D変換機)でよい。
 相互相関処理手段107は、受信手段105によりA/D変換された反射波の受信信号と、受信手段106によりA/D変換された直接波の受信信号との周波数帯域毎の相互相関を行うものである。この相互相関処理手段107の構成については後述する。
 帯域合成手段108は、相互相関処理手段107による周波数帯域毎の相互相関結果を帯域合成するものである。
 ピーク検出手段(目標探知手段)109は、帯域合成手段108による帯域合成結果に基づいて目標202を探知するものである。
 次に、相互相関処理手段107の構成について、図3を参照しながら説明する。
 相互相関処理手段107は、図3に示すように、周波数帯域毎に、ドップラー周波数シフト部1071、FFT部1072,1073、複素共役乗算部1074及びIFFT部1075から構成されている。
 ドップラー周波数シフト部1071は、受信手段106からの周波数帯域毎の直接波の受信信号を、想定する目標のバイスタティックドップラー速度及び周波数帯域毎の搬送波周波数から算出したドップラー周波数の分だけ周波数シフトするものである。
 FFT部1072は、受信手段105からの周波数帯域毎の反射波の受信信号を高速フーリエ変換(FFT:Fast Fourier Transform)するものである。
 FFT部1073は、ドップラー周波数シフト部1071により周波数シフトされた周波数帯域毎の直接波の受信信号を高速フーリエ変換(FFT)するものである。
 複素共役乗算部1074は、FFT部1073により高速フーリエ変換された周波数帯域毎の直接波の受信信号の複素共役を取り、FFT部1073により高速フーリエ変換された周波数帯域毎の反射波の受信信号と乗算するものである。
 IFFT部1075は、複素共役乗算部1074による複素共役乗算結果である出力信号を逆高速フーリエ変換(IFFT:Inverse FFT)するものである。
 次に、上記のように構成されたパッシブレーダ装置の動作について、図4を参照しながら説明する。
 パッシブレーダ装置の動作では、図4に示すように、まず、受信アンテナ101は、送信源201から送信され目標202により反射された反射波を受信する(ステップST1)。また、受信アンテナ102は、送信源201から送信された直接波を受信する(ステップST2)。
 次いで、帯域分割手段103は、受信アンテナ101により受信された反射波の受信信号を周波数帯域毎に分割する(ステップST3)。また、帯域分割手段104は、受信アンテナ102により受信された直接波の受信信号を周波数帯域毎に分割する(ステップST4)。
 次いで、受信手段105は、帯域分割手段103により分割された周波数帯域毎の反射波の受信信号を受信してA/D変換を行う(ステップST5)。また、受信手段106は、帯域分割手段104により分割された周波数帯域毎の直接波の受信信号を受信してA/D変換を行う(ステップST6)。
 ここで、受信手段105,106は、周波数帯域毎の受信信号(♯1~N)が入力されると、LNA(Low Noise Amplifier)による受信信号の増幅及びミキサによるローカル信号とのミキシング等を行ってIF(中間周波数)帯の信号に変換した後に、A/D変換を行うことで、ディジタル信号に変換する。
 なお、上記ミキサが直交ミキサの場合には、A/D変換後の信号はI信号・Q信号を持つので、複素信号として扱うことができる。この場合、A/D変換後の信号に対して、exp(-j・2π・fIF・t)を乗算することにより、ベースバンド信号に変換できる。なお、fIFはIF中心周波数である。また、上記ミキサが直交ミキサでない場合には、A/D変換後の信号はI信号のみしか持たないので、ヒルベルト変換等により複素信号に変換し、exp(-j・2π・fIF・t)を乗算することで、ベースバンド信号に変換する。
 次いで、相互相関処理手段107は、受信手段105によりA/D変換された反射波の受信信号と、受信手段106によりA/D変換された直接波の受信信号との周波数帯域毎の相互相関を行う(ステップST7)。
 ここで、ある周波数帯域♯nにおける捜索系及び参照系の受信信号(ベースバンド信号)をそれぞれssur(n,t),sref(n,t)とする。また、送信源201が静止しているものとみなすと、捜索系のベースバンド信号は、式(1)で表した目標の移動に伴い発生するバイスタティックドップラー周波数fd(n)分、周波数シフトしている。このfd(n)は通常、未知である。そこで、ドップラー周波数シフト部1071において、想定するバイスタティックドップラー周波数の範囲分のバイスタティックドップラー速度V(l)を用意して、参照系のベースバンド信号を周波数シフトさせる。シフトさせた信号s~ref(n、l、t)は下式(3)で与えられる。
Figure JPOXMLDOC01-appb-I000003
 バイスタティックドップラー速度V(l)は、例えばV(l)=V(1)+ΔV(l-1)のように設定する。ここで、V(1)は観測したいバイスタティックドップラー速度の初期値、ΔVはバイスタティックドップラー間隔であり、相互相関処理での損失を低減するために、1/T以下とすることが望ましい。
 また、s~ref(n,l,t)とssur(n,t)との相互相関関数CCF(n,l,τ)は下式(4)のように与えられる。
Figure JPOXMLDOC01-appb-I000004
 上記の相互相関関数を実際に計算する場合、相互相関時間Tの増加に伴い演算量が増加する。そこで、FFT部1072,1073、複素共役乗算部1074及びIFFT部1075において、高速フーリエ変換(FFT)及び逆高速フーリエ変換(IFFT)を用いた巡回相関演算として下式(5)を用いて相互相関関数を計算する。
Figure JPOXMLDOC01-appb-I000005
 ここで、m(m=1,・・・,M)は、相互相関処理後の遅延ビンである。また、遅延時間τは、サンプリング周期Δtを用いて、τ=(m-1)・Δtとして計算できる。
 次いで、帯域合成手段108は、相互相関処理手段107による周波数帯域毎の相互相関結果CCF(n,l,m)を帯域間で下式(6)のように合成することで、SNRを改善する(ステップST8)。
Figure JPOXMLDOC01-appb-I000006
 上式(6)は帯域方向の逆フーリエ変換に他ならない。従って、各周波数帯域の間隔がΔfbで一定であった場合(すなわち、fc(n)=f1+(n-1)Δfb(f1は1番目の周波数帯域の搬送波周波数)であった場合)、上式(6)のフーリエ変換は下式(7)のように逆高速フーリエ変換に置き換えることができる。
Figure JPOXMLDOC01-appb-I000007
 ここで、目標の遅延時間τは、τ=(m-1)・Δtより計算できるが、Δtの間隔でしか推定できない。そこで、帯域合成手段108においてN個の周波数帯域を合成することで、1/(N・Δfb)の間隔で推定することができ、SNRの改善とともに遅延時間分解能も改善することができる。ただし、帯域間合成処理後に観測できる遅延時間範囲は1/Δfbに限定される。
 次いで、ピーク検出手段109は、帯域合成手段108による帯域合成結果であるCCCF(k,l,m)の絶対値の二乗を計算し、そのピークを検出することで目標202の探知を行う(ステップST9)。ピーク検出法としては、上記絶対値の二乗が予め設定した所定の値を超えた場合に目標として検出する手法や、上記絶対値の二乗の注目するセル周辺範囲の平均値に係数を乗じた値を閾値として、その閾値を注目するセルが超えた場合に目標として検出するCA-CFAR(Cell Averaging-Constant False Alarm Rate)等の手法がある。
