WO2014067097A1 - 一种远红外激光加工用Fθ镜头及激光加工设备 - Google Patents

一种远红外激光加工用Fθ镜头及激光加工设备 Download PDF

Info

Publication number
WO2014067097A1
WO2014067097A1 PCT/CN2012/083845 CN2012083845W WO2014067097A1 WO 2014067097 A1 WO2014067097 A1 WO 2014067097A1 CN 2012083845 W CN2012083845 W CN 2012083845W WO 2014067097 A1 WO2014067097 A1 WO 2014067097A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
laser processing
infrared laser
curved surface
far
Prior art date
Application number
PCT/CN2012/083845
Other languages
English (en)
French (fr)
Inventor
李家英
周朝明
孙博
高云峰
Original Assignee
深圳市大族激光科技股份有限公司
深圳市大族数控科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大族激光科技股份有限公司, 深圳市大族数控科技有限公司 filed Critical 深圳市大族激光科技股份有限公司
Priority to PCT/CN2012/083845 priority Critical patent/WO2014067097A1/zh
Priority to CN201280076828.4A priority patent/CN104769474B/zh
Priority to JP2015540009A priority patent/JP6019244B2/ja
Priority to EP12887391.6A priority patent/EP2908163B1/en
Priority to US14/439,410 priority patent/US9739984B2/en
Publication of WO2014067097A1 publication Critical patent/WO2014067097A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/0005Optical objectives specially designed for the purposes specified below having F-Theta characteristic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring

Definitions

  • the invention belongs to the field of optical technology, and in particular relates to an F ⁇ lens and a laser processing device for far infrared laser processing.
  • d is the minimum resolution of two points
  • is the wavelength of the processing beam
  • is the focal length of the optical lens
  • D is the diameter of the entrance pupil of the optical lens.
  • This wavelength is 10 times the usual wavelength of 1064nm, and its resolution is exactly 1064nm.
  • One tenth of this will reduce the cutting accuracy.
  • to increase the resolution only reduce the focal length ⁇ or increase the diameter of the entrance pupil D Increasing the diameter of the entrance pupil will increase the lens volume rapidly, but the effect of improving the resolution is not obvious. Therefore, the requirement to meet the high resolution under the premise of controlling the volume is still F ⁇ for far infrared laser cutting.
  • the design puzzle of the lens is
  • the present invention is achieved in this way, a FIR for far infrared laser processing a lens comprising a first lens, a second lens and a third lens arranged coaxially in the direction of transmission of the incident beam;
  • the first lens is a meniscus negative lens, and the second lens and the third lens are meniscus positive lenses;
  • the intermediate portions of the first, second, and third lenses are all convex toward the transmission direction of the incident light beam.
  • Another object of the present invention is to provide A laser processing apparatus comprising a far infrared laser and an optical lens for focusing a far infrared laser for laser processing, wherein the optical lens employs the F ⁇ lens for far infrared laser processing.
  • the invention can achieve the ideal image quality and resolution distance, effectively correct the astigmatism and distortion of the lens, reduce the influence of high-order aberrations, and the energy concentration of the laser focus point.
  • Higher, high processing precision can meet the requirements of cutting or punching, etc.; on the other hand, it can effectively control the lens volume, which is a miniaturized far infrared
  • the F ⁇ lens is important for cost control.
  • FIG. 1 is a schematic structural view of an F ⁇ lens for far infrared laser processing according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of astigmatism of an F ⁇ lens for far infrared laser processing according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing distortion of an F ⁇ lens for far infrared laser processing according to an embodiment of the present invention
  • FIG. 4 is a graph showing an optical transfer function M.T.F of an F ⁇ lens for far infrared laser processing according to an embodiment of the present invention
  • FIG. 5 is a schematic view showing a dispersion pattern of an F ⁇ lens for far infrared laser processing according to an embodiment of the present invention
  • Fig. 6 is a view showing the energy concentration of an F ⁇ lens for far infrared laser processing according to an embodiment of the present invention.
  • FIG. 1 shows an F ⁇ for far infrared laser processing according to an embodiment of the present invention.
  • a schematic structural view of the lens for convenience of explanation, only the parts related to the present embodiment are shown.
  • the F ⁇ lens for far-infrared laser processing mainly includes a first lens L1, a second lens L2, and a third lens L3.
  • the three lenses are sequentially arranged coaxially along the transmission direction of the incident laser light, wherein the first lens L1 is a meniscus negative lens, and the second lens L2 and the third lens L3 are both meniscus positive lenses.
  • the first lens L1 The radius of curvature of the incident surface is smaller than the radius of curvature of the exit surface.
  • the curvature radius of the incident surface of the second and third lenses is larger than the radius of curvature of the exit surface, and the intermediate portions of the first, second, and third lenses are all convex toward the transmission direction of the incident light beam, that is, protrude toward the image side.
  • the material of the first lens L1, the second lens L2, and the third lens L3 may select a ratio of the refractive index to the Abbe number Nd/Vd For 1.74/0.026 glass, Nd/Vd has a tolerance of 5%.
  • parameters such as surface curvature and lens thickness of each lens are optimally designed.
  • the first lens L1 The first curved surface S1 and the second curved surface S2 have a radius of curvature of -50 mm and -60 mm, respectively;
  • the second lens L2 includes a third curved surface S3 and a fourth curved surface S4, and the radius of curvature is respectively -68mm, -50mm;
  • the third lens L3 includes a fifth curved surface S5 and a sixth curved surface S6, and the radius of curvature is -500mm, -180mm .
  • the negative sign in the above parameters means that the spherical center of the surface is in the object space, and the positive and negative signs are not considered as positive numbers, and the center of the spherical surface is located in the image space.
