WO2014123320A1 - 허브 내장형 다단 변속기 - Google Patents

허브 내장형 다단 변속기 Download PDF

Info

Publication number
WO2014123320A1
WO2014123320A1 PCT/KR2014/000737 KR2014000737W WO2014123320A1 WO 2014123320 A1 WO2014123320 A1 WO 2014123320A1 KR 2014000737 W KR2014000737 W KR 2014000737W WO 2014123320 A1 WO2014123320 A1 WO 2014123320A1
Authority
WO
WIPO (PCT)
Prior art keywords
planetary gear
speed
medium
pole
gear set
Prior art date
Application number
PCT/KR2014/000737
Other languages
English (en)
French (fr)
Inventor
유혁
정태진
안성철
Original Assignee
(주)엠비아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엠비아이 filed Critical (주)엠비아이
Publication of WO2014123320A1 publication Critical patent/WO2014123320A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M11/00Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
    • B62M11/04Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio
    • B62M11/14Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears
    • B62M11/16Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears built in, or adjacent to, the ground-wheel hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M11/00Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
    • B62M11/04Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio
    • B62M11/14Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears
    • B62M11/18Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears with a plurality of planetary gear units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/12Freewheels or freewheel clutches with hinged pawl co-operating with teeth, cogs, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/62Gearings having three or more central gears
    • F16H3/66Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/30Chain-wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/201Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with three sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2035Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with two engaging means

