WO2014068896A1 - 車載用電池システム - Google Patents

車載用電池システム Download PDF

Info

Publication number
WO2014068896A1
WO2014068896A1 PCT/JP2013/006234 JP2013006234W WO2014068896A1 WO 2014068896 A1 WO2014068896 A1 WO 2014068896A1 JP 2013006234 W JP2013006234 W JP 2013006234W WO 2014068896 A1 WO2014068896 A1 WO 2014068896A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
storage module
vehicle
power
battery
Prior art date
Application number
PCT/JP2013/006234
Other languages
English (en)
French (fr)
Inventor
大隅 信幸
中島 薫
昭伸 常定
坂田 英樹
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2014544249A priority Critical patent/JP6297496B2/ja
Priority to US14/435,444 priority patent/US9260068B2/en
Publication of WO2014068896A1 publication Critical patent/WO2014068896A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/04Arrangement of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/06Arrangement in connection with cooling of propulsion units with air cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an in-vehicle battery system.
  • a vehicle using an internal combustion engine as a drive source is equipped with a lead storage battery for supplying electric power to various electric loads such as a starter motor.
  • Lead storage batteries are less expensive than high performance, high energy storage batteries such as nickel storage batteries and lithium ion storage batteries, but have low durability against frequent charging and discharging.
  • the lead storage battery is frequently discharged, and there is a concern about early deterioration.
  • the alternator is generated and charged by the regenerative energy of the vehicle, the lead storage battery is frequently charged, so that early deterioration is further concerned. In response to these concerns, simply replacing the lead-acid battery with a high-performance battery results in a significant cost increase.
  • a generator such as an alternator, a lead storage battery capable of charging the power generated by the generator, and electrically connected to the lead storage battery in parallel to be able to charge the power generated by the generator, and
  • An in-vehicle battery device including a second storage battery having a higher output density or energy density than a lead storage battery is known (see Patent Document 1).
  • the 2nd storage battery which is a high performance storage battery in addition to a lead storage battery, coexistence with suppression of deterioration of a lead storage battery and cost reduction can be aimed at. That is, for example, power supply to an electric load or regenerative charging during an idle stop is performed preferentially by a high-performance storage battery, so that deterioration of the lead storage battery can be reduced.
  • power supply required for a long time such as when a vehicle is parked, is preferentially implemented by an inexpensive lead storage battery, so that the capacity of the high performance storage battery can be reduced and the cost increase can be suppressed. .
  • the present inventors have found that there is room for improvement in the conventional in-vehicle battery system including a lead storage battery and a power storage unit as an auxiliary power source in order to improve the charge / discharge efficiency of the power storage unit. I found.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a technique for improving the charge / discharge efficiency of a power storage unit in an in-vehicle battery system.
  • An aspect of the present invention is an in-vehicle battery system.
  • the vehicle battery system includes a first power storage module including a lead storage battery, and a second power storage module including a power storage unit having an energy density higher than that of the lead storage battery.
  • the lead storage battery and the power storage unit are electrically connected in parallel to a power generation unit that converts regenerative energy into electric power.
  • the first power storage module and the second power storage module are provided in an engine room of a vehicle.
  • the second power storage module is disposed on a side farther from the engine than the first power storage module.
  • the vehicle battery system includes a first power storage module including a lead storage battery, and a second power storage module including a power storage unit having an energy density higher than that of the lead storage battery.
  • the lead storage battery and the power storage unit are electrically connected in parallel to a power generation unit that converts regenerative energy into electric power.
  • the second power storage module is thermally connected to a window cleaning liquid tank in the engine room of the vehicle.
  • the vehicle battery system includes a first power storage module including a lead storage battery, and a second power storage module including a power storage unit having an energy density higher than that of the lead storage battery.
  • the lead storage battery and the power storage unit are electrically connected in parallel to a power generation unit that converts regenerative energy into electric power.
  • the first power storage module and the second power storage module are provided in an engine room of a vehicle.
  • the in-vehicle battery system further includes a guide member that guides outside air flowing into the engine room from the outside of the vehicle to the second power storage module.
  • the present invention it is possible to provide a technique for improving the charge / discharge efficiency of the power storage unit in the in-vehicle battery system.
  • FIG. 1 is a perspective view schematically showing an in-vehicle battery system according to Embodiment 1.
  • FIG. It is a perspective view which shows a 2nd electrical storage module typically.
  • 1 is an electrical block diagram including an in-vehicle battery system according to Embodiment 1.
  • FIG. It is a schematic diagram which shows the installation aspect of the vehicle-mounted battery system which concerns on Embodiment 1.
  • FIG. It is a schematic diagram which shows the installation aspect of the vehicle-mounted battery system which concerns on Embodiment 2.
  • FIG. It is a schematic diagram which shows the installation aspect of the vehicle-mounted battery system which concerns on Embodiment 3.
  • FIG. It is a schematic diagram which shows the installation aspect of the vehicle-mounted battery system which concerns on Embodiment 4.
  • the power storage unit is installed in the engine room of the vehicle together with the lead storage battery in a vehicle battery system including a lead storage battery and a power storage unit having a high-performance storage battery.
  • the lead storage battery and the power storage unit are arranged close to each other, thereby reducing the influence of wiring resistance, and as a result, improving the charge / discharge efficiency of the power storage unit Can do.
  • the power storage unit when the power storage unit is installed in a vehicle living space (cabinet), it is possible to suppress the narrowing of the living space and the complicated wiring connection with an alternator or a lead storage battery as a generator.
  • an engine serving as a high-temperature heat source is disposed in the engine room. Therefore, the engine room is in a relatively high temperature environment, and when the power storage unit is placed in the engine room, the temperature of the power storage unit rises, and the life of the power storage unit is significantly reduced due to charging / discharging in a high temperature state. There is a fear.
  • the present applicant has developed an in-vehicle battery system according to the present embodiment.
  • FIG. 1 is a perspective view schematically showing an in-vehicle battery system according to the first embodiment.
  • FIG. 2 is a perspective view schematically showing the second power storage module.
  • FIG. 3 is an electric block diagram including the in-vehicle battery system according to the first embodiment. In FIG. 2, illustration of a part of the wiring is omitted, and the internal structure of the second power storage module is illustrated by a broken line.
  • the on-vehicle battery system according to Embodiment 1 is a battery system mounted on a vehicle using an internal combustion engine as a drive source. It is preferable that the vehicle has an idling stop function in which the internal combustion engine automatically stops when the vehicle stops, and the internal combustion engine restarts when a starting operation such as releasing the brake pedal is performed.
  • the in-vehicle battery system 1 includes a first power storage module 10 and a second power storage module 20.
  • the first power storage module 10 includes a lead storage battery 12 (see FIG. 3) and a first housing 14 that houses the lead storage battery 12.
