WO2019103288A1 - 변속 조작 조력장치 및 이를 구비한 허브 내장형 변속기 - Google Patents

변속 조작 조력장치 및 이를 구비한 허브 내장형 변속기 Download PDF

Info

Publication number
WO2019103288A1
WO2019103288A1 PCT/KR2018/010104 KR2018010104W WO2019103288A1 WO 2019103288 A1 WO2019103288 A1 WO 2019103288A1 KR 2018010104 W KR2018010104 W KR 2018010104W WO 2019103288 A1 WO2019103288 A1 WO 2019103288A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
driver
pawl
angle
ring
Prior art date
Application number
PCT/KR2018/010104
Other languages
English (en)
French (fr)
Inventor
유혁
정태진
안성철
유문수
Original Assignee
(주)엠비아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엠비아이 filed Critical (주)엠비아이
Priority to JP2020528141A priority Critical patent/JP2021504639A/ja
Priority to US16/759,120 priority patent/US11041547B2/en
Priority to EP18881805.8A priority patent/EP3715676A4/en
Publication of WO2019103288A1 publication Critical patent/WO2019103288A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/62Gearings having three or more central gears
    • F16H3/66Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M11/00Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
    • B62M11/04Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio
    • B62M11/14Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears
    • B62M11/16Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears built in, or adjacent to, the ground-wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M25/00Actuators for gearing speed-change mechanisms specially adapted for cycles
    • B62M25/02Actuators for gearing speed-change mechanisms specially adapted for cycles with mechanical transmitting systems, e.g. cables, levers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/70Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/36Generation or transmission of movements for final actuating mechanisms with at least one movement being transmitted by a cable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H2063/3089Spring assisted shift, e.g. springs for accumulating energy of shift movement and release it when clutch teeth are aligned
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2005Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with one sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2007Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with two sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2079Transmissions using gears with orbital motion using freewheel type mechanisms, e.g. freewheel clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2097Transmissions using gears with orbital motion comprising an orbital gear set member permanently connected to the housing, e.g. a sun wheel permanently connected to the housing