Definitions

  • the present invention relates to a hub-integrated multistage transmission, and in particular, to implement a multistage shift in a compact internal transmission using a plurality of planetary gear sets and one-way clutches, and in particular, a high transmission ratio can be obtained and at the same time a forced transmission function is used.
  • the present invention relates to a device for precise shifting, and to a device capable of maximizing product merchandise and greatly improving shifting accuracy.
  • a wheel is provided and a transmission device for improving driving performance is provided in a transportation device such as a bicycle, a wheelchair, a car, a scooter, which receives a manpower or runs using various driving forces such as electric power.
  • a transportation device such as a bicycle, a wheelchair, a car, a scooter, which receives a manpower or runs using various driving forces such as electric power.
  • Such a transmission can be shifted in multiple stages from a high speed to a low speed according to a rider or a user's operation, so that the required torque or speed can be obtained according to the driving environment.
  • a planetary gear set composed of a sun gear, a planetary gear, a ring gear, and a carrier is provided in the hub shell to prevent the gears from being exposed to the outside while changing the speed in multiple stages through a compact configuration. to be.
  • the present invention is to solve the above problems, by using a plurality of planetary gear set and one-way clutch can be configured in a compact multi-stage internal transmission that can obtain a high speed ratio to maximize the productability of the product, forced shift
  • the purpose of the present invention is to provide a hub-integrated multi-speed transmission that can greatly improve shifting accuracy by using a function to achieve a more accurate shifting.
  • the present invention includes a shaft fixed to the vehicle body, a hub shell which is rotatably positioned on the outer circumference of the shaft and outputs a sprocket for receiving the rotational force and the rotational force; Including a planetary gear set consisting of a sun gear, a planetary gear, a carrier, a ring gear and an output clutch composed of a one-way clutch provided inside the hub shell, shifting the rotational force input to the sprocket to output to the hub shell A transmission unit;
  • the multi-stage transmission including a control unit for controlling the shift by controlling the pole provided on the shaft in accordance with the operation of the shift lever to selectively limit the rotation of the sun gear;
  • the transmission portion is provided with a low speed planetary gear set, a medium speed planetary gear set, and a high speed planetary gear set;
  • the carrier of the low speed planetary gearset and the carrier of the medium speed planetary gearset are integrally formed with a driver that rotates by receiving rotational force from the sprocket
  • the low speed pole, the medium speed pole, and the high speed pole is located in the pole seat, respectively, it is preferable that the shaft is provided to stand by the ring spring.
  • the control unit includes a cable connection member connected to the cable drawn out according to the operation of the shift lever and rotatably supported on an outer circumferential surface of the shaft; An intermediate connecting member fitted to the inner circumferential surface of the cable connecting member; An angle control member fitted to the inner circumferential surface of the intermediate connecting member and integrally controlled to rotate; It is preferable that the pole control member is connected to the angle control member and controls the low speed pawl, the medium speed pawl, and the high speed pawl in accordance with the rotation.
  • the low speed sun gear of the low speed planetary gear set is selectively limited in rotation by the low speed pole
  • the medium speed sun gear of the medium speed planetary gear set is selectively limited in rotation by the medium speed pole
  • the high speed planetary gear The set of high speed sun gears is selectively limited in rotation by the high speed poles;
  • a groove portion is formed on an inner circumferential surface of the pole control member, and at least one of the low speed pawl, the medium speed pawl, and the high speed pawl exits to the groove portion as the pole control member rotates.
  • a coil spring is connected between the cone nut rotatably assembled to the shaft and the angle control member; Wings of the pole control member are positioned with a predetermined clearance in the coupling groove of the angle control member, the wings are elastic so that both sides are supported at both ends of the pin spring supported by the angle control member to be located in the center of the coupling groove. It is good to be supported.
  • control unit and the roller which is supported to flow in the radial direction to the angle control member;
  • a medium speed carrier having a forced shifting means including a one-way inclined groove formed on an inner circumferential surface of the medium and low speed carrier, wherein the roller is positioned and rotated at its outer circumference as a phase angle difference occurs between the angle control member and the pole control member. It is most preferable to have a forced shift function for forcing the medium speed pawl or the high speed pawl while forcibly moving inwardly from the one-way inclined groove formed on the inner circumferential surface thereof.
  • the present invention as described above can be configured in a multi-stage built-in transmission that can obtain a high transmission ratio compactly by using a plurality of planetary gear sets and one-way clutch to maximize the merchandise of the product, more accurate by using a forced transmission function It is an invention that can greatly improve shifting accuracy by allowing shifting to occur.
  • FIG. 1 is a perspective view showing a hub-integrated multi-speed transmission of the present invention
  • FIG. 2 is a front view showing a hub-embedded multi-speed transmission of the present invention
  • FIG. 3 is a front sectional view showing a hub-mounted multi-stage transmission of the present invention.
  • Figure 4 is an exploded perspective view of the hub shell separated in the multi-stage transmission built-in hub of the present invention
  • Figure 5 is an exploded perspective view of the sprocket separated in the multi-stage transmission built-in hub of the present invention
  • FIG. 6 is an exploded perspective view of a high speed planetary gear set separated from a hub-mounted multi-stage transmission of the present invention
  • Figure 7 is an exploded perspective view of a pole separated in the multi-stage transmission with a built-in hub of the present invention
  • FIG. 8 is a cross-sectional view of a planetary gear set in the hub-mounted multi-stage transmission of the present invention.
  • FIG. 9 is a cross-sectional view of the output clutch in the hub-mounted multi-stage transmission of the present invention.
  • FIG. 10 is a perspective view showing a control unit in the hub-mounted multi-stage transmission of the present invention.
  • FIG. 11 is an exploded perspective view of a control unit in a hub-mounted multi-stage transmission of the present invention.
  • FIG. 12 is a perspective view showing a pawl in a hub-mounted multi-stage transmission of the present invention.
  • FIG. 13 is a right side view showing control of a pole according to rotation of a pole control member in the hub-mounted multi-stage transmission of the present invention
  • FIG. 14 is a diagram showing a forced transmission means in the hub-integrated multistage transmission of the present invention.
  • 15 is an exploded perspective view showing a main portion of a control unit in the hub-embedded multi-stage transmission of the present invention.
  • FIG. 16 is a view showing occurrence of phase angle differences between the pole control member and the angle control member in the hub-mounted multi-stage transmission of the present invention.
  • 17 is a diagram illustrating a forced shift function from two gears to three gears in the hub-mounted multi-stage transmission of the present invention.
  • FIG. 18 is a diagram illustrating a force shift function from four gears to three gears in the hub-mounted multi-stage transmission of the present invention.
  • 19 is a diagram illustrating a forced transmission function from three gears to two gears in the hub-mounted multi-stage transmission of the present invention.
  • 20 is a diagram illustrating a forced shift function from two gears to one gear in the hub-mounted multi-stage transmission of the present invention.
  • transmission portion 410 low speed planetary gear set
  • medium and low speed carrier 420 medium speed planetary gear set
  • high speed carrier 434 high speed ring gear
  • first output clutch 450 second output clutch
  • control unit 510 cable connection member
  • intermediate connecting member 520 angle control member
  • assembly worker 530 pole control member
  • groove portion 540 forced transmission means
  • 541a, 541b, 541c Rollers 901, 902: Cone Nuts
  • FIG. 1 is a perspective view showing a hub-integrated multistage transmission of the present invention
  • Figure 2 is a front view showing a hub-integrated multistage transmission of the present invention
  • Figure 3 is a front sectional view showing a hub-integrated multistage transmission of the present invention.
  • Figure 4 is an exploded perspective view of the hub shell separated in the multi-stage gearbox of the present invention
  • Figure 5 is an exploded perspective view of the sprocket separated in the hub-type multi-stage transmission of the present invention
  • Figure 6 is a hub of the present invention An exploded perspective view of a high speed planetary gear set separated in a built-in multi-stage transmission.
  • Figure 7 is an exploded perspective view of a pole separated in the multi-stage gearbox of the present invention
  • Figure 8 is a cross-sectional view of the planetary gear set in the hub-type multi-stage transmission of the present invention
  • Figure 8 (a) is a low speed planetary The gear set 410
  • FIG. 8B shows the medium speed planetary gear set 420
  • FIG. 8C shows the high speed planetary gear set 430, respectively.
  • Figure 9 is a cross-sectional view of the output clutch in the hub-integrated multi-stage transmission of the present invention
  • Figure 9 (a) shows the first output clutch 440
  • Figure 9 (b) is the second output clutch 450 ).
  • FIG. 10 is a perspective view showing a control unit in the hub-mounted multi-stage transmission of the present invention
  • FIG. 11 is an exploded perspective view of the control unit in the hub-mounted multi-stage transmission of the present invention
  • FIG. 12 is a hub-integrated multistage transmission of the present invention. It is a perspective view which shows a pole in the figure.
  • FIG. 13 is a right side view showing the control of the pole according to the rotation of the pole control member in the hub-integrated multistage transmission of the present invention, in which FIG. 13 (a) is one stage and FIG. 13 (b) is two. 13 (c) shows three stages, and FIG. 13 (d) shows four stages, respectively.
  • FIG. 14 is a diagram showing a forced transmission means in the hub-integrated multistage transmission of the present invention
  • FIG. 14A is a diagram showing one-way inclined grooves 413a of the medium and low speed carrier 413.
  • 14 (b) is a right side view thereof.
  • Figure 15 is an exploded perspective view showing the main portion of the control unit in the hub-integrated multi-stage transmission of the present invention
  • Figure 16 is a phase angle difference between the pole control member and the angle control member in the hub-integrated multistage transmission of the present invention. Is a diagram illustrating.
  • the hub-integrated multi-stage transmission of the present invention implements a multi-shift with a large speed ratio with a compact built-in transmission using a plurality of planetary gear sets and one-way clutches, and has a force shifting function of a pole to greatly improve shifting accuracy. It is the technical basic characteristic.
  • the hub-embedded multi-stage transmission of the present invention has a shaft 100 fixed to a vehicle body and a sprocket 200 which is rotatably positioned on an outer circumference of the shaft 100 to receive rotational force.
  • hub shell 300 for outputting a rotational force; Including a planetary gear set consisting of a sun gear, a planetary gear, a carrier, a ring gear and an output clutch composed of a one-way clutch provided inside the hub shell 300, the rotational force input to the sprocket 200 is shifted.
  • a transmission unit 400 outputting the hub shell 300;
  • the transmission unit 400 is provided with a low speed planetary gear set 410, a medium speed planetary gear set 420, and a high speed planetary gear set 430;
  • the carrier of the low speed planetary gear set 410 and the carrier of the medium speed planetary gear set 420 are integrally formed with the driver to rotate by receiving rotational force from the sprocket 200 to form a medium low speed carrier 413;
  • the low speed planetary gear 412 of the low speed planetary gear set 410 and the medium speed planetary gear 422 of the medium speed planetary gear set 420 are located at a radially predetermined phase angle difference of the medium and low speed carrier 413.
  • the high speed carrier 433 of the high speed planetary gear set 430 is integrally formed with the medium speed ring gear 424 of the medium speed planetary gear set 420;
  • a first output clutch 440 is provided between the high speed carrier 433 of the high speed planetary gear set 430 and the hub shell 300;
  • a second output clutch 450 is provided between the high speed ring gear 434 of the high speed planetary gear set 430 and the hub shell 300.
  • the hub-embedded multi-stage transmission of the present invention is composed of a shaft 100, a sprocket 200, a hub shell 300, a transmission unit 400, and a control unit 500, as shown in FIGS. It is.
  • the shaft 100 is rotatably fixed to the body of a scooter, a bicycle, a rickshaw or the like (hereinafter, referred to as a “driving device") that requires shifting by means of fastening means such as a fixing nut.
  • the shaft 100 is formed with a different diameter according to the part, in particular, the plurality of pole seats 101, 102, 103 formed in the center outer peripheral surface of the shaft 100 concave with a predetermined phase difference
  • the poles 501, 502, 503, which will be described later, are located in the pole seats 101, 102, 103, respectively.
  • three pole portions 101, 102 and 103 are formed with a predetermined phase angle difference as shown in FIG.
  • Such a shaft 100 forms the skeleton of the present invention, and all of the components to be described below are provided on the outer circumference of the shaft 100 to be rotatable or non-rotable.
  • the sprocket 200 is configured to receive a rotational force such as an attractive force or electric force from the traveling device to the hub-mounted multi-stage transmission of the present invention, and is provided to be rotatable on one side of the shaft 100.
  • the sprocket 200 receives a driving force from the outside through a power transmission means such as a chain, for example.
  • the hub shell 300 is configured to output the driven force shifted at the outermost position of the shaft 100 to wheels of a traveling device.
  • the hub shell 300 is formed in a substantially cylindrical shape, a plurality of holes 301 for connecting the flesh of the wheel can be formed on the outer circumference, the left side in the drawing is closed while the right side in the drawing is open It can be assembled by inserting various components therein through the open area.
  • the hub shell 300 On the closed left side of the hub shell 300 is provided a cone nut 902 and a bearing 904 coupled to the shaft 100, the hub shell 300 is rotatably supported independently from the shaft 100 do.
  • the transmission unit 400 is positioned in the hub shell 300 and shifts the rotation input through the sprocket 200 in multiple stages, and then outputs the plurality of planetary gears through the hub shell 300.
  • An output clutch consisting of a set and a one-way clutch.
  • three planetary gear sets that is, a low speed planetary gear set 410, a medium speed planetary gear set 420, and a high speed planetary gear set 430 are provided, and two output clutches, that is, a first output clutch, are provided.
  • An example in which 440 and a second output clutch 450 are provided to output four speed ratios will be described below.
  • the transmission unit 400 includes a low speed planetary gear set 410, a medium speed planetary gear set 420, and a high speed planetary gear set 430, and the low speed planetary gear set 410 or the sprocket 200.
  • the rotational force transmitted to the medium speed planetary gear set 420 is shifted and transmitted to the high speed planetary gear set 430, and the second speed is shifted once again from the high speed planetary gear set 430 to output the first output clutch 440 or the second output. It is possible to output to the hub shell 300 through the clutch 450.
  • a substantial shift is made by the planetary gear sets 410, 420, 430 of the shifting unit 400, and the rotational force shifted through the output clutches 440, 450 is a hub shell. It is output to 300.
  • Each of the planetary gear sets includes a ring gear, a carrier, a planetary gear, and a sun gear, wherein the planetary gear is rotatably supported by the carrier and revolves as the carrier rotates, and is located outside the carrier. The gear is engaged with the gear and at the same time with the sun gear located inside the carrier.
  • each planetary gear set receives the rotational force through the carrier and outputs the rotational force through the planetary gear through the ring gear, thereby accelerating.
  • the low speed planetary gear set 410 includes a low speed sun gear 411 and a low speed planetary gear 412 as shown in FIGS. 7 and 8 (a), and the low speed carrier includes a medium speed carrier and a driver to be described later. It is provided with a medium and low speed carrier 413 integrally with the low speed ring gear is not provided separately.
  • the medium speed planetary gear set 420 includes a medium speed sun gear 421, a medium speed planetary gear 422, and a medium speed ring gear 424, as shown in FIGS. 7 and 8 (b), and the medium speed carrier includes the medium speed carrier.
  • the low speed carrier and the sprocket 200 are provided as a medium to low speed carrier 413 integrally with the fixed driver.
  • the low speed planetary gear set 410 and the medium speed planetary gear set 420 share one medium and low speed carrier 413, and in particular, the low speed planetary gear 412 and the medium speed planetary gear 422.
  • the medium and low speed carrier 413 is located on the right side of the open view of the hub shell 300, the cone nut 901 and the bearing 903 is coupled to the shaft 100, the medium and low speed carrier ( 413 is rotatably supported from the shaft 100.
  • the hub shell 300 and the medium-low speed carrier 413 are rotatably provided by a bearing 905 located therebetween, and by the dust cover 310 shown in FIG. Prevent foreign matter from entering.
  • bearings 903, 904 and 905 exemplify ball bearings, but are not limited to those types such as sliding bearings.
  • the high speed planetary gear set 430 includes a high speed sun gear 431, a high speed planetary gear 432, a high speed carrier 433, and a high speed ring gear 434 as shown in FIGS. 6 and 8 (c).
  • the high speed carrier 433 is integrally formed with the medium speed ring gear 424 of the medium speed planetary gear set 420.
  • the low speed sun gear 411, the medium speed sun gear 421, and the high speed sun gear 431 have a low speed pole 501, a medium speed pole 502, and a high speed pole 503 in the inner gear formed on the inner circumferential surface thereof.
  • the poles 501, 502, 503 are engaged with the internal gears of the corresponding sun gears 411, 421, 431, the rotation of the corresponding sun gears 411, 421, 431. This is optionally limited.
  • the gear ratios of the planetary gear sets 410, 420, and 430 are changed according to whether the sun gears 411, 421, and 431 are rotatable. .
  • the low speed planetary gear set 410 and the medium speed planetary gear set 420 share the medium and low speed carrier 413, and the low speed planetary gear 412 and the medium speed planetary gear 422 are engaged with each other. Since the medium speed ring gear 424 is integrally formed with the high speed carrier 433 of the high speed planetary gear set 430, the rotational force transmitted to the transmission part 400 may be a low speed planetary gear set 410 or a medium speed planetary gear. After being transmitted from the set 420 to the high speed planetary gear set 430, the gear is shifted twice and then output through the hub shell 300.
  • an output clutch 440 or 450 formed of a one-way clutch is provided in the shifting unit 400 so that a rotation speed of a component located inside the output clutch 440 or 450 is located outside. When faster than the rotational speed of the component to transmit the rotational force of the component located on the inside to the component located on the outside.
  • two output clutches 440 and 450 are provided, which are provided with the first output clutch 440 and the second output clutch 450.
  • the first output clutch 440 is provided between the outer circumferential surface of the high speed carrier 433 of the high speed planetary gear set 430 and the inner circumferential surface of the hub shell 300 as shown in FIGS. 6 and 9 (a).
  • a second output clutch 450 is provided between the outer circumferential surface of the high speed ring gear 434 of the high speed planetary gear set 430 and the inner circumferential surface of the hub shell 300.
  • the finally shifted rotational force is output to the hub shell 300 only through the first output clutch 440 or the second output clutch 450.
  • the control unit 500 controlling the shift of the transmission unit 400 includes three poles, that is, the low speed pole 501, the medium speed pole 502, and the high speed pole ( 503 are positioned in the pole portions 101, 102, 103 of the shaft 100, respectively, and these poles 501, 502, 503 are elastically erected by ring springs, not shown. Positioned to lose.
  • control part 500 has one or more poles 501, 502, 503 as the pole control member 530 controlling the poles 501, 502, 503 rotates. ) To control the shifting by selectively setting or laying down on the inner gears of the corresponding sun gears 411, 421 and 431.
  • each of the poles 501, 502, and 503 is formed to protrude at different intervals from the control part 501a, 502a, 503a and the locking parts 501b, 502b, 503b as shown in FIG.
  • the control pole 501a is formed at the right end of the figure in the low-speed pawl 501, and the locking portion 501b is formed again from the control pole 501a.
  • the medium speed pawl 502 has a larger spacing between the control section 502a and the locking section 502b than the low speed pawl 501, and the high speed pawl 503 has a control section 503a.
  • the spacing between the locking portions 503b is much wider than that of the medium speed pawl 502.
  • the low speed pawl 501 has the narrowest distance between the control part 501a and the locking part 501b, whereas the high speed pawl 503 has the smallest gap between the control part 503a and the locking part 503b. It is widely formed.
  • the pole control member 530 is positioned outside the control portions 501a, 502a, 503a formed on the respective poles 501, 502, 503, and the locking portions 501b, 502b. Outside the frame 503b, the sun gears 411, 421 and 431 are positioned.