  • the lead storage battery 12 is a conventionally known lead storage battery in which cells of known lead storage batteries are housed in a case, and the structure thereof is not particularly limited. Specifically, in the single cell constituting the lead storage battery 12, lead is used as the negative electrode active material, lead dioxide is used as the positive electrode active material, and sulfuric acid is used as the electrolytic solution.
  • the lead storage battery 12 is configured by electrically connecting a plurality of the single cells in series.
  • the first power storage module 10 includes a negative electrode terminal 16 a and a positive electrode terminal 16 b that are exposed in the upper part of the first housing 14.
  • the negative electrode terminal 16a and the positive electrode terminal 16b are collectively referred to as the external terminal 16 as appropriate.
  • the power storage unit 22 is composed of, for example, a lithium ion storage battery or a hydrogen battery.
  • the storage battery may be a cell structure of a known lithium ion storage battery, and is not particularly limited.
  • a lithium metal oxide such as lithium cobaltate is used as a positive electrode active material
  • a carbon material such as carbon is used as a negative electrode active material
  • an organic solution such as ethylene carbonate or propylene carbonate is used as an electrolyte.
  • An electrolyte is used.
  • a lithium ion storage battery is configured by electrically connecting a plurality of such single cells in series.
  • the power storage unit 22 of the present embodiment is composed of ten cylindrical storage batteries 23.
  • the number, shape, and arrangement of the storage battery 23 are not particularly limited.
  • the shape of the storage battery 23 may be rectangular.
  • a nickel hydride storage battery other than a lithium ion storage battery can also be used as a storage battery which comprises the electrical storage part 22 of this embodiment.
  • Nickel metal hydride storage batteries have a higher resistance to deterioration due to charging and discharging at high temperatures than lithium ion storage batteries. Therefore, when the power storage unit 22 is constituted by a nickel metal hydride storage battery, it is possible to further suppress a reduction in the life of the power storage unit 22.
  • Each storage battery 23 is electrically connected in series with each other by a wiring 26 and is accommodated in the second casing 24.
  • a part of the wiring 26 is exposed at the upper part of the second housing 24 to form a negative electrode terminal 28a.
  • a part of the wiring 26 is exposed at the upper part of the second housing 24 to form a positive electrode terminal 28b.
  • the negative terminal 28a and the positive terminal 28b are collectively referred to as the external terminal 28 as appropriate.
  • One end side of the connection member 30 is connected to the external terminal 28 of the second power storage module 20.
  • the other end side of the connection member 30 is connected to the external terminal 16 of the first power storage module 10.
  • the connecting member 30 has an insulating property. Therefore, the external terminal 28 of the second power storage module 20 and the external terminal 16 of the first power storage module 10 are connected by the connection member 30 in a state of being insulated from each other.
  • both the first power storage module 10 and the second power storage module 20 have a rectangular parallelepiped shape, and are arranged and connected so that their main surfaces are parallel to each other.
  • the 1st electrical storage module 10 and the 2nd electrical storage module 20 may be arrange
  • the connection method of the 1st electrical storage module 10 and the 2nd electrical storage module 20 is not specifically limited to this.
  • the lead storage battery 12 and the power storage unit 22 of the in-vehicle battery system 1 are electrically connected to an alternator 230 (power generation unit) that converts regenerative energy into electric power, a starter motor 240, and a vehicle-side electrical unit 250. Connected in parallel.
  • the vehicle battery system 1 includes a voltage detection circuit 122, a CPU 124, and a control circuit 126. Voltage detection circuit 122 detects the voltage of power storage unit 22.
  • the CPU 124 instructs the control circuit 126 to turn on and off the switches (switches 90 and 92) according to the voltage detected by the voltage detection circuit 122 and the driving situation of the vehicle.
  • the control circuit 126 turns on and off the switches in accordance with instructions from the CPU 241.
  • the voltage detection circuit 122, the CPU 124, and the control circuit 126 are incorporated in the second power storage module 20.
  • the switch 90 is installed between a branch point A1 between the power storage unit 22 and the vehicle-side electrical unit 250 and a branch point A2 between the lead storage battery 12 and the alternator 230. Energization and interruption between the power storage unit 22 and the alternator 230 are switched.
  • the switch 92 is provided between the branch point A ⁇ b> 1 and the power storage unit 22, and energization and disconnection between the power storage unit 22, the switch 90, and the vehicle-side electrical unit 250 are switched by turning on / off the switch 92.
  • Alternator 230 converts the rotational energy of the crankshaft into electric power.
  • the starter motor 240 is a motor that rotates the crankshaft when the internal combustion engine is started.
  • the starter motor 240 is connected to a branch point A3 between the branch point A2 and the alternator 230.
  • a switch 94 is provided between the branch point A3 and the starter motor 240.
  • the starter motor 240 is switched between energization and shut-off by turning on and off the switch 94. On / off of the switch 94 is controlled by an ECU (not shown).
  • the vehicle-side electrical unit 250 is a general electric device such as a navigation system, an audio device, or the like that requires a stable power supply voltage, such as an electrical load, a headlight, a wiper, or a blower fan for an air conditioner. It is a load.
  • the switch 90 When charging the lead storage battery 12 and the power storage unit 22 with regenerative energy generated when the vehicle is decelerated, the switch 90 is turned on. The lead storage battery 12 is sequentially charged while regenerative energy is generated, and is kept in a state close to full charge. On the other hand, when the voltage of the power storage unit 22 detected by the voltage detection circuit 122 is lower than a predetermined lower limit voltage, the switch 92 is turned on, and the power storage unit 22 is charged while the switch 92 is turned on. The During the charging operation using regenerative energy, the switch 94 is turned off and the starter motor 240 is disconnected from the discharge / charge circuit.
  • both the switch 90 and the switch 94 are turned off.
  • switch 92 is turned on and the power of power storage unit 22 is supplied to vehicle-side electrical unit 150.
  • FIG. 4 is a schematic diagram illustrating an installation mode of the in-vehicle battery system according to the first embodiment.
  • FIG. 4 shows a state in plan view of the inside of the engine room 102 of the vehicle 100.
  • the vehicle 100 is provided with an engine room 102 on the vehicle front side of the passenger compartment 101.
  • an in-vehicle battery system 1 an engine 104 (internal combustion engine), a radiator 106, a fan 108, a window cleaning liquid tank 110, and the like are accommodated.
  • the engine 104, the radiator 106, the fan 108, and the window cleaning liquid tank 110 are conventionally known.
  • the first power storage module 10 and the second power storage module 20 are provided side by side in the engine room 102 of the vehicle 100.
  • the second power storage module 20 is disposed on the side farther from the engine 104 than the first power storage module 10. In this manner, heat transfer from the engine 104 to the second power storage module 20 can be suppressed by separating the second power storage module 20 from the engine 104 serving as a heat source. As a result, the temperature increase of the power storage unit 22 included in the second power storage module 20 can be suppressed.
  • the engine 104 and the second power storage module 20 are arranged with the first power storage module 10 interposed therebetween. That is, the first power storage module 10 is disposed between the engine 104 and the second power storage module 20.
  • the first power storage module 10 having a relatively large heat capacity, and thus the temperature rise of the power storage unit 22 can be more reliably suppressed. can do.
  • produces by charging / discharging of the electrical storage part 22 can be transmitted to the 1st electrical storage module 10, the temperature rise of the electrical storage part 22 can be suppressed more reliably.