Definitions

  • the present invention relates to a shift operation assist device and a hub built-in transmission having the same, and more particularly to a shift operation assist device in which a forced shift is performed in accordance with a pressure frictional force And to provide a hub built-in transmission provided with such a shift operation assist device, it is possible to improve the durability and to enhance the convenience of the user and stability of the running and to maximize the commerciality and market competitiveness of the transmission Lt; / RTI >
  • a transmission for improving running performance is provided in a transportation device such as a bicycle, a wheelchair, a car, or a scooter, which is provided with wheels and travels by using various driving forces such as an electric power.
  • a planetary gear set including a sun gear, a planetary gear, a ring gear, and a carrier is provided in a hub shell so as to speed change in a multi-step through a compact structure, It is true.
  • the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a transmission having a planetary gear set capable of smoothly controlling the speed change and at the same time, And to provide a shift operation assist device and a hub built-in transmission having the same, which can improve durability and prevent a large shift shock, thereby enhancing user's convenience and running stability, and maximizing commerciality and market competitiveness of the transmission.
  • the shift operating device includes a pawl control ring having an inner circumferential surface that controls the tilting of the control pawl provided on the shaft and has a rotation restricting projection and a one-way tilted groove on the outer circumferential surface thereof;
  • An angle control member formed on an outer circumference of the shaft and supported by the shaft and positioned on an inner circumferential side of a rotating driver to receive a rotational force and rotated in accordance with a shift operation and having a circumferential clearance to receive the rotation limiting protrusion;
  • a pressing member which is formed in a spherical or cylindrical shape and is supported by the angle control member so as to be radially movable, and is positioned between the one-way inclined groove of the pole control ring and the inner peripheral surface of the driver;
  • An elastic connector connected between the pawl control ring and the angle control member and elastically supporting the pawl control ring to rotate about the angle control member;
  • a stationary support member rotatably fixed to the shaft and rotatably
  • the pressing force generated between the driver and the pressing member can be increased as the inclination angle of the unidirectional inclined groove with respect to the outer peripheral surface of the pawl control ring is smaller or the elasticity coefficient of the return spring is larger; It is preferable that the pressing friction force generated between the driver and the pressing member can be reduced as the inclination angle of the one-directional inclined groove to the outer circumferential surface of the pawl control ring is larger or the elastic coefficient of the return spring is smaller.
  • the inclination angle of the one-directional inclined groove with respect to the outer peripheral surface of the pole control ring is 12 to 20 degrees.
  • a hub built-in transmission provided with a shift operation assist device includes: a shaft fixed to a vehicle body; A hub shell rotatably disposed on an outer periphery of the shaft and adapted to receive a rotational force and to output rotational force; And a planetary gear set provided inside the hub shell, the planetary gear set including a sun gear, a planetary gear and a ring gear, wherein the driver rotatably supports the planetary gear to function as a carrier, And a second tooth for engaging with the elastic pawl is additionally formed on an inner circumferential surface of the ring gear to change a rotational force input to the driver, A transmission portion for outputting to the hub shell;
  • the shift lever is controlled in the circumferential direction in accordance with the operation of the shift lever to control the control pawl located in the pawl portion formed on the outer peripheral surface of the shaft to selectively restrict the rotation of the sun gear to thereby control the shifting of the transmission portion, And a control unit including a tidal
  • control unit may include: a cable connecting member to which a cable drawn out according to an operation of the shift lever is connected and is rotatably supported on an outer circumferential surface of the shaft; And an intermediate connecting member which mates with the inner circumferential surface of the cable connecting member and rotates integrally therewith; It is preferable that the angle control member passes through the stationary support member without rotating interference, is assembled to the inner circumferential surface of the intermediate connecting member, and transmits rotational force in one direction.
  • the planetary gear is composed of one or more stages of multi-step planetary gears, and the control pawl and the sun gear are additionally provided corresponding to the number of stages of the planetary gear, It would be desirable to be able to shift.
  • the present invention as described above makes it possible to smoothly perform the shift control in the transmission provided with the planetary gear set and also to control the pressing frictional force arbitrarily so as to appropriately perform the forced shifting so as to prevent the component parts from being damaged, While preventing a large shift shock, thereby enhancing convenience for the user and stability of driving, and maximizing the commerciality and market competitiveness of the transmission.
  • FIG. 1 is a left side perspective view showing a shift operation assist system of the present invention
  • Fig. 2 is a right side perspective view showing the shift operating device
  • FIG. 3 is an exploded left side perspective view showing the shift operation assist device of the present invention
  • FIG. 6 is a right side view showing a pawl control ring in the shift operation assist device of the present invention
  • FIG. 7 is a left side perspective view showing a hub built-in transmission provided with a shift operation assist device of the present invention
  • FIG. 8 is a right side perspective view showing a hub built-in transmission provided with a shift operation assist device of the present invention
  • FIG. 9 is a front view showing a hub built-in transmission provided with a shift operation assist device of the present invention.
  • FIG. 10 is a front sectional view showing a hub built-in transmission provided with a shift operation assist device of the present invention
  • FIG. 11 is an exploded left side perspective view of a left-side fastening means in a hub built-in transmission provided with a shift operation assist device of the present invention
  • FIG. 12 is a right side exploded perspective view in which a left fastening means is disassembled in a hub built-in transmission provided with a shift operation assist device of the present invention
  • FIG. 13 is a left side exploded perspective view of a right side fastening means in a hub built-in transmission provided with a shift operation assist device of the present invention
  • FIG. 14 is a right side exploded perspective view in which the right fastening means is disassembled in the hub built-in transmission provided with the shift operation assist device of the present invention
  • FIG. 16 is an exploded right side exploded perspective view of the hub shell in the hub built-in transmission provided with the shift operation assist device of the present invention
  • 17 is an exploded left side perspective view of the ring gear of the hub built-in transmission provided with the shift operation assist device of the present invention
  • 21 is an exploded left side perspective view of a sun gear in a hub built-in transmission provided with a shift operation assist device of the present invention
  • FIG. 22 is an exploded right side exploded perspective view of a sun gear in a hub built-in transmission provided with a shift operation assist device of the present invention.
  • driver 210 sprocket
  • transmission portion 410 planetary gear set
  • ring gear 413a first tooth type
  • control unit 501 first control pole
  • pressing member 540 elastic connector
  • Fig. 1 is a left perspective view showing a shift operation assist device of the present invention
  • Fig. 2 is a right side perspective view showing a shift operation assist device of the present invention.
  • Fig. 3 is an exploded left side perspective view showing the shift operation assist device of the present invention
  • Fig. 4 is an exploded right side perspective view showing the shift operation assist device of the present invention.
  • Fig. 5 is a right side sectional view showing the operation of the shift operation assist device of the present invention
  • Fig. 6 is a right side view showing a pawl control ring in the shift operation assist device of the present invention.
  • Fig. 7 is a left perspective view showing a hub built-in transmission provided with a shift operation assist device of the present invention
  • Fig. 8 is a right side perspective view showing a hub built-in transmission provided with the shift operation assist device of the present invention.
  • FIG. 9 is a front view showing a hub built-in transmission provided with the shift operation assist device of the present invention
  • FIG. 10 is a front sectional view showing a hub built-in transmission provided with the shift operation assist device of the present invention.
  • FIG. 11 is a left side exploded perspective view of a left-side fastening means in a hub built-in transmission provided with a shift operation assist device of the present invention
  • FIG. 13 is a left exploded perspective view of a right side fastening means in a hub built-in transmission provided with a shift operation assist device of the present invention
  • FIG. 14 is a perspective view of a right side fastening means Fig.
  • FIG. 15 is a left exploded perspective view of the hub-type transmission in which the hub shell is disassembled in the hub-type transmission having the shift operation assist device of the present invention
  • FIG. 16 is a perspective view of a hub- Fig.
  • FIG. 17 is an exploded left side perspective view of the ring gear of the hub built-in transmission provided with the shift operation assist device of the present invention.
  • FIG. 18 is a plan view of the ring gear of the hub- Fig.
  • Fig. 19 is an exploded left side exploded view of a driver in a hub built-in transmission provided with a shift operation assist device of the present invention
  • Fig. 20 is an exploded perspective view of a driver incorporated in a hub built- Fig.
  • Fig. 21 is an exploded left side exploded perspective view of a sun gear incorporated in a hub built-in transmission provided with a shift operation assist device of the present invention
  • Fig. 22 is a perspective view of a hub- And Fig.
  • the shift operation assist device of the present invention and the hub built-in type transmission having the same provide smooth shift control in the transmission provided with the planetary gear set 410, and the pressure frictional force can be arbitrarily adjusted, Thereby improving durability while preventing a large shift shock, thereby enhancing the convenience of the user and stability of the driving, and maximizing the commerciality and market competitiveness of the transmission.
  • the inner peripheral surface of the shift operating tact device controls the tilting of the control pawls 501 and 502 provided on the shaft 100,
  • a pawl control ring 510 having a limiting protrusion 511 and a one-way inclined groove 512;
  • the rotation restricting recessed portion 511 is located on the inner circumferential side of the driver 200 which is supported by the shaft 100 to receive the rotational force and rotates in accordance with a shift operation,
  • An angle control member 520 formed on the outer periphery of the outer case 521;
  • a pressing member (not shown) disposed between the unidirectional inclined groove 512 of the pawl control ring 510 and the inner circumferential surface of the driver 200, (530);
  • An elastic connector 540 connected between the pole control ring 510 and the angle control member 520 and elastically supporting the pole control ring 510 to rotate with respect to the angle control member 520;
  • a fixed support member 580 fixed to the shaft 100 so as to be non-rotatably supported and
  • the speed change operation assist device of the present invention mainly includes a pawl control ring 510, an angle control member 520, a pressing member 530, an elastic connecting member 540, a fixed supporting member 580, 570).
  • the shift operation assist device of the present invention is basically provided in a transmission including a planetary gear set and includes a plurality of control pawls 501 (not shown) provided on the outer circumferential surface of the shaft 100, ) 502 to selectively limit the rotation of the sun gear to perform the shift.
  • the number of planetary gears constituting the planetary gear set can be increased or decreased.
  • the planetary gears of two stages are provided for the convenience of explanation.
  • the present invention is not limited thereto.
  • a single stage planetary gear may be provided, or three or more planetary gears may be provided.
  • control pawls 501 and 502 are strongly engaged with the ratchet formed on the inner circumferential surface of the sun gear in the load driving state, the control pawls 501 and 502 can not escape from the ratchet of the sun gear during the shift control, However, according to the shift operation assist device of the present invention, the user can smoothly perform the shift control through the forced shift function even in such a load driving state.
  • the pressure frictional force generated between the driver 200, which is a rotating body during the forced shifting, and the pressing member 530, which is the restraint can be appropriately adjusted and set.
  • the most important feature is that it can be done.
  • the shift operation assist device of the present invention basically has a shift control function and a forced shift function, and additionally, a great difference is that the magnitude of the pressure frictional force capable of performing the forced shift function can be appropriately adjusted Have.
  • the pawl control ring 510 is formed in a substantially ring shape, and groove portions 513 and 514 are formed concavely in the inner peripheral surface thereof.
  • control pads 501 and 502 may be resiliently raised and the control pawls 501 and 502 may be laid flat to prevent the pawl portion 101 from being bent when the grooves 513 and 514 are not positioned as shown in FIG. Lt; / RTI >
  • a rotation restricting protrusion 511 and a one-way inclined groove 512 are formed on the outer circumferential surface of the pole control ring 510.
  • the rotation restricting protrusion 511 is a protruding portion formed at a predetermined angle along the circumferential direction.
  • the rotation restricting protrusion 511 is provided on the rotation restricting recess 521 of the angle control member 520, which will be described later, Lt; / RTI >
  • the unidirectional inclined grooves 512 are concave portions formed to be inclined with respect to the outer peripheral surface of the pawl control ring 510.
  • the both sides of the unidirectional inclined grooves 512 have different directional angles.
  • the pressing member 530 to be described later will be positioned.
  • one inclined surface corresponds to a moving inclined surface for moving the pressing member 530, which will be described below, and the opposite inclined surface, the pressing member 530 corresponds to the unidirectional inclined groove 512 ) To be confined within the constrained inclined plane.
  • the inclination angle of the unidirectional inclined groove 512 mentioned below refers to the forming angle of the constraint inclined surface shown in Fig.
  • the angle control member 520 is configured to rotate in accordance with a shift operation and to transmit the rotational force to the above-described pole control ring 510.
  • the angle control member 520 is rotatably supported on the outer circumferential surface of the shaft 100, And is positioned on the inner circumferential side of the driver 200 that receives the rotational force from the outside and rotates.
  • the angle control member 520 is formed on the outer circumference with a rotation restricting recessed portion 521 which receives the rotation restricting protrusion 511 of the pole control ring 510 with a circumferential clearance.
  • the forming angle of the rotation restricting recess 521 may be set to a predetermined angle with respect to the forming angle of the rotation restricting protrusion 511 And is formed somewhat wider than the above.
  • a pressing member 530 is disposed in the one-way inclined groove 512 of the above-described pawl control ring 510.
  • four angle adjusting members 520 are provided with four pressing members 530 .
  • the pressing member 530 is spherical or spherical and is supported on the angle control member 520 so as to be radially movable so that the one-way inclined groove 512 of the pole control ring 510 and the one- And is positioned between the inner circumferential surfaces.
  • the elastic connecting body 540 illustrated in FIG. 3 is connected between the pole control ring 510 and the angle control member 520.
  • both ends of the elastic link body 540 are bent at right angles, and the bent portions are inserted into the engagement groove 515 formed in the pole control ring 510 and the assembly hole 522 formed in the angle control member 520 So that they can be assembled so as to be inserted.
  • a predetermined phase angle difference may occur between the control ring 510 and the angle control member 520 in the circumferential direction as shown in FIGS. 5 (d) and 5 (e).
  • the pawl control ring 510 is resiliently supported so as to always rotate clockwise when viewed from the right side in the drawing with respect to the angle control member 520, and the rotation restricting protrusion 511 is elastically supported by the rotation restricting recesses 511, (521), they rotate in the clockwise direction and remain in contact with each other as long as no external force acts on them.
  • control pawls 501 and 502 located in the groove portions 513 and 514 of the pawl control ring 510 are elastically erected so that the acceleration shift can be performed.
  • FIG. 5A shows a state in which all of the control pawls 501 and 502 are laid down and Fig. 5B shows a state in which the first control pawl 501 is raised and the second control pawl 502 is laid down , And FIG. 5 (c) shows a state in which all of the control poles 501 and 502 are erected.
  • the pawl control ring 510 also rotates in the clockwise direction by the elastic link member 540 connected between the angle control member 520 and the pawl control ring 510.
  • the pressing member 530 comes into contact with the inclined surface of the unidirectional inclined groove 512 and presses and rubs against the inner circumferential surface of the driver 200, which protrudes outward and is rotated from the outside.
  • the rotational force of the driver 200 is transmitted to the pole control ring 510 through the pressing member 530 by the pressure frictional force generated between the driver 200 and the pressing member 530.
  • the pole control ring 510 is rotated in the clockwise direction to forcibly lie the corresponding control pawls 501 and 502 which are strongly meshed with the ratchet of the sun gear, whereby the deceleration shifting can be completed.
  • the pressing member 530 moves outward along the unidirectional slant groove 512 It is possible for the control pawls 501 and 502 to be forcedly tilted by pressing and rotating the pole control ring 510 by pressing the inner circumferential surface of the driver 200 with pressure.
  • the fixed support member 580 has a substantially cone shape, and is fixed to the shaft 100 so as not to be rotatable.
  • protrusions and protrusions 582 are formed on the inner circumferential surface of the fixed support member 580 such that the protrusions and protrusions 582 are assembled to the protrusions 102 formed in the shaft 100 in the axial direction So that the fixed support member 580 is non-rotatably positioned on the shaft 100.
  • a bearing (604) is provided on the outer periphery of the fixed support member (580), and a driver (200) that rotates by receiving a rotational force from the outside is rotatably supported independently from the shaft (100).
  • the return spring 570 is connected between the angle control member 520 and the fixed support member 580, and the angle control member 520 (which is rotated in the counterclockwise direction as described above in accordance with the acceleration shift operation) ) Is rotated in the clockwise direction elastically in the deceleration shifting operation and is returned.
  • Both ends of the return spring 570 are also bent at right angles so that the bent portions are formed in the assembly hole 524 formed in the angle control member 520 and the fixed support member 580 formed as shown in FIGS. So that they can be assembled so as to be inserted into the assembly holes 581 respectively.
  • the angle control member 520 and the pawl control ring 510 are rotated counterclockwise according to the acceleration shift operation, and the return spring 570 is rotated in accordance with the angle control
  • the member 520 can be elastically returned in the clockwise direction.
  • the shift operation assist device of the present invention can basically perform the forced shift function in load driving, in addition to the shift control function for the acceleration and deceleration shift by the shift lever.
  • the forced shifting function is performed by a pressure frictional force generated between the driver 200, which is a rotating body, and the pressing member 530, which is a restraining member.
  • the Applicant has found that the adjustment of the pressure frictional force generated between the driver 200 and the pressing member 530 in the process of further developing the transmission having the forced shifting function is an important variable in the transmission.
  • the inclination angle of the unidirectional inclined groove 512 refers to the angle formed by the inclined inclined surface and the outer peripheral surface of the pole control ring 510 as described above.
  • the pressure frictional force generated between the members 530 can be increased;
  • the inclination angle of the unidirectional inclined groove 512 with respect to the outer peripheral surface of the pawl control ring 510 is larger or the elastic modulus of the return spring 570 is smaller, the gap between the driver 200 and the pressing member 530 It is desirable that the pressure frictional force generated by the pressure-reducing mechanism can be reduced.
  • the pressure frictional force generated between the driver 200 and the pressing member 530 is guided to slip at a certain level or higher, It is possible to prevent the components from being damaged by preventing the forced shifting from being performed and to prevent the safety accident caused by the large shift shock.
  • the inclination angle of the unidirectional inclined groove 512 with respect to the outer circumferential surface of the pole control ring 510 is 12 to 20 degrees.
  • the angle of the inclination angle is designed to be less than 12 degrees, it is confirmed that the magnitude of the pressure frictional force generated between the driver 200 and the pressing member 530 becomes too large, so that damage to the component parts and shocks to the change of the driving force occur severely.
  • the inclination angle of the one-directional inclined groove 512 with respect to the outer peripheral surface of the pole control ring 510 is limited to 12 to 20 degrees.
  • the hub built-in transmission having the shift operation assist device includes a shaft 100 fixed to a vehicle body; A driver 200 rotatably disposed on the outer periphery of the shaft 100 to receive a rotational force and a hub shell 300 for outputting rotational force; And a planetary gear set 410 provided in the hub shell 300 and including a sun gear 411a 411b, a planetary gear 412 and a ring gear 413,
  • the driver 200 is provided with an elastic pawl 220 which is elastically supported so as to protrude outwardly.
  • the ring gear 413 is provided on the inner circumferential surface of the ring gear 413, A second tooth 413b for engagement with the elastic pawl 220 is additionally formed with the first tooth 413a for mating with the hub 412 and the rotational force input to the driver 200 is shifted, A transmission (400) for outputting to the shell (300);
  • the control pawls 501 and 502 located in the pawl seat portion 101 formed on the outer peripheral surface of the shaft 100 are rotated while being rotated in the circumferential direction in accordance with the operation of the shift lever to rotate the control gears of the sun gears 411a and 411b
  • a control unit 500 that controls the shifting of the transmission portion 400 by selectively limiting the rotation and includes the above-described shift operation assist device.
  • the hub built-in transmission provided with the shift operation assist device of the present invention includes the shaft 100, the driver 200, the hub shell 300, the transmission portion 400, and the aforementioned shift operation assist device And a control unit 500.
  • the shaft 100 is fixedly supported on both ends of a body of a scooter, a bicycle, a rickshaw, or the like (hereinafter referred to as a "traveling device") requiring a speed change by a fastening means such as a fixing nut.
  • the shaft 100 is formed to have different diameters depending on the parts as shown in FIGS. 21 and 22. Particularly, on the center outer circumferential surface of the shaft 100, The control pawls 501 and 502 are located in the pole seat portion 101, respectively.
  • the shaft 100 is a skeleton of the present invention, and all components to be described below are rotatably or non-rotatably provided on the outer circumference of the shaft 100.
  • the driver 200 is configured to receive a rotational force such as an engaging force or an electric power from a traveling device into a hub built-in transmission equipped with a shift operation assisting device of the present invention, and is rotatably provided on one side of the shaft 100.
  • the right inner peripheral surface of the driver 200 has a fixed support member 580 that is non-rotatably coupled to the shaft 100 and a bearing (604), and the driver (200) is rotatably supported independently from the shaft (100).
  • the sprocket 210 is fixed to the driver 200 so that the sprocket 210 rotates integrally with the sprocket 210.
  • the sprocket 210 receives the driving force from the outside through a power transmitting means such as a chain, As shown in FIG.
  • the hub shell 300 is located at the outermost portion of the shaft 100 and outputs a driven end force to the wheels of the traveling device.
  • the hub shell 300 is formed in a substantially cylindrical shape.
  • a plurality of holes 301 can be formed on the outer periphery of the hub shell 300 to connect wheel fingers.
  • Various components can be inserted into the holes 301.
  • a conical nut 601 and a bearing 603 coupled to the shaft 100 are provided on the left inner circumferential surface of the hub shell 300.
  • the hub shell 300 is connected to the shaft 100 100, respectively.
  • the transmission portion 400 is located in the hub shell 300 and shifts the rotation input through the driver 200 to multi-step, and then outputs the rotation through the hub shell 300.
  • the planetary gear set 410 The planetary gear set 410).
  • the planetary gear set 410 substantially shifts, and then the shifted rotational force is output to the hub shell 300.
  • the planetary gear set 410 includes the sun gears 411a and 411b and the planetary gear 412 and the ring gear 413.
  • 200 rotatably support the planetary gear 412 to function as a carrier.
  • reference numeral 201 denotes a support shaft for rotatably supporting the planetary gear 412 to the driver 200.
  • reference numeral 201 denotes a support shaft for rotatably supporting the planetary gear 412 to the driver 200.
  • three planetary gears 412 are provided in one driver 200
  • the number of the planetary gears 412 may be appropriately increased or decreased.
  • the planetary gear 412 is rotatably supported by the driver 200, and sun gears 411a and 411b are positioned inside the driver 200, and the sun gears 411a and 411b are positioned inside the planetary gear 412
  • a ring gear 413 is provided on the outer side of the driver 200 and meshes with the outer side of the planetary gear 412.
  • the driver 200 is provided with an elastic pawl 220 elastically supported to protrude outward.
  • the elastic pawls 220 are rotatably supported by the driver 200 through the support shaft 221 and the elastic pawls 220 are elastically supported by the coil springs 222 so as to rotate in one direction .
  • the elastic pawl 220 may perform a function similar to that of a known one-way clutch.
  • three elastic pawls 220 are provided in one driver 200.
  • a first tooth 413a for engagement with the planetary gear 412 and a second tooth 413a for engagement with the elastic pawl 220 are formed on the inner circumferential surface of the ring gear 413, (413b) is additionally formed.
  • the rotational force input to the driver 200 may be transmitted to the second tooth 413b of the ring gear 413 through the elastic pawl 220 without a separate shift.
  • the outer circumferential surface of the ring gear 413 and the inner circumferential surface of the hub shell 300 are in contact with each other at a distance from the hub shell 300. Therefore, It is summed up.
  • the rotational force of the driver 200 can be transmitted to the hub shell 300 without acceleration, or can be transmitted to the hub shell 300 while being accelerated by the planetary gear set 410.
  • whether or not the planetary gear set 410 is shifted may be determined depending on whether the sun gears 411a and 411b are rotatable.
  • the control unit 500, (411a) and (411b) can be determined.
  • control unit 500 The control of the control pawls 501 and 502 for determining whether or not the sun gears 411a and 411b are rotatable has been described above, but the control unit 500 will be described once again.
  • the rotational force accelerated by the speed change portion 400 is output to the hub shell 300 through the ring gear 413 through the planetary gear 412 and the direct rotational force is transmitted to the elastic pawl And is output to the hub shell 300 via the ring gear 413 through the hub 220.
  • a bearing 605 is provided between the inner circumferential surface of the ring gear 413 and the outer circumferential surface of the driver 200 and is rotatable independently of each other.
  • bearings 603, 604, and 605 illustrate the ball bearings, but they are not limited to the types of sliding bearings and the like.
  • control unit 500 for controlling the shifting of the transmission portion 400 includes the shifting operation assist device described above.
  • the shift operation assist device basically controls the plurality of control pawls 501 and 502 provided on the outer circumferential surface of the shaft 100 according to the operation of the shift lever not shown to rotate the sun gears 411a and 411b And the above-described forced shift function.
  • the shift operation assist device controls the control pawls 501 and 502 provided on the pawl seat portion 101 of the shaft 100 according to the operation of the shift lever of the driver as described above,
  • the rotation speed of the direct output without the speed change through the driver 200 or the accelerated output through the planetary gear set 410 is selectively outputted to the hub shell 300.
  • the control pawls 501 and 502 and the sun gears 411a and 411b are formed of the multi-stage planetary gears 412, It is preferable to be additionally provided corresponding to the number of stages of the planetary gears 412 so as to be capable of being shifted to the speed ratio of the number of stages of the planetary gears +1.
  • the planetary gear provided in the planetary gear set 410 may be constituted by a single-stage planetary gear having only one diameter.
  • the large-diameter portion 412a and the small- Stage planetary gears 412 having three diameters although not shown, it is also possible to adopt a planetary gear having four or more stages as well as a three-stage planetary gear having three diameters.
  • one control pole is provided in the pole portion of the shaft, and it is possible to implement the dual speed ratio of direct engagement and acceleration with only one sun gear.
  • two pole pawls 101 are formed on the shaft 100 and control pawls 501 And has two sun gears 411a and 411b corresponding to the large diameter portion 412a and the small diameter portion 412b of the planetary gear 412 so that the entire three- It is possible to implement it.
  • the first sun gear 411a corresponding to the large diameter portion 412a of the planetary gear 412 has a diameter smaller than the diameter of the second sun gear 411b corresponding to the small diameter portion 412b of the planetary gear 412 .
  • the sun gear is engaged with the large-diameter portion 412a of the planetary gear 412, and the first sun gear 411a, And a second sun gear 411b meshing with the small diameter portion 412b of the gear 412.
  • the shaft 100 is provided with a first control pole 501 and a second control pole 502.
  • the first sun gear 411a is selectively limited in rotation by the first control pawl 501 and the second sun gear 411b is selectively rotated by the second control pawl 502 Is limited.
  • the first control pawl 501 and the second control pawl 502 are positioned in the pawl portion 101 of the shaft 100 and the control pole 501 502 are provided so as to be resiliently raised in the pawl seat portion 101 by ring springs 503 located on both sides.
  • a pole control ring 510 having concave grooves 513 and 514 is located on the inner periphery of the control pockets 501 and 502.
  • the pole control ring 510 The control pawls 501 and 502 are raised and the grooves 513 and 514 are raised when the corresponding grooves 513 and 514 are located outside the control pawls 501 and 502 according to the circumferential rotation angle of the control pawls 501 and 502,
  • the control pawls 501 and 502 are laid down and positioned in the pawl seat portion 101.
  • the groove portions 513 and 514 can be freely set up by the ring spring 503 when the pawl control ring 510 is rotated in the counterclockwise direction And a sloped surface for suppressing and laying down the control pawls 501 and 502 when the pole control ring 510 is rotated in a clockwise direction.
  • control pawls 501 and 502 When the control pawls 501 and 502 are raised, they are engaged with the ratchet of the sun gears 411a and 411b located outside the control pawls 501 and 502 to restrict rotation of the corresponding sun gears 411a and 411b, .
  • the first control pole 501 and the second control pole 502, which are controlled by the pole control ring 510, are protruded from the control portion and the engagement portion at different intervals,
  • a control portion is formed on the right side of the first control pawl 501 and the second control pawl 502 as shown in the drawing, and the pole control ring 510 is located outside the control portion.
  • control pawls 501 and 502 are spaced apart from the control portion to the left in the drawing at predetermined intervals
  • the second control pawl 502 is adjacent to the control part and the engagement part, while the control part and the engagement part of the first control pawl 501 are spaced apart from each other Respectively.
  • the first sun gear 411a is located outside the engagement portion of the first control pawl 501, and is slightly spaced from the pole control ring 510
  • the second sun gear 411b is located outside the engagement portion and is located adjacent to the pole control ring 510.
  • reference numeral 401 denotes a snap ring for preventing the sun gears 411a and 411b from being separated
  • reference numeral 402 denotes a spacer for maintaining a gap between the sun gears 411a and 411b.
  • first control pawl 501 and the second control pawl 502 are positioned in the pawl portion 101 of the shaft 100, respectively, substantially opposite to each other.
  • the pawl control ring 510 is located outside the control part formed on each of the control pawls 501 and 502, and on the outside of the engagement part formed on each of the control pawls 501 and 502,
  • the second sun gear 411a or the second sun gear 411b are respectively positioned.
  • the control pawl 501 and the control pawl 501 which are to be raised in accordance with the rotation angle of the pawl control ring 510 are positioned in the groove portions 513 and 514,
  • the engaging portions of the sun gears 411a and 411b are engaged with the ratchet formed on the inner circumferential surface of the sun gears 411a and 411b to restrict rotation of the corresponding sun gears 411a and 411b.
  • the control unit 500 includes a cable connecting member 550 connected to a cable that is drawn out according to the operation of the shift lever and rotatably supported on an outer circumferential surface of the shaft 100; And an intermediate connecting member (560) which mates with the inner circumferential surface of the cable connecting member (550) and rotates integrally therewith;
  • the angle control member 520 may be inserted into the inner circumferential surface of the intermediate connecting member 560 through the fixed support member 580 without rotating interference, and may transmit rotational force in one direction.
  • the cable connecting member 550 is connected to a cable (not shown) that is pulled according to a shift lever acceleration operation of the driver.
  • a cable not shown
  • the cable connecting member 550 is viewed from the right side in the acceleration operation of the shift lever, .
  • An intermediate connecting member 560 is disposed on the inner circumferential surface of the cable connecting member 550 and an inner circumferential surface of the cable connecting member 550 and an outer circumferential surface of the intermediate connecting member 560 are engaged with each other, do.
  • angle control member 520 is assembled to the inner circumferential surface of the intermediate connecting member 560.
  • two protrusions 523 are formed on the right side of the angle control member 520 so as to protrude from the inner circumferential surface of the intermediate connecting member 560 as shown in FIGS. 13 and 14, 561, and it is preferable that the engaging groove 561 is formed so as to transmit a rotational force to the angle control member 520 only in a counterclockwise direction when viewed from the right side.
  • the protrusion 523 of the angle control member 520 may be inserted into the intermediate connecting member 560 through the inside of the fixed support member 580 and the protrusion 523 may be fixed So that interference with the inner circumferential surface of the support member 580 is prevented.
  • a return spring 570 is provided between the angle control member 520 and the fixed support member 580 so that the angle control member 520 is rotated clockwise by the return spring 570 when viewed from the right side. .
  • a pawl control ring 510 is assembled on the left side of the angle control member 550 so that the pawl control ring 510 rotates in accordance with the rotation of the angle control member 550,
  • the first control pole 501 and the second control pole 502 can be selectively raised or lowered.
  • grooves 513 and 514 are formed on the inner circumferential surface of the pole control ring 510 so that the first control pole 501 and the second control pole 502 are rotated in accordance with the rotation of the pole control ring 510,
  • the control pawls 501 and 502 can be sequentially raised from the pawl seat portion 101 to the groove portions 513 and 514, respectively.
  • control is selectively performed by controlling the control pawls 501 and 502 according to the rotation angle of the pole control ring 510, thereby limiting the rotation of the sun gears 411a and 411b.
  • the direct connection is an initial state in which the shift lever is not operated and all of the control pawls 501 and 502 are laid in the pawl seat portion 101 of the shaft 100 as shown in Fig. ) 411b are all unconstrained.
  • the elastic pawls 220 provided on the driver 200 are engaged with the second teeth 413b formed on the inner peripheral surface of the ring gear 413, so that the rotational force of the driver 200 is transmitted to the ring gear 413 And the rotational force transmitted to the ring gear 413 is output through the hub shell 300.
  • no control pawls 501 and 502 do not constrain the sun gears 411a and 411b, and the spools 210, the driver 200, the elastic pawls 220, 413) - > the rotational force is transmitted to the hub shell 300 so that the output is performed without changing the rotational force.
  • the first control pole 501 is set up and the first sun gear 411a (411a, 411a, 411a, 411a, 411a, But the second control pawl 502 is rested in the pole seat portion 101 and the second sun gear 411b is not restrained.
  • the elastic pawls 220 provided on the driver 200 can not transmit the rotational force to the ring gear 413 because the rotational speed of the ring gear 413 is faster.
  • All of the control pawls 501 and 502 are erected in a state in which the pole control ring 510 is rotated counterclockwise by a certain angle as shown in FIG. 5C by the operation of the shift lever, 411a and 411b are all in a restrained state.
  • the rotation of the second sun gear 411b is restrained so that the small-diameter portion 412b of the planetary gear 412 meshes with the second sun gear 411b,
  • the accelerated rotational force of the planetary gear 412 is transmitted to the ring gear 413 engaged with the first tooth 413a and the rotational force transmitted to the ring gear 413 is transmitted through the hub shell 300 .
  • the elastic pawls 220 provided on the driver 200 can not transmit the rotational force to the ring gear 413 because the rotational speed of the ring gear 413 is faster.
  • the deceleration can be controlled in the above-described reverse order, and the forced shifting function can be smoothly performed by the shifting operation assist device as described above even in the load driving state.
  • the shift operation assist device of the present invention and the hub built-in type transmission having the same can smoothly perform the shift control in the transmission provided with the planetary gear set 410, and the pressure frictional force can be arbitrarily adjusted, Thereby improving the durability of the engine and preventing the components from being damaged. Also, it is possible to increase the convenience of the user and stability of the running of the vehicle, and to maximize the commerciality and market competitiveness of the transmission.
  • the present invention as described above makes it possible to smoothly perform the shift control in the transmission provided with the planetary gear set and also to control the pressing frictional force arbitrarily so as to appropriately perform the forced shifting so as to prevent the component parts from being damaged, While preventing a large shift shock, thereby enhancing convenience for the user and stability of driving, and maximizing the commerciality and market competitiveness of the transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Structure Of Transmissions (AREA)
  • Gear-Shifting Mechanisms (AREA)