 以上のように、この実施の形態1によれば、受信信号を周波数帯域毎の信号に分割してA/D変換した後に、周波数帯域毎に相互相関して帯域合成するように構成したので、広帯域受信機を不要とし、低速なA/D変換器で損失の少ない相互相関を実現できるため、複数周波数帯域間でドップラー周波数が異なることによる積分損失を抑制することができる。
実施の形態2.
 実施の形態1では、相互相関時間Tの信号を高速フーリエ変換し、相互相関を行う場合について示したが、この場合には相互相関時間Tが長くなるにつれて演算量が増加する。そこで、実施の形態2では、受信信号をブロック毎に分割し、各ブロックで相互相関を行った後にブロック間で高速フーリエ変換することで、上記課題を解消する構成について示す。
 図5はこの発明の実施の形態2における相互相関処理手段107の構成を示す図である。図5に示す実施の形態2における相互相関処理手段107は、図2に示す実施の形態1における相互相関処理手段107からドップラー周波数シフト部1071を削除し、ブロック分割部1076,1077及びブロック間FFT部1078を追加し、FFT部1072,1073をFFT部1072b,1073bに変更したものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
 ブロック分割部1076は、受信手段105からの周波数帯域毎の反射波の受信信号を、ブロック毎に分割するものである。
 ブロック分割部1077は、受信手段106からの周波数帯域毎の直接波の受信信号を、ブロック毎に分割するものである。
 FFT部1072bは、ブロック分割部1076により分割された周波数帯域及びブロック毎の反射波の受信信号を高速フーリエ変換(FFT)するものである。
 FFT部1073bは、ブロック分割部1077により分割された周波数帯域及びブロック毎の直接波の受信信号を高速フーリエ変換(FFT)するものである。
 なお、複素共役乗算部1074は、FFT部1073bにより高速フーリエ変換された周波数帯域及びブロック毎の直接波の受信信号の複素共役を取り、FFT部1072bにより高速フーリエ変換された周波数帯域及びブロック毎の反射波の受信信号と乗算する。
 また、ブロック間FFT部1078は、IFFT部1075による逆高速フーリエ変換結果をブロック方向に高速フーリエ変換(FFT)するものである。
 ここで、高速フーリエ変換を用いた相関演算では巡回相互相関となるが、パッシブレーダ装置における送信信号は一般に繰り返し信号ではない。そのため、高速フーリエ変換を用いた相関演算においてスライディング相関を行うために、図6に示すように、捜索系及び参照系の受信信号を分割する。
 すなわち、図6(a)に示すように、ブロック分割部1076では、時間間隔Tb毎に受信信号を分割した後に、当該分割した各ブロックの受信信号に次のブロックの受信信号を追加することで、時間間隔2Tbのブロックを生成する。一方、図6(b)に示すように、ブロック分割部1077では、時間間隔Tb毎に受信信号を分割した後に、当該分割した各ブロックの受信信号に時間間隔Tb分の0信号を追加することで、時間間隔2Tbのブロックを生成する。ただし、相関演算の演算量を削減するために、目標遅延時間τが時間間隔Tbより十分に小さい場合には、捜索系、参照系ともに時間間隔Tb毎に分割した受信信号に対して相関演算を行う構成とすることも可能である。
 また、ブロック間での高速フーリエ変換は、実施の形態1における式(3)と同様に、目標のバイスタティックドップラー速度V(l)に関してフーリエ変換する構成としても構わない。
 なお、帯域合成手段108では、相互相関処理手段107の結果、CCF(n,q,m)を実施の形態1における式(6)と同様に周波数帯域n方向に合成する。ここで、qは、ドップラー周波数(=(q-1)/Tb/P)をあらわすインデックスであるが、式(1)に示したように各周波数帯域において、目標のドップラー周波数が異なる。そこで、帯域合成手段108では、式(1)に基づき目標速度(ドップラー速度)に変換した後に目標速度が一致あるいは近いqに対して、CCF(n,q,m)をn方向に逆高速フーリエ変換することで、周波数帯域間での合成を行う。
 また、ブロック間での高速フーリエ変換を目標のバイスタティックドップラー速度V(l)に関してフーリエ変換する構成に置き換えた場合、上記qの対応は不要で、同じlとなるCCF(n,l,m)について、n方向に逆高速フーリエ変換すればよい。
 以上のように、この実施の形態2によれば、相互相関処理手段107において、捜索系及び参照系の受信信号をともに各ブロックに分割し、ブロック毎に相互相関を行った後にブロック間で高速フーリエ変換するように構成したので、実施の形態1における効果に加えて、相互相関時間Tが長くなっても演算量の増加を回避することができる。
 なお実施の形態2では、相互相関関数CCF(n,q,m)を算出した後に、ドップラー周波数インデックスqを用いてバイスタティックドップラー速度Vに変換した際に、当該バイスタティックドップラー速度Vが一致又は近い相互相関関数を合成する構成について記述した。一方、式(1)より、ドップラー周波数の周波数帯域間の比は、バイスタティックドップラー速度Vに依らずに、搬送周波数の比のみで決定される。そのため、CCF(n,q*fc(n)/f1(n),m)のように、周波数帯域毎の搬送波周波数の比とドップラー周波数の比が一致又は近い相互相関関数を合成するようにしてもよい。
実施の形態3.
 図7はこの発明の実施の形態3に係るパッシブレーダ装置の構成を示す図である。図7に示す実施の形態3に係るパッシブレーダ装置は、図1に示す実施の形態1に係るパッシブレーダ装置から帯域分割手段103,104及び受信手段105,106を削除し、広帯域受信手段110,111を追加したものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
 広帯域受信手段(捜索系広帯域受信手段)110は、受信アンテナ101により受信された反射波の受信信号(RF信号)を広帯域で受信してA/D変換を行い、周波数帯域毎に分割するものである。
 広帯域受信手段(参照系広帯域受信手段)111は、受信アンテナ102により受信された直接波の受信信号(RF信号)を広帯域で受信してA/D変換を行い、周波数帯域毎に分割するものである。
 図7に示す構成では、広帯域受信手段110、111によって複数の周波数帯域の信号を一括でA/D変換した後に、ディジタル処理で帯域毎の信号に分割する。ただし、この場合には広帯域受信手段110,111として、広帯域受信機及び広帯域A/D変換機が必要になる。
 以上のように、この実施の形態3によれば、帯域分割手段103,104及び受信手段105,106に代えて、広帯域受信手段110,111を用いるように構成しても、複数周波数帯域間でドップラー周波数が異なることによる積分損失を抑制することができる。
実施の形態4.
 実施の形態4では、複数の周波数帯域の送信信号の振幅・位相変動及び受信機の周波数特性による振幅・位相変動を簡易な構成でリアルタイムに推定することで、複数周波数帯域の信号を損失なく合成する方式について示す。
 まず、CS/BS放送波を例にとって、複数の周波数帯域の送信信号の振幅・位相変動及び受信機の周波数特性による振幅・位相変動について説明する。
 周波数帯域の送信信号は以下のように書ける。