  • the second power storage module 20 is disposed closer to the vehicle interior 101 than the first power storage module 10.
  • the engine room 102 is provided in front of the passenger compartment 101, and therefore the second power storage module 20 is disposed on the vehicle rear side with respect to the first power storage module 10.
  • the vehicle 100 can be used as another vehicle or an obstacle.
  • the possibility that the second power storage module 20 is damaged can be further reduced.
  • the safety of the in-vehicle battery system 1 can be further increased, and as a result, the safety of the vehicle 100 can be further increased.
  • the first power storage module 10 and the second power storage module 20 are provided in the engine room 102 of the vehicle 100.
  • the second power storage module 20 is disposed on the side farther from the engine 104 than the first power storage module 10.
  • the electrical storage part 22 of the 2nd electrical storage module 20 can be spaced apart from the engine 104 used as a heat source. Therefore, it is possible to suppress an increase in the temperature of power storage unit 22 in a high-temperature engine room, and it is possible to suppress a decrease in the life of power storage unit 22 due to charging / discharging in a high temperature state.
  • the 1st electrical storage module 10 and the 2nd electrical storage module 20 can be arrange
  • FIG. 5 is a schematic diagram illustrating an installation mode of the in-vehicle battery system according to the second embodiment.
  • FIG. 5 shows a state in plan view of the inside of the engine room 102 of the vehicle 100.
  • the window cleaning liquid tank 110 for cooling the power storage unit 22, the temperature rise of the power storage unit 22 can be further suppressed. As a result, it is possible to suppress a decrease in the life of the power storage unit 22 due to charging / discharging in a high temperature state and a decrease in the charge / discharge performance of the power storage unit 22, and thus to stabilize the charge / discharge performance of the in-vehicle battery system 1. Can do.
  • the second power storage module 20 is provided at a position where the distance R2 to the window cleaning liquid tank 110 is closer than the distance R1 to the engine 104. That is, the power storage unit 22 is separated from the engine 104 serving as a heat source and close to the window cleaning liquid tank 110 having a large heat capacity. Thereby, the cooling efficiency of the electrical storage part 22 can be improved.
  • the second power storage module 20 is preferably in contact with the window cleaning liquid tank 110. By bringing the second power storage module 20 into contact with the window cleaning liquid tank 110, the heat generated in the power storage unit 22 can be reliably transmitted to the window cleaning liquid tank 110.
  • FIG. 6 is a schematic diagram illustrating an installation mode of the in-vehicle battery system according to the third embodiment.
  • FIG. 6 shows a state in which the inside of the engine room 102 of the vehicle 100 is viewed from the side.
  • the first power storage module 10 and the second power storage module 20 are provided side by side in the engine room 102 of the vehicle 100.
  • the first power storage module 10 and the second power storage module 20 are fixed to the mounting tray 112 by the fixing member 114 while being mounted on the mounting tray 112.
  • the in-vehicle battery system 1 includes a guide member 40 that guides outside air flowing into the engine room 102 from the outside of the vehicle to the second power storage module 20.
  • the guide member 40 is a rectifying plate formed of, for example, a sheet metal. While the vehicle 100 is traveling, the air W flowing into the engine room 102 from the opening 103 provided in the radiator grill or the like travels along the guide member 40 in the engine room 102 and blows to the second power storage module 20. It is done.
  • the guide member 40 may guide the air flowing under the chassis to the second power storage module 20.
  • the cooling efficiency of the power storage unit 22 can be further increased by blowing the outside air to the second power storage module 20 by the guide member 40.
  • the temperature rise of the electrical storage part 22 can be suppressed.
  • a decrease in charging / discharging efficiency of the power storage unit 22 can be suppressed, and eventually the charging / discharging performance of the in-vehicle battery system 1 can be stabilized.
  • the guide member 40 may guide outside air to the first power storage module 10 in addition to the second power storage module 20.
  • FIG. 7 is a schematic diagram illustrating an installation mode of the in-vehicle battery system according to the fourth embodiment.
  • FIG. 7 shows a state in plan view of the inside of the engine room 102 of the vehicle 100.
  • the first power storage module 10 and the second power storage module 20 are provided side by side in the engine room 102 of the vehicle 100.
  • Second power storage module 20 is thermally connected to a vehicle structure 116 including a body and a chassis.
  • the 2nd electrical storage module 20 of this embodiment is arrange
  • the heat generated in the power storage unit 22 can be transmitted to the vehicle structure 116 by thermally connecting the second power storage module 20 to the vehicle structure 116. Thereby, the temperature rise of the electrical storage part 22 can be suppressed. As a result, it is possible to suppress a decrease in the life of the power storage unit 22 due to charging / discharging in a high temperature state, and a decrease in the charge / discharge efficiency of the power storage unit 22, and thus stabilize the charge / discharge performance of the in-vehicle battery system 1. Can do.
  • the in-vehicle battery system 1 includes a terminal connection member 32 that electrically connects the external terminal 28 of the second power storage module 20 and the vehicle structure 116.
  • the terminal connection member 32 is a bus bar, for example, and connects the external terminal 28 to the chassis of the vehicle structure 116.
  • the external terminal 28 to which the terminal connection member 32 is connected is, for example, a negative electrode terminal 28a. Therefore, the second power storage module 20 of the present embodiment is also thermally connected to the vehicle structure 116 via the terminal connection member 32.
  • the external terminal 28 of the second power storage module 20 When the external terminal 28 of the second power storage module 20 is connected to the vehicle structure 116, the external terminal 28 can be connected to the ground, and the heat generated in the power storage unit 22 can be transmitted via the terminal connection member 32. It can be transmitted to the vehicle structure 116. Thereby, the temperature rise of the electrical storage part 22 can be suppressed, the lifetime reduction of the electrical storage part 22 by charging / discharging in a high temperature state, the reduction suppression of the charging / discharging efficiency of the electrical storage part 22, and the charging / discharging performance of the vehicle-mounted battery system 1 are improved. Stabilization can be achieved.
  • the second power storage module 20 and the vehicle structure 116 are thermally connected to each other when the second power storage module 20 directly contacts the vehicle structure 116, and the second power storage module 20 and the vehicle via the terminal connection member 32. Only one of the thermal connections of the structures 116 may be used.
  • the power storage unit 22 includes the storage battery 23, but is not particularly limited thereto.
  • the power storage unit 22 may be a capacitor (capacitor) such as an electric double layer capacitor.
  • the second power storage module 20 may be arranged in the vicinity of the steering handle in the engine room 102 of the vehicle 100.
  • the area near the steering wheel in the engine room 102 has a relatively large space and air easily flows. Therefore, the power storage unit 22 can be more efficiently cooled by arranging the second power storage module 20 in the vicinity of the steering handle.
  • SYMBOLS 1 Car battery system, 10 1st electrical storage module, 12 lead storage battery, 16 external terminal, 20 2nd electrical storage module, 22 electrical storage part, 28 external terminal, 32 terminal connection member, 40 guide member, 100 vehicle, 101 vehicle compartment, 102 engine room, 104 engine, 110 window cleaning liquid tank, 116 vehicle structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Sustainable Development (AREA)
  • Combustion & Propulsion (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 車載用電池システムにおける蓄電部の充放電効率の向上を図る技術を提供する。ある態様の車載用電池システム(1)は、鉛蓄電池を含む第1蓄電モジュール(10)と、鉛蓄電池よりエネルギ密度が高い蓄電部を含む第2蓄電モジュール(20)と、を備える。鉛蓄電池及び蓄電部は、回生エネルギを電力に変換する発電部に対して電気的に並列接続される。第1蓄電モジュール(10)及び第2蓄電モジュール(20)は、車両(100)のエンジンルーム(102)内に設けられる。第2蓄電モジュール(20)は、第1蓄電モジュール(10)よりもエンジン(104)から遠い側に配置される。