Abstract

본 발명은 변속 조작 조력장치 및 이를 구비한 허브 내장형 변속기에 관한 것으로서, 특히, 유성기어세트의 변속을 위해 태양기어의 회전을 선택적으로 제한하는 폴의 눕힘을 제어함에 있어서 작은 조작력으로도 변속 제어가 원활하게 이루어지도록 하는 한편, 이러한 변속 조작 조력장치를 구비한 허브 내장형 변속기를 제공하기 위한 장치에 관한 것으로서, 회전각도에 따라 내주면은 샤프트(100)에 마련된 제어폴(501)(502)의 눕힘을 제어하며, 외주면에 회전제한돌부(511) 및 일방향 경사 요홈(512)이 형성된 폴제어링(510)과; 상기 샤프트(100)에 지지되어 회전력을 입력받아 회전하는 드라이버(200)의 내주 측에 위치하여 변속 조작에 따라 회전하고, 원주방향의 유격을 가지고 상기 회전제한돌부(511)를 수용하는 회전제한요부(521)가 외주에 형성된 각도 제어부재(520)와; 구 또는 원기둥 형상으로 이루어져 반경방향으로 유동 가능하게 상기 각도 제어부재(520)에 지지되어 상기 폴제어링(510)의 일방향 경사 요홈(512)과 상기 드라이버(200)의 내주면 사이에 위치하는 가압부재(530)와; 상기 폴제어링(510)과 상기 각도 제어부재(520) 사이에 연결되어 상기 각도 제어부재(520)를 기준으로 상기 폴제어링(510)이 회전하도록 탄성 지지하는 탄성연결체(540)와; 상기 샤프트(100)에 회전 불가하게 위치 고정되어 베어링(604)을 매개로 상기 드라이버(200)를 회전 가능하게 지지하는 고정지지부재(580)와; 상기 각도 제어부재(520)와 상기 고정지지부재(580) 사이에 연결되어, 변속 조작에 따라 일방향으로 회전하는 상기 각도 제어부재(520)를 탄력적으로 역방향 회전시켜 복귀시키는 복귀스프링(570)을 포함하여, 내구성을 향상시키는 한편, 사용자의 편의성 및 주행 안정성을 높이고 변속기에 대한 상품성 및 시장경쟁력을 극대화시킬 수 있도록 하는 것이다.