  • grooves 531, 532, 533a, 533b are formed on the inner circumferential surface of the pole control member 530, and the low speed pawl 501 and the medium speed pawl according to the rotation of the pole control member 530. 502, and at least one of the high speed poles 503 exits the grooves 531, 532, 533a and 533b.
  • the pole control member 530 is formed with one groove portion 531, 532 corresponding to the low-speed pole 501 and the medium speed pole 502, as shown in Figure 13, while the high-speed pole Corresponding to 503, two groove portions 533a and 533b are formed.
  • control portions 501a, 502a, 503a of the poles 501, 502, 503 that are to be elastically erected according to the rotation angle of the pole control member 530 are grooves 531, 532.
  • the engaging portions 501b, 502b and 503b of the pawls 501, 502 and 503 are raised so that the corresponding sun gears 411, 421 and 431 The rotation of the sun gears 411, 421 and 431 by limiting the inner gear formed on the inner peripheral surface.
  • two grooves 533a and 533b are formed with a predetermined angle difference so that the high speed pawl 503 is engaged or released every 16 degrees of rotation as shown in FIG. 13.
  • the grooves 531 and 532 are formed so that the low-speed pawl 501 is released and the medium-speed pawl 502 is engaged after the rotation by 32 degrees from the initial angle.
  • the low-speed pawl 501 exits into the groove portion 531 of the pawl control member 530 as shown in FIG. 13A, and the pawl control member 530 is moved from the initial position.
  • the low speed pole 501 and the high speed pole 503 are respectively moved to the grooves 531 and 533a of the pole control member 530. Will come out.
  • control unit 500 is a cable connecting member which is connected to the cable drawn out in accordance with the operation of the shift lever as shown in Figure 10 and 11 rotatably supported on the outer peripheral surface of the shaft ( 510; An intermediate connecting member 512 fitted to the inner circumferential surface of the cable connecting member 510; An angle control member 520 fitted to the intermediate connecting member 512 and integrally controlled to rotate;
  • the pole control member 530 is connected to the angle control member 520 and controls the low speed pole 501, the medium speed pole 502, and the high speed pole 503 according to rotation.
  • the cable connecting member 510 is connected to the outer periphery of the cable not shown according to the operation of the shift lever, the cable connecting member 510 is rotated when the shift lever is operated.
  • the cable connecting member 510 when viewed from the right side, it rotates counterclockwise during the acceleration operation of the shift lever, and rotates clockwise during the deceleration operation.
  • an intermediate connecting member 512 is positioned on an inner circumferential surface of the cable connecting member 510, and an inner circumferential surface of the cable connecting member 510 and an outer circumferential surface of the intermediate connecting member 512 are engaged with each other to form the shaft 100. It rotates integrally on the outer circumferential surface of).
  • two projections 521 protrude from the right side surface of the angle control member 520 to fit into the assembly groove 512a formed on the inner circumferential surface of the intermediate connecting member 512.
  • the member 512 and the angle control member 520 rotate integrally.
  • pole control member 530 is connected to the left side of the angle control member 520 in the drawing, the pole control member 530 is rotated together in accordance with the rotation of the angle control member 520, One or more of the low speed pole 501, the medium speed pole 502, and the high speed pole 503 may be selectively raised.
  • a coil spring 501 is connected between the cone nut 901 rotatably assembled to the shaft 100 and the angle control member 520;
  • the blade 534 of the pole control member 530 is positioned with a predetermined clearance, and both sides of the wing 534 are provided in the angle control member 520.
  • Both ends of the supported pin spring 502 may be elastically supported to be located at the center of the coupling groove 522.
  • the cone nut 901 is for supporting the above-described medium-low speed carrier 413 on the shaft 100 via the bearing 903, and the assembly hole 901b is provided on the left side of the cone nut 901 in the drawing.
  • the assembling hole 523 is formed on the right side surface of the angle control member 520, and both ends of the coil spring 501 are inserted into and fixed to the two assembling holes 901b and 523.
  • the angle control member 520 is always subjected to a force to rotate in one direction, rotated in the opposite direction according to the operation of the shift lever, and returned to the initial angle by the restoring force of the coil spring 501. .
  • the angle control member 520 rotates counterclockwise by the user's operating force during the acceleration operation of the shift lever, the angle control member 520 rotates clockwise by the restoring force of the coil spring 501 during the deceleration operation.
  • the guide groove 901a is formed at a predetermined angle on the inner circumferential surface of the cone nut 901 so that the projection 521 of the angle control member 520 penetrates the guide groove 901a.
  • the maximum rotation angle of the angle control member 520 can be limited.
  • two coupling grooves 522 are formed on the outer circumferential surface of the angle control member 520 so as to face each other, and the blade 534 of the pole control member 530 is positioned in the coupling groove 522. .
  • the width of the blade 534 is formed to be somewhat narrower than the width of the coupling groove 522, a predetermined play is formed.
  • angle control member 520 is provided with two pin springs 502 having a substantially W-shape supported by the support protrusion 524, both ends of the blade 534 protruding through the coupling groove 522. Will be elastically supported as shown in FIG.
  • FIG. 16 is a view showing the occurrence of the phase angle difference between the pole control member and the angle control member in the hub-integrated multi-stage transmission of the present invention
  • Figure 16 (a) is a pole is strongly engaged with the sun gear during the deceleration shift speed is shifted.
  • Figure 16 (b) is a view showing a state in which the shift has been made
  • Figure 16 (c) is a state in which the pole is strongly engaged with the sun gear during the shift, the shift is not made. It is a figure which shows.
  • the blade 534 of the pole control member 530 is elastically supported to be positioned in the center of the coupling groove 522 of the angle control member 520, as shown in Figure 16 (b), the pole control member In a state in which no external force is applied to the 530, the pole control member 530 may always rotate together with the angle control member 520.
  • the angle control member 520 rotates according to the operation of the shift lever, but the pole control member 530 does not rotate together with the angle control member 520 despite the elastic force of the pin spring 502. In this case, a phase angle difference occurs between the angle control member 520 and the pole control member 530.
  • the forced transmission means 540 is further provided as shown in FIG.
  • control unit 500 includes: rollers 541a, 541b and 541c supported by the angle control member 520 so as to be movable in a radial direction;
  • a forced shifting means 540 is provided, which includes a one-way inclined groove 413a formed on the inner circumferential surface of the medium and low speed carrier 413, and a phase angle difference occurs between the angle control member 520 and the pole control member 530.
  • the medium speed pawl 502 As the rollers 541a, 541b and 541c are forced to move inwardly from the one-way inclined groove 413a formed on the inner circumferential surface of the medium and low speed carrier 413 which is rotated on the outer circumference thereof, the medium speed pawl 502 Alternatively, it is preferable to have a forced shift function for forcing the high speed pole 503 to lie down.
  • the angle control member 520 is provided with two rollers 541a and 541b for forcibly laying down the high speed pawl 503 and one roller 541c for forcing and laying down the medium speed pawl 502. have.
  • the high speed pawl 503 is made up or down twice while the medium speed pawl 502 is made one time.
  • the rollers 541a, 541b and 541c are supported by the angle control member 520 and are provided to be movable in the radial direction, i.e., the inner side toward the center of the shaft 100 and the outer side in the opposite direction.
  • the high speed pawl 503 or the middle speed pawl 502 is located, and outwardly adjacent to the one-way inclined groove 413a formed on the inner circumferential surface of the medium and low speed carrier 413.
  • the high pole 503 is in contact with the pole.
  • the rollers 541a, 541b and 541c protruding outwardly are in contact with the one-way inclined grooves 413a of the medium and low speed carriers 413 and are forced to move inwards.
  • FIG. 17 is a diagram illustrating a forced shift function from two gears to three gears in the hub-mounted multi-stage transmission of the present invention.
  • FIG. 17A shows a two-stage state
  • FIG. 17B shows three gears.
  • the angle control member 520 rotates counterclockwise during the acceleration shift to the high speed gear
  • the pole control member 530 does not rotate because the high speed pole 503 is strongly engaged with the internal gear of the high speed sun gear 431.
  • FIG. 17C shows a state in which the pawl control member 530 is rotated counterclockwise by the forced transmission means 540 and the shift is completed in three steps.
  • the angle control member 520 is rotated 16 degrees counterclockwise from the initial angle by the operation of the shift lever.
  • the high speed pawl 503 is located between the rollers 541a and 541b of the angle control member 520 as shown in FIG.
  • the angle control member 520 was further rotated 16 degrees in the counterclockwise direction by operating the shift lever to accelerate the gear to the third stage.
  • the high speed pole 503 meshes strongly with the internal gear of the high speed sun gear 431.
  • the pole control member 530 does not rotate together with the angle control member 520.
  • roller 541b protrudes outward on the angle control member 520, and the roller 541b protruding in this way is a low to medium speed that rotates clockwise from the outside as shown in FIG. 17C.
  • the one-way inclined groove 413a of the carrier 413 is forcibly pressed inward.
  • the standing high-speed pole 503 is laid down, and then the pole control member 530, which is out of phase with the angle control member 520, is connected to the angle control member 520 by a pin spring 502.
  • the shift can be made as shown in FIG.
  • FIG. 18 is a diagram illustrating a forced transmission function from four gears to three gears in the hub-mounted multi-stage transmission of the present invention.
  • FIG. 18A shows a four-speed state
  • FIG. 18B shows three gears.
  • the angle control member 520 rotates in the clockwise direction at the time of deceleration to the high speed
  • the pole control member 530 does not rotate because the high speed pole 503 is strongly engaged with the inner gear of the high speed sun gear 431.
  • FIG. 18C shows a state in which the pawl control member 530 is rotated clockwise by the forced transmission means 540 to complete the three-speed shift.
  • the angle control member 520 is rotated 48 degrees counterclockwise from the initial angle by operating the shift lever.
  • the high speed pawl 503 is located on the clockwise side than the right roller 541b on the drawing of the angle control member 520 as shown in FIG.
  • the angle control member 520 was rotated 16 degrees clockwise by operating the shift lever for deceleration to three speeds, but the high speed pole 503 is strongly engaged with the internal gear of the high speed sun gear 431. As shown in (b) of FIG. 18, the pole control member 530 does not rotate together with the angle control member 520.
  • roller 541b protrudes outward on the angle control member 520, and the roller 541b protruded as described above is a medium low speed that rotates clockwise from the outside as shown in FIG. 18C.
  • the one-way inclined groove 413a of the carrier 413 is forcibly pressed inward.
  • the standing high-speed pole 503 is laid down, and then the pole control member 530, which is out of phase with the angle control member 520, is connected to the angle control member 520 by a pin spring 502.
  • the shift can be made as shown in FIG.
  • FIG. 19 is a diagram illustrating a forced shift function from three gears to two gears in the hub-mounted multi-stage transmission of the present invention, and FIG. 19 (a) shows a three-stage state, and FIG. 19 (b) shows two gears.
  • the angle control member 520 rotates in the clockwise direction when decelerating to the gearbox, the pole control member 530 does not rotate because the medium speed pawl 502 is strongly engaged with the internal gear of the medium speed sun gear 421.
  • 19C shows a state in which the pawl control member 530 is rotated in the clockwise direction by the forced transmission means 540 to complete the speed change in two stages.
  • the angle control member 520 is rotated 32 degrees counterclockwise from the initial angle by operating the shift lever.
  • the intermediate speed pawl 502 is located on the clockwise side than the roller 541c of the angle control member 520 as shown in FIG.
  • the angle control member 520 was rotated 16 degrees clockwise by operating the shift lever for deceleration to the second stage, but the middle pawl 502 is strongly engaged with the internal gear of the medium speed sun gear 421. As shown in (b) of FIG. 19, the pole control member 530 does not rotate together with the angle control member 520.
  • roller 541c protrudes outward on the angle control member 520, and the roller 541c protruding in this way is a low to medium speed that rotates clockwise from the outside as shown in FIG. 19C.
  • the one-way inclined groove 413a of the carrier 413 is forcibly pressed inward.
  • the standing medium speed pole 502 is laid down, and then the pole control member 530, which is out of phase with the angle control member 520, is connected to the angle control member 520 by a pin spring 502.
  • the shift can be made as shown in FIG.
  • FIG. 20 is a diagram illustrating a forced transmission function from two gears to one gear in the hub-mounted multi-stage transmission of the present invention.
  • FIG. 20 (a) shows a two-stage state
  • FIG. 20 (b) shows one gear.
  • the angle control member 520 rotates in the clockwise direction at the time of deceleration to the high speed
  • the pole control member 530 does not rotate because the high speed pole 503 is strongly engaged with the inner gear of the high speed sun gear 431.
  • FIG. 20C shows a state in which the pawl control member 530 is rotated clockwise by the forced transmission means 540 and the shift is completed in two stages.
  • the angle control member 520 is rotated 16 degrees counterclockwise from the initial angle by the operation of the shift lever.
  • the high speed pawl 503 is located on the clockwise side than the left roller 541a in the drawing of the angle control member 520 as shown in FIG. 20 (a).
  • the angle control member 520 was rotated 16 degrees clockwise by operating the shift lever for deceleration to the first stage, but the high speed pole 503 is strongly engaged with the internal gear of the high speed sun gear 431. As shown in (b) of FIG. 20, the pole control member 530 does not rotate together with the angle control member 520.
  • roller 541a protrudes outward on the angle control member 520, and the roller 541a protruding in this way is a low to medium speed that rotates clockwise from the outside as shown in FIG. 20C.
  • the one-way inclined groove 413a of the carrier 413 is forcibly pressed inward.
  • the standing high-speed pole 503 is laid down, and then the pole control member 530, which is out of phase with the angle control member 520, is connected to the angle control member 520 by a pin spring 502.
  • the shift can be made as shown in FIG.
  • the forced transmission means 540 of the present invention the roller 541a, 541b, 541c is moved to the inner side of the shaft 100, the high-speed pawl 503 or the middle pawl 502 is not lying down. It has a force shift function to force the shift into the pole seat 103 (102).
  • Table 1 below also shows whether the output clutches 440 and 450 transmit the rotational force depending on whether the pawls 501, 502 and 503 are operated.
  • the first stage is an initial state in which the shift lever is not operated, and the low speed sun gear 411 is set up such that only the low speed pole 501 is located in the groove 531 of the pole control member 530 as shown in FIG. ) Is constrained.
  • the low speed planetary gear 412 of the low speed planetary gear set 410 supported by the medium and low speed carrier 413 meshes with the fixed low speed sun gear 411 to rotate, and the low speed planetary gear 412 is rotated.
  • the medium speed planetary gear 422 of the medium speed planetary gear set 420 meshed with each other rotates in the opposite direction.
  • the idle rotation is performed, so that the medium speed planetary gear 422 rotates at the same time as the rotation and the low speed rotational force is transmitted to the medium speed ring gear 424.
  • the medium speed ring gear 424 is integrally formed with the high speed carrier 433 of the high speed planetary gear set 430 and rotates together. At this time, since the high speed sun gear 431 is not constrained, the high speed planetary gear 432 is also used. By the idle rotation, the rotational force of the high speed carrier 433 is not transmitted to the second output clutch 450 and is output to the hub shell 300 through the first output clutch 440.
  • the sprocket 210 ⁇ the medium low speed carrier 413 ⁇ the low speed planetary gear 412 ⁇ the medium speed planetary gear 422 ⁇ the medium speed
  • the rotational force is transmitted to the ring gear 424 ⁇ the high speed carrier 433 ⁇ the first output clutch 440 ⁇ the hub shell 300 to output the lowest speed.
  • the second stage rotates 16 degrees counterclockwise from the initial position when the shift lever is viewed from the right side of the drawing so that the low speed pole 501 and the high speed pole 503 are the pole control member 530 as shown in FIG.
  • the low speed sun gear 411 and the high speed sun gear 431 are restrained in a state where they are erected to be positioned in the grooves 531 and 533a of the groove.
  • the low speed planetary gear 412 of the low speed planetary gear set 410 supported by the medium and low speed carrier 413 meshes with the fixed low speed sun gear 411 to rotate, and the low speed planetary gear 412 is rotated.
  • the medium speed planetary gear 422 of the medium speed planetary gear set 420 meshed with is rotated in association with each other.
  • the idle rotation is performed, so that the medium speed planetary gear 422 rotates at the same time as the rotation and the low speed rotational force is transmitted to the medium speed ring gear 424.
  • the medium speed ring gear 424 is integrated with the high speed carrier 433 of the high speed planetary gear set 430 and rotates together. At this time, since the high speed sun gear 431 is constrained, the high speed carrier 433. The high speed planetary gear 432 and the high speed ring gear 434 is rotated by the rotational force of, and thus is output to the hub shell 300 through the second output clutch 450.
  • the first output clutch ( 440 may not transmit the rotational force to the hub shell (300).
  • the shift lever is rotated 16 degrees counterclockwise as seen from the right side of the drawing and rotated 32 degrees from the initial position.
  • the medium speed pawl 502 has a pole control member ( The medium speed sun gear 421 is restrained while being erected to be positioned in the groove 532 of the 530.
  • the medium-speed planetary gear 422 of the medium-speed planetary gear set 420 supported by the medium-low speed carrier 413 is engaged with the fixed medium-speed sun gear 421 to rotate, and the medium-speed planetary gear 422
  • the low speed planetary gear 412 of the low speed planetary gear set 410 meshed with is rotated in conjunction with each other.
  • the medium speed ring gear 424 is integrally formed with the high speed carrier 433 of the high speed planetary gear set 430 and rotates together. At this time, since the high speed sun gear 431 is not constrained, the high speed planetary gear 432 is also used. As the idle rotation occurs, the rotational force of the high speed carrier 433 is not transmitted to the second output clutch 450 and is output to the hub shell 300 through the first output clutch 440.
  • the sprocket 210 ⁇ the medium and low speed carrier 413 ⁇ the medium speed planetary gear 422 ⁇ the medium speed ring gear 424 ⁇ the high speed.
  • the rotational force is transmitted to the carrier 433 ⁇ the first output clutch 440 ⁇ the hub shell 300 to output the high speed.
  • the shift lever is rotated 16 degrees counterclockwise when viewed from the right side of the drawing, and rotated 48 degrees from the initial position.
  • the intermediate speed pole 502 and the high speed pole 503 The medium speed sun gear 421 and the high speed sun gear 431 are restrained while being erected to be located in the grooves 532 and 533b of the pole control member 530.
  • the medium-speed planetary gear 422 of the medium-speed planetary gear set 420 supported by the medium-low speed carrier 413 is engaged with the fixed medium-speed sun gear 421 to rotate, and the medium-speed planetary gear 422
  • the low speed planetary gear 412 of the low speed planetary gear set 410 meshed with is rotated in conjunction with each other.
  • the medium speed planetary gear 422 rotates at the same time as the rotation and the rotational force is transmitted to the medium speed ring gear 424.
  • the medium speed ring gear 424 is integrated with the high speed carrier 433 of the high speed planetary gear set 430 and rotates together. At this time, since the high speed sun gear 431 is constrained, the high speed carrier 433. The high speed planetary gear 432 and the high speed ring gear 434 is rotated by the rotational force of, and thus is output to the hub shell 300 through the second output clutch 450.
  • the first output clutch ( 440 may not transmit the rotational force to the hub shell (300).
  • the sprocket 210 ⁇ the medium and low speed carrier 413 ⁇ the medium speed.
  • Planetary gear (422) ⁇ medium speed ring gear (424) ⁇ high speed carrier (433) ⁇ high speed planetary gear (432) ⁇ high speed ring gear (434) ⁇ second output clutch (450) ⁇ hub shell (300) The output is at maximum speed.
  • the multi-stage gearbox of the present invention can implement a multistage transmission at a higher speed ratio by using three planetary gear sets 410, 420, 430 and two output clutches 440, 450. Therefore, it is the invention having the greatest advantage of improving the merchandise of the product, and controlling the pole control member 530 according to the operation of the shift lever to change the transmission path of the rotational force to obtain various transmission ratios of up to four times.
  • the present invention as described above can be configured in a multi-stage built-in transmission that can obtain a high transmission ratio compactly by using a plurality of planetary gear sets and one-way clutch to maximize the merchandise of the product, more accurate by using a forced transmission function It is an invention that can greatly improve shifting accuracy by allowing shifting to occur.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Structure Of Transmissions (AREA)

