WO2014091655A1 - 発光装置、照明用光源及び照明装置 - Google Patents

発光装置、照明用光源及び照明装置 Download PDF

Info

Publication number
WO2014091655A1
WO2014091655A1 PCT/JP2013/006047 JP2013006047W WO2014091655A1 WO 2014091655 A1 WO2014091655 A1 WO 2014091655A1 JP 2013006047 W JP2013006047 W JP 2013006047W WO 2014091655 A1 WO2014091655 A1 WO 2014091655A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light emitting
emitting device
light
sealing member
Prior art date
Application number
PCT/JP2013/006047
Other languages
English (en)
French (fr)
Inventor
康晴 上野
横谷 良二
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014551839A priority Critical patent/JP5999391B2/ja
Priority to US14/650,615 priority patent/US9689537B2/en
Publication of WO2014091655A1 publication Critical patent/WO2014091655A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/02Lighting devices intended for fixed installation of recess-mounted type, e.g. downlighters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/001Arrangement of electric circuit elements in or on lighting devices the elements being electrical wires or cables
    • F21V23/002Arrangements of cables or conductors inside a lighting device, e.g. means for guiding along parts of the housing or in a pivoting arm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/02Arrangement of electric circuit elements in or on lighting devices the elements being transformers, impedances or power supply units, e.g. a transformer with a rectifier
    • F21V23/023Power supplies in a casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/06Arrangement of electric circuit elements in or on lighting devices the elements being coupling devices, e.g. connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/238Arrangement or mounting of circuit elements integrated in the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/003Fastening of light source holders, e.g. of circuit boards or substrates holding light sources
    • F21V19/0035Fastening of light source holders, e.g. of circuit boards or substrates holding light sources the fastening means being capable of simultaneously attaching of an other part, e.g. a housing portion or an optical component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/003Fastening of light source holders, e.g. of circuit boards or substrates holding light sources
    • F21V19/0055Fastening of light source holders, e.g. of circuit boards or substrates holding light sources by screwing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • F21V23/004Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board
    • F21V23/006Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board the substrate being distinct from the light source holder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • F21V29/763Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section the planes containing the fins or blades having the direction of the light emitting axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a light emitting device, an illumination light source, and an illumination device, and more particularly, to a light emitting device using a light emitting diode (LED) and an illumination light source including the same.
  • LED light emitting diode
  • LEDs are used as light sources for various products because of their high efficiency and long life.
  • lamps using LEDs LED lamps
  • illumination light sources that can be substituted for conventionally known fluorescent lamps, incandescent lamps, and the like.
  • LED lamp examples include a bulb-type LED lamp (LED bulb) that replaces a bulb-type fluorescent lamp and an incandescent bulb, and a straight-tube LED lamp that substitutes for a straight-tube fluorescent lamp.
  • LED bulb a bulb-type LED lamp
  • incandescent bulb a bulb-type fluorescent lamp
  • straight-tube LED lamp that substitutes for a straight-tube fluorescent lamp.
  • Patent Document 1 discloses a conventional bulb-type LED lamp.
  • Patent Document 2 discloses a conventional straight tube LED lamp.
  • an LED module is disposed as a light source (light emitting device).
  • the LED module includes, for example, a mounting board and a plurality of LEDs mounted on the mounting board.
  • the LED module has a COB (Chip On Board) structure in which a plurality of LED chips are directly mounted on a mounting substrate, or a SMD (Surface) in which a plurality of packaged LED elements are mounted on a mounting substrate.
  • COB Chip On Board
  • SMD Surface
  • the LED module having a COB structure includes, for example, a plurality of LED chips mounted on a central portion of a rectangular mounting substrate, and a circular wavelength conversion member (phosphor-containing resin) that collectively seals the plurality of LED chips. Prepare.
  • the LED chips of the COB structure are densely packed with LED chips, the heat dissipation is deteriorated and the light emission efficiency is lowered, or the light emitted from the side of the LED chips is absorbed by the adjacent LED chips to emit light. The efficiency is reduced.
  • each LED element includes a white container (package) having a recess, an LED chip mounted in the recess, and a wavelength conversion member (phosphor-containing resin) sealed in the recess.
  • a white container having a recess
  • an LED chip mounted in the recess has been.
  • a wavelength conversion member phosphor-containing resin
  • the individual LED chips are arranged in the white container (package), so that no light is emitted from the side of the white container. For this reason, the light of the LED module becomes discontinuous particles of light, and the bright spots are conspicuous, resulting in uneven luminance distribution.
  • the LED module is provided with a connector (power supply terminal) that is a connection portion with a power supply lead wire and a Zener diode that electrostatically protects the LED chip on the mounting substrate. Yes.
  • the connector and the Zener diode are disposed outside the wavelength conversion member that is the light emitting unit.
  • the connector or the Zener diode is arranged outside the light emitting part (wavelength conversion member), the light emitted from the side of the light emitting part to the outside of the mounting substrate is absorbed by the connector or Zener diode and the light emission efficiency is improved. Or the luminance distribution becomes non-uniform due to reflection on the connector or Zener diode.
  • the LED module is fixed on a metal base (heat sink) or the like disposed in the LED lamp.
  • a metal base heat sink
  • the holding member and the base are screwed to the outside of the mounting board with the peripheral edge of the mounting board being pressed by a pressing member (metal plate spring or the like).
  • the pressing member is disposed so as to straddle the peripheral edge of the mounting substrate and the base.
  • the pressing member is disposed outside the light emitting portion, light emitted from the side of the light emitting portion to the outside of the mounting substrate is kicked by the pressing member. For this reason, the light emission efficiency is lowered or the kicked light becomes turbulent light and the luminance distribution becomes non-uniform.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a light emitting device, an illumination light source, and an illumination device that suppress a decrease in light emission efficiency and have a uniform luminance distribution.
  • one embodiment of a light-emitting device includes a substrate, a plurality of light-emitting elements arranged in a row on the main surface of the substrate, and an array of the plurality of light-emitting elements. And a sealing member that seals the plurality of light emitting elements, and a power supply unit that is provided on the main surface of the substrate and is electrically connected to the plurality of light emitting elements.
  • the power supply unit is provided in an inner region that is an inner region of the annular sealing member.
  • the plurality of light emitting elements may be arranged along a peripheral edge portion of the substrate.
  • the substrate has a first through hole for passing a lead wire connected to the power supply unit, and the first through hole is formed in the internal region. It may be provided.
  • the sealing member may be continuously formed without interruption.
  • the shape of the substrate when viewed from a direction perpendicular to the main surface of the substrate is a polygon, and the substrate has a part of at least one side of the polygon.
  • the cutout part may have a cutout part, and the sealing member may be interrupted at the cutout part.
  • a lead wire connected to the power supply unit may be inserted into the notch portion.
  • the shape of the substrate when viewed from the direction perpendicular to the principal surface of the substrate is a polygon, and the light emission when viewed from the direction perpendicular to the principal surface of the substrate.
  • the shape of the element may be a rectangle, and the long side of the rectangle and one side of the polygon may be substantially parallel.
  • the shape of the substrate when viewed from the direction perpendicular to the main surface of the substrate is an octagon, and the octagon has two opposite sides having the same length and The lengths of two sides that are parallel and adjacent to each other may be different.
  • the light emitting device further includes a wiring pad electrically connected to the plurality of light emitting elements, and the plurality of light emitting elements when viewed from a direction perpendicular to the main surface of the substrate.
  • the array shape is a polygon
  • the wiring pads are provided at the corners of the polygon
  • the two light emitting elements arranged across the corners are wire-bonded via the wiring pads. It is good as well.
  • the substrate further includes a second through hole through which a fixing member for fixing the substrate to the base is passed, and the second through hole is formed in the inner portion. It may be provided in the area.
  • the shape of the substrate when viewed from the direction perpendicular to the main surface of the substrate is a quadrilateral, hexagonal or octagonal polygon, and each side of the polygon Assuming that each of a plurality of regions in the polygon formed by connecting the midpoint of the polygon and the center of the polygon is a quadrant, the power supply unit and the second through hole are provided in different quadrants. Also good.
  • the first through hole has a quadrant on the opposite side to the center of the polygon or the quadrant in which the power supply unit is provided across the center of the polygon. It is good also as being provided in.
  • all of the plurality of light emitting elements may be arranged at arbitrary intersections of virtual grids arranged at an equal pitch on the substrate.
  • a recognition mark for recognizing a position where the light emitting element is mounted may be further formed on the substrate.
  • the light emitting device may further include a wiring pattern that is formed on the substrate and electrically connects the power supply unit and the plurality of light emitting elements. It may be formed in the internal region.
  • a protective element for electrostatically protecting the plurality of light emitting elements may be further provided, and the protective element may be disposed in the internal region.
  • the sealing member may include a wavelength conversion material that converts a light emission wavelength of the light emitting element.
  • an aspect of the illumination light source according to the present invention includes any one of the above light emitting devices.
  • an aspect of the lighting device according to the present invention includes any one of the above light-emitting devices.
  • the lighting device further comprising: a lens portion that transmits light emitted from the sealing member; and a lead wire having a connector portion connected to the power supply portion,
  • the lens part may be provided with a pressing part for pressing the connector part.
  • the present invention it is possible to suppress the light emission efficiency from decreasing and obtain a uniform luminance distribution.
  • FIG. 1 is a plan view of the light-emitting device according to Embodiment 1 of the present invention.
  • FIG. 2 is a plan view of the light-emitting device (before forming the sealing member) according to Embodiment 1 of the present invention.
  • FIG. 3 is a plan view of a light emitting device according to a modification of the first embodiment of the present invention.
  • FIG. 4 is a diagram for explaining a state in which an LED is mounted on a substrate in the light emitting device according to Embodiment 1 of the present invention.
  • FIG. 5A is a partially enlarged perspective view showing the periphery of the substrate corner in the light emitting device according to Embodiment 1 of the present invention.
  • FIG. 5B shows the periphery of the substrate corner in FIG. FIG.
  • FIG. 6 is a partially enlarged plan view showing the periphery of the corner of the substrate in the light emitting device of the comparative example.
  • FIG. 7A is a plan view showing a state when the light-emitting device according to Embodiment 1 of the present invention is fixed to a base.
  • FIG. 7B is a cross-sectional view (a cross-sectional view taken along the line A-A ′ shown in FIG. 7A) when the light-emitting device according to Embodiment 1 of the present invention is fixed to the base.
  • FIG. 8 is a cross-sectional view showing another method for connecting the power supply unit and the lead wire of the light emitting device according to Embodiment 1 of the present invention.
  • FIG. 7A is a plan view showing a state when the light-emitting device according to Embodiment 1 of the present invention is fixed to a base.
  • FIG. 7B is a cross-sectional view (a cross-sectional view taken along the line A-A ′ shown
  • FIG. 9A is a plan view showing a layout of the power supply unit, the first through hole, and the second through hole in the light emitting device according to Embodiment 1 of the present invention.
  • FIG. 9B is a plan view showing another layout of the power supply unit, the first through hole, and the second through hole in the light emitting device according to Embodiment 1 of the present invention.
  • FIG. 10A is a plan view showing a configuration when a hexagonal substrate is used in the light-emitting device according to Embodiment 1 of the present invention.
  • FIG. 10B is a plan view showing a configuration in the case where an octagonal substrate is used in the light-emitting device according to Embodiment 1 of the present invention.
  • FIG. 11A is an external perspective view of a lighting apparatus according to Embodiment 2 of the present invention.
  • FIG. 11B is a cross-sectional view of the lighting apparatus according to Embodiment 2 of the present invention, taken along line A-A ′ of FIG. 11A.
  • FIG. 12 (a) is a diagram showing the configuration of the lens unit in the illumination device according to Embodiment 2 of the present invention, and FIG. 12 (b) is the same lens along the line AA ′ of FIG. 12 (a).
  • FIG. 12C is a cross-sectional view of the lens portion taken along line BB ′ of FIG.
  • FIG. 13 is a diagram illustrating a configuration of a lens unit of Modification Example 1 in the illumination device according to Embodiment 2 of the present invention.
  • FIG. 14 is a diagram showing a configuration of a lens unit of Modification Example 2 in the illumination device according to Embodiment 2 of the present invention.
  • FIG. 15 is a diagram illustrating a configuration of a lens unit of Modification Example 3 in the illumination device according to Embodiment 2 of the present invention.
  • FIG. 16 is a cross-sectional view of a light bulb shaped lamp according to Embodiment 3 of the present invention.
  • FIG. 17A is an external perspective view of an LED lamp according to Embodiment 4 of the present invention.
  • FIG. 17B is a cross-sectional view of the LED lamp according to Embodiment 4 of the present invention.
  • FIG. 18 is a plan view of a first light emitting device according to the first modification of the present invention.
  • FIG. 19 is a plan view of a second light emitting device according to the first modification of the present invention.
  • FIG. 20A is a plan view of a first light-emitting device according to Modification 2 of the present invention.
  • FIG. 20B is a partially enlarged view of the second light emitting device according to the second modification of the present invention.
  • FIG. 21 is a plan view of a second light emitting device according to the second modification of the present invention.
  • FIG. 22 is a plan view of a third light-emitting device according to Modification 2 of the present invention.
  • FIG. 23 is a diagram showing a state before the substrate of the third light emitting device according to the second modification of the present invention is cut out from the base material.
  • FIG. 24 is a plan view of a fourth light emitting device according to Modification 2 of the present invention.
  • FIG. 1 is a plan view of the light-emitting device according to Embodiment 1 of the present invention
  • FIG. 2 is a plan view of the light-emitting device before forming the sealing member in FIG.
  • the light emitting device 10 is a light emitting module having a plurality of light emitting elements, and is configured to emit light of a predetermined color (wavelength).
  • the light emitting device 10 according to the present embodiment is an LED module configured by LEDs, and emits white light.
  • the light emitting device 10 includes a substrate 11, a plurality of LEDs 12 mounted on the main surface of the substrate 11, a sealing member 13 that seals the LEDs 12, and a power supply that supplies power to the LEDs 12. Part 14.
  • the light emitting device 10 further includes a wiring 15 and a wiring pad 16 patterned in a predetermined shape on the substrate 11, a wire 17 connected to the LED 12, and a protection element 18 that electrostatically protects the LED 12.
  • the light emitting device 10 in the present embodiment has a COB structure in which the LED 12 that is a bare chip is directly mounted on the substrate 11.
  • the LEDs 12 are arranged in a ring shape.
  • the plurality of LEDs 12 are arranged in a line so as to form a square frame (b).
  • the LEDs 12 on the substrate 11 are arranged in a double element array.
  • the double element row includes an outer first element row 12L1 and an inner second element row 12L2.
  • Each of the first element array 12L1 and the second element array 12L2 is configured such that the array of the plurality of LEDs 12 arranged in a line is a square ring.
  • the sealing member 13 is formed in an annular shape along the arrangement of the LEDs 12 so as to cover the LEDs 12.
  • the sealing member 13 is formed in the linear form so that the square arrangement
  • the sealing member 13 is also formed in the cyclic
  • the double sealing line includes an outer first sealing line 13L1 and an inner second sealing line 13L2.
  • the outer first sealing line 13L1 is continuously formed without interruption so as to collectively seal all the LEDs 12 in the first element row 12L1.
  • the inner second sealing line 13L2 is continuously formed without interruption so as to collectively seal all the LEDs 12 in the second element row 12L2.
  • each of the first sealing line 13L1 and the second sealing line 13L2 becomes an annular light emitting portion, and white light is emitted from each sealing line.
  • the electric power supply part 14 is provided in the internal area
  • the first element row 12L1 and the second element row 12L2 are provided as a plurality of annular light emitting units.
  • the power supply unit 14 is provided at least in an inner region of the outer first element row 12L1 (first sealing line 13L1), and more preferably, the inner second element row 12L2 (second sealing line). 13L2) is provided in the inner region.
  • the power supply unit 14 is provided in an inner region of the inner second element row 12L2 (second sealing line 13L2).
  • the LEDs 12 are arranged in a double element row of the first element row 12L1 and the second element row 12L2, and the sealing member 13 includes the first sealing line 13L1 and the second sealing row. Although it is formed by a double sealing line of the stop line 13L2, it is not limited to this.
  • a light emitting device 10A as shown in FIG. FIG. 3 is a plan view of a light emitting device according to a modification of the first embodiment of the present invention.
  • the LEDs 12 can be arranged in one annular element row, and the sealing member 13 can be formed in one annular sealing line.
  • the element row of the LED 12 and the sealing line of the sealing member 13 correspond to the first element row 12L1 and the first sealing line 13L1 in FIG. 1, respectively.
  • 3 is the same as FIG. 1 except that the first element row 12L1 and the first sealing line 13L1 are omitted.
  • the substrate 11 is an LED mounting substrate for mounting the LED 12.
  • the substrate 11 in the present embodiment is a wiring substrate on which the wiring 15 is formed.
  • the substrate 11 having a square shape in plan view can be used.
  • the planar view shape of the substrate 11 is not limited to a square, and other shapes such as a quadrangle such as a rectangle, a polygon such as a hexagon or an octagon, or a circle may be used.
  • a ceramic substrate made of ceramic, a resin substrate made of resin, an insulating substrate such as a glass substrate, and a metal base substrate (metal substrate) in which an insulating film is coated on a metal plate can be used.
  • the ceramic substrate can be formed using, for example, aluminum oxide (alumina) or aluminum nitride.
  • the resin substrate include a glass epoxy substrate or a flexible flexible substrate made of polyimide or the like.
  • the metal base substrate can be configured using, for example, an aluminum alloy substrate, an iron alloy substrate, a copper alloy substrate, or the like.
  • the substrate 11 it is preferable to use a white substrate having a high light reflectance (for example, a light reflectance of 90% or more).
  • a white substrate having a high light reflectance for example, a light reflectance of 90% or more.
  • a ceramic substrate is used as the substrate 11.
  • the ceramic substrate has a higher thermal conductivity than the resin substrate, and can efficiently dissipate the heat of the LED 12. Moreover, the ceramic substrate has little deterioration over time and is excellent in heat resistance.
  • a white polycrystalline alumina substrate (polycrystalline ceramic substrate) having a thickness of about 1 mm constituted by firing alumina particles
  • a polycrystalline alumina substrate can be produced by adding a binder to a mixture of alumina particles as a raw material, a scatterer, and a sintering aid (additive), press molding, and then firing. The raw material alumina particles grow and crystallize by firing.
  • the substrate 11 is provided with a first through hole 11a.
  • the first through hole 11 a is a wiring opening through which a lead wire (not shown) connected to the power supply unit 14 passes.
  • the first through hole 11 a is provided in an inner region (inner region) of the sealing member 13, and can be provided, for example, in the central portion of the substrate 11.
  • the substrate 11 is provided with a second through hole 11b.
  • the second through hole 11b is a fixing opening for passing a fixing member for fixing the substrate 11 to the base.
  • the 2nd through-hole 11b is provided in the area
  • the fixing member is, for example, a fastening member (screw, bolt-nut, etc.) for fastening and fixing the substrate 11 to the base.
  • the second through hole 11b is an opening for screwing.
  • both the first through hole 11a and the second through hole 11b are formed in the inner region of the second sealing line 13L2.
  • the first through hole 11a and the second through hole 11b can be formed by, for example, laser processing a ceramic substrate.
  • the LED 12 is an example of a light emitting element, and is a semiconductor light emitting element that emits light with a predetermined power.
  • a plurality of LEDs 12 on the substrate 11 can have the same Vf characteristics, but the Vf of each LED 12 may vary somewhat, and the total Vf of the entire element array of the LEDs 12 connected in series is predetermined. It only has to be within the variation.
  • Each LED 12 is a bare chip that emits monochromatic visible light, and in this embodiment, a blue light emitting LED chip that emits blue light when energized is used.
  • the blue LED chip for example, a gallium nitride based semiconductor light emitting device having a central wavelength of 440 nm to 470 nm, which is made of an InGaN based material, can be used.
  • the LEDs 12 on the substrate 11 are arranged separately in the outer first element row 12L1 and the inner second element row 12L2.
  • the LEDs 12 in the first element row 12 ⁇ / b> L ⁇ b> 1 are arranged along the peripheral edge of the substrate 11. Specifically, the LEDs 12 in the first element row 12 ⁇ / b> L ⁇ b> 1 are arranged in a row along each side in the vicinity of each of the four sides of the square substrate 11.
  • the second element row 12L2 is provided adjacent to the first element row 12L1 so as to be similar to the first element row 12L1. Specifically, the LEDs 12 in the second element row 12L2 are arranged in parallel with the first element row 12L1.
  • 72 LEDs 12 are mounted on the substrate 11 and are connected so that they are arranged in 24 rows and 3 rows.