Description

변속 조작 조력장치 및 이를 구비한 허브 내장형 변속기
본 발명은 변속 조작 조력장치 및 이를 구비한 허브 내장형 변속기에 관한 것으로서 특히, 유성기어세트의 변속을 위해 태양기어의 회전을 선택적으로 제한하는 폴의 눕힘을 제어함에 있어서, 가압 마찰력에 따라 강제 변속이 적절하게 이루어지도록 하는 한편, 이러한 변속 조작 조력장치를 구비한 허브 내장형 변속기를 제공하기 위한 것으로써, 내구성을 향상시키는 한편, 사용자의 편의성 및 주행 안정성을 높이고 변속기에 대한 상품성 및 시장경쟁력을 극대화시킬 수 있는 장치에 관한 것이다.
일반적으로 차륜이 마련되어져 인력을 전달받거나 혹은 전동력 등의 각종 구동력을 이용하여 주행하는 자전거, 휠체어, 자동차, 스쿠터 등의 운송장치에는 주행성능을 향상시키기 위한 변속기가 마련된다.
이러한 변속기는 탑승자 혹은 사용자의 조작에 따라 저속으로부터 고속에 이르기까지 둘 이상의 다단으로 변속을 실시하여, 주행 환경에 따라 요구되는 토크 또는 속도를 적절하게 얻을 수 있는 것이다.
특히, 최근에는 태양기어, 유성기어, 링기어, 그리고 캐리어로 이루어진 유성기어세트를 허브쉘 내에 마련하여 콤팩트한 구성을 통해 다단으로 속도를 변속하도록 하는 동시에 기어가 외부로 노출되는 것 또한 방지하고 있는 실정이다.
그러나, 유성기어세트를 이용하는 종래의 변속기는 부하 구동 주행 상태에서 구동 부하에 의해 폴이 태양기어의 내주면에 형성된 래칫에 강하게 구속된 상태이기 때문에, 변속 조작 시 태양기어로부터 폴이 해제되지 않아 원활한 변속이 이루어지지 않고 있다는 종래 기술상의 문제점이 있었다.
이뿐 아니라, 강제 변속 시 회전체와 구속체 상호간에 발생하는 가압 마찰력에 대한 고찰이 이루어지지 않아, 너무 미약한 가압 마찰력에 의해 강제 변속 기능을 적절하게 수행하지 못하거나, 혹은 너무 과도한 가압 마찰력에 의한 강제 변속으로 인해 구성 부품의 손상이나 큰 변속 충격이 발생하고 있다는 종래 기술상의 문제점도 가지고 있었다.
본 발명은 상기의 문제점을 해소하기 위한 것으로, 유성기어세트를 구비한 변속기에서 변속 제어가 원활하게 이루어질 수 있도록 하는 동시에, 가압 마찰력에 따라 강제 변속이 적절하게 이루어지도록 함으로써 구성 부품의 손상을 예방하여 내구성을 향상시키는 한편, 큰 변속 충격을 방지하여 사용자의 편의성 및 주행 안정성을 높이고 변속기에 대한 상품성 및 시장경쟁력을 극대화시킬 수 있도록 하는 변속 조작 조력장치 및 이를 구비한 허브 내장형 변속기를 제공하고자 한다.
이러한 본 발명에 따른 변속 조작 조력장치는, 회전각도에 따라 내주면은 샤프트에 마련된 제어폴의 눕힘을 제어하며, 외주면에 회전제한돌부 및 일방향 경사 요홈이 형성된 폴제어링과; 상기 샤프트에 지지되어 회전력을 입력받아 회전하는 드라이버의 내주 측에 위치하여 변속 조작에 따라 회전하고, 원주방향의 유격을 가지고 상기 회전제한돌부를 수용하는 회전제한요부가 외주에 형성된 각도 제어부재와; 구 또는 원기둥 형상으로 이루어져 반경방향으로 유동 가능하게 상기 각도 제어부재에 지지되어 상기 폴제어링의 일방향 경사 요홈과 상기 드라이버의 내주면 사이에 위치하는 가압부재와; 상기 폴제어링과 상기 각도 제어부재 사이에 연결되어 상기 각도 제어부재를 기준으로 상기 폴제어링이 회전하도록 탄성 지지하는 탄성연결체와; 상기 샤프트에 회전 불가하게 위치 고정되어 베어링을 매개로 상기 드라이버를 회전 가능하게 지지하는 고정지지부재와; 상기 각도 제어부재와 상기 고정지지부재 사이에 연결되어, 변속 조작에 따라 일방향으로 회전하는 상기 각도 제어부재를 탄력적으로 역방향 회전시켜 복귀시키는 복귀스프링을 포함하되; 상기 각도 제어부재와 상기 폴제어링 사이에 원주방향으로 위상각 차이가 발생함에 따라, 상기 가압부재가 상기 일방향 경사 요홈을 타고 외측으로 이동하면서 상기 드라이버의 내주면에 가압 마찰 접촉함으로써, 상기 드라이버와 상기 가압부재 사이에 발생하는 가압 마찰력의 크기에 따라 상기 드라이버의 회전력이 상기 폴제어링에 선택적으로 전달되어 상기 제어폴의 강제 눕힘이 조절 가능함으로써 달성된다.
이때, 상기 폴제어링의 외주면에 대한 상기 일방향 경사 요홈의 경사각이 작을수록 또는 상기 복귀스프링의 탄성계수가 클수록 상기 드라이버와 상기 가압부재 사이에 발생하는 가압 마찰력을 증대시킬 수 있고; 상기 폴제어링의 외주면에 대한 상기 일방향 경사 요홈의 경사각이 클수록 또는 상기 복귀스프링의 탄성계수가 작을수록 상기 드라이버와 상기 가압부재 사이에 발생하는 가압 마찰력을 저감시킬 수 있는 것이 양호할 것이다.
이와 더불어, 상기 폴제어링의 외주면에 대한 상기 일방향 경사 요홈의 경사각은 12~20°인 것이 바람직할 것이다.
그리고, 본 발명에 따른 변속 조작 조력장치를 구비한 허브 내장형 변속기는, 차체에 고정된 샤프트와; 상기 샤프트의 외주에 회전 가능하게 위치하여 회전력을 입력받는 드라이버 및 회전력을 출력시키는 허브쉘과; 상기 허브쉘의 내부에 마련되어 태양기어, 유성기어, 링기어로 이루어진 유성기어세트를 포함하되, 상기 드라이버는 상기 유성기어를 회전 가능하게 지지하여 캐리어로 기능하며, 상기 드라이버에는 외측을 향하여 돌출되도록 탄성 지지되는 탄성폴이 마련되며, 상기 링기어의 내주면에는 상기 유성기어와 치합하기 위한 제1치형과 함께 상기 탄성폴에 치합하기 위한 제2치형이 추가 형성되어, 상기 드라이버로 입력되는 회전력을 변속시켜 상기 허브쉘로 출력시키는 변속부와; 변속레버의 조작에 따라 원주방향으로 회전하면서 상기 샤프트의 외주면에 형성된 폴자리부에 위치하는 제어폴을 컨트롤하여 상기 태양기어의 회전을 선택적으로 제한함으로써 상기 변속부의 변속을 제어하며, 상술한 변속 조작 조력장치를 포함하는 제어부로 구성함으로써 달성될 수 있다.
여기에서, 상기 제어부는, 변속레버의 조작에 따라 인출되는 케이블이 연결되어 상기 샤프트의 외주면에 회전 가능하게 지지되는 케이블 연결부재와; 상기 케이블 연결부재의 내주면에 치합하여 일체로 회전하는 중간 연결부재를 포함하며; 상기 각도 제어부재는 회전 간섭 없이 상기 고정지지부재를 관통하여 상기 중간 연결부재의 내주면에 조립되어, 일방향으로 회전력을 전달하는 것이 양호할 것이다.
게다가, 상기 유성기어는 1단 또는 2단 이상의 다단 유성기어로 이루어지며, 상기 제어폴 및 상기 태양기어는 상기 유성기어의 단수에 대응하여 추가 구성되어, "유성기어의 단수+1"의 변속단수로 변속 가능한 것이 바람직할 것이다.
이상과 같은 본 발명은 유성기어세트를 구비한 변속기에서 변속 제어가 원활하게 이루어질 수 있도록 하는 동시에, 가압 마찰력을 임의로 조절할 수 있어 강제 변속이 적절하게 이루어지도록 함으로써 구성 부품의 손상을 예방하여 내구성을 향상시키는 한편, 큰 변속 충격을 방지하여 사용자의 편의성 및 주행 안정성을 높이고 변속기에 대한 상품성 및 시장경쟁력을 극대화시킬 수 있는 발명인 것이다.
도 1은 본 발명의 변속 조작 조력장치를 나타내는 좌측 사시도,
도 2는 본 발명의 변속 조작 조력장치를 나타내는 우측 사시도,
도 3은 본 발명의 변속 조작 조력장치를 나타내는 좌측 분해사시도,
도 4는 본 발명의 변속 조작 조력장치를 나타내는 우측 분해사시도,
도 5는 본 발명의 변속 조작 조력장치에 대한 동작을 나타내는 우측 단면도,
도 6은 본 발명의 변속 조작 조력장치에 있어서 폴제어링을 나타내는 우측면도,
도 7은 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기를 나타내는 좌측 사시도,
도 8은 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기를 나타내는 우측 사시도,
도 9는 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기를 나타내는 정면도,
도 10은 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기를 나타내는 정단면도,
도 11은 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 좌측 체결수단을 분해한 좌측 분해사시도,
도 12는 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 좌측 체결수단을 분해한 우측 분해사시도,
도 13은 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 우측 체결수단을 분해한 좌측 분해사시도,
도 14는 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 우측 체결수단을 분해한 우측 분해사시도,
도 15는 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 허브쉘을 분해한 좌측 분해사시도,
도 16은 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 허브쉘을 분해한 우측 분해사시도,
도 17은 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 링기어를 분해한 좌측 분해사시도,
도 18은 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 링기어를 분해한 우측 분해사시도,
도 19는 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 드라이버를 분해한 좌측 분해사시도,
도 20은 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 드라이버를 분해한 우측 분해사시도,
도 21은 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 태양기어를 분해한 좌측 분해사시도,
도 22는 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 태양기어를 분해한 우측 분해사시도.
[부호의 설명]
100 : 샤프트 101 : 폴자리부
200 : 드라이버 210 : 스프로켓
220 : 탄성폴 221 : 지지축
222 : 코일스프링 300 : 허브쉘
301 : 홀 310 : 먼지커버
400 : 변속부 410 : 유성기어세트
411a, 411b : 태양기어 412 : 유성기어
412a : 대경부 412b : 소경부
413 : 링기어 413a : 제1치형
413b : 제2치형 420 : 탄성폴
500 : 제어부 501 : 제1제어폴
502 : 제2제어폴 510 : 폴제어링
511 : 회전제한돌부 512 : 일방향 경사 요홈
513, 514 : 홈부 515 : 걸림홈
520 : 각도 제어부재 521 : 회전제한요부
522 : 조립공 523 : 돌기
530 : 가압부재 540 : 탄성연결체
550 : 케이블 연결부재 560 : 중간 연결부재
561 : 결합홈 570 : 복귀스프링
601 : 콘 너트 603, 604, 605 : 베어링
도 1은 본 발명의 변속 조작 조력장치를 나타내는 좌측 사시도이며, 도 2는 본 발명의 변속 조작 조력장치를 나타내는 우측 사시도이다.
또한, 도 3은 본 발명의 변속 조작 조력장치를 나타내는 좌측 분해사시도이고, 도 4는 본 발명의 변속 조작 조력장치를 나타내는 우측 분해사시도이다.
그리고, 도 5는 본 발명의 변속 조작 조력장치에 대한 동작을 나타내는 우측 단면도이며, 도 6은 본 발명의 변속 조작 조력장치에 있어서 폴제어링을 나타내는 우측면도이다.
또한, 도 7은 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기를 나타내는 좌측 사시도이고, 도 8은 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기를 나타내는 우측 사시도이다.
이와 함께, 도 9는 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기를 나타내는 정면도이며, 도 10은 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기를 나타내는 정단면도이다.
게다가, 도 11은 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 좌측 체결수단을 분해한 좌측 분해사시도이고, 도 12는 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 좌측 체결수단을 분해한 우측 분해사시도이다.
도 13은 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 우측 체결수단을 분해한 좌측 분해사시도이며, 도 14는 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 우측 체결수단을 분해한 우측 분해사시도이다.
그리고, 도 15는 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 허브쉘을 분해한 좌측 분해사시도이고, 도 16은 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 허브쉘을 분해한 우측 분해사시도이다.
또한, 도 17은 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 링기어를 분해한 좌측 분해사시도이며, 도 18은 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 링기어를 분해한 우측 분해사시도이다.
게다가, 도 19는 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 드라이버를 분해한 좌측 분해사시도이고, 도 20은 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 드라이버를 분해한 우측 분해사시도이다.
마지막으로, 도 21은 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 태양기어를 분해한 좌측 분해사시도이며, 도 22는 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 태양기어를 분해한 우측 분해사시도이다.
본 발명의 변속 조작 조력장치 및 이를 구비한 허브 내장형 변속기는 유성기어세트(410)를 구비한 변속기에서 변속 제어가 원활하게 이루어질 수 있도록 하는 동시에, 가압 마찰력을 임의로 조절할 수 있어 강제 변속이 적절하게 이루어지도록 함으로써 구성 부품의 손상을 예방하여 내구성을 향상시키는 한편, 큰 변속 충격을 방지하여 사용자의 편의성 및 주행 안정성을 높이고 변속기에 대한 상품성 및 시장경쟁력을 극대화시킬 수 있는 것을 그 기술상의 기본 특징으로 한다.
본 발명의 실시예를 첨부 도면을 참조하여 상세히 설명하면 다음과 같다.
우선 본 발명에 따른 변속 조작 조력장치는 도 1 내지 도 6에 도시한 바와 같이, 회전각도에 따라 내주면은 샤프트(100)에 마련된 제어폴(501)(502)의 눕힘을 제어하며, 외주면에 회전제한돌부(511) 및 일방향 경사 요홈(512)이 형성된 폴제어링(510)과; 상기 샤프트(100)에 지지되어 회전력을 입력받아 회전하는 드라이버(200)의 내주 측에 위치하여 변속 조작에 따라 회전하고, 원주방향의 유격을 가지고 상기 회전제한돌부(511)를 수용하는 회전제한요부(521)가 외주에 형성된 각도 제어부재(520)와; 구 또는 원기둥 형상으로 이루어져 반경방향으로 유동 가능하게 상기 각도 제어부재(520)에 지지되어 상기 폴제어링(510)의 일방향 경사 요홈(512)과 상기 드라이버(200)의 내주면 사이에 위치하는 가압부재(530)와; 상기 폴제어링(510)과 상기 각도 제어부재(520) 사이에 연결되어 상기 각도 제어부재(520)를 기준으로 상기 폴제어링(510)이 회전하도록 탄성 지지하는 탄성연결체(540)와; 상기 샤프트(100)에 회전 불가하게 위치 고정되어 베어링(604)을 매개로 상기 드라이버(200)를 회전 가능하게 지지하는 고정지지부재(580)와; 상기 각도 제어부재(520)와 상기 고정지지부재(580) 사이에 연결되어, 변속 조작에 따라 일방향으로 회전하는 상기 각도 제어부재(520)를 탄력적으로 역방향 회전시켜 복귀시키는 복귀스프링(570)을 포함하는 것이 바람직하다.
즉, 본 발명의 변속 조작 조력장치는 크게, 폴제어링(510), 각도 제어부재(520), 가압부재(530), 탄성연결체(540), 고정지지부재(580), 그리고 복귀스프링(570)을 포함하고 있다.
이와 같은 본 발명의 변속 조작 조력장치는 기본적으로 유성기어세트를 포함하는 변속기에 마련되어, 미도시한 변속레버의 조작에 따라 원주방향으로 회전하면서 샤프트(100)의 외주면에 마련된 다수의 제어폴(501)(502)을 컨트롤하여 태양기어의 회전을 선택적으로 제한함으로써 변속을 실시하는 변속 제어 기능을 가지고 있다.
이때, 상기 유성기어세트를 구성하는 유성기어의 단수를 가감 설정하는 것이 가능할 것이며, 이하에서는 설명의 편의를 위하여 2단의 유성기어가 마련된 예를 기본으로 하여 설명하겠지만, 이에 한정되는 것은 아니며 예를 들어 1단의 유성기어가 마련되거나 혹은 3단 이상의 유성기어가 마련될 수 있을 것이다.
그리고, 부하 구동 상태에서 이러한 제어폴(501)(502)은 태양기어의 내주면에 형성된 래칫에 강하게 맞물려 있기 때문에, 변속 제어 시 제어폴(501)(502)이 태양기어의 래칫으로부터 빠져나오지 못하여 변속이 원활하게 이루어지지 않는 현상이 발생할 우려가 있었으나, 본 발명의 변속 조작 조력장치에 따르면 이러한 부하 구동 상태에서도 사용자는 강제 변속 기능을 통해 변속 제어를 원활하게 수행할 수 있도록 하는 것이다.
특히, 본 발명에 따르면 강제 변속 시 회전체인 드라이버(200)와 구속체인 가압부재(530) 상호간에 발생하는 가압 마찰력을 적절하게 가감 설정하는 것이 가능하기 때문에, 강제 변속 기능이 적절하게 이루어지도록 할 수 있게 된다는 점에 가장 큰 특징이 있는 것이다.
즉, 본 발명의 변속 조작 조력장치는 기본적으로 변속 제어 기능과 강제 변속 기능을 보유하고 있으며, 이에 추가적으로 강제 변속 기능이 수행될 수 있는 가압 마찰력의 크기를 적절하게 가감 조절할 수 있다는 점에 큰 차이점을 가지고 있다.
이러한 본 발명의 변속 조작 조력장치에 있어서 우선 폴제어링(510)은 대략 링 형상으로 이루어진 것으로 그 내주면에 홈부(513)(514)가 오목하게 형성되어 있다.
이 때문에, 상기 폴제어링(510)의 원주방향 회전 각도에 따라 도 5의 (c)와 같이 제어폴(501)(502)의 외측에 홈부(513)(514)가 위치할 경우 해당 제어폴(501)(502)이 탄력적으로 세워질 수 있고, 도 5의 (a)와 같이 홈부(513)(514)가 위치하지 않을 경우 해당 제어폴(501)(502)이 눕혀져 폴자리부(101) 내에 위치할 수 있는 것이다.
그리고, 상기 폴제어링(510)의 외주면에는 회전제한돌부(511) 및 일방향 경사 요홈(512)이 형성되어 있다.
여기에서, 상기 회전제한돌부(511)는 원주방향을 따라 소정의 각도로 형성되는 돌출 부분이며, 이러한 회전제한돌부(511)는 이후에 설명할 각도 제어부재(520)의 회전제한요부(521) 내에 위치하게 될 것이다.
