WO2014091676A1 - アクリルアミドの製造方法 - Google Patents

アクリルアミドの製造方法 Download PDF

Info

Publication number
WO2014091676A1
WO2014091676A1 PCT/JP2013/006713 JP2013006713W WO2014091676A1 WO 2014091676 A1 WO2014091676 A1 WO 2014091676A1 JP 2013006713 W JP2013006713 W JP 2013006713W WO 2014091676 A1 WO2014091676 A1 WO 2014091676A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylamide
reaction
concentration
reactor
continuous
Prior art date
Application number
PCT/JP2013/006713
Other languages
English (en)
French (fr)
Inventor
加納 誠
村尾 耕三
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to AU2013358494A priority Critical patent/AU2013358494B2/en
Priority to EP13863015.7A priority patent/EP2930243B1/en
Priority to US14/650,063 priority patent/US10160982B2/en
Priority to CN201380062946.4A priority patent/CN105247063B/zh
Priority to KR1020157009207A priority patent/KR101774674B1/ko
Priority to RU2015127779A priority patent/RU2631650C2/ru
Priority to BR112015013264-2A priority patent/BR112015013264B1/pt
Priority to JP2013553711A priority patent/JP6149731B2/ja
Publication of WO2014091676A1 publication Critical patent/WO2014091676A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/06Preparation of carboxylic acid amides from nitriles by transformation of cyano groups into carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes

Definitions

  • the present invention relates to a method for producing acrylamide. More specifically, the present invention relates to a method for producing acrylamide from acrylonitrile using a biocatalyst.
  • biocatalysts have been widely used since the discovery of nitrile hydratase, an enzyme that converts nitrile compounds into amide compounds.
  • the raw material and the biocatalyst are continuously or intermittently supplied to the reactor, and an aqueous solution of the generated acrylamide is taken out continuously or intermittently, so-called continuous.
  • the reaction is widely used.
  • the continuous reaction is described in, for example, Patent Documents 1 to 4.
  • Patent Documents 1 and 2 describe that water is introduced into the reactor in advance before starting a continuous reaction.
  • Patent Documents 3 and 4 describe that water and a biocatalyst are introduced in advance and adjusted to a predetermined temperature before starting a continuous reaction, and then acrylonitrile is supplied to start the continuous reaction. .
  • the continuous reaction has a problem that it takes time from the start of the reaction until the concentration of the acrylamide aqueous solution to be taken reaches the target concentration.
  • the concentration of the aqueous acrylamide solution taken out for a while after starting the continuous reaction is the target concentration. Lower than.
  • An aqueous acrylamide solution lower than the target concentration cannot be used as a product as it is. For this reason, it is necessary to concentrate and increase it to the target concentration, or to recover and re-use it by supplying it to the reactor, which only increases the equipment cost and energy cost of the concentrator and recovery equipment. It is disadvantageous because the operation is complicated.
  • the present invention is a method for continuously producing acrylamide from acrylonitrile using a biocatalyst, and after starting a continuous reaction, an aqueous acrylamide solution having a desired concentration can be continuously taken out in a short time.
  • the main object is to provide a manufacturing method which is low in cost and excellent in operability.
  • the present invention is a method for continuously producing acrylamide from acrylonitrile using a biocatalyst, and after the acrylamide is introduced into the reactor, the continuous reaction is started by contacting the acrylonitrile with the biocatalyst.
  • a method for producing acrylamide is provided. More specifically, the present invention relates to the above production method in which N (N is an integer of 1 or more) reactors are connected in series to perform a continuous reaction, wherein the i th Provided is a production method characterized in that the concentration of the aqueous acrylamide solution introduced into the reactor (i is an integer from 1 to N) is not less than C i [mass%] represented by the following formula (1).
  • the concentration C i is preferably 5% to 60%.
  • the amount of the acrylamide aqueous solution present in the reactor before the start of the continuous reaction is preferably 70% to 120% of the amount of liquid in the reactor during the continuous reaction. It is preferable to contain 3000 to 150,000 U (activity at a reaction temperature of 10 ° C.) of biocatalyst per liter in the solution.
  • a continuous reactor composed of 2 to 10 units connected can be used.
  • a method for continuously producing acrylamide means continuous or intermittent supply of reaction raw materials (including biocatalyst, acrylonitrile, raw water) and a reaction mixture (reaction raw materials and produced acrylamide). (Including continuous) and continuous removal without removing the entire reaction mixture in the reactor (continuous reaction).
  • an acrylamide aqueous solution having a target concentration can be obtained in a short time after starting a continuous reaction, and acrylamide can be produced at low cost and with good operability.
  • the biocatalyst includes animal cells, plant cells, organelles, microbial cells (live cells or dead cells) containing the enzyme that catalyzes the target reaction, or processed products thereof.
  • Processed products include crude enzymes or purified enzymes extracted from cells, cell organelles or fungus bodies, animal cells, plant cells, cell organelles, fungus bodies (live or dead) or enzymes themselves. And those immobilized by a crosslinking method, a carrier binding method or the like.
  • animal cells include monkey cells COS-7, Vero, CHO cells, mouse L cells, rat GH3, and human FL cells.
  • plant cells include tobacco BY-2 cells.
  • fungus body examples include, for example, Nocardia, Corynebacterium, Bacillus, Pseudomonas, Micrococcus, Rhodococcus, and Rhodococcus ) Genus, Xanthobacter genus, Streptomyces genus, Rhizobium genus, Klebsiella genus, Enterobacter genus, Erwiniaon genus, Erwiniaon genus Citrobacter genus, Chromo Citrobacter (Achromobacter) genus, Agrobacterium (Agrobacterium) genus or microorganisms belonging to the shoe de Nocardia (Pseudonocardia) genus, and the like.
  • Nocardia Corynebacterium, Bacillus, Pseudomonas, Micrococcus, Rhodococcus, and Rhodococcus
  • Genus examples include, for example, Nocardia, Corynebacterium, Bacillus,
  • animal cells, plant cells, organelles or fungus bodies include not only wild-type cells but also those in which genes are modified.
  • the inclusion method which is one of the immobilization methods, is a method in which cells or enzymes are wrapped in a fine lattice of a polymer gel or covered with a semipermeable membrane.
  • the crosslinking method is a method in which an enzyme is crosslinked with a reagent having two or more functional groups (polyfunctional crosslinking agent).
  • the carrier binding method is a method of binding an enzyme to a water-insoluble carrier.
  • the immobilization carrier used for immobilization include glass beads, silica gel, polyurethane, polyacrylamide, polyvinyl alcohol, carrageenan, alginic acid, agar, and gelatin.
  • Examples of the enzyme include nitrile hydratase produced by the microorganism and the like.
  • the amount of biocatalyst used can be appropriately selected according to the type and form of the biocatalyst used. For example, it is preferable to adjust the activity of the biocatalyst supplied to the reactor to about 50 to 500 U per 1 mg of dry cells at a reaction temperature of 10 ° C.
  • the unit U means that 1 micromole of acrylamide is produced from acrylonitrile in one minute.
  • Raw material water is used for the hydration reaction with acrylonitrile when acrylamide is produced.
  • the raw water include water; aqueous solutions in which acids, salts, and the like are dissolved in water.
  • Examples of the acid include phosphoric acid, acetic acid, citric acid, boric acid, acrylic acid, formic acid and the like.
  • Examples of the salts include sodium salts, potassium salts and ammonium salts of the above acids.
  • Specific examples of the raw material water are not particularly limited. For example, water such as pure water, ultrapure water, city water; Tris buffer solution, phosphate buffer solution, acetate buffer solution, citrate buffer solution, A buffer solution such as a borate buffer solution may be mentioned.
  • the pH of the raw water (20 ° C.) is preferably 5-9.
  • acrylonitrile The type of acrylonitrile is not particularly limited, and commercially available products can be used. In order to reduce the consumption of the biocatalyst when producing acrylamide, it is preferable to use acrylonitrile having a cyan concentration of 3 ppm or less in acrylonitrile.
  • reaction temperature for hydrating acrylonitrile is not limited, but is preferably 10 to 50 ° C., more preferably 15 to 40 ° C., and more preferably 20 to 35 ° C. Further preferred. If reaction temperature is 10 degreeC or more, the reaction activity of a biocatalyst will fully be raised. Moreover, if reaction temperature is 50 degrees C or less, it will become easy to suppress the deactivation of a biocatalyst.
  • reactor Although only one reactor may be used or a plurality of reactors may be used in combination, it is better to use two or more reactors in view of industrially producing acrylamide in large quantities and efficiently. Preferably, for example, 2 to 10 units are used.
  • the reactor is preferably provided with a stirring device.
  • a stirring blade is preferable.
  • the shape of the stirring blade is not limited, and examples thereof include a paddle, a disk turbine, a propeller, a helical ribbon, an anchor, and a fiddler.
  • the supply of raw water, biocatalyst, and acrylonitrile is not limited to the reactor located on the most upstream side, as long as the efficiency of the reaction is not deteriorated excessively. May be.
  • the upstream side is the side into which the reaction raw material is introduced
  • the downstream side is the side from which the reaction mixture is taken out.
  • the water-soluble monocarboxylate may be either a saturated monocarboxylate or an unsaturated monocarboxylate.
  • saturated carboxylic acid include acetic acid, propionic acid, n-caproic acid and the like.
  • unsaturated carboxylic acid include acrylic acid, methacrylic acid, and vinyl acetic acid.
  • Typical examples of the salt include the sodium salt, potassium salt, and ammonium salt of the saturated monocarboxylic acid or unsaturated monocarboxylic acid.
  • the amount of water-soluble monocarboxylate added is preferably 20 to 5000 mg / kg as an acid with respect to acrylamide.
  • the residence time (reaction time) of the reaction mixture is not limited, but is preferably 1 to 30 hours, and more preferably 2 to 20 hours.
  • the residence time is the flow rate of the reaction mixture [m 3] that continuously removes the total volume [m 3 ] of reaction liquid (when there are a plurality of reactors, the total of reaction liquids in all reactors) from the reactor. / Hr].
  • the raw material water and / or acrylonitrile to be supplied is preferably 5 ° C. or lower than the reaction temperature.
  • the pH of the reaction for hydrating acrylonitrile to produce acrylamide is preferably 6-9, more preferably 7-8.5.
  • the pH measurement method includes an indicator method, a metal electrode method, a glass electrode method, a semiconductor sensor method, and the like, but measurement by a glass electrode method widely used industrially is preferable.
  • reaction start The method for producing acrylamide according to the present invention is characterized in that, in the method for continuously producing acrylamide from acrylonitrile using a biocatalyst, a continuous reaction is initiated by bringing acrylonitrile into contact with the biocatalyst in the presence of acrylamide.
  • a reaction raw material including biocatalyst, acrylonitrile, and raw water
  • the reaction may be started by first introducing acrylamide into the reactor and adding the reaction raw material thereto, or the reaction may be started by simultaneously introducing acrylamide and the reaction raw material into the reactor.
  • the form of acrylamide is not particularly limited, but it is preferably used as an aqueous solution from the viewpoint of handleability. By starting the reaction in the presence of acrylamide, it is possible to quickly obtain an aqueous acrylamide solution having a target concentration after the reaction starts.
  • acrylamide is present in at least one or more reactors before starting a continuous reaction.
  • acrylamide be present in the reactor to which acrylonitrile is directly supplied during the continuous reaction. It is more preferable that acrylamide is present.
  • the temperature and / or pH of the aqueous acrylamide solution After introducing the aqueous acrylamide solution into the reactor, it is preferable to adjust the temperature and / or pH of the aqueous acrylamide solution to the temperature and / or pH value when performing the continuous reaction before starting the continuous reaction.
  • the concentration of the acrylamide aqueous solution introduced into the reactor before performing the continuous reaction is preferably adjusted to a concentration suitable for each reactor when there are a plurality of reactors. Specifically, when N reactors (N is an integer of 1 or more) are connected in series to perform a continuous reaction, the i-th (i is an integer from 1 to N) before starting the continuous reaction. Into the reactor, an acrylamide aqueous solution having a concentration C i [mass%] or more represented by the following formula (1) is introduced. Note that one reactor is also considered to be connected in series.
  • the concentration C i means a concentration that is 10% by weight lower than the maximum acrylamide concentration in the reaction mixture in each reactor in the steady state of the continuous reaction.
  • the concentration of aqueous acrylamide solution to be introduced into the reactor before starting the continuous reaction is lower than the C i, after the start of the continuous reaction, a short time (eg, within the above-mentioned residence time), the concentration of interest acrylamide An aqueous solution cannot be obtained. Therefore, since the obtained aqueous acrylamide solution cannot be used as a product as it is, operations such as concentration and recovery are required in the post-reaction process, which is disadvantageous in terms of industrial cost.