  • the outer first element row 12L1 is composed of 48 LEDs 12 and is configured to be connected in a 24 ⁇ 2 parallel connection.
  • the inner second element row 12L2 is composed of 24 LEDs 12 and is configured to be connected in series.
  • the LEDs 12 by arranging the LEDs 12 at the intersections of the virtual grids, all the LEDs 12 and all the wires 17 can be easily mounted. Specifically, the bonding (die bonding) of the LEDs 12 can be performed at the same pitch feed, and at the intersection of the grid, only two choices of whether or not to work are performed. All the LEDs 12 can be bonded. Similarly, all the wire bonding can be performed for the wire 17 by one operation. As a result, the die bonding process of the LED 12 and the wire bonding process of the wire 17 can be simplified, and the manufacturing cost can be reduced.
  • the shape of the LED 12 in plan view is a rectangle.
  • the LED 12 is preferably arranged so that the long side of the rectangle of the LED 12 and one side of the polygonal substrate 11 adjacent to the LED 12 are substantially parallel. That is, the LEDs 12 are preferably arranged so that the long sides of the LEDs 12 are along one side of the substrate 11 that is close.
  • substrate 11 is a square, it is good to arrange
  • Each LED 12 has a p-side electrode (not shown) and an n-side electrode (not shown), and a wire 17 is connected to the p-side electrode and the n-side electrode.
  • adjacent LEDs 12 on each side of the substrate 11 are directly connected by a wire 17. That is, the LEDs 12 on each side of the substrate 11 are wire-bonded by chip-to-chip, and in two adjacent LEDs 12, the cathode electrode of one LED 12 and the anode electrode of the other LED 12 are connected by a wire 17. ing.
  • FIG. 4 is a diagram for explaining a state in which an LED is mounted on a substrate in the light emitting device according to Embodiment 1 of the present invention.
  • the substrate 11 in FIG. 4 does not show the configuration other than the recognition mark 19, the first through hole 11a, and the second through hole 11b.
  • the grid and LED shown in FIG. 4 do not match the grid and LED shown in FIG.
  • the substrate 11 is formed with a plurality of recognition marks 19 for recognizing the position where the LED 12 is mounted.
  • the recognition marks 19 are formed along each side of the substrate 11 at an equal pitch in a line corresponding to the virtual row direction lines and the virtual column direction lines constituting the intersections of the grids.
  • the recognition mark 19 can be formed in a pattern simultaneously with the wiring 15 and the wiring pad 16, and can be configured by, for example, forming a plurality of circular gold thin films of about 0.3 mm at intervals of 5 to 6 mm.
  • the predetermined mounting position of LED12 is pinpointed by imaging the recognition mark 19 by an imaging means etc., and recognizing the recognition mark 19.
  • FIG. thereby, since mounting of LED12 can be performed easily, manufacturing cost can be reduced.
  • the LED 12 is wire-bonded by chip-to-chip as in the present embodiment, the position where the wire 17 is struck can be quickly and easily recognized by using the recognition mark 19.
  • the recognition mark 19 may be formed corresponding to each LED 12, and may be formed in the ratio of one piece in several chips (for example, 3 chips).
  • the sealing member 13 (the first sealing line 13L1 and the second sealing line 13L2) can be made of, for example, a translucent resin material, but it is necessary to convert the light wavelength of the LED 12 to a predetermined wavelength. In some cases, a wavelength converting material is mixed.
  • the sealing member 13 in the present embodiment is a wavelength conversion member that includes a phosphor as a wavelength conversion material and converts the wavelength (color) of light emitted from the LED 12.
  • Such a sealing member 13 can be constituted by, for example, an insulating resin material (phosphor-containing resin) containing phosphor particles. The phosphor particles are excited by light emitted from the LED 12 and emit light of a desired color (wavelength).
  • the sealing member 13 As a resin material constituting the sealing member 13, for example, a silicone resin can be used. Further, a light diffusing material may be dispersed in the sealing member 13. Note that the sealing member 13 is not necessarily formed of a resin material, and can be formed of an inorganic material such as a low-melting glass or a sol-gel glass in addition to an organic material such as a fluorine-based resin.
  • the phosphor particles to be contained in the sealing member 13 for example, when the LED 12 is a blue light emitting LED that emits blue light, for example, YAG-based yellow phosphor particles can be used to obtain white light. As a result, part of the blue light emitted from the LED 12 is converted into yellow light by the yellow phosphor particles contained in the sealing member 13. Then, the blue light that has not been absorbed by the yellow phosphor particles and the yellow light that has been wavelength-converted by the yellow phosphor particles are diffused and mixed in the sealing member 13 so that the white light is emitted from the sealing member 13. And emitted. In addition, particles such as silica are used as the light diffusing material.
  • the sealing member 13 in the present embodiment is made of a phosphor-containing resin in which predetermined phosphor particles are dispersed in a silicone resin, and can be formed by applying and curing the main surface of the substrate 11 with a dispenser. .
  • the discharge nozzle of the dispenser is disposed opposite to a predetermined position on the substrate 11, and discharge is performed while discharging the sealing member material (phosphor-containing resin) from the discharge nozzle along the arrangement direction of the LEDs 12.
  • the nozzle is moved in a predetermined direction of the substrate 11. At this time, the sealing member material is discharged so as to cover the wire 17 together with the LED 12.
  • the application of the sealing member material returns from a certain position of the substrate 11 to the original position so as to draw a square with a single stroke. In one operation. After applying the sealing member material, the sealing member material is cured by a predetermined method.
  • coating is a substantially semicircle, for example.
  • the protection element 18 is sealed by the sealing member 13 (third sealing line 13L3).
  • the sealing member 13 (third sealing line 13L3) can be formed along the array of the protection elements 18, and is linearly formed in the present embodiment.
  • the sealing member 13 that covers the protection element 18 can be formed by the same method using the same material as the sealing member 13 that seals the LED 12. By covering the protection element 18 with the sealing member 13, it is possible to suppress the deterioration of the protection element 18.
  • the sealing member 13 that covers the protection element 18 may not contain a phosphor, but the sealing member 13 that seals the protection element 18 and the sealing member 13 that seals the LED 12 are made of the same material. By doing, sealing of the protection element 18 and sealing of the LED 12 can be performed in the same process. Thereby, manufacturing cost can be reduced.
  • the power supply unit 14 (power supply terminal) is a base connector serving as an external connection terminal (electrode terminal) that receives predetermined power from the outside of the light emitting device 10.
  • the power supply unit 14 receives DC power for causing the LEDs 12 to emit light, and supplies the received DC power to each LED 12 via the wiring 15 and the wires 17.
  • the power supply unit 14 in the present embodiment is configured in a socket type, and has a resin socket and a plurality of conductive pins for receiving DC power.
  • the plurality of conductive pins have a positive voltage side conductive pin and a negative voltage side conductive pin, and are electrically connected to the wiring 15 formed on the substrate 11.
  • the power supply unit 14 may be a metal electrode instead of a socket type.
  • the metal electrode may be formed as a positive voltage side metal electrode and a negative voltage side metal electrode.
  • the metal electrode can be patterned simultaneously with the wiring 15.
  • the wiring 15 is formed to electrically connect the plurality of LEDs 12 and the power supply unit 14 in the first element row 12L1 and the second element row 12L2. That is, the wiring 15 is a conductive wiring through which a current for causing the LED 12 to emit light, and can be a metal wiring, for example.
  • the power supplied to the light emitting device 10 is supplied to each LED 12 by the wiring 15.
  • the wiring 15 is formed in a predetermined shape so that the plurality of LEDs 12 on the substrate 11 are in a predetermined electrical connection.
  • the wiring 15 is formed in a pattern so that 72 LEDs 12 are arranged in a series of 24 lines.
  • the wiring 15 is also formed to electrically connect the protection element 18 and the power supply unit 14.
  • an island-like wiring 15 is formed between adjacent protection elements 18, and the protection element 18 and the island-like wiring 15 are connected by a wire 17.
  • the wiring 15 can be formed, for example, by patterning or printing a metal film made of a metal material.
  • a metal material of the wiring 15 for example, Au (gold), silver (Ag), copper (Cu), or the like can be used.
  • the wiring 15 in the present embodiment is configured using gold.
  • the wiring 15 is formed in an inner region (inner region) of the sealing member 13. Specifically, the wiring 15 is formed in a region inside the second sealing line 13L2.
  • the wiring 15 exposed from the sealing member 13 is preferably covered with a glass film (glass coat film) made of a glass material or a resin film (resin coat film) made of a resin material.
  • a glass film glass coat film
  • resin film resin coat film
  • the wiring pad 16 is electrically connected to the plurality of LEDs 12 and the wiring 15.
  • the wiring pad 16 is formed at a corner (corner) of the array shape of the LEDs 12. That is, when the arrangement shape of the first element row 12L1 and the second element row 12L2 in the plan view of the substrate 11 is a polygon, the wiring pad 16 is formed at the corner of the polygon.
  • the wiring pads 16 are arranged to form the same row as the LEDs 12 in the first element row 12L1 and the second element row 12L2, and correspond to the wiring pads 16 arranged at each corner and each side.
  • a plurality of LEDs 12 arranged in a polygon form a polygon. For example, when the arrangement shape of the annular first element row 12L1 and the annular second element row 12L2 is a square, the wiring pad 16 is formed at four corners of the square.
  • the wiring pads 16 correspond to the corners of the substrate 11. Formed in position. That is, since the planar view shape of the substrate 11 is a square, the wiring pad 16 is formed at four corners of the square.
  • the two LEDs 12 arranged across the corners of the first element row 12L1 and the second element row 12L2 are wire bonded via the wiring pads 16.
  • two LEDs that are closest to the corner portion across the corner portion of the substrate 11 and the wiring pad 16 are wire-bonded.
  • the wiring pad 16 functions as a connection electrode for connecting the two LEDs 12 arranged with the corner portion of the substrate 11 (first element row 12L1) interposed therebetween.
  • the sealing member 13 can be easily formed, and the protrusion of the wire 17 from the sealing member 13 can be suppressed.
  • the two LEDs 12a and 12b at the corner are wired by chip-to-chip.
  • the wire 17c connecting the LED 12a and the LED 12b is disposed in an oblique direction and becomes longer.
  • the sealing member 13 since the sealing member 13 is formed along the direction of hitting the wire, the sealing member 13 is also formed in an oblique direction. As a result, when the sealing member 13 is applied, the number of changes in the application direction (angle) is increased at the corner (twice in FIG. 6), and the process of applying the sealing member 13 is complicated and manufactured. Cost increases. Moreover, when the wire 17c becomes long, the wire 17c may protrude from the sealing member 13, and light from the sealing member 13 is absorbed or reflected by the protruding wire 17c, so that the luminance of the light emitting device 10 is uniform. Sex is reduced.
  • the sealing member 13 can be easily formed and the protrusion of the wire 17 from the sealing member 13 can be suppressed.
  • the wire 17 is a conductive wire such as a gold wire. As described above, the wire 17 directly connects the adjacent LEDs 12 on each side of the substrate 11. Further, as described above, the wires 17 are laid over the LEDs 12 and the wiring pads 16 at the corners of the substrate 11 (the first element row 12L1 and the second element row 12L12). The wire 17 is preferably embedded in the sealing member 13 so as not to be exposed from the sealing member 13.
  • the LEDs 12 are arranged so that they are arranged in a series of 24 series. Therefore, in the inner second element row 12L2, a part of the interval between the adjacent LEDs 12 is configured to be longer. Yes. In this case, the length of the wire 17 is also increased, and in FIG. 1 and FIG.
  • the wire 17 may protrude from the sealing member 13 or the wire 17 may hang down and come into contact with the upper part of the LED 12, so that the length of the wire 17 is too long. It is preferable to configure so as not to exist. For example, the length may be limited to two pitches.
  • an island-shaped electrode pad may be formed between the adjacent LEDs 12 at a place where the wire 17 is long. Thereby, since the length of the wire 17 can be shortened, it can suppress that the wire 17 protrudes from the sealing member 13, or the wire 17 droops and contacts the upper part of LED12.
  • the protection element 18 prevents the LED 12 having a low reverse breakdown voltage from being broken by static electricity having a reverse polarity generated on the substrate 11. For this reason, the protection element 18 is disposed so as to be connected in parallel with a polarity opposite to that of the LED 12.
  • a Zener diode or the like can be used as the protective element 18.
  • One or more protection elements 18 are mounted on the substrate 11. As shown in FIGS. 1 and 2, in the present embodiment, five Zener diodes are mounted as the protection elements 18.
  • the protection element 18 is disposed in an inner region (inner region) of the sealing member 13. In the present embodiment, the protection element 18 is disposed in a region inside the second sealing line 13L2.
  • the light emitting device 10 As described above, the light emitting device 10 according to the present embodiment is configured.
  • the sealing member 13 is formed in an annular shape so as to cover the LEDs 12 arranged in a row in an annular shape, and the power supply unit 14 electrically connected to the LED 12 has an annular shape. It is provided in the inner region of the sealing member 13. That is, the power supply unit 14 is provided in a region inside the annular light emitting unit constituted by the LED 12 and the sealing member 13.
  • the sealing member 13 is formed in a linear shape by collectively sealing the LEDs 12 arranged in a row in a ring shape, continuous linear light emission can be obtained.
  • the power supply unit 14 is provided in the inner region of the annular sealing member 13, light emitted from the side of the sealing member 13 to the outside of the substrate 11 may be affected by the power supply unit 14. Absent.
  • the light emitted from the side of the sealing member 13 to the outside of the substrate 11 is absorbed by the power supply unit 14 to reduce the light emission efficiency, or reflected to the power supply unit 14 to make the luminance distribution non-uniform. This can be suppressed.
  • the present embodiment it is possible to realize a light emitting device that suppresses a decrease in light emission efficiency and has a uniform luminance distribution.
  • the light emitting device 10 according to the present embodiment has a COB structure, light is emitted not only in the vertical direction (upward) of the main surface of the substrate 11 but also in the horizontal direction (side) of the main surface of the substrate 11. Can do. Thereby, a light-emitting device having a wide light distribution characteristic can be realized.
  • a plurality of LEDs 12 mounted on the substrate 11 are arranged along the peripheral edge of the substrate 11.
  • This configuration makes it possible to disperse and arrange the plurality of LEDs 12 on the peripheral portion of the substrate 11 without making them dense, so that the heat dissipation and the light emission efficiency of the light emitting device 10 can be improved. Further, by disposing the LED 12 on the peripheral edge of the substrate 11, the heat conduction path from the LED 12 to the outside of the substrate 11 can be shortened. Thereby, since the heat generated in the LED 12 can be efficiently radiated to the outside of the substrate 11, a light emitting device having excellent heat dissipation can be realized.
  • the sealing member 13 is formed on the peripheral edge of the substrate 11.
  • the sealing member 13 is continuously formed without interruption.
  • This configuration makes it possible to obtain uniform line-shaped light emission that is continuous over the entire circumference of the substrate 11. Thereby, a light emitting device having a more uniform luminance distribution can be realized.
  • the first through hole 11a for passing the lead wire connected to the power supply unit 14 is provided in the inner region of the sealing member 13 formed in an annular shape.
  • the lead wire when a lead wire is connected to the power supply unit 14, the lead wire can be connected to the power supply unit 14 by inserting the first through hole 11 a formed inside the sealing member 13. Thereby, the light emitted from the sealing member 13 to the outside of the substrate 11 is not affected by the lead wire. That is, there is no lead wire that is a shadow of light in the outer region of the light emitting unit (LED 12, sealing member 13). Therefore, a light emitting device having a more uniform luminance distribution can be realized.
  • the lead wire is led out from the first through hole 11 a in the inner region of the sealing member 13, it is not necessary to route the lead wire to the outer region of the sealing member 13.
  • the predetermined device including the light emitting device 10 can be made compact.
  • the second through hole 11b through which the fixing member for fixing the substrate 11 to the predetermined base is also provided in the inner region of the annular sealing member 13.
  • the fixing member can be provided in the inner region of the sealing member 13 by forming the second through hole 11 b in the inner region of the annular sealing member 13.
  • the wiring 15 for electrically connecting the power supply unit 14 and the LED 12 is also provided in the inner region of the sealing member 13 formed in an annular shape.
  • the protective element 18 that electrostatically protects the LED 12 is also provided in the inner region of the annular sealing member 13.
  • the light emitted from the sealing member 13 to the outside of the substrate 11 is not affected by the protection element 18. That is, the protective element 18 that becomes a shadow of light does not exist in the outer region of the light emitting unit (LED 12, sealing member 13). Therefore, a light emitting device having a more uniform luminance distribution can be realized.
  • FIG. 7A is a plan view showing a state when the light-emitting device according to Embodiment 1 of the present invention is fixed to a base.
  • FIG. 7B is a cross-sectional view taken along line A-A ′ shown in FIG. 7A.
  • the light emitting device 10 when the light emitting device 10 is arranged in the LED lamp, the light emitting device 10 is arranged on a metal base (heat sink) 21 as shown in FIG. 7B.
  • the substrate 11 of the light emitting device 10 is fixed to the base 21 with screws 22.
  • the board 11 can be screwed and fixed to the base 21 by inserting the screw 22 into the second through hole 11 b of the board 11 and screwing the screw 22 into the screw hole provided in the base 21. it can.
  • the power supply unit 14 is connected to a lead wire 23 inserted through the through hole 21 a of the base 21 and the first through hole 11 a of the substrate 11.
  • the lead wire 23 is a power supply lead wire for supplying power to the light emitting device 10.
  • the lead wire 23 is connected to the connector portion (socket connector) 23 a attached to the socket of the power supply portion 14 and the connector portion 23 a. And a pair of conductive lines 23b.
  • the connector portion 23a includes a substantially rectangular resin molded portion configured to be fitted to the socket of the power supply unit 14, and a conductive portion provided in the resin molded portion.
  • a pair of conductive wire 23b can be comprised by the vinyl wire by which the metal core wire was resin-coated, for example.
  • the lead wire 23 is configured to pass DC power
  • the pair of conductive wires 23b includes a positive voltage supply line that supplies a positive voltage and a negative voltage supply line that supplies a negative voltage.
  • the lead wire 23 does not need to have the connector part 23a,
  • the lead wire 23A can also be set as the lead wire 23A comprised only with a pair of vinyl wire.
  • the power supply unit 14 is a pair of metal electrodes (metal film), and the metal core wire of the pair of lead wires 23A and the pair of power supply units 14 with the tip portions exposed are respectively connected.
  • the power supply unit 14 and the lead wire 23A can be electrically connected by soldering.
  • FIG. 9A is a plan view showing a layout of the power supply unit, the first through hole, and the second through hole in the light emitting device according to Embodiment 1 of the present invention.
  • FIG. 9B is a plan view showing another layout of the power supply unit, the first through hole, and the second through hole in the light emitting device.
  • 9A and 9B illustrate the single sealing member 13 (sealing line), the same applies to the double sealing member 13 (sealing line).
  • each of the four regions in the quadrangle formed by connecting the midpoint of each side of the quadrangle and the center of the quadrangle is “quadrant”.
  • the substrate 11 is divided into four quadrants of a first quadrant I, a second quadrant II, a third quadrant III, and a fourth quadrant IV.
  • 9A and 9B has a square shape in plan view, and therefore each quadrant of the first quadrant I, the second quadrant II, the third quadrant III, and the fourth quadrant IV is equally divided. .
  • the power supply unit 14 and the second through hole 11b are provided in different quadrants.
  • the power supply unit 14 is provided in the first quadrant I, and the three second through holes 11b are provided in each of the second quadrant II, the third quadrant III, and the fourth quadrant IV. Further, the first through hole 11a is provided in the central portion of the substrate 11 so as to straddle each quadrant.
  • the power supply unit 14 can be arranged at the corner, so that the distance between the power supply unit 14 and the first through hole 11a can be earned. 7B, when connecting the lead wire 23 led out from the first through hole 11a to the power supply unit 14, the bent lead wire 23 can be easily connected and the lead wire After connecting 23 to the power supply unit 14, the restoring force of the lead wire 23 due to bending can be suppressed. As a result, the stress load on the connecting portion between the power supply unit 14 and the lead wire 23 can be reduced by the restoring force of the bent lead wire 23. Therefore, it is possible to prevent the power supply unit 14 from being detached from the substrate 11, the lead wire 23 from the power supply unit 14, and the connection portion between the connector portion 23 a and the conductive wire 23 b from being disconnected in the lead wire 23. Can do.
  • the load on the substrate 11 in the power supply unit 14 and the second through hole 11b can be dispersed.
  • the power supply unit 14 is provided in the first quadrant I, and the two second through holes 11b are provided in the second quadrant II and the fourth quadrant IV, respectively.
  • the first through hole 11a is provided in the third quadrant III, and is provided in the quadrant opposite to the quadrant (first quadrant I) in which the power supply unit 14 is provided across the center of the quadrangle. .
  • the same effect as in FIG. 9A can be obtained.
  • the distance between the power supply unit 14 and the first through hole 11a can be further increased compared to the configuration of FIG. 9A.
  • the bent lead wire 23 can be more easily connected, and the restoring force of the lead wire 23 due to the bending can be further suppressed.
  • the stress load to the connection part of the electric power supply part 14 and the lead wire 23 can be reduced further.
  • FIGS. 10A and 10B the same applies to the case where the planar view shape of the substrate is a hexagon or an octagon.
  • FIG. 10A is a plan view showing a configuration when a hexagonal substrate is used in the light-emitting device according to Embodiment 1 of the present invention.