Figure JPOXMLDOC01-appb-I000008

 ここで、s(t)は周波数チャンネル#nの変調系列(放送/通信データ等)、fc,nは周波数チャンネル#nの中心周波数(搬送波周波数)、φは周波数チャンネル#nの信号の初期位相である。また、衛星の直接波を受信する受信アンテナ/受信機を参照系、目標散乱波を受信する受信アンテナ/受信機を捜索系と呼ぶ。参照系、捜索系は同期していることを前提とする。
 次に、参照系で受信した周波数チャンネル#nの直接波は以下のように書ける。

Figure JPOXMLDOC01-appb-I000009

 ここで、αは周波数チャンネル#nの直接波受信時の複素振幅、τは衛星から参照系までの伝播遅延時間である。
 次に、式(9)の受信信号に対し、ローカル信号exp(j2πfc,nt)を乗算することにより、ベースバンド信号に変換する。

Figure JPOXMLDOC01-appb-I000010

 φ は、ローカル信号の初期位相を含んだ周波数チャンネル#nの位相である。
 次に、捜索系の受信信号について考える。
 ここで、周波数チャンネル#nの目標散乱波受信時の複素振幅をβ、衛星-目標-捜索系までの伝播遅延時間をτ、目標のバイスタティック速度をv、光速をcとすると、以下のように書ける。

Figure JPOXMLDOC01-appb-I000011

 ここで、fb,n=vB/c*fc,nであり、目標のバイスタティックドップラー周波数である。
 次に、式(11)の受信信号に対し、参照系と同様にローカル信号exp(j2πfc,nt)を乗算することにより、ベースバンド信号に変換する。

Figure JPOXMLDOC01-appb-I000012
 次に、周波数チャンネル#nの直接波の伝播遅延時間及びドップラー周波数をシフトさせて目標散乱波との相互相関処理を以下のように行う。

Figure JPOXMLDOC01-appb-I000013
 ここで、Tは積分時間である。
 次に、伝播遅延時間τ=τ-τ、ドップラー周波数fb,nにおける目標ピークの相互相関値は以下のように書ける。

Figure JPOXMLDOC01-appb-I000014
 ここで、Pnは周波数帯域#nの平均電力である。
 そして、周波数チャンネル間の振幅・位相変動、目標RCS及び受信機周波数特性を無視すれば、以下のように書ける。

Figure JPOXMLDOC01-appb-I000015
 相互相関関数CCF(τ,fb,n)は、実際には離散信号により計算されるので、遅延時間インデックスをl(=0,・・・,L-1)、ドップラー周波数インデックスをk(=0,・・・,K-1)とすると、χ[l,kb,n]と表すことができる。ここで、Δtをサンプリング周期、Δfをドップラー周波数分解能とすると、τ=lΔt,fb,n=kb,nΔfである。
 また、CS/BS衛星放送波の場合、周波数間隔Δfは一定であり、fc,n=fc,0+nΔfと書ける。その場合、以下のように相互相関値を周波数チャンネル方向にIFFTすることにより、コヒーレントに合成することができる。

Figure JPOXMLDOC01-appb-I000016
 この式(16)の絶対値がピークを持つkは以下となる。

Figure JPOXMLDOC01-appb-I000017
 また、目標のRCSの周波数特性が、振幅が一定で位相のみが線形に変化する場合、すなわち、exp(j2πfc,nτRCS)と書ける場合においても上記の周波数チャンネル方向のIFFTにより目標が積分されることが分かる。ただし、その場合、ピークとなる遅延時間インデックスがτRCS分だけシフトすることに注意が必要である。
 上記が成り立つためには、αn×βn×Pnが帯域間で変化しないという前提が必要である。しかし実際には、Pnは帯域間で変化し、捜索系受信機と参照系受信機間の周波数特性差によりαn×βnは帯域毎に変化する。このPnの変化については、衛星直接波をモニタリングして推定する等により補償する方法がある。また、受信機間の周波数特性については、基準信号源を別途用意し、アンテナ近傍あるいはアンテナ端から信号入力することで補償する方法がある。しかし、その分装置規模の増大、補償作業時の人件費が必要となる等の問題がある。また、パッシブレーダ装置の運用中に上記補償を行う場合、その間、目標反射信号が受信できなくなるという問題がある。
 実施の形態4では上記問題に対し、簡易な構成でかつリアルタイムにPnの変化及び受信機間の周波数特性を補償する形態について述べる。実施の形態4に係るパッシブレーダ装置の構成を図8に示す。図8に示す実施の形態4に係るパッシブレーダ装置は、図1に示す実施の形態1に係るパッシブレーダ装置に帯域間補償手段112を追加したものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
 帯域間補償手段112は、相互相関処理手段107による周波数帯域毎の相互相関結果に対して、周波数帯域毎の振幅及び位相変動を補償するものである。
 なお、帯域合成手段108は、帯域間補償手段112による補償後の周波数帯域毎の相互相関結果を帯域合成する。
 次に、帯域間補償手段112の詳細について説明する。
 送信源201からの直接波は、一般に電力が大きいため、捜索系である受信アンテナ101のサイドローブあるいはバックローブから混入する。ここでは、受信アンテナ101に混入した直接波を用いて帯域間の振幅・位相特性の補償を行う。捜索系である受信アンテナ101と参照系である受信アンテナ102がほぼ同一の場所に置かれており(信号帯域の逆数×光速の範囲内)、送信源201が受信機から見て静止しているとみなせる場合、捜索系の受信信号と参照系の受信信号の相互相関関数において、送信源201から受信アンテナ101に混入した直接波は、ドップラー周波数インデックスk=0、遅延時間インデックスl=0の箇所にピークsdir,nとして現れる。

Figure JPOXMLDOC01-appb-I000018
 受信アンテナ101のサイドローブあるいはバックローブから混入した直接波の電力が小さいとしても、相互相関関数の積分時間Tが長ければピークとして現れる。一般には、目標反射受信電力と直接波漏れ込み受信電力との比較では、目標反射受信電力の方が数十倍以上に小さい。従って、目標反射信号が検出される程度の積分時間の相互相関関数を行った際には、直接波漏れ込みのピークが発生し、かつ高いSNRとなることが多い。
 一方、帯域間の合成の際には、帯域間の相対振幅・位相特性が補償されていればよいので、帯域間補償手段112は、例えば以下のように帯域#1を基準として補正係数を算出する。

