WO2014118913A1 - Stent for placement in living body and stent delivery system - Google Patents

Stent for placement in living body and stent delivery system Download PDF

Info

Publication number
WO2014118913A1
WO2014118913A1 PCT/JP2013/052056 JP2013052056W WO2014118913A1 WO 2014118913 A1 WO2014118913 A1 WO 2014118913A1 JP 2013052056 W JP2013052056 W JP 2013052056W WO 2014118913 A1 WO2014118913 A1 WO 2014118913A1
Authority
WO
WIPO (PCT)
Prior art keywords
stent
linear
vivo
annular
balloon
Prior art date
Application number
PCT/JP2013/052056
Other languages
French (fr)
Japanese (ja)
Inventor
浩治 中尾
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to PCT/JP2013/052056 priority Critical patent/WO2014118913A1/en
Publication of WO2014118913A1 publication Critical patent/WO2014118913A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91575Adjacent bands being connected to each other connected peak to trough
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0018Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in elasticity, stiffness or compressibility

Definitions

  • the present invention relates to an in-vivo indwelling stent and a stent delivery system used for improving a stenosis or occlusion occurring in a body lumen such as a blood vessel, a bile duct, a trachea, an esophagus, or a urethra.
  • In-vivo stents are used to expand the stenosis or occlusion site and secure the lumen to treat various diseases caused by stenosis or occlusion of blood vessels or other in-vivo lumens.
  • it is a tubular medical device. Since the stent is inserted into the body from outside the body, the diameter is small at that time. The stent is expanded at the target stenosis or occlusion site to increase the diameter, and the lumen is held as it is.
  • the material constituting the stent is required to satisfy simultaneously the conflicting properties of high strength and high ductility. If the strength is low, the radial force (radial strength) required for the stent cannot be obtained, and if the ductility is low, there is a possibility that the stent will be broken (struts are cut) when the stent is placed and expanded. In addition, when a stent is used for treatment of a stenosis site in a blood vessel, since the stent is a foreign body for a living body, inflammation occurs in the site, migration and proliferation of vascular smooth muscle cells occur, and an intima Thicken and cause restenosis.
  • a thrombus may occur in the stent itself, resulting in stenosis or occlusion.
  • a biological physiologically active substance such as an anticancer agent or an immunosuppressive agent is carried on the stent, and the relevant part is locally applied at the indwelling site of the lumen. Attempts have been made to reduce the restenosis rate by releasing biologically physiologically active substances.
  • Patent Document 1 discloses a structure composed of a base material introduced into a patient's body, and a biological action formed on at least a part of the structure. A material and a porous material layer disposed on the bioactive material, wherein the porous material layer has a thickness and characteristics capable of controlling the release of the bioactive material.
  • the invention relating to the medical device for injection is described.
  • a stent placement is not necessary for a site in a vessel healed by introduction of a stent.
  • a radial force is required to prevent remodeling (expansion of the expanded tissue) that occurs in the blood vessel.
  • remodeling is not permanent and is performed for a certain period of time. If the lesion is cured after passing, the remodeling rate will be lowered. Therefore, if the lesioned part is healed, the stent in the blood vessel does not need to be placed in the lesioned part, and even if it is removed from the site, the possibility that the blood vessel is blocked again is low.
  • a method of using a stent made of a biodegradable material can be considered. If the stent itself is made of a biodegradable material, it will disappear from the body after a period of time necessary for treatment of the lesion, so after the stent has disappeared from the body, the inflammatory response of the living body due to placement in the living body Does not occur.
  • Patent Document 2 describes an invention relating to a stent in which the surface of a stent body made of a bioabsorbable polymer is coated with a mixture of a substance for treatment and a polymer.
  • a stent made of a biodegradable polymer has a lower strength than that made of a metal, and there is a problem in considering that it is placed in the body for a certain period of time while securing a necessary radial force.
  • Patent Document 3 (US Pat. No. 6,045,568, Japanese Patent No. 2842943) is an example of using a biodegradable polymer polylactic acid as a stent material.
  • the stent of patent document 3 is disclosing the vascular stent which consists of a knitted fabric made from a bioabsorbable polymer (polylactic acid) fiber in a tubular shape or a tubular shape.
  • the bioabsorbable stent made of polylactic acid needs to be thicker than the metal stent, and the same thickness as that of a conventional metal stent.
  • a biodegradable material there is a magnesium alloy as a material having relatively high strength. Since the magnesium alloy is a metal material having higher strength than the biodegradable polymer, the thickness of the stent wire can be reduced.
  • Patent Document 4 describes an invention related to a stent made of a metal containing a magnesium alloy and decomposable in vivo.
  • magnesium alloy has a certain degree of strength, it is a hard and brittle material, and it can be flexibly flexible to some extent by the composition with subcomponents other than magnesium, but it has the same bending flexibility as a conventional stent. There is a limit to making it happen.
  • USP 6096070 Japanese Unexamined Patent Publication No. 9-99056
  • USP 5624411 Japanese Patent Laid-Open No. 8-33718
  • USP 6045568 Japanese Patent No. 2842943
  • USP78779367 Japanese Special Table 2001-511049
  • the object of the present invention is to solve the problems of the prior art described above, and to prevent or reduce the occurrence of stenosis (restenosis) and occlusion in vascular system treatment, and to generate an inflammatory reaction by indwelling in a living body for a long period of time. It is intended to provide a stent for in-vivo placement and a stent delivery system having a necessary strength (radial force) and bending flexibility.
  • An in-vivo stent that is formed into a substantially tubular body, has a diameter for insertion into a lumen in a living body, and expands when a force spreading radially from the inside is applied
  • the stent includes a biodegradable polymer stent base formed into a substantially cylindrical shape by a band-shaped component having a predetermined width, and a wall of the band-shaped component of the biodegradable polymer stent base and an outer surface side of the stent.
  • the in-vivo indwelling stent which has the linear reinforcement body embed
  • a stent comprising a tube-shaped shaft main body, a foldable and expandable balloon provided at the tip of the shaft main body, and the above-described stent mounted so as to enclose the balloon in a folded state Delivery system.
  • FIG. 1 is a front view of an in-vivo stent according to an embodiment of the present invention.
  • FIG. 2 is a development view of the in-vivo stent of FIG.
  • FIG. 3 is a partially enlarged view of FIG.
  • FIG. 4 is an enlarged sectional view taken along line AA in FIG.
  • FIG. 5 is a partially enlarged view of an in-vivo stent according to another embodiment of the present invention.
  • 6 is an enlarged sectional view taken along line BB in FIG.
  • FIG. 7 is a partially enlarged view of an in-vivo stent according to another embodiment of the present invention.
  • FIG. 8 is an enlarged sectional view taken along the line CC of FIG.
  • FIG. 9 is a development view of the expanded state of the stent shown in FIG. FIG.
  • FIG. 10 is a developed view of the in-vivo stent according to another embodiment of the present invention.
  • FIG. 11 is a partially enlarged view of FIG. 12 is a partially enlarged view of the stent shown in FIG. 10 at the time of expansion.
  • FIG. 13 is a front view of an in-vivo stent according to another embodiment of the present invention.
  • FIG. 14 is a development view of the stent shown in FIG.
  • FIG. 15 is a partially enlarged view of FIG.
  • FIG. 16 is a partially omitted front view of the stent delivery system according to the embodiment of the present invention.
  • FIG. 17 is an enlarged partial cross-sectional view of the distal end portion of the stent delivery system shown in FIG.
  • FIG. 18 is an explanatory diagram for explaining the operation of the stent delivery system according to the embodiment of the present invention.
  • the in-vivo indwelling stent of the present invention will be described using the following preferred embodiments.
  • the in-vivo indwelling stent of the present invention is formed in a substantially tubular body, has a diameter for insertion into the in-vivo lumen, and expands when a force spreading radially from the inside is applied.
  • the stent 1 includes a biodegradable polymer stent base 2 formed in a substantially cylindrical shape by a band-shaped component having a predetermined width, and a wall of the band-shaped component of the biodegradable polymer stent base 2 and an outer surface of the stent. It has the linear reinforcement body 3 embed
  • This stent 1 is a substantially tubular body, has a diameter for insertion into a body lumen, and is expandable when a force that expands radially from the inside of the stent is applied.
  • An expandable stent is a substantially tubular body, has a diameter for insertion into a body lumen, and is expandable when a force that expands radially from the inside of the stent is applied.
  • the stent base 2 is formed into a substantially tubular body, has a diameter for insertion into a living body lumen, and is applied with a force that expands in the radial direction from the inside of the stent. It is sometimes extensible.
  • the linear reinforcing body 3 is a cylindrical body formed of linear components and has substantially the same form as the stent base. For this reason, the linear reinforcement provides a radial force to the entire stent base.
  • the linear reinforcing body 3 is also formed in a substantially tubular body, has a diameter for insertion into a living body lumen, and expands when a force spreading radially from the inside of the stent is applied. Is possible.
  • each annular body 4 is arranged in a plurality of axial directions, and the adjacent annular bodies 4 are connected by the connecting portion 5. Yes. Further, each annular body 4 has a plurality of one end side bent portions 21 having apexes on one end side in the axial direction of the stent and a plurality of other end side bent portions 22 having apexes on the other end side in the axial direction of the stent.
  • the annular body 4 and a connecting portion 5 that connects the adjacent annular bodies 4 are provided.
  • the stent base 2 is formed by annularly forming stent base annular portions 6 formed in an annular shape by strip-shaped components in a plurality of axial directions, and adjacent annular portions 6 are stent base connecting portions 8. It is connected by. Furthermore, each of the stent base annular portions 6 is formed by a band-shaped component having a predetermined width, and has a plurality of one end side bent portions 21 having apexes on one end side in the axial direction of the stent and apexes on the other end side in the axial direction of the stent. A plurality of other-end-side bent portions 22 having
  • the stent base annular portion 6 and the annular body 4 are composed of a plurality of one end side bent portions 21 located on one end side of the stent and a plurality of ends located on the other end side.
  • the other end side bent portion 22, the one end side bent portion 21, and the belt-like portion connecting the other end side bent portion 22 are endless wavy annular bodies.
  • belt-shaped part is linear.
  • the annular body 4 adjacent to the axial direction is such that the other end side bent portion 22 of the annular body 4 located on one end side of the stent and the one end side bent portion 21 of the annular body 4 located on the other end side are close to each other. It arrange
  • the stent 1 is inserted into the living body in the state shown in FIG. 1 and expands when a force spreading in the radial direction from the inside of the stent is applied.
  • the state of FIG. 2 is changed to the state of FIG.
  • the one end side bent portion 21 and the other end side bent portion 22 are deformed in the opening direction, but the band-like portion and the connecting portion 5 connecting the one end side bent portion 21 and the other end side bent portion 22 are Does not substantially deform.
  • the wave-like annular body in the stent base 2 has a plurality of one end side bent portions 21, the other end side bent portions 22 and a belt-like portion having substantially the same pitch. It is an endless wavy body that is continuous in an annular shape. The number of peaks (or valleys) of the wave-like annular body is preferably 4 to 10.
  • a plurality (specifically, two or three) of connecting portions 5 are provided between adjacent annular bodies.
  • two connecting portions 5 are provided between adjacent annular bodies.
  • substrate is not limited to what was comprised by several wavy annular bodies like the stent base
  • the number of wavy line-like bodies 4 forming the stent substrate 2 is 10 in the case shown in FIGS. 1 and 2.
  • the number of wavy annular bodies 4 varies depending on the length of the stent, preferably 4 to 50, and particularly preferably 10 to 35.
  • the stent substrate 2 is made of a biodegradable polymer.
  • the biodegradable polymer means a polymer that is gradually degraded when the stent 1 of the present invention is placed in a lesion, and that does not adversely affect a human or animal living body.
  • the biodegradable polymer used is not particularly limited, but is at least one selected from the group consisting of polyglycolic acid, polylactic acid, polycaprolactone, polyhydroxybutyric acid, cellulose, polyhydroxybutyrate valeric acid, and polyorthoester. Or a copolymer, a mixture, or a composite thereof.
  • These biodegradable polymers have low reactivity with living tissue and can control degradation in vivo.
  • it is desirable that these component-dissolving polymers have a certain tensile strength or more.
  • polylactic acid it is preferably 55 Mpa or more.
  • the biodegradable polymer may contain a plasticizer.
  • the plasticizer is contained, the ductility of the biodegradable polymer is improved, the bending flexibility of the stent is improved, and cracks generated when the stent is deformed and peeling from the linear reinforcing body can be prevented.
  • the plasticizer is not particularly limited as long as it does not adversely affect the human or animal body.
  • Polyethylene glycol polyoxyethylene polyoxypropylene glycol, polyoxyethylene sorbitan monooleate, polyethylene glyceryl triricinolate, At least one selected from the group consisting of sorbitan sesquioleate, triethyl citrate, acetyl tributyl citrate, acetyl trihexyl citrate, butyryl trihexyl citrate, medium chain fatty acid triglycerides, monoglycerides, and acetylated monoglycerides, or A mixture thereof is preferred.
  • a plasticizer is used in an amount of 0.01 to 80% by mass, preferably 0.1 to 60% by mass, and more preferably 1 to 40% by mass with respect to the biodegradable polymer material.
  • the stent substrate may contain a biological physiologically active substance in a biodegradable polymer.
  • the stent may be provided with a physiologically active substance-containing resin layer that partially covers the entire outer surface or a part of the outer surface of the stent.
  • Physiologically active substances include agents that suppress intimal thickening, anticancer agents, immunosuppressive agents, antibiotics, anti-rheumatic agents, antithrombotic agents, HMG-CoA reductase inhibitors, ACE inhibitors, calcium antagonists, anti-high fats Antihypertensive agent, anti-inflammatory agent, integrin inhibitor, antiallergic agent, antioxidant, GPIIbIIIa antagonist, retinoid, flavonoid and carotenoid, lipid improver, DNA synthesis inhibitor, tyrosine kinase inhibitor, antiplatelet agent, vascular smoothing Muscle growth inhibitors, anti-inflammatory drugs, biological materials, interferons and epithelial cells generated by genetic engineering are used. And you may use 2
  • anticancer agent for example, vincristine, vinblastine, vindesine, irinotecan, pirarubicin, paclitaxel, docetaxel, methotrexate and the like are preferable.
  • immunosuppressant for example, sirolimus, tacrolimus, azathioprine, cyclosporine, cyclophosphamide, mycophenolate mofetil, gusperimus, mizoribine and the like are preferable.
  • antibiotic for example, mitomycin, adriamycin, doxorubicin, actinomycin, daunorubicin, idarubicin, pirarubicin, aclarubicin, epirubicin, pepromycin, dinostatin styramer and the like are preferable.
  • anti-rheumatic agent for example, methotrexate, sodium thiomalate, penicillamine, lobenzalit and the like are preferable.
  • antithrombotic drug for example, heparin, aspirin, antithrombin preparation, ticlopidine, hirudin and the like are preferable.
  • HMG-CoA reductase inhibitor for example, cerivastatin, cerivastatin sodium, atorvastatin, nisvastatin, itavastatin, fluvastatin, fluvastatin sodium, simvastatin, lovastatin, pravastatin and the like are preferable.
  • ACE inhibitor for example, quinapril, perindopril erbumine, trandolapril, cilazapril, temocapril, delapril, enalapril maleate, lisinopril, captopril and the like are preferable.
  • nifedipine, nilvadipine, diltiazem, benidipine, nisoldipine and the like are preferable.
  • the antihyperlipidemic agent for example, probucol is preferable.
  • the antiallergic agent for example, tranilast is preferable.
  • retinoids for example, all-trans retinoic acid flavonoids and carotenoids are preferably catechins, particularly epigallocatechin gallate, anthocyanins, proanthocyanidins, lycopene, ⁇ -carotene and the like.
  • tyrosine kinase inhibitor for example, genistein, tyrphostin, arbustatin and the like are preferable.
  • anti-inflammatory agent for example, steroids such as dexamethasone and prednisolone are preferable.
  • the biological material for example, EGF (epidermal growth factor), VEGF (vascular endothelial growth factor), HGF (hepatocyte growth factor), PDGF (platelet derived growth factor), bFGF (basic fibroblast growth factor) and the like are preferable.
  • the band-shaped component of the stent substrate (the width of the band-shaped portion of the stent substrate annular portion) is preferably about 0.07 to 0.15 mm, particularly preferably 0.08 to 0.13 mm.
  • the wall thickness is preferably 50 to 150 ⁇ m, and particularly preferably 60 to 80 ⁇ m.
  • the linear reinforcing member 3 is formed of a linear member having a predetermined line width.
  • the annular reinforcing portion 7 of the linear reinforcing member 3 is present in all regions of the annular member 4, and has substantially the same form as the annular member 4 (stent base annular portion 6). It has become.
  • the linear reinforcing body is embedded in the wall of the band-shaped component and the position on the outer surface side of the stent, and the outer surface is not exposed. ing.
  • connection part 5 which consists of a strip
  • the connecting portion 5 includes the stent base connecting portion 8 and the connecting portion reinforcing body 9 embedded therein.
  • connection part reinforcement body 9 is also embed
  • the linear connection part reinforcement body 9 is connected with the linear reinforcement body in the adjacent annular body 4.
  • the stent of the present invention is not limited to the above-described one having a connecting portion reinforcing body, and the connecting portion is constituted only by a stent base (in other words, there is no linear reinforcing body). May be. In this case, as the biodegradation of the stent substrate progresses, each annular body becomes in an unconnected state. Further, the stent form is not limited to the above-described one, and the linear reinforcing member 3 (annular reinforcing member 7) is formed on the outer surface of the stent base 2a as in the stent 1a shown in FIGS. It may be exposed from the outer surface of the stent base annular portion 6a.
  • the linear reinforcement 3 comes into contact with the inner wall of the blood vessel.
  • the connecting portion 5 is formed by the stent base connecting portion 8a and the connecting portion reinforcing body 9, and the connecting portion reinforcing body 9 is exposed on the outer surface of the stent.
  • the linear reinforcing body 3a is a band-shaped component (stent base 2b, stent base annular portion 6b). A plurality of them may be embedded in the wall. In this case, more than half, preferably all, of them are disposed in the wall of the band-shaped component and at the position on the outer surface side of the stent. Even in this type, like the stent 1a shown in FIG. 6, the linear reinforcing member 3a may be exposed on the outer surface of the stent. Further, the number of linear reinforcing members is preferably 1 to 10, and more preferably 1 to 5.
  • the width or the wire diameter of the linear reinforcing body is preferably from 0.1 to 30 ⁇ m, particularly preferably from 3 to 10 ⁇ m.
  • the wire diameters (in other words, the thickness and the size of the cross-sectional area) of the linear reinforcing bodies 3a may not all be the same.
  • the one located at the center of the band-shaped component 6b has a larger wire diameter (in other words, the thickness and the cross-sectional area) than those located at the side. May be.
  • the forming material of the linear reinforcing bodies 3 and 3a has higher rigidity and plastic deformability than the forming material of the stent base 2. Thereby, it can be expanded together with the stent substrate, and after expansion, a radial force is applied to the entire stent to reinforce the entire stent.
  • the linear reinforcing bodies 3 and 3a have higher rigidity than the stent bases 2, 2a and 2b.
  • materials having a certain degree of strength and biocompatibility are preferable. For example, stainless steel, tantalum or tantalum alloy, platinum or platinum alloy, gold or gold alloy, cobalt chromium alloy, etc.
  • Cobalt base alloys metal fine wires such as biodegradable metals, synthetic resin fibers such as aromatic polyamides, aliphatic polyamides, polyarylate, polyesters, polyimides, carbon fibers, and the like.
  • the tensile strength of a cobalt chrome alloy is desirably 600 MPa.
  • the linear reinforcement body uses a single wire, a stranded wire, or a fiber bundle of the above-described wire.
  • a biodegradable material may be used, but it is necessary to use a biodegradable material that is slower in vivo than the biodegradable polymer that is the material for forming the stent substrate. It is.
  • the biodegradable metal pure magnesium or a magnesium alloy, calcium, zinc, lithium or the like is used. These biodegradable metals are slower to degrade in vivo than the biodegradable polymers described above. Particularly preferred is pure magnesium or a magnesium alloy.
  • the magnesium alloy contains magnesium as a main component and contains at least one element selected from a biocompatible element group consisting of Zr, Y, Ti, Ta, Nd, Nb, Zn, Ca, Al, Li, and Mn. Those that do are preferred.
  • magnesium for example, magnesium is 50 to 98%, lithium (Li) is 0 to 40%, iron is 0 to 5%, and other metals or rare earth elements (cerium, lanthanum, neodymium, praseodymium, etc.) are 0 to Mention may be made of 5%.