  • FIG. 10B is a plan view showing a configuration in the case where an octagonal substrate is used in the light emitting device according to Embodiment 1 of the present invention.
  • each of the six regions in the hexagon formed by connecting the midpoint of each side of the hexagon and the center of the hexagon is represented by a “quadrant”.
  • the board 11A shown in FIG. 10A is divided into six quadrants of a first quadrant I, a second quadrant II, a third quadrant III, a fourth quadrant IV, a fifth quadrant V, and a sixth quadrant VI.
  • each quadrant is divided equally.
  • the sealing member 13A has a hexagonal shape in accordance with the shape of the substrate 11A.
  • each of the eight regions in the octagon formed by connecting the midpoint of each side of the octagon and the center of the octagon.
  • the substrate 11B shown in FIG. 10B has a first quadrant I, a second quadrant II, a third quadrant III, a fourth quadrant IV, a fifth quadrant V, a sixth quadrant VI, a seventh quadrant VII, and Divided into eight quadrants of the eighth quadrant VIII.
  • the sealing member 13B is also octagonal according to the shape of the substrate 11B.
  • the power supply unit 14 and the second through hole 11b are preferably provided in different quadrants, and the first through hole 11a is a hexagonal or octagonal polygon. Or a quadrant opposite to the quadrant in which the power supply unit 14 is provided across the center of a hexagonal or octagonal polygon.
  • the bent lead wire 23 can be easily connected and the restoring force of the lead wire 23 due to the bending can be suppressed as in the case of FIGS. 9A and 9B. Thereby, the stress load to the connection part of the electric power supply part 14 and the lead wire 23 can be reduced.
  • FIG. 11A is an external perspective view of a lighting apparatus according to Embodiment 2 of the present invention.
  • FIG. 11B is a cross-sectional view of the lighting apparatus according to Embodiment 2 of the present invention taken along line AA ′ of FIG. 11A.
  • Illuminating device 100 is an embedded illuminating device such as a downlight that illuminates light downward (corridor, wall, etc.) by being embedded in a ceiling of a house, for example.
  • the light-emitting device 10 of Embodiment 1 is provided.
  • the lighting device 100 includes a light emitting device 10, a main body 120, and a lens unit 130. Furthermore, the lighting device 100 includes a power supply device 140, a terminal block 150, a mounting plate 160, and a fixing spring 170.
  • the main body 120 is a mounting base for mounting the light emitting device 10 and a heat sink that dissipates heat generated by the light emitting device 10.
  • the main body 120 can be configured using a metal material, and can be made of, for example, aluminum die casting.
  • a plurality of heat radiating fins 121 projecting upward are provided on the upper portion (ceiling side portion) of the main body 120. Thereby, the heat generated in the light emitting device 10 can be radiated efficiently.
  • the main body 120 has an attachment portion 122 for attaching and fixing the light emitting device 10.
  • the light emitting device 10 is placed on the surface of the attachment portion 122.
  • a screw hole 122 a is provided in the attachment portion 122, and the light emitting device 10 is fixed to the attachment portion 122 by a screw 180.
  • the lens unit 130 is made of a translucent member and transmits light emitted from the sealing member 13 of the light emitting device 10.
  • the lens unit 130 can be formed using a transparent material having insulating properties such as a resin material such as PMMA (acrylic) or polycarbonate, or a glass material.
  • the lens unit 130 is provided on the light emitting side of the light emitting device 10 so as to cover the light emitting device 10.
  • FIG. 12 (a) is a diagram showing the configuration of the lens unit in the illumination device according to Embodiment 2 of the present invention
  • FIG. 12 (b) is the same lens along the line AA ′ of FIG. 12 (a).
  • FIG. 12C is a cross-sectional view of the lens portion taken along line BB ′ of FIG.
  • the lens portion 130 is formed in a disc shape, and the outer surface shape of the lens portion 130 is processed into a predetermined curved shape so as to have a predetermined lens action. ing.
  • the outer surface shape of the lens unit 130 is configured to be curved so as to protrude outward at a position corresponding to the sealing member 13 of the light emitting device 10 in a cross-sectional view. In plan view, it is configured in a donut shape.
  • the lens unit 130 By providing the lens unit 130, as shown in FIG. 12B, the light emitted from the sealing member 13 of the light emitting device 10 is converged and diverged in a predetermined direction by the lens action of the lens unit 130 and emitted.
  • the lens unit 130 also functions as a cover for the lighting device 100 and protects the light emitting device 10.
  • the lens unit 130 may be provided with a light diffusion function.
  • the outer surface of the lens unit 130 is subjected to a texture treatment to form irregularities on the surface, a light diffusion film containing a light diffusion material such as silica is formed, or a light diffusion material is mixed inside the lens unit 130 You can let them do.
  • the entire surface of the lens unit 130 is embossed, and light is leaked.
  • a concave portion configured to be recessed toward the outer surface is provided on the inner surface of the lens unit 130 on the light emitting device 10 side.
  • the first convex portion 131 that contacts the substrate 11 of the light emitting device 10 as a part of the lens portion 130 and the power supply of the light emitting device 10 are provided in the concave portion.
  • a second convex part 132 (pressing part) for pressing the connector part 23 a of the lead wire 23 attached to the part 14 is provided.
  • a through hole 131 a is provided in the first convex portion 131 so as to correspond to the second through hole 11 b of the substrate 11 of the light emitting device 10. Accordingly, the lens portion 130 and the light emitting device 10 are fixed to the main body portion 120 by screwing the screw 180 into the through hole 131a of the lens portion 130, the second through hole 11b of the substrate 11, and the screw hole 122a of the mounting portion 122. Can do.
  • the connector portion 23 a of the lead wire 23 is pressed against the second convex portion 132.
  • the power supply device (power supply circuit) 140 receives power from a commercial power supply (for example, AC 100V) and generates power for causing the light emitting device 10 to emit light. Further, the terminal block 150 relays the power supply device 140 and the light emitting device 10, and supplies power from the power supply device 140 to the light emitting device 10. The power supply device 140 is attached and fixed to the attachment plate 160.
  • a commercial power supply for example, AC 100V
  • the terminal block 150 relays the power supply device 140 and the light emitting device 10, and supplies power from the power supply device 140 to the light emitting device 10.
  • the power supply device 140 is attached and fixed to the attachment plate 160.
  • a fixing spring (mounting spring) 170 is provided on the outer peripheral wall of the main body 120.
  • the main body 120 is attached and fixed to the ceiling by the fixing spring 170.
  • the fixing spring 170 is configured by, for example, bending one end portion of a rectangular plate-shaped stainless steel plate in the longitudinal direction into a V shape, and a plurality of fixing springs 170 are spaced apart from each other along the circumferential direction of the main body 120. (For example, three) are provided.
  • the lighting device 100 since the light emitting device 10 that suppresses a decrease in light emission efficiency and has a uniform luminance distribution is provided, a lighting device with high light emission efficiency and reduced luminance unevenness is realized. can do.
  • FIG. 13 is a diagram illustrating a configuration of a lens unit of Modification Example 1 in the illumination device according to Embodiment 2 of the present invention.
  • FIG. 14 is a diagram showing a configuration of a lens unit of Modification Example 2 in the illumination device according to Embodiment 2 of the present invention.
  • FIG. 15 is a diagram illustrating a configuration of a lens unit of Modification Example 3 in the illumination device according to Embodiment 2 of the present invention.
  • the lens unit 130 ⁇ / b> A illustrated in FIG. 13 does not have a contact portion with the mounting unit 122 on the inner surface side of the lens unit 130 ⁇ / b> A and faces the sealing member 13 of the light emitting device 10.
  • the inner surface of the lens portion 130A is a flat surface.
  • the lens portions 130B and 130C shown in FIGS. 14 and 15 are lenses for all light distribution, and the inner surface of the lens portion 130 facing the sealing member 13 of the light emitting device 10 also functions as a reflection surface.
  • 14 has a circular shape in plan view
  • the lens portion 130C in FIG. 15 has a square shape in plan view.
  • Embodiment 3 Next, an illumination light source according to Embodiment 3 of the present invention will be described.
  • a bulb-type LED lamp LED bulb
  • an illumination light source LED bulb
  • FIG. 16 is a cross-sectional view of a light bulb shaped lamp according to Embodiment 3 of the present invention.
  • a light bulb shaped lamp 200 is a light bulb shaped LED lamp that is a substitute for a light bulb shaped fluorescent light or an incandescent light bulb, and a light emitting device (LED module) 10 that is a light source.
  • the globe 210 that covers the light emitting device 10, the base 220 on which the light emitting device 10 is mounted, the circuit unit 230 that causes the light emitting device 10 to emit light, the circuit holder 240 that houses the circuit unit 230, and the circuit holder 240 are covered.
  • a housing 250 and a base 260 electrically connected to the circuit unit 230 are provided.
  • the bulb-shaped lamp 200 has an envelope composed of a globe 210, a casing 250, and a base 260.
  • the globe 210 is a hemispherical translucent cover for radiating light emitted from the light emitting device 10 to the outside of the lamp.
  • the globe 210 can be used with a glass bulb made of glass or a resin bulb such as acrylic (PMMA) or polycarbonate (PC).
  • the base 220 is a light source mounting member for mounting and fixing the light emitting device 10.
  • the light emitting device 10 disposed on the base 220 can be fixed to the base 220 with screws 270, for example.
  • the base 220 is fixed in a state of being fitted into the opening of the housing 250.
  • the base 220 can be a metal base made of a metal material such as aluminum. Thereby, the heat generated in the light emitting device 10 can be efficiently conducted to the base 220.
  • a resin cover (cover member) 280 is provided so as to cover the inner region of the sealing member 13 of the light emitting device 10.
  • the resin cover 280 protects the power supply unit 14, the wiring 15, and the protection element 18 existing in the inner region of the sealing member 13. Moreover, since the light from the sealing member 13 can be reflected by providing the surface of the resin cover 280 with a reflecting function, a light bulb shaped lamp with a wide light distribution angle can be realized.
  • the resin cover 280 is fixed to the base 220 together with the substrate 11 by screws 270.
  • the circuit unit 230 is a lighting circuit (power supply circuit) that supplies predetermined power to the light emitting device 10 in order to light (emit) the LED 12 of the light emitting device 10.
  • the circuit unit 230 includes a circuit board and a plurality of electronic components mounted on the circuit board. The circuit unit 230 is fixed to the circuit holder 240.
  • the circuit holder 240 is an insulating case for housing the circuit unit 230 and is housed in the housing 250 and the base 260.
  • the circuit holder 240 can be formed of an insulating material such as resin, for example.
  • the housing 250 is disposed between the globe 210 and the base 260.
  • the casing 250 in the present embodiment is a case that constitutes an outer member and is open at both ends.
  • the housing 250 can be made of a metal material such as aluminum.
  • the base 260 is a power receiving unit for receiving AC power through two contact points, and is attached to a socket of a lighting fixture, for example. In this case, when the illumination light source 1 is turned on, the base 260 receives power from the socket of the lighting fixture. Further, the power received by the base 260 is input to the power input unit of the circuit unit 230.
  • the base 260 includes a shell portion having a substantially cylindrical shape and an outer peripheral surface being a male screw, and an eyelet portion attached to the shell portion via an insulating portion.
  • the type of the base 260 is not particularly limited.
  • a screw-type Edison type (E type) base can be used, and examples thereof include an E26 base, an E17 base, and an E16 base.
  • the light bulb shaped lamp 200 includes the light emitting device 10 that suppresses a decrease in light emission efficiency and has a uniform luminance distribution. Can be realized. Further, since the light emitting device 10 has a wide light distribution characteristic, a light bulb shaped lamp with a wide light distribution angle can be realized.
  • the resin cover 280 was arrange
  • the lighting device can be realized by mounting the light bulb shaped lamp 200 according to the present embodiment on a lighting fixture having a predetermined socket.
  • Embodiment 4 Next, an illumination light source according to Embodiment 4 of the present invention will be described.
  • a flat LED lamp will be described as an example of a light source for illumination.
  • FIG. 17A is an external perspective view of an LED lamp according to Embodiment 4 of the present invention.
  • FIG. 17B is a cross-sectional view of the LED lamp according to Embodiment 4 of the present invention.
  • the LED lamp 300 is an LED lamp having a disc shape or a flat shape as a whole, and has a base of a predetermined standard (for example, a GH76p type base).
  • a predetermined standard for example, a GH76p type base
  • the LED lamp 300 includes a light emitting device 10, a support base 310 attached to a lighting fixture (not shown), a housing 320 connected to the support base 310, a circuit board 330, a reflecting mirror 340, and translucency. And a cover 350.
  • the sealing member 13 of the light emitting device 10 is formed in an annular shape.
  • the support base 310 is a base to which the light emitting device 10 is attached, and can be made of a metal material such as aluminum. Moreover, the support stand 310 is a member connected to a lighting fixture. Specifically, for example, a GH76p-type base structure is formed on the upper portion of the support base 310, and is attached and fixed to a lighting fixture.
  • the housing 320 is a flat and cylindrical housing that surrounds the light irradiation side of the LED lamp 300. Inside the housing 320, the light emitting device 10, the circuit board 330, and the reflecting mirror 340 are arranged.
  • the housing 320 can be made of an insulating resin such as PBT (polybutylene terephthalate).
  • the circuit board 330 is provided with a circuit for causing the LED 12 of the light emitting device 10 to emit light.
  • the circuit board 330 is a disk-shaped (doughnut-shaped) board in which a circular opening is formed, and is arranged inside the housing 320 and outside the reflecting mirror 340.
  • the reflecting mirror 340 is disposed on the light emitting side of the light emitting device 10 and is configured to reflect and emit the light emitted from the light emitting device 10 to the outside.
  • the reflecting mirror 340 can be made of an insulating white synthetic resin material, and for example, polycarbonate can be used.
  • a reflective film may be coated on the inner surface of the reflecting mirror 340.
  • the translucent cover 350 is a flat plate member disposed in the opening of the housing 320 in order to protect the member disposed in the housing 320.
  • the translucent cover 350 is made of a synthetic resin material having a high light transmittance such as polycarbonate so as to transmit light from the light emitting device 10. Note that a paint for promoting light diffusibility may be applied to the inner surface of the translucent cover 350.
  • the LED lamp 300 includes the light emitting device 10 that suppresses a decrease in light emission efficiency and has a uniform luminance distribution, thereby realizing an illumination device that has high light emission efficiency and suppressed luminance unevenness. can do.
  • the sealing member 13 in the light emitting devices 10 and 10A is continuously formed without interruption, but is not limited thereto.
  • annular sealing line may be configured as a whole by forming a linear sealing member 13 for each side of the substrate 11 as in the light emitting device 10B shown in FIG. That is, an annular sealing line may be formed by intermittently forming a plurality of linear sealing members 13 along each side of the substrate 11.
  • annular sealing line may be formed so that a part of the annular sealing member 13 formed along the entire circumference of the substrate 11 is interrupted.
  • the annular sealing member includes a form that becomes an annular shape by extending the sealing member of the interrupted portion along its shape. It is sufficient that at least light emitted from the sealing member 13 at the time of light emission of the LED becomes an annular continuous light.
  • (Modification 2) Moreover, you may use board
  • the notch 11c is a recess formed so that a part of the side surface of at least one side of the substrate 11D having a polygonal shape is retracted toward the center of the substrate. Further, the notch 11c is notched so as to penetrate from one main surface of the substrate 11D to the other main surface.
  • the shape of the substrate 11D when viewed from the direction perpendicular to the main surface of the substrate 11D is an octagon, and the cutout portion 11c is provided so as to cut out a part of one side of the octagon.
  • the LEDs (not shown) are arranged in an octagonal frame shape in accordance with the shape of the substrate 11D, and the sealing member 13 is formed in an octagonal frame shape.
  • the notch portion 11c is a wiring opening through which a lead wire (not shown) connected to the power supply unit 14 (base connector) is passed, and the lead wire is inserted into the notch portion 11c.
  • the lead wire As the lead wire, the lead wire 23 shown in FIGS. 7A and 7B can be used.
  • the lead wire can be inserted into the notch 11c from the side of the substrate 11D toward the inside of the substrate 11D along the notch shape, not from the direction perpendicular to the main surface of the substrate 11D.
  • the lead wire can be easily cut regardless of the size of the connector terminal. It can be inserted into the notch 11c. That is, since it is not necessary to pass the lead wire connector terminal through the notch portion 11c, the notch width of the notch portion 11c can be suppressed to the line width of the lead wire. Accordingly, as the through portion (ineffective area) of the substrate 11D, there are the second through hole 11b for screwing and the cutout portion 11c for wiring, but these through portions can be suppressed to the minimum area. The effective area of the substrate 11D can be as large as possible.
  • the annular sealing member 13 is interrupted at the notch 11c, but as shown in FIG. 20B, the end of the interrupted sealing member 13 is provided. Light is emitted from the part also in the horizontal direction (lateral direction) of the substrate. As a result, light is not interrupted at the cutout portion 11c, and annular continuous light is emitted from the light emitting device 10D. In particular, as shown in FIG. 20B, continuous light with no light interruption can be easily obtained by facing the ends of the interrupted sealing member 13 through the notch 11 c.
  • a white ceramic substrate may be used as the substrate 11D.
  • the light emitted from the end portion of the interrupted sealing member 13 is easily reflected on the inner surface of the notch portion 11c. Therefore, continuous light can be easily obtained.
  • the number of second through holes 11b for screwing is not limited to one.
  • a plurality of (for example, two) second through holes 11b may be provided.
  • the position of the power supply unit 14 may be moved away from the cutout part 11c in order to increase the distance between the power supply unit 14 and the cutout part 11c.
  • the lead wire connected to the power supply unit 14 is bent at a position where the lead wire is led out from the cutout portion 11c.
  • the power supply portion 14 and the lead wire by bending are bent. The stress load on the connecting part can be reduced.
  • the second through hole 11bF for screwing may be formed in a long shape. Specifically, the second through hole 11bF is formed into an oval shape (long hole).
  • the convex portion on the base on which the light emitting device 10F is installed and fitting the convex portion into the second through hole 11bF, positioning and prevention of rotation of the light emitting device 10F can be easily realized.
  • positioning a lens in front of the light-emitting device 10F positioning of a lens and prevention of rotation are easily realizable by making the convex part for attachment provided in the lens fit in the 2nd through-hole 11bF.
  • the octagonal substrate 11D in the present modification is produced, for example, by dividing a base material (mother substrate) into a plurality of parts. Specifically, as shown in FIG. 23, the octagonal substrate 11D can be manufactured by cutting out from a mother substrate by laser cutting. In FIG. 23, the area indicated by hatching is a part to be discarded after cutting out the substrate 11D (a part to be cut off).
  • the cutout portion 11c and the second through hole 11bF can also be formed by laser cutting.
  • the mother substrate is laser-cut, it is often cut (overcut) beyond a predetermined cutting position, so that the cutout portion 11c extends over the portion to be cut off as shown in FIG. It is good to form.
  • the notch 11c is formed at a polygonal corner, the adjacent substrate 11D may be cut. Therefore, the notch 11c is preferably formed not on the corners of the polygon but on the sides of the polygon.
  • the substrate 11D is a polygon such as an octagon, it is possible to reduce the portion of the mother substrate that is discarded compared to a case where the substrate 11D is a circle.
  • the octagonal shape of the substrate 11D has two sides facing each other having the same length and parallel, and two adjacent sides having different lengths. That is, the substrate 11D is not a regular octagon. Thereby, compared with the case where board
  • the octagonal substrate may be a long octagonal substrate like the substrate 11D in the light emitting device 10G of FIG.
  • the light emitting device, the illumination light source, and the illumination device according to the present invention have been described based on the embodiments and modified examples. However, the present invention is not limited to these embodiments and modified examples.
  • the shape of the substrate and the shape of the sealing member are matched, but this is not a limitation.
  • the shape of the sealing member is a square frame (FIG. 1)
  • the shape of the sealing member is hexagonal
  • the shape of the sealing member is a hexagonal frame ( 10A)
  • the shape of the sealing member is an octagonal frame (FIG. 10B)
  • the sealing member (sealing line) and the LED (element array) are provided so as to be parallel to each side of the substrate, but the LED arrangement shape and sealing are independent of the planar view shape of the substrate.
  • the shape of the stop member may be determined.
  • the planar view shape may be arranged in an annular shape and the sealing member may be formed in an annular shape with respect to the polygonal substrate.
  • the LEDs 12 may be arranged in a polygonal frame shape and the sealing member 13 may be formed in a polygonal frame shape.
  • the light emitting device is configured to emit white light by the blue LED chip and the yellow phosphor, but is not limited thereto.
  • a red phosphor or a green phosphor may be further mixed in addition to the yellow phosphor.
  • the LED chip may emit an LED chip that emits a color other than blue.
  • the phosphor phosphor particles
  • a combination of phosphors that emit light in three primary colors (red, green, and blue) can be used.
  • a wavelength conversion material other than a phosphor may be used.
  • light of a certain wavelength such as a semiconductor, a metal complex, an organic dye, or a pigment, is absorbed, and light having a wavelength different from the absorbed light.
  • a material containing a substance that emits may be used.
  • the LED is exemplified as the light emitting element.
  • a semiconductor light emitting element such as a semiconductor laser, a solid light emitting element such as an organic EL (Electro Luminescence), or an inorganic EL may be used.
  • the present invention can be widely used in a light emitting device having a light emitting element, an illumination light source such as a lamp equipped with the light emitting device, and an illumination device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