Description

車載用電池システム
 本発明は、車載用電池システムに関する。
 一般に、内燃機関を駆動源とする車両には、スタータモータ等の各種電気負荷へ電力供給する鉛蓄電池が搭載されている。鉛蓄電池は、ニッケル蓄電池やリチウムイオン蓄電池等の高出力、高エネルギ密度の高性能蓄電池に比べて安価であるものの、頻繁な充放電に対する耐久性が低い。特にアイドルストップ機能を備える車両では、鉛蓄電池が頻繁に放電されることとなり早期劣化が懸念される。また、車両の回生エネルギによりオルタネータを発電させて充電する場合、鉛蓄電池が頻繁に充電されることになるため、早期劣化がより一層懸念される。これらの懸念に対し、鉛蓄電池を高性能蓄電池に置き換えるだけでは、大幅なコストアップを招く。
 これに対し、オルタネータ等の発電機と、発電機で発生した電力を充電可能な鉛蓄電池と、鉛蓄電池に対して電気的に並列接続され、発電機で発生した電力を充電可能であり、かつ、鉛蓄電池に比べて出力密度又はエネルギ密度の高い第2蓄電池と、を備えた車載電池装置が知られている(特許文献1参照)。このように、鉛蓄電池に加えて高性能蓄電池である第2蓄電池を備えることで、鉛蓄電池の劣化抑制とコストダウンとの両立を図ることができる。すなわち、例えばアイドルストップ中における電気負荷への電力供給や回生充電は、高性能蓄電池が優先的に実施することで、鉛蓄電池の劣化軽減を図ることができる。一方、車両を駐車する場合等、長時間に亘って要求される電力供給は、安価な鉛蓄電池が優先的に実施することで、高性能蓄電池を小容量化してコストアップ抑制を図ることができる。
特開2011-176958号公報
 本発明者らは、鋭意研究の結果、鉛蓄電池と補助電源としての蓄電部とを備える従来の車載用電池システムには、蓄電部の充放電効率の向上を図る上で改善の余地があることを見出した。
 本発明はこうした状況に鑑みてなされたものであり、その目的は、車載用電池システムにおける蓄電部の充放電効率の向上を図る技術を提供することにある。
 本発明のある態様は、車載用電池システムである。当該車載用電池システムは、鉛蓄電池を含む第1蓄電モジュールと、前記鉛蓄電池よりエネルギ密度が高い蓄電部を含む第2蓄電モジュールと、を備える。前記鉛蓄電池及び前記蓄電部は、回生エネルギを電力に変換する発電部に対して電気的に並列接続される。前記第1蓄電モジュール及び前記第2蓄電モジュールは、車両のエンジンルーム内に設けられる。前記第2蓄電モジュールは、前記第1蓄電モジュールよりもエンジンから遠い側に配置される。
 本発明の他の態様もまた、車載用電池システムである。当該車載用電池システムは、鉛蓄電池を含む第1蓄電モジュールと、前記鉛蓄電池よりエネルギ密度が高い蓄電部を含む第2蓄電モジュールと、を備える。前記鉛蓄電池及び前記蓄電部は、回生エネルギを電力に変換する発電部に対して電気的に並列接続される。前記第2蓄電モジュールは、車両のエンジンルーム内において、ウィンドウ洗浄液タンクに熱的に接続される。
 本発明の他の態様もまた、車載用電池システムである。当該車載用電池システムは、鉛蓄電池を含む第1蓄電モジュールと、前記鉛蓄電池よりエネルギ密度が高い蓄電部を含む第2蓄電モジュールと、を備える。前記鉛蓄電池及び前記蓄電部は、回生エネルギを電力に変換する発電部に対して電気的に並列接続される。前記第1蓄電モジュール及び前記第2蓄電モジュールは、車両のエンジンルーム内に設けられる。また、当該車載用電池システムは、車両外部からエンジンルーム内に流入する外気を前記第2蓄電モジュールまで導くガイド部材をさらに備える。
 本発明の他の態様もまた、車載用電池システムである。当該車載用電池システムは、鉛蓄電池を含む第1蓄電モジュールと、前記鉛蓄電池よりエネルギ密度が高い蓄電部を含む第2蓄電モジュールと、を備える。前記鉛蓄電池及び前記蓄電部は、回生エネルギを電力に変換する発電部に対して電気的に並列接続される。前記第2蓄電モジュールは、車両構造体に熱的に接続される。
 本発明によれば、車載用電池システムにおける蓄電部の充放電効率の向上を図る技術を提供することができる。
実施形態1に係る車載用電池システムを模式的に示す斜視図である。 第2蓄電モジュールを模式的に示す斜視図である。 実施形態1に係る車載用電池システムを含む電気ブロック図である。 実施形態1に係る車載用電池システムの設置態様を示す模式図である。 実施形態2に係る車載用電池システムの設置態様を示す模式図である。 実施形態3に係る車載用電池システムの設置態様を示す模式図である。 実施形態4に係る車載用電池システムの設置態様を示す模式図である。
 以下、本発明の実施の形態を図面を参照して説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 (実施形態1)
 まず、本実施形態を具体的に説明する前に、基礎となった知見を説明する。本発明者は、鉛蓄電池と、高性能蓄電池を有する蓄電部とを備える車載用電池システムにおいて、蓄電部を、鉛蓄電池とともに車両のエンジンルーム内に設置することに思い至った。蓄電部をエンジンルーム内に配置することで、鉛蓄電池と蓄電部を近接して配置し、これにより配線抵抗の影響を少なくすることができ、その結果、蓄電部の充放電効率を向上させることができる。また、例えば蓄電部を車両の居住スペース(車室)に設置した場合に起こる、居住スペースの狭小化や、発電機であるオルタネータあるいは鉛蓄電池との配線接続の複雑化を抑制することもできる。しかしながら、エンジンルームには、高温熱源となるエンジンが配置されている。そのため、エンジンルーム内は比較的高温な環境となっており、蓄電部をエンジンルーム内に配置した場合、蓄電部の温度が上昇し、高温状態での充放電により蓄電部の寿命が著しく低下するおそれがある。本出願人は、このような知見をもとに、本実施形態に係る車載用電池システムを開発するに至った。
 図1は、実施形態1に係る車載用電池システムを模式的に示す斜視図である。図2は、第2蓄電モジュールを模式的に示す斜視図である。図3は、実施形態1に係る車載用電池システムを含む電気ブロック図である。なお、図2では、一部の配線の図示を省略し、第2蓄電モジュールの内部構造を破線で図示している。
 実施形態1に係る車載用電池システムは、内燃機関を駆動源とする車両に搭載される電池システムである。当該車両は、停止すると内燃機関が自動的に停止し、ブレーキペダルを離すなどの発進動作を行うと内燃機関が再始動するアイドリングストップ機能を有することが好ましい。
 図1及び図2に示すように、本実施形態に係る車載用電池システム1は、第1蓄電モジュール10と、第2蓄電モジュール20と、を備える。第1蓄電モジュール10は、鉛蓄電池12(図3参照)、及び鉛蓄電池12を収容する第1筐体14を含む。鉛蓄電池12は、周知の鉛蓄電池のセルがケースに収容された従来公知の鉛蓄電池であり、その構造は特に限定されない。具体的には、鉛蓄電池12を構成する単セルでは、負極活物質として鉛、正極活物質として二酸化鉛が用いられ、電解液として硫酸が用いられる。鉛蓄電池12は、複数の当該単セルを電気的に直列接続することで構成される。また、第1蓄電モジュール10は、第1筐体14の上部において露出する負極端子16a及び正極端子16bを有する。以下では適宜、負極端子16a及び正極端子16bを外部端子16と総称する。
 第2蓄電モジュール20は、鉛蓄電池12よりエネルギ密度(Wh/kg)が高い蓄電部22、及び蓄電部22を収容する第2筐体24を含む。
 蓄電部22は、例えばリチウムイオン蓄電池や水素電池等で構成されている。例えば、蓄電部22を構成する蓄電池がリチウムイオン蓄電池である場合、蓄電池は周知のリチウムイオン蓄電池のセル構造であればよく、特に限定されない。例えば、リチウムイオン蓄電池を構成する単セルでは、正極活物質としてコバルト酸リチウムなどのリチウム金属酸化物、負極活物質としてカーボンなどの炭素材料が用いられ、電解液として炭酸エチレン、炭酸プロピレンなどの有機電解液が用いられる。リチウムイオン蓄電池は、複数の当該単セルを電気的に直列接続することで構成される。本実施形態の蓄電部22は、10個の円筒形の蓄電池23で構成されている。なお、蓄電池23の個数や形状、配置は特に限定されない。例えば、蓄電池23の形状は角形であってもよい。なお、本実施形態の蓄電部22を構成する蓄電池としては、リチウムイオン蓄電池のほかにニッケル水素蓄電池を用いることもできる。ニッケル水素蓄電池は、リチウムイオン蓄電池と比較して、高温状態での充放電による劣化耐性が高い。そのため、蓄電部22をニッケル水素蓄電池で構成した場合は、蓄電部22の寿命低下をさらに抑制することができる。