  • magnesium is 79 to 97%, aluminum is 2 to 5%, lithium (Li) is 0 to 12%, and rare earth elements (cerium, lanthanum, neodymium, praseodymium, etc.) are 1 to 4%. be able to.
  • magnesium is 85 to 91%
  • aluminum is 2%
  • lithium (Li) is 6 to 12%
  • rare earth elements (cerium, lanthanum, neodymium, praseodymium, etc.) are 1%.
  • magnesium is 86 to 97%
  • aluminum is 2 to 4%
  • lithium (Li) is 0 to 8%
  • rare earth elements (cerium, lanthanum, neodymium, praseodymium, etc.) are 1 to 2%.
  • aluminum is 8.5 to 9.5%
  • manganese (Mn) is 0.15 to 0.4%
  • zinc is 0.45 to 0.9%
  • the remainder is magnesium. it can.
  • aluminum is 4.5 to 5.3%
  • manganese (Mn) is 0.28 to 0.5%
  • the remainder is magnesium.
  • magnesium is 55 to 65%
  • lithium (Li) is 30 to 40%
  • other metals and / or rare earth elements are 0 to 5%. Can do.
  • the stent 10 may be configured as shown in FIGS. 10 to 12. Also in the stent 10 of this embodiment, the stent includes a plurality of annular bodies (waved annular bodies) 4 and a connecting portion 5 that connects adjacent annular bodies.
  • the stent 10 includes a stent substrate 12 made of a biodegradable polymer and a linear reinforcing body 13.
  • the stent base includes a stent base annular portion and a stent base connecting portion 8b.
  • Each wavy-line annular body 4 (each stent base annular portion) has a plurality of one end side bent portions 21 and 21a having apexes on one end side in the axial direction of the stent 10 and apexes on the other end side in the axial direction of the stent 10. It has a plurality of other end side bent portions 22 and 22a and is constituted by an endless wavy body that is annularly continuous. The one end side bent portions and the other end side bent portions in the annular body 4 are alternately formed, and the numbers thereof are the same.
  • the total number of the one-end-side bent portion 21 and the one-end-side bent portion 21a in one wavy-line annular body 4 is 8 in the case shown in FIG.
  • the total number of the other-end-side bent portion 22 and the other-end-side bent portion 22a in one wavy annular body 4 is also eight.
  • the number of the one end side bent portions and the other end side bent portions in the wavy annular body 4 is preferably 4 to 12, and more preferably 6 to 10.
  • the axial length of the wavy annular body 4 is preferably 0.5 to 2.0 mm, and particularly preferably 0.9 to 1.5 mm.
  • the one end side bent portion 21 and the other end side bent portion 22 are greatly deformed when the stent is expanded, but the one end side bent portion 21a and the other end side bent portion 22a are changed when the stent is expanded. It is not substantially deformed or has a small amount of deformation.
  • the wavy annular body 4 is connected to one end of a parallel linear portion 41 parallel to the axial direction of the stent via a bent portion 21a, and at least expands the stent 10.
  • a first inclined linear portion 42 that is sometimes inclined at a predetermined angle with respect to the central axis of the stent 10, and one end of the first inclined linear portion 42 is connected to the central axis of the stent 10 via the bent portion 22.
  • An inclined linear portion (in this embodiment, an inclined curved portion) 43 extending obliquely at a predetermined angle with respect to the one end of the inclined curved portion 43 and the bent portion 21, and at least when the stent is expanded
  • a plurality of deformed M-shaped linear portions composed of four linear portions of the second inclined linear portion 44 that is inclined at a predetermined angle with respect to the central axis of the stent 10 are continuous.
  • the adjacent deformed M-shaped linear portions are connected by a bent portion 22a that connects one end of the second inclined linear portion 44 and the other end of the parallel linear portion 41, so that an endless wavy annular body is formed. 4 is configured. Further, as shown in FIG.
  • one wavy annular body 4 is constituted by four deformed M-shaped linear portions.
  • the one wavy-line annular body 4 is comprised by the 3 to 5 deformation
  • Adjacent wavy-line annular bodies 4 are connected by a connecting portion 5.
  • the end portions of the parallel straight portions 41 of the adjacent wavy annular bodies 4 are adjacent to each other and connected by the short connecting portion 5.
  • the two parallel linear portions 41 connected by the connecting portion 5 are substantially linear.
  • the connection part 5 which consists of a strip
  • connection portion reinforcing body 9b is also embedded in the wall of the band-shaped component constituting the stent base connecting portion 8b and at the position on the outer surface side of the stent. Further, the linear connecting portion reinforcing body 9 b is connected to the linear reinforcing body 13 in the adjacent annular body 4.
  • connection part reinforcement body You may comprise a connection part only by a stent base
  • the forming material of the linear reinforcing body 13 has higher rigidity and plastic deformability than the forming material of the stent base 12. Thereby, it can be expanded together with the stent substrate, and after expansion, a radial force is applied to the entire stent to reinforce the entire stent.
  • the linear reinforcing body 13 preferably has higher rigidity than the stent base 12.
  • any of the linear reinforcing members 3, 3a described in the above-described stents 1, 1a, 1b may be used. Can be suitably used.
  • the material described for the stent substrate 2 can be suitably used as the material for forming the stent substrate 12.
  • the stent preferably has a non-expanded diameter of about 0.8 to 1.8 mm, and more preferably 0.9 to 1.4 mm.
  • the length of the stent when not expanded is preferably about 9 to 40 mm.
  • the length of one wave-like annular body is preferably about 0.7 to 2.0 mm.
  • the number of bent portions on one end side and the other end side of one wave-like annular body is preferably 4 to 8, and particularly preferably 5 to 7.
  • the number of annular bodies is preferably 4-20.
  • the diameter of the stent during molding (before compression) is preferably about 1.5 to 3.5 mm, and more preferably 2.0 to 3.0 mm.
  • the thickness of the stent is preferably about 0.05 to 0.15 mm, particularly preferably 0.08 to 0.12 mm, and the width of the linear component is 0.07 to 0.00. About 15 mm is preferable, and 0.08 to 0.13 mm is particularly preferable. Further, the stent 20 may have a form as shown in FIGS. 13 to 15.
  • the stent is composed of a stent substrate 15 made of a biodegradable polymer and a linear reinforcing body 16.
  • the stent substrate 15 has a large number of openings 17 on the side surface.
  • the stent substrate 15 has an oblique lattice shape formed by strip-like components extending obliquely with respect to the central axis of the stent 20. .
  • Each band-shaped component has a predetermined width.
  • the stent base body 15 has openings 17 corresponding to the inside of the lattice.
  • a large number of rectangular openings 17 are arranged in the circumferential direction and the axial direction of the stent.
  • the stent substrate may contain a physiologically active substance as described above, or may have a coating containing a physiologically active substance.
  • the linear reinforcing body 16 is woven or knitted by a plurality of linear bodies extending obliquely with respect to the central axis of the stent so as to correspond to the form of the stent base 15. And a large number of linear body intersecting portions where the linear bodies intersect obliquely with respect to the axial direction of the stent.
  • the forming material etc. of the linear reinforcement body 16 the same thing as what was mentioned above can be used conveniently.
  • the linear reinforcing body 16 is composed of a plurality of fibers 16 a and 16 b wound spirally (obliquely with respect to the central axis of the stent 20).
  • the linear reinforcing body 16 is spirally wound in the same direction (in other words, is wound so as to be substantially parallel), and the plurality of fibers 16a.
  • a plurality of fibers 16b woven with the above fibers.
  • the linear reinforcement body 16 is equipped with many fiber crossing parts 18 which a fiber cross
  • the fiber intersection 18 is an intersection where the fibers intersect obliquely with respect to the axial direction of the stent 20.
  • the fiber crossing part 18 is a fiber crossing part 18a of the 1st form from which the fiber 16a becomes the upper side (surface side) of the fiber 16b, and a fiber crossing of the 2nd form from which the fiber 16b becomes the upper side (surface side) of the fiber 16a.
  • the portions 18b are formed so as to alternate in the circumferential direction and the axial direction of the stent 20 (in other words, woven).
  • the linear reinforcing body 16 is preferably woven with fibers as described above, but may be knitted or simply overlapped in a net shape.
  • the distance between adjacent fibers is preferably 0.05 to 2 mm for a stent having an outer diameter of about 4 mm, for example. Further, the distance between the closest fiber intersections is preferably 0.1 to 4 mm. Further, the distance between the fiber intersections adjacent to each other in the circumferential direction of the stent is preferably 0.1 to 2 mm.
  • the fibers 16a and 16b are preferably single fibers, a plurality of fiber bundles, or a stranded wire of a plurality of fibers. In the case of a fiber bundle, a bundle of 2 to 3 fibers is preferable. In the case of a twisted fiber, it is preferably a twisted wire of 2 to 3 fibers.
  • the fibers 16a and 16b preferably have a substantially elliptical or substantially rectangular cross-sectional shape. In this case, the fiber is preferably such that the minor axis of the cross section faces the central axis direction of the stent.
  • the linear reinforcement portion 16 includes a plurality of annular fiber intersection portions arranged in an axial direction of the stent 20, in which at least three fiber intersection portions 18 are substantially annular with respect to the central axis of the stent 20.
  • each annular fiber intersection row has a plurality (specifically, eight) fiber intersections 18 that are substantially equiangular with respect to the central axis of the stent 20.
  • the number of fiber intersections 18 in the annular fiber intersection line is preferably about 3 to 16, and more preferably 6 to 12.
  • the stent 20 has a large number (specifically, 40) of annular fiber intersecting portion rows substantially parallel to the axial direction of the stent 20.
  • the number of annular fiber crossing rows in the stent 20 is preferably about 10 to 60. Preferably, it is 20-40. In adjacent annular fiber intersection rows, the fiber intersections are shifted in the circumferential direction of the stent. Further, in every other annular fiber intersection portion row, each fiber intersection portion 18 is arranged substantially linearly in the axial direction of the stent.
  • FIG. 16 is a partially omitted front view of the stent delivery system according to the embodiment of the present invention.
  • FIG. 17 is an enlarged partial cross-sectional view of the distal end portion of the stent delivery system shown in FIG.
  • FIG. 18 is an explanatory diagram for explaining the operation of the stent delivery system according to the embodiment of the present invention.
  • a stent delivery system (in other words, a living organ dilator) 100 according to the present invention is a tube-shaped shaft main body 102, and a foldable and expandable balloon 103 provided at the distal end of the shaft main body 102.
  • the stent 1 is mounted so as to enclose the balloon 103 in a state and is expanded by expansion of the balloon 103. And as the stent 1, the stent 1 mentioned above and the stent of all the examples mentioned above can be used.
  • the stent delivery system 100 of this embodiment includes the above-described stent 1 and a tubular stent delivery system main body 101 to which the stent 1 is attached.
  • the stent delivery system main body 101 includes a tubular shaft main body 102 and a foldable and expandable balloon 103 provided at the distal end of the shaft main body, and the stent 1 covers the balloon 103 in a folded state. It is mounted so as to be wrapped and expanded by expansion of the balloon 103.
  • the stents of all the embodiments described above can be used.
  • the stent used here is a so-called balloon expandable stent that has a diameter for insertion into a lumen in a living body and is expandable when a force that expands radially from the inside of the tubular body is applied. Used.
  • the shaft main body 102 has one end opened at the tip of the shaft main body 102 and the other end opened at the rear end of the shaft main body 102.
  • a guide wire lumen 115 is provided.
  • the stent delivery system main body 101 includes a shaft main body 102 and a stent expansion balloon 103 fixed to the distal end of the shaft main body 102, and the stent 1 is mounted on the balloon 103.
  • the shaft body 102 includes an inner tube 112, an outer tube 113, and a branch hub 110.
  • the inner tube 112 is a tube body including a guide wire lumen 115 for inserting a guide wire therein.
  • the inner tube 112 has a length of 100 to 2500 mm, more preferably 250 to 2000 mm, an outer diameter of 0.1 to 1.0 mm, more preferably 0.3 to 0.7 mm, and a wall thickness of 10 to It is 250 ⁇ m, more preferably 20 to 100 ⁇ m.
  • the inner tube 112 is inserted into the outer tube 113, and the tip of the inner tube 112 protrudes from the outer tube 113.
  • a balloon expanding lumen 116 is formed by the outer surface of the inner tube 112 and the inner surface of the outer tube 113, and has a sufficient volume.
  • the outer tube 113 is a tube body in which the inner tube 112 is inserted and the tip is located at a portion slightly retracted from the tip of the inner tube 112.
  • the outer tube 113 has a length of 100 to 2500 mm, more preferably 250 to 2000 mm, an outer diameter of 0.5 to 1.5 mm, more preferably 0.7 to 1.1 mm, and a wall thickness of 25 to The thickness is 200 ⁇ m, more preferably 50 to 100 ⁇ m.
  • the outer tube 113 is formed by a distal end side outer tube 113a and a main body side outer tube 113b, and both are joined.
  • the distal end side outer tube 113a has a tapered diameter at a portion closer to the distal end than the joint portion with the main body side outer tube 113b, and the distal end side has a smaller diameter than the tapered portion.
  • the outer diameter at the small diameter portion of the distal end side outer tube 113a is 0.50 to 1.5 mm, preferably 0.60 to 1.1 mm. Further, the base end portion of the distal end side outer tube 113a and the outer diameter of the main body side outer tube 113b are 0.75 to 1.5 mm, preferably 0.9 to 1.1 mm.
  • the balloon 103 has a front end side joint portion 103a and a rear end side joint portion 103b.
  • the front end side joint portion 103a is fixed at a position slightly rear end side from the front end of the inner tube 112, and the rear end side joint portion 103b. Is fixed to the tip of the outer tube.
  • the balloon 103 communicates with the balloon expansion lumen 116 in the vicinity of the proximal end portion.
  • thermoplastic resins such as polyvinyl chloride, polyamide elastomer and polyurethane, silicone rubber, latex rubber and the like can be used, preferably the above-mentioned thermoplastic resin, more preferably polyolefin.
  • the balloon 103 is foldable, and can be folded around the outer circumference of the inner tube 112 when not expanded.
  • the balloon 103 has an expandable portion that is a cylindrical portion (preferably, a cylindrical portion) having substantially the same diameter so that the attached stent 1 can be expanded.
  • the substantially cylindrical portion may not be a perfect cylinder, but may be a polygonal column.
  • the balloon 103 is liquid-tightly fixed to the inner tube 112 with the front end side joint portion 103a and the rear end side joint portion 103b to the front end of the outer tube 113 with an adhesive or heat fusion. . Further, in this balloon 103, the space between the expandable portion and the joint portion is formed in a tapered shape.
  • the balloon 103 forms an expansion space 103 c between the inner surface of the balloon 103 and the outer surface of the inner tube 112.
  • the expansion space 103c communicates with the expansion lumen 116 on the entire periphery at the rear end. In this way, the rear end of the balloon 103 communicates with the expansion lumen having a relatively large volume, so that the expansion fluid can be reliably injected into the balloon from the expansion lumen 116.
  • a material for forming the balloon 103 a material having a certain degree of flexibility is preferable.
  • polyolefin eg, polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, cross-linked ethylene-vinyl acetate) Copolymer
  • polyvinyl chloride e.g., polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, cross-linked ethylene-vinyl acetate) Copolymer
  • polyvinyl chloride e.g, polyamide elastomer, polyurethane
  • polyester for example, polyethylene terephthalate
  • thermoplastic resin such as polyarylene sulfide (for example, polyphenylene sulfide), silicone rubber, latex rubber, and the like.
  • a stretchable material is preferable, and the balloon 103 is preferably biaxially stretched having high strength and
  • the outer diameter of the cylindrical portion (expandable portion) when expanded is 2 to 4 mm, preferably 2.5 to 3.5 mm, and the length is 10 to 50 mm, preferably 20-40 mm.
  • the outer diameter of the distal end side joint portion 103a is 0.9 to 1.5 mm, preferably 1 to 1.3 mm, and the length is 1 to 5 mm, preferably 1 to 1.3 mm.
  • the outer diameter of the rear end side joint portion 103b is 1 to 1.6 mm, preferably 1.1 to 1.5 mm, and the length is 1 to 5 mm, preferably 2 to 4 mm.
  • the stent delivery system 100 includes two X-rays fixed to the outer surface of the shaft main body portion at positions corresponding to both ends of the cylindrical portion (expandable portion) when expanded. Contrast members 117 and 118 are provided. In addition, it is good also as what has two X-ray contrast contrast members fixed to the outer surface of the shaft main-body part 102 (in this embodiment, the inner pipe
  • the X-ray contrast members 117 and 118 are preferably ring-shaped members having a predetermined length, or those obtained by winding a linear body in a coil shape, and the forming material is, for example, gold, platinum, tungsten, or the like. Those alloys or silver-palladium alloys are preferred.
  • the stent 1 is attached so as to encapsulate the balloon 103.
  • the stent is manufactured by processing a metal pipe having a smaller diameter than that at the time of stent expansion and an inner diameter larger than the outer diameter of the folded balloon. Then, a balloon is inserted into the manufactured stent, and a uniform force is applied to the outer surface of the stent inward to reduce the diameter, thereby forming a product-state stent. That is, the above stent 1 is completed by compression mounting on the balloon.
  • a linear rigidity imparting body (not shown) may be inserted between the inner tube 112 and the outer tube 113 (within the balloon expansion lumen 116).
  • the rigidity-imparting body prevents extreme bending of the main body 102 of the stent delivery system 100 at the bent portion without significantly reducing the flexibility of the stent delivery system 100, and pushes the distal end of the stent delivery system 100. To make it easier.
  • the tip of the rigidity imparting body has a smaller diameter than other parts by a method such as polishing.
  • the rigidity imparting body has the tip of the small diameter portion extending to the vicinity of the tip of the outer tube 113.
  • the rigidity imparting body is preferably a metal wire, and is preferably an elastic metal such as stainless steel having a wire diameter of 0.05 to 1.50 mm, preferably 0.10 to 1.00 mm, a superelastic alloy, and the like. Is a high-strength stainless steel for springs and a superelastic alloy wire.
  • a branch hub 110 is fixed to the proximal end.
  • the branch hub 110 has a guide wire inlet 109 that communicates with the guide wire lumen 115 to form a guide wire port, and communicates with the inner tube hub fixed to the inner tube 112 and the balloon expansion lumen 116, and the injection port 111.
  • an outer tube hub fixed to the outer tube 113.
  • the outer tube hub and the inner tube hub are fixed to each other.
  • a thermoplastic resin such as polycarbonate, polyamide, polysulfone, polyarylate, and methacrylate-butylene-styrene copolymer can be preferably used.
  • the structure of the stent delivery system is not limited to the above, and may have a guide wire insertion port communicating with the guide wire lumen at an intermediate portion of the stent delivery system.
  • the in-vivo stent for use in the present invention is as follows.
  • a stent for in vivo placement that is formed into a substantially tubular body, has a diameter for insertion into a living body lumen, and expands when a force that expands radially from the inside is applied,
  • the stent includes a biodegradable polymer stent base formed into a substantially cylindrical shape by a band-shaped component having a predetermined width, and a wall of the band-shaped component of the biodegradable polymer stent base and an outer surface side of the stent.
  • An in vivo indwelling stent having a linear reinforcing body embedded at a position.
  • this stent prevents or reduces the occurrence of stenosis (restenosis) and occlusion in vascular system treatment, prevents the occurrence of an inflammatory reaction due to indwelling in the living body for a long time, and further provides the required strength (radial) Force) and bending flexibility.
  • the stent base is formed of a biodegradable polymer, the stent base is flexible and has a linear reinforcing body in the wall of the band-shaped component constituting the stent base. ing.
  • the linear reinforcing body is embedded in the wall of the band-shaped component and on the outer surface side of the stent, the adhesion of the stent to the inner wall of the blood vessel at the time of stent expansion and the shape stability are improved. ing.
  • the following may be sufficient.
  • the linear reinforcing body is a cylindrical body formed of linear components and has substantially the same shape as the stent base.
  • the annular body formed in an annular shape by the band-shaped component is arranged in a plurality of axial directions and adjacent annular bodies are connected by a connecting portion. The stent for indwelling in vivo.
  • the stent has a linear connection portion reinforcing body embedded in a position on the outer surface side of the stent in the wall of the connection portion of the band-shaped component, and the linear connection portion reinforcing body is:
  • the linear reinforcing body is woven or knitted by a plurality of linear bodies extending obliquely with respect to the central axis of the stent, and oblique with respect to the axial direction of the stent.
  • the stent delivery system of the present invention is as follows. (11) The above-described (1), which is mounted so as to enclose the tube-shaped shaft main body, a foldable and expandable balloon provided at the tip of the shaft main body, and the balloon in the folded state.
  • a stent delivery system comprising the stent according to any one of (10). According to this stent delivery system, the occurrence of stenosis (restenosis) and occlusion in vascular treatment is prevented or reduced, and the occurrence of an inflammatory reaction due to indwelling in a living body for a long period of time is small.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Physics & Mathematics (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