 発光装置(10)は、基板(11)と、基板(11)の主面上に、環状に一列で配置された複数のLED(12)と、複数のLED(12)の配列に沿って環状に形成され、複数のLED(12)を封止する封止部材(13)と、基板(11)の主面上に設けられ、複数のLED(12)と電気的に接続された電力供給部(14)とを備え、電力供給部(14)は、環状の封止部材(13)の内側の領域である内部領域に設けられている。

Description

発光装置、照明用光源及び照明装置
 本発明は、発光装置、照明用光源及び照明装置に関し、特に、発光ダイオード(LED:Light Emitting Diode)を用いた発光装置及びこれを備えた照明用光源等に関する。
 LEDは、高効率及び長寿命であることから、様々な製品の光源として用いられている。中でも、LEDを用いたランプ(LEDランプ)は、従来から知られる蛍光灯や白熱電球等に代替する照明用光源として研究開発が進められている。
 LEDランプとしては、電球形蛍光灯や白熱電球に代替する電球形LEDランプ(LED電球)、あるいは、直管形蛍光灯に代替する直管形LEDランプ等がある。例えば、特許文献1には、従来の電球形LEDランプが開示されている。また、特許文献2には、従来の直管形LEDランプが開示されている。
 LEDランプには、光源(発光装置)として、LEDモジュールが配置されている。LEDモジュールは、例えば、実装基板と当該実装基板上に実装された複数のLEDとによって構成されている。
特開2006-313717号公報 特開2009-043447号公報
 LEDモジュールには、複数のLEDチップを実装基板に直接実装した構造であるCOB(Chip On Board)構造、又は、パッケージ化されたLED素子を実装基板上に複数個実装した構造であるSMD(Surface Mount Device)構造がある。
 COB構造のLEDモジュールは、例えば、矩形状の実装基板の中央部に実装された複数のLEDチップと、複数のLEDチップを一括封止する円形状の波長変換部材(蛍光体含有樹脂)とを備える。
 しかしながら、COB構造のLEDモジュールは、LEDチップが密集しているので、放熱性が悪くなって発光効率が低下したり、LEDチップの側方から出射した光が隣接するLEDチップに吸収されて発光効率が低下したりする。
 また、SMD構造のLEDモジュールでは、各LED素子が、凹部を有する白色容器(パッケージ)と、凹部に実装されたLEDチップと、凹部に封入された波長変換部材(蛍光体含有樹脂)とによって構成されている。
 しかしながら、SMD構造のLEDモジュールでは、各LED素子において、個々のLEDチップが白色容器(パッケージ)内に配置されているので、白色容器の側方から光が出射しない。このため、LEDモジュールの光は、不連続な粒々の光となって輝点が目立ち、輝度分布が不均一になる。
 また、COB構造でもSMD構造でも、LEDモジュールには、電力供給用のリード線との接続部であるコネクタ(給電端子)、及び、LEDチップを静電保護するツェナーダイオードが実装基板に設けられている。この場合、コネクタやツェナーダイオードは、発光部である波長変換部材の外側に配置される。
 しかしながら、コネクタやツェナーダイオードが発光部(波長変換部材)の外側に配置されていると、発光部の側方から実装基板の外側に放出する光が、コネクタやツェナーダイオードに吸収されて発光効率が低下したり、コネクタやツェナーダイオードに反射して輝度分布が不均一になったりする。
 また、LEDモジュールは、LEDランプ内に配置された金属製の基台(ヒートシンク)等の上に固定される。この場合、LEDモジュールと基台とを固定する方法として、実装基板の周縁端部を押さえ部材(金属板ばね等)で押さえた状態で、実装基板の外部で押さえ部材と基台とをねじ止めする方法がある。この場合、押さえ部材は、実装基板の周縁端部と基台とに跨がるようにして配置される。
 しかしながら、押さえ部材は発光部の外側に配置されることになるので、発光部の側方から実装基板の外側に放出する光が押さえ部材によって蹴られることになる。このため、発光効率が低下したり蹴られた光が乱光となって輝度分布が不均一になったりする。
 本発明は、このような問題を解決するためになされたものであり、発光効率の低下を抑制し、かつ、均一な輝度分布を有する発光装置、照明用光源及び照明装置を提供することを目的とする。
 上記目的を達成するために、本発明に係る発光装置の一態様は、基板と、前記基板の主面上に、環状に一列で配置された複数の発光素子と、前記複数の発光素子の配列に沿って環状に形成され、前記複数の発光素子を封止する封止部材と、前記基板の主面上に設けられ、前記複数の発光素子と電気的に接続された電力供給部とを備え、前記電力供給部は、環状の前記封止部材の内側の領域である内部領域に設けられていることを特徴とする。
 また、本発明に係る発光装置の一態様において、前記複数の発光素子は、前記基板の周縁部に沿って配列されている、としてもよい。
 また、本発明に係る発光装置の一態様において、前記基板は、前記電力供給部に接続されるリード線を通すための第1貫通孔を有し、前記第1貫通孔は、前記内部領域に設けられている、としてもよい。
 また、本発明に係る発光装置の一態様において、前記封止部材は、途切れることなく連続的に形成されている、としてもよい。
 また、本発明に係る発光装置の一態様において、前記基板の主面垂直方向から見たときの前記基板の形状は、多角形であり、前記基板は、前記多角形の少なくとも一辺の一部を切り欠いた切り欠き部を有し、前記封止部材は、前記切り欠き部において途切れている、としてもよい。
 この場合、前記切り欠き部には、前記電力供給部に接続されるリード線が挿通される、としてもよい。
 また、本発明に係る発光装置の一態様において、前記基板の主面垂直方向から見たときの前記基板の形状は、多角形であり、前記基板の主面垂直方向から見たときの前記発光素子の形状は、長方形であり、前記長方形の長辺と前記多角形の一辺とは略平行である、としてもよい。
 また、本発明に係る発光装置の一態様において、前記基板の主面垂直方向から見たときの前記基板の形状は、八角形であり、前記八角形は、向かい合う2つの辺は同じ長さ且つ平行であり、かつ、隣り合う2つの辺の長さが異なっている、としてもよい。
 また、本発明に係る発光装置の一態様において、さらに、前記複数の発光素子と電気的に接続された配線パッドを備え、前記基板の主面垂直方向から見たときの前記複数の発光素子の配列形状は、多角形であり、前記配線パッドは、前記多角形の角部に設けられ、前記角部を挟んで配列された2つの前記発光素子は、前記配線パッドを介してワイヤボンディングされている、としてもよい。
 また、本発明に係る発光装置の一態様において、さらに、前記基板は、当該基板を基台に固定するための固定部材を通す第2貫通孔を有し、前記第2貫通孔は、前記内部領域に設けられている、としてもよい。
 また、本発明に係る発光装置の一態様において、前記基板の主面垂直方向から見たときの前記基板の形状は、四角形、六角形又は八角形の多角形であり、前記多角形の各辺の中点と前記多角形の中心とを結んでできる前記多角形における複数の領域の各々を象限とすると、前記電力供給部及び前記第2貫通孔は、異なる前記象限に設けられている、としてもよい。
 また、本発明に係る発光装置の一態様において、前記第1貫通孔は、前記多角形の中心、又は、前記多角形の中心を挟んで前記電力供給部が設けられた象限と反対側の象限に設けられている、としてもよい。
 また、本発明に係る発光装置の一態様において、前記複数の発光素子の全てが、前記基板上に等ピッチで配列された仮想の碁盤目の任意の交点に配置されている、としてもよい。
 また、本発明に係る発光装置の一態様において、さらに、前記発光素子を実装する位置を認識するための認識マークが前記基板に形成されている、としてもよい。
 また、本発明に係る発光装置の一態様において、さらに、前記基板にパターン形成され、前記電力供給部と前記複数の発光素子とを電気的に接続するための配線を備え、前記配線は、前記内部領域に形成されている、としてもよい。
 また、本発明に係る発光装置の一態様において、さらに、前記複数の発光素子を静電保護する保護素子を備え、前記保護素子は、前記内部領域に配置されている、としてもよい。
 また、本発明に係る発光装置の一態様において、前記封止部材は、前記発光素子の発光波長を変換する波長変換材を含む、としてもよい。
 また、本発明に係る照明用光源の一態様は、上記いずれかの発光装置を備えることを特徴とする。
 また、本発明に係る照明装置の一態様は、上記いずれかの発光装置を備えることを特徴とする。
 また、本発明に係る照明装置の一態様において、さらに、前記封止部材から放出される光を透過するレンズ部と、前記電力供給部に接続されるコネクタ部を有するリード線とを備え、前記レンズ部には、前記コネクタ部を押さえる押さえ部が設けられている、としてもよい。
 本発明によれば、発光効率が低下することを抑制し、かつ、均一な輝度分布を得ることができる。
図1は、本発明の実施の形態1に係る発光装置の平面図である。 図2は、本発明の実施の形態1に係る発光装置(封止部材を形成する前)の平面図である。 図3は、本発明の実施の形態1の変形例に係る発光装置の平面図である。 図4は、本発明の実施の形態1に係る発光装置において、LEDを基板に実装するときの様子を説明するための図である。 図5(a)は、本発明の実施の形態1に係る発光装置における基板角部周辺を示す部分拡大斜視図であり、図5(b)は、図5(a)における基板角部周辺を示す部分拡大平面図である。 図6は、比較例の発光装置における基板角部周辺を示す部分拡大平面図である。 図7Aは、本発明の実施の形態1に係る発光装置を基台に固定したときの状態を示す平面図である。 図7Bは、本発明の実施の形態1に係る発光装置を基台に固定したときの状態を示す断面図(図7Aに示すA-A’における断面図)である。 図8は、本発明の実施の形態1に係る発光装置の電力供給部とリード線との他の接続方法を示す断面図である。 図9Aは、本発明の実施の形態1に係る発光装置において、電力供給部、第1貫通孔及び第2貫通孔のレイアウトを示す平面図である。 図9Bは、本発明の実施の形態1に係る発光装置において、電力供給部、第1貫通孔及び第2貫通孔の他のレイアウトを示す平面図である。 図10Aは、本発明の実施の形態1に係る発光装置において、六角形の基板を用いた場合の構成を示す平面図である。 図10Bは、本発明の実施の形態1に係る発光装置において、八角形の基板を用いた場合の構成を示す平面図である。 図11Aは、本発明の実施の形態2に係る照明装置の外観斜視図である。 図11Bは、図11AのA-A’線における本発明の実施の形態2に係る照明装置の断面図である。 図12(a)は、本発明の実施の形態2に係る照明装置におけるレンズ部の構成を示す図であり、図12(b)は、図12(a)のA-A’線における同レンズ部の断面図であり、図12(c)は、図12(a)のB-B’線における同レンズ部の断面図である。 図13は、本発明の実施の形態2に係る照明装置における変形例1のレンズ部の構成を示す図である。 図14は、本発明の実施の形態2に係る照明装置における変形例2のレンズ部の構成を示す図である。 図15は、本発明の実施の形態2に係る照明装置における変形例3のレンズ部の構成を示す図である。 図16は、本発明の実施の形態3に係る電球形ランプの断面図である。 図17Aは、本発明の実施の形態4に係るLEDランプの外観斜視図である。 図17Bは、本発明の実施の形態4に係るLEDランプの断面図である。 図18は、本発明の変形例1に係る第1の発光装置の平面図である。 図19は、本発明の変形例1に係る第2の発光装置の平面図である。 図20Aは、本発明の変形例2に係る第1の発光装置の平面図である。 図20Bは、本発明の変形例2に係る第2の発光装置の一部拡大図である。 図21は、本発明の変形例2に係る第2の発光装置の平面図である。 図22は、本発明の変形例2に係る第3の発光装置の平面図である。 図23は、本発明の変形例2に係る第3の発光装置の基板を母材から切り出す前の状態を示す図である。 図24は、本発明の変形例2に係る第4の発光装置の平面図である。
 以下、本発明の実施の形態に係る発光装置、照明用光源及び照明装置について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、同じ構成部材については同じ符号を付している。
 (実施の形態1)
 まず、本発明の実施の形態1に係る発光装置10の構成について、図1及び図2を用いて説明する。図1は、本発明の実施の形態1に係る発光装置の平面図であり、図2は、図1において、封止部材を形成する前における同発光装置の平面図である。
 発光装置10は、複数の発光素子を有する発光モジュールであって、所定の色(波長)の光を放出するように構成されている。本実施の形態における発光装置10は、LEDによって構成されたLEDモジュールであり、白色光を放出する。
 図1に示すように、発光装置10は、基板11と、基板11の主面上に実装された複数のLED12と、LED12を封止する封止部材13と、LED12に電力を給電する電力供給部14とを備える。発光装置10は、さらに、基板11上に所定形状でパターン形成された配線15及び配線パッド16と、LED12に接続されたワイヤ17と、LED12を静電保護する保護素子18とを備える。
 本実施の形態における発光装置10は、ベアチップであるLED12が基板11上に直接実装されたCOB構造である。
 基板11の主面上には、LED12が環状に配置されている。本実施の形態において、複数のLED12は、正方形の枠状(ロの字)となるように一列で配列されている。また、図1に示すように、基板11上のLED12は、2重の素子列となるように配列されている。2重の素子列は、外側の第1素子列12L1と内側の第2素子列12L2とからなる。第1素子列12L1及び第2素子列12L2の各々は、一列に並べられた複数のLED12の配列が正方形の環状となるように構成されている。
 封止部材13は、LED12を覆うようにしてLED12の配列に沿って環状に形成されている。本実施の形態において、複数のLED12は正方形の枠状となるように一列で配列されているので、封止部材13は、LED12の正方形の配列に沿うように線状に形成されている。また、LED12の素子列は環状で2重に配列されているので、封止部材13も環状で2重の封止ラインで形成されている。2重の封止ラインは、外側の第1封止ライン13L1と内側の第2封止ライン13L2とからなる。
 本実施の形態において、外側の第1封止ライン13L1は、第1素子列12L1における全てのLED12を一括封止するようにして途切れることなく連続的に形成されている。また、内側の第2封止ライン13L2は、第2素子列12L2における全てのLED12を一括封止するようにして途切れることなく連続的に形成されている。
 また、封止部材13には蛍光体が含まれているので、封止部材13が発光部となる。つまり、第1封止ライン13L1及び第2封止ライン13L2の各々は、環状の発光部となり、各封止ラインからは白色光が放出される。
 また、基板11における環状の封止部材13の内側の領域を内部領域とすると、電力供給部14は、内部領域に設けられている。すなわち、電力供給部14は、環状の発光部で囲まれる領域の内側に設けられている。
 本実施の形態では、第1素子列12L1及び第2素子列12L2(第1封止ライン13L1及び第2封止ライン13L2)が、複数の環状の発光部として設けられている。この場合、電力供給部14は、少なくとも外側の第1素子列12L1(第1封止ライン13L1)の内側の領域に設けられ、より好ましくは、内側の第2素子列12L2(第2封止ライン13L2)の内側の領域に設けられる。本実施の形態では、図1に示すように、電力供給部14は、内側の第2素子列12L2(第2封止ライン13L2)の内側の領域に設けられている。
 なお、本実施の形態において、LED12は、第1素子列12L1及び第2素子列12L2の2重の素子列に配列されるとともに、封止部材13は、第1封止ライン13L1及び第2封止ライン13L2の2重の封止ラインで形成されているが、これに限らない。
 例えば、図3に示すような発光装置10Aとすることもできる。図3は、本発明の実施の形態1の変形例に係る発光装置の平面図である。
 図3に示すように、LED12を1つの環状の素子列で配列するとともに、封止部材13を1つの環状の封止ラインで形成することもできる。図3において、LED12の素子列及び封止部材13の封止ラインは、それぞれ図1における第1素子列12L1及び第1封止ライン13L1に対応する。なお、図3は、第1素子列12L1及び第1封止ライン13L1を除いた以外は、図1と同じである。
 以下、本実施の形態における発光装置10の各構成要素について詳述する。なお、図3に示す発光装置10Aについても同様である。
 (基板)
 基板11は、LED12を実装するためのLED実装用基板である。本実施の形態における基板11は、配線15が形成された配線基板である。図1に示すように、基板11は、例えば、平面視形状(基板11の主面垂直方向から見たときの形状)が正方形のものを用いることができる。なお、基板11の平面視形状としては、正方形に限らず、長方形等の四角形、六角形もしくは八角形等の多角形、又は、円形等、他の形状のものを用いることもできる。
 基板11としては、セラミックスからなるセラミックス基板、樹脂からなる樹脂基板、又は、ガラス基板等の絶縁基板、並びに、金属板に絶縁膜が被覆されたメタルベース基板(金属基板)を用いることができる。
 セラミックス基板は、例えば、酸化アルミニウム(アルミナ)又は窒化アルミニウム等を用いて構成することができる。樹脂基板は、例えば、ガラスエポキシ基板、又は、ポリイミド等からなる可撓性を有するフレキシブル基板等がある。また、メタルベース基板は、例えば、アルミニウム合金基板、鉄合金基板又は銅合金基板等を用いて構成することができる。
 基板11としては、光反射率が高い(例えば光反射率が90%以上)白色基板を用いることが好ましい。白色基板を用いることにより、LED12の光を基板11の表面で反射させることができるので、発光装置10の光取り出し効率を向上させることができる。
 本実施の形態では、基板11としてセラミックス基板を用いている。セラミックス基板は、樹脂基板と比べて熱伝導率が高く、LED12の熱を効率良く放熱させることができる。また、セラミックス基板は経時劣化が小さく、耐熱性にも優れている。
 より具体的には、基板11として、アルミナ粒子を焼成させることによって構成された厚みが1mm程度の白色の多結晶アルミナ基板(多結晶セラミックス基板)を用いることができる。多結晶アルミナ基板は、原料となるアルミナ粒子と散乱体や焼結助剤(添加剤)とを混合したものにバインダを加えて加圧成形し、その後、焼成することにより作製することができる。なお、原料のアルミナ粒子は、焼成することによって粒成長して結晶化する。