Figure JPOXMLDOC01-appb-I000019
 そして、帯域間補償手段112は、上記のように算出した補正係数を用いて、以下のように相互相関関数を補償することで、送信信号の帯域間の信号電力変動及び受信機間の周波数特性を補償することができる。

Figure JPOXMLDOC01-appb-I000020
 その後、帯域間補償手段112は、式(20)のように帯域間の補償を行った相互相関関数を帯域合成手段108に送る。これにより、損失無く合成することができる。
 なお上記では、受信アンテナ101と受信アンテナ102がほぼ同一の場所に置かれており、送信源201が静止している場合を想定した。それに対し、送信源201-受信アンテナ101間と送信源201-受信アンテナ102間の遅延時間差がLdifΔtで、送信源201が移動しており、移動に伴い受信機で観測されるドップラー周波数がKdifΔfの場合、帯域間補償手段112は、以下のように補正係数を求めることができる。

Figure JPOXMLDOC01-appb-I000021
 また上記では、受信アンテナ101が受信アンテナ102とは別の方向に指向されているという前提で直接波の漏れ込みを利用する構成について示した。即ち、帯域間補償手段112にて、相互相関処理手段107による周波数帯域毎の相互相関結果における直接波の漏れ込み成分の振幅比及び位相差を用いて当該周波数帯域毎の振幅及び位相変動を補償する補正係数を算出し、当該補正係数により相互相関結果を補償するように構成した。
 一方、直接波の漏れ込みが極端に低く相互相関関数のピークとして現れない場合には、受信アンテナ101を送信源201方向に一時的に向けて補正係数を算出し、再度、受信アンテナ101を目標方向に指向するという構成も考えられる。即ち、帯域間補償手段112は、受信アンテナ101を直接波方向に向けて取得した周波数帯域毎の反射波の受信信号と直接波の受信信号の振幅比及び位相差を補正係数とし、当該補正係数により当該周波数帯域毎の相互相関結果を補償するように構成してもよい。
 また上記では、捜索系の受信信号と参照系の受信信号との相互相関関数における直接波に相当するピークを用いることで周波数帯域間の補償を行った。それに対して、単に捜索系の受信信号と参照系の受信信号の帯域間の振幅・位相を比較することで、補正係数を求める構成としてもよい。
 以上のように、この実施の形態4によれば、帯域間の補償手段として新たな装置を付加することなく、従来の目標検出処理の一連の流れの中で帯域間の補正係数を算出するように構成したので、装置規模の拡大を抑制しつつリアルタイムに帯域間の振幅・位相変動を補償することができ、帯域合成手段108における目標SNRを改善することができる。
実施の形態5.
 実施の形態5では、図1に示す実施の形態1における帯域合成手段108において、遅延時間方向のデータを並び替えることで高分解能な相互相関関数を得る場合について示す。なお、実施の形態5に係るパッシブレーダ装置は、図1に示す実施の形態1に係るパッシブレーダ装置の構成と同様であり、同一の符号を付して異なる部分についてのみ説明を行う。
 実施の形態5における帯域合成手段108では、相互相関処理手段107による周波数帯域毎の相互相関結果に対して、当該相互相関結果の遅延時間インデックスに依存する周波数帯域毎の位相変動を補償し、当該周波数帯域毎の逆高速フーリエ変換行った帯域間合成後の相互相関結果を遅延時間方向に並べ替える。
 ここで、帯域合成後に式(17)において観測可能な最大の遅延時間τmaxはk=Nの場合であり、以下のように書ける。

Figure JPOXMLDOC01-appb-I000022
 また、遅延時間分解能Δτは、以下となる。

Figure JPOXMLDOC01-appb-I000023
 従って、目標遅延時間τが上記(22)の範囲を超えていた場合、遅延時間のアンビギュイティが発生し、正確な遅延時間の推定ができなくなる。
 そこで、実施の形態5では、相互相関処理結果の遅延時間インデックスを用いて、遅延に対応する位相を補償した後に帯域合成を行うことにより、遅延時間のアンビギュイティを解消し、正確な遅延時間を得ることを目的とする。
 実施の形態5では、まず、以下のように相互相関処理後の遅延時間インデックスlを用いて位相補償を行う。

Figure JPOXMLDOC01-appb-I000024
 次に、実施の形態1と同様に上記位相補償後の相互相関関数を以下のように帯域方向にIFFTすることにより、帯域間の合成を行う。

Figure JPOXMLDOC01-appb-I000025
 ここで、m(=0,1,・・・,N-1)は高分解能遅延時間インデックスである。
 上記のように計算することで、帯域合成手段108において推定すべき遅延時間範囲はΔtに限定されていることが分かる。このΔtはサンプリング周期であり、通常、信号帯域幅Bの逆数に設定する。即ち、Δt=1/Bである。従って、遅延時間τは、以下のように求めることができる。

Figure JPOXMLDOC01-appb-I000026
 また、式(26)を以下のように遅延時間方向に並べ替えることにより、遅延時間の分解能を向上した相互相関関数を得ることができる。

Figure JPOXMLDOC01-appb-I000027
ここで、

Figure JPOXMLDOC01-appb-I000028
である。
 以上のように、この実施の形態5によれば、帯域合成手段108にて、相互相関関数の遅延時間に依存した位相を補償した後に帯域間の合成処理を行うように構成したので、帯域間合成後の遅延時間アンビギュイティを無くし、高分解能な相互相関関数を得ることができる。
実施の形態6.
 実施の形態1~5では捜索系が1系統の場合について示したが、実施の形態6では複数系統を備えた構成について示す。図9はこの発明の実施の形態6に係るパッシブレーダ装置の構成を示す図である。図9に示す実施の形態6に係るパッシブレーダ装置は、図1に示す実施の形態1に係るパッシブレーダ装置の受信アンテナ101、帯域分割手段103、受信手段105、相互相関処理手段107、帯域合成手段108、ピーク検出手段109を複数系統設け、ビーム形成手段113を追加したものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
 ビーム形成手段113は、複数の帯域合成手段108による帯域合成結果を複数の受信アンテナ101間で合成することによりビーム形成を行うものである。
 なお、複数の目標探知手段109は、ビーム形成手段113によるビーム形成結果に基づいて目標を探知する。
 ここで、ビーム形成手段113では、以下のように帯域合成後の相互相関関数を捜索系の受信アンテナ101間で合成する。即ち、ビーム形成手段113は、帯域合成手段108による帯域合成結果に対して、搬送波周波数、ビーム指向方向及び受信アンテナ101の位置関係に依存した位相差を補償するようビーム形成を行う。受信アンテナ101が等間隔アレーアンテナ(アンテナ間隔d、アンテナ数p)を構成していた場合、相互相関関数χcom,p[l,kb,n,m]のビーム形成処理は以下のように書ける。