Provided is a stent (1) comprising: a biodegradable polymer stent substrate (2) that is formed to have an approximately cylindrical shape using a band-shaped element having a predetermined width; and a linear reinforcing member (3) that is embedded at a position that is the inner wall of the band-shaped member of the biodegradable polymer stent substrate (2) and the outer surface side of the stent. A stent delivery system (100) is provided with: a tubular shaft body section (102); a balloon (103) that is provided to the tip section of the shaft body section (102) and that is capable of folding and expanding; and the stent (1) that is mounted so as to encompass the folded balloon (103) and that expands as a result of expansion of the balloon (103).

Description

生体内留置用ステントおよびステントデリバリーシステムIn-vivo stent and stent delivery system
 本発明は、血管、胆管、気管、食道、尿道等の生体管腔内に生じた狭窄部、もしくは閉塞部の改善に使用される生体内留置用ステントおよびステントデリバリーシステムに関する。 The present invention relates to an in-vivo indwelling stent and a stent delivery system used for improving a stenosis or occlusion occurring in a body lumen such as a blood vessel, a bile duct, a trachea, an esophagus, or a urethra.
 生体内留置用ステントは、血管あるいは他の生体内管腔が狭窄もしくは閉塞することによって生じる様々な疾患を治療するために、その狭窄もしくは閉塞部位を拡張し、その内腔を確保するためにそこに留置する一般的には管状の医療用具である。
 ステントは、体外から体内に挿入するため、そのときは直径が小さく、目的の狭窄もしくは閉塞部位で拡張させて直径を大きくし、かつその管腔をそのままで保持する物である。
In-vivo stents are used to expand the stenosis or occlusion site and secure the lumen to treat various diseases caused by stenosis or occlusion of blood vessels or other in-vivo lumens. In general, it is a tubular medical device.
Since the stent is inserted into the body from outside the body, the diameter is small at that time. The stent is expanded at the target stenosis or occlusion site to increase the diameter, and the lumen is held as it is.
 ステントを構成する材料は、高強度、高延性という相反する特性を同時に満たすことが求められる。強度が低ければ、ステントとして必要なラジアルフォース(半径方向の強度)が得られず、延性が低ければ、ステントを目的部位に留置し拡張した時に破断(ストラットが切れる)を起こす可能性がある。
 また、血管内の狭窄部位の治療にステントを用いた場合、ステントは生体にとっては異物であるため、当該部位に炎症が発生して、血管平滑筋細胞の遊走および増殖が起こり、血管内膜が肥厚して、再狭窄を引き起こすことがある。また、血栓がステントそのものに発生し、狭窄あるいは閉塞が発生することもある。
 このような脈管系治療の狭窄(再狭窄)、閉塞の発生防止対策として、ステントに抗癌剤や免疫抑制剤等の生物学的生理活性物質を担持させ、管腔の留置部位で局所的に当該生物学的生理活性物質を放出させることによって、再狭窄率の低減化を図る試みが提案されている。
The material constituting the stent is required to satisfy simultaneously the conflicting properties of high strength and high ductility. If the strength is low, the radial force (radial strength) required for the stent cannot be obtained, and if the ductility is low, there is a possibility that the stent will be broken (struts are cut) when the stent is placed and expanded.
In addition, when a stent is used for treatment of a stenosis site in a blood vessel, since the stent is a foreign body for a living body, inflammation occurs in the site, migration and proliferation of vascular smooth muscle cells occur, and an intima Thicken and cause restenosis. In addition, a thrombus may occur in the stent itself, resulting in stenosis or occlusion.
In order to prevent the occurrence of stenosis (restenosis) and occlusion in such vascular system treatment, a biological physiologically active substance such as an anticancer agent or an immunosuppressive agent is carried on the stent, and the relevant part is locally applied at the indwelling site of the lumen. Attempts have been made to reduce the restenosis rate by releasing biologically physiologically active substances.
 例えば、特許文献1(USP6096070、特開平9-99056号公報)には、患者の体内に導入されるベース材料からなる構造体と、前記構造体の少なくとも一部の上に形成される対生物作用材料と、前記対生物作用材料の上に配置される多孔質材料層とからなり、前記多孔質材料層は、対生物作用材料の放出を制御することが可能な厚さと特性を有することを特徴とする注入用医療装置に関する発明について記載されている。
 このような方法で、脈管系治療の狭窄(再狭窄)、閉塞の発生の防止または低減を図ることができる。しかし、これらの方法で、短期的には再狭窄の低減化が可能であっても、長期的にステントが脈管内に留置されることによる炎症反応の発生を防止することはできない。
For example, Patent Document 1 (US Pat. No. 6,960,070, Japanese Patent Application Laid-Open No. 9-99056) discloses a structure composed of a base material introduced into a patient's body, and a biological action formed on at least a part of the structure. A material and a porous material layer disposed on the bioactive material, wherein the porous material layer has a thickness and characteristics capable of controlling the release of the bioactive material. The invention relating to the medical device for injection is described.
By such a method, it is possible to prevent or reduce the occurrence of stenosis (restenosis) and occlusion in vascular system treatment. However, even though these methods can reduce restenosis in the short term, it is impossible to prevent the occurrence of an inflammatory reaction due to the stent being placed in the vessel in the long term.
 一方、ステントの導入により治癒された脈管内の部位は、その後はステント留置が必要ない場合が多い。例えば、血管内の治療にステントを用いる場合、血管に起こるリモデリング(拡張された組織の収縮)を防止するためのラジアルフォースが必要となるが、リモデリングは永続的なものではなく、一定期間を過ぎて病変部が治癒すればリモデリング率も低くなる。従って、血管内のステントは病変部が治癒すれば、病変部に留置されている必要はなく、仮に当該部位から取り除かれても、再度、血管が閉塞してしまう可能性は低い。
 そこで、生分解性の材料からなるステントを用いるという方法が考えられる。ステント自体が生分解性材料からなっていれば、病変部の治療に必要な期間の経過後には体内から消失するので、ステントが体内から消失した後には生体内に留置することによる生体の炎症反応は発生しない。
On the other hand, there are many cases in which a stent placement is not necessary for a site in a vessel healed by introduction of a stent. For example, when a stent is used for endovascular treatment, a radial force is required to prevent remodeling (expansion of the expanded tissue) that occurs in the blood vessel. However, remodeling is not permanent and is performed for a certain period of time. If the lesion is cured after passing, the remodeling rate will be lowered. Therefore, if the lesioned part is healed, the stent in the blood vessel does not need to be placed in the lesioned part, and even if it is removed from the site, the possibility that the blood vessel is blocked again is low.
Therefore, a method of using a stent made of a biodegradable material can be considered. If the stent itself is made of a biodegradable material, it will disappear from the body after a period of time necessary for treatment of the lesion, so after the stent has disappeared from the body, the inflammatory response of the living body due to placement in the living body Does not occur.
 このようなものとして、特許文献2(USP5624411、特開平8-33718号公報)のものがある。特許文献2のものには、生体吸収性のポリマーからなるステント本体の表面に、治療のための物質とポリマーとの混合物をコーティングしたステントに関する発明が記載されている。しかし、生分解性のポリマーからなるステントは、金属からなるものと比較して強度が低く、必要なラジアルフォースを確保しながら体内に一定期間留置すること等を考慮すると問題がある。 As such a thing, there exists a thing of the patent document 2 (USP56242411, Unexamined-Japanese-Patent No. 8-33718). Patent Document 2 describes an invention relating to a stent in which the surface of a stent body made of a bioabsorbable polymer is coated with a mixture of a substance for treatment and a polymer. However, a stent made of a biodegradable polymer has a lower strength than that made of a metal, and there is a problem in considering that it is placed in the body for a certain period of time while securing a necessary radial force.
 また、ステントとして材料に生分解性ポリマーのポリ乳酸を使用している例として特許文献3(USP6045568、特許2842943号公報)がある。特許文献3のステントは、生体吸収性ポリマー(ポリ乳酸)繊維製の糸を筒状若しくは管状に編んだ編物からなる脈管ステントを開示している。ポリ乳酸による生体吸収性ステントは、通常の金属ステントと同等のラジアルフォースを得るために金属ステントよりも線材の厚さを厚くする必要があり、従来の金属ステントと同等の厚さにすることには限界がある。
 また、生分解性材料として、比較的強度が高い材料としてマグネシウム合金がある。マグネシウム合金は、生分解性ポリマーよりも高い強度を有する金属材料なので、ステントの線材の厚さを薄くすることができる。
Further, Patent Document 3 (US Pat. No. 6,045,568, Japanese Patent No. 2842943) is an example of using a biodegradable polymer polylactic acid as a stent material. The stent of patent document 3 is disclosing the vascular stent which consists of a knitted fabric made from a bioabsorbable polymer (polylactic acid) fiber in a tubular shape or a tubular shape. In order to obtain a radial force equivalent to that of a normal metal stent, the bioabsorbable stent made of polylactic acid needs to be thicker than the metal stent, and the same thickness as that of a conventional metal stent. There are limits.
As a biodegradable material, there is a magnesium alloy as a material having relatively high strength. Since the magnesium alloy is a metal material having higher strength than the biodegradable polymer, the thickness of the stent wire can be reduced.
 このようなものとして、特許文献4(USP7879367、特表2001-511049号公報)のものがある。特許文献4のものは、マグネシウム合金を含む生体内で分解可能な金属からなるステントに関する発明が記載されている。しかし、マグネシウム合金はある程度の強度を有するものの、堅くもろい材料であり、マグネシウム以外の副成分との構成によりある程度曲げ柔軟性を持たせることはできるが、従来のステントと同等の曲げ柔軟性を持たせるには限界がある。 As such a thing, there exists a thing of the patent document 4 (USP78779367, special table 2001-511049 gazette). Patent Document 4 describes an invention related to a stent made of a metal containing a magnesium alloy and decomposable in vivo. However, although magnesium alloy has a certain degree of strength, it is a hard and brittle material, and it can be flexibly flexible to some extent by the composition with subcomponents other than magnesium, but it has the same bending flexibility as a conventional stent. There is a limit to making it happen.
USP6096070(日本特開平9-99056号公報)USP 6096070 (Japanese Unexamined Patent Publication No. 9-99056) USP5624411(日本特開平8-33718号公報)USP 5624411 (Japanese Patent Laid-Open No. 8-33718) USP6045568(日本特許2842943号公報)USP 6045568 (Japanese Patent No. 2842943) USP7879367(日本特表2001-511049号公報)USP78779367 (Japanese Special Table 2001-511049)
 本発明の目的は、上記先行技術の課題を解決し、脈管系治療の狭窄(再狭窄)、閉塞の発生を防止または低減した上で、長期間生体内に留置することによる炎症反応の発生を防止し、さらに必要な強度(ラジアルフォース)と曲げ柔軟性を有する生体内留置用ステントおよびステントデリバリーシステムを提供するものである。 The object of the present invention is to solve the problems of the prior art described above, and to prevent or reduce the occurrence of stenosis (restenosis) and occlusion in vascular system treatment, and to generate an inflammatory reaction by indwelling in a living body for a long period of time. It is intended to provide a stent for in-vivo placement and a stent delivery system having a necessary strength (radial force) and bending flexibility.
 上記目的を達成するものは、以下のものである。
 略管状体に形成され、生体内管腔への挿入のための直径を有し、内部より半径方向に広がる力が付加されたときに拡張する生体内留置用ステントであって、
 前記ステントは、所定幅を有する帯状構成要素により略筒状に形成された生分解性ポリマー製ステント基体と、前記生分解性ポリマー製ステント基体の前記帯状構成要素の壁内かつ前記ステントの外面側となる位置に埋設された線状補強体を有する生体内留置用ステント。
What achieves the above object is as follows.
An in-vivo stent that is formed into a substantially tubular body, has a diameter for insertion into a lumen in a living body, and expands when a force spreading radially from the inside is applied,
The stent includes a biodegradable polymer stent base formed into a substantially cylindrical shape by a band-shaped component having a predetermined width, and a wall of the band-shaped component of the biodegradable polymer stent base and an outer surface side of the stent. The in-vivo indwelling stent which has the linear reinforcement body embed | buried in the position used as this.
 また、上記目的を達成するものは、以下のものである。
 チューブ状のシャフト本体部と、該シャフト本体部の先端部に設けられた折り畳みおよび拡張可能なバルーンと、折り畳まれた状態の前記バルーンを被包するように装着された上記のステントとを備えるステントデリバリーシステム。
Moreover, what achieves the said objective is as follows.
A stent comprising a tube-shaped shaft main body, a foldable and expandable balloon provided at the tip of the shaft main body, and the above-described stent mounted so as to enclose the balloon in a folded state Delivery system.
図1は、本発明の一実施例の生体内留置用ステントの正面図である。FIG. 1 is a front view of an in-vivo stent according to an embodiment of the present invention. 図2は、図1の生体内留置用ステントの展開図である。FIG. 2 is a development view of the in-vivo stent of FIG. 図3は、図2の部分拡大図である。FIG. 3 is a partially enlarged view of FIG. 図4は、図3のA-A線拡大断面図である。FIG. 4 is an enlarged sectional view taken along line AA in FIG. 図5は、本発明の他の実施例の生体内留置用ステントの部分拡大図である。FIG. 5 is a partially enlarged view of an in-vivo stent according to another embodiment of the present invention. 図6は、図5のB-B線拡大断面図である。6 is an enlarged sectional view taken along line BB in FIG. 図7は、本発明の他の実施例の生体内留置用ステントの部分拡大図である。FIG. 7 is a partially enlarged view of an in-vivo stent according to another embodiment of the present invention. 図8は、図7のC-C線拡大断面図である。FIG. 8 is an enlarged sectional view taken along the line CC of FIG. 図9は、図1に示したステントの拡張状態の展開図である。FIG. 9 is a development view of the expanded state of the stent shown in FIG. 図10は、本発明の他の実施例の生体内留置用ステントの展開図である。FIG. 10 is a developed view of the in-vivo stent according to another embodiment of the present invention. 図11は、図10の部分拡大図である。FIG. 11 is a partially enlarged view of FIG. 図12は、図10に示したステントの拡張時の部分拡大図である。12 is a partially enlarged view of the stent shown in FIG. 10 at the time of expansion. 図13は、本発明の他の実施例の生体内留置用ステントの正面図である。FIG. 13 is a front view of an in-vivo stent according to another embodiment of the present invention. 図14は、図13に示したステントの展開図である。FIG. 14 is a development view of the stent shown in FIG. 図15は、図14の部分拡大図である。FIG. 15 is a partially enlarged view of FIG. 図16は、本発明の実施例のステントデリバリーシステムの部分省略正面図である。FIG. 16 is a partially omitted front view of the stent delivery system according to the embodiment of the present invention. 図17は、図16に示したステントデリバリーシステムの先端部の拡大部分断面図である。FIG. 17 is an enlarged partial cross-sectional view of the distal end portion of the stent delivery system shown in FIG. 図18は、本発明の実施例のステントデリバリーシステムの作用を説明するための説明図である。FIG. 18 is an explanatory diagram for explaining the operation of the stent delivery system according to the embodiment of the present invention.
 本発明の生体内留置用ステントについて以下の好適実施例を用いて説明する。
 本発明の生体内留置用ステントは、略管状体に形成され、生体内管腔への挿入のための直径を有し、内部より半径方向に広がる力が付加されたときに拡張する。そして、ステント1は、所定幅を有する帯状構成要素により略筒状に形成された生分解性ポリマー製ステント基体2と、生分解性ポリマー製ステント基体2の帯状構成要素の壁内かつステントの外面側となる位置に埋設された線状補強体3を有している。
The in-vivo indwelling stent of the present invention will be described using the following preferred embodiments.
The in-vivo indwelling stent of the present invention is formed in a substantially tubular body, has a diameter for insertion into the in-vivo lumen, and expands when a force spreading radially from the inside is applied. The stent 1 includes a biodegradable polymer stent base 2 formed in a substantially cylindrical shape by a band-shaped component having a predetermined width, and a wall of the band-shaped component of the biodegradable polymer stent base 2 and an outer surface of the stent. It has the linear reinforcement body 3 embed | buried in the position used as the side.
 このステント1は、略管状体に形成され、生体内管腔への挿入のための直径を有し、ステントの内部より半径方向に広がる力が付加された時に拡張可能なステントであり、いわゆるバルーン拡張型ステントである。 This stent 1 is a substantially tubular body, has a diameter for insertion into a body lumen, and is expandable when a force that expands radially from the inside of the stent is applied. An expandable stent.
 そして、この実施例のステント1では、ステント基体2は、略管状体に形成され、生体内管腔への挿入のための直径を有し、ステントの内部より半径方向に広がる力が付加された時に拡張可能である。さらに、この実施例では、線状補強体3は、線状構成要素により形成された筒状体であり、ステント基体とほぼ同じ形態を有している。このため、線状補強体は、ステント基体の全体にラジアルフォース力を付与している。そして、この実施例では、線状補強体3も略管状体に形成され、生体内管腔への挿入のための直径を有し、ステントの内部より半径方向に広がる力が付加された時に拡張可能である。 In the stent 1 of this embodiment, the stent base 2 is formed into a substantially tubular body, has a diameter for insertion into a living body lumen, and is applied with a force that expands in the radial direction from the inside of the stent. It is sometimes extensible. Furthermore, in this embodiment, the linear reinforcing body 3 is a cylindrical body formed of linear components and has substantially the same form as the stent base. For this reason, the linear reinforcement provides a radial force to the entire stent base. In this embodiment, the linear reinforcing body 3 is also formed in a substantially tubular body, has a diameter for insertion into a living body lumen, and expands when a force spreading radially from the inside of the stent is applied. Is possible.
 そして、この実施例のステント1では、図1ないし図3に示すように、環状体4が、複数軸方向に配列するとともに、隣り合う環状体4が連結部5により連結されたものとなっている。さらに、各環状体4は、ステントの軸方向の一端側に頂点を有する複数の一端側屈曲部21およびステントの軸方向の他端側に頂点を有する複数の他端側屈曲部22を有する複数の環状体4と、隣り合う環状体4を接続する連結部5とを備えている。 In the stent 1 of this embodiment, as shown in FIGS. 1 to 3, the annular bodies 4 are arranged in a plurality of axial directions, and the adjacent annular bodies 4 are connected by the connecting portion 5. Yes. Further, each annular body 4 has a plurality of one end side bent portions 21 having apexes on one end side in the axial direction of the stent and a plurality of other end side bent portions 22 having apexes on the other end side in the axial direction of the stent. The annular body 4 and a connecting portion 5 that connects the adjacent annular bodies 4 are provided.
 ステント基体2は、図1ないし図3に示すように、帯状構成要素により環状に形成されたステント基体環状部6が、複数軸方向に配列するとともに、隣り合う環状部6がステント基体連結部8により連結されたものとなっている。さらに、各ステント基体環状部6は、所定幅を有する帯状構成要素により形成され、ステントの軸方向の一端側に頂点を有する複数の一端側屈曲部21およびステントの軸方向の他端側に頂点を有する複数の他端側屈曲部22を有している。 As shown in FIG. 1 to FIG. 3, the stent base 2 is formed by annularly forming stent base annular portions 6 formed in an annular shape by strip-shaped components in a plurality of axial directions, and adjacent annular portions 6 are stent base connecting portions 8. It is connected by. Furthermore, each of the stent base annular portions 6 is formed by a band-shaped component having a predetermined width, and has a plurality of one end side bent portions 21 having apexes on one end side in the axial direction of the stent and apexes on the other end side in the axial direction of the stent. A plurality of other-end-side bent portions 22 having
 さらに、このステント基体2では、図1ないし図3に示すようにステント基体環状部6および環状体4は、ステントの一端側に位置する複数の一端側屈曲部21と他端側に位置する複数の他端側屈曲部22と一端側屈曲部21と他端側屈曲部22間を繋ぐ帯状部とを備える無端の波状環状体となっている。そして、帯状部は、直線状となっている。そして、軸方向に隣り合う環状体4は、ステントの一端側に位置する環状体4の他端側屈曲部22と他端側に位置する環状体4の一端側屈曲部21が近接するように配置されるとともに、連結部5により接続されている。 Further, in this stent base 2, as shown in FIGS. 1 to 3, the stent base annular portion 6 and the annular body 4 are composed of a plurality of one end side bent portions 21 located on one end side of the stent and a plurality of ends located on the other end side. The other end side bent portion 22, the one end side bent portion 21, and the belt-like portion connecting the other end side bent portion 22 are endless wavy annular bodies. And the strip | belt-shaped part is linear. And the annular body 4 adjacent to the axial direction is such that the other end side bent portion 22 of the annular body 4 located on one end side of the stent and the one end side bent portion 21 of the annular body 4 located on the other end side are close to each other. It arrange | positions and it is connected by the connection part 5. FIG.
 そして、ステント1は、図1の状態にて生体内に挿入され、ステントの内部より半径方向に広がる力が付加された時に拡張する。展開図では、図2の状態から図9の状態に変形する。そして、上記の変形時に、一端側屈曲部21および他端側屈曲部22は、開く方向に変形するが、一端側屈曲部21と他端側屈曲部22間を繋ぐ帯状部および連結部5は、実質的に変形しない。
 このステント基体2における波状環状体は、図1およびその展開図である図2に示すように、ほぼ同じピッチの複数の一端側屈曲部21と他端側屈曲部22と帯状部とを有し、環状に連続した無端の波状体となっている。なお、波状環状体の山(もしくは谷)の数は、4~10が好適である。そして、この実施例のステント1では、隣り合う環状体間には、複数(具体的には、2つまたは3つ)の連結部5が設けられている。特に、この実施例のステント基体2では、連結部5は、隣り合う環状体間に2つ設けられている。連結部5は、隣り合う環状体間に複数備えることが好ましいが、1つのみ備えるものであってもよい。
The stent 1 is inserted into the living body in the state shown in FIG. 1 and expands when a force spreading in the radial direction from the inside of the stent is applied. In the developed view, the state of FIG. 2 is changed to the state of FIG. At the time of the above deformation, the one end side bent portion 21 and the other end side bent portion 22 are deformed in the opening direction, but the band-like portion and the connecting portion 5 connecting the one end side bent portion 21 and the other end side bent portion 22 are Does not substantially deform.