 また、基板11には、第1貫通孔11aが設けられている。第1貫通孔11aは、電力供給部14に接続されるリード線(不図示)を通すための配線用開口部である。第1貫通孔11aは、封止部材13の内側の領域(内部領域)に設けられており、例えば、基板11の中央部に設けることができる。
 さらに、基板11には、第2貫通孔11bが設けられている。第2貫通孔11bは、基板11を基台に固定するための固定部材を通すための固定用開口部である。第2貫通孔11bは、封止部材13の内側の領域(内部領域)に設けられており、例えば、図1に示すように、基板11の3箇所に設けることができる。また、固定部材は、例えば、基板11を基台に締め付け固定するための締め付け部材(ねじ、ボルト-ナット等)等である。この場合、第2貫通孔11bは、ねじ止め用開口部である。
 本実施の形態において、第1貫通孔11a及び第2貫通孔11bは、いずれも第2封止ライン13L2の内側の領域に形成されている。第1貫通孔11a及び第2貫通孔11bは、例えば、セラミックス基板をレーザ加工することによって形成することができる。
 (LED)
 LED12は、発光素子の一例であって、所定の電力により発光する半導体発光素子である。基板11上の複数のLED12は、Vf特性が同じものを用いることができるが、個々のLED12のVfは多少ばらついていてもよく、直列接続されたLED12の素子列全体でのVf合計が所定のばらつきに収まればよい。また、各LED12は、いずれも単色の可視光を発するベアチップであり、本実施の形態では、通電されれば青色光を発する青色発光LEDチップを用いている。青色LEDチップとしては、例えばInGaN系の材料によって構成された、中心波長が440nm~470nmの窒化ガリウム系の半導体発光素子を用いることができる。
 上述のように、基板11上のLED12は、外側の第1素子列12L1と内側の第2素子列12L2とに分けて配列されている。
 図1に示すように、第1素子列12L1におけるLED12は、基板11の周縁部に沿って配列されている。具体的には、第1素子列12L1におけるLED12は、正方形の基板11の4辺の各辺近傍において各辺に沿って一列に配列されている。
 第2素子列12L2は、第1素子列12L1と相似形となるように第1素子列12L1に隣接して設けられている。具体的には、第2素子列12L2におけるLED12は、第1素子列12L1と並行するように配列されている。
 なお、本実施の形態において、基板11上には72個のLED12が実装されており、24直3並となるように接続されている。具体的には、外側の第1素子列12L1は、48個のLED12からなり、24直2並接続となるように構成されている。また、内側の第2素子列12L2は、24個のLED12からなり、直列接続となるように構成されている。
 ここで、図2に示すように、基板11の主面の領域(正方形の領域)を、等ピッチで配列された仮想の碁盤目に区分した場合、基板11上に実装するLED12の全てが、基板11の碁盤目の任意の交点に配置されている。碁盤目の交点は、直交する複数の仮想行方向線と複数の仮想列方向線との交点である。
 このようにLED12を仮想の碁盤目の交点に配置することで、全てのLED12と全てのワイヤ17を容易に実装することができる。具体的には、LED12のボンディング(ダイボンディング)を同一ピッチ送りにて行うことができ、碁盤目の交点においては作業をするかしないかの二者択一のみ行えばよく、1回の動作で全てのLED12のボンディングを行うことができる。また、ワイヤ17についても同様に、1回の動作で全てのワイヤボンディングを行うことができる。これにより、LED12のダイボンディングの工程とワイヤ17のワイヤボンディングの工程とを簡素化することができるので、製造コストを削減することができる。
 また、本実施の形態において、LED12の平面視形状(基板11の主面垂直方向から見たときの形状)は、長方形である。この場合、LED12は、LED12の長方形の長辺と当該LED12に近接する多角形の基板11の一辺とが略平行となるように配置することが好ましい。つまり、LED12は、当該LED12の長辺が近接する基板11の一辺に沿うように配列されていることが好ましい。例えば、基板11の平面視形状が正方形の場合、LED12の長方形の長辺と基板11の正方形の一辺とが平行となるように配置するとよい。
 このような姿勢でLED12を配置することによって、隣接するLED12の並び方向(封止部材13の塗布方向)に対して垂直な方向に、つまり、LED12の長辺側の方向に出射される光束が多くなるので、光取り出し効率を向上させることができる。
 また、各LED12は、p側電極(不図示)とn側電極(不図示)とを有しており、p側電極及びn側電極にはワイヤ17が接続されている。本実施の形態では、基板11の各辺において隣接するLED12同士はワイヤ17によって直接接続されている。すなわち、基板11の各辺におけるLED12は、chip-to-chipでワイヤボンディングされており、隣り合う2つのLED12において、一方のLED12のカソード電極と他方のLED12のアノード電極とがワイヤ17によって接続されている。
 ここで、LED12を実装する方法について、図4を用いて説明する。図4は、本発明の実施の形態1に係る発光装置において、LEDを基板に実装するときの様子を説明するための図である。なお、図4の基板11には、認識マーク19、第1貫通孔11a及び第2貫通孔11b以外の構成については図示していない。また、図4に示す碁盤目及びLEDと、図2に示す碁盤目及びLEDとは一致していない。
 図4に示すように、基板11には、LED12を実装する位置を認識するための複数の認識マーク19が形成されている。認識マーク19は、基板11の各辺に沿って、上記碁盤目の交点を構成する仮想行方向線及び仮想列方向線とに対応して一列で等ピッチで形成されている。認識マーク19は、配線15や配線パッド16と同時にパターン形成することができ、例えば、0.3mm程度の円形の金薄膜を5~6mm間隔で複数形成することで構成することができる。
 そして、LED12を基板11に実装する場合、撮像手段等によって認識マーク19を撮像して認識マーク19を認識することで、LED12の所定の実装位置を特定する。これにより、LED12の実装を容易に行うことができるので、製造コストを削減することができる。特に、本実施の形態のように、LED12をchip-to-chipでワイヤボンディングする場合、認識マーク19を用いることによって、ワイヤ17を打つ位置を素早く容易に認識することができる。
 なお、認識マーク19は、各LED12に対応して形成されていてもいし、複数のチップ(例えば3チップ)に1個の割合で形成されていてもよい。
 (封止部材)
 封止部材13(第1封止ライン13L1、第2封止ライン13L2)は、例えば透光性の樹脂材料によって構成することができるが、LED12の光の波長を所定の波長に変換する必要がある場合には、波長変換材料が混入される。本実施の形態における封止部材13は、波長変換材として蛍光体を含み、LED12が発する光の波長(色)を変換する波長変換部材である。このような封止部材13としては、例えば、蛍光体粒子を含有する絶縁性の樹脂材料(蛍光体含有樹脂)によって構成することができる。蛍光体粒子は、LED12が発する光によって励起されて所望の色(波長)の光を放出する。
 封止部材13を構成する樹脂材料としては、例えば、シリコーン樹脂を用いることができる。また、封止部材13には、光拡散材を分散させてもよい。なお、封止部材13は、必ずしも樹脂材料によって形成する必要はなく、フッ素系樹脂などの有機材のほか、低融点ガラスやゾルゲルガラス等の無機材によって形成することも可能である。
 封止部材13に含有させる蛍光体粒子としては、例えば、LED12が青色光を発光する青色発光LEDである場合、白色光を得るために、例えばYAG系の黄色蛍光体粒子を用いることができる。これにより、LED12が発した青色光の一部は、封止部材13に含まれる黄色蛍光体粒子によって黄色光に波長変換される。そして、黄色蛍光体粒子に吸収されなかった青色光と、黄色蛍光体粒子によって波長変換された黄色光とは、封止部材13中で拡散及び混合されることにより、封止部材13から白色光となって出射される。また、光拡散材としては、シリカなどの粒子が用いられる。
 本実施の形態における封止部材13は、シリコーン樹脂に所定の蛍光体粒子を分散させた蛍光体含有樹脂としており、ディスペンサーによって基板11の主面に塗布して硬化させることで形成することができる。
 より具体的には、基板11上の所定位置に対してディスペンサーの吐出ノズルを対向配置し、LED12の配列方向に沿って、吐出ノズルから封止部材材料(蛍光体含有樹脂)を吐出しながら吐出ノズルを基板11の所定の方向に移動させる。このとき、封止部材材料は、LED12とともにワイヤ17を覆うようにして吐出される。
 本実施の形態では、途中に切れ目のない環状の封止部材13を形成するので、封止部材材料の塗布は、一筆書きで正方形を描くように基板11のある箇所から元の箇所に戻るようにして1回の動作で行う。封止部材材料を塗布した後は、所定の方法によって封止部材材料を硬化させる。
 なお、塗布して形成された封止部材13の長手方向に垂直な断面における形状は、例えば略半円形である。
 また、保護素子18は、封止部材13(第3封止ライン13L3)によって封止されている。封止部材13(第3封止ライン13L3)は、保護素子18の配列に沿って形成することができ、本実施の形態では、直線状に形成されている。保護素子18を覆う封止部材13は、LED12を封止する封止部材13と同様の材料を用いて、同様の方法によって形成することができる。保護素子18を封止部材13で覆うことによって、保護素子18が劣化することを抑制することができる。
 なお、保護素子18を覆う封止部材13には蛍光体が含まれていなくてもよいが、保護素子18を封止する封止部材13とLED12を封止する封止部材13とを同じ材料とすることによって、保護素子18の封止とLED12の封止とを同じ工程で行うことができる。これにより、製造コストを削減することができる。
 (電力供給部)
 電力供給部14(給電端子)は、発光装置10の外部から所定の電力を受電する外部接続端子(電極端子)となるベースコネクタである。本実施の形態において、電力供給部14は、LED12を発光させるための直流電力を受電して、受電した直流電力を配線15及びワイヤ17を介して各LED12に供給する。
 本実施の形態における電力供給部14は、ソケット型に構成されており、樹脂製のソケットと、直流電力を受電するための複数の導電ピンとを有する。複数の導電ピンは、正電圧側の導電ピンと負電圧側の導電ピンとを有し、基板11上に形成された配線15と電気的に接続されている。
 電力供給部14のソケットに電力供給用のリード線のコネクタ部(ソケットコネクタ)が装着されることにより、電力供給部14に電力が供給される状態となる。
 なお、電力供給部14としては、ソケット型ではなく、金属電極とすることもできる。この場合、金属電極は、正電圧側の金属電極と負電圧側の金属電極とを形成すればよく、例えば、配線15と同時にパターン形成することができる。
 (配線)
 配線15は、第1素子列12L1及び第2素子列12L2における複数のLED12と電力供給部14とを電気的に接続するために形成される。すなわち、配線15は、LED12を発光させるための電流が流れる導電性配線であって、例えば金属配線とすることができる。配線15によって、発光装置10に給電された電力が各LED12に供給される。
 図2に示すように、配線15は、基板11上の複数のLED12を所定の電気的接続となるように所定形状で形成される。本実施の形態において、配線15は、72個のLED12が24直3並となるようにパターン形成されている。
 また、配線15は、保護素子18と電力供給部14とを電気的に接続するためにも形成されている。また、隣接する保護素子18間にも島状に配線15が形成されており、保護素子18と島状の配線15とがワイヤ17によって接続されている。
 配線15は、例えば、金属材料からなる金属膜をパターニングしたり、印刷したりすることによって形成することができる。配線15の金属材料としては、例えば、Au(金)、銀(Ag)又は銅(Cu)等を用いることができる。本実施の形態における配線15は、金を用いて構成されている。
 本実施の形態において、配線15は、封止部材13の内側の領域(内部領域)に形成されている。具体的には、配線15は、第2封止ライン13L2の内側の領域に形成されている。
 なお、封止部材13から露出する配線15については、ガラス材によるガラス膜(ガラスコート膜)又は樹脂材による樹脂被膜(樹脂コート膜)によって被覆することが好ましい。これにより、発光装置10の絶縁性を向上させたり、基板11の表面の反射率を向上させたりすることができる。
 (配線パッド)
 図1及び図2に示すように、配線パッド16は、複数のLED12及び配線15と電気的に接続されている。配線パッド16は、LED12の配列形状の角部(コーナー部)に形成されている。つまり、基板11の平面視における第1素子列12L1及び第2素子列12L2の配列形状が多角形である場合、配線パッド16はその多角形の角部に形成される。言い換えると、配線パッド16は、第1素子列12L1及び第2素子列12L2におけるLED12と同じ列をなすように配置されており、各角に配置された配線パッド16と各辺に対応するようにして配列された複数のLED12とによって、多角形が構成されている。例えば、環状の第1素子列12L1及び環状の第2素子列12L2の配列形状が正方形である場合、配線パッド16は、正方形の4つの角部に形成される。
 また、本実施の形態では、第1素子列12L1及び第2素子列12L2の配列形状が基板11の形状に合わせて正方形となっているので、配線パッド16は、基板11の角部に対応する位置に形成されている。つまり、基板11の平面視形状が正方形であるので、配線パッド16は、正方形の4つの角部に形成されている。
 そして、図5の(a)及び(b)に示すように、第1素子列12L1及び第2素子列12L2における角部を挟んで配列された2つのLED12は、配線パッド16を介してワイヤボンディングされている。本実施の形態では、基板11の角部を挟んで当該角部に最も近い2つのLEDと配線パッド16とがワイヤボンディングされている。
 具体的には、図5の(a)及び(b)に示すように、2つのLED12a及び12bが基板11(第1素子列12L1)の角部を介して折れ曲がるように配列されている場合、LED12aと配線パッド16とはワイヤ17aによって接続され、また、LED12bと配線パッド16とがワイヤ17bによって接続される。つまり、配線パッド16は、基板11(第1素子列12L1)の角部を挟んで配列された2つのLED12を接続するための接続用電極として機能する。
 このように構成することにより、封止部材13を容易に形成できるとともに、ワイヤ17の封止部材13からのはみ出しを抑制できる。
 つまり、図6に示す比較例のように、基板11(第1素子列12L1)の角部に配線パッド16を形成しない場合、当該角部の2つのLED12a及び12bをchip-to-chipでワイヤボンディングすると、LED12aとLED12bとを接続するワイヤ17cが斜め方向に配置されるとともに長くなる。
 この場合、封止部材13はワイヤを打つ方向に沿って形成されるので、封止部材13も斜め方向に形成されることになる。これにより、封止部材13を塗布するときに、当該角部において塗布方向(角度)の変更回数が多くなり(図6では2回)、封止部材13を塗布する工程が複雑化して、製造コストが大きくなる。また、ワイヤ17cが長くなると、封止部材13からワイヤ17cがはみ出す可能性があり、はみ出したワイヤ17cによって封止部材13からの光が吸収されたり反射したりして、発光装置10における輝度均一性が低下する。
 一方、図5の(a)及び(b)に示すように、基板11(第1素子列12L1)の角部に配線パッド16を形成することで、封止部材13を塗布するときに、当該角部において塗布方向(角度)の変更回数を少なくすることができる(図5では1回)。これにより、封止部材13を塗布する工程を簡素化することができるので、製造コストを削減することができる。また、配線パッド16を介してLED12aとLED12bとをワイヤ17a及び17bによって接続することにより、図6に示すワイヤ17cに比べてワイヤ17a及び17bの長さを短くすることができる。これにより、封止部材13からワイヤがはみ出すことを抑制することができるので、ワイヤのはみ出しによる輝度均一性の低下を抑制できる。さらに、基板11の角部前後における封止部材13の幅をそろえることができるので、色ムラを抑制することもできる。
 なお、第2素子列12L12についても同様に、角部に配線パッド16を形成することによって、封止部材13を容易に形成できるとともにワイヤ17の封止部材13からのはみ出しを抑制できる。
 (ワイヤ)
 ワイヤ17は、例えば金ワイヤ等の導電線である。上述のとおり、ワイヤ17は、基板11の各辺において隣接するLED12同士を直接接続する。また、上述のとおり、基板11(第1素子列12L1、第2素子列12L12)の角部において、ワイヤ17は、LED12と配線パッド16とに架設されている。ワイヤ17は、封止部材13から露出しないように封止部材13の中に埋め込まれていることが好ましい。
 また、本実施の形態では、LED12は24直3並となるように配列されていることから、内側の第2素子列12L2では、一部、隣接するLED12の間隔が長くなるように構成されている。この場合、ワイヤ17の長さも長くなり、図1及び図2では、2ピッチ分の長さとなっている。
 なお、ワイヤ17の長さが長くなりすぎると、ワイヤ17が封止部材13からはみ出したり、ワイヤ17が垂れてLED12の上部に接触したりする場合があるので、ワイヤ17の長さは長すぎないように構成することが好ましい。例えば、2ピッチ分の長さに抑えるとよい。
 また、ワイヤ17の長さが長い箇所には、隣接するLED12の間に島状の電極パッドを形成してもよい。これにより、ワイヤ17の長さを短くすることができるので、ワイヤ17が封止部材13からはみ出したり、ワイヤ17が垂れてLED12の上部に接触したりすることを抑制することができる。
 (保護素子)
 保護素子18は、逆耐圧が低いLED12が基板11上に生じる逆方向極性の静電気によって破壊されることを防止する。このため、保護素子18は、LED12とは逆極性で並列接続となるように配置される。