Abstract

본 발명은 허브 내장형 다단 변속기에 관한 것으로서, 특히, 다수의 유성기어세트 및 원웨이 클러치를 이용하여 콤팩트한 내장형 변속기로 다단 변속을 구현하고, 특히 높은 변속비를 얻을 수 있는 동시에 강제 변속 기능을 이용하여 보다 정확한 변속이 이루어지도록 하기 위한 장치에 관한 것으로서, 차체에 고정된 샤프트(100)와, 상기 샤프트(100)의 외주에 회전 가능하게 위치하여 회전력을 입력받는 스프로켓(200) 및 회전력을 출력시키는 허브쉘(300)과; 상기 허브쉘(300)의 내부에 마련되는 태양기어, 유성기어, 캐리어, 링기어로 이루어진 유성기어세트와 원웨이 클러치로 이루어진 출력 클러치를 포함하여, 상기 스프로켓(200)으로 입력되는 회전력을 변속시켜 상기 허브쉘(300)로 출력시키는 변속부(400)와; 변속레버의 조작에 따라 상기 샤프트(100)에 마련된 폴을 컨트롤하여 상기 태양기어의 회전을 선택적으로 제한하여 변속을 제어하는 제어부(500)를 포함한 다단 변속기에 있어서; 상기 변속부(400)에는 저속 유성기어세트(410), 중속 유성기어세트(420), 그리고 고속 유성기어세트(430)가 마련되되; 상기 저속 유성기어세트(410)의 캐리어와 상기 중속 유성기어세트(420)의 캐리어는 상기 스프로켓(200)으로부터 회전력을 입력받아 회전하는 드라이버와 모두 일체를 이루어 중저속 캐리어(413)를 이루며; 상기 저속 유성기어세트(410)의 저속 유성기어(412)와 상기 중속 유성기어세트(420)의 중속 유성기어(422)는 상기 중저속 캐리어(413)의 방사상 소정 위상각 차이를 두고 위치하여 서로 치합하고; 상기 고속 유성기어세트(430)의 고속 캐리어(433)는 상기 중속 유성기어세트(420)의 중속 링기어(424)와 일체로 형성되며; 상기 고속 유성기어세트(430)의 고속 캐리어(433)와 상기 허브쉘(300) 사이에 제1출력 클러치(440)가 마련되며; 상기 고속 유성기어세트(430)의 고속 링기어(434)와 상기 허브쉘(300) 사이에 제2출력 클러치(450)가 마련되어, 제품의 상품성을 극대화시키고 변속 정확성을 크게 향상시킬 수 있도록 하는 것이다.

