WO2010104320A2 - 유성기어를 이용한 동력 전달 장치 - Google Patents

유성기어를 이용한 동력 전달 장치 Download PDF

Info

Publication number
WO2010104320A2
WO2010104320A2 PCT/KR2010/001472 KR2010001472W WO2010104320A2 WO 2010104320 A2 WO2010104320 A2 WO 2010104320A2 KR 2010001472 W KR2010001472 W KR 2010001472W WO 2010104320 A2 WO2010104320 A2 WO 2010104320A2
Authority
WO
WIPO (PCT)
Prior art keywords
gear
shaft
input shaft
reduction
power
Prior art date
Application number
PCT/KR2010/001472
Other languages
English (en)
French (fr)
Other versions
WO2010104320A3 (ko
Inventor
하태환
Original Assignee
Ha Tae Hwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ha Tae Hwan filed Critical Ha Tae Hwan
Priority to AU2010221880A priority Critical patent/AU2010221880B2/en
Priority to CN201080011484XA priority patent/CN102348910A/zh
Priority to PL10751011T priority patent/PL2407689T3/pl
Priority to BRPI1010522A priority patent/BRPI1010522A2/pt
Priority to US13/255,228 priority patent/US8968134B2/en
Priority to JP2011553947A priority patent/JP5630718B2/ja
Priority to EP10751011.7A priority patent/EP2407689B1/en
Publication of WO2010104320A2 publication Critical patent/WO2010104320A2/ko
Publication of WO2010104320A3 publication Critical patent/WO2010104320A3/ko
Priority to US14/630,408 priority patent/US20150184727A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/721Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with an energy dissipating device, e.g. regulating brake or fluid throttle, in order to vary speed continuously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/04Combinations of toothed gearings only
    • F16H37/042Combinations of toothed gearings only change gear transmissions in group arrangement
    • F16H37/046Combinations of toothed gearings only change gear transmissions in group arrangement with an additional planetary gear train, e.g. creep gear, overdrive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/04Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism
    • F16H63/06Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism the final output mechanism having an indefinite number of positions
    • F16H63/062Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism the final output mechanism having an indefinite number of positions electric or electro-mechanical actuating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a power transmission device used in vehicles, ships, windmills, converters, and the like, in particular, the planetary gear set extending the one side of the planetary carrier to form a gear value, and after reducing the rotational speed input from the driving power source
  • a plurality of shift stages can be realized, obtaining a power generation power source from the output shaft and storing electricity.
  • the present invention relates to a power transmission device using a planetary gear that makes it possible to easily control a shift input shaft by using stored electric energy as a control energy of a shift power source.
  • a transmission is a device that receives power from a driving power source and changes the rotation speed to match the operating conditions and transmits the same to an output shaft.
  • a transmission includes a manual transmission that realizes a shift stage desired by a driver by an operation of a shift lever, and an automatic transmission that automatically implements a shift stage based on vehicle speed and opening / closing degree of a throttle valve.
  • Manual transmission has the advantage of good fuel economy, but has the disadvantage of difficult operation, automatic transmission has the disadvantage of easy operation but low fuel economy.
  • the automatic transmission includes a plurality of planetary gear sets and friction elements for manipulating the operation of each of the operating means of the plurality of planetary gear sets, and the number of gear stages implemented increases the number of planetary gear sets used in the automatic transmission.
  • the number of friction elements is increased.
  • the weight of the automatic transmission increases, which leads to a decrease in fuel efficiency. Therefore, in the case of an automatic transmission, the number of shift stages implemented is typically less than that of a manual transmission.
  • the additional device used for the vehicle, etc. must operate even when the vehicle is stopped, and thus is directly connected to the driving power source.
  • the damper clutch is mounted between the driving power source and the input shaft, the additional device cannot be connected to the input shaft. Therefore, there was not enough space to mount the additional device.
  • one of the planetary gearset operating means inputs the rotational speed of the driving power source, and the other of the planetary gearset operating means inputs the rotational speed for shifting from the transmission power source to the plurality of gear stages. Ways to implement this have been proposed.
  • the torque of the driving power source is applied to the shifting power source so that the torque loss is seriously generated, and the rotational speed of the driving power source is input to the planetary gear set without deceleration to provide strong torque. If there is no shifting power source, shifting was a difficult problem.
  • an object of the present invention is to provide a planetary gear that can obtain the electric energy of the shift power source necessary to control the shift input shaft from the planet carrier of the planetary gear set.
  • the purpose is to provide a power transmission device used.
  • Another object of the present invention is to provide a power transmission apparatus using planetary gears using the planetary gear set by directly connecting an input shaft to a driving power source and connecting an additional device to the input shaft.
  • Another object of the present invention is to provide a power transmission apparatus using planetary gears to enable various shifts by using a shift power source that minimizes torque loss and provides relatively weak torque during shifting of the planetary gear set.
  • an object of the present invention is to provide a power transmission apparatus using planetary gears to control the rotational speed of the output shaft by using an accelerator pedal and a brake pedal.
  • An input shaft whose one end is always connected to the driving power source to receive power, and the drive shaft is fixedly mounted;
  • a deceleration unit coupled to the drive gear and configured to reduce the rotational speed of the input shaft
  • a planetary gear set including a first actuating means coupled to the deceleration unit to receive a rotational speed of the deceleration unit, a second actuating means to receive power for shifting, and a third actuating means to generate an output speed;
  • a shifting unit connected to a shifting power source at all times to receive power for shifting and to be coupled with the second actuating means to transfer the power for shifting to the second actuating means;
  • the second operating means is connected to a torque control shaft that receives the rotational force of the second operating means through a power transmission means, the torque control shaft is provided with a generator for generating electricity, the generator is to supply power to the variable speed power source It is characterized in that the storage battery to be connected is connected.
  • the planetary gear set is a single pinion planetary gear set including a sun gear, a planet carrier, and a ring gear as its operating means,
  • the ring gear may act as the first actuation means
  • the planet carrier acts as the second actuation means
  • the sun gear may act as the third actuation means
  • the power transmission device using the planetary gear further includes a control unit, the control unit may control the operation of the variable speed power source according to the speed of the output shaft and the degree of operation of the brake.
  • the controller may control the rotational speed of the output shaft and perform braking by changing the rotational speed of the transmission power source.
  • the variable speed power source may be a motor.
  • the deceleration unit is a reduction shaft disposed in parallel with the input shaft; A reduction gear fixed to the reduction shaft and gear-coupled to the drive gear; A forward gear and a reverse gear rotatably mounted on the reduction shaft; And a synchronizer to selectively fix the forward gear and the reverse gear to the reduction shaft to rotate integrally, wherein the forward gear is always gear-coupled to the first operating means.
  • the deceleration unit includes an idle shaft for receiving the rotational speed of the reverse gear to rotate; A first mediated gear fixedly mounted to the idle shaft and gear-coupled to the first actuating means; And a second mediated gear fixedly mounted to the idle shaft and gear-coupled to the reverse gear.
  • the synchronizer can be operated according to the position of the actuating lever.
  • An additional device is connected to at least one of the other end of the input shaft and the reduction unit.
  • the shift unit may include a shift input shaft having one end connected to the shift power source to receive power for shift; And a worm gear formed at the other end of the shift input shaft and gear-coupled with the second actuating means.
  • the deceleration unit includes a plurality of shafts arranged in parallel with the input shaft and a plurality of gears mounted on the plurality of shafts, Two gears with different numbers of gear teeth per one shaft are mounted, and one of the two gears formed on one shaft is geared to one of the two gears formed on the other shaft to transfer power from the input shaft to the planetary gear set.
  • One of the plurality of gears is gear-coupled to the drive gear, and the other of the plurality of gears is gear-coupled to the first actuating means.
  • the gear having the smallest number of gears is geared with the gear of the shaft close to the driving power source on the power transmission line
  • the gear having the large number of gears is the gear of the shaft close to the planetary gear set on the power transmission line. And gears can be combined.
  • the shifting units are disposed at right angles to each other, and a plurality of shifting input shafts disposed at right angles to the output shaft; A first gear mounted to each of the shift input shafts to rotate about the shift input shaft and to be gear-coupled with the second operating means; And a second gear mounted to each of the shift input shafts to rotate relative to the shift input shaft, wherein the second gear mounted to one shift input shaft is gear-coupled with a second gear mounted to the other shift input shaft.
  • One of the shift input shafts is connected to a shift power source to receive power for shifting.
  • the first gear may be a worm gear
  • the second gear may be a helical gear
  • the gear teeth are formed on the outer circumferential surface
  • the sun gear is attached to the rotating shaft to receive power from the rotating shaft or to transmit power to the rotating shaft
  • a ring gear that surrounds the sun gear and rotates relative to the sun gear, wherein gear teeth are formed on an inner circumferential surface thereof
  • a plurality of pinion gears gear-coupled to an outer circumferential gear tooth of the sun gear and an inner circumferential gear tooth of the ring gear
  • a planetary carrier rotatably mounted to the plurality of pinion gears to rotate in accordance with the rotation of the pinion gear, wherein one side of the planetary carrier is provided with an extension extending in the rotation axis direction, and an outer circumferential surface of the extension part.
  • Gears are formed obliquely with respect to the rotational shaft so that a worm gear or a helical gear is engaged, and additionally, the second helical gear or the second bevel gear is engaged with the extension to draw out a part of the rotational force of the planetary carrier.
  • the second gear is characterized in that further formed.
  • Gear teeth may also be formed on the outer circumferential surface of the ring gear.
  • the input shaft formed with a drive gear on one outer peripheral surface
  • a reduction unit including a reduction shaft having a reduction gear coupled to the drive gear
  • a ring gear having a gear formed on an outer circumference thereof so as to be external to the reduction gear
  • a planet carrier connected to the central axes of the pinion gears, the planet carrier being rotated about the output shaft according to the rotation of the pinion gears;
  • a worm gear and a helical gear formed on an outer circumferential surface of the extension part
  • a shift input shaft formed on an outer circumferential surface of the worm wheel coupled to the worm gear and disposed perpendicular to the output shaft to rotate by a shift power source;
  • a control unit controlling a rotation speed of the shift input shaft
  • a torque control shaft having a driven helical gear that is external to the driving helical gear of the extension portion;
  • At least one selected of torque reduction means selected from a generator, a reduction device, and a hydraulic pump driven by the torque control shaft.
  • the reduction unit may include a first reduction gear formed on the reduction shaft; And a second reduction gear formed on the reduction shaft spaced apart from the first reduction gear.
  • the first reduction gear may be connected to the drive gear, and the second reduction gear may be connected to a gear formed on an outer circumferential surface of the ring gear.
  • An input shaft having a drive gear formed on one outer circumferential surface thereof;
  • a reduction shaft having a reduction gear gear coupled to the drive gear
  • a driving bevel gear formed at one end of the reduction shaft
  • An output shaft mounted with one sun gear external to the pinion gears to rotate together;
  • a planet carrier connected to the central axes of the pinion gears, the planet carrier being rotated about the output shaft according to the rotation of the pinion gears;
  • a worm gear and a driving bevel gear formed on the outer circumferential surface of the extension part
  • a shift input shaft having a worm wheel coupled to the worm gear and formed on an outer circumferential surface thereof and disposed perpendicular to the output shaft to rotate by a power source;
  • a control unit for controlling the rotational speed of the transmission input shaft according to the rotational speed of the output shaft and the brake operation
  • a torque control shaft having a driven helical gear that is external to the driving helical gear of the extension portion;
  • a generator connected to the torque control shaft to generate electricity
  • a storage battery electrically connected to the generator to supply power to the variable speed power source.
  • the driven bevel gear is formed on one side of the ring gear, and the extension part is formed on the opposite side.
  • An input shaft having a drive gear formed on one outer circumferential surface thereof;
  • a ring gear meshed with teeth of an outer circumferential surface of the drive gear
  • a planetary carrier having a plurality of pinion gears engaged with the inner circumferential teeth of the ring gear on a circumference, and having a worm wheel at one end and a second gear having a bevel tooth at the other end;
  • a sun gear externally engaged with the plurality of pinion gears and engaged with the teeth
  • a shift input shaft having a worm gear meshed with the worm wheel
  • a motor controller for controlling driving of the main motor and the sub-motor
  • An accelerator pedal and a brake pedal electrically connected to the control unit are further included,
  • the motor control unit controls the motor control unit
  • the rotation speed of the output shaft is increased by increasing the rotational speed of the main motor and simultaneously reducing the rotational speed of the submotor.
  • the reverse shift stage may be implemented in the same manner as the forward shift stage.
  • the braking is performed using a shift power source for shifting without a separate braking system, the configuration is simplified, and manufacturing cost can be reduced.
  • FIG. 1 is a schematic view showing the configuration of a power transmission device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic view illustrating a state in which an idle shaft is removed from the power transmission device of FIG. 1.
  • FIG. 3 is a schematic view illustrating a state in which a shift input shaft is removed from the power transmission device of FIG. 2.
  • FIG. 4 is a speed diagram illustrating that a forward speed change stage is formed in the power transmission device according to the first embodiment of the present invention.
  • FIG. 5 is a perspective view showing the configuration of a power transmission device according to a second embodiment of the present invention.
  • FIG. 6 is a rear view showing the configuration of a power transmission device according to a second embodiment of the present invention.
  • FIG. 7 is an exploded view of the planetary gear set used in the embodiments of the present invention.
  • FIG 8 is an overall perspective view of a power transmission device according to a third embodiment of the present invention.
  • FIG. 9 is a plan view of a power transmission device according to a third embodiment of the present invention.
  • FIG. 10 is a perspective view of a power transmission device according to a fourth embodiment of the present invention.
  • FIG. 11 is a plan view of a power transmission device according to a fourth embodiment of the present invention.
  • FIG. 12 is a perspective view of a power transmission device according to a fifth embodiment of the present invention.
  • FIG. 13 is a perspective view of a power transmission device according to a sixth embodiment of the present invention.
  • FIG. 14 is a perspective view illustrating a partially cut surface of the planet carrier applied to FIGS. 12 and 13.
  • FIG. 15 is a perspective view of a power transmission device according to a seventh embodiment of the present invention.
  • FIG. 16 is a partially cut perspective view of a power transmission device according to an eighth embodiment of the present invention.
  • 17 is a block diagram for controlling the shift of the output stage in the power shear apparatus according to the present invention.
  • 19 is a graph of the rotational speed of the main motor and the control motor according to the brake pedal output voltage during braking in the power shear device according to the present invention.
  • FIG. 1 is a schematic view showing a configuration of a power transmission device according to a first embodiment of the present invention
  • Figure 2 is a schematic view showing a state in which the idle shaft is removed from the power transmission device of Figure 1
  • Figure 3 is a power transmission device of Figure 2 Figure shows the state in which the shift input shaft is removed from.
  • the power transmission device is the input shaft 20, the reduction unit 190, the planetary gear set (PG1), the output shaft 120, the transmission unit ( 200, and a controller 160.
  • the driving power source 10 may be gasoline, diesel, LPG, hydrogen engine, electric and oil-pneumatic motor, a wind turbine or a turbine that rotates under the assistance.
  • the reduction unit 190 includes a reduction shaft 40, a reduction gear 50, a forward gear 60, a reverse gear 80, a synchronizer 70, an idle shaft 90, and first and second intermediate gears ( 100,110).
  • the reduction shaft 40 is equipped with a reduction gear 50, a forward gear (60), a reverse gear 80, and a synchronizer 70.
  • the reduction gear 50 is fixedly mounted to the reduction shaft 40, and is tooth-coupled to the drive gear 30. Since the number of gear teeth of the reduction gear 50 is greater than the number of gear teeth of the drive gear 30, the rotation speed of the input shaft 20 is reduced and transmitted to the reduction shaft 40.
  • the forward gear 60 and the reverse gear 80 are mounted to be rotatable based on the reduction shaft 40.
  • the synchronizer 70 moves left or right in the drawing and selectively fixes the forward gear 60 or the reverse gear 80 to the reduction shaft 40. That is, when the synchronizer 70 moves to the left in the drawing, the forward gear 60 is fixed to the reduction shaft 40 and rotates together. When the synchronizer 70 moves to the right in the drawing, the reverse gear ( 80 is fixed to the reduction shaft 40 and rotates together. If the synchronizer 70 is in the center position, it is in an idle state.
  • the synchronizer 70 may be electronic or mechanical. In the case of the mechanical synchronizer 70, the operation is controlled by a fork (not shown) connected to an operating lever (not shown) by a cable, but in the case of the electronic synchronizer 70, the signal of the controller 160 is controlled. The operation is controlled accordingly.
  • the synchronizer 70 is widely used in a manual transmission and is well known to those skilled in the art, so a detailed description thereof will be omitted.
  • First and second intermediate gears 100 and 110 are fixed to the idle shaft 90.
  • the second intermediate gear 110 is gear-coupled to the reverse gear (80).
  • the planetary gear set PG1 includes a sun gear S1, a planet carrier PC1, and a ring gear R1 as its operation means.
  • the planetary carrier PC1 is rotatably mounted by a pinion shaft 325 with a pinion gear P1 that is toothed to the ring gear R1 and the sun gear S1.
  • the respective operation means S1, PC1, R1 rotate relative to each other.
  • assembly disks 340 and hubs 345 and 350 for assembling the planetary gear set PG1 are mounted at both sides of the planetary gear set PG1.