As shown in FIG. 1 and FIG. 2 which is a developed view thereof, the wave-like annular body in the stent base 2 has a plurality of one end side bent portions 21, the other end side bent portions 22 and a belt-like portion having substantially the same pitch. It is an endless wavy body that is continuous in an annular shape. The number of peaks (or valleys) of the wave-like annular body is preferably 4 to 10. In the stent 1 of this embodiment, a plurality (specifically, two or three) of connecting portions 5 are provided between adjacent annular bodies. In particular, in the stent base 2 of this embodiment, two connecting portions 5 are provided between adjacent annular bodies. Although it is preferable to provide a plurality of connecting portions 5 between adjacent annular bodies, only one connecting portion 5 may be provided.
 なお、ステント基体の形態は、上述したステント基体2のような、複数の波状環状体により構成されたもの、また、複数の波状環状体の近接する頂点間を接合するものに限定されるものではない。
 ステント基体2を形成する波線状環状体4の数としては、図1および図2に示すものでは、10となっている。波線状環状体4の数としては、ステントの長さによって相違し、4~50が好ましく、特に、10~35が好ましい。
 ステント基体2は、生分解性ポリマーにより形成されている。
 生分解性ポリマーとは、本発明のステント1を病変部に留置した際、徐々に分解されるポリマーであって、人間または動物の生体に悪影響を及ぼさないポリマーを意味する。
 使用される生分解性ポリマーは、特に限定されないが、ポリグリコール酸、ポリ乳酸、ポリカプロラクトン、ポリヒドロキシ酪酸、セルロース、ポリヒドロキシブチレイト吉草酸、およびポリオルソエステルからなる群から選択される少なくとも1つ、もしくは、これらの共重合体、混合物、または複合物であることが好ましい。これらの生分解性ポリマーは、生体組織との反応性が低く、生体内での分解を制御することが可能である。またこれらの成分解性ポリマーは一定以上の引っ張り強度を有することが望ましい。例えばポリ乳酸の場合は55Mpa以上であることが望ましい。
In addition, the form of a stent base | substrate is not limited to what was comprised by several wavy annular bodies like the stent base | substrate 2 mentioned above, and what joins between the adjacent vertices of several wavy annular bodies. Absent.
The number of wavy line-like bodies 4 forming the stent substrate 2 is 10 in the case shown in FIGS. 1 and 2. The number of wavy annular bodies 4 varies depending on the length of the stent, preferably 4 to 50, and particularly preferably 10 to 35.
The stent substrate 2 is made of a biodegradable polymer.
The biodegradable polymer means a polymer that is gradually degraded when the stent 1 of the present invention is placed in a lesion, and that does not adversely affect a human or animal living body.
The biodegradable polymer used is not particularly limited, but is at least one selected from the group consisting of polyglycolic acid, polylactic acid, polycaprolactone, polyhydroxybutyric acid, cellulose, polyhydroxybutyrate valeric acid, and polyorthoester. Or a copolymer, a mixture, or a composite thereof. These biodegradable polymers have low reactivity with living tissue and can control degradation in vivo. In addition, it is desirable that these component-dissolving polymers have a certain tensile strength or more. For example, in the case of polylactic acid, it is preferably 55 Mpa or more.
 また、生分解性ポリマーは、可塑剤を含有するものであってもよい。可塑剤を含有すれば、生分解性ポリマーの延性が向上し、ステントの曲げ柔軟性が向上し、また、ステントの変形時に生ずるひび割れや線状補強体との剥離を防ぐことができる。
 可塑剤としては、人間または動物の生体に悪影響を及ぼさないものであれば、特に限定されないが、ポリエチレングリコール、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレンソルビタンモノオレエート、ポリエチレングリセリルトリリシノレート、セスキオレイン酸ソルビタン、クエン酸トリエチル、クエン酸アセチルトリブチル、クエン酸アセチルトリヘキシル、クエン酸ブチリルトリヘキシル、中鎖脂肪酸トリグリセリド、モノグリセライド、およびアセチル化モノグリセライドからなる群から選択される少なくとも1つ、または、これらの混合物であることが好ましい。このような可塑剤は、生分解性ポリマー素材に対して、0.01~80質量%、好ましくは0.1~60質量%、さらに好ましくは1~40質量%含有するように使用する。
The biodegradable polymer may contain a plasticizer. When the plasticizer is contained, the ductility of the biodegradable polymer is improved, the bending flexibility of the stent is improved, and cracks generated when the stent is deformed and peeling from the linear reinforcing body can be prevented.
The plasticizer is not particularly limited as long as it does not adversely affect the human or animal body. Polyethylene glycol, polyoxyethylene polyoxypropylene glycol, polyoxyethylene sorbitan monooleate, polyethylene glyceryl triricinolate, At least one selected from the group consisting of sorbitan sesquioleate, triethyl citrate, acetyl tributyl citrate, acetyl trihexyl citrate, butyryl trihexyl citrate, medium chain fatty acid triglycerides, monoglycerides, and acetylated monoglycerides, or A mixture thereof is preferred. Such a plasticizer is used in an amount of 0.01 to 80% by mass, preferably 0.1 to 60% by mass, and more preferably 1 to 40% by mass with respect to the biodegradable polymer material.
 そして、ステント基体は、生分解性ポリマーの中に生物学的生理活性物質を含有するものであってもよい。なお、ステントは、ステントの外面全体もしくは外面を部分的に被覆する生理活性物質含有樹脂層を備えているものであってもよい。
 生理活性物質としては、内膜肥厚を抑制する薬剤、抗癌剤、免疫抑制剤、抗生物質、抗リウマチ剤、抗血栓薬、HMG-CoA還元酵素阻害剤、ACE阻害剤、カルシウム拮抗剤、抗高脂血症剤、抗炎症剤、インテグリン阻害薬、抗アレルギー剤、抗酸化剤、GPIIbIIIa拮抗薬、レチノイド、フラボノイドおよびカロチノイド、脂質改善薬、DNA合成阻害剤、チロシンキナーゼ阻害剤、抗血小板薬、血管平滑筋増殖抑制薬、抗炎症薬、生体由来材料、インターフェロンおよび遺伝子工学により生成される上皮細胞などが使用される。そして、上記の薬剤等の2種以上の混合物を使用してもよい。
The stent substrate may contain a biological physiologically active substance in a biodegradable polymer. The stent may be provided with a physiologically active substance-containing resin layer that partially covers the entire outer surface or a part of the outer surface of the stent.
Physiologically active substances include agents that suppress intimal thickening, anticancer agents, immunosuppressive agents, antibiotics, anti-rheumatic agents, antithrombotic agents, HMG-CoA reductase inhibitors, ACE inhibitors, calcium antagonists, anti-high fats Antihypertensive agent, anti-inflammatory agent, integrin inhibitor, antiallergic agent, antioxidant, GPIIbIIIa antagonist, retinoid, flavonoid and carotenoid, lipid improver, DNA synthesis inhibitor, tyrosine kinase inhibitor, antiplatelet agent, vascular smoothing Muscle growth inhibitors, anti-inflammatory drugs, biological materials, interferons and epithelial cells generated by genetic engineering are used. And you may use 2 or more types of mixtures, such as said chemical | medical agent.
 抗癌剤としては、例えば、ビンクリスチン、ビンブラスチン、ビンデシン、イリノテカン、ピラルビシン、パクリタキセル、ドセタキセル、メトトレキサート等が好ましい。免疫抑制剤としては、例えば、シロリムス、タクロリムス、アザチオプリン、シクロスポリン、シクロホスファミド、ミコフェノール酸モフェチル、グスペリムス、ミゾリビン等が好ましい。抗生物質としては、例えば、マイトマイシン、アドリアマイシン、ドキソルビシン、アクチノマイシン、ダウノルビシン、イダルビシン、ピラルビシン、アクラルビシン、エピルビシン、ペプロマイシン、ジノスタチンスチマラマー等が好ましい。抗リウマチ剤としては、例えば、メトトレキサート、チオリンゴ酸ナトリウム、ペニシラミン、ロベンザリット等が好ましい。抗血栓薬としては、例えば、ヘパリン、アスピリン、抗トロンビン製剤、チクロピジン、ヒルジン等が好ましい。HMG-CoA還元酵素阻害剤としては、例えば、セリバスタチン、セリバスタチンナトリウム、アトルバスタチン、ニスバスタチン、イタバスタチン、フルバスタチン、フルバスタチンナトリウム、シンバスタチン、ロバスタチン、プラバスタチン等が好ましい。ACE阻害剤としては、例えば、キナプリル、ペリンドプリルエルブミン、トランドラプリル、シラザプリル、テモカプリル、デラプリル、マレイン酸エナラプリル、リシノプリル、カプトプリル等が好ましい。カルシウム拮抗剤としては、例えば、ニフェジピン、ニルバジピン、ジルチアゼム、ベニジピン、ニソルジピン等が好ましい。抗高脂血症剤としては、例えば、プロブコールが好ましい。抗アレルギー剤としては、例えば、トラニラストが好ましい。レチノイドとしては、例えば、オールトランスレチノイン酸フラボノイドおよびカロチノイドとしては、例えば、カテキン類、特にエピガロカテキンガレート、アントシアニン、プロアントシアニジン、リコピン、β-カロチン等が好ましい。チロシンキナーゼ阻害剤としては、例えば、ゲニステイン、チルフォスチン、アーブスタチン等が好ましい。抗炎症剤としては、例えば、デキサメタゾン、プレドニゾロン等のステロイドが好ましい。生体由来材料としては、例えば、EGF(epidermal growth factor)、VEGF(vascular endothelial growth factor)、HGF(hepatocyte growth factor)、PDGF(platelet derived growth factor)、bFGF(basic fibroblast growth factor)等が好ましい。 As the anticancer agent, for example, vincristine, vinblastine, vindesine, irinotecan, pirarubicin, paclitaxel, docetaxel, methotrexate and the like are preferable. As the immunosuppressant, for example, sirolimus, tacrolimus, azathioprine, cyclosporine, cyclophosphamide, mycophenolate mofetil, gusperimus, mizoribine and the like are preferable. As the antibiotic, for example, mitomycin, adriamycin, doxorubicin, actinomycin, daunorubicin, idarubicin, pirarubicin, aclarubicin, epirubicin, pepromycin, dinostatin styramer and the like are preferable. As the anti-rheumatic agent, for example, methotrexate, sodium thiomalate, penicillamine, lobenzalit and the like are preferable. As the antithrombotic drug, for example, heparin, aspirin, antithrombin preparation, ticlopidine, hirudin and the like are preferable. As the HMG-CoA reductase inhibitor, for example, cerivastatin, cerivastatin sodium, atorvastatin, nisvastatin, itavastatin, fluvastatin, fluvastatin sodium, simvastatin, lovastatin, pravastatin and the like are preferable. As the ACE inhibitor, for example, quinapril, perindopril erbumine, trandolapril, cilazapril, temocapril, delapril, enalapril maleate, lisinopril, captopril and the like are preferable. As the calcium antagonist, for example, nifedipine, nilvadipine, diltiazem, benidipine, nisoldipine and the like are preferable. As the antihyperlipidemic agent, for example, probucol is preferable. As the antiallergic agent, for example, tranilast is preferable. As retinoids, for example, all-trans retinoic acid flavonoids and carotenoids are preferably catechins, particularly epigallocatechin gallate, anthocyanins, proanthocyanidins, lycopene, β-carotene and the like. As the tyrosine kinase inhibitor, for example, genistein, tyrphostin, arbustatin and the like are preferable. As the anti-inflammatory agent, for example, steroids such as dexamethasone and prednisolone are preferable. As the biological material, for example, EGF (epidermal growth factor), VEGF (vascular endothelial growth factor), HGF (hepatocyte growth factor), PDGF (platelet derived growth factor), bFGF (basic fibroblast growth factor) and the like are preferable.
 また、ステント基体の帯状構成要素(ステント基体環状部の帯状部分の幅)は、0.07~0.15mm程度が好適であり、特に、0.08~0.13mmが好適である。また、肉厚は、50~150μmが好適であり、特に、60~80μmが好適である。
 線状補強体3は、図1ないし図3に示すように、所定の線幅を有する線状体により形成されている。特に、この実施例のものでは、環状体4のすべての領域に線状補強体3の環状体補強部7は、存在し、環状体4(ステント基体環状部6)とほぼ同じ形態を有するものとなっている。また、この実施例のステント1では、図4に示すように、帯状構成要素の壁内かつステントの外面側となる位置に線状補強体は、埋設され、その外面は、露出しないものとなっている。
The band-shaped component of the stent substrate (the width of the band-shaped portion of the stent substrate annular portion) is preferably about 0.07 to 0.15 mm, particularly preferably 0.08 to 0.13 mm. The wall thickness is preferably 50 to 150 μm, and particularly preferably 60 to 80 μm.
As shown in FIGS. 1 to 3, the linear reinforcing member 3 is formed of a linear member having a predetermined line width. In particular, in this embodiment, the annular reinforcing portion 7 of the linear reinforcing member 3 is present in all regions of the annular member 4, and has substantially the same form as the annular member 4 (stent base annular portion 6). It has become. Further, in the stent 1 of this embodiment, as shown in FIG. 4, the linear reinforcing body is embedded in the wall of the band-shaped component and the position on the outer surface side of the stent, and the outer surface is not exposed. ing.
 そして、この実施例のステント1では、隣り合う環状体4を連結する帯状構成要素からなる連結部5は、線状連結部補強体9を備えている。つまり、連結部5はステント基体連結部8とそれに埋設された連結部補強体9とを備えるものとなっている。また、連結部補強体9も、ステント基体連結部8を構成する帯状構成要素の壁内かつステントの外面側となる位置に埋設されていることが好ましい。さらに、線状連結部補強体9は、隣り合う環状体4内の線状補強体と連結されていることが好ましい。なお、本発明のステントとしては、上述したような、連結部補強体を有するものに限定されるものではなく、連結部は、ステント基体のみ(言い換えれば、線状補強体が存在しない)により構成してもよい。この場合、ステント基体の生分解の進行により、各環状体は、非連結状態となる。
 また、ステント形態としては、上述したものに限定されるものではなく、図5および図6に示すステント1aのように、線状補強体3(環状体補強部7)は、ステント基体2aの外面(ステント基体環状部6aの外面)より露出するものであってもよい。この場合、線状補強体3は、血管内壁に接触するものとなる。また、この実施例においても、連結部5は、ステント基体連結部8aと連結部補強体9とにより形成されており、連結部補強体9は、ステントの外面に露出するものとなっている。
And in the stent 1 of this Example, the connection part 5 which consists of a strip | belt-shaped component which connects the adjacent annular body 4 is equipped with the linear connection part reinforcement body 9. As shown in FIG. That is, the connecting portion 5 includes the stent base connecting portion 8 and the connecting portion reinforcing body 9 embedded therein. Moreover, it is preferable that the connection part reinforcement body 9 is also embed | buried in the position which becomes the outer surface side of a stent in the wall of the strip | belt-shaped component which comprises the stent base | substrate connection part 8. FIG. Furthermore, it is preferable that the linear connection part reinforcement body 9 is connected with the linear reinforcement body in the adjacent annular body 4. The stent of the present invention is not limited to the above-described one having a connecting portion reinforcing body, and the connecting portion is constituted only by a stent base (in other words, there is no linear reinforcing body). May be. In this case, as the biodegradation of the stent substrate progresses, each annular body becomes in an unconnected state.
Further, the stent form is not limited to the above-described one, and the linear reinforcing member 3 (annular reinforcing member 7) is formed on the outer surface of the stent base 2a as in the stent 1a shown in FIGS. It may be exposed from the outer surface of the stent base annular portion 6a. In this case, the linear reinforcement 3 comes into contact with the inner wall of the blood vessel. Also in this embodiment, the connecting portion 5 is formed by the stent base connecting portion 8a and the connecting portion reinforcing body 9, and the connecting portion reinforcing body 9 is exposed on the outer surface of the stent.
 また、線状補強体としては、図7および図8に示すステント1bのように、線状補強体3a(環状体補強部7a)は、帯状構成要素(ステント基体2b、ステント基体環状部6b)の壁内に複数本埋設されたものであってもよい。この場合、その半数以上、好ましくは、すべてが、帯状構成要素の壁内かつステントの外面側となる位置に配置される。また、このタイプのものでも、図6に示したステント1aのように、線状補強体3aは、ステントの外面に露出するものであってもよい。
 また、線状補強体の本数としては、1~10本が好ましく、特に、1~5本が好適である。線状補強体の幅もしくは線径は、0.1~30μmが好適であり、特に、3~10μmが好適である。なお、線状補強体3aの線径(言い換えれば、太さ、断面積の大きさ)は、すべて同じでなくてもよい。例えば、図8に示すように、帯状構成要素6bの中央部に位置するものが、側部に位置するものより、線径(言い換えれば、太さ、断面積の大きさ)が大きいものであってもよい。
Further, as the linear reinforcing body, as in the stent 1b shown in FIGS. 7 and 8, the linear reinforcing body 3a (annular body reinforcing portion 7a) is a band-shaped component (stent base 2b, stent base annular portion 6b). A plurality of them may be embedded in the wall. In this case, more than half, preferably all, of them are disposed in the wall of the band-shaped component and at the position on the outer surface side of the stent. Even in this type, like the stent 1a shown in FIG. 6, the linear reinforcing member 3a may be exposed on the outer surface of the stent.
Further, the number of linear reinforcing members is preferably 1 to 10, and more preferably 1 to 5. The width or the wire diameter of the linear reinforcing body is preferably from 0.1 to 30 μm, particularly preferably from 3 to 10 μm. Note that the wire diameters (in other words, the thickness and the size of the cross-sectional area) of the linear reinforcing bodies 3a may not all be the same. For example, as shown in FIG. 8, the one located at the center of the band-shaped component 6b has a larger wire diameter (in other words, the thickness and the cross-sectional area) than those located at the side. May be.
 線状補強体3,3aの形成材料は、ステント基体2の形成材料より高い剛性と、塑性変形性を有する。これにより、ステント基体とともに拡張可能であり、かつ、拡張後に、ステント全体にラジアルフォース力を付与し、ステント全体を補強する。特に、線状補強体3,3aは、ステント基体2,2a,2bより高い剛性を有することが好ましい。
 線状補強体3,3aの形成材料としては、ある程度の強度および生体適合性を有するものが好ましく、例えば、ステンレス鋼、タンタルもしくはタンタル合金、プラチナもしくはプラチナ合金、金もしくは金合金、コバルトクロム合金等のコバルトベース合金、さらには、生分解性金属等の金属細線、また、芳香族ポリアミド、脂肪族ポリアミド、ポリアリレート、ポリエステル、ポリイミド等の合成樹脂製ファイバー、カーボンファイバー等を挙げることができる。例えばコバルトクロム合金の引っ張り強度は、600Mpaであることが望ましい。また、線状補強体は、上記の線材の単線、撚線、繊維束が用いられる。また、線状補強体としては、生分解性のものも用いてもよいが、ステント基体の形成材料である生分解性ポリマーより、生体内での分解が遅い生分解性材料を用いることが必要である。
 生分解性金属としては、純マグネシウムまたはマグネシウム合金、カルシウム、亜鉛、リチウムなどが使用される。これら生分解性金属は、上述した生分解性ポリマーより、生体内での分解が遅い。特に好ましくは、純マグネシウムまたはマグネシウム合金である。マグネシウム合金としては、マグネシウムを主成分とし、Zr、Y、Ti、Ta、Nd、Nb、Zn、Ca、Al、Li、およびMnからなる生体適合性元素群から選択される少なくとも1つの元素を含有するものが好ましい。
The forming material of the linear reinforcing bodies 3 and 3a has higher rigidity and plastic deformability than the forming material of the stent base 2. Thereby, it can be expanded together with the stent substrate, and after expansion, a radial force is applied to the entire stent to reinforce the entire stent. In particular, it is preferable that the linear reinforcing bodies 3 and 3a have higher rigidity than the stent bases 2, 2a and 2b.
As a material for forming the linear reinforcing bodies 3 and 3a, materials having a certain degree of strength and biocompatibility are preferable. For example, stainless steel, tantalum or tantalum alloy, platinum or platinum alloy, gold or gold alloy, cobalt chromium alloy, etc. Cobalt base alloys, metal fine wires such as biodegradable metals, synthetic resin fibers such as aromatic polyamides, aliphatic polyamides, polyarylate, polyesters, polyimides, carbon fibers, and the like. For example, the tensile strength of a cobalt chrome alloy is desirably 600 MPa. Moreover, the linear reinforcement body uses a single wire, a stranded wire, or a fiber bundle of the above-described wire. In addition, as the linear reinforcement, a biodegradable material may be used, but it is necessary to use a biodegradable material that is slower in vivo than the biodegradable polymer that is the material for forming the stent substrate. It is.
As the biodegradable metal, pure magnesium or a magnesium alloy, calcium, zinc, lithium or the like is used. These biodegradable metals are slower to degrade in vivo than the biodegradable polymers described above. Particularly preferred is pure magnesium or a magnesium alloy. The magnesium alloy contains magnesium as a main component and contains at least one element selected from a biocompatible element group consisting of Zr, Y, Ti, Ta, Nd, Nb, Zn, Ca, Al, Li, and Mn. Those that do are preferred.
 マグネシウム合金としては、例えば、マグネシウムが50~98%、リチウム(Li)が0~40%、鉄が0~5%、その他の金属または希土類元素(セリウム、ランタン、ネオジム、プラセオジム等)が0~5%であるものを挙げることができる。また、例えば、マグネシウムが79~97%、アルミニウムが2~5%、リチウム(Li)が0~12%、希土類元素(セリウム、ランタン、ネオジム、プラセオジム等)が1~4%であるものを挙げることができる。また、例えば、マグネシウムが85~91%、アルミニウムが2%、リチウム(Li)が6~12%、希土類元素(セリウム、ランタン、ネオジム、プラセオジム等)が1%であるものを挙げることができる。また、例えば、マグネシウムが86~97%、アルミニウムが2~4%、リチウム(Li)が0~8%、希土類元素(セリウム、ランタン、ネオジム、プラセオジム等)が1~2%であるものを挙げることができる。また、例えば、アルミニウムが8.5~9.5%、マンガン(Mn)が0.15~0.4%、亜鉛が0.45~0.9%、残りがマグネシウムであるものを挙げることができる。また、例えば、アルミニウムが4.5~5.3%、マンガン(Mn)が0.28~0.5%、残りがマグネシウムであるものを挙げることができる。また、例えば、マグネシウムが55~65%、リチウム(Li)が30~40%、その他の金属および/または希土類元素(セリウム、ランタン、ネオジム、プラセオジム等)が0~5%であるものを挙げることができる。 As the magnesium alloy, for example, magnesium is 50 to 98%, lithium (Li) is 0 to 40%, iron is 0 to 5%, and other metals or rare earth elements (cerium, lanthanum, neodymium, praseodymium, etc.) are 0 to Mention may be made of 5%. For example, magnesium is 79 to 97%, aluminum is 2 to 5%, lithium (Li) is 0 to 12%, and rare earth elements (cerium, lanthanum, neodymium, praseodymium, etc.) are 1 to 4%. be able to. Further, for example, magnesium is 85 to 91%, aluminum is 2%, lithium (Li) is 6 to 12%, and rare earth elements (cerium, lanthanum, neodymium, praseodymium, etc.) are 1%. For example, magnesium is 86 to 97%, aluminum is 2 to 4%, lithium (Li) is 0 to 8%, and rare earth elements (cerium, lanthanum, neodymium, praseodymium, etc.) are 1 to 2%. be able to. Also, for example, aluminum is 8.5 to 9.5%, manganese (Mn) is 0.15 to 0.4%, zinc is 0.45 to 0.9%, and the remainder is magnesium. it can. Further, for example, aluminum is 4.5 to 5.3%, manganese (Mn) is 0.28 to 0.5%, and the remainder is magnesium. In addition, for example, magnesium is 55 to 65%, lithium (Li) is 30 to 40%, and other metals and / or rare earth elements (cerium, lanthanum, neodymium, praseodymium, etc.) are 0 to 5%. Can do.