  • the upper limit of the concentration of the acrylamide aqueous solution introduced into the reactor before starting the continuous reaction is preferably (C i +15) [wt%] or less.
  • the acrylamide aqueous solution introduced into the reactor is higher than (C i +15) [wt%]
  • an operation for diluting acrylamide is required in the subsequent step of the reaction.
  • the biocatalyst is easily deteriorated by the high-concentration acrylamide aqueous solution, and as a result, the amount of the biocatalyst used increases and the production cost increases.
  • Density adjustment aqueous acrylamide solution to be introduced may be introduced acrylamide previously adjusted C i wt% or more to each reactor, the crystals of aqueous acrylamide solution or acrylamide diluted with raw water in the reactor, C You may adjust so that it may become i weight% or more.
  • concentration C i is preferably 5% to 60%. More preferably, for example, the following is set according to the number of reactors.
  • the concentration C1 of the first reactor located on the most upstream side of the reaction is 10 to 30%, and the second reaction located second from the upstream side of the reaction.
  • the reactor is continuously removed from the fifth reactor by setting the reactor concentration C 2 to 15 to 35% and the third to fifth reactors C 3 to C 5 to 20 to 40%, respectively.
  • acrylamide can be obtained at the desired concentration of 25-34%.
  • the concentration C 1 is 15 to 30%, the concentration C 2 is 25 to 45%, and the concentrations C 3 to C 5 are 30 to 50%, respectively.
  • Acrylamide can be obtained at the desired concentration of 35 to 44%.
  • the concentration C 1 to 25 to 45%, the concentration C 2 to 35 to 55%, and the concentrations C 3 to C 5 to 40 to 60%, respectively, in the reaction mixture taken out from the fifth reactor Acrylamide can be obtained at a target concentration of 45 to 55%.
  • the concentration C1 of the first reactor located on the most upstream side of the reaction is 5 to 25%, and the second reaction located second from the upstream side of the reaction.
  • the reactor concentration C 2 is 10-30%, the third reactor concentration C 3 is 15-35%, and the reactor concentration C 4 -C 6 is 4-6.
  • acrylamide can be obtained at a target concentration of 25 to 34% in the reaction mixture continuously taken out from the sixth reactor.
  • acrylamide can be obtained at the desired concentration of 35-44%. Furthermore, by setting the concentration C 1 to 20 to 40%, the concentration C 2 to 30 to 50%, the concentration C 3 to 35 to 55%, and the concentrations C 4 to C 6 to 40 to 60%, respectively, In the reaction mixture withdrawn from the 6 reactor, acrylamide can be obtained at the desired concentration of 45-55%.
  • the concentration C1 of the first reactor located at the most upstream side of the reaction is 5 to 20%, and the second reaction located second from the upstream side of the reaction.
  • the reactor concentration C 2 is 10-30%, the third reactor concentration C 3 is 15-35%, and the reactor concentration C 4 -C 7 is 4-7.
  • the concentration C 1 is set to 10 to 30%, the concentration C 2 is set to 20 to 40%, the concentration C 3 is set to 25 to 45%, and the concentrations C 4 to C 7 are set to 30 to 50%, respectively.
  • acrylamide in the reaction mixture removed from the 7 reactor, acrylamide can be obtained in the desired concentration of 35-44%. Further, the concentration C 1 is set to 15 to 35%, the concentration C 2 is set to 25 to 45%, the concentration C 3 is set to 35 to 55%, and the concentrations C 4 to C 7 are set to 40 to 60%, respectively. In the reaction mixture removed from the 7 reactor, acrylamide can be obtained at the desired concentration of 45-55%.
  • the concentration C1 of the first reactor located at the most upstream side of the reaction is set to 5 to 15%, and the downstream reactor has one upstream reaction.
  • acrylamide can be obtained at a target concentration of 25 to 34% by the presence of an acrylamide aqueous solution having a concentration equal to or higher than that of the vessel and not higher than + 10%. .
  • the concentration C 1 is 5 to 20% by the presence of the aqueous acrylamide solution in the reactor equal to or higher than +10 percent of the concentration of one upstream to the downstream side of the reactor, located on the most downstream reaction
  • acrylamide can be obtained at the desired concentration of 35-44%.
  • concentration C 1 is 5 to 20% by the presence of the aqueous acrylamide solution in the reactor equal to or higher than +10 percent of the concentration of one upstream to the downstream side of the reactor, located on the most downstream reaction
  • acrylamide can be obtained at the desired concentration of 35-44%.
  • the concentration C 1 is 5 to 20% by the presence of the aqueous acrylamide solution in the reactor equal to or higher than +10 percent of the concentration of one upstream to the downstream side of the reactor, located on the most downstream reaction
  • acrylamide can be obtained at the desired concentration of 35-44%.
  • concentration C 1 is 5 to 20% by the presence of the aqueous acrylamide solution in the reactor equal to or higher than +10 percent of the concentration of one upstream to
  • the amount of the acrylamide aqueous solution introduced into the reactor before starting the continuous reaction of the present invention is 70 to 120% of the amount of liquid in the reactor in the continuous reaction.
  • the amount of the acrylamide aqueous solution is preferably 80 to 110%, more preferably 90 to 105%.
  • the amount of the acrylamide aqueous solution By setting the amount of the acrylamide aqueous solution to be introduced to 70% or more, it takes time until the acrylamide aqueous solution is taken out after starting the continuous reaction. During this time, the biocatalyst deteriorates, resulting in an increase in the amount of catalyst used. Can be prevented.
  • the amount of the acrylamide aqueous solution by setting the amount of the acrylamide aqueous solution to be introduced to 120% or less, after starting the continuous reaction, the residence time of the reaction solution is shortened and the reaction is not completed. As a result, unreacted acrylonitrile is mixed into the product. Can be prevented.
  • the amount of the biocatalyst introduced into the reactor before starting the continuous reaction can be 3000 to 150,000 U (activity at a reaction temperature of 10 ° C.) per liter of the liquid in the reactor.
  • the liquid in the reactor indicates an aqueous acrylamide solution to be introduced into the reactor before starting the continuous reaction.
  • the biocatalyst may be introduced before or after the introduction of the acrylamide aqueous solution, but in order to suppress the deterioration of the catalyst, it is preferable to introduce the biocatalyst immediately before the start of the continuous reaction after the introduction of the acrylamide aqueous solution.
  • the biocatalyst concentration By setting the biocatalyst concentration to be introduced to 3000 U / L or more, it is possible to prevent the catalyst from being deteriorated by a high concentration of acrylonitrile because the increase in the acrylonitrile concentration cannot be sufficiently suppressed immediately after the start of the continuous reaction. As a result, it is possible to prevent the amount of catalyst used from increasing and acrylamide from being unable to be produced at a low cost.
  • the biocatalyst concentration 150,000 U / L or less, it is possible to prevent impurities derived from the catalyst from being mixed into the product acrylamide and adversely affecting the color of the acrylamide aqueous solution and the production of the acrylamide polymer.
  • concentration “mass%” of the acrylamide aqueous solution may be simply expressed as “%”.
  • Example 1 (Adjustment of biocatalyst) Rhodococcus rhodochrous J1 strain having nitrile hydratase activity (Accession No. FERM BP-1478) National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center ) Was deposited on September 18, 1987), glucose 2%, urea 1%, peptone 0.5%, yeast extract 0.3%, cobalt chloride hexahydrate 0.01% (all The medium was aerobically cultured at 30 ° C. in a medium (pH 7.0) containing (mass%). This was collected and washed using a centrifuge and a 50 mM phosphate buffer (pH 7.0) to obtain a cell suspension (dry cell 15% by mass).
  • reaction from acrylonitrile to acrylamide As a reactor, a reaction vessel with an internal volume of 5 L (inner diameter: 18 cm) with a jacket cooling was used by connecting 6 vessels in series. Each reaction tank was provided with four inclined paddle blades (tilt angle 45 °, blade diameter 8 cm). In this example, the target concentration of the acrylamide aqueous solution taken out from the reactor was 50 to 55% (the same applies to Examples 2 and 3 and Comparative Examples 1 and 2). (1) The flow path valve connecting the reaction vessels was closed. (2) From the 1st tank to the 6th tank, 4 L each of acrylamide aqueous solution having a concentration of 21%, 35%, 43%, 50%, 52%, and 52% was introduced into the reaction tank.
  • the cell suspension prepared in Example 1 was added in an amount of 135000 U (activity at a reaction temperature of 10 ° C.). (4) The flow path valve connecting the reaction vessels was opened. (5) In the first tank, 50 mM phosphate buffer (pH 7.0) at 2146 g / hr, acrylonitrile at 569 g / hr, and the cell suspension prepared in Example 1 at 8 g / hr, Continuous reaction was started by continuously supplying acrylonitrile only at 380 g / hr into the tank, acrylonitrile only at 292 g / hr into the third tank, and acrylonitrile only at 127 g / hr into the fourth tank. (6) The position of the overflow liquid outlet at the sixth tank outlet was adjusted so that the amount of the reaction mixture liquid in the reaction tank was 4 L.
  • the temperature was controlled using the cooling water (5 ° C.) of the jacket so that the reaction liquid temperatures in the first tank to the sixth tank were 20, 21, 22, 23, 24, and 25 ° C., respectively.
  • the acrylamide concentration in the reaction solution flowing out from the sixth reaction vessel was measured with a refractometer (ATAGO RX-7000 ⁇ ). The target acrylamide concentration of 52% acrylamide was detected.
  • the acrylamide concentration in the reaction solution flowing out from the sixth reaction tank was measured.
  • the target concentration of 50% acrylamide was detected.
  • the acrylamide concentration in the reaction solution flowing out from the sixth reaction vessel was measured.
  • Example 2 Before starting the continuous reaction, 4 liters each of acrylamide aqueous solution of 32%, 43%, 50%, 50%, 52%, and 52% in concentration from the 1st to 6th tanks to the reaction tank. The same procedure as in Example 1 was performed except for the introduction.
  • the acrylamide concentration in the reaction flowing out from the sixth reaction tank was measured in the same manner as in Example 1.
  • the acrylamide concentration in the reaction solution flowing out from the sixth reaction tank was measured.
  • the acrylamide concentration in the reaction solution flowing out from the sixth reaction vessel was measured.
  • Example 3 Before starting the continuous reaction, 4 liters of each 15%, 27%, 37%, 40%, 40%, 40% concentration of acrylamide aqueous solution from the 1st tank to the 6th tank was transferred to the reaction tank. The same procedure as in Example 1 was performed except for the introduction.
  • the acrylamide concentration in the reaction flowing out from the sixth reaction tank was measured in the same manner as in Example 1. 40% acrylamide, lower than the desired concentration, was detected.
  • the acrylamide concentration in the reaction solution flowing out from the sixth reaction vessel was measured.
  • Example 1 Before starting the continuous reaction, the same procedure as in Example 1 was performed except that 4 L of water was introduced into the reaction tank from the first tank to the sixth tank.
  • Example 2 Before starting the continuous reaction, the same procedure as in Example 1 was performed except that the acrylamide aqueous solution and the raw water were not introduced from the first tank to the sixth tank.
  • the reaction solution did not flow out of the sixth reaction vessel. Since the liquid level of the reaction mixture was lower than the position of the stirring blade for a while after the start of the reaction, the raw water, biocatalyst and acrylonitrile supplied to the reaction vessel continued to be poorly mixed.
  • an acrylamide aqueous solution having a desired concentration can be obtained quickly in a short time after starting a continuous reaction. For this reason, the concentration process and the recovery process can be eliminated or simplified, and acrylamide can be easily produced at low cost.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 生体触媒を用いてアクリロニトリルからアクリルアミドを連続的に製造する方法において、アクリルアミドを反応器へ導入した後、アクリロニトリルを生体触媒に接触させることにより連続反応を開始することを特徴とする、アクリルアミドの製造方法を提供する。このアクリルアミドの製造方法は、連続反応を開始した後、短時間で目的とする濃度のアクリルアミド水溶液を連続的に取り出すことが可能で、低コストかつ操作性に優れる。