  • the ring gear R1 has gear teeth formed on its inner circumferential surface and outer circumferential surface, and the pinion gear P1 and the sleeve 335 are gear-coupled to the gear teeth of the inner circumferential surface.
  • the ring gear R1 acts as a first operating means, and the forward gear 60 and the first mediated gear 100 are interdigitally coupled to the outer gear surface of the ring gear R1. Therefore, when the synchronizer 70 fixes the forward gear 60 and the reduction shaft 40, the power of the driving power source 100 is input to the ring gear R1 through the forward gear 60.
  • the synchronizer 70 fixes the reverse gear 80 and the reduction shaft 40, and the power of the driving power source 10 is the reverse gear 80, the second parameter gear 110, and the first parameter gear ( 100 is sequentially input to the ring gear R1.
  • the planet carrier PC1 includes a carrier cup 320 and a carrier cover 315 fixedly attached to each other.
  • the pinion gear P1 is rotatably mounted between the carrier cup 320 and the carrier cover 315 so that the planet carrier PC1 rotates as the pinion gear P1 rotates.
  • a bearing 330 is interposed between the carrier cover 315 and the sleeve 335 to reduce friction generated during rotation.
  • the carrier cup 320 is provided with an extension extending in the direction of the opposite rotation axis 310 of the carrier cover 315, the gear teeth are formed on the outer peripheral surface of the extension.
  • the outer peripheral surface gear teeth of the extension part are toothed with the worm gear or the helical gear and are formed obliquely with respect to the rotation axis to prevent reversal. Therefore, the planetary carrier PC1 acts as a second operating means to receive power for shifting from the shift input shaft 130. Power for the shift is transmitted to the worm wheel 302 of the outer peripheral surface of the extension by a worm gear or a helical gear.
  • the sun gear S1 has a gear tooth formed on an outer circumferential surface thereof, and is fixed to the output shaft 120 (here, the rotation shaft 310) by acting as a third operating means. Therefore, the sun gear S1 may receive power from the rotation shaft 310 or transmit power to the rotation shaft 310.
  • the planetary gear set PG1 as described above changes the rotational speed of the output shaft by using the rotational speed of the reduction shaft 40 and the rotational speed of the speed change input shaft 130.
  • the output shaft 120 is connected to a differential (not shown) to rotate a wheel (not shown).
  • the shifting unit 200 includes a shift input shaft 130 and a worm gear 140.
  • One end of the shift input shaft 130 is connected to a shift power source 150 to receive power for shifting, and a worm gear 140 is fixedly mounted at an intermediate portion thereof. Since the worm gear 140 transmits power by gear coupling to the planetary carrier PC1, the loss of torque of the driving power source 10 through the shift input shaft 130 is reduced. In addition, since the rotational speed of the driving power source 10 is decelerated through the reduction gear 50 and then input to the planetary gear set PG1, the rotational speed of the shifting input shaft 130 is obtained to obtain the rotational speed of the target output shaft 120. There is no need to raise too much.
  • the gear teeth of the planetary carrier PC1 may be formed in a helical shape and a helical gear (not shown) may be used.
  • a pair of shift input shafts 130 may be mounted above and below the planet carrier PC1, and the pair of shift input shafts 130 may be connected by a power transmission means such as a belt or a chain. have.
  • variable speed power source 150 may be connected to various kinds of rotational speed generating means such as a DC motor, a hydraulic motor, the rotational speed generating means that can easily adjust the rotational speed under the control of the controller 160 is advantageous Do.
  • rotational speed generating means such as a DC motor, a hydraulic motor, the rotational speed generating means that can easily adjust the rotational speed under the control of the controller 160 is advantageous Do.
  • the controller 160 controls a shift to a target shift stage that controls the operation of the shift power source 150.
  • the controller 160 includes a brake position sensor 170, an output shaft speed sensor 180, and an operating lever position sensor 181, and may be implemented as one or more processors operating by a set program.
  • the brake position sensor 170 detects the degree of operation of the brake pedal, the output shaft speed sensor 180 detects the rotational speed of the output shaft 120, and the operating lever position sensor 181 of the operating lever (not shown) Detect location.
  • the controller 160 calculates a target speed change stage or target braking force from the position of the brake, the speed of the output shaft 120 and the position of the operating lever, and adjusts the rotational speed of the transmission power source 150 accordingly.
  • Figure 4 is a speed diagram showing that the forward gear stage is formed in the power transmission device according to an embodiment of the present invention.
  • the rotational speed of the sun gear S1 is assumed to be positive below the horizontal axis and negative above the horizontal axis.
  • the rotation speed of the input shaft 20 is decelerated by the reduction gear 50 so as to ring gear R1.
  • the rotational speed input to 1 and the rotational speed input to the planetary carrier (PC1) from the transmission power source 150 is called the first rotational speed (X1)
  • X1 rotational speed
  • the controller 150 determines that the rotational speed of the second output speed Y2 should be output
  • the rotational speed inputted from the transmission power source 150 to the planetary carrier PC1 is determined by the second rotational speed X2.
  • the target speed change stage can be realized by changing the rotation speed input from the shift power source 150 to the planet carrier PC1.
  • the reverse shift stage may be implemented by increasing the rotational speed of the shifting power source 150, but in this case, the shifting power source 150 may rotate at an unreasonable rotational speed. Therefore, the power transmission device according to the embodiment of the present invention implements the reverse shift stage by using the idle shaft 90 and the first and second intermediate gears 100 and 110. That is, when the synchronizer 70 is fixedly coupled to the reduction shaft 40 and the reverse gear 80, the rotational speed of the reduction shaft 40 is indirectly transmitted through the idle shaft 90 instead of being directly transmitted to the ring gear R1. Is passed to. In this process, the rotational speed transmitted to the ring gear R1 is reversed in the opposite direction. Therefore, the reverse shift stage is implemented as in the case of implementing the forward shift stage.
  • the power transmission device may be braking by installing a brake on the wheel, it may be performed by controlling the rotational speed of the variable speed power source 150.
  • FIG. 5 is a perspective view showing the configuration of a power transmission device according to a second embodiment of the present invention
  • Figure 6 is a rear view showing the configuration of a power transmission device according to a second embodiment of the present invention.
  • the power transmission device according to the second embodiment of the present invention is similar to the power transmission device according to the first embodiment of the present invention. Therefore, the same reference numerals are used for the same components, and detailed description thereof will be omitted.
  • the power transmission apparatus is the input shaft 20, the reduction unit 190, the planetary gear set (PG1), the output shaft 120, the transmission unit ( 200, and a controller 160 (see FIGS. 1 and 2).
  • the deceleration unit 190 has four axes 211, 212, 213, 214 arranged in parallel with the input shaft 20, and the respective axes 211, 212, Eight gears 191, 192, 193, 194, 195, 196, 197, 198 mounted two by two on 213, 214.
  • First and second gears 191 and 192 having different numbers of gear teeth are mounted on the first shaft 211, and the first gear 191 is gear-coupled with the drive gear 30 of the input shaft 20. .
  • the number of gear teeth of the first gear 191 is smaller than the number of gear teeth of the second gear 192.
  • Third and fourth gears 193 and 194 having a different number of gear teeth are mounted on the second shaft 212, and the third gear 193 is connected to the second gear 192 of the first shaft 211. Combine the gears.
  • the number of gear teeth of the third gear 193 is smaller than the number of gear teeth of the fourth gear 194.
  • the fifth and sixth gears 195 and 196 having different numbers of gear teeth are mounted on the third shaft 213, and the fifth gear 195 is connected to the fourth gear 194 of the second shaft 212. Combine the gears.
  • the number of gear teeth of the fifth gear 195 is smaller than the number of gear teeth of the sixth gear 196.
  • the seventh and eighth gears 197 and 198 having different numbers of gear teeth are mounted on the fourth shaft 214, and the seventh gear 197 is the sixth gear 196 of the third shaft 213.
  • the eighth gear 198 is gear-coupled with the ring gear R1 of the planetary gear set PG1.
  • the number of gear teeth of the seventh gear 197 is smaller than the number of gear teeth of the eighth gear 198.
  • a gear having a smaller number of gears among the two gears formed on each shaft is gear-coupled with a gear of an axis close to a driving power source on the power transmission line, and a gear having a large number of gear teeth is close to the planetary gear set on the power transmission line.
  • Coupling with the gear of the shaft For example, the third gear 193 having a small number of gear teeth on the second shaft 212 is in gear coupling with the second gear 192 of the first shaft 211 close to the driving power source 10 on the power transmission line. do. Therefore, the rotational speed of the input shaft 20 decreases as it passes through each axis, and finally the reduced rotational speed is transmitted to the first operating means R1 of the planetary gear set PG1.
  • deceleration using four shafts and eight gears is illustrated, but the present invention is not limited thereto, and at least one shaft and at least two gears may be used for deceleration.
  • the shift unit 200 includes a shift input shaft 130, a first gear 140, and a second gear 201.
  • a shift input shaft 130 a shift input shaft 130
  • a first gear 140 a gear that drives the shift input shaft 130
  • a second gear 201 a gear that drives the shift input shaft 130
  • four first gears 140, and eight second gears 201 are illustrated, the present invention is not limited thereto.
  • the plurality of shift input shafts 130 are disposed at right angles to each other, and are also disposed at right angles to the output shaft 120.
  • the first gear 140 is mounted on each shift input shaft 130 to rotate about the shift input shaft 130, and is gear-coupled to the second operating means PC1 of the planetary gear set PG1.
  • the shift input shaft 130 and the output shaft 120 are formed vertically, the rotation shafts of the first gear 140 and the second operating means PC1 are perpendicular to each other. Therefore, a worm gear or a helical gear may be used as the first gear 140.
  • the second gear 201 is mounted to each shift input shaft 130 to rotate based on the shift input shaft 130.
  • the second gear 201 mounted on one of the shift input shafts 130 transmits shift power by gear coupling with the second gear 201 mounted on the other shift input shaft 130.
  • the rotation axes of the second gears 201 are also perpendicular to each other. Therefore, a worm gear or a helical gear may be used as the second gear 140.
  • FIG 8 is an overall perspective view of a power transmission device according to a third embodiment of the present invention
  • Figure 9 is a plan view of a power transmission device according to a third embodiment of the present invention.
  • the power transmission device includes an input shaft 20, a drive gear 30, a reduction shaft 40, a first reduction gear 800, a second reduction gear 805, and a ring gear R1. ), Worm wheel 305, output shaft 310, the first output gear 815, differential gear 820, shift input shaft 130, worm gear 140, shift input shaft gear 810, and carrier extension 900 ).
  • the input shaft 20 is rotated by the power source 10 (Fig. 1), the drive gear 30 is formed on one outer peripheral surface thereof.
  • the reduction shaft 40 is disposed parallel to the input shaft 20 at a distance, and the first reduction gear 800 that is external to the drive gear 30 is formed on one side thereof.
  • the second reduction gear 805 is further formed on the reduction shaft 40 to be spaced apart from the first reduction gear 800.
  • the radius of the first reduction gear 800 is larger than that of the drive gear 30 to effectively reduce the rotational speed of the input shaft 20 and increase the torque.
  • the radius of the second reduction gear 805 is smaller than the radius of the first reduction gear 800.
  • the output shaft 310 is spaced apart from the reduction shaft 40 in parallel to the lower portion of the reduction shaft 40, the output gear 310 is mounted with a sun gear (S1, Figure 7).
  • the ring gear R1 having the sun gear S1 installed therein is disposed at one side of the output shaft 310, and the gear formed on the outer circumferential surface of the ring gear R1 is circumscribed with the second reduction gear 805. .
  • the radius of the second reduction gear 805 is smaller than the radius of the first reduction gear 800 and the ring gear R1 to effectively reduce the rotational speed of the input shaft 20 and increase the torque.
  • the sun gear S1 (FIG. 7) and the planetary gears P1 (FIG. 7) are disposed in the inner space of the ring gear R1 to form a planetary gear set structure.
  • an extension part 900 (Fig. 9) extending in the longitudinal direction of the output shaft 310 is formed on the planet carrier C1 (Fig. 7) connecting the rotation axis of the planetary gear (P1), the extension part 900
  • the worm wheel 302 is formed on the outer circumferential surface thereof.
  • the shift input shaft 130 is disposed perpendicular to the output shaft 310, and the worm gear 140 is formed on the shift input shaft 130 to correspond to the worm wheel 302.
  • the shift input shaft gear 810 is formed at one end of the shift input shaft 130.
  • the shift input shaft gear 810 rotates the worm gear 140, the worm wheel 302, and the planet carrier C1 (FIG. 7) by receiving power from the shift power source 150 (FIG. 1).
  • the rotational speed of the output shaft 310 connected to the sun gear S1 is adjusted according to the rotational speed, the stop, the forward rotation, and the reverse rotation of the transmission input shaft 130, and whether the brake is operated or not. Therefore, the rotation of the shift input shaft 130 is adjusted.
  • FIG. 10 is a perspective view of a power transmission device according to a fourth embodiment of the present invention
  • FIG. 11 is a plan view of a power transmission device according to a fourth embodiment of the present invention.
  • the power transmission device includes an input shaft 20, a drive gear 30, a reduction gear 50, a drive bevel gear 1000, a driven bevel gear 1005, a ring gear R1,
  • the carrier extension 1010, the worm wheel 302, the worm gear 140, the shift input shaft 130, and the shift input shaft gear 810 are included.
  • the drive gear 30 is formed at one end of the input shaft 20, and the drive gear 30 is circumscribed with the reduction gear 50.
  • the driving bevel gear 1000 is formed on a side of the reduction gear 50, and the driven bevel gear 1005 is formed on one side of the ring gear R1 in correspondence with the driving bevel gear 1000. .
  • the rotation of the input shaft 20 causes the reduction gear 50 and the ring gear R1 to rotate.
  • the carrier extension part 1010 is formed to extend in the longitudinal direction of the output shaft 310, and the worm wheel 302 is formed on the outer circumferential surface of the extension part 1010. .
  • the shift input shaft 130 having the worm gear 140 formed on an outer circumferential surface of the worm wheel 302 is disposed, and the shift input shaft gear 140 is formed at one side of the shift input shaft 130.
  • the input shaft 20 and the output shaft 310 are disposed perpendicular to each other, the shift input shaft 130 and the input shaft 20 is disposed in parallel to each other. .
  • a bearing is interposed between the carrier extension portion 1010 and the output shaft 310 extending in one direction of the output shaft 310 in the carrier C1.
  • a bevel gear structure is used to effectively transmit rotational force from the input shaft 20 to the ring gear R1.
  • the rotation characteristics (speed and direction) of the carrier extension part 1010 are adjusted by using the worm wheel 302 formed on the carrier extension part 1010 and the worm gear 140 formed on the shift input shaft 130. As a result, the rotation speed of the output shaft 310 can be easily adjusted.
  • FIG. 12 is a perspective view of a power transmission device according to a fifth embodiment of the present invention.
  • FIG. 13 is a perspective view of a power transmission device according to a sixth embodiment of the present invention.
  • FIG. 14 is a perspective view showing a partially cut surface of the planetary carrier applied to FIGS. 12 and 13;
  • FIG. 15 is a perspective view of a power transmission device according to a seventh embodiment of the present invention.
  • the second control means of the planetary gear set (PG1) is connected to the torque control shaft 2010 receives the rotational force of the second operating means through the tooth coupling, the torque control
  • the shaft 2010 is provided with a generator 2020 for generating electricity, and the generator 2020 is connected to a storage battery 2030 for supplying power to the variable speed power source 150.
  • the generator 2020 uses induction electromotive force, and includes a stator, a rotor, and an exciter.
  • the storage battery 2030 may be, for example, a typical vehicle battery.
  • the second gear 144 is formed in the planet carrier PC1 serving as the second operating means such that the second helical gear 2011 is engaged with the extension portion to draw out a part of the rotational force of the planet carrier PC1. 12 and 13, the second gear 144 is disposed adjacent to the worm wheel 142 of the planetary carrier PC1 or the worm wheel (R1) is centered as shown in FIG. 15. 142, and the second helical gear 2011 is fixedly mounted to the torque control shaft 2010. As shown in FIG.
  • the torque control shaft 2010 is disposed in parallel with the shift input shaft 130, and as shown in FIG. 12, the worm gear 140 and the second helical gear 2011 are both disposed on the same plane above or below, or as shown in FIG. It may be disposed above and below the same plane, respectively.
  • the generator 2020 and the storage battery 2030 may be configured in the same manner as in the embodiment of FIG. 12. 12 to 15, the input shaft 20 may be replaced by the reduction shaft 40 or the output shaft 120.
  • the planetary carrier PC1 is rotated by the operation of the planetary gear set PG1 receiving the rotational force of the input shaft 20 to generate rotational torque.
  • the torque control shaft 2010 is rotated through the second helical gear 2100 (which is a driven bevel gear in FIG. 16) meshed with the second gear 144 formed in the extension of the planetary carrier PC1.
  • the rotational torque of the planetary carrier PC1 is consumed to drive the torque control shaft 2010, thereby reducing the rotational torque of the planetary carrier PC1.
  • the shift power source 150 under the driving control of the controller 160 controls the shift input shaft 130 by driving with the electric energy stored in the capacitor 2030.
  • variable speed power source 150 operates with generated energy generated by obtaining power from the planetary carrier PC1, there is no need for a separate external power supply.
  • the second helical gear 2011 may be configured as a second bevel gear in place of the second helical gear 2011. Therefore, the second gear 144 formed in the extension of the planetary carrier PC1 may also be configured in the form of a bevel gear.
  • a gear box 2015 may be further installed between the torque control shaft 2010 and the generator 2020.
  • Reduction device 2015 is basically configured to obtain a reduced rotational output by the engagement of a plurality of shafts and gears to reduce the rotation speed on each axis. Therefore, the reduction device 2015 reduces the rotational torque of the planetary carrier PC1 during the deceleration.
  • the torque control shaft 2010 may be configured to reduce the rotational torque of the planetary carrier (PC1) by additionally or independently connected to the hydraulic pump (not shown).
  • the hydraulic pressure from the hydraulic pump may be used as, for example, a hydraulic source for driving steering of the vehicle.
  • the present invention has a main motor (M1) for rotating the input shaft 20, as shown in Figure 16 and 17, and a control motor (M2) for controlling the rotational drive of the variable speed input shaft 130 and
  • a motor controller 170 may be included to control the driving of the main motor M1 and the control motor M2.
  • An accelerator pedal 172 and a brake pedal 174 are electrically connected to the motor control unit 170.
  • the present invention is not limited to the above embodiments, and easily changed and equalized by those skilled in the art from the embodiments of the present invention. It includes all changes to the extent deemed acceptable.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Structure Of Transmissions (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