 また、ステントとしては、図10ないし図12に示すような形態のステント10であってもよい。
 この実施例のステント10においても、ステントは、複数の環状体(波線状環状体)4と、隣り合う環状体を連結する連結部5を備えている。また、ステント10は、生分解性ポリマーからなるステント基体12と、線状補強体13とからなる。そして、ステント基体は、ステント基体環状部とステント基体連結部8bを備えている。
 各波線状環状体4(各ステント基体環状部)は、ステント10の軸方向の一端側に頂点を有する複数の一端側屈曲部21,21aおよびステント10の軸方向の他端側に頂点を有する複数の他端側屈曲部22,22aを有するとともに、環状に連続した無端の波線状体により構成されている。環状体4における一端側屈曲部と他端側屈曲部は、交互に形成されており、かつそれぞれの数は同じとなっている。
 1つの波線状環状体4における一端側屈曲部21および一端側屈曲部21aの総数は、図10に示すものでは、8となっている。同様に、1つの波線状環状体4における他端側屈曲部22および他端側屈曲部22aの総数も、8となっている。この波線状環状体4における一端側屈曲部および他端側屈曲部の数としては、4~12が好ましく、特に、6~10が好ましい。また、波線状環状体4の軸方向の長さとしては、0.5~2.0mmが好ましく、特に、0.9~1.5mmが好ましい。
 そして、図12に示すように、一端側屈曲部21および他端側屈曲部22は、ステントの拡張時に大きく変形するが、一端側屈曲部21aおよび他端側屈曲部22aは、ステントの拡張時に実質的に変形しないもしくは変形量の少ないものとなっている。
Further, the stent 10 may be configured as shown in FIGS. 10 to 12.
Also in the stent 10 of this embodiment, the stent includes a plurality of annular bodies (waved annular bodies) 4 and a connecting portion 5 that connects adjacent annular bodies. The stent 10 includes a stent substrate 12 made of a biodegradable polymer and a linear reinforcing body 13. The stent base includes a stent base annular portion and a stent base connecting portion 8b.
Each wavy-line annular body 4 (each stent base annular portion) has a plurality of one end side bent portions 21 and 21a having apexes on one end side in the axial direction of the stent 10 and apexes on the other end side in the axial direction of the stent 10. It has a plurality of other end side bent portions 22 and 22a and is constituted by an endless wavy body that is annularly continuous. The one end side bent portions and the other end side bent portions in the annular body 4 are alternately formed, and the numbers thereof are the same.
The total number of the one-end-side bent portion 21 and the one-end-side bent portion 21a in one wavy-line annular body 4 is 8 in the case shown in FIG. Similarly, the total number of the other-end-side bent portion 22 and the other-end-side bent portion 22a in one wavy annular body 4 is also eight. The number of the one end side bent portions and the other end side bent portions in the wavy annular body 4 is preferably 4 to 12, and more preferably 6 to 10. The axial length of the wavy annular body 4 is preferably 0.5 to 2.0 mm, and particularly preferably 0.9 to 1.5 mm.
As shown in FIG. 12, the one end side bent portion 21 and the other end side bent portion 22 are greatly deformed when the stent is expanded, but the one end side bent portion 21a and the other end side bent portion 22a are changed when the stent is expanded. It is not substantially deformed or has a small amount of deformation.
 そして、波線状環状体4は、図11および図12に示すように、ステントの軸方向に平行な平行直線状部41の一端と屈曲部21aを介して接続し、かつ、少なくともステント10の拡張時にステント10の中心軸に対して所定角度斜めとなる第1の傾斜直線状部42と、第1の傾斜直線状部42の一端と屈曲部22を介して接続し、かつ、ステントの中心軸に対して所定角度斜めに伸びる傾斜線状部(この実施例では、傾斜曲線状部)43と、傾斜曲線状部43の一端と屈曲部21を介して接続し、かつ、少なくともステントの拡張時にステント10の中心軸に対して所定角度斜めとなる第2の傾斜直線状部44の4つの線状部からなる変形M字線状部が複数連続したものとなっている。そして、隣り合う変形M字線状部は、第2の傾斜直線状部44の一端と平行直線状部41の他端を接続する屈曲部22aにより接続されることにより、無端の波線状環状体4を構成している。
 また、図11に示すように、波線状環状体4において、傾斜曲線状部43の一端側に位置する屈曲部21は、他の一端側屈曲部21aより一端側に突出した状態となっている。同様に、波線状環状体4において、傾斜曲線状部43の他端側に位置する屈曲部22は、他の他端側屈曲部22aより他端側に突出した状態となっている。この実施例のステント10では、一つの波線状環状体4は、4つの変形M字線状部により構成されている。なお、一つの波線状環状体4は、3から5の変形M字線状部により構成されていることが好ましい。
As shown in FIGS. 11 and 12, the wavy annular body 4 is connected to one end of a parallel linear portion 41 parallel to the axial direction of the stent via a bent portion 21a, and at least expands the stent 10. A first inclined linear portion 42 that is sometimes inclined at a predetermined angle with respect to the central axis of the stent 10, and one end of the first inclined linear portion 42 is connected to the central axis of the stent 10 via the bent portion 22. An inclined linear portion (in this embodiment, an inclined curved portion) 43 extending obliquely at a predetermined angle with respect to the one end of the inclined curved portion 43 and the bent portion 21, and at least when the stent is expanded A plurality of deformed M-shaped linear portions composed of four linear portions of the second inclined linear portion 44 that is inclined at a predetermined angle with respect to the central axis of the stent 10 are continuous. The adjacent deformed M-shaped linear portions are connected by a bent portion 22a that connects one end of the second inclined linear portion 44 and the other end of the parallel linear portion 41, so that an endless wavy annular body is formed. 4 is configured.
Further, as shown in FIG. 11, in the wavy annular body 4, the bent portion 21 located on one end side of the inclined curved portion 43 is in a state of projecting to one end side from the other one end side bent portion 21a. . Similarly, in the wavy annular body 4, the bent portion 22 located on the other end side of the inclined curved portion 43 is in a state of protruding to the other end side from the other end-side bent portion 22 a. In the stent 10 of this embodiment, one wavy annular body 4 is constituted by four deformed M-shaped linear portions. In addition, it is preferable that the one wavy-line annular body 4 is comprised by the 3 to 5 deformation | transformation M-shaped linear part.
 そして、隣り合う波線状環状体4は、連結部5により接続されている。特に、この実施例のステント10では、隣り合う波線状環状体4の平行直線状部41の端部同士は、近接しかつ短い連結部5により接続されている。また、この実施例のステント10では、連結部5で接続された2つの平行直線状部41は、ほぼ直線状となっている。
 そして、この実施例のステント10では、隣り合う環状体4を連結する帯状構成要素からなる連結部5は、線状連結部補強体9bを備えている。つまり、連結部5は、ステント基体連結部8bとそれに埋設された連結部補強体9bとを備えるものとなっている。また、連結部補強体9bも、ステント基体連結部8bを構成する帯状構成要素の壁内かつステントの外面側となる位置に埋設されている。さらに、線状連結部補強体9bは、隣り合う環状体4内の線状補強体13と連結されている。なお、上述したような、連結部補強体を有するものに限定されるものではなく、連結部は、ステント基体のみ(言い換えれば、線状補強体が存在しない)により構成してもよい。この場合、ステント基体の生分解の進行により、各環状体は、非連結状態となる。
 線状補強体13の形成材料は、ステント基体12の形成材料より高い剛性と、塑性変形性を有する。これにより、ステント基体とともに拡張可能であり、かつ、拡張後に、ステント全体にラジアルフォース力を付与し、ステント全体を補強する。特に、線状補強体13は、ステント基体12より高い剛性を有することが好ましい。
 線状補強体13としては、上述したステント1,1a,1bにて説明した線状補強体3,3aのいずれのタイプのものを用いてもよく、また、形成材料等についても、上述したものが好適に使用できる。また、ステント基体12の形成材料等についても、ステント基体2において説明したものが好適に使用できる。
Adjacent wavy-line annular bodies 4 are connected by a connecting portion 5. In particular, in the stent 10 of this embodiment, the end portions of the parallel straight portions 41 of the adjacent wavy annular bodies 4 are adjacent to each other and connected by the short connecting portion 5. Further, in the stent 10 of this embodiment, the two parallel linear portions 41 connected by the connecting portion 5 are substantially linear.
And in the stent 10 of this Example, the connection part 5 which consists of a strip | belt-shaped component which connects the adjacent annular body 4 is equipped with the linear connection part reinforcement body 9b. That is, the connection part 5 is provided with the stent base | substrate connection part 8b and the connection part reinforcement body 9b embedded in it. Further, the connecting portion reinforcing body 9b is also embedded in the wall of the band-shaped component constituting the stent base connecting portion 8b and at the position on the outer surface side of the stent. Further, the linear connecting portion reinforcing body 9 b is connected to the linear reinforcing body 13 in the adjacent annular body 4. In addition, it is not limited to what has a connection part reinforcement body as mentioned above, You may comprise a connection part only by a stent base | substrate (in other words, a linear reinforcement body does not exist). In this case, as the biodegradation of the stent substrate progresses, each annular body becomes in an unconnected state.
The forming material of the linear reinforcing body 13 has higher rigidity and plastic deformability than the forming material of the stent base 12. Thereby, it can be expanded together with the stent substrate, and after expansion, a radial force is applied to the entire stent to reinforce the entire stent. In particular, the linear reinforcing body 13 preferably has higher rigidity than the stent base 12.
As the linear reinforcing member 13, any of the linear reinforcing members 3, 3a described in the above-described stents 1, 1a, 1b may be used. Can be suitably used. In addition, the material described for the stent substrate 2 can be suitably used as the material for forming the stent substrate 12.
 上述したすべての実施例のステントにおいて、ステントは、非拡張時の直径が、0.8~1.8mm程度が好適であり、特に、0.9~1.4mmがより好ましい。また、ステントの非拡張時の長さは、9~40mm程度が好適である。また、1つの波状環状体の長さは、0.7~2.0mm程度が好適である。また、1つの波状環状体の一端側および他端側屈曲部数は、4~8が好ましく、特に、5~7が好ましい。また、環状体の数としては、4~20が好適である。また、ステントの成形時(圧縮前)の直径は、1.5~3.5mm程度が好適であり、特に、2.0~3.0mmがより好ましい。さらに、ステントの肉厚としては、0.05~0.15mm程度が好適であり、特に、0.08~0.12mmが好適であり、線状構成要素の幅は、0.07~0.15mm程度が好適であり、特に、0.08~0.13mmが好適である。
 また、ステントとしては、図13ないし図15に示すような形態のステント20であってもよい。
In all of the above-described stents, the stent preferably has a non-expanded diameter of about 0.8 to 1.8 mm, and more preferably 0.9 to 1.4 mm. The length of the stent when not expanded is preferably about 9 to 40 mm. The length of one wave-like annular body is preferably about 0.7 to 2.0 mm. Further, the number of bent portions on one end side and the other end side of one wave-like annular body is preferably 4 to 8, and particularly preferably 5 to 7. The number of annular bodies is preferably 4-20. The diameter of the stent during molding (before compression) is preferably about 1.5 to 3.5 mm, and more preferably 2.0 to 3.0 mm. Further, the thickness of the stent is preferably about 0.05 to 0.15 mm, particularly preferably 0.08 to 0.12 mm, and the width of the linear component is 0.07 to 0.00. About 15 mm is preferable, and 0.08 to 0.13 mm is particularly preferable.
Further, the stent 20 may have a form as shown in FIGS. 13 to 15.
 この実施例のステント20においても、ステントは、生分解性ポリマーからなるステント基体15と、線状補強体16とからなる。また、ステント基体15は、側面に多数の開口17を有するものとなっている。
 この実施例のステント20では、ステント基体15は、図13ないし図15に示すように、ステント20の中心軸に対して斜めに延びる帯状構成要素により形成された斜め格子状のものとなっている。そして、各帯状構成要素は、所定の幅を有している。また、ステント基体15は、格子の内部に該当する部分が、開口17となっている。このため、矩形状の開口17が、ステントの周方向および軸方向に多数並んだ形態となっている。ステント基体の形成材料等については、上述したものと同じものが好適に使用できる。また、ステント基体は、上述した生理活性物質を含有するもの、また、生理活性物質を含有する被覆を有するものであってもよい。
 そして、線状補強体16は、上記ステント基体15の形態に対応するように、ステントの中心軸に対して斜めに延びる複数本の線状体により織られたあるいは編まれたものとなっており、かつ、ステントの軸方向に対して斜めに線状体が交差する多数の線状体交差部を備えている。線状補強体16の形成材料等については、上述したものと同じものが好適に使用できる。
Also in the stent 20 of this embodiment, the stent is composed of a stent substrate 15 made of a biodegradable polymer and a linear reinforcing body 16. The stent substrate 15 has a large number of openings 17 on the side surface.
In the stent 20 of this embodiment, as shown in FIGS. 13 to 15, the stent substrate 15 has an oblique lattice shape formed by strip-like components extending obliquely with respect to the central axis of the stent 20. . Each band-shaped component has a predetermined width. Further, the stent base body 15 has openings 17 corresponding to the inside of the lattice. Therefore, a large number of rectangular openings 17 are arranged in the circumferential direction and the axial direction of the stent. About the formation material of a stent base | substrate, the same thing as what was mentioned above can be used conveniently. In addition, the stent substrate may contain a physiologically active substance as described above, or may have a coating containing a physiologically active substance.
The linear reinforcing body 16 is woven or knitted by a plurality of linear bodies extending obliquely with respect to the central axis of the stent so as to correspond to the form of the stent base 15. And a large number of linear body intersecting portions where the linear bodies intersect obliquely with respect to the axial direction of the stent. About the forming material etc. of the linear reinforcement body 16, the same thing as what was mentioned above can be used conveniently.
 線状補強体16は、図13ないし図15に示すように、螺旋状(ステント20の中心軸に対して斜め)に巻かれた複数本のファイバー16a、16bにより構成されている。特に、この実施例のものでは、線状補強体16は、螺旋状に同一方向に巻かれた(言い換えれば、ほぼ平行となるように巻かれた)複数のファイバー16aと、この複数のファイバー16aと逆方向に巻かれるとともに、上記のファイバーと織られた複数のファイバー16bにより構成されている。そして、線状補強体16は、ファイバーが交差する多数のファイバー交差部18を備えている。そして、ファイバーが螺旋状(ステント20の中心軸に対して斜め)に巻かれているため、ファイバー交差部18は、ステント20の軸方向に対して斜めにファイバーが交差する交差部となっている。そして、ファイバー交差部18は、ファイバー16aがファイバー16bの上側(表面側)となる第1形態のファイバー交差部18aと、ファイバー16bがファイバー16aの上側(表面側)となる第2形態のファイバー交差部18bとが、ステント20の周方向および軸方向に交互となるように形成されている(言い換えれば、織られている)。なお、線状補強体16としては、上記のようにファイバーにより織られたものであることが好ましいが、編まれたもの、単に網状に重なり合うものであってもよい。 As shown in FIGS. 13 to 15, the linear reinforcing body 16 is composed of a plurality of fibers 16 a and 16 b wound spirally (obliquely with respect to the central axis of the stent 20). In particular, in this embodiment, the linear reinforcing body 16 is spirally wound in the same direction (in other words, is wound so as to be substantially parallel), and the plurality of fibers 16a. And a plurality of fibers 16b woven with the above fibers. And the linear reinforcement body 16 is equipped with many fiber crossing parts 18 which a fiber cross | intersects. Since the fiber is wound spirally (obliquely with respect to the central axis of the stent 20), the fiber intersection 18 is an intersection where the fibers intersect obliquely with respect to the axial direction of the stent 20. . And the fiber crossing part 18 is a fiber crossing part 18a of the 1st form from which the fiber 16a becomes the upper side (surface side) of the fiber 16b, and a fiber crossing of the 2nd form from which the fiber 16b becomes the upper side (surface side) of the fiber 16a. The portions 18b are formed so as to alternate in the circumferential direction and the axial direction of the stent 20 (in other words, woven). The linear reinforcing body 16 is preferably woven with fibers as described above, but may be knitted or simply overlapped in a net shape.
 そして、隣り合うファイバー間の間隔としては、例えば、外径4mm程度のステントであれば、0.05~2mmであることが好ましい。また、最も近いファイバー交差部間の距離としては、0.1~4mmであることが好ましい。また、ステントの周方向に隣り合うファイバー交差部間の距離としては、0.1~2mmであることが好ましい。
 そして、ファイバー16a,16bは、単繊維、複数本の繊維束または複数本の繊維の撚線であることが好ましい。繊維束の場合には、2~3本の繊維の束であることが好ましい。また、繊維の撚線の場合には、2~3本の繊維の撚線であることが好ましい。さらに、ファイバー16a、16bは、断面形状が略楕円状もしくは略矩形状であることが好ましい。そして、この場合、ファイバーは、断面の短軸がステントの中心軸方向を向くものであることが好ましい。
The distance between adjacent fibers is preferably 0.05 to 2 mm for a stent having an outer diameter of about 4 mm, for example. Further, the distance between the closest fiber intersections is preferably 0.1 to 4 mm. Further, the distance between the fiber intersections adjacent to each other in the circumferential direction of the stent is preferably 0.1 to 2 mm.
The fibers 16a and 16b are preferably single fibers, a plurality of fiber bundles, or a stranded wire of a plurality of fibers. In the case of a fiber bundle, a bundle of 2 to 3 fibers is preferable. In the case of a twisted fiber, it is preferably a twisted wire of 2 to 3 fibers. Furthermore, the fibers 16a and 16b preferably have a substantially elliptical or substantially rectangular cross-sectional shape. In this case, the fiber is preferably such that the minor axis of the cross section faces the central axis direction of the stent.
 また、ステント20では、線状補強部16は、ステント20の中心軸に対して少なくとも3つのファイバー交差部18がほぼ環状となるようにならんだ環状ファイバー交差部列をステント20の軸方向に多数有している。特に、図示するステント20では、各環状ファイバー交差部列は、複数(具体的には、8つ)のファイバー交差部18をステント20の中心軸に対してほぼ等角度となるように有している。環状ファイバー交差部列におけるファイバー交差部18の数としては、3~16程度が好ましく、特に、6~12が好ましい。そして、ステント20は、この環状ファイバー交差部列をステント20の軸方向にほぼ平行に多数(具体的には、40)有している。ステント20における環状ファイバー交差部列の数としては、10~60程度が好適である。好ましくは、20~40である。そして、隣り合う環状ファイバー交差部列では、ファイバー交差部が、ステントの周方向にずれたものとなっている。また、一つおきの環状ファイバー交差部列では、各ファイバー交差部18は、ステントの軸方向にほぼ直線状に並ぶものとなっている。 Further, in the stent 20, the linear reinforcement portion 16 includes a plurality of annular fiber intersection portions arranged in an axial direction of the stent 20, in which at least three fiber intersection portions 18 are substantially annular with respect to the central axis of the stent 20. Have. In particular, in the illustrated stent 20, each annular fiber intersection row has a plurality (specifically, eight) fiber intersections 18 that are substantially equiangular with respect to the central axis of the stent 20. Yes. The number of fiber intersections 18 in the annular fiber intersection line is preferably about 3 to 16, and more preferably 6 to 12. The stent 20 has a large number (specifically, 40) of annular fiber intersecting portion rows substantially parallel to the axial direction of the stent 20. The number of annular fiber crossing rows in the stent 20 is preferably about 10 to 60. Preferably, it is 20-40. In adjacent annular fiber intersection rows, the fiber intersections are shifted in the circumferential direction of the stent. Further, in every other annular fiber intersection portion row, each fiber intersection portion 18 is arranged substantially linearly in the axial direction of the stent.
 次に、本発明のステントデリバリーシステムを図面に示す実施例を用いて説明する。
 図16は、本発明の実施例のステントデリバリーシステムの部分省略正面図である。
 図17は、図16に示したステントデリバリーシステムの先端部の拡大部分断面図である。
 図18は、本発明の実施例のステントデリバリーシステムの作用を説明するための説明図である。
 本発明のステントデリバリーシステム(言い換えれば、生体器官拡張器具)100は、チューブ状のシャフト本体部102と、シャフト本体部102の先端部に設けられた折り畳みおよび拡張可能なバルーン103と、折り畳まれた状態のバルーン103を被包するように装着され、バルーン103の拡張により拡張されるステント1とを備える。
 そして、ステント1としては、上述したステント1ならびに上述したすべての実施例のステントを用いることができる。
 この実施例のステントデリバリーシステム100は、上述したステント1と、ステント1が装着されたチューブ状のステントデリバリーシステム本体101とからなる。
 ステントデリバリーシステム本体101は、チューブ状のシャフト本体部102と、シャフト本体部の先端部に設けられた折り畳みおよび拡張可能なバルーン103とを備え、ステント1は、折り畳まれた状態のバルーン103を被包するように装着され、かつバルーン103の拡張により拡張されるものである。
Next, the stent delivery system of the present invention will be described using an embodiment shown in the drawings.
FIG. 16 is a partially omitted front view of the stent delivery system according to the embodiment of the present invention.
FIG. 17 is an enlarged partial cross-sectional view of the distal end portion of the stent delivery system shown in FIG.
FIG. 18 is an explanatory diagram for explaining the operation of the stent delivery system according to the embodiment of the present invention.
A stent delivery system (in other words, a living organ dilator) 100 according to the present invention is a tube-shaped shaft main body 102, and a foldable and expandable balloon 103 provided at the distal end of the shaft main body 102. The stent 1 is mounted so as to enclose the balloon 103 in a state and is expanded by expansion of the balloon 103.
And as the stent 1, the stent 1 mentioned above and the stent of all the examples mentioned above can be used.
The stent delivery system 100 of this embodiment includes the above-described stent 1 and a tubular stent delivery system main body 101 to which the stent 1 is attached.
The stent delivery system main body 101 includes a tubular shaft main body 102 and a foldable and expandable balloon 103 provided at the distal end of the shaft main body, and the stent 1 covers the balloon 103 in a folded state. It is mounted so as to be wrapped and expanded by expansion of the balloon 103.
 ステント1としては、上述したすべての実施例のステントを用いることができる。なお、ここで使用されるステントは、生体内管腔への挿入のための直径を有し、管状体の内部より半径方向に広がる力が付加されたときに拡張可能ないわゆるバルーン拡張型ステントが用いられる。
 この実施例のステントデリバリーシステム100では、図16に示すように、シャフト本体部102は、シャフト本体部102の先端にて一端が開口し、シャフト本体部102の後端部にて他端が開口するガイドワイヤールーメン115を備えている。
