WO2014112239A1 - 半導体素子 - Google Patents

半導体素子 Download PDF

Info

Publication number
WO2014112239A1
WO2014112239A1 PCT/JP2013/082747 JP2013082747W WO2014112239A1 WO 2014112239 A1 WO2014112239 A1 WO 2014112239A1 JP 2013082747 W JP2013082747 W JP 2013082747W WO 2014112239 A1 WO2014112239 A1 WO 2014112239A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductivity type
layer
region
low resistance
resistance layer
Prior art date
Application number
PCT/JP2013/082747
Other languages
English (en)
French (fr)
Inventor
大西 泰彦
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2014557358A priority Critical patent/JPWO2014112239A1/ja
Priority to CN201380047274.XA priority patent/CN104620388A/zh
Priority to DE201311004146 priority patent/DE112013004146T5/de
Publication of WO2014112239A1 publication Critical patent/WO2014112239A1/ja
Priority to US14/643,651 priority patent/US9437727B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates

Definitions

  • the present invention relates to a semiconductor element.
  • semiconductor elements are classified into a horizontal semiconductor element having electrodes on one side and a vertical semiconductor element having electrodes on both sides.
  • the direction in which the drift current flows in the on state is the same as the direction in which the depletion layer due to the reverse bias voltage extends in the off state.
  • MOSFET Metal Oxide Field Effect Transistor: MOS type field effect transistor
  • the portion of the high resistance n ⁇ drift layer is in the vertical direction when in the on state. It acts as a region where drift current flows. Therefore, if the current path of the n ⁇ drift layer is shortened, the drift resistance is lowered, so that the substantial on-resistance of the MOSFET can be lowered.
  • the portion of the high resistance n ⁇ drift layer is depleted in the off state to increase the breakdown voltage. Therefore, when the n ⁇ drift layer is thinned, the width of the drain-base depletion layer extending from the pn junction between the p base region and the n ⁇ drift layer becomes narrower, and the critical electric field strength of silicon is reached quickly. The withstand voltage will decrease. On the other hand, in a semiconductor device with a high breakdown voltage, since the n ⁇ drift layer is thick, the on-resistance increases and the loss increases. Thus, there is a trade-off relationship between on-resistance and breakdown voltage.
  • a superjunction semiconductor element having a parallel pn structure in which a drift layer is formed by alternately and repeatedly joining n-type drift regions and p-type partition regions having a high impurity concentration is known.
  • a high breakdown voltage can be achieved.
  • FIG. 5 is a cross-sectional view showing the structure of a conventional vertical MOSFET.
  • FIG. 5 is FIG. 12 of Patent Document 5 below.
  • a drain / drift portion 102 having a first parallel pn structure is provided on a low-resistance n + drain layer 101 with which a drain electrode 113 on the back side is in conductive contact.
  • a high impurity concentration p base region 103 to be the element active portion 121 is selectively provided.
  • the drain / drift portion 102 substantially corresponds to a portion immediately below the p-type base region 103 of the plurality of wells to be the element active portion 121, and is a layered vertical first n-type region 102a oriented in the thickness direction of the substrate and the thickness of the substrate.
  • This is a first parallel pn structure in which layered vertical first p-type regions 102b oriented in the direction are alternately and repeatedly joined in the creeping direction of the substrate at a pitch P101.
  • a MOS gate metal-oxidation
  • a MOS gate metal-oxidation
  • a p base region 103 a p + contact region 105, an n + source region 106, a gate insulating film 107 and a gate electrode layer 108 is formed.
  • a film-semiconductor insulating gate) structure and a source electrode 110 are provided.
  • Reference numeral 109 denotes an interlayer insulating film.
  • the periphery of the drain / drift portion 102 is an element peripheral edge portion 122 having a second parallel pn structure.
  • the element peripheral edge portion 122 is continuous with the first parallel pn structure of the drain / drift portion 102 and is repeatedly formed in a layered vertical second n-type region 112a oriented in the thickness direction of the substrate at a pitch P101 and in the thickness direction of the substrate.
  • the layered vertical second p-type regions 112b to be aligned are joined alternately and repeatedly in the creeping direction of the substrate.
  • the first parallel pn structure and the second parallel pn structure have substantially the same repetition pitch P101 and substantially the same impurity concentration.
  • An oxide film 115 is provided on the surface of the second parallel pn structure.
  • a field plate electrode FP extended from the source electrode 110 is formed on the oxide film 115 and covers the second parallel pn structure.
  • An n-type channel stopper region 114 connected to the n + drain layer 101 is formed outside the device peripheral portion 122, and a stopper electrode 116 is in conductive contact with the n-type channel stopper region 114.
  • the second parallel pn structure and the n-type channel stopper region 114 are regions having a shorter carrier lifetime than the first parallel pn structure (portion indicated by hatching).
  • the element peripheral edge 122 is made shorter by making the carrier lifetime of the second parallel pn structure of the element peripheral part 122 shorter than the carrier lifetime of the first parallel pn structure of the element active part 121.
  • the amount of carriers accumulated in the portion 122 is reduced, and the breakdown tolerance against local concentration of the reverse recovery current in the reverse recovery process of the built-in diode composed of the first p-type region 102b and the first n-type region 102a is improved.
  • the carrier lifetime of the second parallel pn structure of the element peripheral portion 122 there is a problem that the leakage current in the off state increases, and as a result, the loss increases.
  • the leakage current in the off state becomes too large, there is a problem that the element is destroyed due to thermal runaway.
  • the present invention provides a semiconductor device capable of improving the breakdown resistance in a super junction semiconductor device capable of greatly improving the trade-off relationship between on-resistance and breakdown voltage.
  • the purpose is to provide.
  • a semiconductor device has the following characteristics.
  • An element active portion that is present on the first main surface side of the substrate and allows an active or passive current to flow, a first conductivity type low resistance layer that is present on a surface layer on the second main surface side of the substrate, and the element active portion And the first conductivity type low resistance layer, and a vertical drift portion in which the drift current flows in the vertical direction in the on state and is depleted in the off state.
  • first vertical first conductivity type regions oriented in the thickness direction of the substrate and first vertical second conductivity type regions oriented in the thickness direction of the substrate are alternately and repeatedly joined. Thus, a first parallel pn structure is formed.
  • the first conductivity type layer having a higher resistance than the first conductivity type low resistance layer from the element active portion to the device peripheral portion. Is provided.
  • a second conductivity type low resistance layer is selectively provided on the surface layer on the second main surface side in the peripheral portion of the element. An output electrode in contact with the first conductivity type low resistance layer and the second conductivity type low resistance layer is provided.
  • the semiconductor element according to the present invention is characterized in that, in the above-described invention, the impurity concentration of the second conductivity type low resistance layer is higher than the impurity concentration of the first conductivity type layer.
  • the semiconductor element according to the present invention is characterized in that, in the above-described invention, the impurity concentration of the second conductivity type low resistance layer is higher than the impurity concentration of the first conductivity type low resistance layer.
  • the semiconductor element according to the present invention further includes a plurality of second conductivity type base regions provided on the first main surface side in the above-described invention.
  • An inner end of the second conductivity type low resistance layer is located at a boundary between the element active part and the element peripheral part.
  • the outer end portion of the second conductivity type low resistance layer extends from the outer end portion of the second conductivity type base region provided on the outermost side among the plurality of second conductivity type base regions. It is characterized in that it is located outside by more than the thickness of the part.
  • the second conductivity type low resistance layer is provided from a boundary between the element active part and the element peripheral part to an outer periphery of the element peripheral part. It is characterized by.
  • the second conductivity type low resistance layer is provided on a surface layer on the second main surface side of the first conductivity type low resistance layer.
  • the first conductivity type low resistance layer is interposed between the second conductivity type low resistance layer and the first conductivity type layer.
  • the peripheral edge portion of the element is a second vertical first conductivity type region oriented in the thickness direction of the substrate and a second orientation oriented in the thickness direction of the substrate.
  • a second parallel pn structure in which the vertical second conductivity type regions are alternately and repeatedly joined is characterized.
  • the element periphery Since the volume of the n + drain layer in the portion is reduced, the injection of electrons from the n + drain layer on the back side of the substrate to the second parallel pn structure is suppressed, and accordingly, the outermost periphery on the front surface side of the substrate Hole injection from the p base region into the second parallel pn structure is suppressed. Thereby, the amount of accumulated carriers in the peripheral portion of the element can be reduced, and current concentration in the outermost peripheral p base region in the reverse recovery process of the built-in diode can be reduced.
  • the semiconductor device according to the present invention has an effect that the breakdown tolerance can be improved.
  • FIG. 1 is a cross-sectional view showing the structure of the semiconductor device according to the first embodiment.
  • FIG. 2 is a cross-sectional view illustrating the structure of the semiconductor device according to the second embodiment.
  • FIG. 3 is a cross-sectional view illustrating the structure of the semiconductor device according to the third embodiment.
  • FIG. 4 is a cross-sectional view showing the structure of the semiconductor device according to the fourth embodiment.
  • FIG. 5 is a cross-sectional view showing the structure of a conventional vertical MOSFET.
  • FIG. 1 is a cross-sectional view showing the structure of the semiconductor device according to the first embodiment.
  • the semiconductor element according to the first embodiment shown in FIG. 1 is a superjunction MOSFET provided with a drain / drift part (vertical drift part) 2 having a first parallel pn structure.
  • a drain / drift part vertical drift part
  • a p-type base region 3a having a high impurity concentration to be the element active portion 21 is selectively provided.
  • the substrate is an epitaxial substrate described later.
  • a high impurity concentration p + contact region 5 and n + source region 6 are selectively provided on the front side of the substrate inside the p base region 3a.