본 발명은 유성캐리어의 일측을 연장하여 기어치를 형성한 유성기어세트와, 구동동력원으로부터 입력되는 회전속도를 감속한 후 상기 유성기어세트의 하나의 작동수단에 입력하고 변속동력원의 회전속도를 상기 유성기어세트의 다른 작동수단에 입력함으로써 복수개의 변속단을 구현할 수 있으며, 출력축에서 발전동력원을 얻고 전기를 축전하고, 그 축전된 전기에너지로 변속동력원의 제어 에너지로 활용하여 변속입력축을 쉽게 제어할 수 있도록 한 동력전달장치에 관한 것이다. 본 발명의 실시예에 따른 동력전달장치는, 일단이 구동 동력원에 항시 연결되어 동력을 전달받으며, 구동기어가 고정적으로 장착된 입력축과; 상기 구동기어에 결합하며, 상기 입력축의 회전속도를 감속하는 감속 유닛과; 상기 감속 유닛에 결합하여 감속 유닛의 회전속도를 전달받는 제1작동수단, 변속을 위한 동력을 전달받는 제2작동수단, 그리고 출력속도가 생성되는 제3작동수단를 포함하는 유성기어세트와; 변속 동력원에 항시 연결되어 변속을 위한 동력을 전달받으며, 상기 변속을 위한 동력을 상기 제2작동수단에 전달하도록 상기 제2작동수단과 결합하는 변속 유닛; 그리고 상기 유성기어세트의 제3작동수단에 고정되어 출력속도를 전달하는 출력축을 포함하되, 상기 제2작동수단의 회전축과 상기 변속 유닛의 회전축은 서로 수직이고, 상기 제2작동수단에는 동력전달수단을 통해 제2작동수단의 회전력을 전달받는 토크제어축이 연결되고, 상기 토크제어축에는 전기를 발생시키는 발전기가 설치되고, 상기 발전기에는 상기 변속동력원으로 전원을 공급하는 축전지가 연결된 것을 특징으로 한다.