 このステントデリバリーシステム本体101は、シャフト本体部102と、シャフト本体部102の先端部に固定されたステント拡張用バルーン103とを備え、このバルーン103上にステント1が装着されている。シャフト本体部102は、内管112と外管113と分岐ハブ110とを備えている。
As the stent 1, the stents of all the embodiments described above can be used. The stent used here is a so-called balloon expandable stent that has a diameter for insertion into a lumen in a living body and is expandable when a force that expands radially from the inside of the tubular body is applied. Used.
In the stent delivery system 100 of this embodiment, as shown in FIG. 16, the shaft main body 102 has one end opened at the tip of the shaft main body 102 and the other end opened at the rear end of the shaft main body 102. A guide wire lumen 115 is provided.
The stent delivery system main body 101 includes a shaft main body 102 and a stent expansion balloon 103 fixed to the distal end of the shaft main body 102, and the stent 1 is mounted on the balloon 103. The shaft body 102 includes an inner tube 112, an outer tube 113, and a branch hub 110.
 内管112は、図17に示すように、内部にガイドワイヤーを挿通するためのガイドワイヤールーメン115を備えるチューブ体である。内管112としては、長さは、100~2500mm、より好ましくは、250~2000mm、外径が、0.1~1.0mm、より好ましくは、0.3~0.7mm、肉厚10~250μm、より好ましくは、20~100μmのものである。そして、内管112は、外管113の内部に挿通され、その先端部が外管113より突出している。この内管112の外面と外管113の内面によりバルーン拡張用ルーメン116が形成されており、十分な容積を有している。外管113は、内部に内管112を挿通し、先端が内管112の先端よりやや後退した部分に位置するチューブ体である。
 外管113としては、長さは、100~2500mm、より好ましくは、250~2000mm、外径が、0.5~1.5mm、より好ましくは、0.7~1.1mm、肉厚25~200μm、より好ましくは、50~100μmのものである。
 この実施例のステントデリバリーシステム100では、外管113は、先端側外管113aと本体側外管113bにより形成され、両者が接合されている。そして、先端側外管113aは、本体側外管113bとの接合部より先端側の部分において、テーパー状に縮径し、このテーパー部より先端側が細径となっている。
As shown in FIG. 17, the inner tube 112 is a tube body including a guide wire lumen 115 for inserting a guide wire therein. The inner tube 112 has a length of 100 to 2500 mm, more preferably 250 to 2000 mm, an outer diameter of 0.1 to 1.0 mm, more preferably 0.3 to 0.7 mm, and a wall thickness of 10 to It is 250 μm, more preferably 20 to 100 μm. The inner tube 112 is inserted into the outer tube 113, and the tip of the inner tube 112 protrudes from the outer tube 113. A balloon expanding lumen 116 is formed by the outer surface of the inner tube 112 and the inner surface of the outer tube 113, and has a sufficient volume. The outer tube 113 is a tube body in which the inner tube 112 is inserted and the tip is located at a portion slightly retracted from the tip of the inner tube 112.
The outer tube 113 has a length of 100 to 2500 mm, more preferably 250 to 2000 mm, an outer diameter of 0.5 to 1.5 mm, more preferably 0.7 to 1.1 mm, and a wall thickness of 25 to The thickness is 200 μm, more preferably 50 to 100 μm.
In the stent delivery system 100 of this embodiment, the outer tube 113 is formed by a distal end side outer tube 113a and a main body side outer tube 113b, and both are joined. The distal end side outer tube 113a has a tapered diameter at a portion closer to the distal end than the joint portion with the main body side outer tube 113b, and the distal end side has a smaller diameter than the tapered portion.
 先端側外管113aの細径部での外径は、0.50~1.5mm、好ましくは0.60~1.1mmである。また、先端側外管113aの基端部および本体側外管113bの外径は、0.75~1.5mm、好ましくは0.9~1.1mmである。
 そして、バルーン103は、先端側接合部103aおよび後端側接合部103bを有し、先端側接合部103aが内管112の先端より若干後端側の位置に固定され、後端側接合部103bが外管の先端に固定されている。また、バルーン103は、基端部付近にてバルーン拡張用ルーメン116と連通している。
 内管112および外管113の形成材料としては、ある程度の可撓性を有するものが好ましく、例えば、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体など)、ポリ塩化ビニル、ポリアミドエラストマー、ポリウレタン等の熱可塑性樹脂、シリコーンゴム、ラテックスゴム等が使用でき、好ましくは上記の熱可塑性樹脂であり、より好ましくは、ポリオレフィンである。
The outer diameter at the small diameter portion of the distal end side outer tube 113a is 0.50 to 1.5 mm, preferably 0.60 to 1.1 mm. Further, the base end portion of the distal end side outer tube 113a and the outer diameter of the main body side outer tube 113b are 0.75 to 1.5 mm, preferably 0.9 to 1.1 mm.
The balloon 103 has a front end side joint portion 103a and a rear end side joint portion 103b. The front end side joint portion 103a is fixed at a position slightly rear end side from the front end of the inner tube 112, and the rear end side joint portion 103b. Is fixed to the tip of the outer tube. The balloon 103 communicates with the balloon expansion lumen 116 in the vicinity of the proximal end portion.
As a material for forming the inner tube 112 and the outer tube 113, those having a certain degree of flexibility are preferable. For example, polyolefin (for example, polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, etc.) Further, thermoplastic resins such as polyvinyl chloride, polyamide elastomer and polyurethane, silicone rubber, latex rubber and the like can be used, preferably the above-mentioned thermoplastic resin, more preferably polyolefin.
 バルーン103は、図17に示すように、折り畳み可能なものであり、拡張させない状態では、内管112の外周に折り畳まれた状態となることができるものである。バルーン103は、図18に示すように、装着されるステント1を拡張できるようにほぼ同一径の筒状部分(好ましくは、円筒部分)となった拡張可能部を有している。略円筒部分は、完全な円筒でなくてもよく、多角柱状のものであってもよい。そして、バルーン103は、上述のように、先端側接合部103aが内管112にまた後端側接合部103bが外管113の先端に接着剤または熱融着などにより液密に固着されている。また、このバルーン103では、拡張可能部と接合部との間がテーパー状に形成されている。
 バルーン103は、バルーン103の内面と内管112の外面との間に拡張空間103cを形成する。この拡張空間103cは、後端部ではその全周において拡張用ルーメン116と連通している。このように、バルーン103の後端は、比較的大きい容積を有する拡張用ルーメンと連通しているので、拡張用ルーメン116よりバルーン内への拡張用流体の注入が確実である。
As shown in FIG. 17, the balloon 103 is foldable, and can be folded around the outer circumference of the inner tube 112 when not expanded. As shown in FIG. 18, the balloon 103 has an expandable portion that is a cylindrical portion (preferably, a cylindrical portion) having substantially the same diameter so that the attached stent 1 can be expanded. The substantially cylindrical portion may not be a perfect cylinder, but may be a polygonal column. As described above, the balloon 103 is liquid-tightly fixed to the inner tube 112 with the front end side joint portion 103a and the rear end side joint portion 103b to the front end of the outer tube 113 with an adhesive or heat fusion. . Further, in this balloon 103, the space between the expandable portion and the joint portion is formed in a tapered shape.
The balloon 103 forms an expansion space 103 c between the inner surface of the balloon 103 and the outer surface of the inner tube 112. The expansion space 103c communicates with the expansion lumen 116 on the entire periphery at the rear end. In this way, the rear end of the balloon 103 communicates with the expansion lumen having a relatively large volume, so that the expansion fluid can be reliably injected into the balloon from the expansion lumen 116.
 バルーン103の形成材料としては、ある程度の可撓性を有するものが好ましく、例えば、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、架橋型エチレン-酢酸ビニル共重合体など)、ポリ塩化ビニル、ポリアミドエラストマー、ポリウレタン、ポリエステル(例えば、ポリエチレンテレフタレート)、ポリアリレーンサルファイド(例えば、ポリフェニレンサルファイド)等の熱可塑性樹脂、シリコーンゴム、ラテックスゴム等が使用できる。特に、延伸可能な材料であることが好ましく、バルーン103は、高い強度および拡張力を有する二軸延伸されたものが好ましい。
 バルーン103の大きさとしては、拡張されたときの円筒部分(拡張可能部)の外径が、2~4mm、好ましくは2.5~3.5mmであり、長さが10~50mm、好ましくは20~40mmである。また、先端側接合部103aの外径が、0.9~1.5mm、好ましくは1~1.3mmであり、長さが1~5mm、好ましくは1~1.3mmである。また、後端側接合部103bの外径が、1~1.6mm、好ましくは1.1~1.5mmであり、長さが1~5mm、好ましくは、2~4mmである。
As a material for forming the balloon 103, a material having a certain degree of flexibility is preferable. For example, polyolefin (eg, polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, cross-linked ethylene-vinyl acetate) Copolymer), polyvinyl chloride, polyamide elastomer, polyurethane, polyester (for example, polyethylene terephthalate), thermoplastic resin such as polyarylene sulfide (for example, polyphenylene sulfide), silicone rubber, latex rubber, and the like. In particular, a stretchable material is preferable, and the balloon 103 is preferably biaxially stretched having high strength and expansion force.
As the size of the balloon 103, the outer diameter of the cylindrical portion (expandable portion) when expanded is 2 to 4 mm, preferably 2.5 to 3.5 mm, and the length is 10 to 50 mm, preferably 20-40 mm. Further, the outer diameter of the distal end side joint portion 103a is 0.9 to 1.5 mm, preferably 1 to 1.3 mm, and the length is 1 to 5 mm, preferably 1 to 1.3 mm. Further, the outer diameter of the rear end side joint portion 103b is 1 to 1.6 mm, preferably 1.1 to 1.5 mm, and the length is 1 to 5 mm, preferably 2 to 4 mm.
 そして、このステントデリバリーシステム100は、図17および図18に示すように、拡張されたときの円筒部分(拡張可能部)の両端となる位置のシャフト本体部の外面に固定された2つのX線造影性部材117、118を備えている。なお、ステント1の中央部分の所定長の両端となる位置のシャフト本体部102(この実施例では、内管112)の外面に固定された2つのX線造影性部材を備えるものとしてもよい。さらに、ステントの中央部となる位置のシャフト本体部の外面に固定された単独のX線造影性部材を設けるものとしてもよい。
 X線造影性部材117、118は、所定の長さを有するリング状のもの、もしくは線状体をコイル状に巻き付けたものなどが好適であり、形成材料は、例えば、金、白金、タングステンあるいはそれらの合金、あるいは銀-パラジウム合金等が好適である。
 そして、バルーン103を被包するようにステント1が装着されている。ステントは、ステント拡張時より小径かつ折り畳まれたバルーンの外径より大きい内径の金属パイプを加工することにより作製される。そして、作製されたステント内にバルーンを挿入し、ステントの外面に対して均一な力を内側に向けて与え縮径させることにより製品状態のステントが形成される。つまり、上記のステント1は、バルーンへの圧縮装着により完成する。
As shown in FIGS. 17 and 18, the stent delivery system 100 includes two X-rays fixed to the outer surface of the shaft main body portion at positions corresponding to both ends of the cylindrical portion (expandable portion) when expanded. Contrast members 117 and 118 are provided. In addition, it is good also as what has two X-ray contrast contrast members fixed to the outer surface of the shaft main-body part 102 (in this embodiment, the inner pipe | tube 112) of the position which becomes the both ends of the predetermined length of the center part of the stent 1. FIG. Furthermore, it is good also as what provides the single X-ray contrast property member fixed to the outer surface of the shaft main-body part of the position used as the center part of a stent.
The X-ray contrast members 117 and 118 are preferably ring-shaped members having a predetermined length, or those obtained by winding a linear body in a coil shape, and the forming material is, for example, gold, platinum, tungsten, or the like. Those alloys or silver-palladium alloys are preferred.
The stent 1 is attached so as to encapsulate the balloon 103. The stent is manufactured by processing a metal pipe having a smaller diameter than that at the time of stent expansion and an inner diameter larger than the outer diameter of the folded balloon. Then, a balloon is inserted into the manufactured stent, and a uniform force is applied to the outer surface of the stent inward to reduce the diameter, thereby forming a product-state stent. That is, the above stent 1 is completed by compression mounting on the balloon.
 内管112と外管113との間(バルーン拡張用ルーメン116内)には、線状の剛性付与体(図示せず)が挿入されていてもよい。剛性付与体は、ステントデリバリーシステム100の可撓性をあまり低下させることなく、屈曲部位でのステントデリバリーシステム100の本体部102の極度の折れ曲がりを防止するとともに、ステントデリバリーシステム100の先端部の押し込みを容易にする。剛性付与体の先端部は、他の部分より研磨などの方法により細径となっていることが好ましい。また、剛性付与体は、細径部分の先端が、外管113の先端部付近まで延びていることが好ましい。剛性付与体としては、金属線であることが好ましく、線径0.05~1.50mm、好ましくは0.10~1.00mmのステンレス鋼等の弾性金属、超弾性合金などであり、特に好ましくは、ばね用高張力ステンレス鋼、超弾性合金線である。
 この実施例のステントデリバリーシステム100では、図16に示すように、基端に分岐ハブ110が固定されている。分岐ハブ110は、ガイドワイヤールーメン115と連通しガイドワイヤーポートを形成するガイドワイヤー導入口109を有し、内管112に固着された内管ハブと、バルーン拡張用ルーメン116と連通しインジェクションポート111を有し、外管113に固着された外管ハブとからなっている。そして、外管ハブと内管ハブとは、固着されている。この分岐ハブ110の形成材料としては、ポリカーボネート、ポリアミド、ポリサルホン、ポリアリレート、メタクリレート-ブチレン-スチレン共重合体等の熱可塑性樹脂が好適に使用できる。
 なお、ステントデリバリーシステムの構造は、上記のようなものに限定されるものではなく、ステントデリバリーシステムの中間部分にガイドワイヤールーメンと連通するガイドワイヤー挿入口を有するものであってもよい。
A linear rigidity imparting body (not shown) may be inserted between the inner tube 112 and the outer tube 113 (within the balloon expansion lumen 116). The rigidity-imparting body prevents extreme bending of the main body 102 of the stent delivery system 100 at the bent portion without significantly reducing the flexibility of the stent delivery system 100, and pushes the distal end of the stent delivery system 100. To make it easier. It is preferable that the tip of the rigidity imparting body has a smaller diameter than other parts by a method such as polishing. Moreover, it is preferable that the rigidity imparting body has the tip of the small diameter portion extending to the vicinity of the tip of the outer tube 113. The rigidity imparting body is preferably a metal wire, and is preferably an elastic metal such as stainless steel having a wire diameter of 0.05 to 1.50 mm, preferably 0.10 to 1.00 mm, a superelastic alloy, and the like. Is a high-strength stainless steel for springs and a superelastic alloy wire.
In the stent delivery system 100 of this embodiment, as shown in FIG. 16, a branch hub 110 is fixed to the proximal end. The branch hub 110 has a guide wire inlet 109 that communicates with the guide wire lumen 115 to form a guide wire port, and communicates with the inner tube hub fixed to the inner tube 112 and the balloon expansion lumen 116, and the injection port 111. And an outer tube hub fixed to the outer tube 113. The outer tube hub and the inner tube hub are fixed to each other. As a material for forming the branch hub 110, a thermoplastic resin such as polycarbonate, polyamide, polysulfone, polyarylate, and methacrylate-butylene-styrene copolymer can be preferably used.
In addition, the structure of the stent delivery system is not limited to the above, and may have a guide wire insertion port communicating with the guide wire lumen at an intermediate portion of the stent delivery system.
 本発明の生体内留置用ステントは、以下のものである。
 (1) 略管状体に形成され、生体内管腔への挿入のための直径を有し、内部より半径方向に広がる力が付加されたときに拡張する生体内留置用ステントであって、前記ステントは、所定幅を有する帯状構成要素により略筒状に形成された生分解性ポリマー製ステント基体と、前記生分解性ポリマー製ステント基体の前記帯状構成要素の壁内かつ前記ステントの外面側となる位置に埋設された線状補強体を有する生体内留置用ステント。
 このため、このステントでは、脈管系治療の狭窄(再狭窄)、閉塞の発生を防止または低減し、長期間生体内に留置することによる炎症反応の発生を防止し、さらに必要な強度(ラジアルフォース)と曲げ柔軟性を有する。特に、ステント基体が、生分解性ポリマーにより形成されているので、柔軟であり、かつ、ステント基体を構成する帯状構成要素の壁内には、線状補強体を有するため、ラジアルフォースを付与している。線状補強体は、帯状構成要素の壁内かつステントの外面側となる位置に埋設されているため、ステント拡張時における血管内壁へのステントの密着性と、形態安定性が良好なものとなっている。
The in-vivo stent for use in the present invention is as follows.
(1) A stent for in vivo placement that is formed into a substantially tubular body, has a diameter for insertion into a living body lumen, and expands when a force that expands radially from the inside is applied, The stent includes a biodegradable polymer stent base formed into a substantially cylindrical shape by a band-shaped component having a predetermined width, and a wall of the band-shaped component of the biodegradable polymer stent base and an outer surface side of the stent. An in vivo indwelling stent having a linear reinforcing body embedded at a position.
For this reason, this stent prevents or reduces the occurrence of stenosis (restenosis) and occlusion in vascular system treatment, prevents the occurrence of an inflammatory reaction due to indwelling in the living body for a long time, and further provides the required strength (radial) Force) and bending flexibility. In particular, since the stent base is formed of a biodegradable polymer, the stent base is flexible and has a linear reinforcing body in the wall of the band-shaped component constituting the stent base. ing. Since the linear reinforcing body is embedded in the wall of the band-shaped component and on the outer surface side of the stent, the adhesion of the stent to the inner wall of the blood vessel at the time of stent expansion and the shape stability are improved. ing.
 そして、本発明の実施形態としては、以下のものであってもよい。
 (2) 前記線状補強体は、線状構成要素により形成された筒状体であり、前記ステント基体とほぼ同じ形態を有している上記(1)に記載の生体内留置用ステント。
 (3) 前記ステントは、前記帯状構成要素により環状に形成された環状体が、複数軸方向に配列するとともに、隣り合う環状体が連結部により連結されたものである上記(1)または(2)に記載の生体内留置用ステント。
 (4) 前記ステントは、前記帯状構成要素の前記連結部の壁内かつ前記ステントの外面側となる位置に埋設された線状連結部補強体を有し、前記線状連結部補強体は、隣り合う前記環状体内の補強体を連結している上記(3)に記載の生体内留置用ステント。
 (5) 前記環状体は、前記一端側屈曲部と前記他端側屈曲部とを繋ぐ部分を有する環状に連続した無端のものである上記(3)または(4)に記載の生体内留置用ステント。
 (6) 前記線状補強体は、前記ステントの中心軸に対して斜めに延びる複数本の線状体により織られたあるいは編まれたものであり、かつ、前記ステントの軸方向に対して斜めに前記線状体が交差する多数の線状体交差部を備えるものである上記(1)または(2)に記載の生体内留置用ステント。
 (7) 前記線状補強体は、前記生分解性ポリマーより、生体内での分解が遅い生分解性材料により形成されている上記(1)ないし(6)のいずれかに記載の生体内留置用ステント。
 (8) 前記線状補強体は、生分解性金属により形成されている上記(1)ないし(7)のいずれかに記載の生体内留置用ステント。
 (9) 前記生分解性ポリマー製ステント基体は、生理活性物質を含有している上記(1)ないし(8)のいずれかに記載の生体内留置用ステント。
 (10) 前記ステントは、前記ステントの外面全体もしくは外面を部分的に被覆する生理活性物質含有樹脂層を備えている上記(1)ないし(8)のいずれかに記載の生体内留置用ステント。
And as an embodiment of the present invention, the following may be sufficient.
(2) The in-vivo indwelling stent according to (1), wherein the linear reinforcing body is a cylindrical body formed of linear components and has substantially the same shape as the stent base.
(3) In the above stent (1) or (2), the annular body formed in an annular shape by the band-shaped component is arranged in a plurality of axial directions and adjacent annular bodies are connected by a connecting portion. The stent for indwelling in vivo.
(4) The stent has a linear connection portion reinforcing body embedded in a position on the outer surface side of the stent in the wall of the connection portion of the band-shaped component, and the linear connection portion reinforcing body is: The in-vivo indwelling stent according to (3), wherein the reinforcing bodies in the adjacent annular bodies are connected.
(5) The indwelling body according to (3) or (4), wherein the annular body is an endless continuous ring that has a portion connecting the one end-side bent portion and the other end-side bent portion. Stent.
(6) The linear reinforcing body is woven or knitted by a plurality of linear bodies extending obliquely with respect to the central axis of the stent, and oblique with respect to the axial direction of the stent. The stent for in-vivo placement according to the above (1) or (2), comprising a plurality of linear body intersecting portions intersecting the linear bodies.
(7) The in-vivo indwelling according to any one of (1) to (6), wherein the linear reinforcing body is formed of a biodegradable material that is slower to degrade in vivo than the biodegradable polymer. Stent.
(8) The in-vivo indwelling stent according to any one of (1) to (7), wherein the linear reinforcing body is formed of a biodegradable metal.
(9) The stent for in-vivo placement according to any one of (1) to (8), wherein the biodegradable polymer stent substrate contains a physiologically active substance.
(10) The in-vivo indwelling stent according to any one of (1) to (8), wherein the stent includes a physiologically active substance-containing resin layer that partially covers the entire outer surface or the outer surface of the stent.
 また、本発明のステントデリバリーシステムは、以下のものである。
 (11) チューブ状のシャフト本体部と、該シャフト本体部の先端部に設けられた折り畳みおよび拡張可能なバルーンと、折り畳まれた状態の前記バルーンを被包するように装着された上記(1)ないし(10)のいずれかに記載のステントとを備えるステントデリバリーシステム。
 このステントデリバリーシステムによれば、脈管系治療の狭窄(再狭窄)、閉塞の発生を防止または低減し、長期間生体内に留置することによる炎症反応の発生が少ない。
The stent delivery system of the present invention is as follows.
(11) The above-described (1), which is mounted so as to enclose the tube-shaped shaft main body, a foldable and expandable balloon provided at the tip of the shaft main body, and the balloon in the folded state. A stent delivery system comprising the stent according to any one of (10).
According to this stent delivery system, the occurrence of stenosis (restenosis) and occlusion in vascular treatment is prevented or reduced, and the occurrence of an inflammatory reaction due to indwelling in a living body for a long period of time is small.