  • the n + source region 6 is formed shallower than the p + contact region 5 in the well-shaped p base region 3a and constitutes a double diffused MOS section.
  • a gate electrode layer 8 such as polysilicon is provided via a gate insulating film 7.
  • Source electrode 10 is in conductive contact across p base region 3 a and n + source region 6 through a contact hole formed in interlayer insulating film 9.
  • the drain / drift portion 2 substantially corresponds to a portion directly below the p base region 3a of a plurality of wells to be the element active portion 21, and is a layered vertical first n-type region (first vertical orientation oriented in the thickness direction of the substrate).
  • any of the first n-type regions 2a has an upper end (end on the front side of the substrate) reaching the surface n-type drift region 4 which is a gap region of the p base region 3a, and a lower end (on the back side of the substrate) Of the n buffer layer 11 is in contact with the n buffer layer 11.
  • the first n-type region 2a reaching the surface n-type drift region 4 is an electric circuit region in the on state, but the remaining first n-type region 2a is generally a non-electric circuit region.
  • the first p-type region 2 b has an upper end in contact with the well bottom surface of the p base region 3 a and a lower end in contact with the n buffer layer 11.
  • the periphery of the drain / drift portion 2 is an element peripheral portion 22 having a second parallel pn structure.
  • the element peripheral portion 22 is a layered vertical second n-type region (second vertical type second region) oriented in the thickness direction of the substrate at a repeated pitch P2 continuously to the first parallel pn structure of the drain / drift portion 2.
  • (1 conductivity type region) 12a and layered vertical second p type region (second vertical type 2 conductivity type region) 12b oriented in the thickness direction of the substrate are alternately and repeatedly joined in the creeping direction of the substrate. It becomes.
  • the second parallel pn structure is provided in order to easily achieve a high breakdown voltage (in order to easily spread the depletion layer in the off state).
  • the impurity concentration of the second parallel pn structure is lower than the impurity concentration of the first parallel pn structure.
  • the repetition pitch P2 of the second parallel pn structure is narrower than the repetition pitch P1 of the first parallel pn structure.
  • An oxide film 15 is provided on the surface (substrate front side) of the second parallel pn structure.
  • the oxide film 15 is formed so that its film thickness gradually increases from the drain / drift part 2 to the element peripheral part 22.
  • a field plate electrode FP extended from the source electrode 10 is formed on the oxide film 15 and covers the second parallel pn structure.
  • An n-type channel stopper region 14 is formed outside the device peripheral portion 22, and a stopper electrode 16 is in conductive contact with the substrate front surface side of the n-type channel stopper region 14.
  • n buffer layer 11 is provided on the other surface (substrate back side) of the drain / drift portion 2.
  • the n buffer layer 11 extends to the outer periphery (side surface of the substrate) of the element peripheral portion 22 and is connected to the n-type channel stopper region 14.
  • the built-in diode composed of the first p-type region 2b and the first n-type region 2a is reversely recovered (the built-in diode is reversed from the forward direction to the reverse direction with the gate and the source short-circuited). The carrier accumulation layer when applied).
  • the impurity concentration of the n buffer layer 11 is such that when the drain-base depletion layer is in the OFF state, the n + drain layer (first conductivity type low resistance layer) 1 and the p + drain region (second conductivity type low resistance layer) which will be described later. ) Set not to reach 17.
  • the drain-base depletion layer does not reach the p + drain region 17 in the off state, the outermost peripheral p base region 3b, the second parallel pn structure, the n buffer layer 11 and the p + drain region 17 Since the parasitic pnp transistor made of is not operated, the amount of accumulated carriers in the element peripheral portion 22 can be reduced.
  • An n + drain layer 1 is provided on the surface layer on the back side of the substrate of the n buffer layer 11 in the element active portion 21.
  • a p + drain region 17 is selectively provided in the surface layer on the substrate rear surface side of the n buffer layer 11 in the element peripheral portion 22.
  • An n + drain layer 1 is provided in a portion other than the p + drain region 17 on the surface layer of the n buffer layer 11 on the back side of the substrate.
  • the p + drain region 17 has a function of suppressing the injection of electrons from the n + drain layer 1 on the back surface side of the substrate to the second parallel pn structure when the built-in diode is forward conducting.
  • the n + drain layer 1 and the p + drain region 17 are in conductive contact with the drain electrode (output electrode) 13.
  • the outer end of the p + drain region 17 is a vertical line AO perpendicular to the back surface of the substrate passing through the outer end of the bottom surface of the outermost p base region (hereinafter referred to as the outermost peripheral p base region) 3b. It is preferable that the distance between the front surface of the substrate and the n buffer layer 11 from the position (that is, the thickness of the second parallel pn structure) is more than t1. The reason is as follows.
  • the outward spread (diffusion) ⁇ of holes injected from the outermost peripheral p base region 3b into the second parallel pn structure is the boundary between the outermost peripheral p base region 3b and the second parallel pn structure. 45 degrees with respect to the normal.
  • holes injected from the outermost peripheral p base region 3b into the second parallel pn structure pass through the intersection point O between the vertical line AO and the substrate front surface, and are 45 degrees outward from the vertical line AO. Many injections are made in the range up to the inclined oblique line BO. Carriers are accumulated in the element peripheral portion 22 because the n + drain layer on the back surface side of the substrate with respect to the holes injected from the outermost peripheral p base region 3b on the front surface side of the substrate into the second parallel pn structure. This is because electrons are injected from the first to the second parallel pn structure.
  • the inner end of the p + drain region 17 is preferably located at the boundary between the element active part 21 and the element peripheral part 22.
  • the reason is that it is possible to reduce the volume of the n + drain layer 1 on the substrate rear surface side near to opposite sides of the high outermost p base region 3b and the second parallel pn structure of the electric field, the n + drain layer 1 This is because electrons injected into the second parallel pn structure can be further reduced. Therefore, the p + drain region 17 is preferably provided at least from the boundary between the element active portion 21 and the element peripheral portion 22 to the vertical line CO ′.
  • the boundary between the element active part 21 and the element peripheral part 22 is a half of the width of the substrate front surface side of the p base region 3a from the end of the substrate front surface side inside the outermost peripheral p base region 3b.
  • the position D is spaced outward by the width t2.
  • the drain / drift portion 2 has a thickness (depth direction) of 35.0 ⁇ m, the widths of the first n-type region 2a and the first p-type region 2b are 7.0 ⁇ m (repetitive pitch P1 is 14.0 ⁇ m), The impurity concentration of one n-type region 2a and the first p-type region 2b is 3.0 ⁇ 10 15 cm ⁇ 3 .
  • the width of second n-type region 12a and second p-type region 12b is 3.5 ⁇ m (repetitive pitch P2 is 7.0 ⁇ m), and the impurity concentration of second n-type region 12a and second p-type region 12b is 1.0 ⁇ 10 15 cm ⁇ 3 .
  • the p base regions 3a and 3b have a diffusion depth of 3.0 ⁇ m and a surface impurity concentration of 3.0 ⁇ 10 17 cm ⁇ 3 .
  • the n + source region 6 has a diffusion depth of 0.2 ⁇ m and a surface impurity concentration of 3.0 ⁇ 10 20 cm ⁇ 3 .
  • the p + contact region 5 has a diffusion depth of 0.6 ⁇ m and a surface impurity concentration of 1.0 ⁇ 10 19 cm ⁇ 3 .
  • the surface n-type drift region 4 has a diffusion depth of 2.5 ⁇ m and a surface impurity concentration of 2.0 ⁇ 10 16 cm ⁇ 3 .
  • the n + drain layer 1 has a thickness of 0.5 ⁇ m and an impurity concentration of 1.0 ⁇ 10 19 cm ⁇ 3 .
  • the p + drain region 17 has a thickness of 0.5 ⁇ m and an impurity concentration of 1.0 ⁇ 10 18 cm ⁇ 3 .
  • the n buffer layer 11 has a thickness of 7 ⁇ m and an impurity concentration of 1.0 ⁇ 10 15 cm ⁇ 3 .
  • the n-type channel stopper region 14 has a width of 30.0 ⁇ m and an impurity concentration of 6.0 ⁇ 10 15 cm ⁇ 3 .
  • the impurity concentration (impurity amount) of the parallel pn structure means the carrier concentration (carrier amount).
  • the impurity concentration and the carrier concentration can be regarded as equivalent in a region where sufficient activation has been performed.
  • the impurity amount and the carrier amount can be regarded as being equal in a region where sufficient activation has been performed. Therefore, in this specification, for convenience, the impurity concentration includes the carrier concentration, and the impurity amount includes the carrier amount.
  • the electrical characteristics of the superjunction semiconductor device according to the first embodiment will be described.
  • a superjunction MOSFET when a built-in diode composed of a first p-type region and a first n-type region reversely recovers, the first parallel pn structure is pinched off, and at the same time, the accumulated carriers are in the p base region and n + Exhaled to the drain layer. For this reason, at the time of reverse recovery of the built-in diode, carriers are depleted in the element active portion. On the other hand, at the periphery of the element, the depletion layer gradually spreads as the applied voltage increases, so that carriers (accumulated carriers) remain in the neutral region.
  • the accumulated carriers remaining in the neutral region concentrate and flow into the outermost p base region (hereinafter referred to as the outermost peripheral p base region) having a high electric field.
  • the reverse recovery tolerance is limited.
  • the super-junction MOSFET according to the first embodiment by reducing the volume of the n + drain layer 1 and a part of the n + drain layer 1 in the peripheral region 22 to the p + drain region 17, p + Electron injection from the drain region 17 to the second parallel pn structure is suppressed, and the amount of accumulated carriers in the element peripheral portion 22 is reduced.
  • the carrier lifetime of the second parallel pn structure of the element peripheral portion 22 is made shorter than the carrier lifetime of the first parallel pn structure of the element active portion 21. Therefore, the leakage current in the off state is small and low loss can be achieved.
  • the conventional superjunction in which the carrier lifetime of the second parallel pn structure at the periphery of the element is shortened by applying the local lifetime technique Since it is not necessary to shorten the carrier lifetime of the second parallel pn structure of the element peripheral portion 22 as the MOSFET, it is possible to suppress a significant increase in leakage current in the off state.
  • the first and second parallel pn are formed on the front surface of the n-type semiconductor substrate composed of the n buffer layer 11 or the low resistance and the n buffer layer 11 with a thickness of, for example, about 600 ⁇ m by a general multi-stage epitaxial growth method.