Description

[규칙 제26조에 의한 보정 20.05.2010] 유성기어를 이용한 동력 전달 장치
본 발명은 차량, 선박, 풍차, 그리고 컨버터 모터 등에 사용되는 동력전달장치에 관한 것으로, 특히 유성캐리어의 일측을 연장하여 기어치를 형성한 유성기어세트와, 구동동력원으로부터 입력되는 회전속도를 감속한 후 상기 유성기어세트의 하나의 작동수단에 입력하고 변속동력원의 회전속도를 상기 유성기어세트의 다른 작동수단에 입력함으로써 복수개의 변속단을 구현할 수 있으며, 출력축에서 발전동력원을 얻고 전기를 축전하고, 그 축전된 전기에너지로 변속동력원의 제어 에너지로 활용하여 변속입력축을 쉽게 제어할 수 있도록 한 유성기어를 이용한 동력전달장치에 관한 것이다.
일반적으로 변속기는 구동 동력원으로부터 동력을 전달받아 운전 조건에 부합하는 회전속도로 변화시켜 이를 출력축에 전달하는 장치이다. 이러한 변속기에는 변속레버의 조작에 의하여 운전자가 원하는 변속단을 구현하는 수동 변속기와 차량 속도와 스로틀 밸브의 개폐정도를 기초로 변속단을 자동으로 구현하는 자동변속기가 있다. 수동 변속기는 연비가 좋은 장점이 있으나 조작이 어려운 단점이 있고, 자동변속기는 조작이 편하나 구현되는 연비가 낮다는 단점이 있다.
변속기가 구현하는 변속단의 수가 늘어날수록 차량의 연비가 높아진다. 그러나, 자동변속기는 복수개의 유성기어세트와 상기 복수개의 유성기어세트의 각 작동수단들의 작동을 조작하는 마찰요소를 포함하고 있으며, 구현되는 변속단의 수가 늘어날수록 자동변속기에서 사용되는 유성기어세트와 마찰요소의 개수가 늘어나게 된다. 또한 유성기어세트와 마찰요소의 개수가 늘어날수록 자동변속기의 무게가 증가하게 되며, 이는 연비의 저하를 가져온다. 따라서 자동변속기의 경우 구현되는 변속단의 수는 수동변속기보다 적은 것이 통상적이다.
한편, 차량 등에 사용되는 부가장치는 차량이 멈춘 상태에서도 작동하여야 하며, 이에 따라 구동동력원에 직결되어 있다. 그러나, 구동동력원과 입력축 사이에는 댐퍼 클러치가 장착되어 있으므로 부가장치는 입력축에 연결하여 사용하지 못하였다. 따라서 부가장치를 장착할 수 있는 공간이 부족하였다.
상기와 같은 문제점을 해결하기 위하여 유성기어세트의 작동수단 중 하나에는 구동동력원의 회전속도를 입력하고 유성기어세트의 작동수단 중 다른 하나에는 변속동력원으로부터 변속을 위한 회전속도를 입력하여 복수개의 변속단을 구현하는 방법들이 제안된 바 있다.
그러나 이러한 방법들에 의하면 구동동력원의 토크가 상기 변속동력원에 가해지게 되어 토크의 손실이 심각하게 발생되었으며, 구동동력원의 회전속도가 감속되지 않은 채 유성기어세트에 입력되게 되어 강한 토크를 제공할 수 있는 변속동력원이 아니면 변속이 힘든 문제점이 있었다.
따라서, 본 발명은 상기한 바와 같은 문제점을 해결하기 위하여 창출된 것으로, 본 발명의 목적은 유성기어세트의 유성 캐리어로부터 변속입력축을 제어하기 위해 필요한 변속동력원의 전기에너지를 얻을 수 있도록 한 유성기어를 이용한 동력전달장치를 제공하는데 그 목적이 있다.
또한, 상기 유성기어세트와 변속 동력원을 이용하여 다양한 전진 변속단과 후진 변속단을 구현하는 유성기어를 이용한 동력 전달 장치를 제공하는데 그 목적이 있다.
또한, 입력축을 구동 동력원에 직결시켜 부가 장치를 입력축에 연결하여 상기 유성기어세트를 사용하는 유성기어를 이용한 동력 전달 장치를 제공하는데 다른 목적이 있다.
또한, 상기 유성기어세트의 변속 과정에서 토크의 손실을 최소화하고 상대적으로 약한 토크를 제공하는 변속 동력원을 이용하여 다양한 변속이 가능하도록 유성기어를 이용한 동력전달 장치를 제공하는데 또 다른 목적이 있다.
또한, 변속 동력원과 상기 유성기어세트의 작동수단을 연결하는 부위에서 발생할 수 있는 슬립을 최소화하는 유성기어를 이용한 동력 전달 장치를 제공하는데 목적이 있다.
또한, 엑셀 페달과 브레이크 페달을 이용하여 출력축의 회전수를 제어할 수 있도록 유성기어를 이용한 동력전달장치를 제공하는데 그 목적이 있다.
상기의 목적을 달성하기 위한 본 발명의 실시예들에 따른 유성기어를 이용한 동력전달장치는,
일단이 구동 동력원에 항시 연결되어 동력을 전달받으며, 구동기어가 고정적으로 장착된 입력축과;
상기 구동기어에 결합하며, 상기 입력축의 회전속도를 감속하는 감속 유닛과;
상기 감속 유닛에 결합하여 감속 유닛의 회전속도를 전달받는 제1작동수단, 변속을 위한 동력을 전달받는 제2작동수단, 그리고 출력속도가 생성되는 제3작동수단을 포함하는 유성기어세트와;
변속 동력원에 항시 연결되어 변속을 위한 동력을 전달받으며, 상기 변속을 위한 동력을 상기 제2작동수단에 전달하도록 상기 제2작동수단과 결합하는 변속 유닛; 그리고
상기 유성기어세트의 제3작동수단에 고정되어 출력속도를 전달하는 출력축을 포함하되, 상기 제2작동수단의 회전축과 상기 변속 유닛의 회전축은 서로 수직이고,
상기 제2작동수단에는 동력전달수단을 통해 제2작동수단의 회전력을 전달받는 토크제어축이 연결되고, 상기 토크제어축에는 전기를 발생시키는 발전기가 설치되고, 상기 발전기에는 상기 변속동력원으로 전원을 공급하는 축전지가 연결된 것을 특징으로 한다.
상기 유성기어세트는 선기어, 유성 캐리어, 그리고 링기어를 그 작동수단으로 포함하는 싱글 피니언 유성기어세트이되,
상기 링기어는 상기 제1작동수단으로 작용하고, 상기 유성 캐리어는 상기 제2작동수단으로 작용하고, 그리고 상기 선기어는 상기 제3작동수단으로 작용할 수 있다.
상기 유성기어를 이용한 동력전달장치는 제어부를 더 포함하되, 상기 제어부는 출력축의 속도와 브레이크의 작동 정도에 따라 변속 동력원의 작동을 제어할 수 있다.
상기 제어부는 변속 동력원의 회전속도를 변화시킴으로써 출력축의 회전속도를 제어하고 제동을 수행할 수 있다.
상기 변속 동력원은 모터일 수 있다.
본 발명의 제1실시예에 따른 유성기어를 이용한 동력전달장치에서, 상기 감속 유닛은 입력축과 평행하게 배치되어 있는 감속축; 상기 감속축에 고정 부착되어 있으며 상기 구동기어에 기어 결합하는 감속 기어; 상기 감속축을 기준으로 회전 가능하게 장착되어 있는 전진 기어와 후진 기어; 그리고 상기 전진 기어와 후진 기어를 상기 감속축에 선택적으로 고정시켜 일체로 회전하도록 하는 싱크로나이저;를 포함하되, 상기 전진 기어는 항시 상기 제1작동수단에 기어 결합하는 것을 특징으로 한다.
상기 감속 유닛은 상기 후진 기어의 회전속도를 전달받아 회전하는 아이들 축; 상기 아이들 축에 고정 장착되며 상기 제1작동수단에 기어 결합하는 제1매개 기어; 그리고 상기 아이들 축에 고정 장착되며 상기 후진 기어에 기어 결합하는 제2매개 기어;를 더 포함할 수 있다.
상기 싱크로나이저는 작동 레버의 위치에 따라 동작될 수 있다.
상기 입력축의 타단과 상기 감속 유닛 중 적어도 한 곳에는 부가 장치가 연결된다.
상기 변속 유닛은 일단이 상기 변속 동력원에 연결되어 변속을 위한 동력을 전달 받는 변속 입력축; 그리고 상기 변속 입력축의 타단에 형성되어 있으며, 상기 제2작동수단과 기어 결합하는 웜기어;를 포함할 수 있다.
본 발명의 제2실시예에 따른 유성기어를 이용한 동력전달장치에서, 상기 감속 유닛은 상기 입력축과 평행하게 배치되어 있는 복수개의 축과 상기 복수개의 축에 장착되어 있는 복수개의 기어들을 포함하되, 상기 복수개의 축 하나당 기어치의 개수가 서로 다른 두 개의 기어들이 장착되어 있으며, 한 축에 형성된 두 개의 기어 중 하나는 다른 축에 형성된 두 개의 기어 중 하나에 기어 결합함으로써 동력이 입력축으로부터 유성기어세트까지 전달되도록 되어 있고, 상기 복수개의 기어들 중 하나는 상기 구동 기어에 기어 결합하고, 상기 복수개의 기어들 중 다른 하나는 상기 제1작동수단에 기어 결합하는 것을 특징으로 한다.
상기 각각의 축에 형성된 두 개의 기어 중 기어치의 개수가 작은 기어는 동력 전달 라인 상에서 구동 동력원에 가까운 축의 기어와 기어 결합하고, 기어치의 개수가 많은 기어는 동력 전달 라인 상에서 유성기어세트와 가까운 축의 기어와 기어 결합할 수 있다.
상기 변속 유닛은 서로 각각 직각으로 배치되어 있으며, 상기 출력축에도 직각으로 배치된 복수개의 변속 입력축; 상기 각각의 변속 입력축에 장착되어 변속 입력축을 기준으로 회전하며, 상기 제2작동수단과 기어 결합하는 제1기어; 그리고 상기 각각의 변속 입력축에 장착되어 변속 입력축을 기준으로 회전하는 제2기어;를 포함하되, 하나의 변속 입력축에 장착된 제2기어는 다른 변속 입력축에 장착된 제2기어와 기어 결합하고, 상기 변속 입력축 중 하나는 변속 동력원에 연결되어 변속을 위한 동력을 전달 받을 수 있다.
상기 제1기어는 웜기어이고, 상기 제2기어는 헬리컬기어일 수 있다.
본 발명에 따른 유성기어를 이용한 동력전달장치는, 외주면에 기어치가 형성되어 있으며, 회전축에 부착되어 회전축으로부터 동력을 전달받거나 회전축에 동력을 전달하는 선기어; 상기 선기어를 둘러싸서 선기어와 상대 회전하며, 그 내주면에 기어치가 형성되어 있는 링기어; 상기 선기어의 외주면 기어치와 상기 링기어의 내주면 기어치에 기어 결합하는 복수개의 피니언기어; 그리고 상기 복수개의 피니언 기어가 회전 가능하게 장착되어 상기 피니언 기어의 회전에 따라 회전하는 유성 캐리어;를 포함하되, 상기 유성 캐리어의 일측부에는 회전축 방향으로 연장된 연장부가 구비되어 있으며, 상기 연장부의 외주면에는 웜기어 또는 헬리컬 기어가 결합되도록 상기 회전축에 대하여 비스듬하게 기어치가 형성되고, 부가적으로 유성 캐리어의 회전력 일부를 인출해내기 위해 상기 연장부에 제2헬리컬기어 또는 제2베벨기어가 이맞물림되도록 결합되도록 제2기어치가 더 형성된 것을 특징으로 한다.
상기 링기어의 외주면에도 기어치가 형성되어 있을 수 있다.
본 발명의 실시예에 따른 유성기어를 이용한 동력전달장치는, 일측 외주면에 구동기어가 형성된 입력축;
상기 구동기어와 기어 결합되는 감속기어가 형성된 감속축을 포함하는 감속유닛;
상기 감속기어와 외접하도록 외주면에 기어가 형성된 링기어;
상기 링기어의 내주면에 형성된 기어와 외접하는 복수개의 피니언기어들;
상기 피니언기어들과 외접하는 하나의 선기어가 장착되는 출력축;
상기 피니언기어들의 중심축들과 연결되되, 상기 피니언기어들의 회전에 따라서 상기 출력축을 중심으로 회전하는 유성캐리어;
상기 유성캐리어에서 상기 출력축의 축방향으로 연장되는 연장부;
상기 연장부의 외주면에 형성된 웜기어와 구동 헬리컬기어;
상기 웜기어에 결합되는 웜휠이 외주면에 형성되고 상기 출력축과 수직하게 배치되어 변속동력원에 의해서 회전하는 변속입력축;
상기 변속입력축의 회전속도를 제어하는 제어부;
상기 연장부의 구동 헬리컬기어에 외접하는 피동 헬리컬기어를 갖는 토크제어축; 및
상기 토크제어축으로 구동되는 발전기, 감속장치, 유압펌프 중에서 하나 이상 택일된 토크 감속수단;을 포함한다.
상기 감속유닛은 상기 감속축에 형성되는 제1감속기어; 및 상기 제1감속기어와 이격되어 상기 감속축에 형성되는 제2감속기어를 포함할 수 있다.
상기 제1감속기어는 상기 구동기어와 연결되고, 상기 제2감속기어는 상기 링기어의 외주면에 형성된 기어와 연결될 수 있다.
본 발명의 실시예에 따른 유성기어를 이용한 동력전달장치는,
일측 외주면에 구동기어가 형성된 입력축;
상기 구동기어와 기어결합되는 감속기어가 형성된 감속축;
상기 감속축의 일단부에 형성된 구동베벨기어;
일측에 상기 구동베벨기어와 기어결합되는 피동피벨기어가 형성된 링기어;
상기 링기어의 내주면에 형성된 기어와 외접하는 복 수 개의 피니언기어들;
상기 피니언기어들과 외접하는 하나의 선기어가 장착되어 함께 회전하는 출력축;
상기 피니언기어들의 중심축들과 연결되되, 상기 피니언기어들의 회전에 따라서 상기 출력축을 중심으로 회전하는 유성캐리어;
상기 유성캐리어에서 상기 출력축의 축방향으로 연장되는 연장부;
상기 연장부의 외주면에 형성된 웜기어 및 구동베벨기어;
상기 웜기어에 결합되는 웜휠이 외주면에 형성되고 상기 출력축과 수직하게 배치되어 동력원에 의해서 회전하는 변속입력축; 및
상기 출력축의 회전속도와 브레이크이 작동에 따라서 상기 변속입력축의 회전속도를 제어하는 제어부;
상기 연장부의 구동 헬리컬기어에 외접하는 피동 헬리컬기어를 갖는 토크제어축;
상기 토크제어축에 연결되어 전기를 발생시키는 발전기; 및
상기 발전기에 전기적으로 연결되어 상기 변속동력원으로 전원을 공급하는 축전지;를 포함한다.
상기 링기어의 일측면에 상기 피동베벨기어가 형성되고, 반대측면에 상기 연장부가 연장되어 형성되는 것이 바람직하다.
또한 본 발명에 따른 유성기어를 이용한 동력전달장치는,
일측 외주면에 구동기어가 형성된 입력축;
상기 구동기어에 외주면의 치형과 이맞물림된 링기어;
상기 링기어의 내주면 치형과 이맞물림된 다수의 피니언기어를 원주상에 구비하고, 일측단에 웜휠과 타측단에 베벨 치형을 갖는 제2기어치가 형성되어 있는 유성캐리어;
상기 다수의 피니언기어와 치형으로 외접되어 이맞물림된 선기어;
상기 유성캐리어에 삽입됨과 동시에 상기 선기어에 축설되어 선기어와 일체로 회전되는 아이들 축;
상기 웜휠에 이맞물려진 웜기어를 갖는 변속입력축;
상기 제2기어치와 이맞물려져 회전되는 베벨 치형을 갖는 토크제어축을 포함한다.
또한 본 발명의 유성기어를 이용한 동력전달장치는,
상기 입력축을 회전시키는 메인모터;
상기 변속입력축의 회전 구동을 제어하기 위한 서브모터를 더 포함한다.
또한 본 발명의 유성기어를 이용한 동력전달장치는,
상기 메인모터와 상기 서브모터의 구동을 제어하기 위한 모터제어부와;
상기 제어부에 전기적으로 연결된 엑셀페달 및 브레이크 페달이 더 포함되고,
상기 모터제어부는,
엑셀 페달을 밟을 경우 메인모터의 회전수를 증가시키고 동시에 서브모터의 회전수를 감소시켜 출력축의 회전속도를 증가시키며,
브레이크 페달을 밟을 경우 서브모터의 회전수를 증가시켜 출력축의 회전수를 감소시키는 것을 특징으로 한다.
상술한 바와 같이 본 발명에 따른 유성기어를 이용한 동력전달장치에 의하면, 유성기어세트와 변속 동력원을 이용하여 다양한 전진 변속단과 후진 변속단을 구현할 수 있다. 특히, 후진 변속단을 구현하기 위하여 아이들러 축에 장착된 제1,2매개 기어를 사용하므로 전진 변속단과 동일한 방법으로 후진 변속단을 구현할 수 있다.
입력축뿐만 아니라 감속축에도 부가 장치를 연결하여 사용하므로 각 부가장치에 필요한 다양한 회전속도가 제동될 수 있다.
또한, 별도의 제동 시스템이 없이 변속을 위한 변속 동력원을 이용하여 제동을 하므로 그 구성이 단순해지며, 제작단가를 줄일 수 있다.
또한, 변속 동력원으로부터 입력되는 변속을 위한 동력이 웜기어를 통해 유성기어세트에 입력되므로 변속 동력원으로의 토크의 손실이 줄어든다.