Claims (11)

  1. 略管状体に形成され、生体内管腔への挿入のための直径を有し、内部より半径方向に広がる力が付加されたときに拡張する生体内留置用ステントであって、
     前記ステントは、所定幅を有する帯状構成要素により略筒状に形成された生分解性ポリマー製ステント基体と、前記生分解性ポリマー製ステント基体の前記帯状構成要素の壁内かつ前記ステントの外面側となる位置に埋設された線状補強体を有することを特徴とする生体内留置用ステント。
    An in-vivo stent that is formed into a substantially tubular body, has a diameter for insertion into a lumen in a living body, and expands when a force spreading radially from the inside is applied,
    The stent includes a biodegradable polymer stent base formed into a substantially cylindrical shape by a band-shaped component having a predetermined width, and a wall of the band-shaped component of the biodegradable polymer stent base and an outer surface side of the stent. A stent for indwelling in vivo, comprising a linear reinforcing body embedded in a position to be in vivo.
  2. 前記線状補強体は、線状構成要素により形成された筒状体であり、前記ステント基体とほぼ同じ形態を有している請求項1に記載の生体内留置用ステント。 The in-vivo indwelling stent according to claim 1, wherein the linear reinforcing body is a cylindrical body formed of linear components and has substantially the same form as the stent base.
  3. 前記ステントは、前記帯状構成要素により環状に形成された環状体が、複数軸方向に配列するとともに、隣り合う環状体が連結部により連結されたものである請求項1または2に記載の生体内留置用ステント。 The in-vivo according to claim 1 or 2, wherein the stent is formed by annularly forming the ring-shaped constituent elements in a plurality of axial directions, and adjacent annular bodies are connected by a connecting portion. Indwelling stent.
  4. 前記ステントは、前記帯状構成要素の前記連結部の壁内かつ前記ステントの外面側となる位置に埋設された線状連結部補強体を有し、前記線状連結部補強体は、隣り合う前記環状体内の補強体を連結している請求項3に記載の生体内留置用ステント。 The stent has a linear connecting portion reinforcing body embedded in a position on the outer surface side of the connecting portion of the band-shaped component and the stent, and the linear connecting portion reinforcing bodies are adjacent to each other. The in-vivo indwelling stent according to claim 3, wherein the reinforcing bodies in the annular body are connected.
  5. 前記環状体は、一端側屈曲部と、他端側屈曲部と、前記一端側屈曲部と前記他端側屈曲部とを繋ぐ部分を有する環状に連続した無端のものである請求項3または4に記載の生体内留置用ステント。 5. The ring-shaped body is an endless one that is continuous in an annular shape having a one-end-side bent portion, the other-end-side bent portion, and a portion that connects the one-end-side bent portion and the other-end-side bent portion. The stent for in-vivo indwelling.
  6. 前記線状補強体は、前記ステントの中心軸に対して斜めに延びる複数本の線状体により織られたあるいは編まれたものであり、かつ、前記ステントの軸方向に対して斜めに前記線状体が交差する多数の線状体交差部を備えるものである請求項1または2に記載の生体内留置用ステント。 The linear reinforcing body is woven or knitted by a plurality of linear bodies extending obliquely with respect to the central axis of the stent, and the linear reinforcing body is inclined with respect to the axial direction of the stent. The in vivo indwelling stent according to claim 1 or 2, comprising a plurality of linear body intersecting portions intersecting each other.
  7. 前記線状補強体は、前記生分解性ポリマーより、生体内での分解が遅い生分解性材料により形成されている請求項1ないし6のいずれかに記載の生体内留置用ステント。 The in-vivo indwelling stent according to any one of claims 1 to 6, wherein the linear reinforcing body is formed of a biodegradable material that is slower to degrade in vivo than the biodegradable polymer.
  8. 前記線状補強体は、生分解性金属により形成されている請求項1ないし7のいずれかに記載の生体内留置用ステント。 The in-vivo stent according to any one of claims 1 to 7, wherein the linear reinforcing body is made of a biodegradable metal.
  9. 前記生分解性ポリマー製ステント基体は、生理活性物質を含有している請求項1ないし8のいずれかに記載の生体内留置用ステント。 The in vivo indwelling stent according to any one of claims 1 to 8, wherein the biodegradable polymer stent substrate contains a physiologically active substance.
  10. 前記ステントは、前記ステントの外面全体もしくは外面を部分的に被覆する生理活性物質含有樹脂層を備えている請求項1ないし8のいずれかに記載の生体内留置用ステント。 The in-vivo stent according to any one of claims 1 to 8, wherein the stent includes a bioactive substance-containing resin layer that partially covers the entire outer surface or a part of the outer surface of the stent.
  11. チューブ状のシャフト本体部と、該シャフト本体部の先端部に設けられた折り畳みおよび拡張可能なバルーンと、折り畳まれた状態の前記バルーンを被包するように装着された請求項1ないし10のいずれかに記載のステントとを備えることを特徴とするステントデリバリーシステム。 The tubular shaft main body, a foldable and expandable balloon provided at the tip of the shaft main body, and the balloon in a folded state are mounted so as to enclose the balloon. A stent delivery system comprising the above-described stent.
PCT/JP2013/052056 2013-01-30 2013-01-30 Stent for placement in living body and stent delivery system WO2014118913A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/052056 WO2014118913A1 (en) 2013-01-30 2013-01-30 Stent for placement in living body and stent delivery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/052056 WO2014118913A1 (en) 2013-01-30 2013-01-30 Stent for placement in living body and stent delivery system