Figure JPOXMLDOC01-appb-I000029

 ここで、θqはビーム指向方向である。
 上記のようにビーム形成を行うことで、アンテナ数分のSNR改善利得が見込まれる。
 また、χ[l,kb,n,m]の絶対値(振幅値)又は電力値を算出した後にアンテナ数分だけ合成(加算又は平均)する構成としても構わない。
 また、上記では等間隔アレーアンテナの場合について述べたが、不等間隔アレーまた2次元アレーについても拡張が可能である。
 また、ビーム形成手段113は、相互相関処理手段107による処理直後にビーム形成を行う構成としてもよい。
 以上のように、この実施の形態6によれば、捜索系を複数系統設け、相互相関処理手段107または帯域合成手段108による処理結果を複数の受信アンテナ101間で合成することによりビーム形成を行うビーム形成手段113を設けたので、アンテナ数分のSNR改善利得を見込むことができる。
実施の形態7.
 実施の形態7では、帯域合成後の相互相関関数を時間方向に積分することで、効率的に長時間の積分を行う構成について示す。図10はこの発明の実施の形態7に係るパッシブレーダ装置の構成を示す図である。図10に示す実施の形態7に係るパッシブレーダ装置は、図1に示す実施の形態1に係るパッシブレーダ装置に長時間積分手段114を追加したものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
 長時間積分手段114は、帯域合成手段108による帯域合成結果を長時間積分するものである。
 なお、目標探知手段109は、長時間積分手段114による積分結果に基づいて目標を探知する。
 ここで、長時間積分手段114による長時間積分法としては、例えば非特許文献1に開示された手法がある。この非特許文献1の長時間積分法では、まず、パルスヒット毎のレーダ受信信号を幾つかのCPI(Coherent Pulse Interval)に分割する。そして、分割したCPI内においてパルスヒット間のFFTにより積分したレンジドップラーマップを生成する。そして、それをCPI間で積分する際に目標の移動に応じた複数の仮説を立てて時間方向に積分する。これにより、目標のレンジ・ドップラー周波数シフトによる積分損失を低減することができる。
 ここで、上記パルスヒット毎のレンジドップラーマップは、実施の形態2におけるブロック毎の相互相関関数に置き換えることができる。即ち、図5で示したブロックのいくつかをまとめて1CPIとして、複数のCPIのデータを作成する。1CPI内では実施の形態2で示したようにFFTによるブロック間の積分を行って相互相関関数を算出し、それらをCPI間で積分する際に複数の仮説を立てることを考える。
 ここで、1CPI内の相互相関後の遅延時間(レンジ)インデックス数をL、ドップラー周波数インデックス数をK、目標の移動に伴う仮説数をNHY、CPI数をNCPIとすると、長時間積分後に帯域合成処理を行う構成とした場合、帯域合成処理時には、LHYCPI回のN点IFFTの計算が必要になる。一方、帯域合成処理後の長時間積分を行う場合、帯域合成処理の演算量は、LCPI回のN点IFFTで良く、仮説数NHYの分だけIFFT演算回数が減少するという利点がある。
 以上のように、この実施の形態7によれば、帯域合成処理後に相互相関関数のCPI間での長時間積分を行う長時間積分手段114を備えたので、長時間積分後に帯域合成処理を行う構成と比較して、仮説数分だけIFFT演算の回数を減少させることができる。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係るパッシブレーダ装置は、複数周波数帯域間でドップラー周波数が異なることによる積分損失を抑制することができ、自らは電波を放射せずに既存電波源を放射源として、航空機や船舶等の目標の探知追尾を実現するパッシブレーダ装置において、複数の周波数帯域をコヒーレントに合成することにより、探知追尾性能の改善を図るパッシブレーダ装置等に用いるのに適している。
 101 受信アンテナ(捜索系受信アンテナ)、102 受信アンテナ(参照系受信アンテナ)、103 帯域分割手段(捜索系帯域分割手段)、104 帯域分割手段(参照系帯域分割手段)、105 受信手段(捜索系受信手段)、106 受信手段(参照系受信手段)、107 相互相関処理手段、108 帯域合成手段、109 ピーク検出手段(目標探知手段)、110 広帯域受信手段(捜索系広帯域受信手段)、111 広帯域受信手段(参照系広帯域受信手段)、112 帯域間補償手段、113 ビーム形成手段、114 長時間積分手段、201 送信源(電波源)、202 目標、1071 ドップラー周波数シフト部、1072,1072b,1073,1073b FFT部、1074 複素共役乗算部、1075 IFFT部、1076 ブロック分割部(捜索系ブロック分割部)、1077 ブロック分割部(参照系ブロック分割部)、1078 ブロック間FFT部。

Claims (24)