  • the first to sixth curved surfaces are sequentially arranged along the laser transmission direction, and the radius of curvature of each of the curved surfaces is not the only option, and both exist. 5% tolerance range.
  • the center thickness D and the surface pitch d of the first to third lenses are further Special designs have been made.
  • the center thicknesses D1, D2, and D3 of the first to third lenses are 5 mm, 8 mm, and 8 mm, respectively, and there is also a tolerance range of 5%.
  • the first lens The second curved surface S2 of L1 and the third curved surface S3 of the second lens L2 have a distance d1 of 5 mm on the optical axis; the fourth curved surface S4 of the second lens L2 and the fifth curved surface of the third lens L3
  • the spacing d2 of S5 on the optical axis is 0.5mm.
  • the tolerance of each of the above surface pitches is 5%.
  • a fourth lens L4 which is further added to the light emitting side of the third lens L3, may be further added.
  • it is a planar lens comprising a seventh curved surface S7 and an eighth curved surface S8, and of course, the seventh curved surface S7 and the eighth curved surface S8 have a radius of curvature of ⁇ .
  • the fourth lens L4 It is mainly used to protect other imaging lenses in the lens to prevent other lenses from being affected by dust, moisture, high temperature or low temperature.
  • the fourth lens L4 can be selected from the same material as the other lenses, and the center thickness D4 can be 3 mm with a tolerance of 5%.
  • the seventh curved surface S7 of the fourth lens L4 and the sixth curved surface S6 of the third lens L3 may have a pitch d3 of 4 mm on the optical axis, and the tolerance is still 5%.
  • the F ⁇ lens for far-infrared laser processing with a specific structure is provided below, and the specific reference is shown in Table 1.
  • the F ⁇ lens for far-infrared laser processing has the following optical characteristics:
  • Processing range A 100 * 100mm 2 ;
  • the maximum outer diameter of the optical material D max 100mm
  • the lens can achieve the ideal image quality and resolution distance, effectively correct the astigmatism and distortion of the lens, reduce the influence of high-order aberrations, and the laser focusing point has higher energy concentration and high processing precision, which is very good.
  • it can effectively control the lens volume, the optical total length of the lens can be reduced to 100mm, the maximum outer diameter is only 100mm, it is a miniaturized far-infrared F ⁇ lens, which is of great significance for the fabrication of far-infrared lenses, because it can transmit ultra-long wavelengths (such as 10640nm).
  • ultra-long wavelengths such as 10640nm
  • the imaging quality of the F ⁇ lens for far-infrared laser processing is analyzed from different angles in conjunction with Figures 2-6.
  • Figure 2 and Figure 3 show the astigmatism and distortion of the F ⁇ lens for far-infrared laser processing, respectively.
  • the horizontal axis is ⁇ m.
  • the vertical axis represents the distance from the center to the edge of the lens in the meridional direction. They are all at or below the theoretical value, and the theoretical value is 13.5 ⁇ m.
  • Figure 4 shows the optical transfer function M.T.F of the lens.
  • the vertical axis represents the percentage and the horizontal axis represents the field of view when the resolution reaches 10 lp/mm. (10 pairs), M.T.F has 30%. There is no significant difference between the on-axis point and the off-axis point of the lens, and the imaging effect is stable, achieving the goal of a flat image field.
  • Figures 5 and 6 show the diffuse and energy concentration of the lens, respectively.
  • the horizontal axis in Figure 6 is ⁇ m.
  • the vertical axis is a percentage.
  • the energy concentration map also shows a theoretical value of 13.5 ⁇ m, which proves that F
  • the ⁇ lens achieves an ideal image quality and high energy concentration, enabling high-precision machining.
  • the lens effectively controls the volume of the lens while ensuring better image quality and processing accuracy, ensuring the miniaturization of the lens, solving the problem that the conventional far-infrared lens is difficult to achieve high resolution and small volume, and effectively controlling the cost. It is suitable for wide use in various laser processing cutting, punching and other equipment.
  • the present invention still further provides a laser processing apparatus comprising a far infrared laser and an optical lens for focusing a far infrared laser for laser processing, wherein the optical lens can adopt the F ⁇ for far infrared laser processing provided by the present invention.
  • Lens This lens is particularly suitable for lasers with a wavelength of 10640 nm, so the far-infrared laser preferably has an emission wavelength of 10640 nm.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lenses (AREA)
  • Laser Beam Processing (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

一种远红外激光加工用Fθ镜头及激光加工设备。远红外激光加工用Fθ镜头包括沿入射光束的传输方向依次共轴设置的第一透镜(L1)、第二透镜(L2)及第三透镜(L3);第一透镜为弯月形负透镜,第二透镜和第三透镜为弯月形正透镜;第一、第二、第三透镜的中间部分均向入射光束的传输方向凸出。该Fθ镜头,可以提高成像质量和分辨距离,有效校正镜头的象散和畸变,减小高级像差的影响,并且激光聚焦点的能量集中度较高,加工精度高,可满足切割或打孔的要求。该Fθ镜头小型化,有效控制了镜头体积,降低了成本。

Description

一种远红外激光加工用Fθ镜头 及激光加工设备 技术领域
本发明属于光学技术领域,特别涉及一种远红外激光加工用 Fθ 镜头及激光加工设备。
背景技术
随着激光加工技术的日益发展,用于大功率切割的激光机已广泛应用于重工业领域,为了切割厚度很大(如 50mm 左右)的钢板,必须使用大功率的激光器。目前较为成熟且性价比最高的大功率激光器就是 CO2 激光器,这种激光器的功率可以达到 5000 ~ 10000 瓦,甚至可做到更大。但是这种 CO2 激光器所发出的工作波长过长,如波长 λ=10640nm(10.64μm) 。根据瑞利判据可知:
激光切割的理论分 辨距离 d= 2.44λ ƒ /D ,
其中: d 为两 点最小分辨距离;
λ 为加工光束的波长;
ƒ 为光学镜头的焦距;
D 为光学镜头的入瞳直径。
该波长为常用波长 1064nm 的 10 倍,其分辨率恰好为波长 1064nm 的十分之一,这样会降低切割精度。如上式所示,若要提高分辨率,只能缩小焦距 ƒ 或增加入瞳直径 D ,而增加入瞳直径会迅速增加镜头体积,但对分辨率的提高效果却不明显,因此,要在控制体积的前提下满足高分辨率的要求仍是远红外激光切割用 Fθ 镜头的设计难题。
技术问题
本发明的目的 在于提供一种 远红外激光加工用 Fθ 镜头 ,使之满足精细切割及打孔等要求,同时保证镜头的小型化。
技术解决方案
本发明是这样实现的, 一种远红外激光加工用 Fθ 镜头,包括沿入射光束的传输方向依次共轴设置的第一透镜、第二透镜及第三透镜;
所述第一透镜为弯月形负透镜,所述第二透镜和第三透镜为弯月形正透镜;
所述第一、第二、第三透镜的中间部分均向所述入射光束的传输方向凸出。
本发明的另一目的 在于提供 一种激光加工设备,包括远红外激光器及用于聚焦远红外激光以进行激光加工的光学镜头,所述光学镜头采用所述的远红外激光加工用 Fθ 镜头。
有益效果
本发明通过对各透镜进行上述的结构设计,一方面可以使成像质量和分辨距离达到理想程度,有效校正镜头的象散和畸变,减小高级像差的影响,并且激光聚焦点的能量集中度较高,加工精度高,可很好的满足切割或打孔等要求;另一方面可以有效控制镜头体积,是一种小型化的远红外 Fθ 镜头,对于成本控制具有重要意义。
附图说明
图 1 是本发明实施例远红外激光加工用 Fθ 镜头的结构示意图;
图 2 是本发明实施例远红外激光加工用 Fθ 镜头的象散示意图;
图 3 是本发明实施例远红外激光加工用 Fθ 镜头的畸变示意图;
图 4 是本发明实施例远红外激光加工用 Fθ 镜头的光学传递函数 M.T.F 曲线图;
图 5 是本发明实施例远红外激光加工用 Fθ 镜头的弥散斑示意图;
图 6 是本发明实施例远红外激光加工用 Fθ 镜头的能量集中度示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
以下结合具体实施例对本发明的具体实现进行更加详细的描述:
图 1 示出了本发明实施例提供的远红外激光加工用 Fθ 镜头的结构示意图,为了便于说明,仅示出了与本实施例相关的部分。
该远红外激光加工用 Fθ 镜头主要包括第一透镜 L1 、第二透镜 L2 及第三透镜 L3 ,这三枚透镜沿入射激光的传输方向依次共轴设置,其中,第一透镜 L1 为弯月形负透镜,第二透镜 L2 和第三透镜 L3 均为弯月形正透镜。并且,第一透镜 L1 的入射面的曲率半径小于出射面的曲率半径。第二、第三透镜的入射面的曲率半径大于出射面的曲率半径,第一、第二、第三透镜的中间部分均朝向入射光束的传输方向凸出,即向像方突出。
另外,第一透镜 L1 、第二透镜 L2 、第三透镜 L3 的材料可选择折射率与阿贝数的比例 Nd/Vd 为 1.74/0.026 的玻璃材质, Nd/Vd 的 公差为 5% 。
进一步的,本实施例对各透镜的表面曲率及透镜厚度等参数进行了优化设计。具体的,第一透镜 L1 包括第一曲面 S1 和第二曲面 S2 ,曲率半径分别为 -50mm , -60mm ;第二透镜 L2 包括第三曲面 S3 和第四曲面 S4 ,曲率半径分别为 -68mm , -50mm ;第三透镜 L3 包括第五曲面 S5 和第六曲面 S6 ,曲率半径分别为 -500mm , -180mm 。上述参数中的负号代表曲面的球心位于物方空间,未带有正、负号的视为正号,代表曲面的球心位于像方空间。上述第一至第六曲面沿激光传输方向依次排布,且上述各曲面的曲率半径并不是唯一的选择,均存在 5% 的公差范围。
进一步的,本实施例还对第一至第三透镜的中心厚度 D 及曲面间距 d 进行了特殊设计,具体的,第一至第三透镜的中心厚度 D1 、 D2 、 D3 分别为 5mm 、 8mm 、 8mm ,亦存在 5% 的公差范围。并且,第一透镜 L1 的第二曲面 S2 与第二透镜 L2 的第三曲面 S3 在光轴上的间距 d1 为 5mm ;第二透镜 L2 的第四曲面 S4 与第三透镜 L3 的第五曲面 S5 在光轴上的间距 d2 为 0.5mm 。上述各曲面间距的公差均为 5% 。
通过对第一至第三透镜的曲面曲率 R 、透镜的中心厚度 D 及曲面间隔 d 进行上述设计后,可以得到较佳的成像质量和打标精度。另外,本实施例还可以进一步在第三透镜 L3 的出光侧增设第四透镜 L4 ,该第四透镜 L4 优选为平面透镜,其包括第七曲面 S7 和第八曲面 S8 ,当然,第七曲面 S7 和第八曲面 S8 的曲率半径均为∞。该第四透镜 L4 主要用于保护镜头内其他成像透镜,避免其他透镜受到灰尘、湿气、高温或低温等影响。
具体的,第四透镜 L4 可与其他透镜选择相同材料,其中心厚度 D4 可以为 3mm ,公差为 5% ;并且,第四透镜 L4 的第七曲面 S7 和第三透镜 L3 的第六曲面 S6 在光轴上的间距 d3 可为 4mm ,公差仍为 5% 。
以下提供一种具体结构的远红外激光加工用 Fθ 镜头,具体参考表 1 。
表 1. 远红外激光加工用 Fθ 镜头的结构参数
Figure PCTCN2012083845-appb-M000001
该远红外激光加工用 Fθ 镜头具有下述光学特性:
通光波长 λ =10640nm ;
焦距 ƒ =160mm ;
入瞳直径 D =30mm ;
加工范围 A=100*100mm2
视场角 2ω=50° 。
光学材料最大外径 Dmax=100mm ;
镜头总长度 L =100mm 。
该 Fθ 镜头一方面可以使成像质量和分辨距离达到理想程度,有效校正镜头的象散和畸变,减小高级像差的影响,并且激光聚焦点的能量集中度较高,加工精度高,可很好的满足切割或打孔的要求;另一方面可以有效控制镜头体积,该镜头的光学总长可以减小到 100mm ,最大外径也只有 100mm ,是一种小型化的远红外 Fθ 镜头,这对于远红外透镜的制作有着重要意义,由于能够透过超长波长(如 10640nm )的光学材料很少,可用于制作透镜的仅有 3~4 种,其价格十分昂贵,因此透镜体积的减小对于成本控制具有很大意义。
以下结合图 2~6 从不同的角度对该远红外激光加工用 Fθ 镜头的成像质量进行分析。
图 2 和图 3 分别表示该远红外激光加工用 Fθ 镜头的象散和畸变,横轴单位为μ m ,纵轴代表子午方向镜头中心到边缘的距离,它们都达到或小于理论值,理论值为 13.5 μ m 。
图 4 表示该镜头的光学传递函数 M.T.F 。纵轴代表百分比,横轴代表视场,当分辨率达到 10lp/mm ( 10 线对)时, M.T.F 还有 30% 。该镜头的轴上点和轴外点均无明显差别,成像效果稳定,达到了平像场的目的。
图 5 和图 6 分别表示该镜头的弥散斑和能量集中度,图 6 中横轴单位为μ m ,纵轴为百分比。该能量集中度图也表现出与理论值 13.5 μ m 相符,由此可以证明该 F θ镜头在超小型化的基础上,成像质量达到了理想水平,且能量集中度极高,可实现高精度加工。
本发明提供的远红外激光加工用 Fθ 镜头在保证较佳的成像质量和加工精度的同时有效控制了镜头的体积,保证了镜头的小型化,解决了传统远红外外镜头难以实现高分辨率和小体积的问题,并且有效控制了成本,适合广泛用于各种激光加工切割、打孔等设备中。
本发明还进一步提供一种激光加工设备,其包括远红外激光器及用于聚焦远红外激光以进行激光加工的光学镜头,其中,光学镜头即可采用本发明提供的远红外激光加工用 Fθ 镜头。该镜头特别适用于波长为 10640nm 的激光,因此该远红外激光器的发光波长优选为 10640nm 。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种远红外激光加工用 Fθ 镜头,其特征在于,包括沿入射光束的传输方向依次共轴设置的第一透镜、第二透镜及第三透镜;
    所述第一透镜为弯月形负透镜,所述第二透镜和第三透镜为弯月形正透镜;
    所述第一、第二、第三透镜的中间部分均向所述入射光束的传输方向凸出。
  2. 如权利要求 1 所述的远红外激光加工用 Fθ 镜头,其特征在于,所述第一透镜包括第一曲面和第二曲面,所述第二透镜包括第三曲面和第四曲面,所述第三透镜包括第五曲面和第六曲面,所述第一至第六曲面沿所述入射光束的传输方向依次排布;
    所述第一至第六曲面的曲率半径依次为: -50mm , -60mm , -68mm , -50mm , -500mm , -180mm ,公差均为 5% 。
  3. 如权利要求 2 所述的远红外激光加工用 Fθ 镜头,其特征在于,所述第一至第三透镜的中心厚度依次为: 5mm , 8mm , 8mm ,公差均为 5% 。
  4. 如权利要求 3 所述的远红外激光加工用 Fθ 镜头,其特征在于,
    所述第二曲面与第三曲面在光轴上的间距为 5mm ;
    所述第四曲面与第五曲面在光轴上的间距为 0.5mm ;
    各所述间距的公差均为 5% 。
  5. 如权利要求 1 所述的远红外激光加工用 Fθ 镜头,其特征在于,所述第一、第二、第三透镜的折射率与阿贝数之比为 1.74/0.026 ,公差为 5% 。
  6. 如权利要求 2 至 5 任一项所述的远红外激光加工用 Fθ 镜头,其特征在于,还包括第四透镜,位于所述第三透镜的出光侧,所述第四透镜包括第七曲面和第八曲面,所述第七曲面和第八曲面的曲率半径均为∞。
  7. 如权利要求 6 所述的远红外激光加工用 Fθ 镜头,其特征在于,所述第四透镜的折射率与阿贝数之比为 1.74/0.026 ,公差为 5% 。
  8. 如权利要求 6 所述的远红外激光加工用 Fθ 镜头,其特征在于,所述第四透镜的中心厚度为 3mm ,公差为 5% ;
    所述第六曲面与所述第七曲面在光轴上的间距为 4mm ,公差为 5% 。
  9. 一种激光加工设备,包括远红外激光器及用于聚焦远红外激光以进行激光加工的光学镜头,其特征在于,所述光学镜头采用权利要求 1~8 任一项所述的远红外激光加工用 Fθ 镜头。
  10. 如权利要求 9 所述的激光加工设备,其特征在于,所述远红外激光器的发光波长为 10640nm 。
PCT/CN2012/083845 2012-10-31 2012-10-31 一种远红外激光加工用Fθ镜头及激光加工设备 WO2014067097A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2012/083845 WO2014067097A1 (zh) 2012-10-31 2012-10-31 一种远红外激光加工用Fθ镜头及激光加工设备
CN201280076828.4A CN104769474B (zh) 2012-10-31 2012-10-31 一种远红外激光加工用Fθ镜头及激光加工设备
JP2015540009A JP6019244B2 (ja) 2012-10-31 2012-10-31 遠赤外線レーザ加工のためのFθレンズ及びレーザ加工デバイス
EP12887391.6A EP2908163B1 (en) 2012-10-31 2012-10-31 F-theta lens and laser processing device for far-infrared laser processing
US14/439,410 US9739984B2 (en) 2012-10-31 2012-10-31 F-theta lens and laser processing device for far-infrared laser processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/083845 WO2014067097A1 (zh) 2012-10-31 2012-10-31 一种远红外激光加工用Fθ镜头及激光加工设备