 各蓄電池23は、配線26により互いに電気的に直列接続されて、第2筐体24内に収容されている。第2筐体24の上部において配線26の一部が露出して、負極端子28aを形成している。また、第2筐体24の上部において配線26の一部が露出して、正極端子28bを形成している。以下では適宜、負極端子28a及び正極端子28bを外部端子28と総称する。第2蓄電モジュール20の外部端子28には、接続部材30の一端側が接続されている。接続部材30の他端側は、第1蓄電モジュール10の外部端子16に接続されている。これにより、第1蓄電モジュール10と第2蓄電モジュール20とが互いに連結されている。なお、接続部材30は絶縁性を備える。したがって、第2蓄電モジュール20の外部端子28と第1蓄電モジュール10の外部端子16とは、互いに絶縁された状態で接続部材30により連結されている。
 本実施形態では、第1蓄電モジュール10及び第2蓄電モジュール20はともに直方体形状であり、互いの主表面が平行となるように配置されて連結されている。第1蓄電モジュール10及び第2蓄電モジュール20は、互いの主表面が接触するように配置されてもよい。なお、第1蓄電モジュール10と第2蓄電モジュール20の連結方法は、特にこれに限定されない。
 図3に示すように、車載用電池システム1の鉛蓄電池12及び蓄電部22は、回生エネルギを電力に変換するオルタネータ230(発電部)、スタータモータ240及び車両側電装ユニット250に対して電気的に並列に接続されている。この他、車載用電池システム1は、電圧検出回路122、CPU124及び制御回路126を有する。電圧検出回路122は、蓄電部22の電圧を検出する。CPU124は、電圧検出回路122によって検出された電圧や、車両の運転状況に応じて、制御回路126にスイッチ類(スイッチ90、92)のオンオフを指示する。制御回路126は、CPU241からの指示に従って、スイッチ類のオンオフを実行する。例えば、電圧検出回路122、CPU124及び制御回路126は、第2蓄電モジュール20に組み込まれている。
 スイッチ90は、蓄電部22と車両側電装ユニット250との間の分岐点A1と、鉛蓄電池12とオルタネータ230との間の分岐点A2との間に設置されており、スイッチ90のオンオフにより、蓄電部22とオルタネータ230との間の通電、遮断が切り替えられる。スイッチ92は、分岐点A1と蓄電部22との間に設けられており、スイッチ92のオンオフにより、蓄電部22とスイッチ90及び車両側電装ユニット250との間の通電、遮断が切り替えられる。
 オルタネータ230は、クランク軸の回転エネルギを電力に変換する。スタータモータ240は、内燃機関の始動時にクランク軸を回転させるモータである。スタータモータ240は、分岐点A2とオルタネータ230との間の分岐点A3に接続されている。分岐点A3とスタータモータ240との間にスイッチ94が設けられている。スイッチ94のオンオフにより、スタータモータ240への通電、遮断が切り替えられる。スイッチ94のオンオフは図示しないECUによって制御される。
 車両側電装ユニット250は、ナビゲーションシステムやオーディオ機器などのように、供給電力の電圧が安定していることが要求される電気負荷やヘッドライト、ワイパ、空調装置の送風ファンなどの一般的な電気負荷である。
(回生充電時)
 車両の減速時に生じる回生エネルギにより、鉛蓄電池12及び蓄電部22を充電する場合には、スイッチ90がオンにされる。鉛蓄電池12は回生エネルギが生じている間、逐次充電が行われ、満充電に近い状態に保たれる。一方、電圧検出回路122によって検出された蓄電部22の電圧が所定の下限電圧より低くなっている場合にスイッチ92がオンにされ、スイッチ92がオンにされている間に蓄電部22が充電される。なお、回生エネルギによる充電動作時には、スイッチ94はオフにされ、スタータモータ240は放充電回路から切り離される。
(通常放電時)
 上述した回生エネルギによる充電動作時以外のエンジン運転時には、スイッチ90、スイッチ94がともにオフにされる。一方、電圧検出回路122によって検出された蓄電部22の電圧が所定の下限電圧以上である場合には、スイッチ92がオンにされ、蓄電部22の電力が車両側電装ユニット150に供給される。
(アイドルストップ時およびスタータモータ作動時)
 エンジンが自動停止されたアイドルストップ時及びエンジンが始動する際のスタータモータ作動時では、スイッチ94がオンにされ、スイッチ90がオフにされる。また、スイッチ92はオンにされる。これにより、蓄電部22及び車両側電装ユニット250はオルタネータ230及びスタータモータ240から切り離され、蓄電部22からスタータモータ240への放電が生じることが防止される。この状態で、電圧検出回路122によって検出された蓄電部22の電圧が所定の下限電圧以上である場合には、スイッチ92がオンにされ、蓄電部22の電力が車両側電装ユニット250に供給される。
 続いて、本実施形態に係る車載用電池システム1の設置態様について説明する。図4は、実施形態1に係る車載用電池システムの設置態様を示す模式図である。図4では、車両100のエンジンルーム102内部を平面視した状態を示している。車両100は、車室101の車両前方側にエンジンルーム102が設けられている。
 車両100のエンジンルーム102内には、車載用電池システム1、エンジン104(内燃機関)、ラジエータ106、ファン108、ウィンドウ洗浄液タンク110等が収容されている。エンジン104、ラジエータ106、ファン108、及びウィンドウ洗浄液タンク110は、従来公知のものである。
 第1蓄電モジュール10及び第2蓄電モジュール20は、車両100のエンジンルーム102内に並べて設けられている。そして、第2蓄電モジュール20は、第1蓄電モジュール10よりもエンジン104から遠い側に配置されている。このように、第2蓄電モジュール20を、熱源となるエンジン104から離間させることで、エンジン104から第2蓄電モジュール20への伝熱を抑制することができる。その結果、第2蓄電モジュール20が有する蓄電部22の温度上昇を抑制することができる。
 また、本実施形態では、エンジン104と第2蓄電モジュール20とは、第1蓄電モジュール10を挟んで配置されている。すなわち、エンジン104と第2蓄電モジュール20との間に第1蓄電モジュール10が配置されている。これにより、熱容量が比較的大きい第1蓄電モジュール10によって、エンジン104から第2蓄電モジュール20への伝熱の少なくとも一部を遮断することができるため、蓄電部22の温度上昇をより確実に抑制することができる。また、蓄電部22の充放電によって発生する熱を、第1蓄電モジュール10に伝達させることができるため、蓄電部22の温度上昇をより確実に抑制することができる。
 また、第2蓄電モジュール20は、第1蓄電モジュール10よりも車室101に近い側に配置されている。本実施形態の車両100は、車室101の前方にエンジンルーム102が設けられているため、第2蓄電モジュール20は第1蓄電モジュール10よりも車両後方側に配置されている。このように、第2蓄電モジュール20を第1蓄電モジュール10よりも車両内側、第1蓄電モジュール10を第2蓄電モジュール20よりも車両外側に配置することで、車両100が他車両や障害物に衝突した場合に、第2蓄電モジュール20が破損してしまう可能性をより一層低減させることができる。その結果、車載用電池システム1の安全性をより高めることができ、ひいては車両100の安全性をより高めることができる。
 以上説明したように、本実施形態に係る車載用電池システム1において、第1蓄電モジュール10及び第2蓄電モジュール20は、車両100のエンジンルーム102内に設けられている。そして、第2蓄電モジュール20は、第1蓄電モジュール10よりもエンジン104から遠い側に配置されている。これにより、熱源となるエンジン104から第2蓄電モジュール20の蓄電部22を離間させることができる。そのため、高温のエンジンルーム内において蓄電部22の温度が上昇することを抑制でき、高温状態での充放電による蓄電部22の寿命低下を抑制することができる。そのため、第1蓄電モジュール10及び第2蓄電モジュール20を車両100のエンジンルーム102内に配置して、蓄電部22の充放電効率を向上させることができ、これにより車載用電池システム1の充放電性能の安定化を図ることができる。