Description

アクリルアミドの製造方法
 本発明は、アクリルアミドの製造方法に関する。より詳しくは、生体触媒を用いてアクリロニトリルからアクリルアミドを製造する方法に関する。
 生体触媒を利用して目的の化合物を製造する方法は、反応条件が穏和であること、副生物が少なく反応生成物の純度が高いこと、製造プロセスを簡略化できること等の利点があるため、多くの化合物の製造に用いられている。アミド化合物の製造においては、ニトリル化合物をアミド化合物に変換する酵素であるニトリルヒドラターゼが見出されて以来、生体触媒が広く利用されている。
 生体触媒を利用して工業的にアクリルアミドを製造する方法として、原料および生体触媒を反応器に連続的または間欠的に供給しつつ、生成したアクリルアミドの水溶液を連続的または間欠的に取り出す、いわゆる連続反応が広く用いられている。連続反応は、例えば特許文献1~4に記載されている。
 アクリルアミドを連続的に製造する方法として、連続反応を開始する前に予め水を反応器に導入することが一般に知られている。特許文献1および2には、連続反応を開始する前に予め水を反応器に導入することが記載されている。また、特許文献3および4には、連続反応を開始する前に予め水および生体触媒を導入して所定の温度に調整した後、アクリロニトリルを供給して連続反応を開始することが記載されている。
特開2001-340091号公報 国際公開2012/039407号パンフレット 特表2004-524047号公報 特表2004-528037号公報
 連続反応は、反応を開始してから、取り出すアクリルアミド水溶液の濃度が目的とする濃度に達するまでに時間を要する問題がある。上述の特許文献1~4の方法では、生成したアクリルアミドが予め反応器に導入された水により希釈されるため、連続反応を開始してしばらくの間は取り出されるアクリルアミド水溶液の濃度は目的とする濃度よりも低くなる。
 目的とする濃度よりも低いアクリルアミド水溶液は、そのままでは製品として使用できない。このため、濃縮して目的とする濃度まで高めるか、回収して反応器へ再度供給する等して再利用することが必要となり、濃縮装置や回収装置の設備コストやエネルギーコストが高くなるだけでなく、操作も複雑となるので不利である。
 そこで、本発明は、生体触媒を用いてアクリロニトリルからアクリルアミドを連続的に製造する方法において、連続反応を開始した後、短時間で目的とする濃度のアクリルアミド水溶液を連続的に取り出すことが可能で、低コストかつ操作性に優れる製造方法を提供することを主な目的とする。
 上記解題解決のため、本発明は、生体触媒を用いてアクリロニトリルからアクリルアミドを連続的に製造する方法において、反応器にアクリルアミドを導入した後、アクリロニトリルを生体触媒に接触させることにより連続反応を開始することを特徴とする、アクリルアミドの製造方法を提供する。
 より具体的には、本発明は、N個(Nは1以上の整数)の反応器を直列に連結して連続反応を行う上記製造方法であって、連続反応を開始する前に、i番目(iは1~Nまでの整数)の反応器に導入するアクリルアミド水溶液の濃度を、下記式(1)で表わされるC[質量%]以上とすることを特徴とする製造方法を提供する。
Figure JPOXMLDOC01-appb-M000001
 この製造方法においては、前記濃度Cは5%~60%であることが好ましい。また、アクリロニトリル溶液が直接供給される反応器にアクリルアミドを導入することが好ましい。さらに、連続反応開始前に反応器に存在させるアクリルアミド水溶液の液量を、連続反応時の反応器内の液量の70%~120%とすることが好ましく、連続反応開始前に、反応器内の液に1リットルあたり3000~150000U(反応温度10℃における活性)の生体触媒を含有させることが好ましい。この製造方法は、例えば、連結された2器~10器から成る連続反応器を用いるものとできる。
 本発明において、「アクリルアミドを連続的に製造する方法」とは、反応原料(生体触媒、アクリロニトリル、原料水を含む)の連続的又は間欠的な供給と、反応混合物(反応原料および生成したアクリルアミドを含む)の連続的又は間欠的な取り出しを行いながら、反応器内の反応混合物を全量抜き出すことなく連続的に製造する方法(連続反応)を意味する。
 本発明の製造方法によれば、連続反応を開始した後、短時間で目的とする濃度のアクリルアミド水溶液を得ることができ、低コストかつ操作性良くアクリルアミドを製造できる。
 以下、本発明のアクリルアミドの製造方法について詳細に説明する。
[生体触媒]
 生体触媒には、目的とする反応を触媒する酵素を含有する動物細胞、植物細胞、細胞小器官、菌体(生菌体又は死滅体)もしくはその処理物が含まれる。処理物としては、細胞、細胞小器官又は菌体から抽出された粗酵素又は精製酵素、さらに動物細胞、植物細胞、細胞小器官、菌体(生菌体又は死滅体)又は酵素自体を包括法、架橋法、担体結合法等で固定化したものが挙げられる。
 動物細胞としては、サル細胞COS-7、Vero、CHO細胞、マウスL細胞、ラットGH3、ヒトFL細胞等を挙げることができる。植物細胞としては、タバコBY-2細胞等を挙げることができる。
 菌体としては、例えば、ノカルディア(Nocardia)属、コリネバクテリウム(Corynebacterium)属、バチルス(Bacillus)属、シュードモナス(Pseudomonas)属、ミクロコッカス(Micrococcus)属、ロドコッカス(Rhodococcus)属、アシネトバクター(Acinetobacter)属、キサントバクター(Xanthobacter)属、ストレプトマイセス(Streptomyces)属、リゾビウム(Rhizobium)属、クレブシエラ(Klebsiella)属、エンテロバクター(Enterobacter)属、エルウィニア(Erwinia)属、エアロモナス(Aeromonas)属、シトロバクター(Citrobacter)属、アクロモバクター(Achromobacter)属、アグロバクテリウム(Agrobacterium)属又はシュードノカルディア(Pseudonocardia)属に属する微生物等が挙げられる。
 これらの動物細胞、植物細胞、細胞小器官又は菌体には、野生型のものだけでなく遺伝子が改変されたものも含まれる。
 固定化の方法の1つである包括法とは、菌体又は酵素を高分子ゲルの微細な格子の中に包み込むか、半透膜性の高分子の皮膜によって被覆する方法である。架橋法とは、酵素を2個又はそれ以上の官能基を持った試薬(多官能性架橋剤)で架橋する方法である。担体結合法とは、水不溶性の担体に酵素を結合させる方法である。固定化に用いる固定化担体としては、例えば、ガラスビーズ、シリカゲル、ポリウレタン、ポリアクリルアミド、ポリビニルアルコール、カラギーナン、アルギン酸、寒天、ゼラチン等が挙げられる。
 酵素としては、例えば、前記微生物等が産生するニトリルヒドラターゼが挙げられる。
 生体触媒の使用量は、用いる生体触媒の種類及び形態に応じて適宜選択することができる。例えば、反応器に供給する生体触媒の活性が、反応温度10℃で乾燥菌体1mg当たり50~500U程度となるように調整することが好ましい。本明細書において単位U(ユニット)とは、1分間にアクリロニトリルからアクリルアミドを1マイクロモル生成させることを意味する。
[原料水]
 原料水とは、アクリルアミドを生成する際に、アクリロニトリルとの水和反応に利用されるものである。原料水としては、水;酸、塩類等を水に溶解した水溶液等が挙げられる。酸としては、リン酸、酢酸、クエン酸、ホウ酸、アクリル酸、ギ酸等が挙げられる。塩類としては、前記酸のナトリウム塩、カリウム塩、アンモニウム塩等が挙げられる。原料水の具体例としては、特に限定されるものではないが、例えば、純水、超純水、市水等の水;トリス緩衝液、リン酸緩衝液、酢酸緩衝液、クエン酸緩衝液、ホウ酸緩衝液などの緩衝液が挙げられる。原料水のpH(20℃)は、5~9が好ましい。
[アクリロニトリル]
 アクリロニトリルの種類は、特には限定されず、市販のものが使用できる。アクリルアミドを製造する際の生体触媒の消費量を低減させるために、アクリロニトリル中のシアン濃度が3ppm以下であるアクリロニトリルを使用することが好ましい。
 アクリロニトリルを水和する際の反応温度(反応混合物温度)は、限定はされないが、10~50℃であることが好ましく、15~40℃であることがより好ましく、20~35℃であることがさらに好ましい。反応温度が10℃以上であれば、生体触媒の反応活性を充分に高められる。また、反応温度が50℃以下であれば、生体触媒の失活を抑制し易くなる。
[反応器]
 反応器は1つのみを使用してもよく、複数器を併用してもよいが、工業的にアクリルアミドを大量かつ効率的に製造することを考えれば、反応器は2つ以上とした方が好ましく、例えば2~10器とされる。
 反応器の形式としては、撹拌槽型、固定層型、流動層型、移動層型、塔型、管型等、種々の形式の反応器を用いることができる。形式の異なる反応器を適宜組み合わせて利用してもよい。反応器には撹拌装置を配設することが好ましい。撹拌装置としては撹拌翼が好ましい。撹拌翼の形状は限定されるものではなく、例えばパドル、ディスクタービン、プロペラ、ヘリカルリボン、アンカー、ファウドラー等が挙げられる。
 原料水、生体触媒、アクリロニトリルの供給は、反応の効率等を悪化させすぎない範囲内であれば、最も上流側に位置する反応器のみに限定されず、それよりも下流側の反応器に行ってもよい。ここで、上流側とは、反応原料を流入させる側であり、下流側とは反応混合物を取り出す側を示す。
[添加物]
 原料水または反応混合物(反応原料及び生成したアクリルアミドを含む)には、炭素数2以上の水溶性モノカルボン酸塩の少なくとも1種を添加してもよい。炭素数2以上の水溶性モノカルボン酸塩の少なくとも1種を含む原料水を反応器に供給してもよい。複数の反応器を用いて連続的に反応を行う場合は、反応器から抜き出したアクリルアミドを含む反応液に、炭素数2以上の水溶性モノカルボン酸塩の少なくとも1種を添加した後、次の反応器に供給してもよい。これにより、反応液中でのアクリルアミドの安定性が向上する。
 水溶性モノカルボン酸塩は、飽和モノカルボン酸塩、不飽和モノカルボン酸塩のいずれでもよい。飽和カルボン酸としては、酢酸、プロピオン酸、n-カプロン酸などが挙げられる。不飽和カルボン酸としてはアクリル酸、メタクリル酸、ビニル酢酸などが挙げられる。塩としては、前記飽和モノカルボン酸又は不飽和モノカルボン酸のナトリウム塩、カリウム塩、アンモニウム塩が代表的である。
 水溶性モノカルボン酸塩の添加量は、アクリルアミドに対し、酸として20~5000mg/kgが好ましい。
[一般反応条件]
 反応混合物の滞留時間(反応時間)は、限定はされないが、1~30時間であることが好ましく、2~20時間であることがより好ましい。ここで滞留時間とは、反応液の総容積[m](反応器が複数存在する場合は、全反応器における反応液の合計)を反応器から連続的に取り出す反応混合物の流量[m/hr]で除した値である。
 反応器の除熱負荷を低減させるために、供給する原料水および/またはアクリロニトリルは反応温度よりも5℃以上低いことが好ましい。アクリロニトリルを水和してアクリルアミドを生成させる反応のpHは、6~9が好ましく、より好ましくは7~8.5である。pH測定方法は、指示薬法、金属電極法、ガラス電極法、半導体センサ法などあるが、工業的に広く利用されているガラス電極法による測定が好ましい。
[反応開始]
 本発明に係るアクリルアミドの製造方法は、生体触媒を用いてアクリロニトリルからアクリルアミドを連続的に製造する方法において、アクリルアミドの存在下、アクリロニトリルを生体触媒に接触させることにより連続反応を開始することを特徴とする。より具体的には、反応器にアクリルアミドが導入された状態で、反応器へ反応原料(生体触媒、アクリロニトリル、原料水を含む)を供給して連続反応を開始する。アクリルアミドを先に反応器中に導入し、そこに反応原料を添加することによって反応を開始してもよいし、アクリルアミドと反応原料を同時に反応器に導入して反応を開始してもよい。アクリルアミドの形態も特には限定されないが、水溶液として使用するのが取扱い性の点から好ましい。アクリルアミドの存在下で反応を開始させることにより、反応開始後、目的とする濃度のアクリルアミド水溶液を迅速に得ることが可能となる。
 反応器が複数ある場合には、少なくとも1つ以上の反応器に連続反応を開始する前にアクリルアミドを存在させる。連続反応を開始した後、より迅速に目的とする濃度のアクリルアミド水溶液を得るためには、連続反応を行う時にアクリロニトリルを直接供給する反応器にアクリルアミドを存在させておくことが好ましく、全ての反応器にアクリルアミドを存在させておくことがより好ましい。
 アクリルアミド水溶液を反応器に導入した後、連続反応を開始する前に、アクリルアミド水溶液の温度および/またはpHを、連続反応を行うときの温度および/またはpHの値に調整することが好ましい。
[アクリルアミド水溶液の濃度]
 連続反応を行う前に反応器へ導入するアクリルアミド水溶液の濃度は、反応器が複数ある場合には反応器ごとに適した濃度に調整することが好ましい。具体的には、N個(Nは1以上の整数)の反応器を直列に連結して連続反応を行う場合、連続反応を開始する前に、i番目(iは1~Nまでの整数)の反応器に、下記式(1)で表わされる濃度C[質量%]以上のアクリルアミド水溶液を導入する。なお、1個の反応器の場合も、直列に接続されたものとみなす。
Figure JPOXMLDOC01-appb-M000002
 濃度Cは、連続反応の定常状態における各反応器内の反応混合物中の最大アクリルアミド濃度よりも10質量%低い濃度を意味する。
 連続反応を開始する前に反応器へ導入するアクリルアミド水溶液の濃度が、Cよりも低いと、連続反応を開始した後、短時間(例えば上述の滞留時間以内)で、目的とする濃度のアクリルアミド水溶液を得ることができない。従って、得られたアクリルアミド水溶液をそのまま製品として使用できないため、反応の後工程で、濃縮や回収といった操作が必要となり、工業的にはコスト高となり不利である。
 一方、連続反応を開始する前に反応器に導入するアクリルアミド水溶液の濃度の上限は、(C+15)[重量%]以下であることが好ましい。反応器に導入するアクリルアミド水溶液が(C+15)[重量%]よりも高いと、反応の後工程で、アクリルアミドを希釈する操作が必要となる。さらに、連続反応を開始した時に、高濃度のアクリルアミド水溶液によって生体触媒が劣化し易くなり、結果として生体触媒の使用量が増えて製造コストの増加を招く。
 導入するアクリルアミド水溶液の濃度調整は、各反応器へ予めC重量%以上に調整したアクリルアミドを導入してもよいし、反応器内でアクリルアミド水溶液またはアクリルアミドの結晶を原料水で希釈して、C重量%以上となるように調整してもよい。
[アクリルアミド水溶液の濃度の具体例]
 濃度Cは、好ましくは5%~60%とされる。より好ましくは、反応器の数に応じて例えば以下のように設定される。
(1)反応器数(N)1のとき
 濃度Cを20~40%とすることで、反応器から連続的に取り出される反応混合物において、アクリルアミドを目的の濃度25~34%で得ることができる。
 また、濃度Cを30~50%とすることで、反応器から取り出される反応混合物において、アクリルアミドを目的の濃度35~44%で得ることができる。
 さらに、濃度Cを40~60%とすることで、反応器から取り出される反応混合物において、アクリルアミドを目的の濃度45~55%で得ることができる。
(2)反応器数(N)2のとき
 反応の上流側に位置する第一の反応器および下流側に位置する第二の反応器の濃度C及びCをそれぞれ20~40%とすることで、第二の反応器から連続的に取り出される反応混合物において、アクリルアミドを目的の濃度25~34%で得ることができる。
 また、濃度C及びCをそれぞれ30~50%とすることで、第二の反応器から取り出される反応混合物において、アクリルアミドを目的の濃度35~44%で得ることができる。
 さらに、濃度C及びCをそれぞれ40~60%とすることで、第二の反応器から取り出される反応混合物において、アクリルアミドを目的の濃度45~55%で得ることができる。
(3)反応器数(N)3のとき
 反応の最も上流側に位置する第一の反応器の濃度Cを15~35%とし、反応の上流側から2番目および3番目に位置する反応器の濃度C及びCをそれぞれ20~40%とすることで、第3の反応器から連続的に取り出される反応混合物において、アクリルアミドを目的の濃度25~34%で得ることができる。
 また、濃度Cを25~45%とし、濃度C及びCをそれぞれ30~50%とすることで、第3の反応器から取り出される反応混合物において、アクリルアミドを目的の濃度35~44%で得ることができる。
 さらに、濃度Cを35~55%とし、濃度C及びCをそれぞれ40~60%とすることで、第3の反応器から取り出される反応混合物において、アクリルアミドを目的の濃度45~55%で得ることができる。
(4)反応器数(N)4のとき
 反応の最も上流側に位置する第一の反応器の濃度Cを10~30%とし、反応の上流側から2~4番目に位置する反応器の濃度C~Cをそれぞれ20~40%とすることで、第4の反応器から連続的に取り出される反応混合物において、アクリルアミドを目的の濃度25~34%で得ることができる。
 また、濃度Cを20~40%とし、濃度C~Cをそれぞれ30~50%とすることで、第4の反応器から取り出される反応混合物において、アクリルアミドを目的の濃度35~44%で得ることができる。
 さらに、濃度Cを30~50%とし、濃度C~Cをそれぞれ40~60%とすることで、第4の反応器から取り出される反応混合物において、アクリルアミドを目的の濃度45~55%で得ることができる。
(5)反応器数(N)5のとき
 反応の最も上流側に位置する第一の反応器の濃度Cを10~30%とし、反応の上流側から2番目に位置する第二の反応器の濃度Cを15~35%とし、3~5番目に位置する反応器の濃度C~Cをそれぞれ20~40%とすることで、第5の反応器から連続的に取り出される反応混合物において、アクリルアミドを目的の濃度25~34%で得ることができる。
 また、濃度Cを15~30%とし、濃度Cを25~45%とし、濃度C~Cをそれぞれ30~50%とすることで、第5の反応器から取り出される反応混合物において、アクリルアミドを目的の濃度35~44%で得ることができる。
 さらに、濃度Cを25~45%とし、濃度Cを35~55%とし、濃度C~Cをそれぞれ40~60%とすることで、第5の反応器から取り出される反応混合物において、アクリルアミドを目的の濃度45~55%で得ることができる。
(6)反応器数(N)6のとき
 反応の最も上流側に位置する第一の反応器の濃度Cを5~25%とし、反応の上流側から2番目に位置する第二の反応器の濃度Cを10~30%とし、3番目に位置する第三の反応器の濃度Cを15~35%とし、4~6番目に位置する反応器の濃度C~Cをそれぞれ20~40%とすることで、第6の反応器から連続的に取り出される反応混合物において、アクリルアミドを目的の濃度25~34%で得ることができる。
 また、濃度Cを10~30%とし、濃度Cを20~40%とし、濃度Cを25~45%とし、濃度C~Cをそれぞれ30~50%とすることで、第6の反応器から取り出される反応混合物において、アクリルアミドを目的の濃度35~44%で得ることができる。
 さらに、濃度Cを20~40%とし、濃度Cを30~50%とし、濃度Cを35~55%とし、濃度C~Cをそれぞれ40~60%とすることで、第6の反応器から取り出される反応混合物において、アクリルアミドを目的の濃度45~55%で得ることができる。
(7)反応器数(N)7のとき
 反応の最も上流側に位置する第一の反応器の濃度Cを5~20%とし、反応の上流側から2番目に位置する第二の反応器の濃度Cを10~30%とし、3番目に位置する第三の反応器の濃度Cを15~35%とし、4~7番目に位置する反応器の濃度C~Cをそれぞれ20~40%とすることで、第7の反応器から連続的に取り出される反応混合物において、アクリルアミドを目的の濃度25~34%で得ることができる。
 また、濃度Cを10~30%とし、濃度Cを20~40%とし、濃度Cを25~45%とし、濃度C~Cをそれぞれ30~50%とすることで、第7の反応器から取り出される反応混合物において、アクリルアミドを目的の濃度35~44%で得ることができる。
 さらに、濃度Cを15~35%とし、濃度Cを25~45%とし、濃度Cを35~55%とし、濃度C~Cをそれぞれ40~60%とすることで、第7の反応器から取り出される反応混合物において、アクリルアミドを目的の濃度45~55%で得ることができる。
(8)反応器数(N)8以上のとき
 反応の最も上流側に位置する第一の反応器の濃度Cを5~15%とし、下流側の反応器には一つ上流側の反応器と同等以上~+10%以下の濃度のアクリルアミド水溶液を存在させることで、最も下流に位置する反応器から連続的に取り出される反応混合物において、アクリルアミドを目的の濃度25~34%で得ることができる。
 また、濃度Cを5~20%とし、下流側の反応器には一つ上流側の反応器と同等以上~+10%以下の濃度のアクリルアミド水溶液を存在させることで、最も下流に位置する反応器から取り出される反応混合物において、アクリルアミドを目的の濃度35~44%で得ることができる。
 さらに、濃度Cを10~30%とし、下流側の反応器には一つ上流側の反応器と同等以上~+10%以下の濃度のアクリルアミド水溶液を存在させることで、最も下流に位置する反応器から取り出される反応混合物において、アクリルアミドを目的の濃度45~55%で得ることができる。
 本発明の連続反応を開始する前に予め反応器に導入するアクリルアミド水溶液の液量は、連続反応における反応器内の液量の70~120%とする。アクリルアミド水溶液の液量は、好ましくは80~110%、より好ましくは90~105%である。
 導入するアクリルアミド水溶液の液量を70%以上とすることにより、連続反応を開始した後、アクリルアミド水溶液を取り出すまでに時間を要し、その間、生体触媒が劣化し結果的に触媒使用量が増加してしまうのを防ぐことができる。また、導入するアクリルアミド水溶液の液量を120%以下とすることにより、連続反応を開始した後、反応液の滞留時間が短くなり反応が完結せず、結果として未反応のアクリロニトリルが製品に混入してしまうのを防ぐことができる。
 本発明では、連続反応を開始する前に反応器中に導入する生体触媒の量を、反応器内の液1L当たり3000~150000U(反応温度10℃における活性)とすることができる。ここで反応器内の液とは、連続反応を開始する前に反応器に導入するアクリルアミド水溶液を示す。生体触媒の導入は、アクリルアミド水溶液を導入する前でも導入した後でもよいが、触媒の劣化を抑制するために、アクリルアミド水溶液を導入した後、且つ、連続反応を開始する直前が好ましい。生体触媒を連続反応の開始前に導入することで、連続反応を開始した後のアクリロニトリル濃度の急激な上昇を抑制でき、触媒使用量の低減と反応を迅速に安定状態に到達させることができる。
 導入する生体触媒濃度を3000U/L以上とすることにより、連続反応開始直後に十分にアクリロニトリル濃度の上昇を抑制できないことで高濃度のアクリロニトリルによって触媒が劣化してしまうのを防止できる。そして、結果として、触媒使用量が増えて低コストでアクリルアミドを製造できなくなるのを防ぐことができる。
 一方、生体触媒濃度を150000U/L以下とすることにより、触媒由来の不純物が製品アクリルアミドに混入し、アクリルアミド水溶液の色調やアクリルアミド重合体を製造する際に悪影響を及ぼすのを防ぐことができる。
 以下、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によって限定されるものではない。なお、アクリルアミド水溶液の濃度「質量%」は、単に「%」と表記することもある。
[実施例1]
(生体触媒の調整)
 ニトリルヒドラターゼ活性を有するロドコッカス・ロドクロウス(Rodococcus rhodochrous)J1株(受託番号 FERM BP-1478として独立行政法人 産業技術総合研究所 特許生物寄託センター(日本国茨城県つくば市東1丁目1番地1中央第6)に1987年9月18日に寄託されている)を、グルコース2%、尿素1%、ペプトン0.5%、酵母エキス0.3%、塩化コバルト6水和物0.01%(何れも質量%)を含む培地(pH7.0)により30℃で好気的に培養した。これを遠心分離機及び50mMリン酸緩衝液(pH7.0)を用いて、集菌および洗浄して菌体懸濁液(乾燥菌体15質量%)を得た。
(アクリロニトリルからアクリルアミドへの反応)
 反応器として、内容積5Lのジャケット冷却付反応槽(内径18cm)を6槽直列に連結して使用した。各反応槽には4枚傾斜パドル翼(傾斜角度45°、翼径8cm)を配設した。本実施例では、反応器から取り出すアクリルアミド水溶液の目的濃度を50~55%とした(実施例2、3及び比較例1,2についても同じ)。
(1)反応槽間を繋ぐ流路の弁を閉じた。
(2)反応槽1槽目から6槽目まで、それぞれ、21%、35%、43%、50%、52%、52%の濃度のアクリルアミド水溶液を4Lずつ、反応槽へ導入した。
(3)反応槽1槽目から6槽目まで、実施例1で作成した菌体懸濁液を135000U(反応温度10℃における活性)となる量それぞれ添加した。
(4)反応槽間を繋ぐ流路の弁を開けた。
(5)第1槽目に50mMリン酸緩衝液(pH7.0)を2146g/hrで、アクリロニトリルを569g/hrで、実施例1で作成した菌体懸濁液を8g/hrで、第2槽目にはアクリロニトリルのみ380g/hr、第3槽にはアクリロニトリルのみ292g/hr、第4槽目にはアクリロニトリルのみ127g/hrで連続的に供給をして、連続反応を開始した。
(6)反応槽内の反応混合物液量が4Lとなるように、6槽目出口のオーバーフロー液抜き出し口の位置を調整した。
 第1槽から第6槽の反応液温度がそれぞれ20、21、22、23、24、25℃となるようにジャケットの冷却水(5℃)を用いて温度制御した。
 連続反応開始後、直ぐに6槽目の反応槽から流出する反応液中のアクリルアミド濃度を屈折計(ATAGO RX-7000α)により測定した。目的とするアクリルアミド濃度である52%のアクリルアミドが検出された。
 連続反応開始から5時間後、反応槽6槽目から流出する反応液中のアクリルアミド濃度を測定した。目的とする濃度である50%のアクリルアミドが検出された。
 連続反応開始から10時間後、反応槽6槽目から流出する反応液中のアクリルアミド濃度を測定した。目的とする濃度である、51%のアクリルアミドが検出された。
 連続反応開始から15時間後、反応槽6槽目から流出する反応液中のアクリルアミド濃度を測定した。目的とする濃度である、52%のアクリルアミドが検出された。
[実施例2]
 連続反応を開始する前に、反応槽1槽目から6槽目まで、それぞれ、32%、43%、50%、50%、52%、52%の濃度のアクリルアミド水溶液を4Lずつ、反応槽へ導入した以外は実施例1と同様に行った。
 連続反応開始後、直ぐに6槽目の反応槽から流出する反応中のアクリルアミド濃度を実施例1と同様の手法で測定した。目的とする濃度である、52%のアクリルアミドが検出された。
 連続反応開始から5時間後、反応槽6槽目から流出する反応液中のアクリルアミド濃度を測定した。目的とする濃度である、54%のアクリルアミドが検出された。
 連続反応開始から10時間後、反応槽6槽目から流出する反応液中のアクリルアミド濃度を測定した。目的とする濃度である、53%のアクリルアミドが検出された。
 連続反応開始から15時間後、反応槽6槽目から流出する反応液中のアクリルアミド濃度を測定した。目的とする濃度である、52%のアクリルアミドが検出された。
[実施例3]
 連続反応を開始する前に、反応槽1槽目から6槽目まで、それぞれ、15%、27%、37%、40%、40%、40%の濃度のアクリルアミド水溶液を4Lずつ、反応槽へ導入した以外は実施例1と同様に行った。
 連続反応開始後、直ぐに6槽目の反応槽から流出する反応中のアクリルアミド濃度を実施例1と同様の手法で測定した。目的とする濃度よりも低い、40%のアクリルアミドが検出された。
 連続反応開始から5時間後、反応槽6槽目から流出する反応液中のアクリルアミド濃度を測定した。目的とする濃度よりも低い、48%のアクリルアミドが検出された。
 連続反応開始から10時間後、反応槽6槽目から流出する反応液中のアクリルアミド濃度を測定した。目的とする濃度である、51%のアクリルアミドが検出された。
 連続反応開始から15時間後、反応槽6槽目から流出する反応液中のアクリルアミド濃度を測定した。目的とする濃度である、52%のアクリルアミドが検出された。
[比較例1]
 連続反応を開始する前に、反応槽1槽目から6槽目まで、それぞれ、水を4Lずつ、反応槽へ導入した以外は実施例1と同様に行った。
 連続反応開始後、直ぐに6槽目の反応槽から流出する反応液中のアクリルアミド濃度を実施例1と同様の手法で測定した。アクリルアミドは検出されなかった。
 連続反応開始から5時間後、反応槽6槽目から流出する反応液中のアクリルアミド濃度を測定した。目的とする濃度よりも低い、8%のアクリルアミドが検出された。
 連続反応開始から10時間後、反応槽6槽目から流出する反応液中のアクリルアミド濃度を測定した。目的とする濃度よりも低い、42%のアクリルアミドが検出された。
 連続反応開始から15時間後、反応槽6槽目から流出する反応液中のアクリルアミド濃度を測定した。目的とする濃度よりも低い、48%のアクリルアミドが検出された。
[比較例2]
 連続反応を開始する前に、反応槽1槽目から6槽目までアクリルアミド水溶液及び原料水を導入しなかった以外は実施例1と同様に行った。
 連続反応開始直後、6槽目の反応槽からは反応液は流出しなかった。反応開始からしばらくの間、反応混合物の液面は攪拌翼の位置よりも低いため、反応槽へ供給される、原料水、生体触媒およびアクリロニトリルは混合不良の状態が続いた。
 連続反応開始から5時間後、6槽目の反応槽からは反応液は流出しなかった。連続反応開始から10時間後、反応槽6槽目から流出する反応液中のアクリルアミド濃度を測定した。目的とする濃度よりも低い、36%のアクリルアミドが検出された。
 連続反応開始から15時間後、反応槽6槽目から流出する反応液中のアクリルアミド濃度を測定した。目的とする濃度よりも低い、43%のアクリルアミドが検出された。
<連続反応を開始する前に反応槽へ導入したアクリルアミド水溶液の濃度>
Figure JPOXMLDOC01-appb-T000001
<6番目の反応槽から流出した反応液中のアクリルアミド濃度>
Figure JPOXMLDOC01-appb-T000002
 本発明の製造方法によれば、生体触媒を用いてアクリルアミドを連続的に製造する方法において、連続反応を開始した後、短時間で迅速に目的とする濃度のアクリルアミド水溶液が得られる。このため、濃縮工程や回収工程を不要または簡略化でき、低コストで簡便にアクリルアミドを製造できる。

Claims (7)

  1.  生体触媒を用いてアクリロニトリルからアクリルアミドを連続的に製造する方法において、反応器にアクリルアミドを導入した後、アクリロニトリルを生体触媒に接触させることにより連続反応を開始することを特徴とする、アクリルアミドの製造方法。
  2.  N個(Nは1以上の整数)の反応器を直列に連結して連続反応を行う請求項1記載の製造方法であって、
    連続反応を開始する前に、i番目(iは1~Nまでの整数)の反応器に導入するアクリルアミド水溶液の濃度を、下記式(1)で表わされるC[質量%]以上とすることを特徴とする製造方法。
    Figure JPOXMLDOC01-appb-M000003
  3.  前記濃度Cが5%~60%である、請求項2記載の製造方法。
  4.  アクリロニトリル溶液が直接供給される反応器にアクリルアミドを導入する、請求項2又は3に記載の製造方法。
  5.  連続反応開始前に反応器に存在させるアクリルアミド水溶液の液量を、連続反応時の反応器内の液量の70%~120%とする、請求項2~4のいずれか一項に記載の製造方法。
  6.  連続反応開始前に、反応器内の液に1リットルあたり、反応温度10℃における活性が3000~150000Uとなる量の生体触媒を含有させる、請求項2~5のいずれか一項に記載の製造方法。
  7.  連結された2器~10器から成る連続反応器を用いることを特徴とする、請求項2~6のいずれか一項に記載の製造方法。
PCT/JP2013/006713 2012-12-10 2013-11-15 アクリルアミドの製造方法 WO2014091676A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2013358494A AU2013358494B2 (en) 2012-12-10 2013-11-15 Method for producing acrylamide
EP13863015.7A EP2930243B1 (en) 2012-12-10 2013-11-15 Method for producing acrylamide
US14/650,063 US10160982B2 (en) 2012-12-10 2013-11-15 Method for producing acrylamide
CN201380062946.4A CN105247063B (zh) 2012-12-10 2013-11-15 丙烯酰胺的制造方法
KR1020157009207A KR101774674B1 (ko) 2012-12-10 2013-11-15 아크릴아미드의 제조 방법
RU2015127779A RU2631650C2 (ru) 2012-12-10 2013-11-15 Способ получения акриламида
BR112015013264-2A BR112015013264B1 (pt) 2012-12-10 2013-11-15 Método para produzir acrilamida
JP2013553711A JP6149731B2 (ja) 2012-12-10 2013-11-15 アクリルアミドの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-269131 2012-12-10
JP2012269131 2012-12-10

Publications (1)

Publication Number Publication Date
WO2014091676A1 true WO2014091676A1 (ja) 2014-06-19

Family

ID=50933984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006713 WO2014091676A1 (ja) 2012-12-10 2013-11-15 アクリルアミドの製造方法

Country Status (9)

Country Link
US (1) US10160982B2 (ja)
EP (1) EP2930243B1 (ja)
JP (1) JP6149731B2 (ja)
KR (1) KR101774674B1 (ja)
CN (1) CN105247063B (ja)
AU (1) AU2013358494B2 (ja)
BR (1) BR112015013264B1 (ja)
RU (1) RU2631650C2 (ja)
WO (1) WO2014091676A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016006556A1 (ja) * 2014-07-10 2017-04-27 三菱レイヨン株式会社 化合物の製造方法及び前記製造方法に用いられる化合物の製造システム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6083581A (ja) * 1983-10-13 1985-05-11 Hideaki Yamada シユ−ドモナス属細菌の培養法
WO2001073101A1 (fr) * 2000-03-29 2001-10-04 Mitsui Chemicals, Inc. Procede de production de composes amidiques
JP2001340091A (ja) 2000-03-29 2001-12-11 Mitsui Chemicals Inc アミド化合物の製造方法
WO2002050297A1 (fr) * 2000-12-20 2002-06-27 Dia-Nitrix Co., Ltd. Procede de preparation d'un compose d'amide au moyen d'un catalyseur microbien
JP2004524047A (ja) 2001-04-26 2004-08-12 シュトックハウゼン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 生体触媒を用いたアクリルアミド水溶液を製造する方法
JP2004528037A (ja) 2001-04-26 2004-09-16 シュトックハウゼン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 生体触媒を用いたアクリルアミド水溶液を製造する方法および装置
WO2010038832A1 (ja) * 2008-10-03 2010-04-08 ダイヤニトリックス株式会社 アクリルアミドの製造方法
WO2012039407A1 (ja) 2010-09-24 2012-03-29 三井化学株式会社 アミド化合物の製造方法およびアミド化合物の製造装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835077B2 (ja) * 1979-05-02 1983-07-30 日東化学工業株式会社 微生物によるアクリルアミドまたはメタアクリルアミドの連続製造法
JP3428404B2 (ja) 1997-10-23 2003-07-22 三菱レイヨン株式会社 アミド化合物の製造方法
KR20080056261A (ko) * 2005-10-07 2008-06-20 미쓰이 가가쿠 가부시키가이샤 아미드 화합물의 제조방법
WO2011078184A1 (ja) * 2009-12-25 2011-06-30 ダイヤニトリックス株式会社 微生物触媒を用いたアクリルアミドの製造方法
KR101878012B1 (ko) 2011-05-19 2018-07-12 미쯔비시 케미컬 주식회사 아크릴아미드 수용액의 제조 방법
EP2711355B1 (en) 2011-05-19 2017-11-29 Mitsubishi Chemical Corporation Method for producing acrylamide aqueous solution
CN103687956A (zh) 2011-05-31 2014-03-26 三菱丽阳株式会社 丙烯酰胺的制造方法
CN102286560A (zh) * 2011-06-20 2011-12-21 山东宝莫生物化工股份有限公司 多级膜生物反应器连续化生产丙烯酰胺溶液的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6083581A (ja) * 1983-10-13 1985-05-11 Hideaki Yamada シユ−ドモナス属細菌の培養法
WO2001073101A1 (fr) * 2000-03-29 2001-10-04 Mitsui Chemicals, Inc. Procede de production de composes amidiques
JP2001340091A (ja) 2000-03-29 2001-12-11 Mitsui Chemicals Inc アミド化合物の製造方法
WO2002050297A1 (fr) * 2000-12-20 2002-06-27 Dia-Nitrix Co., Ltd. Procede de preparation d'un compose d'amide au moyen d'un catalyseur microbien
JP2004524047A (ja) 2001-04-26 2004-08-12 シュトックハウゼン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 生体触媒を用いたアクリルアミド水溶液を製造する方法
JP2004528037A (ja) 2001-04-26 2004-09-16 シュトックハウゼン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 生体触媒を用いたアクリルアミド水溶液を製造する方法および装置
WO2010038832A1 (ja) * 2008-10-03 2010-04-08 ダイヤニトリックス株式会社 アクリルアミドの製造方法
WO2012039407A1 (ja) 2010-09-24 2012-03-29 三井化学株式会社 アミド化合物の製造方法およびアミド化合物の製造装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2930243A4
WEBSTER N.A. ET AL.: "Comparative characterisation of two Rhodococcus species as potential biocatalysts for ammonium acrylate production", BIOTECHNOLOGY LETTERS, vol. 23, no. 2, January 2001 (2001-01-01), pages 95 - 101, XP002965079 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016006556A1 (ja) * 2014-07-10 2017-04-27 三菱レイヨン株式会社 化合物の製造方法及び前記製造方法に用いられる化合物の製造システム
JP2020058382A (ja) * 2014-07-10 2020-04-16 三菱ケミカル株式会社 アミド化合物及びアミド化合物の製造システム

Also Published As

Publication number Publication date
CN105247063B (zh) 2020-10-23
AU2013358494A1 (en) 2015-06-11
KR20150054972A (ko) 2015-05-20
JPWO2014091676A1 (ja) 2017-01-05
RU2015127779A (ru) 2017-01-12
BR112015013264B1 (pt) 2021-12-14
US10160982B2 (en) 2018-12-25
AU2013358494B2 (en) 2015-11-26
EP2930243A4 (en) 2015-11-25
EP2930243B1 (en) 2020-12-23
CN105247063A (zh) 2016-01-13
KR101774674B1 (ko) 2017-09-04
EP2930243A1 (en) 2015-10-14
BR112015013264A2 (pt) 2017-07-11
RU2631650C2 (ru) 2017-09-26
JP6149731B2 (ja) 2017-06-21
US20150315620A1 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
JP5630017B2 (ja) アミド化合物の製造方法
WO2012165415A1 (ja) アクリルアミドの製造方法
JP6149731B2 (ja) アクリルアミドの製造方法
JP6098509B2 (ja) アクリルアミド水溶液の製造方法
JP5987825B2 (ja) アクリルアミド水溶液、アクリルアミド水溶液の安定化方法
JP6098510B2 (ja) アクリルアミド水溶液の製造方法
JP5295622B2 (ja) 菌体触媒を用いた目的化合物の製造方法
WO2015190067A1 (ja) アクリルアミドの製造方法及び製造装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013553711

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863015

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157009207

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14650063

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013358494

Country of ref document: AU

Date of ref document: 20131115

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013863015

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015013264

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015127779

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015013264

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150608