  • a structure and an n-type channel stopper region 14 are formed.
  • an n epitaxial layer is grown on the n buffer layer 11.
  • n-type impurities such as phosphorus (P) are ion-implanted from the screen oxide film over the entire surface of the n epitaxial layer.
  • a resist mask (a portion corresponding to the formation region of the first and second p-type regions 2b and 12b is opened on the n epitaxial layer based on the repetition pitches P1 and P2 of the first and second parallel pn structures) (Not shown).
  • a p-type impurity such as boron is ion-implanted from the screen oxide film into the n epitaxial layer exposed in the opening of the resist mask to selectively form a p-type impurity region inside the n epitaxial layer.
  • the n epitaxial layer for sealing is further formed on the outermost surface. Laminate the layers (cap deposition process).
  • each p-type impurity region formed inside the n epitaxial layer is activated by heat treatment.
  • the p-type impurity regions facing each other in the depth direction are connected between the n epitaxial layers stacked by the multistage epitaxial process, and the first and second p-type regions 2b and 12b are formed.
  • the n epitaxial layers remaining between the first and second p-type regions 2b and 12b become the first and second n-type regions 2a and 12a.
  • first and second parallel pn structures are formed.
  • an epitaxial substrate in which the first and second parallel pn structures and the n-type channel stopper region 14 are stacked on the n semiconductor substrate to be the n buffer layer 11 is manufactured.
  • a MOS gate structure of the element active portion 21 and a front surface electrode (source electrode 10 or the like) are formed on the front surface side of the epitaxial substrate by a general method.
  • the back surface of the epitaxial substrate (the surface on the n buffer layer 11 side) is ground to reduce the thickness of the epitaxial substrate to about 50 ⁇ m, for example.
  • a resist mask having an opening corresponding to a region where the n + drain layer 1 is formed is formed on the back surface of the epitaxial substrate (the surface of the n buffer layer 11).
  • n-type impurities are ion-implanted using this resist mask as a mask to form an n + drain layer 1 on the front surface layer of the epitaxial substrate.
  • the resist mask used for forming the n + drain layer 1 is removed.
  • a resist mask is formed on the back surface of the epitaxial substrate so as to cover the n + drain layer 1 and open a portion corresponding to the formation region of the p + drain region 17.
  • p-type impurities are ion-implanted to form a p + drain region 17 in the front surface layer of the epitaxial substrate. Then, the resist mask used for forming the p + drain region 17 is removed. The order of ion implantation for forming the n + drain layer 1 and ion implantation for forming the p + drain region 17 may be reversed. Thereafter, the n + drain layer 1 and the p + drain region 17 are activated by heat treatment, whereby the super junction MOSFET shown in FIG. 1 is completed.
  • the volume of the n + drain layer in the device peripheral portion is reduced. Therefore, injection of electrons from the n + drain layer on the back surface side of the substrate into the second parallel pn structure is suppressed, and accordingly, the second parallel pn structure starts from the outermost peripheral p base region on the front surface side of the substrate. Hole injection into the substrate is suppressed. Thereby, the amount of accumulated carriers in the peripheral portion of the element can be reduced, and current concentration in the outermost peripheral p base region in the reverse recovery process of the built-in diode can be reduced. Therefore, reverse recovery tolerance (breakdown tolerance) can be improved.
  • the off state is lower than in the prior art.
  • the leakage current becomes small, the loss can be reduced.
  • FIG. 2 is a cross-sectional view illustrating the structure of the semiconductor device according to the second embodiment.
  • the superjunction semiconductor device according to the second embodiment is different from the superjunction semiconductor device according to the first embodiment in that an n-type bulk region 31 continuous with the first parallel pn structure is used instead of the second parallel pn structure.
  • the p-type RESURF region 32 is provided in the surface layer on the front surface side of the substrate in the n-type bulk region 31.
  • the n-type bulk region 31 is a region between the first parallel pn structure provided from the element active part 21 to the element peripheral part 22 and the n-type channel stopper region 14 provided on the outermost part of the element peripheral part 22. It is.
  • the p-type RESURF region 32 is selectively provided in the surface layer on the substrate front surface side of the n-type bulk region 31 so as to be in contact with the outermost peripheral p base region 3b.
  • the oxide film 15 is provided on the surfaces of the n-type bulk region 31 and the p-type RESURF region 32 (surface on the substrate front side).
  • Other configurations of the superjunction semiconductor element according to the second embodiment are the same as those of the superjunction semiconductor element according to the first embodiment.
  • an epitaxial substrate is manufactured by a general multistage epitaxial growth method.
  • an n-type bulk region 31 is formed in the element peripheral portion 22 of the epitaxial substrate instead of the second parallel pn structure.
  • an element structure similar to that of the first embodiment and the p-type RESURF region 32 are formed on the front surface side and the back surface side of the epitaxial substrate, thereby completing the super junction MOSFET shown in FIG.
  • the p + drain region is provided in a part of the n + drain layer even if the peripheral portion of the element has an n-type bulk region. In this case, the same effect as in the first embodiment can be obtained.
  • FIG. 3 is a cross-sectional view illustrating the structure of the semiconductor device according to the third embodiment.
  • the superjunction semiconductor device according to the third embodiment is different from the superjunction semiconductor device according to the first embodiment in that the outer end portion of the p + drain region 41 extends to the outer periphery (side surface of the substrate) of the device peripheral portion 22. It is a point that has been.
  • Other configurations of the superjunction semiconductor element according to the third embodiment are the same as those of the superjunction semiconductor element according to the first embodiment.
  • the super junction semiconductor device manufacturing method according to the third embodiment is the same as the super junction semiconductor device manufacturing method according to the first embodiment except that the formation range of the p + drain region 41 is different.
  • the same effect as in the first embodiment can be obtained. Further, according to the third embodiment, electrons are injected from the n + drain layer into the second parallel pn structure, compared to the case where the p + drain region is provided in a part of the n + drain layer at the periphery of the element. This greatly reduces the amount of accumulated carriers.
  • FIG. 4 is a cross-sectional view showing the structure of the semiconductor device according to the fourth embodiment.
  • the superjunction semiconductor device according to the fourth embodiment is different from the superjunction semiconductor device according to the third embodiment in that the n + drain layer 1 is interposed between the p ++ drain region 51 and the n buffer layer 11. It is a point.
  • the p ++ drain region 51 is provided in the surface layer on the back side of the substrate of the n + drain layer 1 and is not in contact with the n buffer layer 11.
  • a p-type RESURF region 52 in contact with the outermost peripheral p base region 3b may be selectively provided in the surface layer on the front surface side of the second parallel pn structure substrate.
  • Other configurations of the superjunction semiconductor element according to the fourth embodiment are the same as those of the superjunction semiconductor element according to the third embodiment.
  • the dimensions and impurity concentration of each part take the following values.
  • the n + drain layer 1 has a thickness of 0.5 ⁇ m and an impurity concentration of 1.0 ⁇ 10 18 cm ⁇ 3 .
  • the p ++ drain region 51 has a thickness of 0.3 ⁇ m and an impurity concentration of 2.0 ⁇ 10 18 cm ⁇ 3 .
  • the dimensions and impurity concentrations of other parts of the superjunction MOSFET according to the fourth embodiment are the same as those of the superjunction MOSFET according to the first embodiment.
  • a process for producing an epitaxial substrate by a general multi-stage epitaxial growth method a process for forming a surface element structure on the front surface of the epitaxial substrate, and an epitaxial process by grinding the back surface of the epitaxial substrate. Steps for reducing the thickness of the substrate are sequentially performed.
  • the MOS gate structure and front surface electrode of the element active portion 21 are formed as in the first embodiment, and the element A p-type RESURF region 52 is formed in the peripheral portion 22.
  • first ion implantation of n-type impurities is performed on the entire back surface of the epitaxial substrate (the surface of the n buffer layer 11), and the n + drain layer 1 is formed on the surface layer on the back surface of the epitaxial substrate.
  • a resist mask having an opening corresponding to the formation region of the p ++ drain region 51 is formed on the back surface of the epitaxial substrate.
  • the resist mask p-type impurities are second ion implantation as a mask, the inside of the n + drain layer 1, forming a p ++ drain region 51 with depth less than the depth of the n + drain layer 1 .
  • the p ++ drain region 51 is formed by inverting the n + drain layer 1 exposed in the opening of the resist mask to p-type. For this reason, the impurity concentration of the p ++ drain region 51 is set higher than the impurity concentration of the n + drain layer 1.
  • the resist mask used to form the p ++ drain region 51 is removed. Thereafter, the n + drain layer 1 and the p ++ drain region 51 are activated by heat treatment, thereby completing the super junction MOSFET shown in FIG.
  • the same effect as in the third embodiment can be obtained.
  • the n + drain layer is interposed between the p ++ drain region and the n buffer layer, also the injection of holes from the p ++ drain region to the n buffer layer suppressed can do.
  • the operation of the parasitic pnp transistor including the outermost peripheral p base region, the second parallel pn structure, the n buffer layer, and the p ++ drain region is suppressed, and the carrier accumulation amount in the element peripheral portion 22 is further reduced. Thereby, reverse recovery tolerance can further be improved.
  • the element active portion formed on the first main surface side of the substrate is a switching including a channel diffusion layer and a source region forming an inversion layer on the first main surface side in the case of a vertical MOSFET, for example.
  • This is an active part or passive part having a selection function of conduction and non-conduction on the first main surface side of the drift part. Therefore, the present invention can be applied not only to MOSFET but also to FWD or Schottky diode.
  • the first conductivity type is n-type and the second conductivity type is p-type.
  • the first conductivity type is p-type and the second conductivity type is n-type. It holds.
  • the semiconductor element according to the present invention is useful for a high-power semiconductor device, and in particular, it is possible to achieve both a high breakdown voltage and a large current capacity, such as a MOSFET having a parallel pn structure in a drift portion. Useful for power semiconductor devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

 ドレイン・ドリフト部(2)は、素子活性部(21)となるpベース領域(3a)の直下部分に概ね相当し、第1のn型領域(2a)と第1のp型領域(2b)とを交互に繰り返して接合してなる第1の並列pn構造である。ドレイン・ドリフト部(2)の周りは、第1の並列pn構造に連続して配向する第2のn型領域(12a)と第2のp型領域(12b)とを交互に繰り返して接合してなる第2の並列pn構造からなる素子周縁部(22)となっている。第1,2の並列pn構造とn+ドレイン層(1)との間には、nバッファ層(11)が設けられている。素子周縁部(22)におけるn+ドレイン層(1)の内部には、n+ドレイン層(1)を深さ方向に貫通するp+ドレイン領域(17)が選択的に設けられている。これにより、オン抵抗と耐圧とのトレードオフ関係を大幅に改善することができる超接合半導体素子において、破壊耐量を向上させることができる。

Description

半導体素子
 この発明は、半導体素子に関する。
 一般に、半導体素子は、片面に電極を有する横型半導体素子と、両面に電極を有する縦型半導体素子に分類される。縦型半導体素子は、オン状態のときにドリフト電流が流れる方向と、オフ状態のときに逆バイアス電圧による空乏層が伸びる方向とが同じである。例えば、通常のプレーナゲート構造のnチャネル縦型MOSFET(MOSFET:Metal Oxide Semiconductor Field Effect Transistor:MOS型電界効果トランジスタ)では、高抵抗のn-ドリフト層の部分は、オン状態のときに、縦方向にドリフト電流を流す領域として働く。したがって、このn-ドリフト層の電流経路を短くすれば、ドリフト抵抗が低くなるため、MOSFETの実質的なオン抵抗を下げることができるという効果が得られる。
 その一方で、高抵抗のn-ドリフト層の部分は、オフ状態のときには空乏化して耐圧を高める。したがって、n-ドリフト層が薄くなると、pベース領域とn-ドリフト層との間のpn接合から進行するドレイン-ベース間空乏層の広がる幅が狭くなり、シリコンの臨界電界強度に速く達するため、耐圧が低下してしまう。逆に、耐圧の高い半導体素子では、n-ドリフト層が厚いため、オン抵抗が大きくなり、損失が増えてしまう。このように、オン抵抗と耐圧との間には、トレードオフ関係がある。
 このトレードオフ関係は、IGBT(絶縁ゲート型バイポーラトランジスタ)やバイポーラトランジスタやダイオード等の半導体素子においても同様に成立することが知られている。また、このトレードオフ関係は、オン状態のときにドリフト電流が流れる方向と、オフ状態のときの逆バイアスによる空乏層の伸びる方向とが異なる横型半導体素子にも共通である。
 上述したトレードオフ関係による問題の解決法として、ドリフト層を、不純物濃度を高めたn型ドリフト領域とp型仕切領域とを交互に繰り返し接合した構成の並列pn構造とした超接合半導体素子が公知である(例えば、下記特許文献1~3参照。)。このような構造の半導体素子では、並列pn構造の不純物濃度が高くても、オフ状態のときに、空乏層が、並列pn構造の縦方向に伸びる各pn接合から横方向に広がり、ドリフト層全体を空乏化するため、高耐圧化を図ることができる。
 一方、ダイオードを備えた半導体装置や、ブリッジ回路のようにMOSFET等に内蔵される内蔵ダイオードを利用した回路の場合、ダイオードの逆回復過程に高いdi/dtが発生しても素子が破壊に至らないようにする必要がある。このような問題の解決法として、素子周縁部の並列pn構造のキャリアライフタイムを素子活性部の並列pn構造のキャリアライフタイムよりも短くし、素子周縁部から素子活性部へ向かって流れる電流を低減させることで破壊耐量を向上させることが提案されている(例えば、下記特許文献4~7参照。)。下記特許文献6には、ダイオードとMOSFETとを集積することについて記載されているが、MOSFETの耐圧領域に対向するドレイン領域にp型領域を形成することについて記載されていない。
 このように局所ライフタイム技術を適用した従来の超接合MOSFETの構成について説明する。図5は、従来の縦型MOSFETの構造を示す断面図である。図5は、下記特許文献5の図12である。図5に示すように、裏側のドレイン電極113が導電接触した低抵抗のn+ドレイン層101の上に、第1の並列pn構造のドレイン・ドリフト部102が設けられている。ドレイン・ドリフト部102の表面層に、素子活性部121となる高不純物濃度のpベース領域103が選択的に設けられている。
 ドレイン・ドリフト部102は、素子活性部121となる複数ウェルのpベース領域103の直下部分に概ね相当し、基板の厚み方向に配向する層状縦型の第1のn型領域102aと基板の厚み方向に配向する層状縦型の第1のp型領域102bとを繰り返しピッチP101で基板の沿面方向へ交互に繰り返して接合してなる第1の並列pn構造である。第1の並列pn構造の基板おもて面側には、pベース領域103、p+コンタクト領域105、n+ソース領域106、ゲート絶縁膜107およびゲート電極層108からなるMOSゲート(金属-酸化膜-半導体からなる絶縁ゲート)構造と、ソース電極110と、が設けられている。符号109は、層間絶縁膜である。
 ドレイン・ドリフト部102の周りは第2の並列pn構造からなる素子周縁部122となっている。素子周縁部122は、ドレイン・ドリフト部102の第1の並列pn構造に連続して繰り返しピッチP101で基板の厚み方向に配向する層状縦型の第2のn型領域112aと基板の厚み方向に配向する層状縦型の第2のp型領域112bとを基板の沿面方向に交互に繰り返して接合してなる。第1の並列pn構造と第2の並列pn構造とは、繰り返しピッチP101が略同一であり、また不純物濃度とも略同一である。
 第2の並列pn構造の表面には酸化膜115が設けられている。酸化膜115の上にはソース電極110から延長されたフィールドプレート電極FPが形成されており、第2の並列pn構造を覆っている。素子周縁部122の外側には、n+ドレイン層101に接続するn型チャネルストッパー領域114が形成され、n型チャネルストッパー領域114にはストッパー電極116が導電接触している。第2の並列pn構造およびn型チャネルストッパー領域114は第1の並列pn構造よりもキャリアライフタイムの短い領域となっている(ハッチングで示す部分)。
米国特許第5216275号明細書 米国特許第5438215号明細書 特開平9-266311号公報 特開2003-224273号公報 特開2004-22716号公報 特許第4743447号公報 特許第3925319号公報
 しかしながら、上述した特許文献4~7では、素子周縁部122の第2の並列pn構造のキャリアライフタイムを素子活性部121の第1の並列pn構造のキャリアライフタイムよりも短くすることによって素子周縁部122のキャリア蓄積量を減少させ、第1のp型領域102bと第1のn型領域102aとからなる内蔵ダイオードの逆回復過程における逆回復電流の局所的な集中に対する破壊耐量を向上させているが、素子周縁部122の第2の並列pn構造のキャリアライフタイムを短くすることでオフ状態のときの漏れ電流が大きくなり、その結果、損失が大きくなるという問題がある。また、オフ状態のときの漏れ電流が大きくなり過ぎた場合、熱暴走により素子が破壊に至るという問題がある。
 この発明は、上述した従来技術による問題点を解消するため、オン抵抗と耐圧とのトレードオフ関係を大幅に改善することができる超接合半導体素子において、破壊耐量を向上させることができる半導体素子を提供することを目的とする。
 上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体素子は、次の特徴を有する。基板の第1主面側に存在して能動または受動で電流を流す素子活性部と、前記基板の第2主面側の表面層に存在する第1導電型低抵抗層と、前記素子活性部と前記第1導電型低抵抗層との間に介在し、オン状態ではドリフト電流が縦方向に流れるとともにオフ状態では空乏化する縦型ドリフト部と、を有する。前記縦型ドリフト部が、前記基板の厚み方向に配向する第1の縦型第1導電型領域と前記基板の厚み方向に配向する第1の縦型第2導電型領域とが交互に繰り返し接合してなる第1の並列pn構造をなす。前記縦型ドリフト部の周りで前記第1主面と前記第1導電型低抵抗層との間に介在し、オン状態では概ね非電路領域であってオフ状態では空乏化する素子周縁部を有する。前記第1の並列pn構造と前記第1導電型低抵抗層との間に、前記素子活性部から前記素子周縁部にわたって、前記第1導電型低抵抗層よりも高抵抗な第1導電型層が設けられている。前記素子周縁部における前記第2主面側の表面層に、第2導電型低抵抗層が選択的に設けられている。前記第1導電型低抵抗層および前記第2導電型低抵抗層に接する出力電極が設けられている。
 また、この発明にかかる半導体素子は、上述した発明において、前記第2導電型低抵抗層の不純物濃度は、前記第1導電型層の不純物濃度よりも高いことを特徴とする。
 また、この発明にかかる半導体素子は、上述した発明において、前記第2導電型低抵抗層の不純物濃度は、前記第1導電型低抵抗層の不純物濃度よりも高いことを特徴とする。
 また、この発明にかかる半導体素子は、上述した発明において、前記第1主面側に設けられた複数の第2導電型ベース領域をさらに有する。そして、前記第2導電型低抵抗層の内側の端部は、前記素子活性部と前記素子周縁部との境界に位置する。前記第2導電型低抵抗層の外側の端部は、複数の前記第2導電型ベース領域のうちの最も外側に設けられた第2導電型ベース領域の外側の端部から、前記縦型ドリフト部の厚さ以上外側へ離れて位置していることを特徴とする。
 また、この発明にかかる半導体素子は、上述した発明において、前記第2導電型低抵抗層は、前記素子活性部と前記素子周縁部との境界から前記素子周縁部の外周にわたって設けられていることを特徴とする。
 また、この発明にかかる半導体素子は、上述した発明において、前記第2導電型低抵抗層は、前記第1導電型低抵抗層の前記第2主面側の表面層に設けられている。前記第2導電型低抵抗層と前記第1導電型層との間に前記第1導電型低抵抗層が介在することを特徴とする。
 また、この発明にかかる半導体素子は、上述した発明において、前記素子周縁部は、前記基板の厚み方向に配向する第2の縦型第1導電型領域と前記基板の厚み方向に配向する第2の縦型第2導電型領域とが交互に繰り返し接合してなる第2の並列pn構造をなすことを特徴とする。
 上述した発明によれば、素子周縁部におけるn+ドレイン層(第1導電型低抵抗層)の内部にp+ドレイン領域(第2導電型低抵抗層)を選択的に設けることで、素子周縁部におけるn+ドレイン層の体積が減少するため、基板裏面側のn+ドレイン層から第2の並列pn構造への電子の注入が抑制され、これに伴って基板おもて面側の最外周pベース領域から第2の並列pn構造へのホールの注入が抑制される。これにより、素子周縁部のキャリア蓄積量を減少させることができ、内蔵ダイオードの逆回復過程における最外周pベース領域への電流集中を緩和することができる。
 本発明にかかる半導体素子によれば、破壊耐量を向上させることができるという効果を奏する。
図1は、実施の形態1にかかる半導体素子の構造を示す断面図である。 図2は、実施の形態2にかかる半導体素子の構造を示す断面図である。 図3は、実施の形態3にかかる半導体素子の構造を示す断面図である。 図4は、実施の形態4にかかる半導体素子の構造を示す断面図である。 図5は、従来の縦型MOSFETの構造を示す断面図である。
 以下に添付図面を参照して、この発明にかかる半導体素子の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
(実施の形態1)
 実施の形態1にかかる半導体素子の構造について、プレーナゲート構造のnチャネル縦型MOSFETを例に説明する。図1は、実施の形態1にかかる半導体素子の構造を示す断面図である。図1に示す実施の形態1にかかる半導体素子は、第1の並列pn構造のドレイン・ドリフト部(縦型ドリフト部)2を備えた超接合MOSFETである。ドレイン・ドリフト部2の一方の表面側(以下、基板おもて面側とする)の表面層には、素子活性部21となる高不純物濃度のpベース領域3aが選択的に設けられている。基板とは、後述するエピタキシャル基板である。
 pベース領域3aの内部の基板おもて面側には、高不純物濃度のp+コンタクト領域5およびn+ソース領域6が選択的に設けられている。n+ソース領域6は、ウェル状のpベース領域3aの中にp+コンタクト領域5よりも浅く形成されており、2重拡散型MOS部を構成している。pベース領域3aの、ドレイン・ドリフト部2とn+ソース領域6とに挟まれた部分の表面上には、ゲート絶縁膜7を介してポリシリコン等のゲート電極層8が設けられている。ソース電極10は、層間絶縁膜9に開けたコンタクト孔を介してpベース領域3aおよびn+ソース領域6に跨って導電接触している。
 ドレイン・ドリフト部2は、素子活性部21となる複数ウェルのpベース領域3aの直下部分に概ね相当し、基板の厚み方向に配向する層状縦型の第1のn型領域(第1の縦型第1導電型領域)2aと基板の厚み方向に配向する層状縦型の第1のp型領域(第1の縦型第2導電型領域)2bとを繰り返しピッチP1で基板の沿面方向へ交互に繰り返して接合してなる第1の並列pn構造である。
 いずれかの第1のn型領域2aは、その上端(基板おもて面側の端部)がpベース領域3aの挾間領域である表面n型ドリフト領域4に達し、その下端(基板裏面側の端部)がnバッファ層11に接している。表面n型ドリフト領域4に達する第1のn型領域2aはオン状態では電路領域であるが、その余の第1のn型領域2aは概ね非電路領域となっている。また、第1のp型領域2bは、その上端がpベース領域3aのウェル底面に接し、その下端がnバッファ層11に接している。
 ドレイン・ドリフト部2の周りは第2の並列pn構造からなる素子周縁部22となっている。素子周縁部22は、ドレイン・ドリフト部2の第1の並列pn構造に連続して繰り返しピッチP2で基板の厚み方向に配向する層状縦型の第2のn型領域(第2の縦型第1導電型領域)12aと基板の厚み方向に配向する層状縦型の第2のp型領域(第2の縦型第2導電型領域)12bとを基板の沿面方向に交互に繰り返して接合してなる。
 第2の並列pn構造は、高耐圧化を容易に実現するため(オフ状態のときに空乏層を広がりやすくするため)に設けられている。第2の並列pn構造の不純物濃度は第1の並列pn構造の不純物濃度よりも低くなっている。第2の並列pn構造の繰り返しピッチP2は、第1の並列pn構造の繰り返しピッチP1よりも狭くなっている。第2の並列pn構造の表面(基板おもて面側)には酸化膜15が設けられている。
 酸化膜15はその膜厚がドレイン・ドリフト部2から素子周縁部22にかけて段階的に厚くなるように形成されている。この酸化膜15の上にはソース電極10から延長されたフィールドプレート電極FPが形成されており、第2の並列pn構造を覆っている。素子周縁部22の外側には、n型チャネルストッパー領域14が形成され、n型チャネルストッパー領域14の基板おもて面側にはストッパー電極16が導電接触している。
 ドレイン・ドリフト部2の他方の表面(基板裏面側)には、nバッファ層11が設けられている。nバッファ層11は、素子周縁部22の外周(基板側面)にまで延在され、n型チャネルストッパー領域14に接続されている。nバッファ層11は、第1のp型領域2bと第1のn型領域2aとからなる内蔵ダイオードが逆回復する(ゲートとソースとが短絡された状態で内蔵ダイオードが順方向から逆方向に印加される)ときのキャリア蓄積層である。
 nバッファ層11の不純物濃度は、オフ状態のときにドレイン-ベース間空乏層が後述するn+ドレイン層(第1導電型低抵抗層)1およびp+ドレイン領域(第2導電型低抵抗層)17に達しないように設定する。オフ状態のときにドレイン-ベース間空乏層がp+ドレイン領域17に達しない構成とすることで、最外周pベース領域3b、第2の並列pn構造、nバッファ層11およびp+ドレイン領域17からなる寄生pnpトランジスタが動作しないため、素子周縁部22のキャリア蓄積量を減少させることができる。
 素子活性部21におけるnバッファ層11の基板裏面側の表面層には、n+ドレイン層1が設けられている。素子周縁部22におけるnバッファ層11の基板裏面側の表面層には、p+ドレイン領域17が選択的に設けられている。nバッファ層11の基板裏面側の表面層のp+ドレイン領域17以外の部分には、n+ドレイン層1が設けられている。p+ドレイン領域17は、内蔵ダイオードの順方向導通時に基板裏面側のn+ドレイン層1から第2の並列pn構造への電子の注入を抑制する機能を有する。n+ドレイン層1およびp+ドレイン領域17は、ドレイン電極(出力電極)13に導電接触する。
 p+ドレイン領域17の外側の端部は、最も外側のpベース領域(以下、最外周pベース領域とする)3bの底面の外側の端部を通る基板裏面に垂直な垂直線A-Oの位置から、基板おもて面とnバッファ層11との間の距離(すなわち第2の並列pn構造の厚さ)t1以上外側へ離れて位置しているのが好ましい。その理由は、次のとおりである。最外周pベース領域3bから第2の並列pn構造へ注入されるホール(正孔)の外側への広がり(拡散)θは、最外周pベース領域3bと第2の並列pn構造との境界の法線に対して45度となる。すなわち、最外周pベース領域3bから第2の並列pn構造へ注入されるホールは、垂直線A-Oと基板おもて面との交点Oを通り、垂直線A-Oから外側へ45度傾いた斜線B-Oまでの範囲に多く注入される。素子周縁部22にキャリアが蓄積されるのは、基板おもて面側の最外周pベース領域3bから第2の並列pn構造へ注入されるホールに対して、基板裏面側のn+ドレイン層1から第2の並列pn構造へ電子が注入されるからである。このため、垂直線A-Oから、第2の並列pn構造とnバッファ層11との境界と斜線B-Oとの交点O’を通る基板裏面に垂直な垂直線C-O’までの間、すなわち垂直線A-Oから距離t1の部分にp+ドレイン領域17が存在するように、p+ドレイン領域17の外側の端部を外側へ延在させる。これによって、最外周pベース領域3bから注入されるホールの注入量が多い範囲でのn+ドレイン層1の体積を減少させることができ、効率的にn+ドレイン層1から第2の並列pn構造への電子の注入を抑制することができる。
 また、p+ドレイン領域17の内側の端部は、素子活性部21と素子周縁部22との境界に位置するのが好ましい。その理由は、電界の高い最外周pベース領域3bと第2の並列pn構造を挟んで対向する基板裏面側付近におけるn+ドレイン層1の体積を減少させることができ、n+ドレイン層1から第2の並列pn構造へ注入される電子をさらに低減することができるからである。したがって、p+ドレイン領域17は、少なくとも、素子活性部21と素子周縁部22との境界から垂直線C-O’まで設けられているのが好ましい。素子活性部21と素子周縁部22との境界とは、最外周pベース領域3bの内側の基板おもて面側の端部から、pベース領域3aの基板おもて面側の幅の半分の幅t2だけ外側へ離れた位置Dである。
 特に限定しないが、例えば実施の形態1にかかる超接合MOSFETが耐圧600Vクラスである場合には、各部の寸法および不純物濃度は次の値をとる。ドレイン・ドリフト部2の厚さ(深さ方向)は35.0μm、第1のn型領域2aおよび第1のp型領域2bの幅は7.0μm(繰り返しピッチP1は14.0μm)、第1のn型領域2aおよび第1のp型領域2bの不純物濃度は3.0×1015cm-3である。第2のn型領域12aおよび第2のp型領域12bの幅は3.5μm(繰り返しピッチP2は7.0μm)、第2のn型領域12aおよび第2のp型領域12bの不純物濃度は1.0×1015cm-3である。
 pベース領域3a,3bの拡散深さは3.0μm、その表面不純物濃度は3.0×1017cm-3である。n+ソース領域6の拡散深さは0.2μm、その表面不純物濃度は3.0×1020cm-3である。p+コンタクト領域5の拡散深さは0.6μm、その表面不純物濃度は1.0×1019cm-3である。表面n型ドリフト領域4の拡散深さは2.5μm、その表面不純物濃度は2.0×1016cm-3である。n+ドレイン層1の厚さは0.5μm、その不純物濃度は1.0×1019cm-3である。p+ドレイン領域17の厚さは0.5μm、その不純物濃度は1.0×1018cm-3である。nバッファ層11の厚さは7μm、その不純物濃度は1.0×1015cm-3である。n型チャネルストッパー領域14の幅は30.0μm、その不純物濃度は6.0×1015cm-3である。
 上記並列pn構造の不純物濃度(不純物量)は、正確にはキャリア濃度(キャリア量)を意味する。一般に、十分な活性化を行った領域では不純物濃度とキャリア濃度は同等とみなせる。同様に、十分な活性化を行った領域では不純物量とキャリア量は同等とみなせる。従って、本明細書においては、便宜上、不純物濃度にはキャリア濃度が含まれるものとし、また不純物量にはキャリア量が含まれるものとする。
 次に、実施の形態1にかかる超接合半導体素子の電気的特性について説明する。通常、超接合MOSFETにおいて、第1のp型領域と第1のn型領域とからなる内蔵ダイオードが逆回復するとき、第1の並列pn構造がピンチオフすると同時に、蓄積キャリアがpベース領域およびn+ドレイン層に吐き出される。このため、内蔵ダイオードの逆回復時、素子活性部ではキャリアが枯渇する。一方、素子周縁部では、印加電圧の上昇に伴って空乏層が徐々に広がるため、中性領域にキャリア(蓄積キャリア)が残った状態となる。そして、空乏層が素子周縁部の外側へ広がるにしたがい、中性領域に残った蓄積キャリアは電界の高い最も外側のpベース領域(以下、最外周pベース領域とする)に集中して流れ込むため、逆回復耐量が制限される。
 素子周縁部にキャリアが蓄積されるのは、上述したように基板おもて面側の最外周pベース領域から第2の並列pn構造へ注入されるホールに対して、基板裏面側のn+ドレイン層から第2の並列pn構造へ電子が注入されるからである。このため、基板裏面側のn+ドレイン層から第2の並列pn構造への電子の注入を抑制することができれば、素子周縁部のキャリア蓄積量が減少され、最外周pベース領域への電流集中を緩和させることができる。例えば図5に示す従来の超接合MOSFETでは、素子周縁部122に電子線やヘリウム(He)、プロトン(H+)などを照射してライフタイムキラーとなる結晶欠陥を導入する局所ライフタイム技術を適用し、素子周縁部122の第2の並列pn構造のキャリアライフタイムを素子活性部121の第1の並列pn構造のキャリアライフタイムよりも短くして蓄積キャリアの再結合を促進させることで、素子周縁部122のキャリア蓄積量を減少させている。
 一方、実施の形態1にかかる超接合MOSFETにおいては、素子周縁部22におけるn+ドレイン層1の一部をp+ドレイン領域17にしてn+ドレイン層1の体積を減少させることにより、p+ドレイン領域17から第2の並列pn構造への電子の注入を抑制し、素子周縁部22のキャリア蓄積量を減少させている。また、実施の形態1にかかる超接合MOSFETにおいては、素子周縁部22の第2の並列pn構造のキャリアライフタイムを素子活性部21の第1の並列pn構造のキャリアライフタイムよりも短くしていないため、オフ状態のときの漏れ電流が小さく、低損失とすることができる。仮に、第1,2の並列pn構造全体のキャリアライフタイムを短くしたとしても、局所ライフタイム技術を適用して素子周縁部の第2の並列pn構造のキャリアライフタイムを短くした従来の超接合MOSFETほど素子周縁部22の第2の並列pn構造のキャリアライフタイムを短くしなくてよいため、オフ状態のときの漏れ電流が大幅に大きくなることを抑制することができる。
 次に、実施の形態1にかかる超接合MOSFETの製造方法について説明する。まず、nバッファ層11もしくは低抵抗とnバッファ層11とからなる例えば600μm程度の厚さのn型半導体基板のおもて面上に、一般的な多段エピタキシャル成長法により第1,2の並列pn構造およびn型チャネルストッパー領域14を形成する。具体的には、まず、nバッファ層11上に、nエピタキシャル層を成長させる。次に、nエピタキシャル層上にスクリーン酸化膜(不図示)を形成し、nエピタキシャル層の全面にスクリーン酸化膜上から例えばリン(P)などのn型不純物をイオン注入する。
 次に、nエピタキシャル層上に、第1,2の並列pn構造の繰り返しピッチP1,P2に基づいて第1,2のp型領域2b,12bの形成領域に対応する部分が開口したレジストマスク(不図示)を形成する。次に、レジストマスクの開口部に露出されたnエピタキシャル層にスクリーン酸化膜上から例えばボロンなどのp型不純物をイオン注入し、nエピタキシャル層の内部にp型不純物領域を選択的に形成する。そして、nエピタキシャル層を成長させる工程から、nエピタキシャル層の内部にp型不純物領域を形成する工程までを所定の回数繰り返し行った後(多段エピタキシャル処理)、最表面にさらに封止用のnエピタキシャル層を積層する(キャップデポ処理)。
 次に、封止用のnエピタキシャル層上に酸化膜15を形成した後、熱処理によりnエピタキシャル層の内部に形成された各p型不純物領域を活性化させる。この活性化処理により、多段エピタキシャル処理によって積層した各nエピタキシャル層間において深さ方向に対向するp型不純物領域どうしがつながり、第1,2のp型領域2b,12bが形成される。また、第1,2のp型領域2b,12bの間に残るnエピタキシャル層が第1,2のn型領域2a,12aとなる。これによって、第1,2の並列pn構造が形成される。
 ここまでの工程により、nバッファ層11となるn半導体基板上に、第1,2の並列pn構造およびn型チャネルストッパー領域14が積層されてなるエピタキシャル基板が作製される。次に、一般的な方法により、このエピタキシャル基板のおもて面側に、素子活性部21のMOSゲート構造、おもて面電極(ソース電極10など)を形成する。次に、エピタキシャル基板の裏面(nバッファ層11側の面)を研削して、エピタキシャル基板の厚さを例えば50μm程度まで薄くする。
 次に、エピタキシャル基板の裏面(nバッファ層11の表面)に、n+ドレイン層1の形成領域に対応する部分が開口するレジストマスクを形成する。次に、このレジストマスクをマスクとしてn型不純物をイオン注入し、エピタキシャル基板の裏面の表面層にn+ドレイン層1を形成する。そして、n+ドレイン層1を形成するために用いたレジストマスクを除去する。次に、エピタキシャル基板の裏面に、n+ドレイン層1を覆い、かつp+ドレイン領域17の形成領域に対応する部分が開口するレジストマスクを形成する。
 次に、このレジストマスクをマスクとしてp型不純物をイオン注入し、エピタキシャル基板の裏面の表面層にp+ドレイン領域17を形成する。そして、p+ドレイン領域17を形成するために用いたレジストマスクを除去する。n+ドレイン層1を形成するためのイオン注入と、p+ドレイン領域17を形成するためのイオン注入の順番を逆にしてもよい。その後、熱処理によりn+ドレイン層1およびp+ドレイン領域17を活性化させることにより、図1に示す超接合MOSFETが完成する。
 以上、説明したように、実施の形態1によれば、素子周縁部におけるn+ドレイン層の内部にp+ドレイン領域を選択的に設けることで、素子周縁部におけるn+ドレイン層の体積が減少するため、基板裏面側のn+ドレイン層から第2の並列pn構造への電子の注入が抑制され、これに伴って基板おもて面側の最外周pベース領域から第2の並列pn構造へのホールの注入が抑制される。これにより、素子周縁部のキャリア蓄積量を減少させることができ、内蔵ダイオードの逆回復過程における最外周pベース領域への電流集中を緩和することができる。したがって、逆回復耐量(破壊耐量)を向上させることができる。また、従来のように素子周縁部の第2の並列pn構造のキャリアライフタイムを素子活性部の第1の並列pn構造のキャリアライフタイムよりも短くしなくてよいため、従来よりもオフ状態のときの漏れ電流が小さくなり、損失を小さくすることができる。
(実施の形態2)
 実施の形態2にかかる超接合半導体素子の構造について説明する。図2は、実施の形態2にかかる半導体素子の構造を示す断面図である。実施の形態2にかかる超接合半導体素子が実施の形態1にかかる超接合半導体素子と異なる点は、第2の並列pn構造に代えて、第1の並列pn構造に連続するn型バルク領域31を設け、n型バルク領域31の基板おもて面側の表面層にp型リサーフ領域32を設けた点である。
 n型バルク領域31は、素子活性部21から素子周縁部22にわたって設けられた第1の並列pn構造と、素子周縁部22の最も外側に設けられたn型チャネルストッパー領域14との間の領域である。p型リサーフ領域32は、最外周pベース領域3bに接するように、n型バルク領域31の基板おもて面側の表面層に選択的に設けられている。酸化膜15は、n型バルク領域31およびp型リサーフ領域32の表面(基板おもて面側の表面)に設けられている。実施の形態2にかかる超接合半導体素子のそれ以外の構成は、実施の形態1にかかる超接合半導体素子と同様である。
 次に、実施の形態2にかかる超接合MOSFETの製造方法について説明する。実施の形態1と同様に、一般的な多段エピタキシャル成長法によりエピタキシャル基板を作製する。このとき、エピタキシャル基板の素子周縁部22には、第2の並列pn構造に代えてn型バルク領域31が形成される。その後、このエピタキシャル基板のおもて面側および裏面側に実施の形態1と同様の素子構造とp型リサーフ領域32とを形成することにより、図2に示す超接合MOSFETが完成する。
 以上、説明したように、実施の形態2によれば、素子周縁部がn型バルク領域からなるバルク構成であったとしても、n+ドレイン層の一部にp+ドレイン領域が設けられていれば、実施の形態1と同様の効果を得ることができる。
(実施の形態3)
 実施の形態3にかかる超接合半導体素子の構造について説明する。図3は、実施の形態3にかかる半導体素子の構造を示す断面図である。実施の形態3にかかる超接合半導体素子が実施の形態1にかかる超接合半導体素子と異なる点は、p+ドレイン領域41の外側の端部が素子周縁部22の外周(基板側面)まで延在されている点である。実施の形態3にかかる超接合半導体素子のそれ以外の構成は、実施の形態1にかかる超接合半導体素子と同様である。実施の形態3にかかる超接合MOSFETの製造方法のp+ドレイン領域41の形成範囲が異なる以外は、実施の形態1にかかる超接合半導体素子の製造方法と同様である。
 以上、説明したように、実施の形態3によれば、実施の形態1と同様の効果を得ることができる。また、実施の形態3によれば、素子周縁部におけるn+ドレイン層内の一部にp+ドレイン領域を設ける場合よりも、n+ドレイン層から第2の並列pn構造への電子の注入が大幅に低減され、キャリア蓄積量を減少させることができる。
(実施の形態4)
 実施の形態4にかかる超接合半導体素子の構造について説明する。図4は、実施の形態4にかかる半導体素子の構造を示す断面図である。実施の形態4にかかる超接合半導体素子が実施の形態3にかかる超接合半導体素子と異なる点は、p++ドレイン領域51とnバッファ層11との間に、n+ドレイン層1が介在している点である。具体的には、p++ドレイン領域51は、n+ドレイン層1の基板裏面側の表面層に設けられており、nバッファ層11に接していない。第2の並列pn構造の基板おもて面側の表面層に、最外周pベース領域3bに接するp型リサーフ領域52を選択的に設けてもよい。実施の形態4にかかる超接合半導体素子のそれ以外の構成は、実施の形態3にかかる超接合半導体素子と同様である。
 特に限定しないが、例えば実施の形態4にかかる超接合MOSFETが耐圧600Vクラスである場合には、各部の寸法および不純物濃度は次の値をとる。n+ドレイン層1の厚さは0.5μm、その不純物濃度は1.0×1018cm-3である。p++ドレイン領域51の厚さは0.3μm、その不純物濃度は2.0×1018cm-3である。実施の形態4にかかる超接合MOSFETのその他の各部の寸法および不純物濃度は、実施の形態1にかかる超接合MOSFETと同様である。
 次に、実施の形態4にかかる超接合MOSFETの製造方法について説明する。実施の形態1と同様に、一般的な多段エピタキシャル成長法によりエピタキシャル基板を作製する工程、エピタキシャル基板のおもて面におもて面素子構造を形成する工程、エピタキシャル基板の裏面を研削してエピタキシャル基板の厚さを薄くする工程を順に行う。このとき、エピタキシャル基板のおもて面におもて面素子構造を形成する工程では、実施の形態1と同様に素子活性部21のMOSゲート構造およびおもて面電極を形成するとともに、素子周縁部22にp型リサーフ領域52を形成する。
 次に、エピタキシャル基板の裏面(nバッファ層11の表面)全面にn型不純物を第1イオン注入し、エピタキシャル基板の裏面の表面層にn+ドレイン層1を形成する。次に、エピタキシャル基板の裏面に、p++ドレイン領域51の形成領域に対応する部分が開口するレジストマスクを形成する。次に、このレジストマスクをマスクとしてp型不純物を第2イオン注入し、n+ドレイン層1の内部に、n+ドレイン層1の深さよりも浅い深さでp++ドレイン領域51を形成する。
 p型不純物の第2イオン注入では、レジストマスクの開口部に露出されたn+ドレイン層1をp型に反転させることでp++ドレイン領域51を形成する。このため、p++ドレイン領域51の不純物濃度をn+ドレイン層1の不純物濃度よりも高く設定する。次に、p++ドレイン領域51を形成するために用いたレジストマスクを除去する。その後、熱処理によりn+ドレイン層1およびp++ドレイン領域51を活性化させることにより、図4に示す超接合MOSFETが完成する。
 以上、説明したように、実施の形態4によれば、実施の形態3と同様の効果を得ることができる。また、実施の形態4によれば、p++ドレイン領域とnバッファ層との間にn+ドレイン層が介在しているため、p++ドレイン領域からnバッファ層へのホールの注入も抑制することができる。これにより、最外周pベース領域、第2の並列pn構造、nバッファ層およびp++ドレイン領域からなる寄生pnpトランジスタの動作が抑制され、素子周縁部22のキャリア蓄積量がさらに減少される。これにより、逆回復耐量をさらに向上させることができる。
 以上において本発明では、基板の第1主面側に形成された素子活性部とは、例えば縦型MOSFETの場合は第1主面側で反転層を形成するチャネル拡散層とソース領域を含むスイッチング部であり、ドリフト部の第1主面側で導通と非導通の選択機能を持つ能動部分または受動部分を指すため、本発明はMOSFETに限らず、FWDまたはショットキーダイオード等にも適用できる。また、各実施の形態では第1導電型をn型とし、第2導電型をp型としたが、本発明は第1導電型をp型とし、第2導電型をn型としても同様に成り立つ。
 以上のように、本発明にかかる半導体素子は、大電力用半導体装置に有用であり、特に、並列pn構造をドリフト部に有するMOSFET等の高耐圧化と大電流容量化を両立させることのできるパワー半導体装置に有用である。
 1 n+ドレイン層
 2 ドレイン・ドリフト部
 2a 第1のn型領域
 2b 第1のp型領域
 3a pベース領域
 3b 最外周pベース領域
 4 表面n型ドリフト領域
 5 p+コンタクト領域
 6 n+ソース領域
 7 ゲート絶縁膜
 8 ゲート電極層
 9 層間絶縁膜
 10 ソース電極
 11 nバッファ層
 12a 第2のn型領域
 12b 第2のp型領域
 13 ドレイン電極
 14 n型チャネルストッパー領域
 15 酸化膜
 16 ストッパー電極
 17,41 p+ドレイン領域
 21 素子活性部
 22 素子周縁部
 31 n型バルク領域
 32,52 p型リサーフ領域
 51 p++ドレイン領域
 D 素子活性部と素子周縁部との境界の位置
 FP フィールドプレート電極
 P1 素子活性部の第1の並列pn構造の繰り返しピッチ
 P2 素子周縁部の第2の並列pn構造の繰り返しピッチ
 t1 p+ドレイン領域の最小幅
 t2 pベース領域3aの基板おもて面側の幅の半分の幅

Claims (7)

  1.  基板の第1主面側に存在して能動または受動で電流を流す素子活性部と、前記基板の第2主面側の表面層に存在する第1導電型低抵抗層と、前記素子活性部と前記第1導電型低抵抗層との間に介在し、オン状態ではドリフト電流が縦方向に流れるとともにオフ状態では空乏化する縦型ドリフト部と、を有し、前記縦型ドリフト部が、前記基板の厚み方向に配向する第1の縦型第1導電型領域と前記基板の厚み方向に配向する第1の縦型第2導電型領域とが交互に繰り返し接合してなる第1の並列pn構造をなす半導体素子であって、
     前記縦型ドリフト部の周りで前記第1主面と前記第1導電型低抵抗層との間に介在し、オン状態では概ね非電路領域であってオフ状態では空乏化する素子周縁部と、
     前記第1の並列pn構造と前記第1導電型低抵抗層との間に、前記素子活性部から前記素子周縁部にわたって設けられた、前記第1導電型低抵抗層よりも高抵抗な第1導電型層と、
     前記素子周縁部における前記第2主面側の表面層に選択的に設けられた第2導電型低抵抗層と、
     前記第1導電型低抵抗層および前記第2導電型低抵抗層に接する出力電極と、
     を備えることを特徴とする半導体素子。
  2.  前記第2導電型低抵抗層の不純物濃度は、前記第1導電型層の不純物濃度よりも高いことを特徴とする請求項1に記載の半導体素子。
  3.  前記第2導電型低抵抗層の不純物濃度は、前記第1導電型低抵抗層の不純物濃度よりも高いことを特徴とする請求項1に記載の半導体素子。
  4.  前記第1主面側に設けられた複数の第2導電型ベース領域をさらに有し、
     前記第2導電型低抵抗層の内側の端部は、前記素子活性部と前記素子周縁部との境界に位置し、
     前記第2導電型低抵抗層の外側の端部は、複数の前記第2導電型ベース領域のうちの最も外側に設けられた第2導電型ベース領域の外側の端部から、前記縦型ドリフト部の厚さ以上外側へ離れて位置していることを特徴とする請求項1に記載の半導体素子。
  5.  前記第2導電型低抵抗層は、前記素子活性部と前記素子周縁部との境界から前記素子周縁部の外周にわたって設けられていることを特徴とする請求項1に記載の半導体素子。
  6.  前記第2導電型低抵抗層は、前記第1導電型低抵抗層の前記第2主面側の表面層に設けられており、
     前記第2導電型低抵抗層と前記第1導電型層との間に前記第1導電型低抵抗層が介在することを特徴とする請求項1に記載の半導体素子。
  7.  前記素子周縁部は、前記基板の厚み方向に配向する第2の縦型第1導電型領域と前記基板の厚み方向に配向する第2の縦型第2導電型領域とが交互に繰り返し接合してなる第2の並列pn構造をなすことを特徴とする請求項1~6のいずれか一つに記載の半導体素子。
PCT/JP2013/082747 2013-01-16 2013-12-05 半導体素子 WO2014112239A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014557358A JPWO2014112239A1 (ja) 2013-01-16 2013-12-05 半導体素子
CN201380047274.XA CN104620388A (zh) 2013-01-16 2013-12-05 半导体元件
DE201311004146 DE112013004146T5 (de) 2013-01-16 2013-12-05 Halbleitervorrichtung
US14/643,651 US9437727B2 (en) 2013-01-16 2015-03-10 Semiconductor element including active region, low resistance layer and vertical drift portion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013005811 2013-01-16
JP2013-005811 2013-01-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/643,651 Continuation US9437727B2 (en) 2013-01-16 2015-03-10 Semiconductor element including active region, low resistance layer and vertical drift portion

Publications (1)

Publication Number Publication Date
WO2014112239A1 true WO2014112239A1 (ja) 2014-07-24

Family

ID=51209349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082747 WO2014112239A1 (ja) 2013-01-16 2013-12-05 半導体素子

Country Status (6)

Country Link
US (1) US9437727B2 (ja)
JP (1) JPWO2014112239A1 (ja)
CN (1) CN104620388A (ja)
DE (1) DE112013004146T5 (ja)
TW (1) TWI621268B (ja)
WO (1) WO2014112239A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019521529A (ja) * 2016-11-01 2019-07-25 杭州士▲蘭▼▲微▼▲電▼子股▲ふん▼有限公司 パワーデバイス及びその製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014109208A1 (de) * 2014-07-01 2016-01-07 Infineon Technologies Austria Ag Ladungskompensationsvorrichtung und ihre herstellung
JP6319453B2 (ja) * 2014-10-03 2018-05-09 富士電機株式会社 半導体装置および半導体装置の製造方法
DE102015102136B4 (de) * 2015-02-13 2021-09-30 Infineon Technologies Austria Ag Halbleiterbauelemente und ein verfahren zum bilden eines halbleiterbauelements
US10529799B2 (en) * 2016-08-08 2020-01-07 Mitsubishi Electric Corporation Semiconductor device
JP6747195B2 (ja) 2016-09-08 2020-08-26 富士電機株式会社 半導体装置および半導体装置の製造方法
CN106952946B (zh) * 2017-04-19 2023-09-22 华润微电子(重庆)有限公司 一种过渡区结构
CN109256422B (zh) * 2017-07-12 2022-04-29 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法和电子装置
CN110265299A (zh) * 2019-05-17 2019-09-20 厦门芯达茂微电子有限公司 一种反向导通场截止型超结igbt及其制作方法
CN112234056B (zh) * 2020-09-03 2024-04-09 深圳市汇德科技有限公司 一种半导体器件
CN111933691B (zh) * 2020-10-12 2021-01-29 中芯集成电路制造(绍兴)有限公司 超结器件及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077154A (ja) * 1993-03-25 1995-01-10 Siemens Ag パワーmosfet
JP2004022716A (ja) * 2002-06-14 2004-01-22 Fuji Electric Holdings Co Ltd 半導体素子
JP2009283781A (ja) * 2008-05-23 2009-12-03 Mitsubishi Electric Corp 半導体装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1019720B (zh) 1991-03-19 1992-12-30 电子科技大学 半导体功率器件
JPH09266311A (ja) 1996-01-22 1997-10-07 Fuji Electric Co Ltd 半導体装置及びその製造方法
GB2309336B (en) 1996-01-22 2001-05-23 Fuji Electric Co Ltd Semiconductor device
JP4126915B2 (ja) 2002-01-30 2008-07-30 富士電機デバイステクノロジー株式会社 半導体装置
JP2007173418A (ja) * 2005-12-20 2007-07-05 Toshiba Corp 半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077154A (ja) * 1993-03-25 1995-01-10 Siemens Ag パワーmosfet
JP2004022716A (ja) * 2002-06-14 2004-01-22 Fuji Electric Holdings Co Ltd 半導体素子
JP2009283781A (ja) * 2008-05-23 2009-12-03 Mitsubishi Electric Corp 半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019521529A (ja) * 2016-11-01 2019-07-25 杭州士▲蘭▼▲微▼▲電▼子股▲ふん▼有限公司 パワーデバイス及びその製造方法

Also Published As

Publication number Publication date
TW201436234A (zh) 2014-09-16
TWI621268B (zh) 2018-04-11
DE112013004146T5 (de) 2015-05-13
JPWO2014112239A1 (ja) 2017-01-19
US20150187930A1 (en) 2015-07-02
US9437727B2 (en) 2016-09-06
CN104620388A (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
JP6197294B2 (ja) 半導体素子
WO2014112239A1 (ja) 半導体素子
JP6369173B2 (ja) 縦型半導体装置およびその製造方法
JP5919121B2 (ja) ダイオードおよび半導体装置
JP4412344B2 (ja) 半導体装置およびその製造方法
US9515067B2 (en) Semiconductor device having switching element and free wheel diode and method for controlling the same
JP4967236B2 (ja) 半導体素子
JP4839519B2 (ja) 半導体装置
JP5981859B2 (ja) ダイオード及びダイオードを内蔵する半導体装置
JP6011696B2 (ja) ダイオード、半導体装置およびmosfet
JP6323556B2 (ja) 半導体装置
JP2018107168A (ja) 半導体装置および半導体装置の製造方法
JP2011171552A (ja) 半導体装置およびその製造方法
WO2016204098A1 (ja) 半導体装置
JP2005136099A (ja) 半導体装置
JP6477174B2 (ja) 半導体装置および半導体装置の製造方法
JP2013222798A (ja) ダイオード、半導体装置およびmosfet
JP5652409B2 (ja) 半導体素子
JP2017195224A (ja) スイッチング素子
JP2017168561A (ja) 半導体装置及びその製造方法
WO2015174380A1 (ja) 半導体装置および半導体装置の製造方法
JP5784860B1 (ja) 炭化ケイ素半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871334

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014557358

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120130041464

Country of ref document: DE

Ref document number: 112013004146

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871334

Country of ref document: EP

Kind code of ref document: A1