또한, 구동 동력원의 회전 속도가 감속된 후 유성기어세트에 입력되므로 회전 속도가 낮은 변속 동력원을 사용하여도 변속이 가능하다.
또한, 복수개의 웜기어를 이용하여 변속 동력원의 동력을 유성기어세트로 입력시키므로 변속 동력원과 유성기어세트의 결합 부위에서 발생할 수 있는 슬립이 최소화된다.
또한, 유성기어세트의 유성캐리어로 발생된 회전력의 일부를 인출하여 발전기를 통해 발전이 이루어지도록 함으로써 유성캐리어의 토그가 작아져 출력축의 회전 제어를 쉽게 할 수 있다.
또한, 유성캐리어에 연결된 발전기로부터 발전된 전기에너지로 축전기에 축전을 하고, 그 축전된 전기에너지를 변속동력원에 공급함으로써 변속입력축을 제어하기 위해 필요한 전원공급이 스스로 해결되는 이점을 제공한다.
또한 엑셀 페달과 브레이크 페달에 연동하여 출력단의 회전 및 토크를 제어할 수 있다.
본 명세서에서 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어서 해석되어서는 아니된다.
도 1은 본 발명의 제1실시예에 따른 동력 전달 장치의 구성을 보인 개략도이다.
도 2는 도 1의 동력 전달 장치에서 아이들 축을 제거한 상태를 보인 개략도이다.
도 3은 도 2의 동력 전달 장치에서 변속 입력축을 제거한 상태를 보인 개략도이다.
도 4는 본 발명의 제1실시예에 따른 동력 전달 장치에서 전진 변속단이 형성되는 것을 도시한 속도선도이다.
도 5는 본 발명의 제2실시예에 따른 동력 전달 장치의 구성을 보인 사시도이다.
도 6은 본 발명의 제2실시예에 따른 동력 전달 장치의 구성을 보인 후면도이다.
도 7은 본 발명의 실시예들에 사용되는 유성기어세트의 분해 조립도이다.
도 8은 본 발명의 제3 실시예에 따른 동력 전달 장치의 전체적인 사시도이다.
도 9는 본 발명의 제3 실시예에 따른 동력 전달 장치의 평면도이다.
도 10은 본 발명의 제4 실시예에 따른 동력 전달 장치의 사시도이다.
도 11은 본 발명의 제4 실시예에 따른 동력 전달 장치의 평면도이다.
도 12는 본 발명의 제5실시예에 따른 동력전달장치의 사시도이다.
도 13는 본 발명의 제6실시예에 따른 동력전달장치의 사시도이다.
도 14는 도 12 및 도 13에 적용된 유성캐리어의 부분 절단된 면을 보여주는 사시도이다.
도 15는 본 발명의 제7실시예에 따른 동력전달장치의 사시도이다.
도 16은 본 발명의 제8실시예에 따른 동력전달장치의 부분 절단된 사시도이다.
도 17은 본 발명에 따른 동력전단장치에서 출력단의 변속을 제어하기 위한 블록도이다.
도 18은 본 발명에 따른 동력전단장치에서 가속시 엑셀 페달 출력 전압에 따른 메인모터와 컨트롤 모터의 회전 속도 그래프.
도 19는 본 발명에 따른 동력전단장치에서 제동시 브레이크 페달 출력 전압에 따른 메인모터와 컨트롤 모터의 회전 속도 그래프.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
도 1은 본 발명의 제1실시예에 따른 동력전달장치의 구성을 보인 개략도이고, 도 2는 도 1의 동력전달장치에서 아이들 축을 제거한 상태를 보인 개략도이고, 도 3은 도 2의 동력전달장치에서 변속입력축을 제거한 상태를 보인개략도이다.
도 1 내지 도 3에 도시된 바와 같이, 본 발명의 제1실시예에 따른 동력전달장치는 입력축(20), 감속유닛(190), 유성기어세트(PG1), 출력축(120), 변속유닛(200), 그리고 제어부(160)를 포함한다.
입력축(20)은 그 일단이 구동 동력원(10)에 직결되어 구동 동력원(10)의 회전속도를 전달받는다. 상기 입력축(20)에는 구동기어(30)가 고정적으로 장착되어 상기 입력축(20)과 구동기어(30)는 같은 회전속도로 회전한다. 상기 구동동력원(10)으로는 가솔린, 디젤, LPG, 수소엔진, 전기 및 유·공압모터, 풍력 또는 조력을 받아 회전하는 터빈 등일 수 있다.
감속유닛(190)은 감속축(40), 감속기어(50), 전진기어(60), 후진기어(80), 싱크로나이저(70), 아이들 축(90), 그리고 제1,2매개기어(100,110)를 포함한다.
상기 감속축(40)에는 감속기어(50), 전진기어((60) 후진기어(80), 그리고 싱크로나이저(70)가 장착되어 있다.
감속기어(50)는 상기 감속축(40)에 고정적으로 장착되어 있으며, 상기 구동기어(30)에 치형 결합된다. 상기 감속기어(50)의 기어치의 개수는 상기 구동기어(30)의 기어치의 개수보다 많아 입력축(20)의 회전속도는 감속되어 상기 감속축(40)에 전달된다.
전진기어(60)와 후진기어(80)는 상기 감속축(40)을 기준으로 회전 가능하도록 장착되어 있다.
싱크로나이저(70)는 도면에서 좌측 또는 우측으로 움직이며 상기 전진기어(60) 또는 후진기어(80)를 상기 감속축(40)에 선택적으로 고정시킨다. 즉, 상기 싱크로나이저(70)가 도면에서 좌측으로 움직이면 상기 전진기어(60)가 상기 감속축(40)에 고정되어 함께 회전하며, 상기 싱크로나이저(70)가 도면에서 우측으로 움직이면 상기 후진기어(80)가 상기 감속축(40)에 고정되어 함께 회전한다. 만일 싱크로나이저(70)가 중심 위치에 있으면 아이들 상태가 된다. 상기 싱크로나이저(70)는 전자식 또는 기계식이 사용될 수 있다. 기계식 싱크로나이저(70)의 경우에는 작동레버(도시하지 않음)에 케이블로 연결된 포크(도시하지 않음)에 의하여 그 작동이 조절되나, 전자식 싱크로나이저(70)의 경우에는 상기 제어부(160)의 신호에 따라 그 작동이 제어된다. 이러한 싱크로나이저(70)는 수동변속기에 널리 사용되고 있으며 당업자에게 잘 알려져 있으므로 여기서는 상세한 설명은 생략한다.
아이들 축(90)에는 제1,2매개기어(100,110)가 고정적으로 장착되어 있다. 상기 제2매개기어(110)는 상기 후진기어(80)에 기어 결합한다.
상기 유성기어세트(PG1)는, 도 7에 도시된 바와 같이, 선기어(S1), 유성캐리어(PC1), 그리고 링기어(R1)를 그 작동수단으로 포함한다. 상기 유성캐리어(PC1)에는 상기 링기어(R1)와 선기어(S1)에 치형 결합하는 피니언기어(P1)가 피니언샤프트(325)에 의하여 회전가능하게 장착되어 있다. 상기 각 작동수단들(S1,PC1,R1)은 서로 상대 회전한다.
또한, 상기 유성기어세트(PG1)의 양측에는 유성기어세트(PG1)의 조립을 위한 조립디스크(340) 및 허브(345,350)들이 각각 장착되어 있다.
상기 링기어(R1)는 그 내주면과 외주면에 기어치가 형성되어 있으며, 상기 내주면의 기어치에는 상기 피니언기어(P1)와 슬리브(335)가 기어 결합한다. 또한, 상기 링기어(R1)는 제1작동수단으로 작용하여 상기 링기어(R1)의 외주면 기어치에는 상기 전진기어(60)와 제1매개기어(100)가 이물림 결합된다. 따라서, 상기 싱크로나이저(70)가 상기 전진기어(60)와 감속축(40)을 고정하면 구동동력원(100)의 동력은 상기 전진기어(60)를 통해 상기 링기어(R1)에 입력되고, 상기 싱크로나이저(70)가 상기 후진기어(80)와 감속축(40)을 고정하며 구동 동력원(10)의 동력은 상기 후진기어(80), 제2매개기어(110) 그리고 제1매개기어(100)를 순차적으로 통하여 상기 링기어(R1)에 입력된다.
상기 유성캐리어(PC1)는 서로 고정적으로 부착된 캐리어 컵(320)과 캐리어커버(315)를 포함한다. 상기 캐리어 컵(320)과 캐리어 커버(315) 사이에는 피니언기어(P1)가 회전 가능하게 장착되어 있어 상기 피니언기어(P1)의 회전에 따라 유성캐리어(PC1)가 회전한다. 또한, 상기 캐리어커버(315)와 슬리브(335) 사이에는 회전 시 발생하는 마찰을 줄이기 위해 베어링(330)이 개재된다. 상기 캐리어 컵(320)은 상기 캐리어 커버(315)의 반대쪽 회전축(310) 방향으로 연장된 연장부가 구비되어 있으며 상기 연장부의 외주면에는 기어치가 형성되어 있다. 상기 연장부 외주면 기어치는 웜기어 또는 헬리컬 기어와 치형 결합하여 역전을 방지하도록 회전축에 대하여 비스듬히 형성되어 있다. 따라서, 상기 유성캐리어(PC1)는 제2작동수단으로 작용하여 상기 변속 입력축(130)으로부터 변속을 위한 동력을 전달받는다. 상기 변속을 위한 동력은 웜기어 또는 헬리컬 기어에 의하여 상기 연장부 외주면의 웜휠(302)에 전달된다.
상기 선기어(S1)는 외주면에 기어치가 형성되어 있으며, 제3작동수단으로 작용하여 상기 출력축(120; 여기에서는 회전축(310))에 고정적으로 장착되어 있다. 따라서, 상기 선기어(S1)는 회전축(310)으로부터 동력을 전달받거나 회전축(310)에 동력을 전달할 수 있다.
상기와 같은 유성기어세트(PG1)는 감속축(40)의 회전속도와 변속입력축(130)의 회전속도를 이용하여 출력축의 회전속도를 변화시킨다.
상기 출력축(120)은 디퍼런샬(도시하지 않음)에 연결되어 바퀴(도시하지 않음)를 회전시킨다.
변속유닛(200)은 변속 입력축(130)과 웜기어(140)를 포함한다.
변속입력축(130)은 그 일단이 변속 동력원(150)에 연결되어 변속을 위한 동력을 전달받으며 그 중간부에 웜기어(140)가 고정적으로 장착되어 있다. 상기 웜기어(140)는 상기 유성캐리어(PC1)에 기어 결합하여 동력을 전달하므로 변속입력축(130)을 통한 구동 동력원(10) 토크의 손실이 줄어들게 된다. 또한 구동 동력원(10)의 회전속도가 감속기어(50)를 통해 감속된 후 유성기어세트(PG1)에 입력되므로 목표로 하는 출력축(120)의 회전속도를 얻기 위하여 변속 입력축(130)의 회전속도를 무리하게 키울 필요가 없다. 상기 웜기어(140)를 사용하는 대신 유성 캐리어(PC1)의 기어치를 헬리컬 형태로 형성하고 헬리컬 기어(도시하지 않음)를 사용할 수도 있다.
또한, 상기 유성 캐리어(PC1)의 상하로 한 쌍의 변속 입력축(130)이 장착되어 있을 수 있으며, 상기 한 쌍의 변속 입력축(130)은 벨트 또는 체인 등의 동력전달 수단에 의하여 연결되어 있을 수 있다.
상기 변속 동력원(150)으로는 DC모터, 유압모터 등 다양한 종류의 회전속도 생성수단이 연결되어 있을 수 있으며, 제어부(160)의 제어에 의하여 회전속도를 용이하게 조절할 수 있는 회전속도 생성 수단이 유리하다.
제어부(160)는 상기 변속 동력원(150)의 작동을 제어하는 목표 변속단으로의 변속을 제어한다. 상기 제어부(160)는 브레이크 위치센서(170), 출력축 속도센서(180), 그리고 작동레버 위치센서(181)를 포함하며, 설정된 프로그램에 의해 동작하는 하나 이상의 프로세서로 구현될 수 있다.
브레이크 위치센서(170)는 브레이크 페달의 작동 정도를 검출하며, 출력축 속도 센서(180)는 출력축(120)의 회전속도를 검출하고, 작동레버 위치센서(181)는 작동레버(도시하지 않음)의 위치를 검출한다.
따라서, 상기 제어부(160)는 브레이크의 위치와 출력축(120)의 속도와 작동레버의 위치로부터 목표 변속단 또는 목표 제동력을 계산하고 이에 따라 상기 변속 동력원(150)의 회전속도를 조절한다.
도 4는 본 발명의 실시예에 따른 동력전달장치에서 전진 변속단이 형성되는 것을 도시한 속도선도이다. 도 4에서 선기어(S1)의 회전속도는 수평축의 아래가 양이고 수평축의 위가 음인 것으로 한다.
싱크로나이저(70)가 감속축(40)과 전진 기어(60)를 고정 결합하는 전진 변속단의 경우에는, 입력축(20)의 회전속도가 감속기어(50)에 의하여 감속되어 링기어(R1)에 입력되는 회전속도를 1이라 하고, 변속동력원(150)으로부터 유성캐리어(PC1)에 입력되는 회전 속도를 제1회전속도(X1)라고 하면, 선기어(S1)를 통해 출력축(120)에 전달되는 회전속도는 제1출력속도(Y1)가 된다. 이러한 상태에서, 제어부(150)가 제2출력속도(Y2)의 회전 속도가 출력되어야 한다고 판단하면, 변속 동력원(150)으로부터 유성 캐리어(PC1)에 입력되는 회전 속도를 제2회전속도(X2)로 제어한다. 따라서, 변속 동력원(150)으로부터 유성 캐리어(PC1)에 입력되는 회전 속도를 변화시킴으로써 목표 변속단을 구현할 수 있다.
후진 변속단은 상기 변속 동력원(150)의 회전속도를 키움으로써 구현될 수 있으나, 이러한 경우에는 변속 동력원(150)이 무리한 회전속도로 회전할 수 있다. 따라서, 본 발명의 실시예에 따른 동력 전달 장치는 아이들 축(90)과 제1,2매개 기어(100, 110)를 이용하여 후진 변속단을 구현한다. 즉, 싱크로나이저(70)가 감속축(40)과 후진 기어(80)를 고정 결합하면 감속축(40)의 회전속도가 직접 링기어(R1)에 전달되는 대신 아이들 축(90)을 통하여 간접적으로 전달된다. 이 과정에서, 링기어(R1)에 전달되는 회전 속도는 그 방향이 반대로 역전되게 된다. 따라서, 상기 전진 변속단을 구현하는 경우와 마찬가지로 후진 변속단이 구현된다.
후진 변속단을 구현하는 다른 방법은 유성 캐리어(PC1)에 입력되는 회전 속도를 증가시키면 된다.
한편, 본 발명의 실시예에 따른 동력 전달 장치는 바퀴에 브레이크를 설치하여 제동을 할 수도 있으나, 변속 동력원(150)의 회전속도를 제어함으로써 제동을 수행할 수도 있다.
예를 들어, 만일 차량이 전진 변속단으로 운행하는 상태에서 제동이 필요한 경우 변속 동력원(150)의 회전속도를 증가시키면 출력축(60)에 역회전력이 작용하게 된다. 따라서, 제동에 대한 응답성이 빨라지게 된다.
이하, 도 5 및 도 6을 참고로, 본 발명의 제2실시예에 따른 동력 전달 장치를 상세히 설명한다.
도 5는 본 발명의 제2실시예에 따른 동력 전달 장치의 구성을 보인 사시도이고, 도 6은 본 발명의 제2실시예에 따른 동력 전달 장치의 구성을 보인 후면도이다.
본 발명의 제2실시예에 따른 동력 전달 장치는 본 발명의 제1실시예에 따른 동력 전달 장치와 유사하다. 따라서, 동일한 구성 요소에 동일한 도면 부호를 사용하며 상세한 설명은 생략한다.
도 5 및 도 6에 도시된 바와 같이, 본 발명의 제2실시예에 따른 동력 전달 장치는 입력축(20), 감속 유닛(190), 유성기어세트(PG1), 출력축(120), 변속 유닛(200), 그리고 제어부(160; 도 1 및 도 2 참조)를 포함한다.
입력축(20), 유성기어세트(PG1), 출력축(120), 그리고 제어부(160)에 대한 상세한 설명은 생략한다.
본 발명의 제2실시예에 따른 동력 전달 장치에서, 감속 유닛(190)은 입력축(20)과 평행하게 배치된 4개의 축(211, 212, 213, 214)과 상기 각 축(211, 212, 213, 214)에 두 개씩 장착되어 있는 8개의 기어(191, 192, 193, 194, 195, 196, 197, 198)를 포함한다.