 (実施形態2)
 実施形態2に係る車載用電池システムは、車載用電池システムの設置態様が異なる点を除き、実施形態1に係る車載用電池システムの構成と共通する。以下、実施形態2に係る車載用電池システムについて実施形態1と異なる構成を中心に説明する。図5は、実施形態2に係る車載用電池システムの設置態様を示す模式図である。図5では、車両100のエンジンルーム102内部を平面視した状態を示している。
 本実施形態に係る車載用電池システム1において、第1蓄電モジュール10及び第2蓄電モジュール20は、車両100のエンジンルーム102内に並べて設けられている。そして、第2蓄電モジュール20は、車両100のエンジンルーム102内において、ウィンドウ洗浄液タンク110の近傍に配置され、ウィンドウ洗浄液タンク110に熱的に接続されている。ウィンドウ洗浄液タンク110は、ウィンドウ洗浄液を収容しているため熱容量が比較的大きい。そのため、第2蓄電モジュール20の蓄電部22で発生した熱を熱容量の比較的大きいウィンドウ洗浄液タンク110に伝達して、蓄電部22を冷却することができる。
 このように、ウィンドウ洗浄液タンク110を蓄電部22の冷却に利用することで、蓄電部22の温度上昇をより抑制することができる。その結果、高温状態での充放電による蓄電部22の寿命低下と、蓄電部22の充放電性能の低下を抑制することができ、ひいては車載用電池システム1の充放電性能の安定化を図ることができる。
 また、本実施形態において第2蓄電モジュール20は、エンジン104までの距離R1よりもウィンドウ洗浄液タンク110までの距離R2が近い位置に設けられている。すなわち、蓄電部22は、熱源となるエンジン104から離間し、熱容量の大きいウィンドウ洗浄液タンク110に近接している。これにより、蓄電部22の冷却効率を向上させることができる。なお、第2蓄電モジュール20は、ウィンドウ洗浄液タンク110に接触することが好ましい。第2蓄電モジュール20をウィンドウ洗浄液タンク110に接触させることで、蓄電部22で発生した熱をウィンドウ洗浄液タンク110により確実に伝達させることができる。
 (実施形態3)
 実施形態3に係る車載用電池システムは、車載用電池システムの設置態様が異なる点を除き、実施形態1に係る車載用電池システムの構成と共通する。以下、実施形態3に係る車載用電池システムについて実施形態1と異なる構成を中心に説明する。図6は、実施形態3に係る車載用電池システムの設置態様を示す模式図である。図6では、車両100のエンジンルーム102内部を側面視した状態を示している。
 本実施形態に係る車載用電池システム1において、第1蓄電モジュール10及び第2蓄電モジュール20は、車両100のエンジンルーム102内に並べて設けられている。第1蓄電モジュール10及び第2蓄電モジュール20は、載置用トレイ112に載置された状態で、固定部材114によって載置用トレイ112に固定されている。
 また、車載用電池システム1は、車両外部からエンジンルーム102内に流入する外気を第2蓄電モジュール20まで導くガイド部材40を備える。ガイド部材40は、例えば板金等で形成された整流板である。車両100の走行中などに、ラジエータグリル等に設けられた開口部103からエンジンルーム102内に流入する空気Wは、ガイド部材40に沿ってエンジンルーム102内を進み、第2蓄電モジュール20に吹き付けられる。なお、ガイド部材40は、シャシ下方を流れる空気を第2蓄電モジュール20に導いてもよい。
 このように、ガイド部材40によって外気を第2蓄電モジュール20に吹き付けることで、蓄電部22の冷却効率をより一層高めることができる。これにより、蓄電部22の温度上昇を抑制することができる。そしてその結果、蓄電部22の充放電効率の低下を抑制することができ、ひいては車載用電池システム1の充放電性能の安定化を図ることができる。なお、ガイド部材40は、第2蓄電モジュール20に加えて第1蓄電モジュール10にも外気を導いてもよい。これにより、第1蓄電モジュール10の冷却効率も高めることができるため、蓄電部22で発生した熱を第1蓄電モジュール10に伝達することで蓄電部22を冷却する構成においては、蓄電部22の温度上昇をより一層抑制することができる。
 (実施形態4)
 実施形態4に係る車載用電池システムは、車載用電池システムの設置態様が異なる点を除き、実施形態1に係る車載用電池システムの構成と共通する。以下、実施形態4に係る車載用電池システムについて実施形態1と異なる構成を中心に説明する。図7は、実施形態4に係る車載用電池システムの設置態様を示す模式図である。図7では、車両100のエンジンルーム102内部を平面視した状態を示している。
 本実施形態に係る車載用電池システム1において、第1蓄電モジュール10及び第2蓄電モジュール20は、車両100のエンジンルーム102内に並べて設けられている。そして、第2蓄電モジュール20は、ボディとシャシとを含む車両構造体116に熱的に接続されている。本実施形態の第2蓄電モジュール20は、車両構造体116に直に接触するように配置されており、これにより車両構造体116に熱的に接続されている。
 第2蓄電モジュール20を車両構造体116に熱的に接続させることで、蓄電部22で発生した熱を車両構造体116に伝達させることができる。これにより、蓄電部22の温度上昇を抑制することができる。その結果、高温状態での充放電による蓄電部22の寿命低下と、蓄電部22の充放電効率の低下を抑制することができ、ひいては車載用電池システム1の充放電性能の安定化を図ることができる。
 また、車載用電池システム1は、第2蓄電モジュール20の外部端子28と車両構造体116とを電気的に接続する端子接続部材32を備える。端子接続部材32は、例えばバスバーであり、外部端子28を車両構造体116のシャシに接続する。端子接続部材32が接続される外部端子28は、例えば負極端子28aである。したがって、本実施形態の第2蓄電モジュール20は、端子接続部材32を介しても車両構造体116に熱的に接続されている。
 第2蓄電モジュール20の外部端子28を車両構造体116に接続させた場合には、外部端子28をグランドに接続することができるとともに、蓄電部22で発生した熱を端子接続部材32を介して車両構造体116に伝達させることができる。これにより、蓄電部22の温度上昇を抑制でき、高温状態での充放電による蓄電部22の寿命低下抑制、蓄電部22の充放電効率の低下抑制、及び車載用電池システム1の充放電性能の安定化を図ることができる。
 なお、第2蓄電モジュール20が車両構造体116に直に接触することによる第2蓄電モジュール20及び車両構造体116の熱的な接続と、端子接続部材32を介した第2蓄電モジュール20及び車両構造体116の熱的な接続とは、いずれか一方のみであってもよい。
 本発明は、上述の各実施形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施形態も本発明の範囲に含まれうるものである。また、上述した各実施形態の各要素を適宜組み合わせたものも、本発明の範囲に含まれうる。
 上述の各実施形態では、蓄電部22は蓄電池23を有するが、特にこれに限定されない。例えば、蓄電部22は、電気二重層コンデンサ等のコンデンサ(キャパシタ)であってもよい。
 また、車載用電池システム1の他の配置態様として、第2蓄電モジュール20を、車両100のエンジンルーム102内における操舵ハンドルの近傍に配置してもよい。エンジンルーム102内の操舵ハンドル近傍の領域は、比較的空間が多く空気が流れやすい。そのため、第2蓄電モジュール20を操舵ハンドルの近傍に配置することで、蓄電部22をより効率的に冷却することができる。
 1 車載用電池システム、 10 第1蓄電モジュール、 12 鉛蓄電池、 16 外部端子、 20 第2蓄電モジュール、 22 蓄電部、 28 外部端子、 32 端子接続部材、 40 ガイド部材、 100 車両、 101 車室、 102 エンジンルーム、 104 エンジン、 110 ウィンドウ洗浄液タンク、 116 車両構造体。