Description

허브 내장형 다단 변속기
본 발명은 허브 내장형 다단 변속기에 관한 것으로서 특히, 다수의 유성기어세트 및 원웨이 클러치를 이용하여 콤팩트한 내장형 변속기로 다단 변속을 구현하고, 특히 높은 변속비를 얻을 수 있는 동시에 강제 변속 기능을 이용하여 보다 정확한 변속이 이루어지도록 하기 위한 장치로써, 제품의 상품성을 극대화시키고 변속 정확성을 크게 향상시킬 수 있는 장치에 관한 것이다.
일반적으로 차륜이 마련되어져 인력을 전달받거나 혹은 전동력 등의 각종 구동력을 이용하여 주행하는 자전거, 휠체어, 자동차, 스쿠터 등의 운송장치에는 주행성능을 향상시키기 위한 변속기가 마련된다.
이러한 변속기는 탑승자 혹은 사용자의 조작에 따라 고속으로부터 저속에 이르기까지 다단으로 변속을 실시하여, 주행 환경에 따라 요구되는 토크 또는 속도를 얻을 수 있는 것이다.
특히, 최근에는 태양기어, 유성기어, 링기어, 그리고 캐리어로 이루어진 유성기어세트를 허브쉘 내에 마련하여 콤팩트한 구성을 통해 다단으로 속도를 변속하는 동시에 기어가 외부로 노출되는 것 또한 방지하고 있는 실정이다.
그러나, 유성기어세트를 이용하는 종래의 변속기는 복잡한 구조에 비해 변속단의 수가 적고, 부하 구동 주행 상태에서 변속 조작 시 구동부하에 의해 강하게 구속되어진 폴의 제어가 원활하지 않아 원활한 변속이 이루어지지 않고 있다는 종래 기술상의 문제점이 있었다.
본 발명은 상기의 문제점을 해소하기 위한 것으로, 다수의 유성기어세트 및 원웨이 클러치를 이용하여 높은 변속비를 얻을 수 있는 다단의 내장형 변속기를 콤팩트하게 구성할 수 있어 제품의 상품성을 극대화시키고, 강제 변속 기능을 이용하여 보다 정확한 변속이 이루어지도록 함으로써 변속 정확성을 크게 향상시킬 수 있도록 하는 허브 내장형 다단 변속기를 제공하고자 한다.
이러한 본 발명은 차체에 고정된 샤프트와, 상기 샤프트의 외주에 회전 가능하게 위치하여 회전력을 입력받는 스프로켓 및 회전력을 출력시키는 허브쉘과; 상기 허브쉘의 내부에 마련되는 태양기어, 유성기어, 캐리어, 링기어로 이루어진 유성기어세트와 원웨이 클러치로 이루어진 출력 클러치를 포함하여, 상기 스프로켓으로 입력되는 회전력을 변속시켜 상기 허브쉘로 출력시키는 변속부와; 변속레버의 조작에 따라 상기 샤프트에 마련된 폴을 컨트롤하여 상기 태양기어의 회전을 선택적으로 제한하여 변속을 제어하는 제어부를 포함한 다단 변속기에 있어서; 상기 변속부에는 저속 유성기어세트, 중속 유성기어세트, 그리고 고속 유성기어세트가 마련되되; 상기 저속 유성기어세트의 캐리어와 상기 중속 유성기어세트의 캐리어는 상기 스프로켓으로부터 회전력을 입력받아 회전하는 드라이버와 모두 일체를 이루어 중저속 캐리어를 이루며; 상기 저속 유성기어세트의 저속 유성기어와 상기 중속 유성기어세트의 중속 유성기어는 상기 중저속 캐리어의 방사상 소정 위상각 차이를 두고 위치하여 서로 치합하고; 상기 고속 유성기어세트의 고속 캐리어는 상기 중속 유성기어세트의 중속 링기어와 일체로 형성되며; 상기 고속 유성기어세트의 고속 캐리어와 상기 허브쉘 사이에 제1출력 클러치가 마련되며; 상기 고속 유성기어세트의 고속 링기어와 상기 허브쉘 사이에 제2출력 클러치가 마련됨으로써 달성된다.
이때, 상기 샤프트에는 저속 폴, 중속 폴, 그리고 고속 폴이 폴자리부 내에 각각 위치하여, 링스프링에 의해 세워지도록 마련되는 것이 좋다.
그리고, 상기 제어부는 변속레버의 조작에 따라 인출되는 케이블이 연결되어 상기 샤프트의 외주면에 회전 가능하게 지지되는 케이블 연결부재와; 상기 케이블 연결부재의 내주면에 끼워맞춤 조립되는 중간 연결부재와; 상기 중간 연결부재의 내주면에 끼워맞춤 조립되어 일체로 회전 제어되는 각도 제어부재와; 상기 각도 제어부재에 연결되어 회전에 따라 상기 저속 폴, 중속 폴, 고속 폴을 제어하는 폴제어부재로 구성되는 것이 양호하다.
또한, 상기 저속 유성기어세트의 저속 태양기어는 상기 저속 폴에 의해 회전이 선택적으로 제한되며, 상기 중속 유성기어세트의 중속 태양기어는 상기 중속 폴에 의해 회전이 선택적으로 제한되고, 상기 고속 유성기어세트의 고속 태양기어는 상기 고속 폴에 의해 회전이 선택적으로 제한되되; 상기 폴제어부재의 내주면에는 홈부가 형성되어, 상기 폴제어부재의 회전에 따라 상기 저속 폴, 상기 중속 폴, 그리고 상기 고속 폴 중 어느 하나 이상이 상기 홈부로 빠져 나오는 것이 바람직하다.
그리고, 상기 샤프트에 회전 불가능하게 조립된 콘 너트와 상기 각도 제어부재 사이에는 코일스프링이 연결되고; 상기 각도 제어부재의 결합홈 내에 상기 폴제어부재의 날개가 소정 유격을 가지고 위치하되, 상기 날개는 양측이 상기 각도 제어부재에 지지된 핀스프링의 양단에 지지되어 상기 결합홈의 중앙에 위치하도록 탄성 지지되는 것이 좋다.
마지막으로, 상기 제어부에는, 상기 각도 제어부재에 반경 방향으로 유동 가능하게 지지되는 롤러와; 상기 중저속 캐리어의 내주면에 형성된 일방향 경사 요홈으로 이루어진 강제 변속 수단이 마련되어, 상기 각도 제어부재와 상기 폴제어부재 사이에 위상각 차이가 발생함에 따라 상기 롤러가 그 외주에 위치하여 회전하는 중저속 캐리어의 내주면에 형성된 일방향 경사 요홈으로부터 내측으로 강제 이동하면서, 상기 중속 폴 또는 상기 고속 폴을 강제로 눕혀주는 강제 변속 기능을 갖는 것이 가장 바람직하다.
이상과 같은 본 발명은 다수의 유성기어세트 및 원웨이 클러치를 이용하여 높은 변속비를 얻을 수 있는 다단의 내장형 변속기를 콤팩트하게 구성할 수 있어 제품의 상품성을 극대화시키고, 강제 변속 기능을 이용하여 보다 정확한 변속이 이루어지도록 함으로써 변속 정확성을 크게 향상시킬 수 있는 발명인 것이다.
도 1은 본 발명의 허브 내장형 다단 변속기를 도시하는 사시도,
도 2는 본 발명의 허브 내장형 다단 변속기를 도시하는 정면도,
도 3은 본 발명의 허브 내장형 다단 변속기를 도시하는 정단면도,
도 4는 본 발명의 허브 내장형 다단 변속기에 있어서 허브쉘을 분리한 분해사시도,
도 5는 본 발명의 허브 내장형 다단 변속기에 있어서 스프로켓을 분리한 분해사시도,
도 6은 본 발명의 허브 내장형 다단 변속기에 있어서 고속 유성기어세트를 분리한 분해사시도,
도 7은 본 발명의 허브 내장형 다단 변속기에 있어서 폴을 분리한 분해사시도,
도 8은 본 발명의 허브 내장형 다단 변속기에 있어서 유성기어세트의 횡단면도,
도 9는 본 발명의 허브 내장형 다단 변속기에 있어서 출력 클러치의 횡단면도,
도 10은 본 발명의 허브 내장형 다단 변속기에 있어서 제어부를 도시하는 사시도,
도 11은 본 발명의 허브 내장형 다단 변속기에 있어서 제어부의 분해사시도,
도 12는 본 발명의 허브 내장형 다단 변속기에 있어서 폴을 도시하는 사시도,
도 13은 본 발명의 허브 내장형 다단 변속기에 있어서, 폴제어부재의 회전에 따른 폴의 제어를 도시하는 우측면도,
도 14는 본 발명의 허브 내장형 다단 변속기에 있어서 강제 변속 수단을 도시하는 도,
도 15는 본 발명의 허브 내장형 다단 변속기에 있어서 제어부의 요부를 도시하는 분해사시도,
도 16은 본 발명의 허브 내장형 다단 변속기에 있어서 폴제어부재와 각도 제어부재의 위상각 차이의 발생을 도시하는 도,
도 17은 본 발명의 허브 내장형 다단 변속기에 있어서 2단에서 3단으로의 강제 변속 기능을 도시하는 도,
도 18은 본 발명의 허브 내장형 다단 변속기에 있어서 4단에서 3단으로의 강제 변속 기능을 도시하는 도,
도 19는 본 발명의 허브 내장형 다단 변속기에 있어서 3단에서 2단으로의 강제 변속 기능을 도시하는 도,
도 20은 본 발명의 허브 내장형 다단 변속기에 있어서 2단에서 1단으로의 강제 변속 기능을 도시하는 도.
[부호의 설명]
100 : 샤프트 101, 102, 103 : 폴자리부
200 : 스프로켓 300 : 허브쉘
301 : 홀 310 : 먼지커버
400 : 변속부 410 : 저속 유성기어세트
411 : 저속 태양기어 412 : 저속 유성기어
413 : 중저속 캐리어 420 : 중속 유성기어세트
421 : 중속 태양기어 422 : 중속 유성기어
424 : 중속 링기어 430 : 고속 유성기어세트
431 : 고속 태양기어 432 : 고속 유성기어
433 : 고속 캐리어 434 : 고속 링기어
440 : 제1출력 클러치 450 : 제2출력 클러치
500 : 제어부 510 : 케이블 연결부재
512 : 중간 연결부재 520 : 각도 제어부재
521 : 돌기 522 : 결합홈
523 : 조립공 530 : 폴제어부재
531, 532, 533a, 533b : 홈부 540 : 강제 변속 수단
541a, 541b, 541c : 롤러 901, 902 : 콘 너트
903, 904, 905 : 베어링
도 1은 본 발명의 허브 내장형 다단 변속기를 도시하는 사시도이며, 도 2는 본 발명의 허브 내장형 다단 변속기를 도시하는 정면도이고, 도 3은 본 발명의 허브 내장형 다단 변속기를 도시하는 정단면도이다.
그리고, 도 4는 본 발명의 허브 내장형 다단 변속기에 있어서 허브쉘을 분리한 분해사시도이며, 도 5는 본 발명의 허브 내장형 다단 변속기에 있어서 스프로켓을 분리한 분해사시도이고, 도 6은 본 발명의 허브 내장형 다단 변속기에 있어서 고속 유성기어세트를 분리한 분해사시도이다.
또한, 도 7은 본 발명의 허브 내장형 다단 변속기에 있어서 폴을 분리한 분해사시도이며, 도 8은 본 발명의 허브 내장형 다단 변속기에 있어서 유성기어세트의 횡단면도로서, 도 8의 (a)는 저속 유성기어세트(410), 도 8의 (b)는 중속 유성기어세트(420), 그리고 도 8의 (c)는 고속 유성기어세트(430)를 각각 나타낸다.
그리고, 도 9는 본 발명의 허브 내장형 다단 변속기에 있어서 출력 클러치의 횡단면도로서, 도 9의 (a)는 제1출력 클러치(440)를 나타내며, 도 9의 (b)는 제2출력 클러치(450)를 나타낸다.
다음으로, 도 10은 본 발명의 허브 내장형 다단 변속기에 있어서 제어부를 도시하는 사시도이며, 도 11은 본 발명의 허브 내장형 다단 변속기에 있어서 제어부의 분해사시도이고, 도 12는 본 발명의 허브 내장형 다단 변속기에 있어서 폴을 도시하는 사시도이다.
또한, 도 13은 본 발명의 허브 내장형 다단 변속기에 있어서, 폴제어부재의 회전에 따른 폴의 제어를 도시하는 우측면도로서, 도 13의 (a)는 1단, 도 13의 (b)는 2단, 도 13의 (c)는 3단, 그리고 도 13의 (d)는 4단을 각각 나타낸다.
그리고, 도 14는 본 발명의 허브 내장형 다단 변속기에 있어서 강제 변속 수단을 도시하는 도로서, 도 14의 (a)는 중저속 캐리어(413)의 일방향 경사 요홈(413a)을 도시하는 도이며, 도 14의 (b)는 그 우측면도이다.
다음으로, 도 15는 본 발명의 허브 내장형 다단 변속기에 있어서 제어부의 요부를 도시하는 분해사시도이고, 도 16은 본 발명의 허브 내장형 다단 변속기에 있어서 폴제어부재와 각도 제어부재의 위상각 차이의 발생을 도시하는 도이다.
본 발명의 허브 내장형 다단 변속기는 다수의 유성기어세트 및 원웨이 클러치를 이용하여 콤팩트한 내장형 변속기로 변속비가 큰 다단 변속을 구현하고, 폴의 강제 변속 기능을 갖아 변속 정확성을 크게 향상시킬 수 있는 것을 그 기술상의 기본 특징으로 한다.
본 발명의 실시예를 첨부 도면을 참조하여 상세히 설명하면 다음과 같다.
본 발명의 허브 내장형 다단 변속기는 도 1 내지 도 20에 도시된 바와 같이, 차체에 고정된 샤프트(100)와, 상기 샤프트(100)의 외주에 회전 가능하게 위치하여 회전력을 입력받는 스프로켓(200) 및 회전력을 출력시키는 허브쉘(300)과; 상기 허브쉘(300)의 내부에 마련되는 태양기어, 유성기어, 캐리어, 링기어로 이루어진 유성기어세트와 원웨이 클러치로 이루어진 출력 클러치를 포함하여, 상기 스프로켓(200)으로 입력되는 회전력을 변속시켜 상기 허브쉘(300)로 출력시키는 변속부(400)와; 변속레버의 조작에 따라 상기 샤프트(100)에 마련된 폴을 컨트롤하여 상기 태양기어의 회전을 선택적으로 제한하여 변속을 제어하는 제어부(500)를 포함한 다단 변속기에 있어서; 상기 변속부(400)에는 저속 유성기어세트(410), 중속 유성기어세트(420), 그리고 고속 유성기어세트(430)가 마련되되; 상기 저속 유성기어세트(410)의 캐리어와 상기 중속 유성기어세트(420)의 캐리어는 상기 스프로켓(200)으로부터 회전력을 입력받아 회전하는 드라이버와 모두 일체를 이루어 중저속 캐리어(413)를 이루며; 상기 저속 유성기어세트(410)의 저속 유성기어(412)와 상기 중속 유성기어세트(420)의 중속 유성기어(422)는 상기 중저속 캐리어(413)의 방사상 소정 위상각 차이를 두고 위치하여 서로 치합하고; 상기 고속 유성기어세트(430)의 고속 캐리어(433)는 상기 중속 유성기어세트(420)의 중속 링기어(424)와 일체로 형성되며; 상기 고속 유성기어세트(430)의 고속 캐리어(433)와 상기 허브쉘(300) 사이에 제1출력 클러치(440)가 마련되며; 상기 고속 유성기어세트(430)의 고속 링기어(434)와 상기 허브쉘(300) 사이에 제2출력 클러치(450)가 마련된다.
우선 본 발명의 허브 내장형 다단 변속기는 도 1 내지 도 3에 도시된 바와 같이, 크게 샤프트(100), 스프로켓(200), 허브쉘(300), 변속부(400), 그리고 제어부(500)로 구성되어 있다.
상기 샤프트(100)는 변속이 요구되는 스쿠터, 자전거, 인력거 등(이하 '주행장치'라 한다)의 몸체에 그 양단이 고정 너트 등의 체결수단에 의해 회전 불가능하게 고정 지지된다.
이때, 상기 샤프트(100)는 부위에 따라 각기 다른 직경으로 형성되며, 특히 상기 샤프트(100)의 중앙 외주면에는 다수의 폴자리부(101)(102)(103)가 소정 위상차를 두고 오목하게 형성되어 있어 이후에 설명할 폴(501)(502)(503)이 각각 상기 폴자리부(101)(102)(103) 내에 위치하게 된다.
본 실시예에 있어서는 3개의 폴자리부(101)(102)(103)가 소정의 위상각 차를 두고 형성된 것이 도 13에 예시되어 있다.
이러한 샤프트(100)는 본 발명의 뼈대를 이루는 것으로, 이하에서 설명할 구성요소들은 모두 상기 샤프트(100)의 외주에 회전 가능하게 혹은 회전 불가능하게 마련되는 것이다.
다음으로 스프로켓(200)은 주행장치로부터 인력 또는 전동력 등의 회전력을 본 발명의 허브 내장형 다단 변속기에 입력받는 구성으로, 상기 샤프트(100)의 일측에 회전 가능하게 마련된다.
이에 따라, 상기 스프로켓(200)은 예를 들어 체인과 같은 동력전달수단을 통해 외부로부터 구동력을 입력받는다.
그리고 허브쉘(300)은 상기 샤프트(100)의 최외곽에 위치하여 변속된 종동력을 주행장치의 바퀴 등으로 출력하는 구성인 것이다.
이러한 허브쉘(300)은 대략 원통 형상으로 이루어진 것으로, 그 외주에 바퀴의 살을 연결할 수 있는 다수의 홀(301)이 형성될 수 있으며, 도면상 좌측은 폐쇄된 반면 도면상 우측은 개방되어 이 개방부위를 통해 그 내부에 각종 구성요소를 삽입하여 조립할 수 있다.
상기 허브쉘(300)의 폐쇄된 좌측에는 상기 샤프트(100)에 결합한 콘 너트(902)와 베어링(904)이 마련되어, 상기 허브쉘(300)은 상기 샤프트(100)로부터 독립적으로 회전 가능하게 지지된다.
다음으로 변속부(400)는 상기 허브쉘(300) 내에 위치하여 상기 스프로켓(200)을 통해 입력되는 회전을 다단으로 변속한 후, 상기 허브쉘(300)을 통해 출력시키는 것으로, 다수의 유성기어세트 및 원웨이 클러치로 이루어진 출력 클러치를 포함한다.
본 실시예에 있어서는 3개의 유성기어세트, 즉 저속 유성기어세트(410), 중속 유성기어세트(420), 그리고 고속 유성기어세트(430)가 마련되고, 2개의 출력 클러치, 즉 제1출력 클러치(440) 및 제2출력 클러치(450)가 마련되어 4단의 변속비를 출력시키는 것을 예로 들어 이하에서 설명한다.
즉, 상기 변속부(400)는 저속 유성기어세트(410), 중속 유성기어세트(420), 그리고 고속 유성기어세트(430)를 포함하여, 스프로켓(200)으로부터 저속 유성기어세트(410) 또는 중속 유성기어세트(420)로 전달되어진 회전력을 변속하여 상기 고속 유성기어세트(430)에 전달하고, 상기 고속 유성기어세트(430)로부터 다시 한번 변속하여 제1출력 클러치(440) 또는 제2출력 클러치(450)를 통해 상기 허브쉘(300)로 출력 가능한 것이다.
따라서 본 실시예에 있어서는 상기 변속부(400)의 유성기어세트(410)(420)(430)에 의해 실질적인 변속이 이루어지며, 상기 출력 클러치(440)(450)를 통해 변속된 회전력이 허브쉘(300)로 출력되는 것이다.
각각의 상기 유성기어세트는 링기어, 캐리어, 유성기어, 태양기어를 포함하는 것으로, 유성기어는 상기 캐리어에 자전 가능하게 지지되며 상기 캐리어의 회전에 따라 공전하고, 상기 캐리어의 외측에 위치하는 링기어와 치합하는 동시에 상기 캐리어의 내측에 위치하는 태양기어와도 치합하고 있다.
이에 따라, 각각의 유성기어세트는 캐리어를 통해 회전력을 입력받아 유성기어를 거쳐 링기어로 회전력을 출력시킴으로써, 가속이 이루어지는 것이다.
따라서, 상기 저속 유성기어세트(410)는 도 7 및 도 8의 (a)와 같이 저속 태양기어(411), 저속 유성기어(412)를 포함하며, 저속 캐리어는 이후에 설명할 중속 캐리어 및 드라이버와 일체를 이루는 중저속 캐리어(413)로 마련되며, 저속 링기어는 별도로 마련되어 있지 않다.
그리고, 상기 중속 유성기어세트(420)는 도 7 및 도 8의 (b)와 같이 중속 태양기어(421), 중속 유성기어(422), 중속 링기어(424)를 포함하며, 중속 캐리어는 상기 저속 캐리어 및 상기 스프로켓(200)이 고정된 드라이버와 모두 일체를 이루어 중저속 캐리어(413)로 마련된다.