제1축(211)에는 기어치의 개수가 서로 다른 제1,2기어(191, 192)가 장착되어 있으며, 상기 제1기어(191)는 입력축(20)의 구동 기어(30)와 기어 결합한다. 제1기어(191)의 기어치의 개수는 제2기어(192)의 기어치의 개수보다 적다.
제2축(212)에는 기어치의 개수가 서로 다른 제3,4기어(193, 194)가 장착되어 있으며, 상기 제3기어(193)는 제1축(211)의 제2기어(192)와 기어 결합한다. 제3기어(193)의 기어치의 개수는 제4기어(194)의 기어치의 개수보다 적다.
제3축(213)에는 기어치의 개수가 서로 다른 제5,6기어(195, 196)가 장착되어 있으며, 상기 제5기어(195)는 제2축(212)의 제4기어(194)와 기어 결합한다. 제5기어(195)의 기어치의 개수는 제6기어(196)의 기어치의 개수보다 적다.
제4축(214)에는 기어치의 개수가 서로 다른 제7,8기어(197, 198)가 장착되어 있으며, 상기 제7기어(197)는 제3축(213)의 제6기어(196)와 기어 결합하고, 상기 제8기어(198)는 유성기어세트(PG1)의 링기어(R1)와 기어 결합한다. 제7기어(197)의 기어치의 개수는 제8기어(198)의 기어치의 개수보다 적다.
또한, 상기 각각의 축에 형성된 두 개의 기어 중 기어치의 개수가 작은 기어는 동력 전달 라인 상에서 구동 동력원에 가까운 축의 기어와 기어 결합하고, 기어치의 개수가 많은 기어는 동력 전달 라인 상에서 유성기어세트와 가까운 축의 기어와 기어 결합한다. 예를 들어, 제2축(212)에서 기어치의 개수가 작은 제3기어(193)는 동력 전달 라인 상에서 구동 동력원(10)에 가까운 제1축(211)의 제2기어(192)와 기어 결합한다. 따라서, 입력축(20)의 회전 속도는 각각의 축을 통과할 때마다 그 회전속도가 감소되고 최종적으로 감소된 회전 속도는 유성기어세트(PG1)의 제1작동수단(R1)에 전달된다.
본 발명의 제2실시예에서는 4개의 축과 8개의 기어를 사용하여 감속하는 것을 예시하였으나 이에 한정되지 않고, 감속을 위해서 적어도 하나 이상의 축과 적어도 둘 이상의 기어를 사용하면 된다.
변속 유닛(200)은 변속 입력축(130), 제1기어(140), 그리고 제2기어(201)를 포함한다. 여기에서는, 4개의 변속 입력축(130), 4개의 제1기어(140), 그리고 8개의 제2기어(201)를 사용하는 것을 예시하였으나, 이에 한정되지 아니한다.
복수개의 변속 입력축(130)은 서로 각각 직각으로 배치되어 있으며, 상기 출력축(120)에도 직각으로 배치되어 있다.
제1기어(140)는 각각의 변속 입력축(130)에 장착되어 변속 입력축(130)을 기준으로 회전하며, 유성기어세트(PG1)의 제2작동수단(PC1)에 기어 결합한다. 또한, 변속 입력축(130)과 출력축(120)이 수직으로 형성되어 있으므로, 제1기어(140)과 제2작동수단(PC1)은 그 회전축이 서로 수직이다. 따라서, 제1기어(140)로는 웜기어 또는 헬리컬 기어가 사용될 수 있다.
제2기어(201)는 각각의 변속 입력축(130)에 장착되어 변속 입력축(130)을 기준으로 회전한다. 어느 하나의 변속 입력축(130)에 장착된 제2기어(201)는 다른 하나의 변속 입력축(130)에 장착된 제2기어(201)와 기어 결합함으로써 변속 동력을 전달한다. 또한, 각각의 변속 입력축(130)이 서로 수직이므로 제2기어(201)들의 회전축 역시 서로 수직이다. 따라서, 제2기어(140)로는 웜기어 또는 헬리컬 기어가 사용될 수 있다.
또한, 복수개의 제1기어(140)가 제2작동수단(PC1)에 기어 결합하여 변속 동력을 전달하므로 변속 동력원(150)과 제2작동수단(PC1)을 연결하는 부위에서 발생할 수 있는 슬립을 최소화할 수 있다.
도 8은 본 발명의 제3 실시예에 따른 동력 전달 장치의 전체적인 사시도이고, 도 9는 본 발명의 제3 실시예에 따른 동력 전달 장치의 평면도이다.
도 8 및 도 9를 참조하면, 동력 전달 장치는 입력축(20), 구동기어(30), 감속축(40), 제1감속기어(800), 제2감속기어(805), 링기어(R1), 웜휠(305), 출력축(310), 제1출력기어(815), 차동기어(820), 변속입력축(130), 웜기어(140), 변속입력축기어(810), 및 캐리어연장부(900)를 포함한다.
상기 입력축(20)은 동력원(10, 도 1)에 의해서 회전하고, 그 일측 외주면에는 상기 구동기어(30)가 형성된다. 상기 감속축(40)은 상기 입력축(20)과 거리를 두고 평행하게 배치되고, 그 일측에는 상기 구동기어(30)와 외접하는 상기 제1감속기어(800)가 형성된다. 아울러, 상기 감속축(40)에는 제1감속기어(800)와 이격되어 상기 제2감속기어(805)가 더 형성된다.
상기 제1감속기어(800)의 반경은 상기 구동기어(30)의 그것 보다 커서 상기 입력축(20)의 회전속도를 효과적으로 감속시키고, 토크를 증가시킨다. 아울러, 상기 제2감속기어(805)의 반경은 상기 제1감속기어(800)의 반경보다 작다.
상기 출력축(310)은 상기 감속축(40)과 이격되어 평행하게 상기 감속축(40)의 하부에 배치되고, 상기 출력축(310)에는 선기어(S1, 도 7)가 장착된다. 상기 출력축(310) 일측에는 상기 선기어(S1)가 내부에 설치되는 상기 링기어(R1)가 배치되고, 상기 링기어(R1)의 외주면에 형성된 기어는 상기 제2감속기어(805)와 외접한다.
상기 제2감속기어(805)의 반경은 상기 제1감속기어(800) 및 상기 링기어(R1)의 반경보다 작아서 상기 입력축(20)의 회전속도를 효과적으로 감속시키고 토크를 증가시킨다.
상기 링기어(R1)의 안쪽 공간에 선기어(S1, 도 7)와 유성기어(P1, 도 7)가 배치되어 유성기어세트구조를 형성한다.
아울러, 상기 유성기어(P1)의 회전축을 연결하는 유성캐리어(C1, 도 7)에는 상기 출력축(310)의 길이 방향으로 연장된 연장부(900, 도 9)가 형성되며, 상기 연장부(900)의 외주면에는 상기 웜휠(302)이 형성된다.
상기 출력축(310)과는 수직하게 상기 변속입력축(130)이 배치되고, 상기 변속입력축(130)에는 상기 웜휠(302)에 대응하여 상기 웜기어(140)가 형성된다. 또한, 상기 변속입력축(130)의 일단에는 상기 변속입력축기어(810)가 형성된다.
상기 변속입력축기어(810)는 변속동력원(150, 도 1)으로부터 동력을 전달받아서 상기 웜기어(140), 상기 웜휠(302), 및 유성캐리어(C1, 도 7)를 회전시킨다.
전술한 바와 같이, 상기 변속입력축(130)의 회전속도, 정지, 정회전, 및 역회전에 따라서 상기 선기어(S1)와 연결된 상기 출력축(310)의 회전속도가 조절되고, 아울러 브레이크의 작동여부에 따라서 상기 변속입력축(130)의 회전이 조절된다.
상기 링기어(R1)와 이와 관련된 유성기어세트의 내부 구조는 도 7을 참조하며, 그 상세한 설명은 생략한다.
도 10은 본 발명의 제4 실시예에 따른 동력 전달 장치의 사시도이고, 도 11은 본 발명의 제4 실시예에 따른 동력 전달 장치의 평면도이다.
도 10 및 도 11을 참조하면, 동력 전달 장치는 입력축(20), 구동기어(30), 감속기어(50), 구동베벨기어(1000), 피동베벨기어(1005), 링기어(R1), 캐리어연장부(1010), 웜휠(302), 웜기어(140), 변속입력축(130), 및 변속입력축기어(810)를 포함한다.
상기 입력축(20)의 일단부에는 상기 구동기어(30)가 형성되고, 상기 구동기어(30)는 상기 감속기어(50)와 외접하고 있다.
상기 감속기어(50)의 측면에는 상기 구동베벨기어(1000)가 형성되고, 상기 링기어(R1)의 일측면에는 상기 구동베벨기어(1000)에 대응하여 상기 피동베벨기어(1005)가 형성된다.
상기 구동베벨기어(1000)와 상기 피동베벨기어(1005)에 의해서, 상기 입력축(20)의 회전이 상기 감속기어(50) 및 상기 링기어(R1)가 회전하게 되는 것이다.
상기 링기어(R1)와 이와 관련된 유성기어세트의 내부 구조는 도 7을 참조하며, 그 상세한 설명은 생략한다.
캐리어(C1, 도 7)의 일측면에는 상기 캐리어연장부(1010)가 상기 출력축(310)의 길이 방향으로 연장되어 형성되고, 상기 연장부(1010)의 외주면에는 상기 웜휠(302)이 형성된다.
상기 웜휠(302)에 대응하여 외주면에 상기 웜기어(140)가 형성된 상기 변속입력축(130)이 배치되고, 상기 변속입력축(130)의 일측에는 상기 변속입력축기어(140)가 형성된다.
본 발명의 제4 실시예에 따른 동력 전달 장치에서, 상기 입력축(20)과 상기 출력축(310)은 서로 수직하게 배치되고, 상기 변속입력축(130)과 상기 입력축(20)은 서로 평행하게 배치된다.
상기 캐리어(C1)에서 상기 출력축(310)의 일방향으로 연장된 상기 캐리어연장부(1010)와 상기 출력축(310) 사이에는 베어링이 개재되는 것이 바람직하다.
전술한 바와 같이, 상기 입력축(20)에서 상기 링기어(R1)로 회전력을 효과적으로 전달하기 위해서, 베벨기어 구조를 이용한다.
아울러, 상기 캐리어연장부(1010)에 형성된 상기 웜휠(302)과 상기 변속입력축(130)에 형성된 상기 웜기어(140)를 이용하여 상기 캐리어연장부(1010)의 회전특성(속도 및 방향)을 조절함으로써 상기 출력축(310)의 회전속도를 용이하게 조절할 수 있다.
도 12는 본 발명의 제5실시예에 따른 동력전달장치의 사시도이고,
도 13은 본 발명의 제6실시예에 따른 동력전달장치의 사시도이고,
도 14는 도 12 및 도 13에 적용된 유성캐리어의 부분 절단된 면을 보여주는 사시도이고,
도 15는 본 발명의 제7실시예에 따른 동력전달장치의 사시도이다.
도 1, 도 12 내지 도 15에서와 같이 상기 유성기어세트(PG1)의 제2작동수단에는 치형 결합을 통해 제2작동수단의 회전력을 전달받는 토크제어축(2010)이 연결되고, 상기 토크제어축(2010)에는 전기를 발생시키는 발전기(2020)가 설치되고, 상기 발전기(2020)에는 상기 변속동력원(150)으로 전원을 공급하는 축전지(2030)가 연결된다. 발전기(2020)는 주지된 바와 같이 유도기전력을 이용한 것으로, 고정자, 회전자 및 여자기를 포함한 것이 된다. 축전지(2030)는 예로, 통상의 차량용 배터리가 될 수 있다.
제2작동수단이 되는 유성 캐리어(PC1)에는 유성 캐리어(PC1)의 회전력 일부를 인출해내기 위해 상기 연장부에 제2헬리컬기어(2011)가 이맞물림되도록 제2기어치(144)가 형성되어 있고, 제2기어치(144)는 도 12 및 도 13와 같이 유성캐리어(PC1)의 웜휠(142)과 이웃하게 배치되거나 도 15의 실시예와 같이 링기어(R1)를 중앙에 두고 웜휠(142)의 반대쪽에 배치시킬 수 있고, 제2헬리컬기어(2011)는 토크제어축(2010)에 고정 장착되어 있다.
이때 토크제어축(2010)은 변속입력축(130)과 평행하게 배치되고, 도 12와 같이 웜기어(140)와 제2헬리컬기어(2011)는 모두 상방 또는 모두 하방의 동일 평면상에 배치되거나 도 13과 같이 동일 평면이 아닌 위,아래에 각각 배치될 수 있다.
도 13 및 도 15의 실시예에서 도시는 되지 않았지만 발전기(2020) 및 축전지(2030)가 도 12의 실시예와 같이 동일하게 구성됨은 물론이다. 또한 도 12 내지 도 15에서 입력축(20)은 상기 감속축(40) 또는 출력축(120)으로 대치될 수도 있다.
이와 같이 구성된 도 12 내지 도 15의 동력전달장치의 작용을 도 12를 가지고 설명한다.
먼저, 전술한 바와 같이 입력축(20)의 회전력을 전달받는 유성기어세트(PG1)의 작동에 의해 유성캐리어(PC1)가 회전하여 회전토크가 발생된다. 이때 유성캐리어(PC1)의 연장부에 형성된 제2기어치(144)에 이맞물림된 제2헬리컬기어(2100)(도 16에서는 종동 베벨기어 임)를 통해 토크제어축(2010)이 회전한다.
따라서 토크제어축(2010)에 직결된 발전기(2020)에서 발전을 하게 되고, 발전기(2020)에서 발전된 전기에너지는 축전기(2030)에 공급되어 축전이 일어난다.
이같이 유성기어세트(PG1)에서는 유성캐리어(PC1)의 회전토크가 토크제어축(2010)을 구동시키는데 소모되므로 유성캐리어(PC1)의 회전토크를 감소시키게 된다.
상기 제어부(160)의 구동 제어를 받는 변속동력원(150)은 축전기(2030)에서 축전된 전기에너지로 구동하여 변속입력축(130)을 제어한다.
이같이 변속동력원(150)이 유성캐리어(PC1)로부터 동력을 얻어 발생된 발전에너지로 동작하므로 별도의 외부 전원 공급이 필요없는 이점을 갖게 된다.
한편, 도 16에서와 같이 상기 제2헬리컬기어(2011)에 대치하여 제2베벨기어로 구성될 수 있다. 따라서 유성캐리어(PC1)의 연장부에 형성된 제2기어치(144)도 베벨기어치 형태로 구성될 수 있는 것이다.
다른 한편, 토크제어축(2010)과 발전기(2020)의 사이에는 감속장치(gear box)(2015)가 더 설치될 수 있다. 감속장치(2015)는 기본적으로 다수의 축과 각 축에 회전수를 감속시키는 기어들의 이맞물림으로 감속된 회전출력을 얻도록 구성된 것이다. 따라서 감속장치(2015)는 감속을 하는 과정에서 유성캐리어(PC1)의 회전 토크를 감소시키게 된다.
또한 토크제어축(2010)에는 유압펌프(도시안됨)를 추가 연결하거나 독립적으로 연결하여 유성캐리어(PC1)의 회전 토크를 감소시키도록 구성할 수도 있다. 이때 유압펌프에서 나오는 유압은 예로, 차량의 조향을 구동시키는 유압원으로 사용될 수 있다.
다른 한편, 본 발명은 도 16 및 도 17에서와 같이 상기 입력축(20)을 회전시키는 메인모터(M1)와, 상기 변속입력축(130)의 회전 구동을 제어하기 위한 컨트롤 모터(M2)를 구비하고, 상기 메인모터(M1)와 상기 컨트롤 모터(M2)의 구동을 제어하기 위한 모터제어부(170)가 포함될 수 있다. 상기 모터제어부(170)에는 전기적으로 엑셀페달(172) 및 브레이크 페달(174)이 연결된다.
상기 모터제어부(170)는 엑셀 페달(172)을 밟을 경우 도 18과 같이 메인모터(M1)의 회전수를 증가시키고 동시에 컨트롤 모터(M2)의 회전수를 감소시켜 출력축(120)의 회전속도를 증가시키도록 되어 있다.
또한 모터제어부(170)는 도 19와 같이 브레이크 페달(174)을 밟을 경우 메인모터(M1)의 회전수가 감소됨과 동시에 컨트롤 모터(M2)의 회전수를 증가시켜 출력축(120)의 회전수를 감소시키게 되어 있다.
이상으로 본 발명에 관한 바람직한 실시예를 설명하였으나, 본 발명은 상기 실시예에 한정되지 아니하며, 본 발명의 실시예로부터 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의한 용이하게 변경되어 균등하다고 인정되는 범위의 모든 변경을 포함한다.