Claims (6)

  1.  鉛蓄電池を含む第1蓄電モジュールと、
     前記鉛蓄電池よりエネルギ密度が高い蓄電部を含む第2蓄電モジュールと、
     を備え、
     前記鉛蓄電池及び前記蓄電部は、回生エネルギを電力に変換する発電部に対して電気的に並列接続され、
     前記第1蓄電モジュール及び前記第2蓄電モジュールは、車両のエンジンルーム内に設けられ、
     前記第2蓄電モジュールは、前記第1蓄電モジュールよりもエンジンから遠い側に配置されることを特徴とする車載用電池システム。
  2.  前記第2蓄電モジュールは、前記第1蓄電モジュールよりも車室に近い側に配置される請求項1に記載の車載用電池システム。
  3.  鉛蓄電池を含む第1蓄電モジュールと、
     前記鉛蓄電池よりエネルギ密度が高い蓄電部を含む第2蓄電モジュールと、
     を備え、
     前記鉛蓄電池及び前記蓄電部は、回生エネルギを電力に変換する発電部に対して電気的に並列接続され、
     前記第2蓄電モジュールは、車両のエンジンルーム内において、ウィンドウ洗浄液タンクに熱的に接続されることを特徴とする車載用電池システム。
  4.  鉛蓄電池を含む第1蓄電モジュールと、
     前記鉛蓄電池よりエネルギ密度が高い蓄電部を含む第2蓄電モジュールと、
     を備え、
     前記鉛蓄電池及び前記蓄電部は、回生エネルギを電力に変換する発電部に対して電気的に並列接続され、
     前記第1蓄電モジュール及び前記第2蓄電モジュールは、車両のエンジンルーム内に設けられ、
     車両外部からエンジンルーム内に流入する外気を前記第2蓄電モジュールまで導くガイド部材をさらに備えることを特徴とする車載用電池システム。
  5.  鉛蓄電池を含む第1蓄電モジュールと、
     前記鉛蓄電池よりエネルギ密度が高い蓄電部を含む第2蓄電モジュールと、
     を備え、
     前記鉛蓄電池及び前記蓄電部は、回生エネルギを電力に変換する発電部に対して電気的に並列接続され、
     前記第2蓄電モジュールは、車両構造体に熱的に接続されることを特徴とする車載用電池システム。
  6.  前記第2蓄電モジュールの外部端子と車両構造体とを電気的に接続する端子接続部材をさらに備え、
     前記第2蓄電モジュールは、前記端子接続部材を介して前記車両構造体に熱的に接続される請求項5に記載の車載用電池システム。
PCT/JP2013/006234 2012-10-29 2013-10-22 車載用電池システム WO2014068896A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014544249A JP6297496B2 (ja) 2012-10-29 2013-10-22 車載用電池システム
US14/435,444 US9260068B2 (en) 2012-10-29 2013-10-22 In-vehicle battery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-238298 2012-10-29
JP2012238298 2012-10-29

Publications (1)

Publication Number Publication Date
WO2014068896A1 true WO2014068896A1 (ja) 2014-05-08

Family

ID=50626847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006234 WO2014068896A1 (ja) 2012-10-29 2013-10-22 車載用電池システム

Country Status (3)

Country Link
US (1) US9260068B2 (ja)
JP (1) JP6297496B2 (ja)
WO (1) WO2014068896A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016053419A1 (en) * 2014-09-30 2016-04-07 Johnson Controls Technology Company Battery system bi-stable relay control
WO2016061034A1 (en) * 2014-10-15 2016-04-21 Johnson Controls Technology Company Cooling strategy for battery systems
JP2020087649A (ja) * 2018-11-22 2020-06-04 マツダ株式会社 バッテリ、及びバッテリへの導電線の接続、取り外し方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015216181B3 (de) * 2015-08-25 2016-08-18 Bayerische Motoren Werke Aktiengesellschaft Elektrischer Energiespeicher mit Speichermodulen unterschiedlichen Typs
JP6540565B2 (ja) * 2016-03-16 2019-07-10 株式会社オートネットワーク技術研究所 車両用電源供給システム、車両用駆動システム
EP3372438A1 (en) * 2017-03-09 2018-09-12 Volvo Car Corporation Dual battery unit for a vehicle
DE202017105488U1 (de) * 2017-07-18 2018-10-24 Mahle International Gmbh Batteriezellenanordnung
DE102020109055A1 (de) 2020-04-01 2021-10-07 Bayerische Motoren Werke Aktiengesellschaft Baukastensystem für eine Traktionsbatterie eines Kraftwagens sowie Kraftwagen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259530A (ja) * 2006-03-20 2007-10-04 Denso Corp 2電源方式の車両用電源装置
JP2010208461A (ja) * 2009-03-10 2010-09-24 Fuji Heavy Ind Ltd 車両用電源装置
JP2012152087A (ja) * 2011-01-21 2012-08-09 Mitsubishi Electric Corp 車両用電源システム