즉, 상기 저속 유성기어세트(410)와 상기 중속 유성기어세트(420)는 하나의 중저속 캐리어(413)를 서로 공유하게 되며, 특히, 상기 저속 유성기어(412)와 상기 중속 유성기어(422)는 상기 중저속 캐리어(413)의 방사상 소정 위상각 차이를 두고 위치하여 치합한 상태를 이루어 서로 맞물려 항상 반대방향으로 회전하게 된다.
이때, 상기 중저속 캐리어(413)는 상기 허브쉘(300)의 개방된 도면상 우측에 위치하되 상기 샤프트(100)에 결합한 콘 너트(901)와 베어링(903)이 마련되어, 상기 중저속 캐리어(413)는 상기 샤프트(100)로부터 회전 가능하게 지지된다.
이와 더불어, 상기 허브쉘(300)과 상기 중저속 캐리어(413)는 그 사이에 위치하는 베어링(905)에 의해 상호 독립적으로 회전 가능하게 마련되며, 도 3에 도시한 먼지커버(310)에 의해 이물질이 침입하는 것을 방지한다.
상술한 베어링(903)(904)(905)은 볼베어링을 예시하였지만, 미끄럼베어링 등 그 종류에 제한되지는 않는다.
또한, 상기 고속 유성기어세트(430)는 도 6 및 도 8의 (c)와 같이 고속 태양기어(431), 고속 유성기어(432), 고속 캐리어(433), 그리고 고속 링기어(434)를 포함하며, 이때 상기 고속 캐리어(433)는 상기 중속 유성기어세트(420)의 중속 링기어(424)와 일체로 이루어져 있다.
본 발명에 있어서 저속 태양기어(411), 중속 태양기어(421), 고속 태양기어(431)는 그 내주면에 형성된 내기어에 각각 저속 폴(501), 중속 폴(502), 고속 폴(503)이 세워질 경우, 각각의 폴(501)(502)(503)이 해당 태양기어(411)(421)(431)의 내기어에 치합함으로써, 해당 태양기어(411)(421)(431)의 회전이 선택적으로 제한되는 것이다.
이때, 상기 저속 폴(501), 중속 폴(502), 고속 폴(503)을 세우거나 눕히는 제어에 대해서는 이후 제어부(500)의 설명에서 상세히 하기로 한다.
따라서, 본 발명은 상기 태양기어(411)(421)(431)들의 회전 가능 여부에 따라 각각의 유성기어세트(410)(420)(430)에서 변속비가 변화하여 각기 다른 변속비로 변속이 이루어지는 것이다.
특히, 상술한 바와 같이 저속 유성기어세트(410)와 중속 유성기어세트(420)는 중저속 캐리어(413)를 공유하는 동시에, 저속 유성기어(412)와 중속 유성기어(422)가 서로 맞물려 있고, 중속 링기어(424)가 고속 유성기어세트(430)의 고속 캐리어(433)와 일체로 이루어져 있기 때문에, 상기 변속부(400)에 전달된 회전력은 저속 유성기어세트(410) 또는 중속 유성기어세트(420)로부터 고속 유성기어세트(430)에 전달되면서 2번 변속된 후 허브쉘(300)을 통해 출력되는 것이다.
그리고, 상기 변속부(400) 내에는 원웨이 클러치로 이루어진 출력 클러치(440)(450)가 마련되어 있어, 상기 출력 클러치(440)(450)의 내측에 위치하는 구성요소의 회전 속도가 외측에 위치하는 구성요소의 회전 속도보다 빠를 경우 내측에 위치하는 구성요소의 회전력을 외측에 위치하는 구성요소에 전달하게 된다.
반면에, 상기 출력 클러치(440)(450)의 내측에 위치하는 구성요소의 회전 속도가 외측에 위치하는 구성요소의 회전 속도보다 느릴 경우, 오버 러닝(over running)하면서 내측에 위치하는 구성요소의 회전력을 외측에 위치하는 구성요소에 전달하지 못하게 되는 것이다.
이와 같은 작동을 하는 출력 클러치(440)(450)는 본 실시예에 있어서 제1출력 클러치(440) 및 제2출력 클러치(450), 2개가 마련된다.
즉, 도 6 및 도 9의 (a)와 같이 고속 유성기어세트(430)의 고속 캐리어(433) 외주면과 상기 허브쉘(300) 내주면 사이에 제1출력 클러치(440)가 마련되며, 도 6 및 도 9의 (b)와 같이 상기 고속 유성기어세트(430)의 고속 링기어(434) 외주면과 상기 허브쉘(300) 내주면 사이에 제2출력 클러치(450)가 마련된다.
이에 따라, 최종적으로 변속된 회전력은 오직 제1출력 클러치(440) 또는 제2출력 클러치(450)를 통해 허브쉘(300)로 출력되는 것이다.
마지막으로, 상기 변속부(400)의 변속을 제어하는 제어부(500)에는 도 11 및 도 13에 도시한 바와 같이 3개의 폴, 즉 저속 폴(501), 중속 폴(502), 그리고 고속 폴(503)이 각각 상술한 샤프트(100)의 폴자리부(101)(102)(103) 내에 위치하게 되며, 이러한 폴(501)(502)(503)들은 미도시한 링스프링에 의하여 탄력적으로 세워지도록 위치한다.
즉, 본 발명에 있어서 상기 제어부(500)에는 상기 폴(501)(502)(503)을 컨트롤하는 폴제어부재(530)가 회전함에 따라 한 개 또는 다수의 폴(501)(502)(503)을 선택적으로 세우거나 눕혀 해당 태양기어(411)(421)(431)의 내기어에 치합 상태 또는 해제 상태로 컨트롤하여 변속을 제어하는 것이다.
이때, 각각의 폴(501)(502)(503)에는 도 12와 같이 제어부위(501a)(502a)(503a)와 걸림부위(501b)(502b)(503b)가 서로 다른 간격을 두고 돌출 형성되어 있는 것으로, 우선 상기 저속 폴(501)에는 도면상 우측 단부에 제어부위(501a)가 형성되어 있고, 이 제어부위(501a)로부터 이격되어 다시 걸림부위(501b)가 형성되어 있다.
그리고 상기 중속 폴(502)에는 제어부위(502a)와 걸림부위(502b) 사이의 간격이 상기 저속 폴(501)에 비하여 더 넓게 형성되고, 다시 상기 고속 폴(503)에는 제어부위(503a)와 걸림부위(503b) 사이의 간격이 상기 중속 폴(502)에 비해 한층 더 넓게 형성되어 있다.
즉, 상기 저속 폴(501)은 제어부위(501a)와 걸림부위(501b) 사이의 간격이 가장 좁은 반면 상기 고속 폴(503)은 제어부위(503a)와 걸림부위(503b) 사이의 간격이 가장 넓게 형성된다.
이에 따라, 각각의 폴(501)(502)(503)에 형성된 제어부위(501a)(502a)(503a)의 외측에는 폴제어부재(530)가 위치하게 되는 것이며, 걸림부위(501b)(502b)(503b)의 외측에는 태양기어(411)(421)(431)가 각각 위치하게 되는 것이다.
즉, 상기 폴제어부재(530)의 내주면에는 홈부(531)(532)(533a)(533b)가 형성되어, 상기 폴제어부재(530)의 회전에 따라 상기 저속 폴(501), 상기 중속 폴(502), 그리고 상기 고속 폴(503) 중 어느 하나 이상이 상기 홈부(531)(532)(533a)(533b)로 빠져 나오게 되는 것이다.
이때, 폴제어부재(530)에는 도 13에 도시한 바와 같이 상기 저속 폴(501) 및 상기 중속 폴(502)에 대응하여 하나씩의 홈부(531)(532)가 형성되어 있는 반면, 상기 고속 폴(503)에 대응하여 두 개의 홈부(533a)(533b)가 형성되어 있다.
이에 따라, 상기 폴제어부재(530)의 회전 각도에 따라 탄력적으로 세워지려 하는 폴(501)(502)(503)의 제어부위(501a)(502a)(503a)가 홈부(531)(532)(533a)(533b)에 위치할 경우, 상기 폴(501)(502)(503)의 걸림부위(501b)(502b)(503b)가 세워져 해당하는 태양기어(411)(421)(431)의 내주면에 형성된 내기어에 치합하여 상기 태양기어(411)(421)(431)의 회전을 제한하게 되는 것이다.
이때, 상기 폴제어부재(530)에는 도 13에 도시한 바와 같이 16도 회전마다 고속 폴(503)이 치합 또는 해제상태로 전환되도록 두 개의 홈부(533a)(533b)가 소정 각도 차이를 두고 형성되어 있고, 초기 각도로부터 32도 회전 후 상기 저속 폴(501)이 해제되고 상기 중속 폴(502)이 치합되도록 홈부(531)(532)가 형성되어 있다.
즉, 초기 상태, 즉 1단에서는 에서는 도 13의 (a)와 같이 저속 폴(501)이 폴제어부재(530)의 홈부(531)로 빠져 나오며, 폴제어부재(530)가 초기 위치로부터 반시계방향으로 16도 회전할 경우, 즉 2단에서는 도 13의 (b)와 같이 저속 폴(501) 및 고속 폴(503)이 각각 상기 폴제어부재(530)의 홈부(531)(533a)로 빠져 나오게 된다.
이후, 상기 폴제어부재(530)가 반시계방향으로 16도 더 회전할 경우, 즉 3단에서는 도 13의 (c)와 같이 중속 폴(502)만이 상기 폴제어부재(530)의 홈부(532)로 빠져 나오며, 상기 폴제어부재(530)가 반시계방향으로 16도 더 회전할 경우, 즉 4단에서는 도 13의 (d)와 같이 중속 폴(502) 및 고속 폴(503)이 각각 상기 폴제어부재(530)의 홈부(532)(533b)로 빠져 나오게 되는 것이다.
다음으로 사용자의 변속레버 조작이 상술한 폴제어부재(530)에 어떻게 전달되는지에 대하여 이하에서 살펴보기로 한다.
본 발명에 있어서, 상기 제어부(500)는 도 10 및 도 11에 도시한 바와 같이 변속레버의 조작에 따라 인출되는 케이블이 연결되어 상기 샤프트(100)의 외주면에 회전 가능하게 지지되는 케이블 연결부재(510)와; 상기 케이블 연결부재(510)의 내주면에 끼워맞춤 조립되는 중간 연결부재(512)와; 상기 중간 연결부재(512)에 끼워맞춤 조립되어 일체로 회전 제어되는 각도 제어부재(520)와; 상기 각도 제어부재(520)에 연결되어 회전에 따라 상기 저속 폴(501), 중속 폴(502), 고속 폴(503)을 제어하는 폴제어부재(530)로 구성된다.
이때, 상기 케이블 연결부재(510)의 외주연에는 변속레버의 조작에 따라 당겨지는 미도시한 케이블이 연결되어 있어, 변속레버의 조작 시 상기 케이블 연결부재(510)가 회전하게 된다.
이에 따라 상기 케이블 연결부재(510)를 우측면에서 보았을 때, 변속레버의 가속 조작 시 반시계방향으로 회전하며, 감속 조작 시 시계방향으로 회전하게 된다.
그리고, 이 케이블 연결부재(510)의 내주면에는 중간 연결부재(512)가 위치하며, 상기 케이블 연결부재(510)의 내주면과 상기 중간 연결부재(512)의 외주면은 서로 치합하고 있어 상기 샤프트(100)의 외주면 상에서 일체로 회전하게 된다.
다음으로 상기 각도 제어부재(520)의 도면상 우측면에는 도 11과 같이 두 개의 돌기(521)가 돌출 형성되어 상기 중간 연결부재(512)의 내주면에 형성된 조립홈(512a)에 끼워맞춰져 상기 중간 연결부재(512)와 상기 각도 제어부재(520)는 일체로 회전하는 것이다.
이와 더불어, 상기 각도 제어부재(520)의 도면상 좌측에는 폴제어부재(530)가 연결되어 있어, 상기 각도 제어부재(520)의 회전에 따라 상기 폴제어부재(530)가 함께 회전하게 되어, 저속 폴(501), 중속 폴(502), 고속 폴(503) 중 어느 하나 이상을 선택적으로 세울 수 있는 것이다.
이때, 도 15 및 도 16에 도시한 바와 같이 상기 샤프트(100)에 회전 불가능하게 조립된 콘 너트(901)와 상기 각도 제어부재(520) 사이에는 코일스프링(501)이 연결되고; 상기 각도 제어부재(520)의 결합홈(522) 내에 상기 폴제어부재(530)의 날개(534)가 소정 유격을 가지고 위치하되, 상기 날개(534)는 양측이 상기 각도 제어부재(520)에 지지된 핀스프링(502)의 양단에 지지되어 상기 결합홈(522)의 중앙에 위치하도록 탄성 지지되는 것이 좋다.
즉, 상기 콘 너트(901)는 상술한 중저속 캐리어(413)를 베어링(903)을 매개로 샤프트(100)에 지지하기 위한 것으로, 이러한 콘 너트(901)의 도면상 좌측면에 조립공(901b)이 형성되어 있는 동시에 상기 각도 제어부재(520)의 도면상 우측면에도 조립공(523)이 형성되어 있어, 이러한 두 조립공(901b)(523)에 각각 코일스프링(501)의 양단이 삽입 고정된다.
이에 따라, 상기 각도 제어부재(520)는 항상 일방향으로 회전하려는 힘을 받게 되어, 변속레버의 조작에 따라 그 역방향으로 회전하였다가 상기 코일스프링(501)의 복원력에 의해 초기 각도로 복귀하게 되는 것이다.
따라서, 변속레버의 가속 조작 시 사용자의 조작력에 의해 상기 각도 제어부재(520)가 반시계방향으로 회전하는 반면, 감속 조작 시 상기 코일스프링(501)의 복원력에 의해 시계방향으로 회전하게 된다.
이때, 상기 콘 너트(901)의 내주면에는 소정 각도로 가이드홈(901a)이 형성되어 있어, 이 가이드홈(901a) 내에 상기 각도 제어부재(520)의 돌기(521)가 관통하여 위치하게 되어, 상기 각도 제어부재(520)의 최대 회전 각도를 제한할 수 있게 된다.
이와 더불어 상기 각도 제어부재(520)의 외주면에는 서로 마주보도록 2개의 결합홈(522)이 형성되어 있고, 이러한 결합홈(522) 내에 상기 폴제어부재(530)의 날개(534)가 위치하게 된다.
이때 상기 날개(534)의 폭은 상기 결합홈(522)의 폭보다 다소 좁게 형성되어 소정의 유격이 형성된다.
하지만, 상기 각도 제어부재(520)에는 지지돌기(524)에 지지되는 대략 W자 형상의 핀스프링(502)이 2개 마련되어 상기 결합홈(522)을 통과하여 돌출된 상기 날개(534)의 양단을 도 16과 같이 탄력적으로 지지하게 되는 것이다.
도 16은 본 발명의 허브 내장형 다단 변속기에 있어서 폴제어부재와 각도 제어부재의 위상각 차이의 발생을 도시하는 도로서, 도 16의 (a)는 감속 변속 시 폴이 태양기어에 강하게 맞물려 변속이 이루어지지 않은 상태를 도시하는 도이고, 도 16의 (b)는 변속이 이루어진 상태를 도시하는 도이며, 도 16의 (c)는 가속 변속 시 폴이 태양기어에 강하게 맞물려 변속이 이루어지지 않은 상태를 도시하는 도이다.
이에 따라, 상기 폴제어부재(530)의 날개(534)가 도 16의 (b)와 같이 상기 각도 제어부재(520)의 결합홈(522) 중앙에 위치하도록 탄성 지지하게 됨으로써, 상기 폴제어부재(530)에 별도의 외력이 작용하지 않는 상태에서는 상기 폴제어부재(530)가 상기 각도 제어부재(520)와 항상 함께 회전할 수 있도록 하게 된다.
그러나 부하 구동 상태에서는 폴이 태양기어에 강하게 맞물려 있을 경우, 폴이 샤프트(100)의 폴자리부 내로 눕혀지지 않아 도 16의 (a)나 (c)와 같이 변속이 원활하게 이루어지지 않는 현상이 발생할 우려가 있다.
이러한 현상은 변속레버의 조작에 따라 각도 제어부재(520)는 회전하였지만 상기 핀스프링(502)의 탄성력이 작용함에도 불구하고 폴제어부재(530)가 상기 각도 제어부재(520)와 함께 회전하지 못하여, 상기 각도 제어부재(520)와 상기 폴제어부재(530) 사이에 위상각 차이가 발생할 경우인 것이다.
이에 대비하여, 본 발명에서는 도 14에 도시한 바와 같이 강제 변속 수단(540)이 추가로 마련되는 것이 가장 바람직하다.
즉, 본 발명에 있어서, 상기 제어부(500)에는, 상기 각도 제어부재(520)에 반경 방향으로 유동 가능하게 지지되는 롤러(541a)(541b)(541c)와; 상기 중저속 캐리어(413)의 내주면에 형성된 일방향 경사 요홈(413a)으로 이루어진 강제 변속 수단(540)이 마련되어, 상기 각도 제어부재(520)와 상기 폴제어부재(530) 사이에 위상각 차이가 발생함에 따라 상기 롤러(541a)(541b)(541c)가 그 외주에 위치하여 회전하는 중저속 캐리어(413)의 내주면에 형성된 일방향 경사 요홈(413a)으로부터 내측으로 강제 이동하면서, 상기 중속 폴(502) 또는 상기 고속 폴(503)을 강제로 눕혀주는 강제 변속 기능을 갖는 것이 바람직하다.
즉, 상기 각도 제어부재(520)에는 상기 고속 폴(503)을 강제로 눕히기 위한 2개의 롤러(541a)(541b)와 상기 중속 폴(502)을 강제로 눕히기 위한 1개의 롤러(541c)가 마련되어 있다.
이는 본 발명의 실시예에 있어서 상기 고속 폴(503)은 세워지거나 눕혀지는 전환이 2번 이루어지는 반면, 상기 중속 폴(502)은 1번 이루어지기 때문인 것이다.
이 롤러(541a)(541b)(541c)는 상기 각도 제어부재(520)에 지지되는 것으로 반경방향 즉, 샤프트(100)의 중심을 향하는 안쪽과 그 반대 방향인 바깥 쪽으로 유동 가능하게 마련되어, 그 안쪽으로는 고속 폴(503) 또는 중속 폴(502)이 위치하고, 그 바깥쪽으로 상기 중저속 캐리어(413)의 내주면에 형성된 일방향 경사 요홈(413a)에 인접하여 위치하게 된다.
이에 따라, 변속 시 고속 폴(503)이 고속 태양기어(431)의 내기어에 강하게 맞물려 있거나 또는 중속 폴(502)이 중속 태양기어(421)의 내기어에 강하게 맞물려 있을 경우, 해당 폴에 접촉하여 바깥쪽으로 돌출되는 상기 롤러(541a)(541b)(541c)가 중저속 캐리어(413)의 일방향 경사 요홈(413a)에 닿게되어 안쪽으로 강제 이동하게 되는 것이다.
상술한 강제 변속의 작용을 2단에서 3단으로의 가속 변속 시와 4단에서 3단으로, 다시 3단에서 2단으로, 그리고 2단에서 다시 1단으로 감속 변속 시를 각각 설명하면 다음과 같다.
- 2단에서 3단으로의 가속 변속 시
도 17은 본 발명의 허브 내장형 다단 변속기에 있어서 2단에서 3단으로의 강제 변속 기능을 도시하는 도로서, 도 17의 (a)는 2단 상태를 나타내며, 도 17의 (b)는 3단으로의 가속 변속 시 각도 제어부재(520)는 반시계방향으로 회전하였으나 고속 폴(503)이 고속 태양기어(431)의 내기어에 강하게 맞물려 있어 폴제어부재(530)가 회전하지 못한 상태를 도시하는 도이고, 도 17의 (c)는 강제 변속 수단(540)에 의해 폴제어부재(530)가 반시계방향으로 회전하여 3단으로 변속이 완료된 상태를 나타낸다.
2단은 변속레버의 조작에 의해 각도 제어부재(520)가 초기 각도로부터 반시계방향으로 16도 회전한 상태이다.