 保護素子18としては、例えばツェナーダイオード等を用いることができる。また、保護素子18は、基板11上に1つ又は複数個実装される。図1及び図2に示すように、本実施の形態では、保護素子18として5つのツェナーダイオードが実装されている。
 また、保護素子18は、封止部材13の内側の領域(内部領域)に配置されている。本実施の形態において、保護素子18は、第2封止ライン13L2の内側の領域に配置されている。
 以上のようにして、本実施の形態に係る発光装置10が構成される。
 以上、本実施の形態に係る発光装置10では、環状に一列で配置されたLED12を覆うように封止部材13が環状に形成され、LED12と電気的に接続された電力供給部14が環状の封止部材13の内側領域に設けられている。つまり、LED12と封止部材13とで構成される環状の発光部の内側の領域に電力供給部14が設けられている。
 このようにLED12を環状に一列で配置することによって、LED12の密集による放熱性の低下や発光効率の低下を抑制することができる。また、封止部材13は、環状に一列で配置されたLED12を一括封止して線状に形成されるので、連続したライン状の発光を得ることができる。しかも、電力供給部14が環状の封止部材13の内側領域に設けられているので、封止部材13の側方から基板11の外側に放出する光が電力供給部14の影響を受けることがない。つまり、封止部材13の側方から基板11の外側に放出する光が電力供給部14に吸収されて発光効率が低下したり電力供給部14に反射して輝度分布が不均一になったりすることを抑制することができる。
 したがって、本実施の形態によれば、発光効率の低下を抑制し、かつ、均一な輝度分布を有する発光装置を実現することができる。しかも、本実施の形態に係る発光装置10はCOB構造であるので、基板11の主面垂直方向(上方)だけではなく、基板11の主面水平方向(側方)にも光を放出することができる。これにより、広配光特性の発光装置を実現することができる。
 また、本実施の形態では、基板11に実装される複数のLED12が、基板11の周縁部に沿って配列されている。
 この構成により、複数のLED12を密集させずに基板11の周縁部に分散配置することができるので、発光装置10の放熱性及び発光効率を向上させることができる。また、LED12を基板11の周縁部に配置することで、LED12から基板11外部までの熱伝導経路を短くすることができる。これにより、LED12で発生する熱を効率良く基板11の外部に放熱することができるので、放熱性に優れた発光装置を実現できる。
 さらに、LED12を基板11の周縁部に沿って配列することで、封止部材13が基板11の周縁部に形成されることになる。これにより、発光部(LED12、封止部材13)の外側領域には発光部から放出される光を反射したり吸収したりする障害物が存在しないので、発光効率が低下することを一層抑制できるとともに、一層均一な輝度分布を有する発光装置を実現できる。
 また、本実施の形態において、封止部材13は、途切れることなく連続的に形成されている。
 この構成により、基板11の全周にわたって連続した均一なライン状の発光を得ることができる。これにより、さらに均一な輝度分布を有する発光装置を実現できる。
 また、本実施の形態では、電力供給部14に接続されるリード線を通すための第1貫通孔11aが、環状に形成された封止部材13の内側領域に設けられている。
 この構成により、電力供給部14にリード線を接続する場合、封止部材13の内側に形成された第1貫通孔11aを挿通させてリード線を電力供給部14に接続することができる。これにより、封止部材13から基板11の外側に放出される光がリード線の影響を受けることがない。つまり、発光部(LED12、封止部材13)の外側領域に、光の影となるリード線が存在しない。したがって、より均一な輝度分布を有する発光装置を実現できる。
 しかも、リード線を、封止部材13の内側領域の第1貫通孔11aから導出させることにより、リード線を封止部材13の外側領域に引き回す必要がなくなる。これにより、基板11の周縁部に電力供給部14を設けて当該電力供給部14にリード線を接続する場合と比べて、当該発光装置10を備える所定の装置をコンパクト化することができる。
 また、本実施の形態では、基板11を所定の基台に固定するための固定部材を通す第2貫通孔11bも、環状に形成された封止部材13の内側領域に設けられている。
 この構成により、封止部材13から基板11の外側に放出される光が当該固定部材の影響を受けることない。つまり、発光部(LED12、封止部材13)の外領領域に、光の影となる固定部材(遮光部材)が存在しない。したがって、より均一な輝度分布を有する発光装置を実現できる。
 しかも、第2貫通孔11bを環状の封止部材13の内部領域に形成することによって、上記固定部材を封止部材13の内側領域に設けることができる。これにより、固定部材を基板11の外側に配置する必要がなくなるので、当該発光装置10を備える所定の装置をよりコンパクト化できる。
 また、本実施の形態では、電力供給部14とLED12とを電気的に接続するための配線15も、環状に形成された封止部材13の内側領域に設けられている。
 この構成により、封止部材13から基板11の外側に放出される光が配線15によって吸収されたり反射したりすることを抑制することができる。したがって、発光効率の低下を一層抑制できるとともに、より均一な輝度分布を有する発光装置を実現できる。
 また、本実施の形態では、LED12を静電保護する保護素子18も、環状に形成された封止部材13の内側領域に設けられている。
 この構成により、封止部材13から基板11の外側に放出される光が保護素子18の影響を受けることがない。つまり、発光部(LED12、封止部材13)の外領領域に、光の影となる保護素子18が存在しない。したがって、より均一な輝度分布を有する発光装置を実現できる。
 ここで、発光装置10を所定の装置に組み込む場合について、図7A及び図7Bを用いて説明する。図7Aは、本発明の実施の形態1に係る発光装置を基台に固定したときの状態を示す平面図である。図7Bは、図7Aに示すA-A’における断面図である。
 例えば発光装置10をLEDランプ内に配置する場合、図7Bに示すように、発光装置10は金属製の基台(ヒートシンク)21の上に配置される。
 発光装置10の基板11は、ねじ22によって基台21に固定されている。具体的には、ねじ22を基板11の第2貫通孔11bに挿通し、基台21に設けられたねじ穴にねじ22をねじ込むことによって、基板11を基台21にねじ止め固定することができる。
 また、電力供給部14には、基台21の貫通孔21aと基板11の第1貫通孔11aを挿通させたリード線23が接続されている。
 リード線23は、発光装置10に電力を供給するための電力供給用のリード線であり、例えば、電力供給部14のソケットに装着されるコネクタ部(ソケットコネクタ)23aと、コネクタ部23aに接続される一対の導電線23bとからなる。
 コネクタ部23aは、電力供給部14のソケットと嵌合するように構成された略矩形状の樹脂成形部と、当該樹脂成形部に設けられた導電部とからなる。また、一対の導電線23bは、例えば金属芯線が樹脂被膜されたビニル線によって構成することができる。本実施の形態において、リード線23は直流電力を通すように構成されており、一対の導電線23bは、正電圧を供給する正電圧供給線と負電圧を供給する負電圧供給線とからなる。
 なお、リード線23はコネクタ部23aを有していなくてもよく、例えば、図8に示すように、一対のビニル線のみによって構成されたリード線23Aとすることもできる。この場合、図8に示すように、電力供給部14を1対の金属電極(金属膜)とし、先端部を露出させた一対のリード線23Aの金属芯線と一対の電力供給部14とをそれぞれはんだ接続することよって、電力供給部14とリード線23Aとを電気的に接続することができる。
 次に、発光装置10における電力供給部14と第1貫通孔11aと第2貫通孔11bとの好適な配置について、図9A及び図9Bを用いて説明する。図9Aは、本発明の実施の形態1に係る発光装置において、電力供給部、第1貫通孔及び第2貫通孔のレイアウトを示す平面図である。図9Bは、同発光装置において、電力供給部、第1貫通孔及び第2貫通孔の他のレイアウトを示す平面図である。なお、図9A及び図9Bでは、1重の封止部材13(封止ライン)を図示しているが、2重の封止部材13(封止ライン)でも同様である。
 図9A及び図9Bに示すように、基板11の平面視形状が四角形である場合、四角形の各辺の中点と四角形の中心とを結んでできる当該四角形における4つの領域の各々を「象限」として定義すると、図9A及び図9Bに示す基板11は、第1象限I、第2象限II、第3象限III及び第4象限IVの4つの象限に区分けされる。なお、図9A及び図9Bに示す基板11の平面視形状は正方形であるので、第1象限I、第2象限II、第3象限III及び第4象限IVの各象限は均等に区画されている。
 この場合、電力供給部14及び第2貫通孔11bは、異なる象限に設けられていることが好ましい。
 例えば、図7Aでは、電力供給部14が第1象限Iに設けられ、3つの第2貫通孔11bが、第2象限II、第3象限III及び第4象限IVのそれぞれに設けられている。また、第1貫通孔11aは、各象限に跨るようにして基板11の中央部に設けられている。
 このように構成することにより、電力供給部14を角部に配置することができるので、電力供給部14と第1貫通孔11aとの距離を稼ぐことができる。これにより、図7Bに示すように、第1貫通孔11aから導出されるリード線23を電力供給部14に接続する際、屈曲させたリード線23を容易に接続することができるとともに、リード線23を電力供給部14に接続した後において、屈曲によるリード線23の復元力を抑えることができる。この結果、屈曲させたリード線23の復元力によって電力供給部14とリード線23との接続部分への応力負荷を低減することができる。したがって、電力供給部14が基板11から外れたり、電力供給部14からリード線23が外れたり、リード線23においてコネクタ部23aと導電線23bとの接続部分が断線したりすることを抑制することができる。
 また、電力供給部14及び第2貫通孔11bを互いに異なる象限に設けることによって、電力供給部14及び第2貫通孔11bにおける基板11への負荷を分散させることもできる。
 また、図9Bでは、電力供給部14が第1象限Iに設けられ、2つの第2貫通孔11bが、第2象限II及び第4象限IVのそれぞれに設けられている。また、第1貫通孔11aは、第3象限IIIに設けられており、四角形の中心を挟んで電力供給部14が設けられた象限(第1象限I)と反対側の象限に設けられている。
 このような構成であっても、図9Aの場合と同様の効果が得られる。また、図9Bの構成では、図9Aの構成と比べて、電力供給部14と第1貫通孔11aとの距離をさらに長くすることができる。これにより、屈曲させたリード線23を一層容易に接続することができるとともに、屈曲によるリード線23の復元力を一層抑えることができる。これにより、電力供給部14とリード線23との接続部分への応力負荷を一層低減することができる。
 また、図10A及び図10Bに示すように、基板の平面視形状が六角形又は八角形の場合についても同様である。図10Aは、本発明の実施の形態1に係る発光装置において、六角形の基板を用いた場合の構成を示す平面図である。また、図10Bは、本発明の実施の形態1に係る発光装置において、八角形の基板を用いた場合の構成を示す平面図である。
 図10Aに示すように、基板11Aの平面視形状が六角形である場合、六角形の各辺の中点と六角形の中心とを結んでできる当該六角形における6つの領域の各々を「象限」として定義すると、図10Aに示す基板11Aは、第1象限I、第2象限II、第3象限III、第4象限IV、第5象限V及び第6象限VIの6つの象限に区分けされる。なお、図10Aに示す基板11Aの平面視形状は正六角形であるので、各象限は均等に区画されている。なお、図10Aでは、基板11Aの形状に合わせて封止部材13Aも六角形としている。
 また、図10Bに示すように、基板11Bの平面視形状が八角形である場合、八角形の各辺の中点と八角形の中心とを結んでできる当該八角形における8つの領域の各々を「象限」として定義すると、図10Bに示す基板11Bは、第1象限I、第2象限II、第3象限III、第4象限IV、第5象限V、第6象限VI、第7象限VII及び第8象限VIIIの8つの象限に区分けされる。なお、図10Bに示す基板11Bの平面視形状は正八角形であるので、各象限は均等に区画されている。なお、図10Bでは、基板11Bの形状に合わせて封止部材13Bも八角形としている。
 図10A及び図10Bの場合でも、電力供給部14及び第2貫通孔11bは、互いに異なる象限に設けられていることが好ましく、また、第1貫通孔11aは、六角形や八角形の多角形の中心、又は、六角形や八角形の多角形の中心を挟んで電力供給部14が設けられた象限と反対側の象限に設けられている。
 この構成により、図9A及び図9Bの場合と同様に、屈曲させたリード線23を容易に接続することができるとともに、屈曲によるリード線23の復元力を抑えることができる。これにより、電力供給部14とリード線23との接続部分への応力負荷を低減することができる。
 (実施の形態2)
 次に、本発明の実施の形態2に係る照明装置100について、図11A及び図11Bを用いて説明する。図11Aは、本発明の実施の形態2に係る照明装置の外観斜視図である。図11Bは、図11AのA-A’線における本発明の実施の形態2に係る照明装置の断面図である。
 本実施の形態に係る照明装置100は、例えば住宅等の天井に埋込配設されることにより下方(廊下や壁等)に光を照明するダウンライト等の埋込型の照明装置であって、実施の形態1の発光装置10を備える。
 図11A及び図11Bに示すように、照明装置100は、発光装置10と、本体部120と、レンズ部130とを備える。さらに、照明装置100は、電源装置140と、端子台150と、取付板160と、固定用ばね170とを備える。
 本体部120は、発光装置10を取り付けるための取付台であるとともに、発光装置10で発生する熱を放熱するヒートシンクである。本体部120は、金属材料を用いて構成することができ、例えばアルミダイカスト製とすることができる。
 本体部120の上部(天井側部分)には、上方に向かって突出する複数の放熱フィン121が設けられている。これにより、発光装置10で発生する熱を効率よく放熱させることができる。
 また、本体部120は、発光装置10を取り付け固定するための取付部122を有する。発光装置10は、取付部122の表面に載置される。取付部122にはねじ穴122aが設けられており、ねじ180によって発光装置10が取付部122に固定されている。
 レンズ部130は、透光性部材によって構成されており、発光装置10の封止部材13から放出される光を透過する。レンズ部130は、例えばPMMA(アクリル)やポリカーボネート等の樹脂材料又はガラス材料等の絶縁性を有する透明材料を用いて形成することができる。レンズ部130は、発光装置10を覆うように発光装置10の光出射側に設けられる。
 ここで、レンズ部130の構成については、図12を用いて説明する。図12(a)は、本発明の実施の形態2に係る照明装置におけるレンズ部の構成を示す図であり、図12(b)は、図12(a)のA-A’線における同レンズ部の断面図であり、図12(c)は、図12(a)のB-B’線における同レンズ部の断面図である。
 図12の(a)~(b)に示すように、レンズ部130は円盤状に構成されており、レンズ部130の外面形状は、所定のレンズ作用を有するように所定の曲線形状に加工されている。本実施の形態において、レンズ部130の外面形状は、断面視では、発光装置10の封止部材13に対応する位置において外方に向かって突出するように湾曲するように構成されており、かつ、平面視では、ドーナツ状に構成されている。
 レンズ部130を設けることによって、図12(b)に示すように、発光装置10の封止部材13から放出した光は、レンズ部130のレンズ作用によって所定の方向に集束・発散されて放出される。また、レンズ部130は、照明装置100のカバーとしても機能し、発光装置10を保護する。
 なお、輝度ムラを防止するためにレンズ部130に光拡散機能を持たせてもよい。例えば、レンズ部130の外面にシボ処理を施して表面に凹凸を形成したり、シリカ等の光拡散材を含ませた光拡散膜を形成したり、光拡散材をレンズ部130の内部に混合させたりすればよい。本実施の形態では、レンズ部130の表面全体にシボが打ってあり、光が漏れるように構成されている。
 また、レンズ部130における発光装置10側の内面には、外面に向かって窪むように構成された凹部が設けられている。図12の(a)及び(b)に示すように、凹部内には、レンズ部130の一部として、発光装置10の基板11に当接する第1凸部131と、発光装置10の電力供給部14に装着されたリード線23のコネクタ部23aを押さえる第2凸部132(押さえ部)とが設けられている。
 第1凸部131には、発光装置10の基板11の第2貫通孔11bに対応するように貫通孔131aが設けられている。これにより、レンズ部130の貫通孔131a、基板11の第2貫通孔11b及び取付部122のねじ穴122aにねじ180をねじ込むことによって、レンズ部130及び発光装置10を本体部120に固定することができる。
 また、レンズ部130を本体部120に固定することで、リード線23のコネクタ部23aが第2凸部132に押圧される。これにより、屈曲させたリード線23の復元力によって電力供給部14とリード線23との接続部分に応力負荷が生じていたとしても、第2凸部132の押圧によって相殺することができる。
 図11A及び図11Bに戻り、電源装置(電源回路)140は、商用電源(例えばAC100V)から電力を受電して発光装置10を発光させるための電力を生成する。また、端子台150は、電源装置140と発光装置10とを中継し、電源装置140からの電力を発光装置10に供給する。なお、取付板160には、電源装置140が取り付け固定される。
 また、本体部120の外周壁には固定用ばね(取付ばね)170が設けられている。固定用ばね170によって、本体部120が天井に取り付け固定される。固定用ばね170は、例えば、矩形板状のステンレス鋼板の長手方向の一端部をV字状に折り曲げることで構成されており、本体部120の周方向に沿って一定の間隔をあけて複数個(例えば3つ)設けられている。
 以上、本実施の形態に係る照明装置100によれば、発光効率の低下を抑制するとともに均一な輝度分布を有する発光装置10を備えるので、高発光効率で輝度ムラが抑制された照明装置を実現することができる。
 なお、本実施の形態において、レンズ部として、図13、図14及び図15に示す構成のものを用いることができる。図13は、本発明の実施の形態2に係る照明装置における変形例1のレンズ部の構成を示す図である。図14は、本発明の実施の形態2に係る照明装置における変形例2のレンズ部の構成を示す図である。図15は、本発明の実施の形態2に係る照明装置における変形例3のレンズ部の構成を示す図である。
 図13に示すレンズ部130Aは、図12に示すレンズ部130と異なり、レンズ部130Aの内面側には取付部122との接触部分が存在せず、発光装置10の封止部材13に対向するレンズ部130Aの内面が平面となっている。
 また、図14及び図15に示すレンズ部130B及び130Cは、全配光用のレンズであり、発光装置10の封止部材13に対向するレンズ部130の内面が反射面としても機能する。なお、図14に示すレンズ部130Bは平面視が円形であり、図15に示すレンズ部130Cは、平面視が四角形である。
 (実施の形態3)
 次に、本発明の実施の形態3に係る照明用光源について説明する。本実施の形態では、照明用光源の一例として、電球形LEDランプ(LED電球)について説明する。
 図16は、本発明の実施の形態3に係る電球形ランプの断面図である。
 図16に示すように、本実施の形態に係る電球形ランプ200は、電球形蛍光灯又は白熱電球の代替品となる電球形LEDランプであって、光源である発光装置(LEDモジュール)10と、発光装置10を覆うグローブ210と、発光装置10を搭載する基台220と、発光装置10を発光させるための回路ユニット230と、回路ユニット230を収容する回路ホルダ240と、回路ホルダ240を覆う筐体250と、回路ユニット230と電気的に接続された口金260とを備える。なお、電球形ランプ200は、グローブ210と筐体250と口金260とによって外囲器が構成されている。
 グローブ210は、発光装置10から放出される光をランプ外部に放射させるための半球状の透光性カバーである。グローブ210は、ガラス製のガラスバルブ、又は、アクリル(PMMA)やポリカーボネート(PC)等の樹脂バルブと用いることができる。
 基台220は、発光装置10を載置して固定するための光源取り付け部材である。基台220に配置された発光装置10は、例えばねじ270によって基台220に固定することができる。基台220は、筐体250の開口部に嵌め込まれた状態で固定される。基台220は、例えばアルミニウム等の金属材料によって構成された金属基台することができる。これにより、発光装置10で発生する熱を効率良く基台220に伝導させることができる。
 また、本実施の形態では、発光装置10の封止部材13の内部領域を覆うように樹脂カバー(カバー部材)280が設けられている。樹脂カバー280は、封止部材13の内部領域に存在する、電力供給部14、配線15及び保護素子18を保護する。また、樹脂カバー280の表面に反射機能を持たせることで封止部材13からの光を反射させることができるので、配光角の広い電球形ランプを実現することもできる。樹脂カバー280は、ねじ270によって基板11とともに基台220に固定される。
 回路ユニット230は、発光装置10のLED12を点灯(発光)させるために発光装置10に所定の電力を供給する点灯回路(電源回路)である。回路ユニット230は、回路基板と、当該回路基板に実装された複数の電子部品とを有する。回路ユニット230は、回路ホルダ240に固定されている。
 回路ホルダ240は、回路ユニット230を収納するための絶縁ケースであって、筐体250及び口金260内に収容されている。回路ホルダ240は、例えば、樹脂などの絶縁性材料で形成することができる。
 筐体250は、グローブ210と口金260との間に配置されている。本実施の形態における筐体250は、外郭部材を構成し、両端が開口されたケースである。筐体250は、例えばアルミニウム等の金属材料によって構成することができる。
 口金260は、二接点によって交流電力を受電するための受電部であり、例えば、照明器具のソケットに取り付けられる。この場合、照明用光源1が点灯された際に、口金260は、照明器具のソケットから電力を受ける。また、口金260で受電した電力は回路ユニット230の電力入力部に入力される。
 口金260は、略円筒状であって外周面が雄ネジとなっているシェル部と、シェル部に絶縁部を介して装着されたアイレット部とを備える。口金260の種類は、特に限定されるものではないが、例えばねじ込み型のエジソンタイプ(E型)の口金を用いることができ、E26口金やE17口金、あるいは、E16口金等が挙げられる。
 以上、本実施の形態に係る電球形ランプ200によれば、発光効率の低下を抑制するとともに均一な輝度分布を有する発光装置10を備えるので、高発光効率で輝度ムラが抑制された照明装置を実現することができる。また、発光装置10は広配光特性を有するので、配光角の広い電球形ランプを実現することができる。
 なお、本実施の形態では、樹脂カバー280を配置したが、樹脂カバー280は配置しなくてもよい。また、樹脂カバー280に替えて、実施の形態2におけるレンズ部130、130A、130B又は130Cを用いることもできる。これにより、所望の配光特性を有する電球形ランプを実現することができる。
 また、本実施の形態に係る電球形ランプ200を所定のソケットを有する照明器具に装着することで、照明装置を実現することができる。
 (実施の形態4)
 次に、本発明の実施の形態4に係る照明用光源について説明する。本実施の形態では、照明用光源の一例として、扁平型のLEDランプについて説明する。
 図17Aは、本発明の実施の形態4に係るLEDランプの外観斜視図である。図17Bは、本発明の実施の形態4に係るLEDランプの断面図である。
 図17A及び図17Bに示すように、本実施の形態に係るLEDランプ300は、全体形状が円盤状または扁平状のLEDランプであり、所定の規格の口金(例えばGH76p形の口金)を有する。
 LEDランプ300は、発光装置10と、照明器具(図示せず)に取り付けられる支持台310と、支持台310に接続された筐体320と、回路基板330と、反射鏡340と、透光性カバー350とを備えている。なお、本実施の形態では、発光装置10の封止部材13は円環状に形成されている。
 支持台310は、発光装置10が取り付けられる基台であり、例えばアルミニウム等の金属材料で構成することができる。また、支持台310は、照明器具に接続される部材である。具体的には、支持台310の上部には例えばGH76p形の口金構造が形成され、照明器具に取り付けられ固定される。
 筐体320は、LEDランプ300の光照射側を囲う平盤状で円筒形状の筐体である。筐体320の内方には、発光装置10、回路基板330及び反射鏡340が配置されている。筐体320は、例えばPBT(ポリブチレンテレフタレート)などの絶縁性を有する樹脂によって構成することができる。
 回路基板330には、発光装置10のLED12を発光させるための回路が設けられている。回路基板330は、円形状の開口が形成された円盤状(ドーナツ形状)の基板であり、筐体320の内方かつ反射鏡340の外方に配置されている。
 反射鏡340は、発光装置10の光出射側に配置されており、発光装置10から放出される光を反射して外部に出射させるように構成されている。反射鏡340は、絶縁性を有する白色の合成樹脂材料によって構成することができ、例えば、ポリカーボネートを用いることができる。なお、反射率を向上させるために、反射鏡340の内面に反射膜をコーティングしても構わない。
 透光性カバー350は、筐体320の内部に配置された部材を保護するために筐体320の開口部に配置された平板部材である。透光性カバー350は、発光装置10からの光を透過させるように、ポリカーボネートなどの光透過率の高い合成樹脂材料によって構成されている。なお、透光性カバー350の内面には、光拡散性を促すための塗料が塗布されていてもよい。
 以上、本実施の形態に係るLEDランプ300によれば、発光効率の低下を抑制するとともに均一な輝度分布を有する発光装置10を備えるので、高発光効率で輝度ムラが抑制された照明装置を実現することができる。
 (変形例等)
 以上、本発明に係る発光装置、照明用光源及び照明装置について、実施の形態に基づいて説明したが、本発明は、これらの実施の形態に限定されるものではない。
 (変形例1)
 例えば、上記の実施の形態において、発光装置10及び10Aにおける封止部材13は、途切れることなく連続的に形成したが、これに限らない。
 具体的には、図18に示す発光装置10Bのように、基板11の各辺毎に直線状の封止部材13を形成することで、全体として環状の封止ラインを構成してもよい。つまり、基板11の各辺に沿って断続的に複数本の直線状の封止部材13を形成することで、環状の封止ラインを形成しても構わない。
 あるいは、図19に示す発光装置10Cのように、基板11の全周に沿って形成された環状の封止部材13の一部が途切れるようにして環状の封止ラインを形成してもよい。
 このように、環状の封止部材とは、封止部材の一部が途切れていたとしても、途切れた部分の封止部材をその形状に沿って延長することにより環状となるような形態も含まれ、少なくともLEDの発光時に封止部材13から放出する光が環状の連続光となればよい。
 (変形例2)
 また、図20Aに示す発光装置10Dのように、多角形の少なくとも一辺の一部を切り欠いた切り欠き部11cを有する基板11Dを用いてもよい。切り欠き部11cは、多角形である基板11Dの少なくとも一辺の側面の一部を基板中央部に向かって後退するように形成した凹部である。また、切り欠き部11cは、基板11Dの一方の主面から他方の主面を貫通するように切り欠かれている。
 本変形例において、基板11Dの主面垂直方向から見たときの当該基板11Dの形状は、八角形であり、切り欠き部11cは、八角形の一辺の一部を切り欠くように設けられている。なお、基板11Dの形状に合わせて、LED(不図示)を八角形の枠状に配列するとともに封止部材13を八角形の枠状に形成している。
 切り欠き部11cは、電力供給部14(ベースコネクタ)に接続されるリード線(不図示)を通すための配線用開口部であり、切り欠き部11cには当該リード線が挿通される。リード線としては、図7A及び図7Bに示すリード線23を用いることができる。リード線は、基板11Dの主面垂直方向からではなく、切り欠き形状に沿って基板11Dの側方から基板11Dの内部に向かって切り欠き部11cに挿入することができる。
 これにより、リード線の端部に電力供給部14との接続部としてコネクタ端子(ソケットコネクタ)が設けられている場合であっても、コネクタ端子の大きさによらず、容易にリード線を切り欠き部11cに挿入することができる。つまり、切り欠き部11cにはリード線のコネクタ端子を通す必要がないので、切り欠き部11cの切り欠き幅はリード線の線幅程度に抑えることができる。したがって、基板11Dの貫通部分(非有効面積)としては、ねじ止め用の第2貫通孔11b及び配線用の切り欠き部11cが存在するが、これらの貫通部分を最小面積に抑えることができるので、基板11Dの有効面積を可能な限り大きく確保できる。
 また、基板11Dに切り欠き部11cが設けられている場合、環状の封止部材13は、切り欠き部11cにおいて途切れることになるが、図20Bに示すように、途切れた封止部材13の端部からは基板水平方向(横方向)にも光が出射する。これにより、切り欠き部11cにおいて光が途切れることなく、発光装置10Dからは環状の連続光が放出される。特に、図20Bに示すように、切り欠き部11cを介して、途切れた封止部材13の端部同士を向かい合わせることによって、光が途切れていない連続光を容易に得ることができる。
 さらに、基板11Dとしては、白色セラミック基板を用いるとよい。これにより、途切れた封止部材13の端部から出射した光は、切り欠き部11cの内面で反射しやすくなる。したがって、容易に連続光を得ることができる。
 なお、本変形例において、ねじ止め用の第2貫通孔11bの個数は1つに限らない。例えば、図21に示す発光装置10Eのように、第2貫通孔11bは、複数個(例えば2個)設けてもよい。
 また、同図に示すように、電力供給部14と切り欠き部11cとの距離を稼ぐために、電力供給部14の位置を切り欠き部11cから遠ざけてもよい。電力供給部14に接続されたリード線は切り欠き部11cから導出する箇所で屈曲することになるが、電力供給部14を切り欠き部11cから遠ざけることによって、屈曲による電力供給部14とリード線との接続部分への応力負荷を軽減できる。
 したがって、電力供給部14が基板11から外れたり、電力供給部14からリード線が外れたり、リード線の一部が断線したりすることを抑制できる。
 また、図22に示す発光装置10Fのように、ねじ止め用の第2貫通孔11bFを長尺状に形成してもよい。具体的には、第2貫通孔11bFを長円形(長孔)にしている。これにより、発光装置10Fを設置する基台に凸部を設けて、当該凸部を第2貫通孔11bFに嵌合させることによって、発光装置10Fの位置決めと回転防止とを容易に実現できる。あるいは、発光装置10Fの前方にレンズを配置する場合、レンズに設けた取り付け用の凸部を第2貫通孔11bFに嵌合させることによって、レンズの位置決めと回転防止とを容易に実現できる。
 また、本変形例における八角形の基板11Dは、例えば、母材となる基板(マザー基板)を複数に分割することによって作製される。具体的に、八角形の基板11Dは、図23に示すように、レーザカットによってマザー基板から切り出すことによって作製することができる。なお、図23において、ハッチングで示される領域は、基板11Dを切り出した後に捨てる部分(切り落とす部分)である。
 基板11Dをマザー基板から切り出す際、切り欠き部11c及び第2貫通孔11bFもレーザカットによって形成することができる。なお、マザー基板をレーザカットする際、所定のカット位置を越えてカット(オーバーカット)されてしまうことも多いので、切り欠き部11cは、図23に示すように、切り落とす部分に跨がるように形成するとよい。例えば、切り欠き部11cを多角形の角に形成すると、隣りの基板11Dまでもカットしてしまうおそれがある。したがって、切り欠き部11cは、多角形の角ではなく、多角形の辺に形成するとよい。
 なお、基板11Dを八角形等の多角形とすることにより、円形とする場合よりも、マザー基板の捨てる部分を少なくすることができる。
 また、本変形例において、基板11Dの八角形は、向かい合う2つの辺は同じ長さ且つ平行であり、かつ、隣り合う2つの辺の長さが異なっている。つまり、基板11Dは、正八角形ではない。これにより、基板11Dを正八角形とする場合と比べて、マザー基板の捨てる部分を少なくすることができる。
 なお、八角形基板としては、図24の発光装置10Gにおける基板11Dのように、長尺状の八角形基板としてもよい。
 (その他の変形例)
 以上、本発明に係る発光装置、照明用光源及び照明装置について、実施の形態及び変形例に基づいて説明したが、本発明は、これらの実施の形態及び変形例に限定されるものではない。
 例えば、上記の実施の形態及び変形例において、基板の形状と封止部材の形状とを合わせているが、これに限らない。例えば、基板の形状が正方形の場合は、封止部材の形状を正方形の枠状とし(図1)、基板の形状が六角形の場合は、封止部材の形状を六角形の枠状とし(図10A)、基板の形状が八角形の場合は、封止部材の形状を八角形の枠状としている(図10B)が、これに限らない。つまり、封止部材(封止ライン)及びLED(素子列)は、基板の各辺と平行となるように設けられているが、基板の平面視形状とは無関係で、LEDの配列形状及び封止部材の形状を決めてもよい。例えば、平面視形状が多角形の基板に対して、LEDを円環状に配列するとともに封止部材を円環状に形成してもよいし、逆に、平面視形状が円形の基板に対して、多角形の枠状にLED12を配列するとともに多角形の枠状に封止部材13を形成してもよい。
 また、上記の実施の形態及び変形例において、発光装置は、青色LEDチップと黄色蛍光体とによって白色光を放出するように構成したが、これに限らない。例えば、演色性を高めるために、黄色蛍光体に加えて、さらに赤色蛍光体や緑色蛍光体を混ぜても構わない。また、黄色蛍光体を用いずに、赤色蛍光体及び緑色蛍光体を含有する蛍光体含有樹脂を用いて、これと青色LEDチップとを組み合わせることによりに白色光を放出するように構成することもできる。
 また、上記の実施の形態及び変形例において、LEDチップは、青色以外の色を発光するLEDチップを用いても構わない。例えば、紫外線発光のLEDチップを用いる場合、蛍光体(蛍光体粒子)としては、三原色(赤色、緑色、青色)に発光する各色蛍光体を組み合わせたものを用いることができる。さらに、蛍光体以外の波長変換材を用いてもよく、例えば、波長変換材として、半導体、金属錯体、有機染料、顔料など、ある波長の光を吸収し、吸収した光とは異なる波長の光を発する物質を含んでいる材料を用いてもよい。
 また、上記の実施の形態及び変形例において、発光素子としてLEDを例示したが、半導体レーザ等の半導体発光素子、有機EL(Electro Luminescence)又は無機EL等の固体発光素子を用いてもよい。
 その他、各実施の形態及び変形例に対して当業者が思いつく各種変形を施して得られる形態、又は、本発明の趣旨を逸脱しない範囲で各実施の形態及び変形例における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 本発明は、発光素子有する発光装置、並びに、当該発光装置を備えるランプ等の照明用光源及び照明装置等において広く利用することができる。
 10、10A、10B、10C、10D、10E、10F、10G 発光装置
 11、11A、11B、11D 基板
 11a 第1貫通孔
 11b、11bF 第2貫通孔
 11c 切り欠き部
 12、12a、12b LED
 12L1 第1素子列
 12L2 第2素子列
 13、13A、13B 封止部材
 13L1 第1封止ライン
 13L2 第2封止ライン
 13L3 第3封止ライン
 14 電力供給部
 15 配線
 16 配線パッド
 17、17a、17b、17c ワイヤ
 18 保護素子
 19 認識マーク
 21 基台
 21a、131a 貫通孔
 22、180 ねじ
 23、23A リード線
 23a コネクタ部
 23b 導電線
 100 照明装置
 120 本体部
 121 放熱フィン
 122 取付部
 122a ねじ穴
 130、130A、130B、130C レンズ部
 131 第1凸部
 132 第2凸部
 140 電源装置
 150 端子台
 160 取付板
 170 固定用ばね
 200 電球形ランプ
 210 グローブ
 220 基台
 230 回路ユニット
 240 回路ホルダ
 250 筐体
 260 口金
 270 ねじ
 280 樹脂カバー
 300 LEDランプ
 310 支持台
 320 筐体
 330 回路基板
 340 反射鏡
 350 透光性カバー