Claims (24)

  1. 일단이 구동 동력원에 항시 연결되어 동력을 전달받으며, 구동기어가 고정적으로 장착된 입력축과;
    상기 구동기어에 결합하며, 상기 입력축의 회전속도를 감속하는 감속 유닛과;
    상기 감속 유닛에 결합하여 감속 유닛의 회전속도를 전달받는 제1작동수단, 변속을 위한 동력을 전달받는 제2작동수단, 그리고 출력속도가 생성되는 제3작동수단을 포함하는 유성기어세트와;
    변속 동력원에 항시 연결되어 변속을 위한 동력을 전달받으며, 상기 변속을 위한 동력을 상기 제2작동수단에 전달하도록 상기 제2작동수단과 결합하는 변속 유닛; 그리고
    상기 유성기어세트의 제3작동수단에 고정되어 출력속도를 전달하는 출력축을 포함하되, 상기 제2작동수단의 회전축과 상기 변속 유닛의 회전축은 서로 수직이고,
    상기 제2작동수단에는 동력전달수단을 통해 제2작동수단의 회전력을 전달받는 토크제어축이 연결되고, 상기 토크제어축에는 상기 제2작동수단의 회전 토크를 감소시키는 토크 감소수단으로, 발전기, 감속장치, 유압펌프 중 하나 이상이 설치된 것을 특징으로 하는 동력 전달 장치.
  2. 제 1항에 있어서,
    상기 유성기어세트는 선기어, 유성 캐리어, 그리고 링기어를 그 작동수단으로 포함하는 싱글 피니언 유성기어세트이되,
    상기 링기어는 상기 제1작동수단으로 작용하고, 상기 유성 캐리어는 상기 제2작동수단으로 작용하고, 그리고 상기 선기어는 상기 제3작동수단으로 작용하는 것을 특징으로 하는 동력 전달 장치.
  3. 제 2항에 있어서,
    상기 동력 전달 장치는 제어부를 더 포함하되,
    상기 제어부는 출력축의 속도와 브레이크의 작동 정도에 따라 변속 동력원의 작동을 제어하는 것을 특징으로 하는 동력 전달 장치.
  4. 제 3항에 있어서,
    상기 제어부는 변속 동력원의 회전속도를 변화시킴으로써 출력축의 회전속도를 제어하고 제동을 수행하는 것을 특징으로 하는 동력 전달 장치.
  5. 제 1항 내지 제4항에 있어서,
    상기 변속 동력원은 모터인 것을 특징으로 하는 동력 전달 장치.
  6. 제 1항에 있어서,
    상기 감속 유닛은,
    입력축과 평행하게 배치되어 있는 감속축;
    상기 감속축에 고정 부착되어 있으며 상기 구동기어에 기어 결합하는 감속 기어;
    상기 감속축을 기준으로 회전 가능하게 장착되어 있는 전진 기어와 후진 기어; 그리고
    상기 전진 기어와 후진 기어를 상기 감속축에 선택적으로 고정시켜 일체로 회전하도록 하는 싱크로나이저;
    를 포함하되,
    상기 전진 기어는 항시 상기 제1작동수단에 기어 결합하는 것을 특징으로 하는 동력 전달 장치.
  7. 제 6항에 있어서,
    상기 감속 유닛은,
    상기 후진 기어의 회전속도를 전달받아 회전하는 아이들 축;
    상기 아이들 축에 고정 장착되며 상기 제1작동수단에 기어 결합하는 제1매개 기어; 그리고
    상기 아이들 축에 고정 장착되며 상기 후진 기어에 기어 결합하는 제2매개 기어;를 더 포함하는 것을 특징으로 하는 동력 전달 장치.
  8. 제 6항에 있어서,
    상기 싱크로나이저는 작동 레버의 위치에 따라 동작되는 것을 특징으로 하는 동력 전달 장치.
  9. 제 1항에 있어서,
    상기 입력축의 타단과 상기 감속 유닛 중 적어도 한 곳에는 부가 장치가 연결되어 있는 것을 특징으로 하는 동력 전달 장치.
  10. 제 1항에 있어서,
    상기 변속 유닛은,
    일단이 상기 변속 동력원에 연결되어 변속을 위한 동력을 전달 받는 변속 입력축; 그리고
    상기 변속 입력축의 타단에 형성되어 있으며, 상기 제2작동수단과 기어 결합하는 웜기어;
    를 포함하는 것을 특징으로 하는 동력 전달 장치.
  11. 제 1항에 있어서,
    상기 감속 유닛은 상기 입력축과 평행하게 배치되어 있는 복수개의 축과 상기 복수개의 축에 장착되어 있는 복수개의 기어들을 포함하되,
    상기 복수개의 축 하나당 기어치의 개수가 서로 다른 두 개의 기어들이 장착되어 있으며, 한 축에 형성된 두 개의 기어 중 하나는 다른 축에 형성된 두 개의 기어 중 하나에 기어 결합함으로써 동력이 입력축으로부터 유성기어세트까지 전달되도록 되어 있고,
    상기 복수개의 기어들 중 하나는 상기 구동 기어에 기어 결합하고, 상기 복수개의 기어들 중 다른 하나는 상기 제1작동수단에 기어 결합하는 것을 특징으로 하는 동력 전달 장치.
  12. 제 11항에 있어서,
    상기 각각의 축에 형성된 두 개의 기어 중 기어치의 개수가 작은 기어는 동력 전달 라인 상에서 구동 동력원에 가까운 축의 기어와 기어 결합하고, 기어치의 개수가 많은 기어는 동력 전달 라인 상에서 유성기어세트와 가까운 축의 기어와 기어 결합하는 것을 특징으로 하는 동력 전달 장치.
  13. 제 1항에 있어서,
    상기 변속 유닛은,
    서로 각각 직각으로 배치되어 있으며, 상기 출력축에도 직각으로 배치된 복수개의 변속 입력축;
    상기 각각의 변속 입력축에 장착되어 변속 입력축을 기준으로 회전하며, 상기 제2작동수단과 기어 결합하는 제1기어; 그리고
    상기 각각의 변속 입력축에 장착되어 변속 입력축을 기준으로 회전하는 제2기어;
    를 포함하되,
    하나의 변속 입력축에 장착된 제2기어는 다른 변속 입력축에 장착된 제2기어와 기어 결합하고,
    상기 변속 입력축 중 하나는 변속 동력원에 연결되어 변속을 위한 동력을 전달 받는 것을 특징으로 하는 동력 전달 장치.
  14. 제 13항에 있어서,
    상기 제1기어는 웜기어이고, 상기 제2기어는 헬리컬기어인 것을 특징으로 하는 동력 전달 장치.
  15. 외주면에 기어치가 형성되어 있으며, 회전축에 부착되어 회전축으로부터 동력을 전달받거나 회전축에 동력을 전달하는 선기어;
    상기 선기어를 둘러싸서 선기어와 상대 회전하며, 그 내주면에 기어치가 형성되어 있는 링기어;
    상기 선기어의 외주면 기어치와 상기 링기어의 내주면 기어치에 기어 결합하는 복수개의 피니언기어; 그리고
    상기 복수개의 피니언 기어가 회전 가능하게 장착되어 상기 피니언 기어의 회전에 따라 회전하는 유성 캐리어;
    를 포함하되,
    상기 유성 캐리어의 일측부에는 회전축 방향으로 연장된 연장부가 구비되어 있으며,
    상기 연장부의 외주면에는 웜기어 또는 헬리컬 기어가 결합되도록 상기 회전축에 대하여 비스듬하게 기어치가 형성되고,
    부가적으로 유성 캐리어의 회전력 일부를 인출해내기 위해 상기 연장부에 제2헬리컬기어 또는 제2베벨기어가 이맞물림되도록 결합되도록 제2기어치가 더 형성된 것을 특징으로 하는 유성기어세트.
  16. 제 15항에 있어서,
    상기 링기어의 외주면에도 기어치가 형성되어 있는 것을 특징으로 하는 유성기어세트.
  17. 일측 외주면에 구동기어가 형성된 입력축;
    상기 구동기어와 기어 결합되는 감속기어가 형성된 감속축을 포함하는 감속유닛;
    상기 감속기어와 외접하도록 외주면에 기어가 형성된 링기어;
    상기 링기어의 내주면에 형성된 기어와 외접하는 복수개의 피니언기어들;
    상기 피니언기어들과 외접하는 하나의 선기어가 장착되는 출력축;
    상기 피니언기어들의 중심축들과 연결되되, 상기 피니언기어들의 회전에 따라서 상기 출력축을 중심으로 회전하는 유성캐리어;
    상기 유성캐리어에서 상기 출력축의 축방향으로 연장되는 연장부;
    상기 연장부의 외주면에 형성된 웜기어와 구동 헬리컬기어;
    상기 웜기어에 결합되는 웜휠이 외주면에 형성되고 상기 출력축과 수직하게 배치되어 변속동력원에 의해서 회전하는 변속입력축;
    상기 변속입력축의 회전속도를 제어하는 제어부;
    상기 연장부의 구동 헬리컬기어에 외접하는 피동 헬리컬기어를 갖는 토크제어축; 및
    상기 토크제어축으로 구동되는 발전기, 감속장치, 유압펌프 중에서 하나 이상 택일된 토크 감속수단;을 포함하는 동력 전달 장치.
  18. 제17 항에 있어서,
    상기 감속유닛은,
    상기 감속축에 형성되는 제1감속기어; 및
    상기 제1감속기어와 이격되어 상기 감속축에 형성되는 제2감속기어를 포함하는 동력 전달 장치.
  19. 제18 항에 있어서,
    상기 제1감속기어는 상기 구동기어와 연결되고, 상기 제2감속기어는 상기 링기어의 외주면에 형성된 기어와 연결되는 동력 전달 장치.
  20. 일측 외주면에 구동기어가 형성된 입력축;
    상기 구동기어와 기어결합되는 감속기어가 형성된 감속축;
    상기 감속축의 일단부에 형성된 구동베벨기어;
    일측에 상기 구동베벨기어와 기어결합되는 피동피벨기어가 형성된 링기어;
    상기 링기어의 내주면에 형성된 기어와 외접하는 복 수 개의 피니언기어들;
    상기 피니언기어들과 외접하는 하나의 선기어가 장착되어 함께 회전하는 출력축;
    상기 피니언기어들의 중심축들과 연결되되, 상기 피니언기어들의 회전에 따라서 상기 출력축을 중심으로 회전하는 유성캐리어;
    상기 유성캐리어에서 상기 출력축의 축방향으로 연장되는 연장부;
    상기 연장부의 외주면에 형성된 웜기어 및 구동베벨기어;
    상기 웜기어에 결합되는 웜휠이 외주면에 형성되고 상기 출력축과 수직하게 배치되어 동력원에 의해서 회전하는 변속입력축; 및
    상기 출력축의 회전속도와 브레이크이 작동에 따라서 상기 변속입력축의 회전속도를 제어하는 제어부;
    상기 연장부의 구동 헬리컬기어에 외접하는 피동 헬리컬기어를 갖는 토크제어축;
    상기 토크제어축에 연결되어 전기를 발생시키는 발전기; 및
    상기 발전기에 전기적으로 연결되어 상기 변속동력원으로 전원을 공급하는 축전지;를 포함하는 동력 전달 장치.
  21. 제20 항에 있어서,
    상기 링기어의 일측면에 상기 피동베벨기어가 형성되고, 반대측면에 상기 연장부가 연장되어 형성되는 동력 전달 장치.
  22. 일측 외주면에 구동기어가 형성된 입력축;
    상기 구동기어에 외주면의 치형과 이맞물림된 링기어;
    상기 링기어의 내주면 치형과 이맞물림된 다수의 피니언기어를 원주상에 구비하고, 일측단에 웜휠과 타측단에 베벨 치형을 갖는 제2기어치가 형성되어 있는 유성캐리어;
    상기 다수의 피니언기어와 치형으로 외접되어 이맞물림된 선기어;
    상기 유성캐리어에 삽입됨과 동시에 상기 선기어에 축설되어 선기어와 일체로 회전되는 출력축;
    상기 웜휠에 이맞물려진 웜기어를 갖는 변속입력축;
    상기 제2기어치와 이맞물려져 회전되는 베벨 치형을 갖는 토크제어축을 포함하는 동력 전달 장치.
  23. 제 21항에 있어서,
    상기 입력축을 회전시키는 메인모터;
    상기 변속입력축의 회전 구동을 제어하기 위한 컨트롤 모터를 더 포함하는 것을 특징으로 하는 동력전달장치.
  24. 제 23항에 있어서,
    상기 메인모터와 상기 컨트롤 모터의 구동을 제어하기 위한 모터제어부와;
    상기 모터제어부에 전기적으로 연결된 엑셀페달 및 브레이크 페달이 더 포함되고,
    상기 모터제어부는,
    엑셀 페달을 밟을 경우 메인모터의 회전수를 증가시키고 동시에 컨트롤 모터의 회전수를 감소시켜 출력축의 회전속도를 증가시키며,
    브레이크 페달을 밟을 경우 메인모터의 회전수를 감소시킴과 동시에 컨트롤 모터의 회전수를 증가시켜 출력축의 회전수를 감소시키는 것을 특징으로 하는 동력전달장치.
PCT/KR2010/001472 2009-03-09 2010-03-09 유성기어를 이용한 동력 전달 장치 WO2010104320A2 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2010221880A AU2010221880B2 (en) 2009-03-09 2010-03-09 Power transmission apparatus using a planetary gear
CN201080011484XA CN102348910A (zh) 2009-03-09 2010-03-09 使用行星齿轮的动力传动装置
PL10751011T PL2407689T3 (pl) 2009-03-09 2010-03-09 Urządzenie do przenoszenia mocy za pomocą przekładni planetarnej
BRPI1010522A BRPI1010522A2 (pt) 2009-03-09 2010-03-09 dispositivo de transmissão de potência que utiliza conjunto de engrenagens satélites
US13/255,228 US8968134B2 (en) 2009-03-09 2010-03-09 Power transmission apparatus using a planetary gear
JP2011553947A JP5630718B2 (ja) 2009-03-09 2010-03-09 遊星ギアを用いた動力伝達装置
EP10751011.7A EP2407689B1 (en) 2009-03-09 2010-03-09 Power transmission apparatus using a planetary gear
US14/630,408 US20150184727A1 (en) 2009-03-09 2015-02-24 Power transmission apparatus using planetary gear