그리고, 일방향 경사 요홈(512)은 상기 폴제어링(510)의 외주면에 대하여 경사지게 형성되는 오목한 부분이며, 양측이 서로 다른 경사각으로 이루어져 있어 방향성을 가지고 있는 것으로, 이러한 일방향 경사 요홈(512) 내에는 이후에 설명할 가압부재(530)가 위치하게 될 것이다.
특히, 이러한 일방향 경사 요홈(512)에 있어서 한 쪽 경사면은 단순히 이하에 설명할 가압부재(530)를 이동시키기 위한 이동 경사면에 해당하고, 반대 쪽 경사면은 가압부재(530)가 일방향 경사 요홈(512) 내에서 구속되도록 하기 위한 구속 경사면에 해당하는 것이다.
즉, 이하에서 언급하는 일방향 경사 요홈(512)의 경사각이란 도 6에 예시한 구속 경사면의 형성 각도를 지칭하는 것이다.
다음으로, 각도 제어부재(520)는 변속 조작에 따라 회전하여 그 회전력을 상술한 폴제어링(510)에 전달하는 구성으로, 회전 불가하게 고정되어 있는 샤프트(100)의 외주면 상에서 회전 가능하게 지지되며, 외부로부터 회전력을 입력받아 회전하는 드라이버(200)의 내주 측에 위치하게 된다.
이러한 각도 제어부재(520)에는 원주방향의 유격을 가지고 상기 폴제어링(510)의 회전제한돌부(511)를 수용하는 회전제한요부(521)가 외주에 형성되어 있다.
여기에서, 상기 회전제한요부(521)가 원주방향의 유격을 가지고 상기 회전제한돌부(511)를 수용하기 위하여, 상기 회전제한요부(521)의 형성 각도는 상기 회전제한돌부(511)의 형성 각도보다 다소 폭 넓게 형성되어 있는 것이다.
그리고, 상술한 폴제어링(510)의 일방향 경사 요홈(512) 내에는 가압부재(530)가 위치하게 되며, 도면에는 하나의 각도 제어부재(520)에 4개의 가압부재(530)가 마련된 것을 예시하였다.
상기 가압부재(530)는 구 또는 원기둥 형상으로 이루어져 반경방향으로 유동 가능하게 상기 각도 제어부재(520)에 지지되어 상기 폴제어링(510)의 일방향 경사 요홈(512)과 상기 드라이버(200)의 내주면 사이에 위치하게 된다.
다음으로, 상기 폴제어링(510)과 상기 각도 제어부재(520) 사이에는 도 3에 예시한 탄성연결체(540)가 연결되어 있다.
이때, 상기 탄성연결체(540)의 양단이 직각으로 절곡되어 그 절곡 부위가 상기 폴제어링(510)에 형성된 걸림홈(515)과 상기 각도 제어부재(520)에 형성된 조립공(522)에 각각 삽입되어 걸쳐지도록 조립할 수 있는 것이다.
이에 따라, 상기 각도 제어부재(520)를 기준으로 상기 폴제어링(510)이 도 5 및 도 6에 있어서 시계방향으로 회전하도록 탄성 지지하는 것이 가능해진다.
이와 같이, 상기 폴제어링(510)의 외주면에 돌출 형성된 회전제한돌부(511)는 그 폭이 상기 각도 제어부재(520)에 형성된 회전제한요부(521) 보다 다소 좁게 형성되어 있기 때문에, 상기 폴제어링(510)과 상기 각도 제어부재(520) 사이에는 도 5의 (d) 및 (e)와 같이 원주방향으로 소정의 위상각도 차이가 발생할 수 있는 것이다.
이에 따라, 상기 폴제어링(510)은 상기 각도 제어부재(520)를 기준으로 도면상 우측에서 보았을 때, 항상 시계방향으로 회전하도록 탄성 지지되어, 상기 회전제한돌부(511)는 상기 회전제한요부(521) 내에 위치하되 별도의 외력이 작용하지 않는 한 항상 시계방향으로 회전하여 서로 접촉한 상태를 유지하게 되는 것이다.
이러한 상태에서 저속으로부터 고속으로의 변속을 위해 사용자가 변속레버를 조작할 경우 도 5의 (a)에서 (b)로, 또는 도 5의 (b)에서 (c)로 상기 각도 제어부재(520)가 반시계방향으로 회전하며, 이에 따라 상기 폴제어링(510)도 함께 반시계방향으로 회전하게 된다.
그 결과, 상기 폴제어링(510)의 홈부(513)(514)에 위치하는 해당 제어폴(501)(502)이 탄력적으로 세워지면서 가속 변속이 이루어질 수 있는 것이다.
도 5에 있어서 (a)는 제어폴(501)(502) 모두가 눕혀진 상태이며, 도 5의 (b)는 제1제어폴(501)은 세워지고 제2제어폴(502)은 눕혀진 상태이고, 도 5의 (c)는 제어폴(501)(502) 모두가 세워진 상태이다.
이에 반해, 고속으로부터 저속으로의 변속을 위해 사용자가 변속레버를 감속 조작할 경우 상기 각도 제어부재(520)가 시계방향으로 회전하게 되며, 이와 같은 각도 제어부재(520)의 시계방향 회전은 이하에 설명할 고정지지부재(580) 및 복귀스프링(570)에 의한 것이다.
이에 따라 상기 각도 제어부재(520)와 상기 폴제어링(510) 사이에 연결되어 있는 탄성연결체(540)에 의해 상기 폴제어링(510)도 시계방향으로 회전한다.
그 결과, 상기 폴제어링(510)의 홈부(513)(514)에 위치하던 제어폴(501)(502)이 도 5의 (c)에서 (b)로, 또는 도 5의 (b)에서 (a)로 눕혀지면서 감속 변속이 이루어질 수 있는 것이다.
그러나 부하 구동 상태와 같이 제어폴(501)(502)이 태양기어의 래칫에 강하게 맞물려 있을 경우, 상기 폴제어링(510)이 탄성연결체(540)의 탄성복원력에 의해 상기 각도 제어부재(520)와 함께 시계방향으로 회전하지 못하고 도 5의 (d)와 같이 원주방향으로 소정의 위상각도 차이가 발생할 수 있다.
이러한 경우에는, 상기 가압부재(530)가 상기 일방향 경사 요홈(512)의 경사면에 접촉하여 바깥쪽으로 돌출되며 그 외측에서 회전하고 있는 드라이버(200)의 내주면에 가압 마찰 접촉하게 된다.
이에 따라, 상기 드라이버(200)와 상기 가압부재(530) 사이에서 발생하는 가압 마찰력에 의해 상기 드라이버(200)의 회전력이 상기 가압부재(530)를 통해 상기 폴제어링(510)에 전달된다.
따라서, 상기 탄성연결체(540)의 탄성복원력에만 의존하지 않고, 상기 폴제어링(510)에는 도 5의 (e)와 같이 시계방향으로 강하게 드라이버(200)의 회전력이 전달되어 상기 폴제어링(510)을 강제적으로 회전시키게 된다.
그 결과, 상기 폴제어링(510)이 시계방향으로 회전하여 태양기어의 래칫에 강하게 맞물려 있던 해당 제어폴(501)(502)을 강제적으로 눕혀주게 됨으로써, 감속 변속이 완료될 수 있는 것이다.
따라서, 상기 각도 제어부재(520)와 상기 폴제어링(510) 사이에 원주방향으로 위상각 차이가 발생함에 따라, 상기 가압부재(530)가 상기 일방향 경사 요홈(512)을 타고 외측으로 이동하면서 상기 드라이버(200)의 내주면에 가압 마찰 접촉함으로써, 상기 폴제어링(510)을 가압 회전시켜 제어폴(501)(502)의 강제 눕힘이 가능한 것이다.
다음으로, 고정지지부재(580)는 대략 콘 형상으로 이루어진 것으로, 상기 샤프트(100)에 회전 불가하게 위치 고정된다.
이를 위해, 상기 고정지지부재(580)의 내주면에는 도 3 및 도 4와 같이 요철(582)이 형성되어 있으며, 이러한 요철(582)은 샤프트(100)에 형성된 요철(102)에 축방향으로 조립됨으로써, 상기 고정지지부재(580)가 샤프트(100)에 회전 불가능하게 위치한다.
이와 더불어, 상기 고정지지부재(580)의 외주에는 베어링(604)이 마련되어 외부로부터 회전력을 입력받아 회전하는 드라이버(200)가 상기 샤프트(100)로부터 독립적으로 회전 가능하게 지지된다.
마지막으로, 복귀스프링(570)은 상기 각도 제어부재(520)와 상기 고정지지부재(580) 사이에 연결되어, 가속 변속 조작에 따라 상술한 바와 같이 반시계방향으로 회전하였던 상기 각도 제어부재(520)를 감속 변속 조작 시 탄력적으로 시계방향으로 회전시켜 복귀시키는 역할을 한다.
이를 위해, 상기 복귀스프링(570)의 양단 또한 직각으로 절곡되어 그 절곡 부위가 도 3 및 도 4와 같이 상기 각도 제어부재(520)에 형성된 조립공(524)과 상기 고정지지부재(580)에 형성된 조립공(581)에 각각 삽입되어 걸쳐지도록 조립할 수 있는 것이다.
그 결과, 상술한 바와 같이 가속 변속 조작에 따라 상기 각도 제어부재(520)와 상기 폴제어링(510)이 반시계방향으로 회전하며, 감속 변속 조작에 따라 상기 복귀스프링(570)이 상기 각도 제어부재(520)를 시계방향으로 탄성 복귀시킬 수 있게 된다.
이에 따라, 본 발명의 변속 조작 조력장치는 변속 레버에 의한 가속 및 감속 변속에 대한 변속 제어 기능과 함께, 부하 구동 시 강제 변속 기능을 기본적으로 수행할 수 있게 된다.
위에서 설명한 바와 같이 강제 변속 기능은 회전체인 드라이버(200)와 구속체인 가압부재(530) 상호간에 발생하는 가압 마찰력에 의해 수행되는 것이다.
본 출원인은 상술한 바와 같이 강제 변속 기능을 보유한 변속기를 더 한층 개발하는 과정에서 드라이버(200)와 가압부재(530) 상호간에 발생하는 가압 마찰력의 조절이 변속기에 있어서 중요한 변수가 되는 것을 알게 되었다.
예를 들어, 드라이버(200)와 가압부재(530) 상호간에 발생하는 가압 마찰력을 단순히 높게 설정해 놓는다면 작용하고 있는 부하가 큰 상태에서 강제 변속이 실시될 경우, 제어폴(501)(502)이 손상되거나 혹은 큰 변속충격에 의해 안전 사고의 발생 위험이 높아진다.
이와는 반대로, 드라이버(200)와 가압부재(530) 상호간에 발생하는 가압 마찰력을 단순히 낮게 설정해 놓는다면 드라이버(200)와 가압부재(530) 사이에 소망하는 가압 마찰력이 발생치 않고 그 접촉면이 미끄러져 소망하는 강제 변속이 이루어지지 않는 현상이 발생하기도 하였다.
이에 따라, 본 발명에 있어서는 상기 폴제어링(510)의 외주면에 대한 상기 일방향 경사 요홈(512)의 경사각이나 상기 복귀스프링(570)의 탄성계수를 적절하게 설정함으로써, 상기 드라이버(200)와 상기 가압부재(530) 상호간에 작용하는 가압 마찰력을 적절하게 조정하는 것이 가능함을 알 수 있었다.
여기에서 일방향 경사 요홈(512)의 경사각이란 앞서 설명한 바와 같이 구속 경사면과 폴제어링(510)의 외주면이 형성하는 각도를 지칭하는 것이다.
즉, 폴제어링(510)에 있어서 일방향 경사 요홈(512)의 경사각과 복귀스프링(570)의 탄성계수를 적절하게 설정함으로써, 드라이버(200)와 가압부재(530) 사이에 발생하는 가압 마찰력을 적절하게 조절하는 것이 가능해진다.
다시 말해, 본 발명에 있어서는 상기 폴제어링(510)의 외주면에 대한 상기 일방향 경사 요홈(512)의 경사각이 작을수록 또는 상기 복귀스프링(570)의 탄성계수가 클수록 상기 드라이버(200)와 상기 가압부재(530) 사이에 발생하는 가압 마찰력을 증대시킬 수 있고; 상기 폴제어링(510)의 외주면에 대한 상기 일방향 경사 요홈(512)의 경사각이 클수록 또는 상기 복귀스프링(570)의 탄성계수가 작을수록 상기 드라이버(200)와 상기 가압부재(530) 사이에 발생하는 가압 마찰력을 저감시킬 수 있는 것이 바람직할 것이다.
이에 따르면, 예를 들어, 소정 각도 이상의 높은 경사로를 주행함에 따라 회전 부하가 크게 작용하는 상태에서는 드라이버(200)와 가압부재(530) 상호간에 발생하는 가압 마찰력이 일정 수준 이상에서 미끄러지도록 유도함으로써, 강제 변속을 실시하지 않도록 하여 구성 부품의 손상을 예방하는 동시에 큰 변속충격에 의한 안전 사고를 방지할 수 있는 것이다.
이뿐 아니라, 회전 부하가 비교적 작게 작용하는 상태에서도 드라이버(200)와 가압부재(530) 상호간의 가압 마찰력을 유도하여 쉽게 강제 변속이 이루어지도록 함으로써 원활한 변속이 이루어지도록 유도하는 것도 가능하다.
이와 더불어, 본 출원인은 상기 폴제어링(510)의 외주면에 대한 상기 일방향 경사 요홈(512)의 경사각을 다양하게 변경시키면서 시험해 본 결과, 특히, 본 발명에 있어서 상기 폴제어링(510)의 외주면에 대한 상기 일방향 경사 요홈(512)의 경사각은 12~20°인 것이 가장 바람직한 것으로 확인되었다.
이러한 상기 경사각의 각도를 12°미만으로 설계할 경우 드라이버(200)와 가압부재(530) 사이에서 발생하는 가압 마찰력의 크기가 너무 커져 구성 부품의 손상이나 변속 충격이 심하게 발생하는 것으로 확인되었다.
그리고, 상기 경사각의 각도를 20°를 초과하도록 설계할 경우 일방향 경사 요홈(512)과 드라이버(200)의 내주면 사이에 미끄러짐이 너무 쉽게 발생하게 되어 가압 마찰력에 의한 가압부재(530)의 구속이 원활하게 이루어지지 않는 현상이 발생하였다.
즉, 본 발명에 있어서는 상기 폴제어링(510)의 외주면에 대한 상기 일방향 경사 요홈(512)의 경사각을 12~20°로 한정하는 것이 가장 바람직한 것으로 나타났다.
이하에서는 상술한 본 발명의 변속 조작 조력장치가 실제로 허브 내장형 변속기에 적용되는 예에 대하여 설명하기로 한다.
즉, 본 발명에 따른 변속 조작 조력장치를 구비한 허브 내장형 변속기는 도 7 내지 도 10에 도시한 바와 같이, 차체에 고정된 샤프트(100)와; 상기 샤프트(100)의 외주에 회전 가능하게 위치하여 회전력을 입력받는 드라이버(200) 및 회전력을 출력시키는 허브쉘(300)과; 상기 허브쉘(300)의 내부에 마련되어 태양기어(411a)(411b), 유성기어(412), 링기어(413)로 이루어진 유성기어세트(410)를 포함하되, 상기 드라이버(200)는 상기 유성기어(412)를 회전 가능하게 지지하여 캐리어로 기능하며, 상기 드라이버(200)에는 외측을 향하여 돌출되도록 탄성 지지되는 탄성폴(220)이 마련되며, 상기 링기어(413)의 내주면에는 상기 유성기어(412)와 치합하기 위한 제1치형(413a)과 함께 상기 탄성폴(220)에 치합하기 위한 제2치형(413b)이 추가 형성되어, 상기 드라이버(200)로 입력되는 회전력을 변속시켜 상기 허브쉘(300)로 출력시키는 변속부(400)와; 변속레버의 조작에 따라 원주방향으로 회전하면서 상기 샤프트(100)의 외주면에 형성된 폴자리부(101)에 위치하는 제어폴(501)(502)을 컨트롤하여 상기 태양기어(411a)(411b)의 회전을 선택적으로 제한함으로써 상기 변속부(400)의 변속을 제어하며, 상술한 변속 조작 조력장치를 포함하는 제어부(500)로 구성되는 것이 양호할 것이다.
따라서, 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기는, 크게 샤프트(100), 드라이버(200), 허브쉘(300), 변속부(400), 그리고 상술한 변속 조작 조력장치를 포함하는 제어부(500)로 구성되어 있다.
먼저, 상기 샤프트(100)는 변속이 요구되는 스쿠터, 자전거, 인력거 등(이하 '주행장치'라 한다)의 몸체에 그 양단이 고정 너트 등의 체결수단에 의해 회전 불가능하게 고정 지지된다.
이때, 상기 샤프트(100)는 도 21 및 도 22와 같이 부위에 따라 각기 다른 직경으로 형성되며, 특히 상기 샤프트(100)의 중앙 외주면에는 제어폴(501)(502)의 개수에 대응하여 폴자리부(101)가 소정 위상각 차이를 두고 오목하게 형성되어 있어, 제어폴(501)(502)이 각각 상기 폴자리부(101) 내에 위치하게 된다.
이러한 샤프트(100)는 본 발명의 뼈대를 이루는 것으로, 이하에서 설명할 구성요소들은 모두 상기 샤프트(100)의 외주에 회전 가능하게 혹은 회전 불가능하게 마련되는 것이다.
다음으로 드라이버(200)는 주행장치로부터 인력 또는 전동력 등의 회전력을 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기로 입력받는 구성으로, 상기 샤프트(100)의 일측에 회전 가능하게 마련된다.
상술한 바와 같이 드라이버(200)의 도면상 우측 내주면에는 도 17 및 도 18과 같이 상기 샤프트(100)에 회전 불가하게 결합한 고정지지부재(580)와, 이 고정지지부재(580)의 외주에 베어링(604)이 마련되어, 상기 드라이버(200)는 상기 샤프트(100)로부터 독립적으로 회전 가능하게 지지되어 있다.
특히, 상기 드라이버(200)에는 스프로켓(210)이 일체로 회전하도록 고정되어, 상기 스프로켓(210)은 예를 들어 체인과 같은 동력전달수단을 통해 외부로부터 구동력을 입력받아 상기 드라이버(200)를 일체로 회전시키게 되는 것이다.
그리고 허브쉘(300)은 상기 샤프트(100)의 최외곽에 위치하여 변속된 종동력을 주행장치의 바퀴 등으로 출력하는 구성인 것이다.
이러한 허브쉘(300)은 대략 원통 형상으로 이루어진 것으로, 그 외주에 바퀴의 살을 연결할 수 있는 다수의 홀(301)이 형성될 수 있으며, 그 내부에 각종 구성요소를 삽입하여 조립할 수 있다.
여기에서, 상기 허브쉘(300)의 좌측 내주면에는 도 11 및 도 12와 같이 상기 샤프트(100)에 결합한 콘 너트(601)와 베어링(603)이 마련되어, 상기 허브쉘(300)은 상기 샤프트(100)로부터 독립적으로 회전 가능하게 지지된다.
다음으로 변속부(400)는 상기 허브쉘(300) 내에 위치하여 상기 드라이버(200)를 통해 입력되는 회전을 다단으로 변속한 후, 상기 허브쉘(300)을 통해 출력시키는 것으로, 유성기어세트(410)를 포함하고 있다.
본 발명에 있어서는 상기 유성기어세트(410)에 의해 실질적인 변속이 이루어지며, 이후 변속된 회전력이 허브쉘(300)로 출력되는 것이다.
이때, 상기 유성기어세트(410)는 태양기어(411a)(411b), 유성기어(412), 링기어(413)로 이루어진 것으로, 특히 본 발명에 있어서는 별물의 캐리어가 마련되지 않고 상술한 드라이버(200)가 상기 유성기어(412)를 회전 가능하게 지지하여 캐리어로 기능하게 되는 것이다.
도 19 및 도 20에 있어서 도면부호 201은 유성기어(412)를 드라이버(200)에 회전 가능하게 지지하기 위한 지지축이며, 도면에는 하나의 드라이버(200)에 3개의 유성기어(412)가 마련된 것을 예시하였지만, 이러한 유성기어(412)의 개수를 적절하게 증감시킬 수 있을 것이다.
물론, 별물의 캐리어를 구성하고 이를 드라이버(200)와 일체로 회전할 수 있도록 구성하는 것도 가능할 것이다.
이에 따라, 상기 유성기어(412)는 상기 드라이버(200)에 자전 가능하게 지지되고, 상기 드라이버(200)의 내측에는 태양기어(411a)(411b)가 위치하여 상기 유성기어(412)의 안쪽으로 치합하며, 상기 드라이버(200) 외측에는 링기어(413)가 마련되어 상기 유성기어(412)의 바깥쪽으로 치합한다.
특히, 본 발명에 있어서 상기 드라이버(200)에는 외측을 향하여 돌출되도록 탄성 지지되는 탄성폴(220)이 마련되어 있다.
이러한 탄성폴(220)은 지지축(221)을 통해 드라이버(200)에 회전 가능하게 지지되며, 이와 함께 별도의 코일스프링(222)에 의해 상기 탄성폴(220)은 일방향으로 회전하도록 탄성 지지된다.
이에 따라, 상기 탄성폴(220)은 주지의 일방향 클러치와 유사한 기능을 수행할 수 있을 것이며, 도면에는 하나의 드라이버(200)에 3개의 탄성폴(220)이 마련된 것을 예시하였다.
이와 더불어, 상기 링기어(413)의 내주면에는 도 17 및 도 18과 같이 상기 유성기어(412)와 치합하기 위한 제1치형(413a)과 함께 상기 탄성폴(220)에 치합하기 위한 제2치형(413b)이 추가 형성되어 있다.
그 결과, 유성기어세트(410)에서 변속된 회전력은 상기 유성기어(412)를 통해 상기 링기어(413)의 제1치형(413a)으로 전달된다.