Claims (20)

  1.  基板と、
     前記基板の主面上に、環状に一列で配置された複数の発光素子と、
     前記複数の発光素子の配列に沿って環状に形成され、前記複数の発光素子を封止する封止部材と、
     前記基板の主面上に設けられ、前記複数の発光素子と電気的に接続された電力供給部とを備え、
     前記電力供給部は、環状の前記封止部材の内側の領域である内部領域に設けられている
     発光装置。
  2.  前記複数の発光素子は、前記基板の周縁部に沿って配列されている
     請求項1に記載の発光装置。
  3.  前記基板は、前記電力供給部に接続されるリード線を通すための第1貫通孔を有し、
     前記第1貫通孔は、前記内部領域に設けられている
     請求項1又は2に記載の発光装置。
  4.  前記封止部材は、途切れることなく連続的に形成されている
     請求項1~3のいずれか1項に記載の発光装置。
  5.  前記基板の主面垂直方向から見たときの前記基板の形状は、多角形であり、
     前記基板は、前記多角形の少なくとも一辺の一部を切り欠いた切り欠き部を有し、
     前記封止部材は、前記切り欠き部において途切れている
     請求項1又は2に記載の発光装置。
  6.  前記切り欠き部には、前記電力供給部に接続されるリード線が挿通される
     請求項5に記載の発光装置。
  7.  前記基板の主面垂直方向から見たときの前記基板の形状は、多角形であり、
     前記基板の主面垂直方向から見たときの前記発光素子の形状は、長方形であり、
     前記長方形の長辺と前記多角形の一辺とは略平行である
     請求項1~4のいずれか1項に記載の発光装置。
  8.  前記基板の主面垂直方向から見たときの前記基板の形状は、八角形であり、
     前記八角形は、向かい合う2つの辺は同じ長さ且つ平行であり、かつ、隣り合う2つの辺の長さが異なっている
     請求項1~7のいずれか1項に記載の発光装置。
  9.  さらに、前記複数の発光素子と電気的に接続された配線パッドを備え、
     前記基板の主面垂直方向から見たときの前記複数の発光素子の配列形状は、多角形であり、
     前記配線パッドは、前記多角形の角部に設けられ、
     前記角部を挟んで配列された2つの前記発光素子は、前記配線パッドを介してワイヤボンディングされている
     請求項1~8のいずれか1項に記載の発光装置。
  10.  さらに、前記基板は、当該基板を基台に固定するための固定部材を通す第2貫通孔を有し、
     前記第2貫通孔は、前記内部領域に設けられている
     請求項1に記載の発光装置。
  11.  前記基板の主面垂直方向から見たときの前記基板の形状は、四角形、六角形又は八角形の多角形であり、
     前記多角形の各辺の中点と前記多角形の中心とを結んでできる前記多角形における複数の領域の各々を象限とすると、
     前記電力供給部及び前記第2貫通孔は、異なる前記象限に設けられている
     請求項10に記載の発光装置。
  12.  前記第1貫通孔は、前記多角形の中心、又は、前記多角形の中心を挟んで前記電力供給部が設けられた象限と反対側の象限に設けられている
     請求項11に記載の発光装置。
  13.  前記複数の発光素子の全てが、前記基板上に等ピッチで配列された仮想の碁盤目の任意の交点に配置されている
     請求項1~12のいずれか1項に記載の発光装置。
  14.  さらに、前記発光素子を実装する位置を認識するための認識マークが前記基板に形成されている
     請求項1~13のいずれか1項に記載の発光装置。
  15.  さらに、前記基板にパターン形成され、前記電力供給部と前記複数の発光素子とを電気的に接続するための配線を備え、
     前記配線は、前記内部領域に形成されている
     請求項1~14のいずれか1項に記載の発光装置。
  16.  さらに、前記複数の発光素子を静電保護する保護素子を備え、
     前記保護素子は、前記内部領域に配置されている
     請求項1~15のいずれか1項に記載の発光装置。
  17.  前記封止部材は、前記発光素子の発光波長を変換する波長変換材を含む
     請求項1~16のいずれか1項に記載の発光装置。
  18.  請求項1~17のいずれか1項に記載の発光装置を備える
     照明用光源。
  19.  請求項1~17のいずれか1項に記載の発光装置を備える
     照明装置。
  20.  さらに、前記封止部材から放出される光を透過するレンズ部と、前記電力供給部に接続されるコネクタ部を有するリード線とを備え、
     前記レンズ部には、前記コネクタ部を押さえる押さえ部が設けられている
     請求項19に記載の照明装置。
     
PCT/JP2013/006047 2012-12-13 2013-10-10 発光装置、照明用光源及び照明装置 WO2014091655A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014551839A JP5999391B2 (ja) 2012-12-13 2013-10-10 発光装置、照明用光源及び照明装置
US14/650,615 US9689537B2 (en) 2012-12-13 2013-10-10 Light-emitting device, illumination light source, and illumination device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012272301 2012-12-13
JP2012-272301 2012-12-13

Publications (1)

Publication Number Publication Date
WO2014091655A1 true WO2014091655A1 (ja) 2014-06-19

Family

ID=50933968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006047 WO2014091655A1 (ja) 2012-12-13 2013-10-10 発光装置、照明用光源及び照明装置

Country Status (3)

Country Link
US (1) US9689537B2 (ja)
JP (1) JP5999391B2 (ja)
WO (1) WO2014091655A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2984399B1 (en) * 2014-03-18 2016-07-27 Philips Lighting Holding B.V. Lighting device comprising a ring-shaped light transmitting element
JP6225812B2 (ja) * 2014-04-18 2017-11-08 日亜化学工業株式会社 発光装置
US9633883B2 (en) * 2015-03-20 2017-04-25 Rohinni, LLC Apparatus for transfer of semiconductor devices
CN107431117A (zh) * 2015-04-02 2017-12-01 夏普株式会社 发光装置
CN204829757U (zh) * 2015-05-08 2015-12-02 深圳市莱福德光电有限公司 一种led电源外壳、led电源及照明装置
JP6459949B2 (ja) 2015-12-21 2019-01-30 日亜化学工業株式会社 発光装置
TWI603507B (zh) * 2016-03-11 2017-10-21 柏友照明科技股份有限公司 混光式多晶片封裝結構
US10141215B2 (en) 2016-11-03 2018-11-27 Rohinni, LLC Compliant needle for direct transfer of semiconductor devices
US10504767B2 (en) 2016-11-23 2019-12-10 Rohinni, LLC Direct transfer apparatus for a pattern array of semiconductor device die
US10471545B2 (en) 2016-11-23 2019-11-12 Rohinni, LLC Top-side laser for direct transfer of semiconductor devices
US10062588B2 (en) 2017-01-18 2018-08-28 Rohinni, LLC Flexible support substrate for transfer of semiconductor devices
US10415811B2 (en) * 2017-08-02 2019-09-17 ShineOn Holding Incorporation Compact LED light engine
EP3537041A1 (en) 2018-03-08 2019-09-11 Lumileds Holding B.V. Lighting device comprising connection element with spring section
US10410905B1 (en) 2018-05-12 2019-09-10 Rohinni, LLC Method and apparatus for direct transfer of multiple semiconductor devices
JP7275493B2 (ja) * 2018-08-07 2023-05-18 富士電機株式会社 半導体装置
US11094571B2 (en) 2018-09-28 2021-08-17 Rohinni, LLC Apparatus to increase transferspeed of semiconductor devices with micro-adjustment
US10900618B2 (en) * 2019-01-22 2021-01-26 Nichia Corporation Light-emitting device holder and light source device
EP4165345A1 (en) * 2020-06-11 2023-04-19 Signify Holding B.V. Lamp or luminaire comprising a led module

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242574A (ja) * 1997-02-25 1998-09-11 Hitachi Ltd 半導体光素子
JP2002299694A (ja) * 2001-03-29 2002-10-11 Mitsubishi Electric Lighting Corp 照明用led光源デバイス及び照明器具
JP2003059330A (ja) * 2001-08-16 2003-02-28 Matsushita Electric Works Ltd Led照明器具
JP2008124008A (ja) * 2006-10-18 2008-05-29 Nobuichi Tsubota Ledユニット、ledユニットの製造方法、及びledユニットを用いた天井用照明器具
WO2009102003A1 (ja) * 2008-02-14 2009-08-20 Toshiba Lighting & Technology Corporation 発光モジュール及び照明装置
JP2011108744A (ja) * 2009-11-13 2011-06-02 Sharp Corp 発光装置およびその製造方法
JP2011238802A (ja) * 2010-05-11 2011-11-24 Panasonic Corp 発光モジュール及びこれを備えた照明装置
JP2012190709A (ja) * 2011-03-11 2012-10-04 Panasonic Corp ランプ及び照明装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4482706B2 (ja) 2005-04-08 2010-06-16 東芝ライテック株式会社 電球型ランプ
US7758223B2 (en) 2005-04-08 2010-07-20 Toshiba Lighting & Technology Corporation Lamp having outer shell to radiate heat of light source
CN100539219C (zh) * 2005-04-28 2009-09-09 皇家飞利浦电子股份有限公司 包括设置在凹部中的led的光源
JP5142620B2 (ja) 2007-08-06 2013-02-13 シャープ株式会社 照明装置
WO2011108053A1 (ja) 2010-03-01 2011-09-09 パナソニック株式会社 Ledランプおよびled照明装置
JP4932064B2 (ja) 2010-03-11 2012-05-16 パナソニック株式会社 発光モジュール、光源装置、液晶表示装置および発光モジュールの製造方法
CN102308143A (zh) * 2010-04-30 2012-01-04 松下电器产业株式会社 灯以及照明装置
JP5079932B2 (ja) * 2010-05-13 2012-11-21 パナソニック株式会社 実装用基板及びその製造方法、発光モジュール並びに照明装置
US20130077285A1 (en) * 2010-09-29 2013-03-28 Toshiaki Isogai Lamp
JP5842440B2 (ja) 2011-01-11 2016-01-13 東芝ライテック株式会社 照明器具
JP5705612B2 (ja) * 2011-03-25 2015-04-22 シャープ株式会社 照明装置
JP5828079B2 (ja) 2011-08-30 2015-12-02 パナソニックIpマネジメント株式会社 照明装置及び照明システム
TWM463801U (zh) * 2013-06-11 2013-10-21 Nan Ya Photonics Inc 發光二極體燈泡(五)

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242574A (ja) * 1997-02-25 1998-09-11 Hitachi Ltd 半導体光素子
JP2002299694A (ja) * 2001-03-29 2002-10-11 Mitsubishi Electric Lighting Corp 照明用led光源デバイス及び照明器具
JP2003059330A (ja) * 2001-08-16 2003-02-28 Matsushita Electric Works Ltd Led照明器具
JP2008124008A (ja) * 2006-10-18 2008-05-29 Nobuichi Tsubota Ledユニット、ledユニットの製造方法、及びledユニットを用いた天井用照明器具
WO2009102003A1 (ja) * 2008-02-14 2009-08-20 Toshiba Lighting & Technology Corporation 発光モジュール及び照明装置
JP2011108744A (ja) * 2009-11-13 2011-06-02 Sharp Corp 発光装置およびその製造方法
JP2011238802A (ja) * 2010-05-11 2011-11-24 Panasonic Corp 発光モジュール及びこれを備えた照明装置
JP2012190709A (ja) * 2011-03-11 2012-10-04 Panasonic Corp ランプ及び照明装置

Also Published As

Publication number Publication date
JP5999391B2 (ja) 2016-09-28
US20150308632A1 (en) 2015-10-29
JPWO2014091655A1 (ja) 2017-01-05
US9689537B2 (en) 2017-06-27

Similar Documents

Publication Publication Date Title
JP5999391B2 (ja) 発光装置、照明用光源及び照明装置
JP5459623B2 (ja) 照明装置
JP5406347B2 (ja) ランプ
JP6191959B2 (ja) 発光装置、照明用光源及び照明装置
JP5899449B2 (ja) 照明用光源及び照明装置
WO2012011279A1 (ja) 電球形ランプ
JP6206795B2 (ja) 発光モジュール及び照明装置
JP2013219340A (ja) 発光装置、並びにそれを用いた照明装置及び照明器具
JP5545547B2 (ja) 光源体および照明器具
US9746145B2 (en) Light-emitting device with non-successive placement of light-emitting elements of one color, illumination light source having the same, and illumination device having the same
TWM437919U (en) Light emission device
JP2014007342A (ja) 発光モジュール及び照明装置
JP6277510B2 (ja) 発光モジュール、照明装置および照明器具
US20190139948A1 (en) Led lighting apparatus
US9443832B2 (en) Light emitting device, light source for illumination, and illumination apparatus
JP2015082550A (ja) 発光モジュール、照明装置および照明器具
JP2012243643A (ja) 電球形ランプ及び照明装置
JP5320627B2 (ja) 口金付ランプおよび照明器具
JP5838309B2 (ja) 発光装置、照明用光源、および照明装置
JP2014072149A (ja) 照明用光源及び照明装置
JP2018121032A (ja) 発光装置及び照明装置
JP2016058650A (ja) 発光装置、照明用光源、及び照明装置
JP5066304B1 (ja) ランプ
CN211399363U (zh) 照明装置
JP6945174B2 (ja) 発光装置及び照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862261

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551839

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14650615

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13862261

Country of ref document: EP

Kind code of ref document: A1