  1.  電波源から送信されて目標で反射された反射波を受信する捜索系受信アンテナと、
     前記電波源から送信された直接波を受信する参照系受信アンテナと、
     前記捜索系受信アンテナにより受信された反射波の受信信号を周波数帯域毎に分割する捜索系帯域分割手段と、
     前記参照系受信アンテナにより受信された直接波の受信信号を周波数帯域毎に分割する参照系帯域分割手段と、
     前記捜索系帯域分割手段により分割された周波数帯域毎の反射波の受信信号を受信してA/D変換を行う捜索系受信手段と、
     前記参照系帯域分割手段により分割された周波数帯域毎の直接波の受信信号を受信してA/D変換を行う参照系受信手段と、
     前記捜索系受信手段によりA/D変換された反射波の受信信号と、前記参照系受信手段によりA/D変換された直接波の受信信号との周波数帯域毎の相互相関を行う相互相関処理手段と、
     前記相互相関処理手段による周波数帯域毎の相互相関結果を帯域合成する帯域合成手段と、
     前記帯域合成手段による帯域合成結果に基づいて前記目標を探知する目標探知手段と
     を備えたパッシブレーダ装置。
  2.  前記捜索系帯域分割手段及び前記参照系帯域分割手段は、前記受信信号を周波数帯域毎にアナログ段で分割する
     ことを特徴とする請求項1記載のパッシブレーダ装置。
  3.  前記捜索系帯域分割手段及び前記参照系帯域分割手段は、ローカル信号発信源を有し、当該ローカル信号発信源からの周波数を時系列に変更した信号と、前記受信信号とのミキシングを行うことで、当該受信信号を周波数帯域毎に分割する
     ことを特徴とする請求項1記載のパッシブレーダ装置。
  4.  前記相互相関処理手段は、
     前記参照系受信手段からの周波数帯域毎の直接波の受信信号を、想定する目標のバイスタティックドップラー速度及び当該周波数帯域毎の搬送波周波数から算出したドップラー周波数の分だけ周波数シフトするドップラー周波数シフト部と、
     前記捜索系受信手段からの周波数帯域毎の反射波の受信信号及び前記ドップラー周波数シフト部により周波数シフトされた周波数帯域毎の直接波の受信信号を高速フーリエ変換するFFT部と、
     前記FFT部により高速フーリエ変換された周波数帯域毎の直接波の受信信号の複素共役を取り、前記FFT部により高速フーリエ変換された周波数帯域毎の反射波の受信信号と乗算する複素共役乗算部と、
     前記複素共役乗算部による複素共役乗算結果を逆高速フーリエ変換するIFFT部とを備えた
     ことを特徴とする請求項1記載のパッシブレーダ装置。
  5.  前記相互相関処理手段は、
     前記捜索系受信手段からの周波数帯域毎の反射波の受信信号及び前記参照系受信手段からの周波数帯域毎の直接波の受信信号を、それぞれブロック毎に分割するブロック分割部と、
     前記ブロック分割部により分割された周波数帯域及びブロック毎の反射波の受信信号、並びに周波数帯域及びブロック毎の直接波の受信信号を高速フーリエ変換するFFT部と、
     前記FFT部により高速フーリエ変換された周波数帯域及びブロック毎の直接波の受信信号の複素共役を取り、前記FFT部により高速フーリエ変換された周波数帯域及びブロック毎の反射波の受信信号と乗算する複素共役乗算部と、
     前記複素共役乗算部による複素共役乗算結果を逆高速フーリエ変換するIFFT部と、
     前記IFFT部による逆高速フーリエ変換結果をブロック方向に高速フーリエ変換するブロック間FFT部とを備えた
     ことを特徴とする請求項1記載のパッシブレーダ装置。
  6.  前記捜索系ブロック分割部は、時間間隔Tb毎に前記受信信号を分割した後に、当該分割した各ブロックの受信信号に次のブロックの受信信号を追加することで、時間間隔2Tbのブロックを生成し、
     前記参照系ブロック分割部は、前記時間間隔Tb毎に前記受信信号を分割した後に、当該分割した各ブロックの受信信号に前記時間間隔Tb分の0信号を追加することで、時間間隔2Tbのブロックを生成する
     ことを特徴とする請求項5記載のパッシブレーダ装置。
  7.  前記捜索系ブロック分割部は、時間間隔Tb毎に前記受信信号を分割し、時間間隔Tbのブロックを生成し、
     前記参照系ブロック分割部は、時間間隔Tb毎に前記受信信号を分割し、時間間隔Tbのブロックを生成する
     ことを特徴とする請求項5記載のパッシブレーダ装置。
  8.  前記帯域合成手段は、前記相互相関処理手段による周波数帯域毎の相互相関結果を帯域方向に逆フーリエ変換することで、帯域合成を行う
     ことを特徴とする請求項1記載のパッシブレーダ装置。
  9.  前記帯域合成手段は、前記各周波数帯域の間隔が一定である場合に、前記相互相関処理手段による周波数帯域毎の相互相関結果を帯域方向に逆高速フーリエ変換することで、帯域合成を行う
     ことを特徴とする請求項1記載のパッシブレーダ装置。
  10.  前記帯域合成手段は、前記相互相関処理手段による周波数帯域毎の相互相関結果のドップラー周波数からドップラー速度を算出し、当該ドップラー速度が一致又は近い相互相関結果を帯域方向に逆高速フーリエ変換することで、帯域合成を行う
     ことを特徴とする請求項1記載のパッシブレーダ装置。
  11.  電波源から送信されて目標で反射された反射波を受信する捜索系受信アンテナと、
     前記電波源から送信された直接波を受信する参照系受信アンテナと、
     前記捜索系受信アンテナにより受信された反射波の受信信号を広帯域で受信してA/D変換を行い、周波数帯域毎に分割する捜索系広帯域受信手段と、
     前記参照系受信アンテナにより受信された直接波の受信信号を広帯域で受信してA/D変換を行い、周波数帯域毎に分割する参照系広帯域受信手段と、
     前記捜索系広帯域受信手段により分割された反射波の受信信号と、前記参照系広帯域受信手段により分割された直接波の受信信号との周波数帯域毎の相互相関を行う相互相関処理手段と、
     前記相互相関処理手段による周波数帯域毎の相互相関結果を帯域合成する帯域合成手段と、
     前記帯域合成手段による帯域合成結果に基づいて前記目標を探知する目標探知手段と
     を備えたパッシブレーダ装置。
  12.  前記帯域合成手段は、前記相互相関処理手段による周波数帯域毎の相互相関結果のドップラー周波数の比が、当該周波数帯域毎の搬送波周波数の比に一致又は近い相互相関結果を帯域方向に逆フーリエ変換することで、帯域合成を行う
     ことを特徴とする請求項1記載のパッシブレーダ装置。
  13.  前記帯域合成手段は、前記相互相関処理手段による周波数帯域毎の相互相関結果に対して、当該相互相関結果の遅延時間インデックスに依存する周波数帯域毎の位相変動を補償し、当該周波数帯域毎の逆高速フーリエ変換を行った帯域間合成後の相互相関結果を遅延時間方向に並べ替える
     ことを特徴とする請求項1記載のパッシブレーダ装置。
  14.  電波源から送信されて目標で反射された反射波を受信する捜索系受信アンテナと、
     前記電波源から送信された直接波を受信する参照系受信アンテナと、
     前記捜索系受信アンテナにより受信された反射波の受信信号を周波数帯域毎に分割する捜索系帯域分割手段と、
     前記参照系受信アンテナにより受信された直接波の受信信号を周波数帯域毎に分割する参照系帯域分割手段と、
     前記捜索系帯域分割手段により分割された周波数帯域毎の反射波の受信信号を受信してA/D変換を行う捜索系受信手段と、
     前記参照系帯域分割手段により分割された周波数帯域毎の直接波の受信信号を受信してA/D変換を行う参照系受信手段と、