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0019718 2009-03-09
KR20090019718 2009-03-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/255,228 A-371-Of-International US8968134B2 (en) 2009-03-09 2010-03-09 Power transmission apparatus using a planetary gear
US14/630,408 Division US20150184727A1 (en) 2009-03-09 2015-02-24 Power transmission apparatus using planetary gear

Publications (2)

Publication Number Publication Date
WO2010104320A2 true WO2010104320A2 (ko) 2010-09-16
WO2010104320A3 WO2010104320A3 (ko) 2010-12-23

Family

ID=42728938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001472 WO2010104320A2 (ko) 2009-03-09 2010-03-09 유성기어를 이용한 동력 전달 장치

Country Status (9)

Country Link
US (2) US8968134B2 (ko)
EP (1) EP2407689B1 (ko)
JP (1) JP5630718B2 (ko)
KR (1) KR101158341B1 (ko)
CN (1) CN102348910A (ko)
AU (1) AU2010221880B2 (ko)
BR (1) BRPI1010522A2 (ko)
PL (1) PL2407689T3 (ko)
WO (1) WO2010104320A2 (ko)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101132753B1 (ko) * 2008-01-08 2012-04-19 하태환 유성기어세트 및 이를 이용한 동력 전달 장치
BRPI1010522A2 (pt) 2009-03-09 2016-03-15 Tae-Hwan Ha dispositivo de transmissão de potência que utiliza conjunto de engrenagens satélites
KR102166781B1 (ko) * 2014-02-22 2020-10-16 삼성전자주식회사 요청 정보에 따른 장치 제어 방법 및 이를 지원하는 장치
WO2016079556A1 (en) * 2014-11-20 2016-05-26 Szöllösi Sándor Energy transducer engine by transforming of turbulent energy
KR101793788B1 (ko) * 2015-12-03 2017-11-03 하태환 다단 변속기
CN108065804A (zh) * 2016-11-11 2018-05-25 广东新宝电器股份有限公司 一种搅拌装置
KR20180059086A (ko) * 2016-11-25 2018-06-04 경희대학교 산학협력단 발전장치 및 이를 포함한 모바일 기기
EP3564556A4 (en) 2016-12-29 2020-06-10 Tae Hwan Ha MULTI-STAGE TRANSMISSION
KR101867537B1 (ko) 2017-02-01 2018-06-14 주식회사 네오오토 전기 자동차용 2단 변속기
CN107493668A (zh) * 2017-09-23 2017-12-19 广州新蓝网络科技有限公司 具有移动功能的智能机柜
CN107581181A (zh) * 2017-10-09 2018-01-16 江苏大学 一种水田自走式喷雾机用可升降喷杆装置
CN107599820A (zh) * 2017-10-24 2018-01-19 广西玉柴机器股份有限公司 混合动力总成***
US10793183B2 (en) * 2017-12-22 2020-10-06 Trw Automotive U.S. Llc Torque overlay steering apparatus
KR101961589B1 (ko) 2018-03-08 2019-03-22 손순영 변속모터와 유성기어 메카니즘을 이용한 자전거용 변속장치
CN109835155B (zh) * 2018-04-19 2023-08-29 广州市新域动力技术有限公司 星盘换挡式自动四速纯电动动力总成
KR102123985B1 (ko) * 2019-09-18 2020-06-17 국방과학연구소 위치센서 탑재한 전기식 회전형 작동기
CN112360943B (zh) * 2020-10-24 2023-01-20 重庆铁马变速箱有限公司 一种宽速比amt变速箱构型
CN112855906A (zh) * 2021-03-18 2021-05-28 北京中岩大地科技股份有限公司 一种机械换挡驱动装置及其使用方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2898778A (en) 1957-07-02 1959-08-11 Richard B Ransom Differential gear set
US3949626A (en) 1974-07-24 1976-04-13 Quaker City Gear Works, Inc. Differential gear system and actuator assembly
JPS57192654A (en) 1981-05-23 1982-11-26 Toshinaga Endo Stepless speed change gear
DE3138004C2 (de) 1981-09-24 1985-01-31 Elektro-Mechanik Gmbh, 5963 Wenden Stellantrieb mit einem Planetengetriebe
JPS5865449A (ja) 1981-10-15 1983-04-19 Konishiroku Photo Ind Co Ltd 複写機の表示装置
JPS5865449U (ja) * 1981-10-28 1983-05-04 宇部興産株式会社 可変速動力伝達装置
US4917200A (en) * 1986-07-14 1990-04-17 Lucius Ivan R Steering method and apparatus for skid-steering vehicle
US5015898A (en) 1987-09-09 1991-05-14 Heinz Frey Continuously variable drive
JPH02107857A (ja) 1988-10-07 1990-04-19 Toshiaki Sato 無段変速機
US4973295A (en) 1989-03-31 1990-11-27 Gabrielle Reng-Yi Wu Lee Stepless variable ratio transmission
KR19980021268A (ko) 1996-09-16 1998-06-25 신혁철 자동차용 자동 변속기
US6093126A (en) 1996-10-16 2000-07-25 Fleytman; Yakov Transmission device
US5992259A (en) * 1996-10-16 1999-11-30 Fleytman; Yakov Worm/wormgear transmission and apparatus for transmitting rotation utilizing an oscillating input
US6042497A (en) 1997-11-06 2000-03-28 Scott; Larry T. Variable speed transmission
JP3449277B2 (ja) 1999-02-05 2003-09-22 株式会社日立製作所 ハイブリッド車両およびその制御装置
US6402652B1 (en) * 1999-10-15 2002-06-11 New Venture Gear, Inc. Continuously variable four-wheel drive transmission with traction control
US6582338B1 (en) 1999-10-15 2003-06-24 New Venture Gear, Inc. Differential unit with worm gearsets
US6447418B1 (en) 1999-10-15 2002-09-10 New Venture Gear, Inc. Variable ratio range set for a transfer case
US6835154B2 (en) * 1999-10-15 2004-12-28 New Venture Gear, Inc. On-demand transfer case
KR100397570B1 (ko) 2000-08-09 2003-09-13 하태환 차량용 동력전달장치
KR100352505B1 (ko) 2000-09-06 2002-09-16 하태환 반자동 변속기를 구비한 차량의 브레이크 시스템
KR20020062068A (ko) 2001-01-19 2002-07-25 신혁철 높은 변속효율과 내구성을 갖는 무단 변속장치
KR100514010B1 (ko) 2001-10-16 2005-09-13 하태환 차량의 4륜구동장치
JP2006205951A (ja) 2005-01-28 2006-08-10 Yanmar Co Ltd 作業車両のトランスミッション
US7396305B2 (en) 2006-02-21 2008-07-08 Gm Global Technology Operations, Inc. Electrically variable transmission having three planetary gear sets, a stationary member and three fixed interconnections
US7611433B2 (en) 2006-05-05 2009-11-03 Magna Powertrain Usa, Inc. Dual clutch hybrid powershift transmission
DE102006027709B4 (de) 2006-06-14 2019-01-03 Magna powertrain gmbh & co kg Getriebeeinheit für ein Kraftfahrzeug und Steuerungsverfahren hierfür
US7463004B2 (en) 2006-07-10 2008-12-09 Xerox Corporation Planetary dual stepper drives
KR101132753B1 (ko) * 2008-01-08 2012-04-19 하태환 유성기어세트 및 이를 이용한 동력 전달 장치
BRPI1010522A2 (pt) 2009-03-09 2016-03-15 Tae-Hwan Ha dispositivo de transmissão de potência que utiliza conjunto de engrenagens satélites

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2407689A4

Also Published As

Publication number Publication date
US20120004071A1 (en) 2012-01-05
EP2407689A4 (en) 2013-03-13
EP2407689A2 (en) 2012-01-18
AU2010221880B2 (en) 2016-05-26
CN102348910A (zh) 2012-02-08
JP2012519820A (ja) 2012-08-30
JP5630718B2 (ja) 2014-11-26
US8968134B2 (en) 2015-03-03
BRPI1010522A2 (pt) 2016-03-15
EP2407689B1 (en) 2014-05-07
US20150184727A1 (en) 2015-07-02
PL2407689T3 (pl) 2014-10-31
AU2010221880A1 (en) 2011-11-03
KR20100101543A (ko) 2010-09-17
KR101158341B1 (ko) 2012-06-25
WO2010104320A3 (ko) 2010-12-23

Similar Documents

Publication Publication Date Title
WO2010104320A2 (ko) 유성기어를 이용한 동력 전달 장치
WO2016108457A1 (ko) 고정변속단을 가지는 하이브리드 변속기
WO2009088232A2 (ko) 유성기어세트 및 이를 이용한 동력 전달 장치
US8177671B2 (en) Control system for hybrid drive unit
EP1283382B1 (en) Multiple ratio series electric vehicle drivetrain
CN101988567B (zh) 动力传动装置和动力传动***
EP1097830B1 (fr) Groupe motopropulseur hybride comportant au moins deux trains épicycloidaux
WO2004089680A1 (ja) ハイブリッド型車両
WO2004030970A3 (en) Power control apparatus for hybrid vehicle
US20090242287A1 (en) Power output apparatus, vehicle mounting the same, and method for controlling power output apparatus
WO2011090244A1 (ko) 전기자동차의 발전제어시스템
WO2013151402A1 (ko) 변속 장치
WO2013111980A1 (ko) 차량용 터보 컴파운드 시스템
WO2014025130A1 (ko) 다단 변속기
WO2018212595A1 (ko) 모터의 다단 변속기
WO2020226263A1 (ko) 전력 케이블 풀러 및 전력 케이블 풀러 시스템
KR20090113653A (ko) 하이브리드 차량의 동력 전달 장치
WO2011102606A2 (ko) 자전거용 변속기
WO2015099437A1 (ko) 건설기계의 유압시스템 및 유압시스템의 제어방법
WO2019194390A1 (ko) 전기자동차용 변속 시스템
KR101427907B1 (ko) 하이브리드 차량의 동력 전달 장치
WO2016108299A1 (ko) 무단 변속장치
WO2022034977A1 (ko) 변속부를 내장한 전기 모터
WO2018043866A2 (ko) 2단 변속장치
WO2023239012A1 (ko) 전기 차량용 변속장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080011484.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10751011

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2011553947

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13255228

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011141130

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 7766/DELNP/2011

Country of ref document: IN

Ref document number: 2010751011

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010221880

Country of ref document: AU

Date of ref document: 20100309

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1010522

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1010522

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110906