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976327A (en) * 1989-02-14 1990-12-11 Globe-Union Inc. Battery module for the engine compartment of an automobile
JP3617183B2 (ja) * 1996-05-08 2005-02-02 トヨタ自動車株式会社 電気自動車の電源装置
CN1103705C (zh) * 1997-06-24 2003-03-26 显微加热公司 挡风玻璃除冰
WO2000077916A1 (es) * 1999-06-09 2000-12-21 Lear Automotive (Eeds) Spain, S.L. Sistema de distribucion electrica de tension dual
US20040201365A1 (en) * 2001-04-05 2004-10-14 Electrovaya Inc. Energy storage device for loads having variable power rates
US20030047366A1 (en) * 2001-07-10 2003-03-13 Johnson Controls Technology Company Module for battery and/or other vehicle components
ITBZ20020020A1 (it) * 2002-04-18 2003-10-20 Seeber S R L Serbatoio per liquido riscaldabile per veicoli.
JP2004112900A (ja) * 2002-09-18 2004-04-08 Nissan Motor Co Ltd 車両用発電制御装置
US20060220405A1 (en) * 2005-03-31 2006-10-05 Mazda Motor Corporation Structure for arrangement of engine-associated vehicle components
JP2006281805A (ja) * 2005-03-31 2006-10-19 Mazda Motor Corp 車両用エンジン補機の配設構造
JP2006304393A (ja) * 2005-04-15 2006-11-02 Toyota Motor Corp 電源装置およびその制御方法並びに車両
KR100896777B1 (ko) * 2006-03-20 2009-05-11 가부시키가이샤 덴소 향상된 장착성을 갖는 다중 전력공급장치
JP5386348B2 (ja) * 2007-04-17 2014-01-15 株式会社エネルギー応用技術研究所 電動式移動体および電動式移動体の急速充電方法
US8002056B2 (en) * 2007-07-30 2011-08-23 GM Global Technology Operations LLC Double-ended inverter system with isolated neutral topology
US20090145592A1 (en) * 2007-12-10 2009-06-11 Frank Joseph Leitch Windshield washer fluid heating system
CN101939186A (zh) * 2008-02-14 2011-01-05 株式会社美姿把 混合型电动汽车
JP5336467B2 (ja) * 2008-03-05 2013-11-06 カルソニックカンセイ株式会社 車両用バッテリ冷却装置
US9960461B2 (en) * 2008-10-15 2018-05-01 General Electric Company System and method for temperature control of multi-battery systems
JP5120204B2 (ja) * 2008-10-28 2013-01-16 アイシン・エィ・ダブリュ株式会社 走行案内装置、走行案内方法及びコンピュータプログラム
JP5488046B2 (ja) 2010-02-25 2014-05-14 株式会社デンソー 車載電源装置
KR101223623B1 (ko) * 2011-01-05 2013-01-17 삼성에스디아이 주식회사 에너지 저장 장치
US9340121B2 (en) * 2011-04-14 2016-05-17 GM Global Technology Operations LLC Method and system for heating a vehicle battery
JP5307847B2 (ja) * 2011-04-19 2013-10-02 三菱電機株式会社 車両用電源システム
JP5488529B2 (ja) * 2011-05-17 2014-05-14 マツダ株式会社 車両の電源制御装置
JP5609768B2 (ja) * 2011-05-17 2014-10-22 マツダ株式会社 車両の制御装置
FR2975839B1 (fr) * 2011-05-23 2013-05-17 Renault Sa Procede de rechargement d'un couple de batteries de vehicule de tensions nominales differentes, et systeme associe
JP5683408B2 (ja) * 2011-08-09 2015-03-11 トヨタ自動車株式会社 車両駆動用モータを有する自動車
US8606450B2 (en) * 2011-09-09 2013-12-10 GM Global Technology Operations LLC Hybrid powertrain with geared starter motor and belt alternator starter and method of restarting an engine
US9365115B2 (en) * 2012-01-20 2016-06-14 Ford Global Technologies, Llc System and method for vehicle power management
US20140253033A1 (en) * 2013-03-05 2014-09-11 Working Power Solutions, Llc System and method for automatically charging a battery during motion
KR20140125971A (ko) * 2013-04-19 2014-10-30 삼성에스디아이 주식회사 멀티 전지 팩을 구비한 자동차 전지 시스템 및 자동차 전지 시스템의 동작 방법
US9718375B2 (en) * 2014-01-23 2017-08-01 Johnson Controls Technology Company Passive architectures for batteries having two different chemistries
US9527401B2 (en) * 2014-01-23 2016-12-27 Johnson Controls Technology Company Semi-active architectures for batteries having two different chemistries
US9780418B2 (en) * 2013-10-28 2017-10-03 Johnson Controls Technology Company System and method for battery cell thermal management using carbon-based thermal films
US9997816B2 (en) * 2014-01-02 2018-06-12 Johnson Controls Technology Company Micro-hybrid battery module for a vehicle
US10128528B2 (en) * 2014-01-02 2018-11-13 Johnson Controls Technology Company Combinatorial chemistries for matching multiple batteries
US11112463B2 (en) * 2014-04-11 2021-09-07 Cps Technology Holdings Llc Integrated battery sensor for multiple battery modules

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259530A (ja) * 2006-03-20 2007-10-04 Denso Corp 2電源方式の車両用電源装置
JP2010208461A (ja) * 2009-03-10 2010-09-24 Fuji Heavy Ind Ltd 車両用電源装置
JP2012152087A (ja) * 2011-01-21 2012-08-09 Mitsubishi Electric Corp 車両用電源システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016053419A1 (en) * 2014-09-30 2016-04-07 Johnson Controls Technology Company Battery system bi-stable relay control
US11190026B2 (en) 2014-09-30 2021-11-30 Cps Technology Holdings Llc Battery system to be deployed in a vehicle having a first battery and a second battery, battery control unit to be deployed in a battery system of a vehicle, and method related to the same
WO2016061034A1 (en) * 2014-10-15 2016-04-21 Johnson Controls Technology Company Cooling strategy for battery systems
JP2020087649A (ja) * 2018-11-22 2020-06-04 マツダ株式会社 バッテリ、及びバッテリへの導電線の接続、取り外し方法
JP7116364B2 (ja) 2018-11-22 2022-08-10 マツダ株式会社 バッテリ、及びバッテリへの導電線の接続、取り外し方法

Also Published As

Publication number Publication date
US20150232049A1 (en) 2015-08-20
US9260068B2 (en) 2016-02-16
JP6297496B2 (ja) 2018-03-20
JPWO2014068896A1 (ja) 2016-09-08

Similar Documents

Publication Publication Date Title
JP6297496B2 (ja) 車載用電池システム
US11978845B2 (en) Vent shield for a battery module
US11887796B2 (en) Integrated connector having sense and switching conductors for a relay used in a battery module
US9997816B2 (en) Micro-hybrid battery module for a vehicle
US11394072B2 (en) Cell assembly for a battery module
US9382892B2 (en) Vehicle performing idling stop
US20160093857A1 (en) Battery module vent system and method
JP6279493B2 (ja) 電池システム
WO2019071184A1 (en) LITHIUM ION BATTERY
JP6162140B2 (ja) 車載用電池システム
JP2009255774A (ja) 車両
JP2020136163A (ja) 電源ユニット
JP2009004164A (ja) 蓄熱システム及びこれを備えた車両
JP2014089850A (ja) 車載用電池システム
JP2019193363A (ja) 車両用蓄電装置
JP2015179613A (ja) 車両用電源システム
WO2014068898A1 (ja) 車載用電池システム
JP2013229205A (ja) 組電池の冷却構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851222

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14435444

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014544249

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13851222

Country of ref document: EP

Kind code of ref document: A1