Publications (1)

Publication Number Publication Date
WO2014118913A1 true WO2014118913A1 (en) 2014-08-07

Family

ID=51261661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052056 WO2014118913A1 (en) 2013-01-30 2013-01-30 Stent for placement in living body and stent delivery system

Country Status (1)

Country Link
WO (1) WO2014118913A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528780A (en) * 2007-06-05 2010-08-26 アボット カーディオヴァスキュラー システムズ インコーポレイテッド Implantable medical devices for local and local treatment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528780A (en) * 2007-06-05 2010-08-26 アボット カーディオヴァスキュラー システムズ インコーポレイテッド Implantable medical devices for local and local treatment

Similar Documents

Publication Publication Date Title
JP2013153822A (en) In-vivo indwelling stent and living organ dilator
JP5432909B2 (en) In-vivo stent and stent delivery system
JP5053668B2 (en) Stent
EP2186492B1 (en) Stent and living organ dilator
EP1885281B1 (en) Stent apparatuses for treatment via body lumens
JP4971580B2 (en) Stent and method for manufacturing stent
JP5242979B2 (en) In vivo indwelling stent and biological organ dilator
US9314357B2 (en) Stent for placement in living body and stent delivery system
US20090043330A1 (en) Embolic protection devices and methods
US9339630B2 (en) Retractable drug delivery system and method
JP2009082353A (en) In-vivo indwelling stent and living organ dilator
JP2009082244A (en) In-vivo indwelling stent, and living organ dilator
JP5243080B2 (en) In vivo indwelling stent and biological organ dilator
JP2006167078A (en) Medical implant
JP2010233744A (en) In vivo indwelling stent and biological organ dilator
JP2014018493A (en) Treatment device and treatment method
WO2014118913A1 (en) Stent for placement in living body and stent delivery system
JP2005074154A (en) Indwelling prosthesis assembly and manufacturing method thereof
JP2009082243A (en) In-vivo indwelling stent and living organ dilator
JP2018079142A (en) Stent delivery system
JP2010082012A (en) In-vivo indwelling stent and living organ dilator
WO2015141400A1 (en) Stent
JP2018088975A (en) Stent delivery system
JP2011072393A (en) Living organ dilator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP