WO2014104688A1 - 질화물 반도체 발광 소자 및 그 제조 방법 - Google Patents

질화물 반도체 발광 소자 및 그 제조 방법 Download PDF

Info

Publication number
WO2014104688A1
WO2014104688A1 PCT/KR2013/012043 KR2013012043W WO2014104688A1 WO 2014104688 A1 WO2014104688 A1 WO 2014104688A1 KR 2013012043 W KR2013012043 W KR 2013012043W WO 2014104688 A1 WO2014104688 A1 WO 2014104688A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
semiconductor light
emitting device
nitride layer
type nitride
Prior art date
Application number
PCT/KR2013/012043
Other languages
English (en)
French (fr)
Inventor
김승용
김극
Original Assignee
일진엘이디(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일진엘이디(주) filed Critical 일진엘이디(주)
Priority to US14/758,009 priority Critical patent/US20150349196A1/en
Priority to CN201380068930.4A priority patent/CN105144415A/zh
Publication of WO2014104688A1 publication Critical patent/WO2014104688A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes

Definitions

  • the present invention relates to a nitride semiconductor light emitting device and a method for manufacturing the same, and more particularly, a nitride that can improve the production yield by simplifying the process through the reduction of the number of masks according to the introduction of a 3-mask process A semiconductor light emitting device and a method of manufacturing the same.
  • GaN-based nitride semiconductor light emitting devices have been mainly studied as nitride semiconductor light emitting devices. Such GaN-based nitride semiconductor light emitting devices have been applied to high-speed switching and high-output devices such as blue and green LED light emitting devices, MESFETs, HEMTs, and the like in their application fields.
  • a current blocking pattern is formed below the region where the p-electrode pad is located, and a transparent conductive pattern is formed to cover the entire surface of the current blocking pattern.
  • the transparent conductive pattern plays a role of diffusing current as well as the electrode of the p-electrode pad.
  • An object of the present invention is to secure an excellent light scattering characteristics, and to reduce the number of mask processes according to the introduction of the 3-mask process (nitride semiconductor light emitting device that can reduce the production cost and production yield) And a method for producing the same.
  • a nitride semiconductor light emitting device for achieving the above object is an n-type nitride layer; An active layer formed on the n-type nitride layer; A p-type nitride layer formed on the active layer; A current blocking pattern formed on the p-type nitride layer; A transparent conductive pattern formed to cover the upper side of the p-type nitride layer and the current blocking pattern, and having opposite tapered cross-sections with tapered cross sections; And a p-electrode pad disposed at a position corresponding to the current blocking pattern and being in direct contact with the transparent conductive pattern.
  • the nitride semiconductor light emitting device for achieving the above object (a) after forming an n-type nitride layer, an active layer and a p-type nitride layer on the substrate in turn, on the p-type nitride layer Forming a current blocking pattern; (b) forming a transparent conductive layer to cover the upper side of the p-type nitride layer and the current blocking pattern, and then selectively patterning the transparent conductive layer using a mesa etching mask to form a transparent conductive pattern; (c) second patterning using the mesa etching mask to sequentially remove the p-type nitride layer, the active layer and the n-type nitride layer exposed to one edge of the substrate to expose a portion of the n-type nitride layer; And (d) forming a p-electrode pad in direct contact with the transparent conductive pattern at a position
  • the nitride semiconductor light emitting device and the method of manufacturing the same according to the present invention are produced by reducing the number of masks by patterning the transparent conductive pattern and the exposed region of the n-type nitride layer disposed on one edge of the substrate by batch etching using one mask. Cost reduction and production yield can be improved.
  • the transparent conductive pattern is simultaneously patterned with the same mask as the ICP type mesa etching, not only the overlay property between the transparent conductive pattern and the mesa etching pattern can be improved, but also the light efficiency is increased by increasing the area of the transparent conductive pattern. Can be improved.
  • FIG. 1 is a cross-sectional view showing a nitride semiconductor light emitting device according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of a portion A of FIG. 1.
  • FIG. 3 is a process flowchart illustrating a method of manufacturing a nitride semiconductor light emitting device according to an embodiment of the present invention.
  • 4 to 9 are cross-sectional views sequentially illustrating a method of manufacturing a nitride semiconductor light emitting device according to an exemplary embodiment of the present invention.
  • FIG. 10 is a photograph taken with an electron microscope of a transparent conductive pattern after mesa etching.
  • FIG. 1 is a cross-sectional view showing a nitride semiconductor light emitting device according to an embodiment of the present invention.
  • the nitride semiconductor light emitting device 100 includes an n-type nitride layer 110, an active layer 120, a p-type nitride layer 130, and a current blocking pattern 140. , A transparent conductive pattern 150, a p-electrode pad 160, and an n-electrode pad 170.
  • the n-type nitride layer 110 is formed on the substrate 10.
  • the n-type nitride layer 110 alternately includes a first layer (not shown) made of AlGaN doped with silicon (Si) and a second layer (not shown) made of undoped GaN (undoped). It may have a laminated structure formed.
  • the n-type nitride layer may be grown as a single nitride layer, but it must be grown in a laminated structure in which the first layer and the second layer including the buffer layer (not shown) are alternately secured to ensure excellent crystallinity without cracking. Since it is possible to form, it is more preferable to form in a laminated structure.
  • the substrate 10 may be formed of a material suitable for growing a nitride semiconductor single crystal, for example, a sapphire substrate is representative.
  • the substrate 10 may include zinc oxide (ZnO), gallium nitride (GaN), silicon (Si), silicon carbide (SiC), and aluminum nitride (AlN) in addition to the sapphire substrate. It may also be formed of a material selected from).
  • the nitride semiconductor light emitting device 100 may further include a buffer layer interposed between the substrate 10 and the n-type nitride layer 110.
  • the buffer layer is a layer provided on the upper surface of the substrate 10, and is formed for the purpose of eliminating the lattice mismatch between the substrate 10 and the n-type nitride layer 110, the material is AlN, GaN or the like.
  • the active layer 120 is formed on the n-type nitride layer 110.
  • the active layer 120 has a single quantum well structure between the n-type nitride layer 110 and the p-type nitride layer 130 or a multi-quantum well in which a plurality of quantum well layers and quantum barrier layers are alternately stacked. MQW) structure. That is, the active layer 120 has a multi-quantum well structure by a quantum barrier layer made of AlGaInN quaternary nitride layer containing Al and a quantum well layer made of InGaN.
  • the active layer 120 of the multi-quantum well structure can suppress spontaneous polarization due to stress and deformation occurring.
  • the p-type nitride layer 130 may include a first layer of p-type AlGaN (not shown) doped with Mg with a p-type dopant, and a second layer (not shown) consisting of p-type GaN doped with Mg. It may have a laminated structure formed alternately.
  • the p-type nitride layer 130 may act as a carrier limiting layer similarly to the n-type nitride layer 110.
  • the current blocking pattern 140 is formed on the p-type nitride layer 130.
  • the current blocking pattern 140 is formed at a position corresponding to a p-electrode pad formation region (not shown) which will be described later.
  • the current blocking pattern 140 compensates for light loss due to photon absorption at the lower surface corresponding to the p-electrode pad 160.
  • the current blocking pattern 140 has a relatively thin thickness compared to the n-type nitride layer 110, so that the p-type nitride layer 130 is formed, and thus the electrical conductivity around the p-electrode pad 160 is low. It prevents the current from being biased.
  • the current blocking pattern 140 is preferably formed of at least one selected from SiO 2 , SiNx, and the like. At this time, the current blocking pattern 140 preferably has a thickness of 0.01 ⁇ 0.50 ⁇ m, more preferably may present a thickness of 0.1 ⁇ 0.3 ⁇ m. If the thickness of the current blocking pattern 140 is less than 0.01 ⁇ m, it may be difficult to properly exhibit the current blocking function because the thickness is too thin. On the contrary, when the thickness of the current blocking pattern 140 exceeds 0.50 ⁇ m, the current blocking pattern 140 may not increase the manufacturing cost and time compared to the current blocking effect.
  • the transparent conductive pattern 150 is formed to cover the upper side of the p-type nitride layer 130 and the current blocking pattern 140, and both edges facing each other have a tapered cross section of a symmetrical structure.
  • the tapered cross section of the transparent conductive pattern 150 may include a mesa etching process for exposing one side edge of the substrate (10 of FIG. 1).
  • the taper angle is 10 to 90 ° depending on the etching conditions.
  • the taper angle means an angle formed between the substrate and the tapered inclined surface.
  • the transparent conductive pattern 150 is formed for the purpose of increasing the current injection area, and is preferably formed of a transparent conductive material in order to prevent adverse effects on luminance. That is, the transparent conductive pattern 150 may be formed of at least one material selected from indium tin oxide (ITO), indium zinc oxide (IZO), and fluorine doped tin oxide (STO 2 ). Can be.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • STO 2 fluorine doped tin oxide
  • the p-electrode pad 160 is disposed at a position corresponding to the current blocking pattern 140 and is in direct contact with the transparent conductive pattern 150.
  • the p-electrode pad 160 may have a first area, and the current blocking pattern 140 may have a second area that is greater than or equal to the first area.
  • the n-electrode pad 170 is formed in the exposed region of the n-type nitride layer 110.
  • the p-electrode pad 160 and the n-electrode pad 170 are electron beam (E-Beam) deposition, thermal evaporation (Thermal Evaporation). It may be formed by any one method selected from sputtering deposition and the like.
  • the p-electrode pad 160 and the n-electrode pad 170 may be formed of the same material by using the same mask. In this case, the p-electrode pad 160 and the n-electrode pad 170 may be formed of a material selected from Au, Cr-Au alloy, and the like.
  • the nitride semiconductor light emitting device described above by patterning the exposed region of the transparent conductive pattern and the n-type nitride layer disposed on one edge of the substrate by batch etching using one mask, thereby reducing the number of masks. Reduce production costs and improve process yield.
  • the nitride semiconductor light emitting device has a structure in which the p-electrode pad and the transparent conductive pattern are in direct contact with each other, and the transparent conductive pattern has a tapered cross section of opposite symmetrical structures. .
  • the patterning process for forming the transparent conductive pattern and the mesa etching for exposing the n-type nitride layer use the same single mask, compared with the conventional method of using four or five masks, Since the number of one or two masks is reduced, a series of processes such as exposure, development, and etching required for each mask may be omitted, thereby simplifying the process, thereby reducing production cost and improving production yield.
  • the transparent conductive pattern uses the same mask as the mesa etching, the overlay property between the transparent conductive pattern and the mesa etching pattern is excellent.
  • each mask is used for the transparent conductive pattern and the mesa etching.
  • at least 5 ⁇ m or more offset due to the problem of alignment control of the transparent conductive pattern and the mesa etching pattern.
  • the undercut of the transparent conductive pattern is included, the offset of the transparent conductive pattern and the mesa etching pattern is difficult to control to 8 ⁇ m or less.
  • the transparent conductive pattern is patterned at the same time as the ICP type mesa etching, the undercut of the transparent conductive pattern can be controlled to 3 ⁇ m or less.
  • the nitride semiconductor light emitting device can control the undercut of the transparent conductive pattern to 3 ⁇ m or less, the light efficiency is increased due to the expansion of the light emitting area due to the increase in the area of the transparent conductive pattern. Can improve.
  • FIGS. 4 to 9 are process cross-sectional views sequentially illustrating a method of manufacturing a nitride semiconductor light emitting device according to an exemplary embodiment of the present invention.
  • the current blocking pattern forming step (S110), the transparent conductive pattern forming step (S120), and the mesa etching on the nitride semiconductor layer are n-type.
  • the nitride layer exposing step S130 and the electrode pad forming step S140 are included.
  • the n-type nitride layer 110, the active layer 120, and the p-type nitride layer 130 are formed on the substrate 10.
  • the current blocking pattern 140 is formed on the p-type nitride layer 130.
  • the n-type nitride layer 110, the active layer 120 and the p-type nitride layer 130 is any selected from metal organic chemical vapor deposition (MOCVD), liquid epitaxial (LPE), molecular beam epitaxial (MBE), etc. Lamination may be performed by sequentially depositing using one method.
  • MOCVD metal organic chemical vapor deposition
  • LPE liquid epitaxial
  • MBE molecular beam epitaxial
  • the n-type nitride layer 110 alternately includes a first layer (not shown) made of AlGaN doped with silicon (Si) and a second layer (not shown) made of undoped GaN (undoped). It may have a laminated structure formed.
  • the active layer 120 may have a single quantum well structure or a multi-quantum well (MQW) structure in which a plurality of quantum well layers and a quantum barrier layer are alternately stacked.
  • MQW multi-quantum well
  • the p-type nitride layer 130 is, for example, a first layer of p-type AlGaN (not shown) doped with Mg with a p-type dopant, and a second layer (not shown) consisting of p-type GaN doped with Mg. ) May have a laminated structure formed alternately.
  • a buffer layer (not shown) may be further formed before the n-type nitride layer 110 is formed on the substrate 10.
  • the buffer layer is formed for the purpose of eliminating the lattice mismatch between the substrate 10 and the n-type nitride layer 110, the material may be selected from AlN, GaN and the like.
  • the current blocking pattern 140 is formed at a position corresponding to a p-electrode pad formation region (not shown) which will be described later.
  • the current blocking pattern 140 is formed by depositing at least one material selected from SiO 2 , SiNx, etc. on the upper surface of the p-type nitride layer 130 to a thickness of 0.01 to 0.50 ⁇ m (not shown). After forming), it may be formed by performing a photo lithography process using a first mask (not shown).
  • such a photolithography process may form a photomask (not shown) by applying a photoresist with a predetermined thickness on the entire upper surface of the p-type nitride layer 130 and the current blocking pattern 140, and then selectively After exposure and development, the selective etching may be performed using a photomask, and then the remaining photomask may be removed using a stripping liquid.
  • the current blocking pattern 140 is preferably formed to have a thickness of 0.01 ⁇ 0.50 ⁇ m. If the thickness of the current blocking pattern 140 is less than 0.01 ⁇ m, it may be difficult to properly exhibit the current blocking function because the thickness is too thin. On the contrary, when the thickness of the current blocking pattern 140 exceeds 0.50 ⁇ m, the current blocking pattern 140 may not increase the manufacturing cost and time compared to the current blocking effect.
  • the transparent conductive layer 152 covering the entire upper side of the p-type nitride layer 130 and the current blocking pattern 140 is formed, and then the transparent The conductive layer 152 is first patterned selectively using a mesa etching mask.
  • the photoresist pattern M for the mesa etching mask is applied to the upper portion of the transparent conductive layer 152 by selectively applying the photoresist to the transparent conductive pattern forming region (not shown) and curing the photoresist. Is formed.
  • the transparent conductive pattern 150 is formed by primary patterning using the photoresist pattern M for the mesa etching mask described above.
  • Such primary patterning may be wet etching.
  • n-type nitride layer exposing step (S130) by mesa etching a second patterning is performed using a mesa etching mask, and the p-type nitride layer 130 exposed to one edge of the substrate 10 is exposed.
  • the active layer 120 and the n-type nitride layer 110 are sequentially removed to expose a portion of the n-type nitride layer 110.
  • the second patterning performed by the mesa etching method is performed by sequentially removing the p-type nitride layer 130, the active layer 120, and the n-type nitride layer 110 exposed to the outside of the transparent conductive pattern 150.
  • the second patterning process using mesa etching may be performed by dry etching of ICP type using the photoresist pattern M remaining on the transparent conductive pattern 150 and the transparent conductive pattern 150 as a mask during the first patterning. Can be.
  • the transparent conductive pattern 150 has an undercut from which portions of both edges are removed by primary patterning. Accordingly, the transparent conductive pattern 150 has a tapered cross section in which both edges facing each other by overetching by mesa etching are mutually symmetrical structures.
  • the photoresist pattern (M in FIG. 7) for the mesa etching mask covering the transparent conductive pattern 150 is removed by a strip process.
  • the exposed area of the transparent conductive pattern 150 and the n-type nitride layer 110 disposed at one edge of the substrate 10 is patterned by batch etching using one mask, thereby reducing the number of mask processes. There is an advantage to improve the production yield.
  • FIG. 10 is a photograph taken by an electron microscope of a transparent conductive pattern after mesa etching.
  • the undercut of the transparent conductive pattern is controlled to 2.67 ⁇ m.
  • the undercut of the transparent conductive pattern is controlled to 3 ⁇ m or less, there is an advantage in that light efficiency can be improved by expanding the light emitting area due to the increase in the area of the transparent conductive pattern.
  • the p-electrode pad 160 is in direct contact with the transparent conductive pattern 150 at a position corresponding to the current blocking pattern 140 and the exposed portion.
  • An n-electrode pad 170 is formed on the n-type nitride layer 110.
  • the p-electrode pad 160 and the n-electrode pad 170 use a third mask on the upper surface of the p-type nitride layer 130, the transparent conductive pattern 150, and the exposed n-type nitride layer 110.
  • a selective photoresist pattern After forming a selective photoresist pattern by a photolithography process, it is formed by forming a metal layer (not shown) on the photoresist pattern and selectively removing the metal layer and the photoresist pattern in a lift-off manner. Can be.
  • the p-electrode pad 160 may have a first area in plan view, and the current blocking pattern 140 may have a second area that is greater than or equal to the first area.
  • the nitride semiconductor light emitting device manufactured by the above processes S110 to S140 reduces the number of masks by patterning the exposed region of the transparent conductive pattern and the n-type nitride layer disposed at one edge of the substrate by batch etching using one mask. This can reduce production costs and improve process yield.
  • the transparent conductive pattern uses the same mask as the mesa etching, the overlay property between the transparent conductive pattern and the mesa etching pattern is excellent.
  • each mask is used for the transparent conductive pattern and the mesa etching.
  • at least 5 ⁇ m or more offset due to the problem of alignment control of the transparent conductive pattern and the mesa etching pattern.
  • the undercut of the transparent conductive pattern is included, the offset of the transparent conductive pattern and the mesa etching pattern is difficult to control to 8 ⁇ m or less.
  • the transparent conductive pattern is patterned at the same time as the ICP type mesa etching, the undercut of the transparent conductive pattern can be controlled to 3 ⁇ m or less.
  • the nitride semiconductor light emitting device can control the undercut of the transparent conductive pattern to 3 ⁇ m or less, the light efficiency is increased due to the expansion of the light emitting area due to the increase in the area of the transparent conductive pattern. Can improve.
  • nitride semiconductor light emitting device in which an n-type nitride layer, an active layer, a p-type nitride layer, a current blocking pattern, a transparent conductive pattern, a p-electrode pad, and an n-electrode pad are sequentially stacked. It is only an example, and it will be apparent that the n-side and the p-side may have a structure in which they are stacked in reverse order.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

우수한 광 산란특성을 확보함과 더불어, 3-마스크 공정의 도입에 따른 마스크 공정 수의 절감 을 통해 생산 단가 절감 및 생산 수율을 향상시킬 수 있는 질화물 반도체 발광 소자 및 그 제 조 방법에 대하여 개시한다. 본 발명에 다른 질화물 반도체 발광소자는 n형 질화물층, n형 질 화물층 상에 형성된 활성층, 활성층 상에 형성된 P형 질화물층, P형 질화물층 상에 형성된 전 류 차단패턴, P형 질화물층 및 전류 차단패턴의 상측을 덮도록 형성되며 마주보는 양측 가장자 리가 대칭 구조의 테이퍼 단면을 갖는 투명 도전패턴, 및 전류 차단패턴과 대응되는 위치에 배 치되며 투명도전패턴과 직접 접촉되도록 형성된 P-전극패드을포함하는 것을특징으로 한다.

Description

질화물 반도체 발광 소자 및 그 제조 방법
본 발명은 질화물 반도체 발광 소자 및 그 제조 방법에 관한 것으로, 보다 상세하게는 3-마스크(3-mask) 공정의 도입에 따른 마스크 수의 절감을 통한 공정의 간소화로 생산 수율을 향상시킬 수 있는 질화물 반도체 발광 소자 및 그 제조 방법에 관한 것이다.
최근, 질화물 반도체 발광 소자로는 GaN계 질화물 반도체 발광 소자가 주로 연구되고 있다. 이러한 GaN계 질화물 반도체 발광 소자는 그 응용분야에 있어서 청색과 녹색 LED의 발광소자, MESFET, HEMT 등의 고속 스위칭과 고출력 소자에 응용되고 있다.
질화물 반도체 발광 소자의 광 효율을 향상시키기 위해 p-전극 패드가 위치한 영역의 하부에 전류 차단패턴을 형성함과 더불어, 전류 차단패턴의 전면을 덮도록 형성되는 투명 도전패턴을 형성하고 있다. 이때, 투명 도전패턴은 p-전극 패드의 전극 역할과 더불어 전류를 확산시키는 역할을 한다.
그러나, 전술한 구조를 갖는 질화물 반도체 발광 소자를 제조하기 위해서는 4개의 마스크 공정을 필요로 한다. 이때, 각각의 마스크 공정은 노광, 현상, 식각 등의 일련의 공정을 필요로 하기 때문에 마크스 공정 수의 증가는 생산 단가를 증가시킴과 동시에 생산 수율을 저하시키는 요인으로 작용한다.
관련 선행 문헌으로는 대한민국 등록특허 10-0793337호(2008.01.11 공고)가 있으며, 상기 문헌에는 질화물계 반도체 발광소자 및 그 제조방법이 개시되어 있다.
본 발명의 목적은 우수한 광 산란 특성을 확보함과 더불어, 3-마스크(3-mask) 공정의 도입에 따른 마스크 공정 수의 절감을 통해 생산 단가 절감 및 생산 수율을 향상시킬 수 있는 질화물 반도체 발광 소자 및 그 제조 방법을 제공하는 것이다.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 질화물 반도체 발광 소자는 n형 질화물층; 상기 n형 질화물층 상에 형성된 활성층; 상기 활성층 상에 형성된 p형 질화물층; 상기 p형 질화물층 상에 형성된 전류 차단패턴; 상기 p형 질화물층 및 전류 차단패턴의 상측을 덮도록 형성되며, 마주보는 양측 가장자리가 대칭 구조의 테이퍼(taper) 단면을 갖는 투명 도전패턴; 및 상기 전류 차단패턴과 대응되는 위치에 배치되며, 상기 투명 도전패턴과 직접 접촉되도록 형성된 p-전극 패드;를 포함하는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 질화물 반도체 발광 소자 제조 방법은 (a) 기판 상에 n형 질화물층, 활성층 및 p형 질화물층을 차례로 형성한 후, 상기 p형 질화물층 상에 전류 차단패턴을 형성하는 단계; (b) 상기 p형 질화물층 및 전류 차단패턴의 상측을 덮도록 투명 도전층을 형성한 후, 상기 투명 도전층을 메사 식각 마스크를 이용하여 선택적으로 1차 패터닝하여 투명 도전패턴을 형성하는 단계; (c) 상기 메사 식각 마스크를 이용하여 2차 패터닝하여, 상기 기판의 일측 가장자리로 노출된 p형 질화물층, 활성층 및 n형 질화물층을 차례로 제거하여 상기 n형 질화물층의 일부를 노출시키는 단계; 및 (d) 상기 전류 차단패턴과 대응되는 위치에 상기 투명 도전패턴과 직접 접촉되는 p-전극 패드와, 상기 노출된 n형 질화물층 상에 n-전극 패드를 형성하는 단계;를 포함하는 것을 특징으로 한다.
본 발명에 따른 질화물 반도체 발광 소자 및 그 제조 방법은 투명 도전패턴과 기판의 일측 가장자리에 배치되는 n형 질화물층의 노출 영역을 하나의 마스크를 이용한 일괄 식각으로 패터닝함으로써, 마스크 수의 절감을 통해 생산 단가 절감 및 생산 수율을 향상시킬 수 있다.
또한, 본 발명에서는 투명 도전패턴을 ICP 타입의 메사 식각과 동일한 마스크로 동시에 패터닝하기 때문에 투명 도전패턴과 메사 식각 패턴 간의 오버레이 특성이 우수해질 수 있을 뿐만 아니라, 투명 도전패턴의 면적 증가로 광 효율을 향상시킬 수 있다.
도 1은 본 발명의 실시예에 따른 질화물 반도체 발광 소자를 나타낸 단면도이다.
도 2는 도 1의 A 부분을 확대하여 나타낸 도면이다.
도 3은 본 발명의 실시예에 따른 질화물 반도체 발광 소자 제조 방법을 나타낸 공정 순서도이다.
도 4 내지 도 9는 본 발명의 실시예에 따른 질화물 반도체 발광 소자 제조 방법을 순차적으로 나타낸 공정 단면도들이다.
도 10은 메사 식각 이후 투명 도전패턴을 전자현미경으로 촬영한 사진이다.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 질화물 반도체 발광 소자 및 그 제조 방법에 관하여 상세히 설명하면 다음과 같다.
도 1은 본 발명의 실시예에 따른 질화물 반도체 발광 소자를 나타낸 단면도이다.
도 1을 참조하면, 도시된 본 발명의 실시예에 따른 질화물 반도체 발광 소자(100)는 n형 질화물층(110), 활성층(120), p형 질화물층(130), 전류 차단패턴(140), 투명 도전패턴(150), p-전극 패드(160) 및 n-전극 패드(170)를 포함한다.
n형 질화물층(110)은 기판(10) 상에 형성된다. 이러한 n형 질화물층(110)은 실리콘(Si)을 도핑한 AlGaN으로 이루어진 제1층(미도시)과, 언도우프의 GaN(undoped-GaN)로 이루어진 제2층(미도시)이 교번적으로 형성된 적층 구조를 가질 수 있다. 물론, n형 질화물층은 단일의 질화물층으로 성장시키는 것도 무방하나, 버퍼층(미도시)을 포함한 제1층과 제2층이 교번적으로 형성된 적층 구조로 성장시켜야 크랙이 없는 우수한 결정성을 확보할 수 있으므로, 적층 구조로 형성하는 것이 더 바람직하다.
이때, 기판(10)은 질화물 반도체 단결정을 성장시키기에 적합한 재질로 형성될 수 있으며, 대표적으로 사파이어 기판을 일 예로 들 수 있다. 이러한 기판(10)으로는 사파이어 기판 이외에 징크 옥사이드(zinc oxide, ZnO), 갈륨 나이트라이드(gallium nitride, GaN), 실리콘(silicon, Si), 실리콘 카바이드(silicon carbide, SiC), 알루미늄 나이트라이드(AlN) 등에서 선택된 재질로 형성될 수도 있다. 도면으로 도시하지는 않았지만, 본 발명의 실시예에 따른 질화물 반도체 발광 소자(100)는 기판(10)과 n-형 질화물층(110) 사이에 개재되는 버퍼층을 더 포함할 수 있다. 이때, 버퍼층은 선택적으로 기판(10)의 상부면에 구비되는 층으로, 기판(10)과 n형 질화물층(110) 사이의 격자 부정합을 해소하기 위한 목적으로 형성되며, 그 재질로는 AlN, GaN 등에서 선택될 수 있다.
활성층(120)은 n형 질화물층(110) 상에 형성된다. 이러한 활성층(120)은 n형 질화물층(110)과 p형 질화물층(130) 사이에서 단일양자우물구조 또는 양자우물층과 양자장벽층이 교대로 다수 적층된 다중양자우물(multi-quantum well : MQW) 구조를 가질 수 있다. 즉, 활성층(120)은 Al이 포함된 AlGaInN의 4원계 질화물층으로 이루어진 양자장벽층과, InGaN으로 이루어진 양자우물층에 의해 다중양자우물 구조를 갖는다. 이러한 다중양자우물 구조의 활성층(120)은 발생하는 응력과 변형에 의한 자발적인 분극을 억제할 수 있다.
p형 질화물층(130)은, 일 예로, Mg을 p형 도펀트로 도핑한 p형 AlGaN의 제 1 층(미도시)과, Mg을 도핑한 p형 GaN로 이루어진 제 2 층(미도시)이 교번적으로 형성된 적층 구조를 가질 수 있다. 또한, p형 질화물층(130)은 n형 질화물층(110)과 마찬가지로 캐리어 제한층으로 작용할 수 있다.
전류 차단패턴(140)은 p형 질화물층(130) 상에 형성된다. 이러한 전류 차단패턴(140)은 후술할 p-전극 패드 형성 예정 영역(미도시)과 대응하는 위치에 형성된다.
이때, 전류 차단패턴(140)은 p-전극 패드(160)와 대응되는 하부면에서 광자흡수(photon absorption)로 인해 광 손실이 발생하는 것을 보상하는 역할을 한다. 또한, 전류 차단패턴(140)은 n형 질화물층(110)에 비하여 상대적으로 얇은 두께로 p형 질화물층(130)이 형성되는데 기인하여 p-전극 패드(160)의 주변에서의 전기전도도가 낮아 전류가 편중되는 것을 미연에 방지하는 역할을 한다.
이러한 전류 차단패턴(140)은 SiO2, SiNx 등에서 선택된 1종 이상으로 형성하는 것이 바람직하다. 이때, 전류 차단패턴(140)은 0.01 ~ 0.50㎛의 두께를 갖는 것이 바람직하며, 보다 바람직하게는 0.1 ~ 0.3㎛의 두께를 제시할 수 있다. 전류 차단패턴(140)의 두께가 0.01㎛ 미만일 경우에는 그 두께가 너무 얇은 관계로 전류 차단 기능을 제대로 발휘하는데 어려움이 따를 수 있다. 반대로, 전류 차단패턴(140)의 두께가 0.50㎛를 초과할 경우에는 전류 차단 효과 대비 제조 비용 및 시간만을 상승시키는 요인으로 작용할 수 있으므로, 경제적이지 못하다.
투명 도전패턴(150)은 p형 질화물층(130) 및 전류 차단패턴(140)의 상측을 덮도록 형성되며, 마주보는 양측 가장자리가 대칭 구조의 테이퍼(taper) 단면을 갖는다.
이때, 도 2는 도 1의 A 부분을 확대하여 나타낸 도면으로, 이를 참조하여 설명하면, 투명 도전패턴(150)의 테이퍼 단면은 기판(도 1의 10)의 일측 가장자리를 노출시키기 위한 메사 식각과 동일한 마스크를 이용하는 패터닝 과정에서, 과식각에 의해 일부가 함께 제거되어 형성되는 것으로, 테이퍼 각도는 식각 조건에 따라 10 ~ 90o를 갖는다. 이때, 테이퍼 각도는 기판과 테이퍼 경사면이 이루는 각도를 의미한다.
도 1을 다시 참조하면, 이러한 투명 도전패턴(150)은 전류 주입면적을 증가시키기 위한 목적으로 형성되며, 휘도에 악 영향을 미치는 것을 미연에 방지하기 위해 투명한 도전 물질로 형성하는 것이 바람직하다. 즉, 투명 도전패턴(150)은 인듐주석 산화물(Indium Tin Oxide, ITO), 인듐아연 산화물(Indium Zinc Oxide, IZO), FTO(fluorine doped tin oxide, SnO2) 등에서 선택된 1종 이상의 재질로 형성될 수 있다.
p-전극 패드(160)는 전류 차단패턴(140)과 대응되는 위치에 배치되며, 투명 도전패턴(150)과 직접 접촉되도록 형성된다. 이러한 p-전극 패드(160)는 제1 면적을 갖고, 전류 차단패턴(140)은 제1 면적보다 크거나 같은 제2 면적을 가질 수 있다.
n-전극 패드(170)는 n형 질화물층(110)의 노출 영역에 형성된다. p-전극 패드(160) 및 n-전극 패드(170)는 전자빔(E-Beam) 증착, 열 증발 증착(Thermal Evaporation). 스퍼터링 증착(Sputtering deposition) 등에서 선택된 어느 하나의 방식에 의해 형성될 수 있다. 이러한 p-전극 패드(160) 및 n-전극 패드(170)는 동일한 마스크를 사용하는 것에 의해 동일한 물질로 형성될 수 있다. 이때, p-전극 패드(160) 및 n-전극 패드(170)는 Au, Cr-Au 합금 등에서 선택된 물질로 형성될 수 있다.
전술한 본 발명의 실시예에 따른 질화물 반도체 발광 소자는 투명 도전패턴과 기판의 일측 가장자리에 배치되는 n형 질화물층의 노출 영역을 하나의 마스크를 이용한 일괄 식각으로 패터닝함으로써, 마스크 수의 절감을 통해 생산 단가 절감 및 공정 수율을 향상시킬 수 있다. 이를 통해, 본 발명의 실시예에 따른 질화물 반도체 발광 소자는 p-전극 패드와 투명 도전패턴이 직접 접촉하는 구조를 갖되, 투명 도전패턴은 마주보는 양측 가장자리가 대칭 구조의 테이퍼(taper) 단면을 갖는다.
즉, 본 발명에서는 투명 도전패턴을 형성하기 위한 패터닝 공정과 n형 질화물층을 노출시키기 위한 메사 식각을 동일한 하나의 마스크를 사용하기 때문에, 4개 또는 5개의 마스크를 사용하던 종래와 비교해 볼 때, 1개 또는 2개의 마스크 수가 감소하기 때문에 각 마스크의 사용시 필요한 노광, 현상, 식각 등의 일련의 공정이 생략될 수 있으므로 그 만큼 공정 간소화가 가능해져 생산 단가 절감 및 생산 수율을 향상시킬 수 있다.
또한, 본 발명에서는 투명 도전패턴을 메사 식각과 동일한 마스크를 사용하기 때문에 투명 도전패턴과 메사 식각 패턴 간의 오버레이 특성이 우수해진다.
또한, 종래에는 투명 도전패턴과 메사 식각을 위해 각각의 마스크를 사용하였는데, 이 경우 투명 도전 패턴과 메사 식각 패턴의 얼라인(Align) 제어의 문제로 인해 최소 5㎛ 혹은 그 이상의 옵셋(off-set)으로 설계가 되며, 투명 도전패턴의 언더컷까지 포함한다면 투명 도전패턴과 메사 식각 패턴의 옵셋은 8㎛ 이하로 제어하는데 어려움이 있었다. 이와 달리, 본 발명에서와 같이 투명 도전패턴을 ICP 타입의 메사 식각과 동시에 패터닝을 실시할 경우, 투명 도전패턴의 언더컷을 3㎛ 이하로 제어하는 것이 가능해질 수 있다. 이를 통해, 본 발명에 따른 질화물 반도체 발광 소자는 투명 도전패턴의 언더컷을 3㎛ 이하로 제어하는 것이 가능해질 수 있으므로, 상대적으로 투명 도전패턴의 면적이 증가하는 데 기인한 발광 면적의 확장으로 광 효율을 향상시킬 수 있다.
이에 대해서는 본 발명의 실시예에 따른 질화물 반도체 발광 소자 제조 방법을 통하여 보다 구체적으로 설명하도록 한다.
도 3은 본 발명의 실시예에 따른 질화물 반도체 발광 소자 제조 방법을 나타낸 공정 순서도이고, 도 4 내지 도 9는 본 발명의 실시예에 따른 질화물 반도체 발광 소자 제조 방법을 순차적으로 나타낸 공정 단면도들이다.
도 3을 참조하면, 도시된 본 발명의 실시예에 따른 질화물 반도체 발광 소자 제조 방법은 질화물 반도체층 상에 전류 차단패턴 형성 단계(S110), 투명 도전패턴 형성 단계(S120), 메사 식각으로 n형 질화물층 노출 단계(S130) 및 전극 패드 형성 단계(S140)를 포함한다.
도 3 및 도 4를 참조하면, 질화물 반도체층 상에 전류 차단패턴 형성 단계(S110)에서는 기판(10) 상에 n형 질화물층(110), 활성층(120) 및 p형 질화물층(130)을 차례로 형성한 후, p형 질화물층(130) 상에 전류 차단패턴(140)을 형성한다.
이때, n형 질화물층(110), 활성층(120) 및 p형 질화물층(130)은 금속유기화학증착법(MOCVD), 액상에피텍셜법(LPE), 분자빔에피텍셜법(MBE) 등에서 선택된 어느 하나의 방식을 이용하여 차례로 증착하는 방식으로 적층 형성될 수 있다.
상기 n형 질화물층(110)은 실리콘(Si)을 도핑한 AlGaN으로 이루어진 제1층(미도시)과, 언도우프의 GaN(undoped-GaN)로 이루어진 제2층(미도시)이 교번적으로 형성된 적층 구조를 가질 수 있다. 그리고, 활성층(120)은 단일양자우물구조 또는 양자우물층과 양자장벽층이 교대로 다수 적층된 다중양자우물(multi-quantum well : MQW) 구조를 가질 수 있다. 또한, p형 질화물층(130)은, 일 예로, Mg을 p형 도펀트로 도핑한 p형 AlGaN의 제 1 층(미도시)과, Mg을 도핑한 p형 GaN로 이루어진 제 2 층(미도시)이 교번적으로 형성된 적층 구조를 가질 수 있다.
도면으로 도시하지는 않았지만, 기판(10) 상에 n형 질화물층(110)을 형성하기 전에 버퍼층(미도시)을 더 형성할 수도 있다. 이때, 버퍼층은 기판(10)과 n형 질화물층(110) 사이의 격자 부정합을 해소하기 위한 목적으로 형성되며, 그 재질로는 AlN, GaN 등에서 선택될 수 있다.
그리고, 전류 차단패턴(140)은 후술할 p-전극 패드 형성 예정 영역(미도시)과 대응하는 위치에 형성한다. 도면으로 나타내지는 않았지만, 전류 차단패턴(140)은 p형 질화물층(130)의 상부 전면에 SiO2, SiNx 등에서 선택된 1종 이상의 물질을 0.01 ~ 0.50㎛의 두께로 증착하여 전류 차단 물질층(미도시)을 형성한 후, 이를 제1 마스크(미도시)를 이용한 사진식각 공정(photo lithography process)을 수행하는 것에 의해 형성될 수 있다. 도면으로 도시하지는 않았지만, 이러한 사진식각 공정은 p형 질화물층(130) 및 전류 차단패턴(140)의 상부 전면에 일정한 두께로 포토레지스트를 도포하여 포토마스크(미도시)를 형성한 후, 이를 선택적으로 노광 및 현상한 후, 포토마스크를 이용한 선택적인 식각을 수행하고 나서 잔류하는 포토마스크를 스트립액을 이용하여 제거하는 방식으로 실시될 수 있다.
이때, 전류 차단패턴(140)은 0.01 ~ 0.50㎛의 두께를 갖도록 형성하는 것이 바람직하다. 전류 차단패턴(140)의 두께가 0.01㎛ 미만일 경우에는 그 두께가 너무 얇은 관계로 전류 차단 기능을 제대로 발휘하는데 어려움이 따를 수 있다. 반대로, 전류 차단패턴(140)의 두께가 0.50㎛를 초과할 경우에는 전류 차단 효과 대비 제조 비용 및 시간만을 상승시키는 요인으로 작용할 수 있으므로, 경제적이지 못하다.
도 3 및 도 5를 참조하면, 투명 도전 패턴 형성 단계(S120)에서는 p형 질화물층(130) 및 전류 차단패턴(140)의 상측 전부를 덮는 투명 도전층(152)을 형성한 후, 상기 투명 도전층(152)을 메사 식각 마스크를 이용하여 선택적으로 1차 패터닝한다. 이때, 투명 도전층(152)의 상부에는 투명 도전패턴 형성 영역(미도시)에 대응하여 포토레지스트를 도포하고 경화한 후 선택적인 노광을 실시하는 것을 통해 메사 식각 마스크용 포토레지스트 패턴(M)이 형성된다.
즉, 도 3 및 도 6을 참조하면, 전술한 메사 식각 마스크용 포토레지스트 패턴(M)을 이용한 1차 패터닝에 의해 투명 도전패턴(150)이 형성된다. 이러한 1차 패터닝은 습식 식각(wet etching)이 이용될 수 있다.
도 3 및 도 7을 참조하면, 메사 식각으로 n형 질화물층 노출 단계(S130)에서는 메사 식각 마스크를 이용하여 2차 패터닝하여, 기판(10)의 일측 가장자리로 노출된 p형 질화물층(130), 활성층(120) 및 n형 질화물층(110)을 차례로 제거하여 n형 질화물층(110)의 일부를 노출시킨다.
이때, 메사 식각 방식으로 실시되는 2차 패터닝은 투명 도전패턴(150)의 외측으로 노출된 p형 질화물층(130), 활성층(120) 및 n형 질화물층(110)을 차례로 제거하는 방식으로 실시될 수 있다. 이러한 메사 식각으로 2차 패터닝하는 과정은 1차 패터닝시 투명 도전패턴(150)과 투명 도전패턴(150)의 상부에 잔류하는 포토레지스트 패턴(M)을 마스크로 이용한 ICP 타입의 건식 식각으로 실시될 수 있다.
이때, 1차 패터닝에 의해 투명 도전패턴(150)은 양측 가장자리의 일부가 제거된 언더컷을 구비한다. 따라서, 투명 도전패턴(150)은 메사 식각에 의한 과식각으로 마주보는 양측 가장자리가 상호 대칭 구조의 테이퍼(taper) 단면을 갖는다.
다음으로, 도 8을 참조하면, 전술한 메사 식각을 완료한 다음 투명 도전패턴(150)을 덮는 메사 식각 마스크용 포토레지스트 패턴(도 7의 M)을 스트립 공정으로 제거한다.
따라서, 본 발명에서는 투명 도전패턴(150)과 기판(10)의 일측 가장자리에 배치되는 n형 질화물층(110)의 노출 영역을 하나의 마스크를 이용한 일괄 식각으로 패터닝함으로써, 마스크 공정 수의 절감으로 생산 수율을 향상시킬 수 있는 이점이 있다.
이때, 도 10은 메사 식각 이후 투명 도전패턴을 전자현미경으로 촬영한 사진이다.
도 10에 도시된 바와 같이, 투명 도전패턴을 ICP 타입의 메사 식각과 동시에 패터닝을 실시할 경우, 투명 도전패턴의 언더컷이 2.67㎛로 제어된 것을 확인할 수 있다. 이와 같이, 투명 도전패턴의 언더컷을 3㎛ 이하로 제어할 경우, 상대적으로 투명 도전패턴의 면적이 증가하는 데 기인한 발광 면적의 확장으로 광 효율을 향상시킬 수 있는 이점이 있다.
도 3 및 도 9를 참조하면, 전극 패드 형성 단계(S140)에서는 전류 차단패턴(140)과 대응되는 위치에 투명 도전패턴(150)과 직접 접촉되는 p-전극 패드(160)와, 상기 노출된 n형 질화물층(110) 상에 n-전극 패드(170)를 형성한다. 이러한 p-전극 패드(160) 및 n-전극 패드(170)는 p형 질화물층(130), 투명 도전패턴(150) 및 노출된 n형 질화물층(110)의 상부 전면에 제3 마스크를 이용한 사진 식각 공정으로 선택적인 포토레지스트 패턴을 형성한 후, 포토레지스트 패턴 상에 금속층(미도시)을 형성하고 리프트 오프(lift-off) 방식으로 금속층과 포토레지스트 패턴을 선택적으로 제거하는 것에 의해 형성될 수 있다.
이때, p-전극 패드(160)는 평면상으로 볼 때 제1 면적을 갖고, 전류 차단패턴(140)은 제1 면적보다 크거나 같은 제2 면적을 가질 수 있다.
상기의 과정(S110 ~ S140)으로 제조되는 질화물 반도체 발광 소자는 투명 도전패턴과 기판의 일측 가장자리에 배치되는 n형 질화물층의 노출 영역을 하나의 마스크를 이용한 일괄 식각으로 패터닝함으로써, 마스크 수의 절감을 통해 생산 단가 절감 및 공정 수율을 향상시킬 수 있다.
또한, 본 발명에서는 투명 도전패턴을 메사 식각과 동일한 마스크를 사용하기 때문에 투명 도전패턴과 메사 식각 패턴 간의 오버레이 특성이 우수해진다.
또한, 종래에는 투명 도전패턴과 메사 식각을 위해 각각의 마스크를 사용하였는데, 이 경우 투명 도전 패턴과 메사 식각 패턴의 얼라인(Align) 제어의 문제로 인해 최소 5㎛ 혹은 그 이상의 옵셋(off-set)으로 설계가 되며, 투명 도전패턴의 언더컷까지 포함한다면 투명 도전패턴과 메사 식각 패턴의 옵셋은 8㎛ 이하로 제어하는데 어려움이 있었다. 이와 달리, 본 발명에서와 같이 투명 도전패턴을 ICP 타입의 메사 식각과 동시에 패터닝을 실시할 경우, 투명 도전패턴의 언더컷을 3㎛ 이하로 제어하는 것이 가능해질 수 있다. 이를 통해, 본 발명에 따른 질화물 반도체 발광 소자는 투명 도전패턴의 언더컷을 3㎛ 이하로 제어하는 것이 가능해질 수 있으므로, 상대적으로 투명 도전패턴의 면적이 증가하는 데 기인한 발광 면적의 확장으로 광 효율을 향상시킬 수 있다.
지금까지 본 발명에서는 n형 질화물층, 활성층, p형 질화물층, 전류 차단패턴, 투명 도전패턴, p-전극 패드 및 n-전극 패드가 순차적으로 적층되는 질화물 반도체 발광 소자에 대하여 설명하였으나, 이는 일 예에 불과하며, n측과 p측이 상호 역 순으로 적층되는 구조를 가질 수도 있다는 것은 자명한 사실일 것이다.

Claims (16)

  1. n형 질화물층;
    상기 n형 질화물층 상에 형성된 활성층;
    상기 활성층 상에 형성된 p형 질화물층;
    상기 p형 질화물층 상에 형성된 전류 차단패턴;
    상기 p형 질화물층 및 전류 차단패턴의 상측을 덮도록 형성되며, 마주보는 양측 가장자리가 대칭 구조의 테이퍼(taper) 단면을 갖는 투명 도전패턴; 및
    상기 전류 차단패턴과 대응되는 위치에 배치되며, 상기 투명 도전패턴과 직접 접촉되도록 형성된 p-전극 패드;를 포함하는 것을 특징으로 하는 질화물 반도체 발광 소자.
  2. 제1항에 있어서,
    상기 n형 질화물층의 노출 영역에 형성된 n-전극 패드를 더 포함하는 것을 특징으로 하는 질화물 반도체 발광 소자.
  3. 제1항에 있어서,
    상기 전류 차단패턴은
    SiO2 및 SiNx 중 선택된 1종 이상으로 형성된 것을 특징으로 하는 질화물 반도체 발광 소자.
  4. 제1항에 있어서,
    상기 전류 차단패턴은
    0.01 ~ 0.50㎛의 두께를 갖는 것을 특징으로 하는 질화물 반도체 발광 소자.
  5. 제1항에 있어서,
    상기 투명 도전패턴은
    인듐주석 산화물(Indium Tin Oxide, ITO), 인듐아연 산화물(Indium Zinc Oxide, IZO) 및 FTO(fluorine doped tin oxide, SnO2) 중 선택된 1종 이상의 재질로 형성된 것을 특징으로 하는 질화물 반도체 발광 소자.
  6. 제1항에 있어서,
    상기 투명 도전패턴은
    10 ~ 90o의 테이퍼 각도를 갖는 것을 특징으로 하는 질화물 반도체 발광 소자.
  7. 제1항에 있어서,
    상기 투명 도전패턴은
    양측 가장자리의 일부가 제거된 언더컷을 구비하는 것을 특징으로 하는 질화물 반도체 발광 소자.
  8. 제7항에 있어서,
    상기 투명 도전패턴의 언더컷은
    3㎛ 이하의 폭을 갖는 것을 특징으로 하는 질화물 반도체 발광 소자.
  9. (a) 기판 상에 n형 질화물층, 활성층 및 p형 질화물층을 차례로 형성한 후, 상기 p형 질화물층 상에 전류 차단패턴을 형성하는 단계;
    (b) 상기 p형 질화물층 및 전류 차단패턴의 상측을 덮도록 투명 도전층을 형성한 후, 상기 투명 도전층을 메사 식각 마스크를 이용하여 선택적으로 1차 패터닝하여 투명 도전패턴을 형성하는 단계;
    (c) 상기 메사 식각 마스크를 이용하여 2차 패터닝하여, 상기 기판의 일측 가장자리로 노출된 p형 질화물층, 활성층 및 n형 질화물층을 차례로 제거하여 상기 n형 질화물층의 일부를 노출시키는 단계; 및
    (d) 상기 전류 차단패턴과 대응되는 위치에 상기 투명 도전패턴과 직접 접촉되는 p-전극 패드와, 상기 노출된 n형 질화물층 상에 n-전극 패드를 형성하는 단계;를 포함하는 것을 특징으로 하는 질화물 반도체 발광 소자 제조 방법.
  10. 제9항에 있어서,
    상기 (b) 단계에서,
    상기 1차 패터닝에 의해 상기 투명 도전패턴은 양측 가장자리의 일부가 제거된 언더컷을 구비하는 것을 특징으로 하는 질화물 반도체 발광 소자 제조 방법.
  11. 제10항에 있어서,
    상기 투명 도전패턴의 언더컷은
    3㎛ 이하의 폭을 갖는 것을 특징으로 하는 질화물 반도체 발광 소자 제조 방법.
  12. 제9항에 있어서,
    상기 (a) 단계에서,
    상기 전류 차단패턴은
    SiO2 및 SiNx 중 선택된 1종 이상으로 형성하는 것을 특징으로 하는 질화물 반도체 발광 소자 제조 방법.
  13. 제9항에 있어서,
    상기 전류 차단패턴은
    0.01 ~ 0.50㎛의 두께를 갖는 것을 특징으로 하는 질화물 반도체 발광 소자 제조 방법.
  14. 제9항에 있어서,
    상기 1차 패터닝은
    상기 메사 식각 마스크를 이용한
    습식 식각(wet etching)을 이용하고, 상기 2차 패터닝은 상기 제1 패터닝과 동일한 상기 메사 식각 마스크를 이용한 ICP 타입의 건식 식각을 이용하여 차례로 실시되는 것을 특징으로 하는 질화물 반도체 발광 소자 제조 방법.
  15. 제9항에 있어서,
    상기 (c) 단계와 (d) 단계 사이에서,
    상기 투명 도전패턴은
    상기 마주보는 양측 가장자리가 상호 대칭 구조의 테이퍼(taper) 단면을 갖는 것을 특징으로 하는 질화물 반도체 발광 소자 제조 방법.
  16. 제15항에 있어서,
    상기 투명 도전패턴은
    10 ~ 90o의 테이퍼 각도를 갖는 것을 특징으로 하는 질화물 반도체 발광 소자 제조 방법.
PCT/KR2013/012043 2012-12-28 2013-12-23 질화물 반도체 발광 소자 및 그 제조 방법 WO2014104688A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/758,009 US20150349196A1 (en) 2012-12-28 2013-12-23 Nitride semiconductor light-emitting device and method of manufacturing same
CN201380068930.4A CN105144415A (zh) 2012-12-28 2013-12-23 氮化物半导体发光器件及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120156368A KR101482526B1 (ko) 2012-12-28 2012-12-28 질화물 반도체 발광 소자 제조 방법
KR10-2012-0156368 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014104688A1 true WO2014104688A1 (ko) 2014-07-03

Family

ID=51021662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/012043 WO2014104688A1 (ko) 2012-12-28 2013-12-23 질화물 반도체 발광 소자 및 그 제조 방법

Country Status (5)

Country Link
US (1) US20150349196A1 (ko)
KR (1) KR101482526B1 (ko)
CN (1) CN105144415A (ko)
TW (1) TW201427072A (ko)
WO (1) WO2014104688A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9905729B2 (en) 2015-03-27 2018-02-27 Seoul Viosys Co., Ltd. Light emitting diode
WO2016159544A1 (ko) * 2015-03-27 2016-10-06 서울바이오시스 주식회사 발광 다이오드
US9705035B1 (en) 2015-12-30 2017-07-11 Epistar Corporation Light emitting device
DE102016105056A1 (de) * 2016-03-18 2017-09-21 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip
CN105870275B (zh) * 2016-05-25 2019-01-11 天津三安光电有限公司 发光二极管及其制作方法
CN108511574A (zh) * 2017-02-28 2018-09-07 山东浪潮华光光电子股份有限公司 一种GaN基发光二极管芯片的制备方法
KR20180101908A (ko) * 2017-03-06 2018-09-14 서울바이오시스 주식회사 발광 다이오드 및 이를 포함하는 필라멘트 발광 다이오드 램프
US10615305B1 (en) * 2018-04-20 2020-04-07 Facebook Technologies, Llc Self-alignment of micro light emitting diode using planarization
CN108550666A (zh) * 2018-05-02 2018-09-18 天津三安光电有限公司 倒装四元系发光二极管外延结构、倒装四元系发光二极管及其生长方法
CN116825924B (zh) * 2023-08-24 2023-12-19 山西中科潞安紫外光电科技有限公司 一种深紫外led倒装芯片及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261042A (ja) * 1999-03-05 2000-09-22 Toshiba Corp 半導体発光素子及びその製造方法
KR20120048413A (ko) * 2010-11-05 2012-05-15 엘지이노텍 주식회사 발광 소자 및 발광 소자 패키지
US20120153343A1 (en) * 2004-06-30 2012-06-21 Cree, Inc. Methods of forming light emitting devices having current reducing structures
KR20120133632A (ko) * 2011-05-31 2012-12-11 엘지디스플레이 주식회사 발광 다이오드
JP2012253074A (ja) * 2011-05-31 2012-12-20 Mitsubishi Chemicals Corp 窒化物系発光ダイオード素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100810492B1 (ko) * 2006-03-28 2008-03-07 서울옵토디바이스주식회사 Zn 화합물로 된 전극층을 갖는 수직형 발광다이오드 및그 제조방법
TW201101537A (en) * 2009-06-19 2011-01-01 Ubilux Optoelectronics Corp Light emitting diode with passivation layer and its manufacturing method
KR101054112B1 (ko) * 2011-01-24 2011-08-03 (주)더리즈 반도체 발광소자 및 그의 제조방법
JP5633057B2 (ja) * 2011-02-09 2014-12-03 豊田合成株式会社 半導体発光素子及び半導体発光装置
JP2013008818A (ja) * 2011-06-24 2013-01-10 Toshiba Corp 半導体発光素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261042A (ja) * 1999-03-05 2000-09-22 Toshiba Corp 半導体発光素子及びその製造方法
US20120153343A1 (en) * 2004-06-30 2012-06-21 Cree, Inc. Methods of forming light emitting devices having current reducing structures
KR20120048413A (ko) * 2010-11-05 2012-05-15 엘지이노텍 주식회사 발광 소자 및 발광 소자 패키지
KR20120133632A (ko) * 2011-05-31 2012-12-11 엘지디스플레이 주식회사 발광 다이오드
JP2012253074A (ja) * 2011-05-31 2012-12-20 Mitsubishi Chemicals Corp 窒化物系発光ダイオード素子

Also Published As

Publication number Publication date
TW201427072A (zh) 2014-07-01
US20150349196A1 (en) 2015-12-03
KR20140086184A (ko) 2014-07-08
CN105144415A (zh) 2015-12-09
KR101482526B1 (ko) 2015-01-16

Similar Documents

Publication Publication Date Title
WO2014104688A1 (ko) 질화물 반도체 발광 소자 및 그 제조 방법
KR102531884B1 (ko) 디스플레이 장치 및 디스플레이 장치 형성 방법
WO2014163323A1 (en) Ultraviolet light emitting device separated from growth substrate and method of fabricating the same
WO2011025291A2 (ko) 요철 패턴 기판 상의 고품질 비극성/반극성 반도체 소자 및 그 제조 방법
WO2014061971A1 (ko) 발광 영역 분리 트렌치를 갖는 전류 분산 효과가 우수한 고휘도 반도체 발광소자
WO2013024914A1 (ko) 질화물 반도체 발광소자의 제조방법 및 이에 의해 제조된 질화물 반도체 발광소자
WO2013015472A1 (ko) 반도체 발광소자 및 그 제조방법
TW201427082A (zh) 氮化物半導體發光裝置及其製造方法
WO2013165127A1 (ko) 발광 다이오드 소자 및 그의 제조 방법
WO2012118250A1 (ko) 패턴화된 격자 완충층을 이용한 질화물계 발광소자 및 그 제조 방법
WO2016104958A1 (ko) 적색 발광소자 및 조명장치
WO2013137554A1 (ko) 발광 소자 및 그 제조 방법
WO2016052929A1 (en) Light emitting diode comprising porous transparent electrode
WO2019212254A1 (ko) 발광 소자 패키지
WO2020111429A1 (ko) 발광 소자
WO2014088256A1 (ko) 세퍼레이션 영역을 포함하여 전류 분산 효과가 우수한 고휘도 반도체 발광소자
WO2015016507A1 (ko) 발광 소자 제조용 템플릿 및 자외선 발광 소자 제조 방법
WO2014193109A1 (en) Light emitting diode having plurality of light emitting elements and method of fabricating the same
WO2009136770A2 (ko) 발광 소자 및 그 제조방법
WO2021221437A1 (ko) 마이크로-나노핀 led 소자 및 이의 제조방법
WO2013172595A1 (en) Light emitting diode including void in substrate and fabrication method for the same
JP7504983B2 (ja) Ledアレイ
KR20090131838A (ko) 발광 소자 및 그 제조 방법
WO2016186330A1 (ko) 발광 소자
WO2014042461A1 (ko) 고휘도 질화물 발광소자 및 그 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380068930.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866783

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14758009

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13866783

Country of ref document: EP

Kind code of ref document: A1