     前記捜索系受信手段によりA/D変換された反射波の受信信号と、前記参照系受信手段によりA/D変換された直接波の受信信号との周波数帯域毎の相互相関を行う相互相関処理手段と、
     前記相互相関処理手段による周波数帯域毎の相互相関結果に対して、当該周波数帯域毎の振幅及び位相変動を補償する帯域間補償手段と、
     前記帯域間補償手段による補償後の周波数帯域毎の相互相関結果を帯域合成する帯域合成手段と、
     前記帯域合成手段による帯域合成結果に基づいて前記目標を探知する目標探知手段と
     を備えたパッシブレーダ装置。
  15.  前記帯域間補償手段は、前記相互相関処理手段による周波数帯域毎の相互相関結果における直接波の漏れ込み成分の振幅比及び位相差を用いて当該周波数帯域毎の振幅及び位相変動を補償する補正係数を算出し、当該補正係数により相互相関結果を補償する
     ことを特徴とする請求項14記載のパッシブレーダ装置。
  16.  前記帯域間補償手段は、前記捜索系受信アンテナを直接波方向に向けて取得した周波数帯域毎の反射波の受信信号と直接波の受信信号の振幅比及び位相差を補正係数とし、当該補正係数により当該周波数帯域毎の相互相関結果を補償する
     ことを特徴とする請求項14記載のパッシブレーダ装置。
  17.  電波源から送信されて目標で反射された反射波を受信する複数の捜索系受信アンテナと、
     前記電波源から送信された直接波を受信する参照系受信アンテナと、
     前記複数の捜索系受信アンテナにより受信された反射波の受信信号を周波数帯域毎に分割する捜索系帯域分割手段と、
     前記参照系受信アンテナにより受信された直接波の受信信号を周波数帯域毎に分割する参照系帯域分割手段と、
     前記捜索系帯域分割手段により分割された周波数帯域毎の反射波の受信信号を受信してA/D変換を行う捜索系受信手段と、
     前記参照系帯域分割手段により分割された周波数帯域毎の直接波の受信信号を受信してA/D変換を行う参照系受信手段と、
     前記捜索系受信手段によりA/D変換された反射波の受信信号と、前記参照系受信手段によりA/D変換された直接波の受信信号との周波数帯域毎の相互相関を行う相互相関処理手段と、
     前記相互相関処理手段による周波数帯域毎の相互相関結果を帯域合成する帯域合成手段と、
     前記帯域合成手段による帯域合成結果を前記複数の捜索系受信アンテナ間で合成することによりビーム形成を行うビーム形成手段と
     前記ビーム形成手段によるビーム形成結果に基づいて前記目標を探知する目標探知手段と
     を備えたパッシブレーダ装置。
  18.  電波源から送信されて目標で反射された反射波を受信する複数の捜索系受信アンテナと、
     前記電波源から送信された直接波を受信する参照系受信アンテナと、
     前記複数の捜索系受信アンテナにより受信された反射波の受信信号を周波数帯域毎に分割する捜索系帯域分割手段と、
     前記参照系受信アンテナにより受信された直接波の受信信号を周波数帯域毎に分割する参照系帯域分割手段と、
     前記捜索系帯域分割手段により分割された周波数帯域毎の反射波の受信信号を受信してA/D変換を行う捜索系受信手段と、
     前記参照系帯域分割手段により分割された周波数帯域毎の直接波の受信信号を受信してA/D変換を行う参照系受信手段と、
     前記捜索系受信手段によりA/D変換された反射波の受信信号と、前記参照系受信手段によりA/D変換された直接波の受信信号との周波数帯域毎の相互相関を行う相互相関処理手段と、
     前記相互相関処理手段による周波数帯域毎の相互相関結果を前記複数の捜索系受信アンテナ間で合成することによりビーム形成を行うビーム形成手段と
     前記ビーム形成手段によるビーム形成結果を帯域合成する帯域合成手段と、
     前記ビーム形成手段による帯域合成結果に基づいて前記目標を探知する目標探知手段と
     を備えたパッシブレーダ装置。
  19.  前記ビーム形成手段は、前記帯域合成手段による帯域合成結果に対して、搬送波周波数、ビーム指向方向及び前記捜索系受信アンテナの位置関係に依存した位相差を補償するようビーム形成を行う
     ことを特徴とする請求項17記載のパッシブレーダ装置。
  20.  前記ビーム形成手段は、前記相互相関処理手段による周波数帯域毎の相互相関結果に対して、搬送波周波数、ビーム指向方向及び前記捜索系受信アンテナの位置関係に依存した位相差を補償するようビーム形成を行う
     ことを特徴とする請求項18記載のパッシブレーダ装置。
  21.  前記ビーム形成手段は、前記帯域合成手段による帯域合成結果に対して、振幅値又は電力値を算出した後に前記捜索系受信アンテナ分だけ加算又は平均する
     ことを特徴とする請求項17記載のパッシブレーダ装置。
  22.  前記ビーム形成手段は、前記相互相関処理手段による周波数帯域毎の相互相関結果に対して、振幅値又は電力値を算出した後に前記捜索系受信アンテナ分だけ加算又は平均する
     ことを特徴とする請求項18記載のパッシブレーダ装置。
  23.  電波源から送信されて目標で反射された反射波を受信する捜索系受信アンテナと、
     前記電波源から送信された直接波を受信する参照系受信アンテナと、
     前記捜索系受信アンテナにより受信された反射波の受信信号を周波数帯域毎に分割する捜索系帯域分割手段と、
     前記参照系受信アンテナにより受信された直接波の受信信号を周波数帯域毎に分割する参照系帯域分割手段と、
     前記捜索系帯域分割手段により分割された周波数帯域毎の反射波の受信信号を受信してA/D変換を行う捜索系受信手段と、
     前記参照系帯域分割手段により分割された周波数帯域毎の直接波の受信信号を受信してA/D変換を行う参照系受信手段と、
     前記捜索系受信手段によりA/D変換された反射波の受信信号と、前記参照系受信手段によりA/D変換された直接波の受信信号との周波数帯域毎の相互相関を行う相互相関処理手段と、
     前記相互相関処理手段による周波数帯域毎の相互相関結果を帯域合成する帯域合成手段と、
     前記帯域合成手段による帯域合成結果を長時間積分する長時間積分手段と
     前記長時間積分手段による積分結果に基づいて前記目標を探知する目標探知手段と
     を備えたパッシブレーダ装置。
  24.  前記長時間積分手段は、前記相互相関処理手段による相互相関結果に対して、前記目標の移動に応じた複数の仮説に基づき時間方向に積分する
     ことを特徴とする請求項23記載のパッシブレーダ装置。
PCT/JP2013/072423 2013-02-25 2013-08-22 パッシブレーダ装置 WO2014128995A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/761,861 US20150355322A1 (en) 2013-02-25 2013-08-22 Passive radar device
JP2015501245A JPWO2014128995A1 (ja) 2013-02-25 2013-08-22 パッシブレーダ装置
EP13875429.6A EP2960675A1 (en) 2013-02-25 2013-08-22 Passive radar device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-034564 2013-02-25
JP2013034564 2013-02-25