이때, 고속 폴(503)은 도 17의 (a)와 같이 각도 제어부재(520)의 롤러(541a)(541b) 사이에 위치한다.
이후 3단으로의 가속 변속을 위해 변속레버를 조작하여 상기 각도 제어부재(520)를 반시계방향으로 16도 더 회전시켰으나, 고속 폴(503)이 고속 태양기어(431)의 내기어에 강하게 맞물려 있어 도 17의 (b)와 같이 폴제어부재(530)가 상기 각도 제어부재(520)와 함께 회전하지 못하게 된다.
그 결과, 상기 각도 제어부재(520)와 상기 폴제어부재(530) 사이에는 도 16의 (c)와 같이 위상각 차이가 발생하게 되어, 상기 고속 폴(503)은 상기 각도 제어부재(520)의 롤러(541b) 안쪽에 위치하게 된다.
이에 따라, 상기 롤러(541b)는 상기 각도 제어부재(520) 상에서 바깥쪽으로 돌출되며, 이와 같이 돌출된 롤러(541b)는 도 17의 (c)와 같이 그 바깥쪽에서 시계방향으로 회전하고 있는 중저속 캐리어(413)의 일방향 경사 요홈(413a)을 타고 안쪽을 향하여 강제로 눌리게 되는 것이다.
결과적으로, 세워져 있던 고속 폴(503)이 눕혀지게 되고, 이후 상기 각도 제어부재(520)와 위상차가 발생하였던 폴제어부재(530)는 핀스프링(502)에 의해 상기 각도 제어부재(520)와 동일하게 회전할 수 있게 됨으로써 도 16의 (b)와 같이 변속이 이루어질 수 있는 것이다.
- 4단에서 3단으로의 감속 변속 시
도 18은 본 발명의 허브 내장형 다단 변속기에 있어서 4단에서 3단으로의 강제 변속 기능을 도시하는 도로서, 도 18의 (a)는 4단 상태를 나타내며, 도 18의 (b)는 3단으로의 감속 변속 시 각도 제어부재(520)는 시계방향으로 회전하였으나 고속 폴(503)이 고속 태양기어(431)의 내기어에 강하게 맞물려 있어 폴제어부재(530)가 회전하지 못한 상태를 도시하는 도이고, 도 18의 (c)는 강제 변속 수단(540)에 의해 폴제어부재(530)가 시계방향으로 회전하여 3단으로 변속이 완료된 상태를 나타낸다.
4단은 변속레버의 조작에 의해 각도 제어부재(520)가 초기 각도로부터 반시계방향으로 48도 회전한 상태이다.
이때, 고속 폴(503)은 도 18의 (a)와 같이 각도 제어부재(520)의 도면상 우측 롤러(541b)보다 시계방향측에 위치한다.
이후 3단으로의 감속 변속을 위해 변속레버를 조작하여 상기 각도 제어부재(520)를 시계방향으로 16도 회전시켰으나, 고속 폴(503)이 고속 태양기어(431)의 내기어에 강하게 맞물려 있어 도 18의 (b)와 같이 폴제어부재(530)가 상기 각도 제어부재(520)와 함께 회전하지 못하게 된다.
그 결과, 상기 각도 제어부재(520)와 상기 폴제어부재(530) 사이에는 도 16의 (a)와 같이 위상각 차이가 발생하게 되어, 상기 고속 폴(503)은 상기 각도 제어부재(520)의 롤러(541b) 안쪽에 위치하게 된다.
이에 따라, 상기 롤러(541b)는 상기 각도 제어부재(520) 상에서 바깥쪽으로 돌출되며, 이와 같이 돌출된 롤러(541b)는 도 18의 (c)와 같이 그 바깥쪽에서 시계방향으로 회전하고 있는 중저속 캐리어(413)의 일방향 경사 요홈(413a)을 타고 안쪽을 향하여 강제로 눌리게 되는 것이다.
결과적으로, 세워져 있던 고속 폴(503)이 눕혀지게 되고, 이후 상기 각도 제어부재(520)와 위상차가 발생하였던 폴제어부재(530)는 핀스프링(502)에 의해 상기 각도 제어부재(520)와 동일하게 회전할 수 있게 됨으로써 도 16의 (b)와 같이 변속이 이루어질 수 있는 것이다.
- 3단에서 2단으로의 감속 변속 시
도 19는 본 발명의 허브 내장형 다단 변속기에 있어서 3단에서 2단으로의 강제 변속 기능을 도시하는 도로서, 도 19의 (a)는 3단 상태를 나타내며, 도 19의 (b)는 2단으로의 감속 변속 시 각도 제어부재(520)는 시계방향으로 회전하였으나 중속 폴(502)이 중속 태양기어(421)의 내기어에 강하게 맞물려 있어 폴제어부재(530)가 회전하지 못한 상태를 도시하는 도이고, 도 19의 (c)는 강제 변속 수단(540)에 의해 폴제어부재(530)가 시계방향으로 회전하여 2단으로 변속이 완료된 상태를 나타낸다.
3단은 변속레버의 조작에 의해 각도 제어부재(520)가 초기 각도로부터 반시계방향으로 32도 회전한 상태이다.
이때, 중속 폴(502)은 도 19의 (a)와 같이 각도 제어부재(520)의 롤러(541c)보다 시계방향측에 위치한다.
이후 2단으로의 감속 변속을 위해 변속레버를 조작하여 상기 각도 제어부재(520)를 시계방향으로 16도 회전시켰으나, 중속 폴(502)이 중속 태양기어(421)의 내기어에 강하게 맞물려 있어 도 19의 (b)와 같이 폴제어부재(530)가 상기 각도 제어부재(520)와 함께 회전하지 못하게 된다.
그 결과, 상기 각도 제어부재(520)와 상기 폴제어부재(530) 사이에는 도 16의 (a)와 같이 위상각 차이가 발생하게 되어, 상기 중속 폴(502)은 상기 각도 제어부재(520)의 롤러(541c) 안쪽에 위치하게 된다.
이에 따라, 상기 롤러(541c)는 상기 각도 제어부재(520) 상에서 바깥쪽으로 돌출되며, 이와 같이 돌출된 롤러(541c)는 도 19의 (c)와 같이 그 바깥쪽에서 시계방향으로 회전하고 있는 중저속 캐리어(413)의 일방향 경사 요홈(413a)을 타고 안쪽을 향하여 강제로 눌리게 되는 것이다.
결과적으로, 세워져 있던 중속 폴(502)이 눕혀지게 되고, 이후 상기 각도 제어부재(520)와 위상차가 발생하였던 폴제어부재(530)는 핀스프링(502)에 의해 상기 각도 제어부재(520)와 동일하게 회전할 수 있게 됨으로써 도 16의 (b)와 같이 변속이 이루어질 수 있는 것이다.
- 2단에서 1단으로의 감속 변속 시
도 20은 본 발명의 허브 내장형 다단 변속기에 있어서 2단에서 1단으로의 강제 변속 기능을 도시하는 도로서, 도 20의 (a)는 2단 상태를 나타내며, 도 20의 (b)는 1단으로의 감속 변속 시 각도 제어부재(520)는 시계방향으로 회전하였으나 고속 폴(503)이 고속 태양기어(431)의 내기어에 강하게 맞물려 있어 폴제어부재(530)가 회전하지 못한 상태를 도시하는 도이고, 도 20의 (c)는 강제 변속 수단(540)에 의해 폴제어부재(530)가 시계방향으로 회전하여 2단으로 변속이 완료된 상태를 나타낸다.
2단은 변속레버의 조작에 의해 각도 제어부재(520)가 초기 각도로부터 반시계방향으로 16도 회전한 상태이다.
이때, 고속 폴(503)은 도 20의 (a)와 같이 각도 제어부재(520)의 도면상 좌측 롤러(541a)보다 시계방향측에 위치한다.
이후 1단으로의 감속 변속을 위해 변속레버를 조작하여 상기 각도 제어부재(520)를 시계방향으로 16도 회전시켰으나, 고속 폴(503)이 고속 태양기어(431)의 내기어에 강하게 맞물려 있어 도 20의 (b)와 같이 폴제어부재(530)가 상기 각도 제어부재(520)와 함께 회전하지 못하게 된다.
그 결과, 상기 각도 제어부재(520)와 상기 폴제어부재(530) 사이에는 도 16의 (a)와 같이 위상각 차이가 발생하게 되어, 상기 고속 폴(503)은 상기 각도 제어부재(520)의 롤러(541a) 안쪽에 위치하게 된다.
이에 따라, 상기 롤러(541a)는 상기 각도 제어부재(520) 상에서 바깥쪽으로 돌출되며, 이와 같이 돌출된 롤러(541a)는 도 20의 (c)와 같이 그 바깥쪽에서 시계방향으로 회전하고 있는 중저속 캐리어(413)의 일방향 경사 요홈(413a)을 타고 안쪽을 향하여 강제로 눌리게 되는 것이다.
결과적으로, 세워져 있던 고속 폴(503)이 눕혀지게 되고, 이후 상기 각도 제어부재(520)와 위상차가 발생하였던 폴제어부재(530)는 핀스프링(502)에 의해 상기 각도 제어부재(520)와 동일하게 회전할 수 있게 됨으로써 도 16의 (b)와 같이 변속이 이루어질 수 있는 것이다.
상술한 바와 같이, 본 발명의 강제 변속 수단(540)은 롤러(541a)(541b)(541c)가 안쪽으로 이동하면서 눕혀지지 않은 고속 폴(503) 또는 중속 폴(502)을 샤프트(100)의 폴자리부(103)(102) 내로 강제 변속 시키게 되는 강제 변속 기능을 갖게 된다.
상술한 폴제어부재(530)의 제어 각도에 따라 상기 저속 폴(501), 중속 폴(502), 고속 폴(503)의 제어 상태는 도 13에 나타나 있으며 이를 도표로 정리하면 다음과 같다.
아래의 표 1에는 각각의 폴(501)(502)(503) 작동여부에 따른 출력 클러치(440)(450)의 회전력 전달 여부 또한 표시되어 있다.
표 1
단수 저속 폴 중속 폴 고속 폴 제1출력 클러치 제2출력 클러치
1 O X X O X
2 O X O X O
3 X O X O X
4 X O O X O
이하, 도면을 참조하여 본 발명의 허브 내장형 다단 변속기에 대한 작용을 최저속인 1단으로부터 최고속인 4단에 이르기까지 구분하여 설명하면 다음과 같다.
- 1단
1단은 변속레버의 조작이 없는 초기 상태로, 도 13의 (a)와 같이 오직 저속 폴(501)만이 폴제어부재(530)의 홈부(531) 내에 위치하도록 세워진 상태로 저속 태양기어(411)만이 구속된 상태이다.
이러한 상태에서 스프로켓(210)을 통해 구동력이 전달되면 중저속 캐리어(413)가 회전하게 된다.
이에 따라, 상기 중저속 캐리어(413)에 지지된 저속 유성기어세트(410)의 저속 유성기어(412)가 고정된 저속 태양기어(411)와 치합하여 회전하게 되며, 상기 저속 유성기어(412)에 맞물린 중속 유성기어세트(420)의 중속 유성기어(422)가 연동하여 반대방향으로 회전하게 된다.
이때, 중속 태양기어(421)는 구속되지 않기 때문에 아이들 회전하게 됨으로써, 상기 중속 유성기어(422)는 자전과 동시에 공전을 하여 중속 링기어(424)에 저속의 회전력이 전달되는 것이다.
이러한 중속 링기어(424)는 고속 유성기어세트(430)의 고속 캐리어(433)와 일체로 이루어져 있어 함께 회전하게 되며, 이때 고속 태양기어(431)는 구속되지 않기 때문에 고속 유성기어(432) 또한 아이들 회전하게 됨으로써, 상기 고속 캐리어(433)의 회전력이 제2출력 클러치(450)에 전달되지 못하고 제1출력 클러치(440)를 통해 허브쉘(300)로 출력되는 것이다.
정리하면, 1단에서는 저속 폴(501)이 저속 태양기어(411)를 구속함에 따라, 스프로켓(210)→중저속 캐리어(413)→저속 유성기어(412)→중속 유성기어(422)→중속 링기어(424)→고속 캐리어(433)→제1출력 클러치(440)→허브쉘(300)로 회전력이 전달되어 최저속으로 출력이 이루어지게 된다.
- 2단
2단은 변속레버가 도면상 우측에서 보았을 때 초기 위치로부터 반시계방향으로 16도 회전하여 저속 폴(501)과 고속 폴(503)이 도 13의 (b)와 같이 각각 폴제어부재(530)의 홈부(531)(533a) 내에 위치하도록 세워진 상태로 저속 태양기어(411) 및 고속 태양기어(431)가 구속된 상태이다.
이러한 상태에서 스프로켓(210)을 통해 구동력이 전달되면 중저속 캐리어(413)가 회전하게 된다.
이에 따라, 상기 중저속 캐리어(413)에 지지된 저속 유성기어세트(410)의 저속 유성기어(412)가 고정된 저속 태양기어(411)와 치합하여 회전하게 되며, 상기 저속 유성기어(412)에 맞물린 중속 유성기어세트(420)의 중속 유성기어(422)가 연동하여 회전하게 된다.
이때, 중속 태양기어(421)는 구속되지 않기 때문에 아이들 회전하게 됨으로써, 상기 중속 유성기어(422)는 자전과 동시에 공전을 하여 중속 링기어(424)에 저속의 회전력이 전달되는 것이다.
이러한 중속 링기어(424)는 고속 유성기어세트(430)의 고속 캐리어(433)와 일체로 이루어져 있어 함께 회전하게 되며, 이때 고속 태양기어(431)가 구속되어 있기 때문에, 상기 고속 캐리어(433)의 회전력에 의해 고속 유성기어(432) 및 고속 링기어(434)가 회전하게 되며, 이에 따라 제2출력 클러치(450)를 통해 허브쉘(300)로 출력되는 것이다.
이때, 상기 제1출력 클러치(440)로부터 허브쉘(300)로 전달되는 회전속도는 상기 제2출력 클러치(450)로부터 허브쉘(300)로 전달되는 회전속도 보다 느리기 때문에 상기 제1출력 클러치(440)는 허브쉘(300)에 회전력을 전달하지 못하게 된다.
정리하면, 2단에서는 저속 폴(501) 및 고속 폴(503)이 각각 저속 태양기어(411) 및 고속 태양기어(431)를 구속함에 따라, 스프로켓(210)→중저속 캐리어(413)→저속 유성기어(412)→중속 유성기어(422)→중속 링기어(424)→고속 캐리어(433)→고속 유성기어(432)→고속 링기어(434)→제2출력 클러치(450)→허브쉘(300)로 회전력이 전달되어 저속으로 출력이 이루어지게 된다.
- 3단
3단은 변속레버가 도면상 우측에서 보았을 때 반시계방향으로 16도 더 회전하여 초기 위치로부터 32도 회전한 상태로, 도 13의 (c)와 같이 오직 중속 폴(502)만이 폴제어부재(530)의 홈부(532) 내에 위치하도록 세워진 상태로 중속 태양기어(421)가 구속된 상태이다.
이러한 상태에서 스프로켓(210)을 통해 구동력이 전달되면 중저속 캐리어(413)가 회전하게 된다.
이에 따라, 상기 중저속 캐리어(413)에 지지된 중속 유성기어세트(420)의 중속 유성기어(422)가 고정된 중속 태양기어(421)와 치합하여 회전하게 되며, 상기 중속 유성기어(422)에 맞물린 저속 유성기어세트(410)의 저속 유성기어(412)가 연동하여 회전하게 된다.
이때, 저속 태양기어(411)는 구속되지 않기 때문에 아이들 회전하게 됨으로써, 상기 중속 유성기어(422)는 자전과 동시에 공전을 하여 중속 링기어(424)에 고속의 회전력이 전달되는 것이다.
이러한 중속 링기어(424)는 고속 유성기어세트(430)의 고속 캐리어(433)와 일체로 이루어져 있어 함께 회전하게 되며, 이때 고속 태양기어(431)는 구속되지 않기 때문에 고속 유성기어(432) 또한 아이들 회전하게 되어, 상기 고속 캐리어(433)의 회전력이 제2출력 클러치(450)에 전달되지 못하고 제1출력 클러치(440)를 통해 허브쉘(300)로 출력되는 것이다.
정리하면, 3단에서는 중속 폴(502)이 중속 태양기어(421)를 구속함에 따라, 스프로켓(210)→중저속 캐리어(413)→중속 유성기어(422)→중속 링기어(424)→고속 캐리어(433)→제1출력 클러치(440)→허브쉘(300)로 회전력이 전달되어 고속으로 출력이 이루어지게 된다.
- 4단
4단은 변속레버가 도면상 우측에서 보았을 때 반시계방향으로 16도 더 회전하여 초기 위치로부터 48도 회전한 상태로, 도 13의 (d)와 같이 중속 폴(502)과 고속 폴(503)이 폴제어부재(530)의 홈부(532)(533b) 내에 위치하도록 세워진 상태로 중속 태양기어(421) 및 고속 태양기어(431)가 구속된 상태이다.
이러한 상태에서 스프로켓(210)을 통해 구동력이 전달되면 중저속 캐리어(413)가 회전하게 된다.
이에 따라, 상기 중저속 캐리어(413)에 지지된 중속 유성기어세트(420)의 중속 유성기어(422)가 고정된 중속 태양기어(421)와 치합하여 회전하게 되며, 상기 중속 유성기어(422)에 맞물린 저속 유성기어세트(410)의 저속 유성기어(412)가 연동하여 회전하게 된다.
이때, 저속 태양기어(411)는 구속되지 않기 때문에 아이들 회전하게 됨으로써, 상기 중속 유성기어(422)는 자전과 동시에 공전을 하여 중속 링기어(424)에 회전력이 전달되는 것이다.
이러한 중속 링기어(424)는 고속 유성기어세트(430)의 고속 캐리어(433)와 일체로 이루어져 있어 함께 회전하게 되며, 이때 고속 태양기어(431)가 구속되어 있기 때문에, 상기 고속 캐리어(433)의 회전력에 의해 고속 유성기어(432) 및 고속 링기어(434)가 회전하게 되며, 이에 따라 제2출력 클러치(450)를 통해 허브쉘(300)로 출력되는 것이다.
이때, 상기 제1출력 클러치(440)로부터 허브쉘(300)로 전달되는 회전속도는 상기 제2출력 클러치(450)로부터 허브쉘(300)로 전달되는 회전속도 보다 느리기 때문에 상기 제1출력 클러치(440)는 허브쉘(300)에 회전력을 전달하지 못하게 된다.
정리하면, 4단에서는 중속 폴(502) 및 고속 폴(503)이 각각 중속 태양기어(421) 및 고속 태양기어(431)를 구속함에 따라, 스프로켓(210)→중저속 캐리어(413)→중속 유성기어(422)→중속 링기어(424)→고속 캐리어(433)→고속 유성기어(432)→고속 링기어(434)→제2출력 클러치(450)→허브쉘(300)로 회전력이 전달되어 최고속으로 출력이 이루어지게 된다.
따라서, 본 발명의 허브 내장형 다단 변속기는 3개의 유성기어세트(410)(420)(430)와 2개의 출력 클러치(440)(450)를 이용하여 다단의 변속기를 보다 콤팩트하게 높은 변속비로 구현할 수 있어 제품의 상품성을 향상시키고, 변속레버의 조작에 따라 폴제어부재(530)를 제어하여 회전력의 전달경로를 변경시킴으로써 최대 4배의 다양한 변속비를 얻을 수 있다는 가장 큰 이점을 지닌 발명인 것이다.
특히, 강제 변속 수단(540)에 의해 강제 변속 기능을 가짐으로써 변속 조작 시 폴(502)(503)을 강제로 눕혀주게 됨으로써 변속이 원활하게 이루어지도록 하여 변속 정확도를 크게 향상시킬 수 있는 발명인 것이다.
상기 실시예는 본 발명의 기술적 사상을 구체적으로 설명하기 위한 일례로서, 본 발명의 범위는 상기의 도면이나 실시예에 한정되지 않는다.
이상과 같은 본 발명은 다수의 유성기어세트 및 원웨이 클러치를 이용하여 높은 변속비를 얻을 수 있는 다단의 내장형 변속기를 콤팩트하게 구성할 수 있어 제품의 상품성을 극대화시키고, 강제 변속 기능을 이용하여 보다 정확한 변속이 이루어지도록 함으로써 변속 정확성을 크게 향상시킬 수 있는 발명인 것이다.