이와 함께, 상기 드라이버(200)로 입력되는 회전력은 별도의 변속 없이 상기 탄성폴(220)을 통해 상기 링기어(413)의 제2치형(413b)으로 전달될 수도 있는 것이다.
즉, 상기 유성기어세트(410)에서 가속 변속이 이루어지지 않는 경우에는 드라이버(200)의 회전력이 탄성폴(220)을 통해 직접 링기어(413)로 출력되며, 상기 유성기어세트(410)에서 가속 변속이 이루어지는 경우에는 드라이버(200)의 회전속도 보다 유성기어(412)를 통해 변속되어 전달되는 회전속도가 더 빠르기 때문에 상술한 탄성폴(220)에 의한 회전력 전달은 없게 된다.
이와 같이 링기어(413)로 전달되는 회전력은 그 외주에 위치하는 허브쉘(300)에 그대로 전달되며, 이를 위해, 상기 링기어(413)의 외주면과 상기 허브쉘(300)의 내주면은 서로 치합하고 있다.
따라서, 상기 드라이버(200)의 회전력은 가속 없이 그대로 허브쉘(300)에 전달되거나, 혹은 유성기어세트(410)에서 가속 변속되어 허브쉘(300)에 전달될 수 있는 것이다.
이때, 상기 드라이버(200)로 회전력을 입력받아 유성기어(412)를 거쳐 링기어(413)로 출력시킬 경우 가속이 이루어지게 된다.
즉, 본 발명에 있어서 상기 유성기어세트(410)의 변속 여부는 태양기어(411a)(411b)의 회전 가능 여부에 따라 결정될 수 있을 것이며, 이를 위해 이하에 설명할 제어부(500)에 의해 태양기어(411a)(411b)의 회전 가능 여부가 결정될 수 있는 것이다.
이와 같은 상기 태양기어(411a)(411b)의 회전 가능 여부를 결정하는 제어폴(501)(502)의 제어에 대해서는 상술하였지만 이후 제어부(500)에서 다시 한 번 설명하기로 한다.
이에 따라, 상기 변속부(400)에서 가속된 회전력은 상기 유성기어(412)를 통해 링기어(413)를 거쳐 허브쉘(300)로 출력되고, 직결된 회전력은 상기 드라이버(200)의 탄성폴(220)을 통해 링기어(413)를 거쳐 허브쉘(300)로 출력되는 것이다.
또한, 상기 링기어(413)의 내주면과 상기 드라이버(200)의 외주면 사이에는 베어링(605)이 마련되어 상호 독립적으로 회전 가능하며, 도 15 및 도 16에 예시한 먼지커버(310)에 의해 그 사이 공간으로 이물질이 침입하는 것을 방지한다.
상술한 베어링(603)(604)(605)은 볼베어링을 예시하였지만, 미끄럼베어링 등 그 종류에 제한되지는 않는다.
마지막으로, 상기 변속부(400)의 변속을 제어하는 제어부(500)는 상술한 변속 조작 조력장치를 포함하고 있다.
상기 변속 조작 조력장치는 미도시한 변속레버의 조작에 따라 기본적으로 상기 샤프트(100)의 외주면에 마련된 다수의 제어폴(501)(502)을 컨트롤하여 상기 태양기어(411a)(411b)의 회전을 선택적으로 제한하는 변속 제어 기능과, 상술한 강제 변속 기능을 수행하게 되는 것이다.
본 발명은 상술한 바와 같이 운전자의 변속레버 조작에 따라 변속 조작 조력장치가 샤프트(100)의 폴자리부(101)에 마련된 제어폴(501)(502)을 제어함으로써, 유성기어세트(410)에서의 변속 여부가 결정되어 드라이버(200)를 통한 변속 없는 직결 출력 혹은 유성기어세트(410)를 통한 가속된 출력 중 더 빠르게 회전하는 회전력을 선택적으로 허브쉘(300)로 출력시키게 되는 것이다.
특히, 본 발명에 있어서 상기 유성기어(412)는 1단 또는 2단 이상의 다단 유성기어(412)로 이루어지며, 상기 제어폴(501)(502) 및 상기 태양기어(411a)(411b)는 상기 유성기어(412)의 단수에 대응하여 추가 구성되어, "유성기어의 단수+1"의 변속단수로 변속 가능한 것이 바람직할 것이다.
즉, 상기 유성기어세트(410)에 마련되는 유성기어를 미도시하였지만 오직 하나의 직경으로 형성된 1단 유성기어로 구성할 수도 있고, 도면에 예시한 바와 같이 대경부(412a)와 소경부(412b)를 갖는 2단 유성기어(412)로 구성할 수도 있으며, 도시하진 않았지만 세 개의 직경으로 형성된 3단 유성기어로 구성할 수도 있을 뿐 아니라, 4단 이상의 유성기어를 채택하는 것도 가능하다.
예를 들어, 1단 유성기어를 채택할 경우에는 샤프트의 폴자리부에 1개의 제어폴이 마련되고, 오직 하나의 태양기어를 가지고 직결과 가속의 2단 변속비를 구현하는 것이 가능해진다.
또한, 도면에 예시한 바와 같이 2단 유성기어(412)를 채택한다면 샤프트(100)에 2개의 폴자리부(101)가 형성되며, 폴자리부(101) 각각에는 제어폴(501)(502)이 마련되며, 유성기어(412)의 대경부(412a)와 소경부(412b)에 대응하여 2개의 태양기어(411a)(411b)를 가지게 되어, 직결과 가속 2단의 전체 3단 변속비를 구현하는 것이 가능해지는 것이다.
이때, 상기 유성기어(412)의 대경부(412a)에 대응하는 제1태양기어(411a)는 상기 유성기어(412)의 소경부(412b)에 대응하는 제2태양기어(411b)의 직경보다 작게 형성될 것이다.
물론, 도시하진 않았지만 3단의 유성기어를 채택하고, 그에 따라 제어폴의 개수와 태양기어의 개수를 각각 3개로 증가하는 것으로 직결과 가속 3단의 전체 4단 변속비를 구현하는 것 또한 가능해지며, 이와 동일한 형태로 4단 이상의 다단 유성기어를 적용하는 것도 가능하다.
즉, 유성기어세트(410)에 1단을 포함하여 2단 이상의 다단 유성기어(412)를 적용함으로써 직결과 가속에 대하여 각각 다단의 다른 가속 변속비를 얻는 것이 가능해진다.
이하에서는 설명의 편의를 위하여 대경부(412a)와 소경부(412b)의 2단 유성기어(412)가 적용된 유성기어세트(410)를 기준으로 도면을 참조하여 변속부(400)와 제어부(500)의 상세한 구성 및 작용에 대하여 설명하기로 하고, 1단 유성기어나 3단 이상의 유성기어가 적용된 실시예의 중복되는 설명은 생략하기로 한다.
따라서, 본 발명의 일 실시예에 있어서 2단 유성기어(412)를 채택함에 따라 상기 태양기어가 상기 유성기어(412)의 대경부(412a)에 치합하는 제1태양기어(411a)와 상기 유성기어(412)의 소경부(412b)에 치합하는 제2태양기어(411b)로 이루어지게 되며, 샤프트(100)에는 제1제어폴(501) 및 제2제어폴(502)이 마련된다.
이 가운데, 상기 제1태양기어(411a)는 제1제어폴(501)에 의해 회전이 선택적으로 제한되며, 상기 제2태양기어(411b)는 제2제어폴(502)에 의해 회전이 선택적으로 제한된다.
즉, 상기 샤프트(100)에는 도 21 및 도 22와 같이 제1제어폴(501) 및 제2제어폴(502)이 폴자리부(101) 내에 각각 위치하게 되며, 이러한 제어폴(501)(502)들은 양측에 각각 위치하는 링스프링(503)에 의하여 폴자리부(101) 내에서 탄력적으로 세워지도록 마련된다.
이와 같이 마련된 제어폴(501)(502)의 외측에는 그 내주연에 홈부(513)(514)가 오목하게 형성된 폴제어링(510)이 위치하게 되어, 도 5와 같이 상기 폴제어링(510)의 원주방향 회전 각도에 따라 제어폴(501)(502)의 외측에 해당 홈부(513)(514)가 위치할 경우 제어폴(501)(502)이 세워지고, 홈부(513)(514)가 위치하지 않을 경우 제어폴(501)(502)이 눕혀져 폴자리부(101) 안에 위치하게 되는 것이다.
상기 홈부(513)(514)는 도 5 및 도 6에 있어서, 폴제어링(510)을 반시계방향으로 회전시킬 때 제어폴(501)(502)이 링스프링(503)에 의해 자유롭게 세워질 수 있게 하는 여유공간과, 폴제어링(510)을 시계방향으로 회전시킬 때 제어폴(501)(502)을 제압하여 눕혀주는 경사면으로 이루어진다.
그리고, 상기 제어폴(501)(502)이 세워질 경우 그 외측에 위치하는 태양기어(411a)(411b)의 래칫에 치합하여 해당 태양기어(411a)(411b)의 회전을 제한하게 되어 변속 제어가 이루어진다.
이때, 상기 폴제어링(510)에 의해 제어되는 각각의 제1제어폴(501) 및 제2제어폴(502)에는 제어부위와 걸림부위가 서로 다른 간격을 두고 돌출 형성되어 있는 것으로, 도 3에 도시한 바와 같이 제1제어폴(501) 및 제2제어폴(502)의 도면상 우측에는 제어부위가 형성되어 있고, 이 제어부위의 외측에 상기 폴제어링(510)이 위치하게 된다.
그리고, 이러한 제어부위로부터 소정 간격 도면상 좌측으로 이격되어 제어폴(501)(502)의 걸림부위가 형성되어 있다.
이때, 상기 제2제어폴(502)은 제어부위와 걸림부위가 인접한 반면, 상기 제1제어폴(501)은 제어부위와 걸림부위가 상기 제2제어폴(502)에 비하여 다소 간격을 두고 떨어져 형성되어 있다.
여기에서, 상기 제1제어폴(501)의 걸림부위 외측에 상기 제1태양기어(411a)가 위치하되 상기 폴제어링(510)으로부터 다소 이격되어 위치하며, 상기 제2제어폴(502)의 걸림부위 외측에 상기 제2태양기어(411b)가 위치하되 상기 폴제어링(510)에 인접하게 위치한다.
도 21 및 도 22에 있어서 도면부호 401은 태양기어(411a)(411b)가 분리되지 않도록 하는 스냅링이며, 도면부호 402는 태양기어(411a)(411b) 상호 간의 간극을 유지하기 위한 스페이서이다.
즉, 상기 제1제어폴(501)과 상기 제2제어폴(502)은 대략 서로 대향하여 상기 샤프트(100)의 폴자리부(101) 내에 각각 위치하게 된다.
이에 따라, 각각의 제어폴(501)(502)에 형성된 제어부위 외측에는 상기 폴제어링(510)이 위치하고, 각각의 제어폴(501)(502)에 형성된 걸림부위 외측에는 상기 제1태양기어(411a) 또는 제2태양기어(411b)가 각각 위치하게 된다.
이에 따라, 상기 폴제어링(510)의 회전 각도에 따라 탄력적으로 세워지려 하는 제어폴(501)(502)의 제어부위가 홈부(513)(514)에 위치할 경우, 해당 제어폴(501)(502)의 걸림부위가 세워져 태양기어(411a)(411b)의 내주면에 형성된 래칫에 치합하여 해당 태양기어(411a)(411b)의 회전을 제한하게 되는 것이다.
이와 같은 제어를 위한 사용자의 변속조작이 폴제어링(510)에 어떻게 전달되는지에 대하여 이하에서 살펴보기로 한다.
본 발명에 있어서 상기 제어부(500)는, 변속레버의 조작에 따라 인출되는 케이블이 연결되어 상기 샤프트(100)의 외주면에 회전 가능하게 지지되는 케이블 연결부재(550)와; 상기 케이블 연결부재(550)의 내주면에 치합하여 일체로 회전하는 중간 연결부재(560)를 포함하며; 상기 각도 제어부재(520)는 회전 간섭 없이 상기 고정지지부재(580)를 관통하여 상기 중간 연결부재(560)의 내주면에 조립되어, 일방향으로 회전력을 전달하는 것이 바람직할 것이다.
이때, 상기 케이블 연결부재(550)는 운전자의 변속레버 가속 조작에 따라 당겨지는 미도시한 케이블이 연결되어 있어, 변속레버의 가속 조작 시 상기 케이블 연결부재(550)가 우측면에서 보았을 때 반시계방향으로 회전하게 된다.
그리고, 이 케이블 연결부재(550)의 내주면에는 중간 연결부재(560)가 위치하며, 상기 케이블 연결부재(550)의 내주면과 상기 중간 연결부재(560)의 외주면은 서로 치합하고 있어 일체로 회전하게 된다.
이와 더불어, 상기 중간 연결부재(560)의 내주면에는 상술한 각도 제어부재(520)가 조립된다.
즉, 상기 각도 제어부재(520)의 우측에는 도 17 및 도 18과 같이 두 개의 돌기(523)가 돌출 형성되어 도 13 및 도 14와 같이 상기 중간 연결부재(560)의 내주면에 형성된 결합홈(561) 내에 조립되며, 이때, 상기 결합홈(561)은 우측에서 보았을 때 오직 반시계방향으로만 회전력을 상기 각도 제어부재(520)에 전달할 수 있도록 형성되는 것이 바람직할 것이다.
이때, 상기 각도 제어부재(520)의 돌기(523)는 앞서 설명한 고정지지부재(580)의 내부를 관통하여 중간 연결부재(560)에 조립될 수 있으며, 상기 돌기(523)는 회전 시 상기 고정지지부재(580)의 내주면과 간섭이 발생치 않도록 한다.
그리고, 상기 각도 제어부재(520)와 고정지지부재(580) 사이에는 복귀스프링(570)이 마련되어, 상기 각도 제어부재(520)는 우측에서 보았을 때 상기 복귀스프링(570)에 의해 시계방향으로 회전하도록 탄성 지지된다.
이에 따라, 변속레버의 가속 조작에 따라 반시계방향으로 회전하였던 각도 제어부재(520)를 감속 조작 시 상기 복귀스프링(570)이 시계방향으로 탄성 회전시키게 된다.
이와 더불어, 상기 각도 제어부재(550)의 도면상 좌측에는 폴제어링(510)이 조립되어 있어, 상기 각도 제어부재(550)의 회전에 따라 상기 폴제어링(510)이 회전하게 되어, 제1제어폴(501) 및 제2제어폴(502)을 선택적으로 세우거나 눕힐 수 있는 것이다.
이때, 상기 폴제어링(510)의 내주면에는 홈부(513)(514)가 형성되어, 상기 폴제어링(510)의 회전에 따라, 제1제어폴(501) 및 제2제어폴(502)이 각각 순차적으로 폴자리부(101)로부터 상기 홈부(513)(514)로 빠져 나와 각각의 제어폴(501)(502)들이 세워질 수 있다.
즉, 상기 폴제어링(510)의 회전각도에 따라 제어폴(501)(502)을 각각 제어하여 선택적으로 태양기어(411a)(411b)의 회전을 제한함으로써 변속이 이루어지게 되는 것이다.
그리고, 부하 구동 상태에서는 상기 제1제어폴(501) 또는 제2제어폴(502)이 태양기어(411a)(411b)의 내주면에 형성된 래칫에 강하게 맞물려 있을 경우 제어폴(501)(502)이 샤프트(100)의 폴자리부(101) 내로 눕혀지지 않아 변속이 원활하게 이루어지지 않는 현상은 상술한 바와 같이 강제 변속 기능에 의해 방지될 수 있게 된다.
상술한 폴제어링(510)의 제어 각도에 따라 상기 제1제어폴(501) 및 제2제어폴(502)의 제어 상태는 도 5에 상세히 나타나 있다.
이하, 도면을 참조하여 본 발명의 변속 조작 조력장치를 구비한 허브 내장형 변속기에 있어서 2단의 유성기어(412)를 포함하는 유성기어세트(410)가 적용된 실시예의 작용을 직결, 가속 1단, 가속 2단으로 구분하여 설명하면 다음과 같다.
<직결>
직결은 변속레버의 조작이 없는 초기 상태로, 도 5의 (a)와 같이 제어폴(501)(502) 모두가 샤프트(100)의 폴자리부(101) 내에 눕혀진 상태로 태양기어(411a)(411b) 모두가 구속되지 않은 상태이다.
이러한 상태에서 스프로켓(210)을 통해 구동력이 전달되면 드라이버(200)가 일체로 회전하게 된다.
이때, 상기 드라이버(200)에 마련된 탄성폴(220)이 링기어(413)의 내주면에 형성된 제2치형(413b)에 치합하여, 드라이버(200)의 회전력을 링기어(413)에 변속 없이 전달하게 되며, 링기어(413)에 전달된 회전력은 허브쉘(300)을 통해 출력된다.
이러한 경우, 유성기어세트(410)에 있어서는 태양기어(411a)(411b)가 자유롭게 회전할 수 있기 때문에 별도의 가속 변속이 이루어지지 않고 공회전하게 되는 것이다.
정리하면, 직결 상태에서는 어떠한 제어폴(501)(502)도 태양기어(411a)(411b)를 구속하지 않음에 따라, 스프로켓(210)→드라이버(200)→탄성폴(220)→링기어(413)→허브쉘(300)로 회전력이 전달되어 회전력의 변속 없이 출력이 이루어지게 된다.
<가속 1단>
가속 1단은 변속레버의 조작으로 폴제어링(510)이 일정각도 반시계방향으로 회전한 상태로, 도 5의 (b)와 같이 제1제어폴(501)이 세워져 제1태양기어(411a)가 구속되지만, 제2제어폴(502)은 폴자리부(101) 내에 그대로 눕혀져 있어 제2태양기어(411b)는 구속되지 않은 상태이다.
이러한 상태에서 스프로켓(210)을 통해 구동력이 전달되면 드라이버(200)가 회전하게 된다.
이때, 유성기어세트(410)에 있어서는 제1태양기어(411a)의 회전이 구속되어 있어 유성기어(412)에 있어서 대경부(412a)가 제1태양기어(411a)에 치합하여 고속으로 가속 회전하며, 이러한 유성기어(412)의 가속된 회전력은 제1치형(413a)에 치합된 링기어(413)로 전달되며, 링기어(413)에 전달된 회전력은 허브쉘(300)을 통해 출력된다.
이러한 경우, 상기 드라이버(200)에 마련된 탄성폴(220)은 링기어(413)의 회전속도가 더 빠르기 때문에 회전력을 링기어(413)에 전달하지는 못하게 된다.
정리하면, 가속 1단에서는 제1제어폴(501)만이 제1태양기어(411a)를 구속함에 따라, 스프로켓(210)→드라이버(200)→유성기어(412)의 대경부(412a)→링기어(413)의 제1치형(413a)→허브쉘(300)로 회전력이 전달되어 회전력이 가속 변속되어 출력되는 것이다.
<가속 2단>
가속 2단은 변속레버의 조작으로 도 5의 (c)와 같이 폴제어링(510)이 일정각도 더 반시계방향으로 회전한 상태로, 제어폴(501)(502) 모두가 세워져 태양기어(411a)(411b) 모두가 구속된 상태이다.
이러한 상태에서 스프로켓(210)을 통해 구동력이 전달되면 드라이버(200)가 회전하게 된다.
이때, 유성기어세트(410)에 있어서는 제2태양기어(411b)의 회전이 구속되어 있어 유성기어(412)에 있어서 소경부(412b)가 제2태양기어(411b)에 치합하여 보다 더 고속으로 가속 회전하며, 이러한 유성기어(412)의 가속된 회전력은 제1치형(413a)에 치합된 링기어(413)로 전달되며, 링기어(413)에 전달된 회전력은 허브쉘(300)을 통해 출력된다.
이러한 경우에도, 상기 드라이버(200)에 마련된 탄성폴(220)은 링기어(413)의 회전속도가 더 빠르기 때문에 회전력을 링기어(413)에 전달하지는 못하게 된다.
정리하면, 가속 2단에서는 제어폴(501)(502) 모두가 각각 태양기어(411a)(411b) 모두를 구속함에 따라, 스프로켓(210)→드라이버(200)→유성기어(412)의 소경부(412b) 및 대경부(412a)→링기어(413)의 제1치형(413a)→허브쉘(300)로 회전력이 전달되어 회전력이 보다 더 가속 변속되어 출력되는 것이다.
감속 시에는 상술한 역순으로 제어될 수 있으며 부하 구동 상태에서도 앞서 설명한 바와 같이 변속 조작 조력장치에 의해 강제 변속 기능이 원활하게 이루어질 수 있게 된다.
따라서, 본 발명의 변속 조작 조력장치 및 이를 구비한 허브 내장형 변속기는 유성기어세트(410)를 구비한 변속기에서 변속 제어가 원활하게 이루어질 수 있도록 하는 동시에, 가압 마찰력을 임의로 조절할 수 있어 강제 변속이 적절하게 이루어지도록 함으로써 구성 부품의 손상을 예방하여 내구성을 향상시키는 한편, 큰 변속 충격을 방지하여 사용자의 편의성 및 주행 안정성을 높이고 변속기에 대한 상품성 및 시장경쟁력을 극대화시킬 수 있다는 탁월한 이점을 지닌 발명인 것이다.
상기 실시예는 본 발명의 기술적 사상을 구체적으로 설명하기 위한 일례로서, 본 발명의 범위는 상기의 도면이나 실시예에 한정되지 않는다.
이상과 같은 본 발명은 유성기어세트를 구비한 변속기에서 변속 제어가 원활하게 이루어질 수 있도록 하는 동시에, 가압 마찰력을 임의로 조절할 수 있어 강제 변속이 적절하게 이루어지도록 함으로써 구성 부품의 손상을 예방하여 내구성을 향상시키는 한편, 큰 변속 충격을 방지하여 사용자의 편의성 및 주행 안정성을 높이고 변속기에 대한 상품성 및 시장경쟁력을 극대화시킬 수 있는 발명인 것이다.