Publications (1)

Publication Number Publication Date
WO2014128995A1 true WO2014128995A1 (ja) 2014-08-28

Family

ID=51390813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072423 WO2014128995A1 (ja) 2013-02-25 2013-08-22 パッシブレーダ装置

Country Status (4)

Country Link
US (1) US20150355322A1 (ja)
EP (1) EP2960675A1 (ja)
JP (1) JPWO2014128995A1 (ja)
WO (1) WO2014128995A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138787A (ja) * 2015-01-27 2016-08-04 三菱電機株式会社 パッシブレーダ装置
CN106199546A (zh) * 2016-06-30 2016-12-07 西安电子科技大学 基于外辐射源雷达的直达波信号提纯方法
CN108919208A (zh) * 2018-04-03 2018-11-30 芜湖泰贺知信息***有限公司 一种基于反射的无源雷达参考信号获取方法
JPWO2018207288A1 (ja) * 2017-05-10 2019-11-07 三菱電機株式会社 レーダ装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9520910B1 (en) * 2015-09-24 2016-12-13 Nxp B.V. Receiver component and method for enhancing a detection range of a time-tracking process in a receiver
GB2552186A (en) * 2016-07-13 2018-01-17 Aptcore Ltd Signal Processing Apparatus for Generating a Range-Doppler Map
EP3548922B1 (en) * 2016-12-01 2021-12-29 Carrier Corporation Hand-held radar
US10539672B2 (en) * 2016-12-09 2020-01-21 GM Global Technology Operations LLC Doppler ambiguity resolution at high signal to noise ratio
US9983247B1 (en) * 2017-01-18 2018-05-29 L-3 Communications Corp. Efficiently detecting presence of a hidden signal using frequency domain multiplication
JPWO2018181018A1 (ja) * 2017-03-30 2020-03-05 日本電気株式会社 信号処理装置および信号処理方法
AU2018265772B2 (en) 2017-05-12 2022-06-09 Locata Corporation Pty Ltd Methods and apparatus for characterising the environment of a user platform
WO2018225211A1 (ja) * 2017-06-08 2018-12-13 三菱電機株式会社 レーダ装置
US11294754B2 (en) * 2017-11-28 2022-04-05 Nec Corporation System and method for contextual event sequence analysis
FR3080187B1 (fr) * 2018-04-11 2020-05-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives Radar passif a annulation analogique de la composante statique
CN108957417A (zh) * 2018-04-28 2018-12-07 天津大学 基于lte外辐射源的被动雷达探测方法及***
IT201900006541A1 (it) * 2019-05-06 2020-11-06 Aresys S R L Sistema radar a risoluzione migliorata e metodo per l’incremento della risoluzione di un sistema radar.
JP7308454B2 (ja) * 2020-03-23 2023-07-14 パナソニックIpマネジメント株式会社 レーダ装置
CN113419219B (zh) * 2021-06-18 2022-04-22 桂林电子科技大学 基于空域特征认知的外辐射源雷达同频干扰级联相消方法
CN113759359B (zh) * 2021-08-23 2024-03-26 中国人民解放军海军航空大学 基于空管雷达的无源双基地雷达接收装置及目标探测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179037A (ja) * 1994-12-22 1996-07-12 Mitsubishi Electric Corp レーダ装置
JP2002107447A (ja) * 2000-10-03 2002-04-10 Mitsubishi Electric Corp レーダ装置
JP2005517190A (ja) 2002-02-08 2005-06-09 ロッキード・マーティン・コーポレイション デブリ追跡においてドップラー追跡を相関付けるシステムおよび方法
JP2007212413A (ja) * 2006-02-13 2007-08-23 Toyota Motor Corp 対象物識別装置
JP2011179882A (ja) * 2010-02-26 2011-09-15 Mitsubishi Electric Corp 目標検出方法、パッシブレーダ装置及びレーダ装置
JP2012002797A (ja) * 2010-05-17 2012-01-05 Japan Radio Co Ltd レーダ装置
WO2012111141A1 (ja) * 2011-02-18 2012-08-23 三菱電機株式会社 パッシブレーダ装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2882442B1 (fr) * 2005-02-18 2007-04-20 Thales Sa Procede de detection en mode bi-statique par exploitation passive d'emissions radioelectriques non cooperantes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179037A (ja) * 1994-12-22 1996-07-12 Mitsubishi Electric Corp レーダ装置
JP2002107447A (ja) * 2000-10-03 2002-04-10 Mitsubishi Electric Corp レーダ装置
JP2005517190A (ja) 2002-02-08 2005-06-09 ロッキード・マーティン・コーポレイション デブリ追跡においてドップラー追跡を相関付けるシステムおよび方法
JP2007212413A (ja) * 2006-02-13 2007-08-23 Toyota Motor Corp 対象物識別装置
JP2011179882A (ja) * 2010-02-26 2011-09-15 Mitsubishi Electric Corp 目標検出方法、パッシブレーダ装置及びレーダ装置
JP2012002797A (ja) * 2010-05-17 2012-01-05 Japan Radio Co Ltd レーダ装置
WO2012111141A1 (ja) * 2011-02-18 2012-08-23 三菱電機株式会社 パッシブレーダ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
K.S. KULPA; J. MISIUREWICZ: "Stretch Processing for Long Integration Time Passive CovertRadar", CIE'06. INTERNATIONAL CONF., RADAR, October 2006 (2006-10-01)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138787A (ja) * 2015-01-27 2016-08-04 三菱電機株式会社 パッシブレーダ装置
CN106199546A (zh) * 2016-06-30 2016-12-07 西安电子科技大学 基于外辐射源雷达的直达波信号提纯方法
CN106199546B (zh) * 2016-06-30 2019-01-11 西安电子科技大学 基于外辐射源雷达的直达波信号提纯方法
JPWO2018207288A1 (ja) * 2017-05-10 2019-11-07 三菱電機株式会社 レーダ装置
CN108919208A (zh) * 2018-04-03 2018-11-30 芜湖泰贺知信息***有限公司 一种基于反射的无源雷达参考信号获取方法

Also Published As

Publication number Publication date
JPWO2014128995A1 (ja) 2017-02-02
US20150355322A1 (en) 2015-12-10
EP2960675A1 (en) 2015-12-30

Similar Documents

Publication Publication Date Title
WO2014128995A1 (ja) パッシブレーダ装置
US9400323B2 (en) Passive radar device
JP4769596B2 (ja) 電子走査式レーダ装置
CN108885254B (zh) 物体检测装置
WO2016033361A1 (en) Improving the range resolution in fmcw radars
EP2363727B1 (en) Radar apparatus and target detecting method
JP5606097B2 (ja) パッシブレーダ装置
JP5823062B2 (ja) レーダ装置
JP2010197178A (ja) パルス圧縮装置
JP2010286403A (ja) 測角装置、モノパルス測角装置、モノパルスレーダ、マルチスタティックレーダ
JP6462365B2 (ja) レーダ装置及びそのレーダ信号処理方法
JP5863443B2 (ja) レーダ装置
CN113093141B (zh) 多载频lfmcw雷达信号合成处理方法
JP2016138787A (ja) パッシブレーダ装置
JP6573748B2 (ja) レーダ装置
JP5229251B2 (ja) 目標検出方法、パッシブレーダ装置及びレーダ装置
JP2015036628A (ja) パッシブレーダ装置
JP2013044642A (ja) パッシブレーダ装置
JP2020016474A (ja) レーダシステム及び信号処理方法
RU2471200C1 (ru) Способ пассивного обнаружения и пространственной локализации подвижных объектов
JP5611294B2 (ja) 探知測距装置
CN115932921B (zh) 一种多卫星多载波的非相参联合累积处理方法
KR20150135734A (ko) 선형 주파수 변조 신호와 잡음 신호를 이용한 레이더 및 이의 제어 방법
Zuo et al. Detection of weak target based on stretch processing and chirp-z transform in Passive Bistatic Radar
JP2014190897A (ja) 積分装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501245

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14761861

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013875429

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013875429

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE