WO2014114211A1 - 触控感应器及触控面板 - Google Patents

触控感应器及触控面板 Download PDF

Info

Publication number
WO2014114211A1
WO2014114211A1 PCT/CN2014/070884 CN2014070884W WO2014114211A1 WO 2014114211 A1 WO2014114211 A1 WO 2014114211A1 CN 2014070884 W CN2014070884 W CN 2014070884W WO 2014114211 A1 WO2014114211 A1 WO 2014114211A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
conductive element
axial
touch sensor
dielectric
Prior art date
Application number
PCT/CN2014/070884
Other languages
English (en)
French (fr)
Inventor
许毅中
徐国书
黄邦熊
Original Assignee
宸鸿科技(厦门)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宸鸿科技(厦门)有限公司 filed Critical 宸鸿科技(厦门)有限公司
Publication of WO2014114211A1 publication Critical patent/WO2014114211A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to touch technologies, and more particularly to a touch sensor and a touch panel.
  • Touch panel Panel As an interface tool for data communication, it has been widely used in household appliances, communication devices and electronic information devices.
  • the thin and light touch panel is an important direction for its development, but its development is limited by the structural performance and process technology. Specifically, in the pursuit of the thin and light touch panel, some solutions hope to reduce the touch. The thickness of each layer inside the panel is realized, but the thickness of some hierarchical structures is limited due to the excellent structural performance. If the materials used in the hierarchical structure are replaced, it will be limited by the process and other factors. Finding the balance point is the key to making the touch panel light and thin.
  • the invention provides a touch sensor and a touch panel, which can realize the slimness and thinness of the touch panel under the premise of ensuring the excellent performance of the touch panel.
  • the present invention provides a touch sensor, comprising: a first conductive element; a second conductive element, wherein the second conductive element is sputtered in an environment having a temperature of 160 degrees Celsius or more a crystalline indium tin oxide film of the film; and a dielectric element disposed between the first conductive element and the second conductive element.
  • the dielectric element has a dielectric constant value greater than or equal to 5 and less than or equal to 80.
  • the dielectric element has a thickness in the range of greater than or equal to 0.05 microns and less than or equal to 1 micron.
  • the first conductive element is a crystalline indium tin oxide film that is sputtered into a film at an environment temperature of 160 degrees Celsius or greater.
  • the first conductive element comprises a plurality of first axial electrodes and a plurality of conductive elements
  • the second conductive elements comprise a plurality of electrical wires
  • the first axial electrodes are electrically insulated from each other
  • the conductive units are insulated from each other, and the electrical wiring electrically connects the two adjacent conductive units to form a plurality of second axial electrodes.
  • the first conductive element comprises a plurality of electrical connections
  • the second conductive element comprises a plurality of first axial electrodes and a plurality of conductive units, wherein the first axial electrodes are electrically insulated from each other, The conductive units are insulated from each other, and the electrical wiring electrically connects the two adjacent conductive units to form a plurality of second axial electrodes.
  • the dielectric component is composed of a plurality of insulating blocks, and the insulating block is disposed between the electrical wiring and the first axial electrode to electrically insulate the first axial direction.
  • An electrode and the second axial electrode are disposed between the insulating blocks, and the insulating block is disposed between the electrical wiring and the first axial electrode to electrically insulate the first axial direction.
  • An electrode and the second axial electrode are disposed between the electrical wiring and the first axial electrode to electrically insulate the first axial direction.
  • the dielectric element covers the first conductive element and a corresponding perforation is provided at the junction of the electrical connection and the conductive unit.
  • the first conductive element comprises a plurality of first axial electrodes, the first axial electrodes are insulated from each other, and the second conductive elements comprise a plurality of second axial electrodes, the second axis Insulating the electrodes to each other, wherein the dielectric element is disposed between the first axial electrode and the second axial electrode to electrically insulate the first axial electrode from the second axial electrode .
  • the second conductive element is a crystalline indium tin oxide film that is sputter-deposited in an environment having a temperature of greater than or equal to 260 degrees Celsius and less than or equal to 300 degrees Celsius.
  • the dielectric component material is silicon nitride, aluminum oxide, silicon germanium oxide, antimony trioxide, antimony oxide, zirconium oxide, hafnium oxide, hafnium aluminum oxide, titanium dioxide and One of its mixtures.
  • the materials of the first conductive element, the second conductive element and the dielectric element are all transparent materials.
  • the invention further provides a touch panel, comprising: a touch sensor comprising a first conductive element; and a second conductive element, wherein the second conductive element is at a temperature greater than or equal to 160 a film of crystalline indium tin oxide film sputtered in a Celsius environment; and a dielectric element disposed between the first conductive element and the second conductive element; a substrate, the first conductive element disposed at On the substrate.
  • the dielectric element has a dielectric constant value greater than or equal to 5 and less than or equal to 80.
  • the dielectric element has a thickness in the range of greater than or equal to 0.05 microns and less than or equal to 1 micron.
  • the first conductive element is a crystalline indium tin oxide film.
  • the first conductive element comprises a plurality of first axial electrodes and a plurality of conductive elements
  • the second conductive elements comprise a plurality of electrical wires
  • the first axial electrodes are electrically insulated from each other
  • the conductive units are insulated from each other, and the electrical wiring electrically connects the two adjacent conductive units to form a plurality of second axial electrodes.
  • the dielectric component is composed of a plurality of insulating blocks, and the insulating block is disposed between the electrical wiring and the first axial electrode to electrically insulate the first axial direction.
  • An electrode and the second axial electrode are disposed between the insulating blocks, and the insulating block is disposed between the electrical wiring and the first axial electrode to electrically insulate the first axial direction.
  • An electrode and the second axial electrode are disposed between the electrical wiring and the first axial electrode to electrically insulate the first axial direction.
  • the dielectric element covers the first conductive element and a corresponding perforation is provided at the junction of the electrical connection and the conductive unit.
  • the first conductive element comprises a plurality of first axial electrodes, the first axial electrodes are insulated from each other, and the second conductive elements comprise a plurality of second axial electrodes, the second axis Insulating the electrodes to each other, wherein the dielectric element is disposed between the first axial electrode and the second axial electrode to electrically insulate the first axial electrode from the second axial electrode .
  • the substrate is a tempered glass sheet.
  • the second conductive element is a crystalline indium tin oxide film that is sputter-deposited in an environment having a temperature of greater than or equal to 260 degrees Celsius and less than or equal to 300 degrees Celsius.
  • the dielectric component material is silicon nitride, aluminum oxide, silicon germanium oxide, antimony trioxide, antimony oxide, zirconium oxide, hafnium oxide, hafnium aluminum oxide, titanium dioxide and One of its mixtures.
  • the materials of the first conductive element, the second conductive element and the dielectric element are all transparent materials.
  • the performance of the second conductive member has high transmittance, low resistance
  • the high stability and thin thickness feature improve the stability of the second conductive component, which not only reduces the thickness of the touch panel, but also ensures the performance of the touch panel.
  • FIG. 1 is a schematic view showing a laminated structure of a touch sensor of the present invention
  • FIG. 2A is a schematic view showing a first embodiment of a touch sensor according to the present invention.
  • Figure 2B is a schematic cross-sectional view along section line II' shown in Figure 2A;
  • FIG. 3A is a schematic structural view of a second embodiment of a touch sensor according to the present invention.
  • 3B is a schematic structural view of an embodiment of the present invention.
  • FIG. 4A is a schematic structural view of a third embodiment of the present invention.
  • Figure 4B is a schematic cross-sectional view along the section line HH' shown in Figure 4A;
  • 5A is a schematic structural view of a fourth embodiment of the present invention.
  • FIG. 5B is a schematic structural view of an embodiment of the present invention.
  • Fig. 6 is a view showing the thickness variation of the crystalline indium tin oxide film according to the present invention as a function of temperature.
  • FIG. 1 is a schematic diagram of a laminated structure of a touch sensor according to the present invention.
  • the touch sensor 10 includes a first conductive element 11 , a second conductive element 12 , and a dielectric element 13 , and is disposed on the first conductive element 11 , and the dielectric element 13 is disposed on the first conductive element 11 and the second conductive element Between 12.
  • the present invention will be further described in detail below in conjunction with the drawings and specific embodiments.
  • FIG. 2A is a schematic view of a first embodiment of a touch sensor of the present invention
  • FIG. 2B is a cross-sectional view taken along line II' of FIG. 2A.
  • This embodiment discloses a touch sensor 101 having a two-layer electrode structure.
  • the touch sensor 101 includes a first conductive element 11, a second conductive element 12, and a dielectric element 13, wherein the second conductive element 12 is located on the first conductive element 11, and the dielectric element 13 is disposed on the first conductive element 11 and Between the second conductive elements 12.
  • the first conductive element 11 includes a plurality of first axial electrodes 111, the plurality of first axial electrodes extend along the first direction X, and are electrically insulated from each other;
  • the second conductive element 12 includes a plurality of second axial electrodes 121, and a plurality of second The axial electrodes extend in the Y direction and are insulated from each other;
  • the dielectric element 13 is disposed between the first axial electrode 111 and the second axial electrode 121 to electrically insulate the first axial electrode 111 and the second axial electrode 121.
  • the first axial electrode 111 and the second axial electrode 121 are for receiving a touch action and generating a corresponding output signal.
  • the dielectric element 13 is a full-surface structure. It should be noted that in other embodiments of the present invention, the dielectric element 13 may also be composed of a plurality of insulating blocks, and the insulating block may be combined with the first conductive element. 11 or the second conductive elements 12 are identical in pattern and overlap each other, and may also be disposed only at the intersection of the first conductive element 11 and the second conductive element 12.
  • FIG. 3A is a schematic structural view of a second embodiment of a touch sensor according to the present invention.
  • This embodiment discloses a touch sensor 102 having a single-layer electrode structure.
  • the touch sensor 102 includes a first conductive element 11, a second conductive element 12, and a dielectric element 13, wherein the second conductive element 12 is located on the first conductive element 11, and the dielectric element 13 is disposed on the first conductive element 11 and Between the second conductive elements 12.
  • the first conductive element 11 includes a plurality of first axial electrodes 111 and a plurality of conductive elements 1211.
  • the second conductive elements 12 include a plurality of electrical wires 1212.
  • the electrical wires 1212 are electrically connected to two adjacent conductive units 1211 to form a plurality of second axes. To the electrode 121. It should be noted that the components of the first conductive element 11 and the second conductive element 12 can be interchanged.
  • the first conductive element comprises a plurality of electrical wires
  • the second conductive element comprises a plurality of first axial electrodes and a plurality of conductive elements.
  • the plurality of first axial electrodes 111 extend in the X direction and are insulated from each other, and the conductive units 1211 are arranged in the Y direction and insulated from each other, and the first axial electrodes 111 and the conductive units 1211 are insulated from each other.
  • the dielectric element 13 is composed of a plurality of insulating blocks 131.
  • the insulating block is disposed between the electrical wiring 1212 and the first axial electrode 111 to electrically insulate the first axial electrode 111 and the second axial electrode. 121.
  • FIG. 3B is a schematic structural view of an embodiment of the present invention.
  • the dielectric element 13 can be a fully perforated structure, that is, the dielectric element 13 covers the first conductive element 11, and a through hole 130 is provided at the electrical connection of the electrical connection 1212 and the conductive unit 1211 to ensure electrical wiring.
  • the conduction between the 1212 and the conductive unit 1211 ensures that the electrical wiring 1212 and the first axial electrode 111 are insulated from each other.
  • FIG. 4A is a schematic structural view of a third embodiment of the present invention
  • FIG. 4B is a cross-sectional view along the line HH' of FIG. 4A.
  • the touch panel 20 includes a touch sensor 21 and a substrate 22, wherein the touch sensor 21 includes a first conductive element 31, a second conductive element 32, and a dielectric element 33, wherein the first conductive element 31 is disposed on the substrate 22.
  • the second conductive element 32 is a crystalline indium tin oxide film sputter-deposited in an environment having a temperature of 160 degrees Celsius or more, and is disposed on the first conductive element 31, and the dielectric element 33 is disposed on the first conductive element 31 and Between the second conductive elements 32.
  • the touch sensor is a two-layer electrode structure of the touch sensor 21, wherein the first conductive element 31 includes a plurality of first axial electrodes 311, and the plurality of first axial electrodes 311 are disposed on the substrate 22, and The first conductive element 32 extends in the Y direction and is insulated from each other The first axial electrode 311 and the second axial electrode 321 are electrically insulated between the one axial electrode 311 and the second axial electrode 321 . The first axial electrode 311 and the second axial electrode 321 are used to receive a touch action and generate a corresponding output signal.
  • the dielectric element 33 is a full-surface structure. It should be noted that in other embodiments of the present invention, the dielectric element 33 may also be composed of a plurality of insulating blocks, and the insulating block may be combined with the first conductive element. 31 or the second conductive elements 32 are identical in pattern and overlap each other, and may also be disposed only at the intersection of the first conductive element 31 and the second conductive element 32.
  • the touch sensor 21 is a two-layer electrode structure. It can be understood that, in the present invention, the touch sensing structure can also be a single-layer electrode structure, as shown in FIG. 5A, and FIG. 5A is the first embodiment of the present invention.
  • the touch panel 20 includes a touch sensor 21 and a substrate 22, wherein the touch sensor 21 includes a first conductive element 31, a second conductive element 32, and a dielectric element 33, wherein the first conductive element 31 is disposed on the substrate 22.
  • the plurality of first axial electrodes 311 and the plurality of conductive elements 3211 are included.
  • the second conductive elements 32 include a plurality of electrical wires 3212.
  • the electrical wires 3212 are electrically connected to two adjacent conductive units 3211 to form a plurality of second axial electrodes 321 .
  • the first axial electrodes 311 extend in the X direction and are insulated from each other, and the conductive units 3211 are arranged in the Y direction and insulated from each other, and the first axial electrodes 311 and the conductive units 3211 are insulated from each other.
  • the dielectric element 33 is composed of a plurality of insulating blocks 331 disposed correspondingly between the electrical wiring 3212 and the first axial electrode 311 to electrically insulate the first axial electrode 311 from the second axial direction. Electrode 321. It is to be noted that, in other embodiments of the present invention, as shown in FIG.
  • FIG. 5B is a schematic structural view of an embodiment of the present invention.
  • the dielectric element 33 can be a fully perforated structure, that is, the dielectric element 33 covers the first conductive element 31, and a through hole 330 is provided at the electrical connection of the electrical connection 3212 and the conductive unit 3211 to ensure electrical wiring.
  • the conduction between the 3212 and the conductive unit 3211 ensures that the electrical wiring 3212 and the first axial electrode 311 are insulated from each other.
  • the substrate 22 is a carrier for carrying the touch sensor 21. After being attached to a cover, it can be used as a touch device alone, or assembled with an electronic device such as a display screen to form a touch. Control the display.
  • the substrate 22 can also be a tempered glass plate, the glass plate includes upper and lower opposite surfaces, wherein the upper surface can be directly used for user touch, and the touch sensor is disposed on the lower surface to form a single piece.
  • the touch panel is directly assembled with an electronic device such as a display screen to form a touch display screen.
  • the single-chip touch panel is lighter and thinner.
  • the second conductive element 12 is a crystalline indium tin oxide film which is sputtered into a film at a temperature of 160 degrees Celsius or more, and the general indium tin oxide film is first in an environment having a temperature lower than 160 degrees Celsius.
  • the amorphous indium tin oxide film is formed by sputtering, and then crystallized by high temperature treatment to obtain a crystalline indium tin oxide film.
  • the difference between the crystalline indium tin oxide film of the present invention and the crystalline indium tin oxide film formed by the general process is that When the resistance is fixed, the thickness of the crystalline indium tin oxide film of the present invention is only 50% of the thickness of the crystalline indium tin oxide film formed by the general process.
  • the product requires that the indium tin oxide film has a square resistance of 75 ohms, and the temperature is greater than
  • the thickness of the crystallized indium tin oxide film sputtered into the film at or equal to 160 degrees Celsius is about 0.023 micrometers
  • the thickness of the crystalline indium tin oxide film obtained by treating the amorphous indium tin oxide at a high temperature is about 0.046 micrometers.
  • the present invention can realize the thinning and thinning of the touch panel by reducing the thickness of the second conductive element.
  • the crystalline indium tin oxide film disclosed by the present invention is more transparent than the crystalline indium tin oxide film formed by the general process. High luminosity, smoother material surface and excellent electrical continuity.
  • the material of the first conductive component in the present invention may also be a crystalline indium tin oxide film which is sputtered into a film at a temperature of 160 degrees Celsius or more to improve the overall performance of the touch sensor.
  • the touch panel can be further thinned and thinned.
  • the first conductive element and the second conductive element are both crystalline indium tin oxide films which are sputtered into a film at a temperature of 160 degrees Celsius or more
  • the conductive layer needs to be fabricated after the dielectric element is formed (the first conductive element or the second conductive element), and the high temperature environment during the manufacturing process will simultaneously affect the already formed dielectric element, for example, in forming the first
  • at least the ambient temperature needs to be greater than 160 degrees Celsius.
  • the organic photoresist insulating material will be cracked under the temperature environment, thereby causing deformation and insulation performance degradation, which seriously affects the product yield.
  • the dielectric component preferably uses a material having a dielectric constant greater than or equal to 5 and less than or equal to 80, such as silicon nitride (Si3N4), and trioxide.
  • Si3N4 silicon nitride
  • the dielectric element may be composed of tantalum oxide (Ta 2 O 3 ) alone or a mixture of the above materials, such as yttrium oxide-yttrium silicon oxide (Ta 2 O 3 - HfO2), cerium oxide-silicon dioxide (Ta2O3-SiO2), silicon dioxide-yttria-yttrium silicon oxide (SiO2-Ta2O3-HfO2), etc. .
  • the use of this material can greatly reduce or even completely avoid this phenomenon.
  • the thickness of the dielectric component ranges from greater than or equal to 0.05 micrometers and less than or equal to 1 micrometer, and thus The thickness of the entire structure of the touch sensor can be reduced.
  • a crystalline indium tin oxide film which is sputtered and formed in a temperature of 160 degrees Celsius or more can be used.
  • a material having a dielectric constant greater than or equal to 5 and less than or equal to 80 is used as the dielectric element to reduce the thickness of the touch sensor as a whole, and at the same time ensure the touch sensing
  • the performance of the device can also be achieved by using a material having a dielectric constant value greater than or equal to 5 and less than or equal to 80 as a dielectric element for the purpose of reducing the thickness of the touch sensor.
  • the optimal temperature range for the formation of the crystalline indium tin oxide film by sputtering is 300 degrees Celsius at 260 degrees Celsius, as shown in FIG.
  • FIG. 6 is a schematic view showing the thickness variation of the crystalline indium tin oxide film according to the present invention.
  • the thickness of tin varies greatly with temperature; when the temperature range is between 160 ° C and 260 ° C, the curve becomes relatively flat, indicating that the thickness of crystalline indium tin oxide changes gently with temperature in this temperature range, but From the overall point of view, there is still a certain degree of curvature reduction; when the temperature range is 260 degrees Celsius to 300 degrees Celsius, the curve approaches parallel to the X axis, indicating that the thickness of crystalline indium tin oxide hardly changes with temperature in this temperature range.
  • a temperature range of 260 degrees Celsius or more and 300 degrees Celsius or less is preferred.
  • the materials of the first conductive element, the second conductive element, and the dielectric element are all transparent materials, so that the touch sensor is a fully transparent structure, and further, the substrate in the present invention is also It can be a transparent substrate. In practical applications, the touch panel can be directly placed in front of the display without affecting the display effect of the display.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Position Input By Displaying (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)
  • Electronic Switches (AREA)
  • Push-Button Switches (AREA)

Abstract

本发明涉及触控技术领域,提供了一种触控感应器,包括:一第一导电元件;一第二导电元件,其中所述第二导电元件为在温度为大于或等于160摄氏度的环境中溅镀成膜的结晶氧化铟锡薄膜;以及一介电元件设置于所述第一导电元件与所述第二导电元件之间。本发明的第二导电元件具有高透光率、低阻值、高稳定性的特点,可提高触控感应器的稳定性,保证了触控面感测电路的稳固性,延长触控面板的使用寿命。本发明还提供一种触控面板。

Description

触控感应器及触控面板 技术领域
本发明涉及触控技术,尤指一种触控感应器及触控面板。
背景技术
触控面板(touch panel)作为资料沟通的界面工具,已被广泛应用于家庭用品、通讯装置及电子资讯装置等领域。
触控面板的轻薄化为其发展的重要方向,但其发展又受限于结构性能及制程工艺,具体来说,在追求触控面板的轻薄化时,一些解决方案中,希望通过降低触控面板内部各层级的厚度来实现,但由于要保证结构性能的的优良,某些层级结构的厚度受到限制,若是对层级结构所使用的材料进行替换,又将受限于制程工艺等因素,故寻找其中的平衡点是实现触控面板轻薄化的关键。
发明内容
本发明提供了一种触控感应器及一种触控面板,可在保证触控面板的优良性能的前提下,实现触控面板的轻薄化。
本发明提供一种触控感应器,其特征在于,包括:一第一导电元件;一第二导电元件,其中所述第二导电元件为在温度为大于或等于160摄氏度的环境中溅镀成膜的结晶氧化铟锡薄膜;以及一介电元件设置于所述第一导电元件与所述第二导电元件之间。
于一变化实施例中,所述介电元件的介电常数值大于或等于5,且小于或等于80。
于一变化实施例中,所述介电元件的厚度范围为大于或等于0.05微米,且小于或等于1微米。
于一变化实施例中,所述第一导电元件为在温度为大于或等于160摄氏度的环境中溅镀成膜的结晶氧化铟锡薄膜。
于一变化实施例中,所述第一导电元件包含复数第一轴向电极及复数导电单元,所述第二导电元件包含复数电接线,其中所述第一轴向电极彼此电性绝缘,所述导电单元彼此相互绝缘,所述电接线电性连接两相邻的所述导电单元,以形成复数第二轴向电极。
于一变化实施例中,所述第一导电元件包含复数电接线,所述第二导电元件包含复数第一轴向电极及复数导电单元,其中所述第一轴向电极彼此电性绝缘,所述导电单元彼此相互绝缘,所述电接线电性连接两相邻的所述导电单元,以形成复数第二轴向电极。
于一变化实施例中,所述介电元件由复数绝缘块组成,所述绝缘块对应设置于所述电接线与所述第一轴向电极之间,以电性绝缘所述第一轴向电极与所述第二轴向电极。
于一变化实施例中,所述介电元件覆盖所述第一导电元件,且于所述电接线与所述导电单元连接处设置相应穿孔。
于一变化实施例中,所述第一导电元件包含复数第一轴向电极,所述第一轴向电极相互绝缘,所述第二导电元件包含复数第二轴向电极,所述第二轴向电极相互绝缘,其中所述介电元件设置于所述第一轴向电极与所述第二轴向电极之间,以电性绝缘所述第一轴向电极与所述第二轴向电极。
于一变化实施例中,所述第二导电元件为在温度为大于或等于260摄氏度,且小于或等于300摄氏度的环境中溅镀成膜的结晶氧化铟锡薄膜。
于一变化实施例中,所述介电元件材料为氮化硅、三氧化二铝、铪硅氧化物、三氧化二钇、氧化钽、氧化锆、二氧化铪、镧铝氧化物、二氧化钛及其混合物中的一种。
于一变化实施例中,所述第一导电元件、所述第二导电元件及所述介电元件的材料均为透明材料。
本发明另提供一种触控面板,其特征在于,包括:一触控感应器,包含一第一导电元件;一第二导电元件,其中所述第二导电元件为在温度为大于或等于160摄氏度的环境中溅镀成膜的结晶氧化铟锡薄膜;以及一介电元件设置于所述第一导电元件与所述第二导电元件之间;一基板,所述第一导电元件设于所述基板上。
于一变化实施例中,所述介电元件的介电常数值大于或等于5,且小于或等于80。
于一变化实施例中,所述介电元件的厚度范围为大于或等于0.05微米,且小于或等于1微米。
于一变化实施例中,所述第一导电元件为结晶氧化铟锡薄膜。
于一变化实施例中,所述第一导电元件包含复数第一轴向电极及复数导电单元,所述第二导电元件包含复数电接线,其中所述第一轴向电极彼此电性绝缘,所述导电单元彼此相互绝缘,所述电接线电性连接两相邻的所述导电单元,以形成复数第二轴向电极。
于一变化实施例中,所述介电元件由复数绝缘块组成,所述绝缘块对应设置于所述电接线与所述第一轴向电极之间,以电性绝缘所述第一轴向电极与所述第二轴向电极。
于一变化实施例中,所述介电元件覆盖所述第一导电元件,且于所述电接线与所述导电单元连接处设置相应穿孔。
于一变化实施例中,所述第一导电元件包含复数第一轴向电极,所述第一轴向电极相互绝缘,所述第二导电元件包含复数第二轴向电极,所述第二轴向电极相互绝缘,其中所述介电元件设置于所述第一轴向电极与所述第二轴向电极之间,以电性绝缘所述第一轴向电极与所述第二轴向电极。
于一变化实施例中,所述基板为一强化玻璃板。
于一变化实施例中,所述第二导电元件为在温度为大于或等于260摄氏度,且小于或等于300摄氏度的环境中溅镀成膜的结晶氧化铟锡薄膜。
于一变化实施例中,所述介电元件材料为氮化硅、三氧化二铝、铪硅氧化物、三氧化二钇、氧化钽、氧化锆、二氧化铪、镧铝氧化物、二氧化钛及其混合物中的一种。
于一变化实施例中,所述第一导电元件、所述第二导电元件及所述介电元件的材料均为透明材料。
本发明中,通过采用在温度为大于或等于160摄氏度的环境中溅镀成膜的结晶氧化铟锡薄膜作为第二导电元件,使得第二导电元件的性能具有高透光率、低阻值、高稳定性,且厚度薄的特点,第二导电元件性能稳定得以提升,不仅降低了触控面板的厚度,而且同时保证了触控面板的性能。
附图说明
图1为本发明触控感应器的叠层结构示意图;
图2A为本发明触控感应器的第一实施例示意图;
图2B为沿图2A中显示的剖面线II’的剖面示意图;
图3A为本发明触控感应器第二实施例结构示意图;
图3B为本发明的一实施例结构示意图;
图4A为本发明第三实施例结构示意图;
图4B为沿图4A中显示的剖面线HH’的剖面示意图;
图5A为本发明第四实施例结构示意图;
图5B为本发明的一实施例结构示意图;
图6为本发明中结晶氧化铟锡薄膜的厚度随温度变化示意图。
具体实施方式
如图1所示,图1为本发明触控感应器的叠层结构示意图。触控感应器10,包括:第一导电元件11、第二导电元件12及介电元件13,并位于第一导电元件11上,介电元件13设置于第一导电元件11与第二导电元件12之间。以下结合附图与具体实施方式对本发明作进一步详细描述。
如图2A及图2B所示,图2A为本发明触控感应器的第一实施例示意图,图2B为沿图2A中显示的剖线II’的剖面示意图。本实施例揭露一种双层电极结构的触控感应器101。触控感应器101包含第一导电元件11、第二导电元件12及介电元件13,其中,第二导电元件12位于第一导电元件11上,介电元件13设置于第一导电元件11与第二导电元件12之间。第一导电元件11包含复数第一轴向电极111,复数第一轴向电极沿第一方向X延伸,且相互电性绝缘;第二导电元件12包含复数第二轴向电极121,复数第二轴向电极沿Y方向延伸,且相互绝缘;介电元件13设置于第一轴向电极111与第二轴向电极121之间,以电性绝缘第一轴向电极111与第二轴向电极121。第一轴向电极111与第二轴向电极121用于接收触碰动作,并产生相应的输出信号。
本实施例中,介电元件13为整面结构,值得注意的是,于本发明的其他实施例中,介电元件13也可以是由复数绝缘块组成,该绝缘块可与第一导电元件11或第二导电元件12图案相同且相互重叠,也可以仅设置于第一导电元件11与第二导电元件12相交处。
如图3A所示,图3A为本发明触控感应器第二实施例结构示意图。本实施例揭露一种单层电极结构的触控感应器102。触控感应器102包含第一导电元件11、第二导电元件12及介电元件13,其中,第二导电元件12位于第一导电元件11上,介电元件13设置于第一导电元件11与第二导电元件12之间。第一导电元件11包含复数第一轴向电极111及复数导电单元1211,第二导电元件12包含复数电接线1212,电接线1212电性连接两相邻的导电单元1211,以形成复数第二轴向电极121。值得注意的是,第一导电元件11与第二导电元件12的构件可以相互调换,换言之,第一导电元件包含复数电接线,第二导电元件包含复数第一轴向电极及复数导电单元。 复数第一轴向电极111沿X方向延伸,且彼此之间相互绝缘,导电单元1211沿Y方向排布,且彼此相互绝缘,第一轴向电极111与导电单元1211之间相互绝缘。本实施例中,介电元件13有复数绝缘块131组成,绝缘块对应设置于电接线1212与第一轴向电极111之间,以电性绝缘第一轴向电极111与第二轴向电极121。值得注意的是,于本发明的其他实施例中,如图3B所示,图3B为本发明的一实施例结构示意图。介电元件13可为整面穿孔的结构,也就是说,介电元件13覆盖第一导电元件11,且在电接线1212与导电单元1211的电性连接处设置有穿孔130,以保证电接线1212与导电单元1211的导通性,并保证电接线1212与第一轴向电极111相互绝缘。
此外,本发明还提供一种触控面板,如图4A及图4B所示,图4A为本发明第三实施例结构示意图,图4B为沿图4A中剖面线HH’的剖面示意图。触控面板20包含触控感应器21及基板22,其中触控感应器21包含第一导电元件31、第二导电元件32及介电元件33,其中第一导电元件31设于基板22上,其中第二导电元件32为在温度为大于或等于160摄氏度的环境中溅镀成膜的结晶氧化铟锡薄膜,并位于第一导电元件31上,介电元件33设置于第一导电元件31与第二导电元件32之间。
本实施例中,触控感应器为双层电极结构的触控感应器21,其中第一导电元件31包含复数第一轴向电极311,复数第一轴向电极311设置于基板22上,并沿第一方向X延伸,且相互电性绝缘;第二导电元件32包含复数第二轴向电极321,复数第二轴向电极321沿Y方向延伸,且相互绝缘;介电元件33设置于第一轴向电极311与第二轴向电极321之间,以电性绝缘第一轴向电极311与第二轴向电极321。第一轴向电极311与第二轴向电极321用于接收触碰动作,并产生相应的输出信号。
本实施例中,介电元件33为整面结构,值得注意的是,于本发明的其他实施例中,介电元件33也可以是由复数绝缘块组成,该绝缘块可与第一导电元件31或第二导电元件32图案相同且相互重叠,也可以仅设置于第一导电元件31与第二导电元件32相交处。
本实施例中,触控感应器21为双层电极结构,可以理解的是,本发明中,触控感测结构也可以为单层电极结构,如图5A所示,图5A为本发明第四实施例结构示意图。触控面板20包含触控感应器21及基板22,其中触控感应器21包含第一导电元件31、第二导电元件32及介电元件33,其中第一导电元件31设于基板22上,包含复数第一轴向电极311及复数导电单元3211,第二导电元件32包含复数电接线3212,电接线3212电性连接两相邻的导电单元3211,以形成复数第二轴向电极321。第一轴向电极311沿X方向延伸,且彼此之间相互绝缘,导电单元3211沿Y方向排布,且彼此相互绝缘,第一轴向电极311与导电单元3211之间相互绝缘。本实施例中,介电元件33有复数绝缘块331组成,绝缘块331对应设置于电接线3212与第一轴向电极311之间,以电性绝缘第一轴向电极311与第二轴向电极321。值得注意的是,于本发明的其他实施例中,如图5B所示,图5B为本发明的一实施例结构示意图。介电元件33可为整面穿孔的结构,也就是说,介电元件33覆盖第一导电元件31,且在电接线3212与导电单元3211的电性连接处设置有穿孔330,以保证电接线3212与导电单元3211的导通性,并保证电接线3212与第一轴向电极311相互绝缘。
上述实施例中,基板22为用于承载触控感应器21的载板,通过与一盖板相贴合后,可单独作为触控设备使用,或者再与显示屏等电子设备组装,构成触控显示屏。
此外,基板22亦可为一强化玻璃板,该玻璃板包含上、下两相对表面,其中上表面可直接用于用户触碰,触控感应器设置于下表面,以形成一单片式的触控面板,再直接与显示屏等电子设备组装,构成触控显示屏。该单片式触控面板更为轻薄。
本发明中,第二导电元件12为在温度为大于或等于160摄氏度的环境中溅镀成膜的结晶氧化铟锡薄膜,而一般的氧化铟锡薄膜都是先在温度低于160摄氏度的环境下溅镀形成非晶氧化铟锡薄膜,再通过高温处理使其结晶,以得到结晶氧化铟锡薄膜,本发明的结晶氧化铟锡薄膜与一般工艺形成的结晶氧化铟锡薄膜的区别在于,当方阻固定时,本发明的结晶氧化铟锡薄膜的厚度仅为一般工艺形成的结晶氧化铟锡薄膜厚度的50%,例如,产品要求氧化铟锡薄膜的方阻为75欧姆,通过在温度为大于或等于160摄氏度的环境中溅镀成膜的结晶氧化铟锡薄膜的厚度大约为0.023微米,而通过高温处理非晶氧化铟锡得到的结晶氧化铟锡薄膜厚度大约为0.046微米。也就是说,本发明可通过降低第二导电元件的厚度来实现触控面板的轻薄化,不仅如此,本发明所揭露的结晶氧化铟锡薄膜较一般工艺形成的结晶氧化铟锡薄膜还具备透光度高、材料表面更为平整、电学导通性优良等优势。
值得注意的是,本发明中第一导电元件的材料也可以为在温度为大于或等于160摄氏度的环境中溅镀成膜的结晶氧化铟锡薄膜,以使得触控感应器的整体性能达到提升,同时又可进一步实现触控面板的轻薄化。
值得注意的是,在第一导电元件和第二导电元件都为在温度为大于或等于160摄氏度的环境中溅镀成膜的结晶氧化铟锡薄膜的实施例中,在制作过程中,其中一导电层需要在介电元件形成后再制作(第一导电元件或第二导电元件),而在制作过程中的高温环境将会同时影响到已经成型的介电元件,举例来说,在形成第二导电元件时,至少需要保证环境温度大于160摄氏度,一般的有机光阻绝缘材料在该温度环境下,会发生裂解,从而产生形变及绝缘性能的降低,严重影响产品良率。为保证介电元件的性能不被高温环境破坏,本实施例中,介电元件较佳选用介电常数大于或等于5,且小于或等于80的材料,例如氮化硅(Si3N4)、三氧化二铝(Al2O3)、铪硅氧化物(HfSiO4)、三氧化二钇(Y2O3)、氧化钽(Ta2O3)、氧化锆(ZrO2)、二氧化铪(HfO2)、镧铝氧化物(LnAlO3)、二氧化钛(TiO2)及其混合物等。举例而言,介电元件可以单独由氧化钽(Ta2O3)组成,也可以是上述材料的混合物,例如氧化钽-铪硅氧化物(Ta2O3- HfO2)、氧化钽-二氧化硅(Ta2O3-SiO2)、二氧化硅-氧化钽-铪硅氧化物(SiO2- Ta2O3- HfO2)等 。选用该种材料可大幅度减轻甚至完全避免该现象的发生。
不仅如此,使用介电常数值大于或等于5,且小于或等于80的材料用于制作介电元件时,介电元件的厚度范围为大于或等于0.05微米,且小于或等于1微米,故也可以降低触控感应器整体结构的厚度,具体而言,在本发明的触控感应器中,不仅可通过使用在温度为大于或等于160摄氏度的环境中溅镀成膜的结晶氧化铟锡薄膜作为第二导电元件及、或第一导电元件的同时使用介电常数大于或等于5且小于或等于80的材料作为介电元件,以整体降低触控感应器的厚度,并同时保证触控感应器的性能,还可以仅通过使用介电常数值大于或等于5且小于或等于80的材料作为介电元件,以达到降低触控感应器厚度的目的。
本发明中,为满足触控面板日益轻薄的发展需求,结合制作成本及工艺条件等因素,溅镀形成结晶氧化铟锡薄膜的最优温度范围为260摄氏度之300摄氏度,如图6所所示,图6为本发明中结晶氧化铟锡薄膜的厚度随温度变化示意图。当结晶氧化铟锡的方阻为一固定值时,从图6中可看出,当温度小于160摄氏度时,表示结晶氧化铟锡厚度的曲线较为陡峭,表示在此温度范围中,结晶氧化铟锡的厚度随温度变化较大;当温度范围在160摄氏度至260摄氏度之间时,曲线明显变得较为平缓,表示在此温度范围中,结晶氧化铟锡的厚度随温度的变化较为平缓,但从整体来看,还是有一定弧度降低的趋势;当温度范围在260摄氏度至300摄氏度时,曲线趋近与X轴平行,表示在此温度范围中,结晶氧化铟锡的厚度几乎不随温度的改变而发生变化,结合上述制作成本与工艺难度的综合考虑,温度范围为大于或等于260摄氏度且小于或等于300摄氏度为本发明优选。
本发明中,较佳的,第一导电元件、第二导电元件及介电元件的材料可均为透明材料,使得触控感应器为一全透明结构,更进一步的,本发明中的基板也可以为透明的基板,在实际的应用中,触控面板可直接设置于显示屏之前,而不影响显示屏的显示效果。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (30)

  1. 一种触控感应器,其特征在于,包括:
    一第一导电元件;
    一第二导电元件,其中所述第二导电元件为在温度为大于或等于160摄氏度的环境中溅镀成膜的结晶氧化铟锡薄膜;以及
    一介电元件设置于所述第一导电元件与所述第二导电元件之间。
  2. 如权利要求1所述的触控感应器,其特征在于,所述介电元件的介电常数值大于或等于5,且小于或等于80。
  3. 如权利要求2所述的触控感应器,其特征在于,所述介电元件的厚度范围为大于或等于0.05微米,且小于或等于1微米。
  4. 如权利要求1所述的触控感应器,其特征在于,所述第一导电元件为在温度为大于或等于160摄氏度的环境中溅镀成膜的结晶氧化铟锡薄膜。
  5. 如权利要求1所述的触控感应器,其特征在于,所述第一导电元件包含复数第一轴向电极及复数导电单元,所述第二导电元件包含复数电接线,其中所述第一轴向电极彼此电性绝缘,所述导电单元彼此相互绝缘,所述电接线电性连接两相邻的所述导电单元,以形成复数第二轴向电极。
  6. 如权利要求1所述的触控感应器,其特征在于,所述第一导电元件包含复数电接线,所述第二导电元件包含复数第一轴向电极及复数导电单元,其中所述第一轴向电极彼此电性绝缘,所述导电单元彼此相互绝缘,所述电接线电性连接两相邻的所述导电单元,以形成复数第二轴向电极。
  7. 如权利要求5或6所述的触控感应器,其特征在于,所述介电元件由复数绝缘块组成,所述绝缘块对应设置于所述电接线与所述第一轴向电极之间,以电性绝缘所述第一轴向电极与所述第二轴向电极。
  8. 如权利要求5或6所述的触控感应器,其特征在于,所述介电元件覆盖所述第一导电元件,且于所述电接线与所述导电单元连接处设置相应穿孔。
  9. 如权利要求1所述的触控感应器,其特征在于,所述第一导电元件包含复数第一轴向电极,所述第一轴向电极相互绝缘,所述第二导电元件包含复数第二轴向电极,所述第二轴向电极相互绝缘,其中所述介电元件设置于所述第一轴向电极与所述第二轴向电极之间,以电性绝缘所述第一轴向电极与所述第二轴向电极。
  10. 如权利要求1所述的触控感应器,其特征在于,所述第二导电元件为在温度为大于或等于260摄氏度,且小于或等于300摄氏度的环境中溅镀成膜的结晶氧化铟锡薄膜。
  11. 如权利要求1所述的触控感应器,其特征在于,所述介电元件材料为氮化硅、三氧化二铝、铪硅氧化物、三氧化二钇、氧化钽、氧化锆、二氧化铪、镧铝氧化物、二氧化钛及其混合物中的一种。
  12. 如权利要求1所述的触控感应器,其特征在于,所述第一导电元件、所述第二导电元件及所述介电元件的材料均为透明材料。
  13. 一种触控面板,其特征在于,包括:
    一触控感应器,包含一第一导电元件;一第二导电元件,其中所述第二导电元件为在温度为大于或等于160摄氏度的环境中溅镀成膜的结晶氧化铟锡薄膜;以及一介电元件设置于所述第一导电元件与所述第二导电元件之间;
    一基板,所述第一导电元件设于所述基板上。
  14. 如权利要求13所述的触控面板,其特征在于,所述介电元件的介电常数值大于或等于5,且小于或等于80。
  15. 如权利要求13所述的触控面板,其特征在于,所述介电元件的厚度范围为大于或等于0.05微米,且小于或等于1微米。
  16. 如权利要求13所述的触控面板,其特征在于,所述第一导电元件为在温度为大于或等于160摄氏度的环境中溅镀成膜的结晶氧化铟锡薄膜。
  17. 如权利要求13所述的触控面板,其特征在于,所述第一导电元件包含复数第一轴向电极及复数导电单元,所述第二导电元件包含复数电接线,其中所述第一轴向电极彼此电性绝缘,所述导电单元彼此相互绝缘,所述电接线电性连接两相邻的所述导电单元,以形成复数第二轴向电极。
  18. 如权利要求17所述的触控面板,其特征在于,所述介电元件由复数绝缘块组成,所述绝缘块对应设置于所述电接线与所述第一轴向电极之间,以电性绝缘所述第一轴向电极与所述第二轴向电极。
  19. 如权利要求17所述的触控面板,其特征在于,所述介电元件覆盖所述第一导电元件,且于所述电接线与所述导电单元连接处设置相应穿孔。
  20. 如权利要求13所述的触控面板,其特征在于,所述第一导电元件包含复数第一轴向电极,所述第一轴向电极相互绝缘,所述第二导电元件包含复数第二轴向电极,所述第二轴向电极相互绝缘,其中所述介电元件设置于所述第一轴向电极与所述第二轴向电极之间,以电性绝缘所述第一轴向电极与所述第二轴向电极。
  21. 如权利要求13所述的触控面板,其特征在于,所述基板为一强化玻璃板。
  22. 如权利要求13所述的触控感应器,其特征在于,所述第二导电元件为在温度为大于或等于260摄氏度,且小于或等于300摄氏度的环境中溅镀成膜的结晶氧化铟锡薄膜。
  23. 如权利要求13所述的触控面板,其特征在于,所述介电元件材料为氮化硅、三氧化二铝、铪硅氧化物、三氧化二钇、氧化钽、氧化锆、二氧化铪、镧铝氧化物、二氧化钛及其混合物中的一种。
  24. 如权利要求13所述的触控感应器,其特征在于,所述第一导电元件、所述第二导电元件及所述介电元件的材料均为透明材料。
  25. 一种触控感应器,其特征在于,包括:
    一第一导电元件;
    一第二导电元件;以及
    一介电元件设置于所述第一导电元件与所述第二导电元件之间,其中所述介电元件的介电常数值大于或等于5,且小于或等于80。
  26. 如权利要求25所述的触控感应器,其特征在于,所述介电元件的厚度范围为大于或等于0.05微米,且小于或等于1微米。
  27. 如权利要求25所述的触控感应器,其特征在于,所述第一导电元件及所述第二导电元件为在温度为大于或等于160摄氏度的环境中溅镀成膜的结晶氧化铟锡薄膜。
  28. 如权利要求25所述的触控感应器,其特征在于,所述第一导电元件包含复数第一轴向电极及复数导电单元,所述第二导电元件包含复数电接线,其中所述第一轴向电极彼此电性绝缘,所述导电单元彼此相互绝缘,所述电接线电性连接两相邻的所述导电单元,以形成复数第二轴向电极。
  29. 如权利要求28所述的触控感应器,其特征在于,所述介电元件由复数绝缘块组成,所述绝缘块对应设置于所述电接线与所述第一轴向电极之间,以电性绝缘所述第一轴向电极与所述第二轴向电极。
  30. 权利要求28所述的触控感应器,其特征在于,所述介电元件覆盖所述第一导电元件,且于所述电接线与所述导电单元连接处设置相应穿孔。
PCT/CN2014/070884 2013-01-28 2014-01-20 触控感应器及触控面板 WO2014114211A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310033139.1 2013-01-28
CN201310033139.1A CN103970317B (zh) 2013-01-28 2013-01-28 触控感应器及触控面板

Publications (1)

Publication Number Publication Date
WO2014114211A1 true WO2014114211A1 (zh) 2014-07-31

Family

ID=51226925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070884 WO2014114211A1 (zh) 2013-01-28 2014-01-20 触控感应器及触控面板

Country Status (3)

Country Link
CN (1) CN103970317B (zh)
TW (1) TWI499960B (zh)
WO (1) WO2014114211A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108762555B (zh) * 2018-05-21 2021-12-03 京东方科技集团股份有限公司 触控基板和触控装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101493737A (zh) * 2009-02-27 2009-07-29 深圳市豪威薄膜技术有限公司 一种显示器触摸屏结构及其制作方法
CN102270074A (zh) * 2010-06-02 2011-12-07 群康科技(深圳)有限公司 电极结构及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3224352B2 (ja) * 1997-02-21 2001-10-29 出光興産株式会社 多色発光装置
TWI322374B (en) * 2006-04-14 2010-03-21 Ritdisplay Corp Light transmission touch panel and manufacturing method thereof
TWI389020B (zh) * 2008-03-25 2013-03-11 Elan Microelectronics 觸控面板裝置
TWI575281B (zh) * 2009-08-19 2017-03-21 Elan Microelectronics Corp Capacitive touch panel and manufacturing method thereof
JP5556436B2 (ja) * 2009-10-13 2014-07-23 東洋紡株式会社 透明導電性積層フィルム及び透明導電性積層シート並びにタッチパネル
WO2012026519A1 (ja) * 2010-08-26 2012-03-01 パナソニック株式会社 導電性透明基材、タッチパネル、抵抗膜方式タッチパネル、静電容量方式タッチパネル

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101493737A (zh) * 2009-02-27 2009-07-29 深圳市豪威薄膜技术有限公司 一种显示器触摸屏结构及其制作方法
CN102270074A (zh) * 2010-06-02 2011-12-07 群康科技(深圳)有限公司 电极结构及其制造方法

Also Published As

Publication number Publication date
CN103970317B (zh) 2017-09-12
TWI499960B (zh) 2015-09-11
CN103970317A (zh) 2014-08-06
TW201430669A (zh) 2014-08-01

Similar Documents

Publication Publication Date Title
WO2012099394A2 (en) Touch panel and method for manufacturing the same
WO2014131343A1 (zh) 触控面板及其制作方法
WO2014094493A1 (zh) 触控面板及其盖板结构
WO2014173217A1 (zh) 触控面板及其制作方法
WO2019000520A1 (zh) 一种内嵌式触控oled显示装置
WO2015192687A1 (zh) 触控显示装置
CN110134271A (zh) 电子装置
EP3683661A1 (en) Touch panel and manufacturing method thereof, and touch display device
WO2015081671A1 (zh) 一种触控基板及其制造方法、触摸屏及显示装置
TWM448734U (zh) 觸控面板
WO2016159501A1 (ko) 터치 센서
WO2014117572A1 (zh) 触控显示装置以及触控感测结构
CN205451012U (zh) 具有触控及压力感应功能的偏光片及触控显示装置
TW201837681A (zh) 高性能觸控感測器及其製造方法
WO2015018300A1 (zh) 触控装置
WO2015000360A1 (zh) 触控面板及其盖板结构、图案区感测结构
US11737340B2 (en) Display panel, manufacturing method thereof and display equipment
TW201145127A (en) Touch panel structure and making the same
WO2017131362A1 (ko) 투명 전극 및 이를 포함하는 전자 장치
WO2018152169A1 (en) Electronic assemblies incorporating laminate substrates and methods of fabricating the same
WO2014044157A1 (zh) 触控面板模块、触控装置及其制作方法
CN105892743A (zh) 具有触控及压力感应功能的偏光片及触控显示装置
WO2015080496A1 (ko) 전도성 구조체 전구체, 전도성 구조체 및 이의 제조방법
WO2014114212A1 (zh) 触控单元及触控面板
WO2014114211A1 (zh) 触控感应器及触控面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743228

Country of ref document: EP

Kind code of ref document: A1