Claims (6)

  1. 회전각도에 따라 내주면은 샤프트(100)에 마련된 제어폴(501)(502)의 눕힘을 제어하며, 외주면에 회전제한돌부(511) 및 일방향 경사 요홈(512)이 형성된 폴제어링(510)과;
    상기 샤프트(100)에 지지되어 회전력을 입력받아 회전하는 드라이버(200)의 내주 측에 위치하여 변속 조작에 따라 회전하고, 원주방향의 유격을 가지고 상기 회전제한돌부(511)를 수용하는 회전제한요부(521)가 외주에 형성된 각도 제어부재(520)와;
    구 또는 원기둥 형상으로 이루어져 반경방향으로 유동 가능하게 상기 각도 제어부재(520)에 지지되어 상기 폴제어링(510)의 일방향 경사 요홈(512)과 상기 드라이버(200)의 내주면 사이에 위치하는 가압부재(530)와;
    상기 폴제어링(510)과 상기 각도 제어부재(520) 사이에 연결되어 상기 각도 제어부재(520)를 기준으로 상기 폴제어링(510)이 회전하도록 탄성 지지하는 탄성연결체(540)와;
    상기 샤프트(100)에 회전 불가하게 위치 고정되어 베어링(604)을 매개로 상기 드라이버(200)를 회전 가능하게 지지하는 고정지지부재(580)와;
    상기 각도 제어부재(520)와 상기 고정지지부재(580) 사이에 연결되어, 변속 조작에 따라 일방향으로 회전하는 상기 각도 제어부재(520)를 탄력적으로 역방향 회전시켜 복귀시키는 복귀스프링(570)을 포함하되;
    상기 각도 제어부재(520)와 상기 폴제어링(510) 사이에 원주방향으로 위상각 차이가 발생함에 따라, 상기 가압부재(530)가 상기 일방향 경사 요홈(512)을 타고 외측으로 이동하면서 상기 드라이버(200)의 내주면에 가압 마찰 접촉함으로써, 상기 드라이버(200)와 상기 가압부재(530) 사이에 발생하는 가압 마찰력의 크기에 따라 상기 드라이버(200)의 회전력이 상기 폴제어링(510)에 선택적으로 전달되어 상기 제어폴(501)(502)의 강제 눕힘이 조절 가능한 것을 특징으로 하는 변속 조작 조력장치.
  2. 제1항에 있어서, 상기 폴제어링(510)의 외주면에 대한 상기 일방향 경사 요홈(512)의 경사각이 작을수록 또는 상기 복귀스프링(570)의 탄성계수가 클수록 상기 드라이버(200)와 상기 가압부재(530) 사이에 발생하는 가압 마찰력을 증대시킬 수 있고;
    상기 폴제어링(510)의 외주면에 대한 상기 일방향 경사 요홈(512)의 경사각이 클수록 또는 상기 복귀스프링(570)의 탄성계수가 작을수록 상기 드라이버(200)와 상기 가압부재(530) 사이에 발생하는 가압 마찰력을 저감시킬 수 있는 것을 특징으로 하는 변속 조작 조력장치.
  3. 제2항에 있어서, 상기 폴제어링(510)의 외주면에 대한 상기 일방향 경사 요홈(512)의 경사각은 12~20°인 것을 특징으로 하는 변속 조작 조력장치.
  4. 차체에 고정된 샤프트(100)와;
    상기 샤프트(100)의 외주에 회전 가능하게 위치하여 회전력을 입력받는 드라이버(200) 및 회전력을 출력시키는 허브쉘(300)과;
    상기 허브쉘(300)의 내부에 마련되어 태양기어, 유성기어(412), 링기어(413)로 이루어진 유성기어세트(410)를 포함하되, 상기 드라이버(200)는 상기 유성기어(412)를 회전 가능하게 지지하여 캐리어로 기능하며, 상기 드라이버(200)에는 외측을 향하여 돌출되도록 탄성 지지되는 탄성폴(220)이 마련되며, 상기 링기어(413)의 내주면에는 상기 유성기어(412)와 치합하기 위한 제1치형(413a)과 함께 상기 탄성폴(220)에 치합하기 위한 제2치형(413b)이 추가 형성되어, 상기 드라이버(200)로 입력되는 회전력을 변속시켜 상기 허브쉘(300)로 출력시키는 변속부(400)와;
    변속레버의 조작에 따라 원주방향으로 회전하면서 상기 샤프트(100)의 외주면에 형성된 폴자리부(101)에 위치하는 제어폴(501)(502)을 컨트롤하여 상기 태양기어의 회전을 선택적으로 제한함으로써 상기 변속부(400)의 변속을 제어하며, 제1항의 변속 조작 조력장치를 포함하는 제어부(500)로 구성되는 것을 특징으로 하는 변속 조작 조력장치를 구비한 허브 내장형 변속기.
  5. 제4항에 있어서, 상기 제어부(500)는,
    변속레버의 조작에 따라 인출되는 케이블이 연결되어 상기 샤프트(100)의 외주면에 회전 가능하게 지지되는 케이블 연결부재(550)와;
    상기 케이블 연결부재(550)의 내주면에 치합하여 일체로 회전하는 중간 연결부재(560)를 포함하며;
    상기 각도 제어부재(520)는 회전 간섭 없이 상기 고정지지부재(580)를 관통하여 상기 중간 연결부재(560)의 내주면에 조립되어, 일방향으로 회전력을 전달하는 것을 특징으로 하는 변속 조작 조력장치를 구비한 허브 내장형 변속기.
  6. 제5항에 있어서, 상기 유성기어(412)는 1단 또는 2단 이상의 다단 유성기어로 이루어지며, 상기 제어폴 및 상기 태양기어는 상기 유성기어(412)의 단수에 대응하여 추가 구성되어, "유성기어의 단수+1"의 변속단수로 변속 가능한 것을 특징으로 하는 변속 조작 조력장치를 구비한 허브 내장형 변속기.
PCT/KR2018/010104 2017-11-23 2018-08-31 변속 조작 조력장치 및 이를 구비한 허브 내장형 변속기 WO2019103288A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020528141A JP2021504639A (ja) 2017-11-23 2018-08-31 変速操作助力装置及びそれを備えたハブ内蔵型の変速機
US16/759,120 US11041547B2 (en) 2017-11-23 2018-08-31 Shifting manipulation-assisting device and hub-embedded transmission having the same
EP18881805.8A EP3715676A4 (en) 2017-11-23 2018-08-31 ASSISTANCE DEVICE FOR THE GEAR GEAR CHANGE OPERATION AND TRANSMISSION INTEGRATED IN A HUB INCLUDING IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0157441 2017-11-23
KR1020170157441A KR101817629B1 (ko) 2017-11-23 2017-11-23 변속 조작 조력장치 및 이를 구비한 허브 내장형 변속기