Claims (6)

  1. 차체에 고정된 샤프트(100)와, 상기 샤프트(100)의 외주에 회전 가능하게 위치하여 회전력을 입력받는 스프로켓(200) 및 회전력을 출력시키는 허브쉘(300)과;
    상기 허브쉘(300)의 내부에 마련되는 태양기어, 유성기어, 캐리어, 링기어로 이루어진 유성기어세트와 원웨이 클러치로 이루어진 출력 클러치를 포함하여, 상기 스프로켓(200)으로 입력되는 회전력을 변속시켜 상기 허브쉘(300)로 출력시키는 변속부(400)와;
    변속레버의 조작에 따라 상기 샤프트(100)에 마련된 폴을 컨트롤하여 상기 태양기어의 회전을 선택적으로 제한하여 변속을 제어하는 제어부(500)를 포함한 다단 변속기에 있어서;
    상기 변속부(400)에는 저속 유성기어세트(410), 중속 유성기어세트(420), 그리고 고속 유성기어세트(430)가 마련되되;
    상기 저속 유성기어세트(410)의 캐리어와 상기 중속 유성기어세트(420)의 캐리어는 상기 스프로켓(200)으로부터 회전력을 입력받아 회전하는 드라이버와 모두 일체를 이루어 중저속 캐리어(413)를 이루며;
    상기 저속 유성기어세트(410)의 저속 유성기어(412)와 상기 중속 유성기어세트(420)의 중속 유성기어(422)는 상기 중저속 캐리어(413)의 방사상 소정 위상각 차이를 두고 위치하여 서로 치합하고;
    상기 고속 유성기어세트(430)의 고속 캐리어(433)는 상기 중속 유성기어세트(420)의 중속 링기어(424)와 일체로 형성되며;
    상기 고속 유성기어세트(430)의 고속 캐리어(433)와 상기 허브쉘(300) 사이에 제1출력 클러치(440)가 마련되며;
    상기 고속 유성기어세트(430)의 고속 링기어(434)와 상기 허브쉘(300) 사이에 제2출력 클러치(450)가 마련되는 것을 특징으로 하는 허브 내장형 다단 변속기.
  2. 제1항에 있어서, 상기 샤프트(100)에는 저속 폴(501), 중속 폴(502), 그리고 고속 폴(503)이 폴자리부(101)(102)(103) 내에 각각 위치하여, 링스프링에 의해 세워지도록 마련되는 것을 특징으로 하는 허브 내장형 다단 변속기.
  3. 제2항에 있어서, 상기 제어부(500)는
    변속레버의 조작에 따라 인출되는 케이블이 연결되어 상기 샤프트(100)의 외주면에 회전 가능하게 지지되는 케이블 연결부재(510)와;
    상기 케이블 연결부재(510)의 내주면에 끼워맞춤 조립되는 중간 연결부재(512)와;
    상기 중간 연결부재(512)에 끼워맞춤 조립되어 일체로 회전 제어되는 각도 제어부재(520)와;
    상기 각도 제어부재(520)에 연결되어 회전에 따라 상기 저속 폴(501), 중속 폴(502), 고속 폴(503)을 제어하는 폴제어부재(530)로 구성되는 것을 특징으로 하는 허브 내장형 다단 변속기.
  4. 제3항에 있어서, 상기 저속 유성기어세트(410)의 저속 태양기어(411)는 상기 저속 폴(501)에 의해 회전이 선택적으로 제한되며, 상기 중속 유성기어세트(420)의 중속 태양기어(421)는 상기 중속 폴(502)에 의해 회전이 선택적으로 제한되고, 상기 고속 유성기어세트(430)의 고속 태양기어(431)는 상기 고속 폴(503)에 의해 회전이 선택적으로 제한되되;
    상기 폴제어부재(530)의 내주면에는 홈부(531)(532)(533)가 형성되어, 상기 폴제어부재(530)의 회전에 따라 상기 저속 폴(501), 상기 중속 폴(502), 그리고 상기 고속 폴(503) 중 어느 하나 이상이 상기 홈부(531)(532)(533)로 빠져 나오는 것을 특징으로 하는 허브 내장형 다단 변속기.
  5. 제4항에 있어서, 상기 샤프트(100)에 회전 불가능하게 조립된 콘 너트(901)와 상기 각도 제어부재(520) 사이에는 코일스프링(501)이 연결되고; 상기 각도 제어부재(520)의 결합홈(522) 내에 상기 폴제어부재(530)의 날개(534)가 소정 유격을 가지고 위치하되, 상기 날개(534)는 양측이 상기 각도 제어부재(520)에 지지된 핀스프링(502)의 양단에 지지되어 상기 결합홈(522)의 중앙에 위치하도록 탄성 지지되는 것을 특징으로 하는 허브 내장형 다단 변속기.
  6. 제5항에 있어서, 상기 제어부(500)에는, 상기 각도 제어부재(520)에 반경 방향으로 유동 가능하게 지지되는 롤러(541a)(541b)(541c)와; 상기 중저속 캐리어(413)의 내주면에 형성된 일방향 경사 요홈(413a)으로 이루어진 강제 변속 수단(540)이 마련되어, 상기 각도 제어부재(520)와 상기 폴제어부재(530) 사이에 위상각 차이가 발생함에 따라 상기 롤러(541a)(541b)(541c)가 그 외주에 위치하여 회전하는 중저속 캐리어(413)의 내주면에 형성된 일방향 경사 요홈(413a)으로부터 내측으로 강제 이동하면서, 상기 중속 폴(502) 또는 상기 고속 폴(503)을 강제로 눕혀주는 강제 변속 기능을 갖는 것을 특징으로 하는 허브 내장형 다단 변속기.
PCT/KR2014/000737 2013-02-06 2014-01-27 허브 내장형 다단 변속기 WO2014123320A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0013275 2013-02-06
KR1020130013275A KR101357220B1 (ko) 2013-02-06 2013-02-06 허브 내장형 다단 변속기

Publications (1)

Publication Number Publication Date
WO2014123320A1 true WO2014123320A1 (ko) 2014-08-14

Family

ID=50146665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000737 WO2014123320A1 (ko) 2013-02-06 2014-01-27 허브 내장형 다단 변속기

Country Status (2)

Country Link
KR (1) KR101357220B1 (ko)
WO (1) WO2014123320A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106627975A (zh) * 2017-01-20 2017-05-10 张家港川梭车业有限公司 一种直线踩踏单轮直驱变速器
CN106741562A (zh) * 2017-01-20 2017-05-31 张家港川梭车业有限公司 一种直线踩踏单轮直驱齿圈中心轮固定变速器
CN107100965A (zh) * 2016-02-23 2017-08-29 舍弗勒技术股份两合公司 高传动比的行星齿轮换挡变速器
JP2021504639A (ja) * 2017-11-23 2021-02-15 エムビーアイ・カンパニー リミテッド 変速操作助力装置及びそれを備えたハブ内蔵型の変速機
TWI802387B (zh) * 2022-04-25 2023-05-11 日馳企業股份有限公司 自行車變速裝置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104088925A (zh) * 2014-06-30 2014-10-08 西北工业大学 一种节能赛车牙嵌式超越离合器
CN106969102B (zh) * 2017-05-11 2023-09-22 张家港川梭车业有限公司 一种单轮驱动棘爪移动式换挡二挡变速装置
CN106949199B (zh) * 2017-05-11 2023-09-22 张家港川梭车业有限公司 一种双轮驱动棘爪移动式换挡二挡变速装置
CN109018178A (zh) * 2017-06-11 2018-12-18 枣庄宝武机电科技开发有限公司 自行车三挡自动内变速器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298166A (ja) * 2006-04-28 2007-11-15 Shimano Inc 自転車用内装変速ハブの動力伝達機構
KR20090037094A (ko) * 2007-10-11 2009-04-15 (주)엠비아이 속도변환장치의 브레이크장치
KR100954300B1 (ko) * 2010-02-09 2010-04-22 (주)엠비아이 자전거 속도변환 보조장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298166A (ja) * 2006-04-28 2007-11-15 Shimano Inc 自転車用内装変速ハブの動力伝達機構
KR20090037094A (ko) * 2007-10-11 2009-04-15 (주)엠비아이 속도변환장치의 브레이크장치
KR100954300B1 (ko) * 2010-02-09 2010-04-22 (주)엠비아이 자전거 속도변환 보조장치

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107100965A (zh) * 2016-02-23 2017-08-29 舍弗勒技术股份两合公司 高传动比的行星齿轮换挡变速器
CN106627975A (zh) * 2017-01-20 2017-05-10 张家港川梭车业有限公司 一种直线踩踏单轮直驱变速器
CN106741562A (zh) * 2017-01-20 2017-05-31 张家港川梭车业有限公司 一种直线踩踏单轮直驱齿圈中心轮固定变速器
JP2021504639A (ja) * 2017-11-23 2021-02-15 エムビーアイ・カンパニー リミテッド 変速操作助力装置及びそれを備えたハブ内蔵型の変速機
EP3715676A4 (en) * 2017-11-23 2021-07-28 Mbi Co. Ltd. ASSISTANCE DEVICE FOR THE GEAR GEAR CHANGE OPERATION AND TRANSMISSION INTEGRATED IN A HUB INCLUDING IT
TWI802387B (zh) * 2022-04-25 2023-05-11 日馳企業股份有限公司 自行車變速裝置

Also Published As

Publication number Publication date
KR101357220B1 (ko) 2014-01-29

Similar Documents

Publication Publication Date Title
WO2014123320A1 (ko) 허브 내장형 다단 변속기
WO2014123312A1 (ko) 허브 내장형 다단 변속기
WO2019103288A1 (ko) 변속 조작 조력장치 및 이를 구비한 허브 내장형 변속기
WO2014025130A1 (ko) 다단 변속기
CN100359207C (zh) 车辆用变速器
WO2013151402A1 (ko) 변속 장치
WO2012008778A2 (ko) 승강기 와이어로프 장력 자동 균등화 장치
WO2018212595A1 (ko) 모터의 다단 변속기
WO2010137881A2 (ko) 다단기어 변속장치
WO2016099023A1 (ko) 치차 결합 방식의 조타 장치 및 이를 이용한 조타 방법
WO2010104320A2 (ko) 유성기어를 이용한 동력 전달 장치
WO2011102606A2 (ko) 자전거용 변속기
WO2019172582A1 (ko) 변속모터와 유성기어 메카니즘을 이용한 자전거용 변속장치
WO2011008014A2 (ko) 복합 구동 자전거
WO2012011662A2 (ko) 무단변속장치
WO2016108299A1 (ko) 무단 변속장치
WO2011090244A1 (ko) 전기자동차의 발전제어시스템
WO2015102460A1 (ko) 휠체어
WO2019194390A1 (ko) 전기자동차용 변속 시스템
WO2011055878A1 (ko) 2개의 회전동력원과 기어결합체를 이용한 변속장치
WO2020067707A1 (ko) 전기 자동차용 구동장치
WO2011083958A2 (ko) 무단 변속장치
CN107430316A (zh) 传动结构、跟焦器、跟焦器执行端及成像装置
WO2014046418A1 (ko) 변속 장치
WO2018043855A1 (ko) 인 휠 타입 2단 변속장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/01/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14749391

Country of ref document: EP

Kind code of ref document: A1