Publications (1)

Publication Number Publication Date
WO2019103288A1 true WO2019103288A1 (ko) 2019-05-31

Family

ID=61524468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010104 WO2019103288A1 (ko) 2017-11-23 2018-08-31 변속 조작 조력장치 및 이를 구비한 허브 내장형 변속기

Country Status (6)

Country Link
US (1) US11041547B2 (ko)
EP (1) EP3715676A4 (ko)
JP (1) JP2021504639A (ko)
KR (1) KR101817629B1 (ko)
CN (1) CN108869734B (ko)
WO (1) WO2019103288A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101817629B1 (ko) 2017-11-23 2018-02-21 (주)엠비아이 변속 조작 조력장치 및 이를 구비한 허브 내장형 변속기
KR102074833B1 (ko) * 2018-07-10 2020-02-07 한은수 다단 변속장치
JP2022144292A (ja) 2021-03-18 2022-10-03 日本電産株式会社 駆動装置および移動体
CN113738840A (zh) * 2021-11-08 2021-12-03 杭州新林达自动化科技有限公司 新能源汽车自动换档执行器及其自动换挡方法
CN114013556B (zh) * 2021-12-17 2023-07-18 广东洛梵狄智能科技有限公司 内变速器换挡控制机构中的连接结构、内变速器及自行车
EP4234384A1 (en) * 2022-02-23 2023-08-30 New Kailung Gear Co., Ltd. Gear switching control device of an internal derailleur
TWI802387B (zh) * 2022-04-25 2023-05-11 日馳企業股份有限公司 自行車變速裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4145808B2 (ja) * 2004-01-16 2008-09-03 株式会社シマノ 自転車用内装変速ハブ
KR100954300B1 (ko) * 2010-02-09 2010-04-22 (주)엠비아이 자전거 속도변환 보조장치
KR101286204B1 (ko) * 2013-02-06 2013-07-15 (주)엠비아이 허브 내장형 다단 변속기
KR101357220B1 (ko) * 2013-02-06 2014-01-29 (주)엠비아이 허브 내장형 다단 변속기
KR101422135B1 (ko) 2012-08-09 2014-07-22 (주)엠비아이 다단 변속기

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE512576C2 (sv) * 1997-08-25 2000-04-03 Volvo Penta Ab Anordning för assisterad växling vid transmission
DE10134842A1 (de) * 2001-07-17 2003-02-06 Sram De Gmbh Lastschaltbare Mehrgangnabe
JP4073893B2 (ja) * 2004-05-13 2008-04-09 株式会社シマノ 自転車用内装変速ハブ
FR2900213B1 (fr) * 2006-04-24 2008-12-12 Renault Sas Dispositif d'assistance au passage des vitesses sur boite de vitesses manuelle
GB0617365D0 (en) * 2006-09-02 2006-10-11 Bamford Excavators Ltd Gear shift mechanism
DE102015207906A1 (de) * 2015-04-29 2016-11-03 Bayerische Motoren Werke Aktiengesellschaft Getriebe-Schaltassistenzvorrichtung sowie Schalteinrichtung für ein Motorrad
JP6302870B2 (ja) * 2015-05-29 2018-03-28 株式会社シマノ 変速機
CN106763733B (zh) * 2017-02-20 2018-04-27 赣州经纬科技股份有限公司 一种车用变速器换档泊车机构总成
KR101817629B1 (ko) 2017-11-23 2018-02-21 (주)엠비아이 변속 조작 조력장치 및 이를 구비한 허브 내장형 변속기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4145808B2 (ja) * 2004-01-16 2008-09-03 株式会社シマノ 自転車用内装変速ハブ
KR100954300B1 (ko) * 2010-02-09 2010-04-22 (주)엠비아이 자전거 속도변환 보조장치
KR101422135B1 (ko) 2012-08-09 2014-07-22 (주)엠비아이 다단 변속기
KR101286204B1 (ko) * 2013-02-06 2013-07-15 (주)엠비아이 허브 내장형 다단 변속기
KR101357220B1 (ko) * 2013-02-06 2014-01-29 (주)엠비아이 허브 내장형 다단 변속기

Also Published As

Publication number Publication date
US11041547B2 (en) 2021-06-22
CN108869734B (zh) 2019-08-09
EP3715676A4 (en) 2021-07-28
CN108869734A (zh) 2018-11-23
JP2021504639A (ja) 2021-02-15
EP3715676A1 (en) 2020-09-30
KR101817629B1 (ko) 2018-02-21
US20200355245A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
WO2019103288A1 (ko) 변속 조작 조력장치 및 이를 구비한 허브 내장형 변속기
WO2014123312A1 (ko) 허브 내장형 다단 변속기
WO2014123320A1 (ko) 허브 내장형 다단 변속기
WO2016148463A1 (ko) 로봇 암
WO2014025130A1 (ko) 다단 변속기
WO2011008014A2 (ko) 복합 구동 자전거
WO2015122704A1 (ko) 삼각휠 구동 장치
WO1999023399A3 (en) Improvements for force feedback transmission mechanisms
WO2014168291A1 (ko) 자동변속기
WO2018212595A1 (ko) 모터의 다단 변속기
WO2015102460A1 (ko) 휠체어
WO2020149695A1 (ko) 전기기계식 브레이크 시스템
WO2017095162A1 (ko) 자동 구동 전환장치
WO2019194390A1 (ko) 전기자동차용 변속 시스템
WO2020213788A1 (en) Tilting device for armrest
WO2011030994A1 (ko) 무한궤도차량, 수륙양용 무한궤도, 무한궤도용 트랙슈, 방향 조작이 가능한 수동형 무한궤도차량
WO2011102606A2 (ko) 자전거용 변속기
WO2016108299A1 (ko) 무단 변속장치
WO2015156592A1 (ko) 무단변속기
WO2014161185A1 (zh) 螺丝批
WO2020241986A1 (ko) 에스컬레이터용 과속 및 역주행 방지장치
WO2020204296A1 (ko) 전기 자동차용 건식 토크 컨버터 및 그 제어방법
WO2011055878A1 (ko) 2개의 회전동력원과 기어결합체를 이용한 변속장치
WO2018043855A1 (ko) 인 휠 타입 2단 변속장치
WO2018230799A1 (ko) 방향 전환이 가능한 무한궤도차량

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881805

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020528141

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018881805

Country of ref document: EP

Effective date: 20200623