Publications (1)

Publication Number Publication Date
WO2014067097A1 true WO2014067097A1 (zh) 2014-05-08

Family

ID=50626327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083845 WO2014067097A1 (zh) 2012-10-31 2012-10-31 一种远红外激光加工用Fθ镜头及激光加工设备

Country Status (5)

Country Link
US (1) US9739984B2 (zh)
EP (1) EP2908163B1 (zh)
JP (1) JP6019244B2 (zh)
CN (1) CN104769474B (zh)
WO (1) WO2014067097A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106662729B (zh) * 2014-08-07 2019-09-17 大族激光科技产业集团股份有限公司 远红外成像透镜组、物镜及火灾火源探测仪
CN106471413B (zh) * 2014-11-28 2019-07-05 大族激光科技产业集团股份有限公司 F-θ型光刻镜头
CN109425962A (zh) * 2017-08-30 2019-03-05 上海微电子装备(集团)股份有限公司 一种用于激光加工的F-theta镜头
CN108169883B (zh) * 2017-12-27 2021-02-23 大族激光科技产业集团股份有限公司 一种用于大范围清洗的激光镜头及激光***
CN108873257B (zh) * 2018-07-11 2021-02-26 大族激光科技产业集团股份有限公司 透镜组及激光加工设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130115A (ja) * 1987-11-17 1989-05-23 Konica Corp レーザービーム用レンズ系
JPH0990216A (ja) * 1995-09-22 1997-04-04 Matsushita Electric Ind Co Ltd テレセントリックfθレンズ
JP2004126194A (ja) * 2002-10-02 2004-04-22 Y E Data Inc fθレンズ
CN101093275A (zh) * 2007-07-13 2007-12-26 中国科学院上海光学精密机械研究所 大口径激光成像镜头
CN101369047A (zh) * 2008-04-28 2009-02-18 深圳市大族激光科技股份有限公司 光学镜头
CN101639565A (zh) * 2009-04-29 2010-02-03 深圳市大族激光科技股份有限公司 激光应用大孔径的光学镜头
CN102313968A (zh) * 2010-06-29 2012-01-11 深圳市大族激光科技股份有限公司 一种紫外激光fθ镜头、激光打标机及激光刻划机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135815A (en) * 1980-03-26 1981-10-23 Minolta Camera Co Ltd Lens for optical scanning
JP2673591B2 (ja) * 1989-12-20 1997-11-05 キヤノン株式会社 fθレンズ及びそれを用いたレーザー走査光学系
JP2840358B2 (ja) * 1990-02-07 1998-12-24 リコー光学株式会社 光走査装置のfθレンズ
JP3121452B2 (ja) * 1992-09-28 2000-12-25 セイコーエプソン株式会社 光走査装置
JP3266350B2 (ja) * 1993-01-18 2002-03-18 リコー光学株式会社 fθレンズおよび光走査装置
JP3201394B2 (ja) * 1999-08-10 2001-08-20 住友電気工業株式会社 fθレンズ
CN101414047B (zh) * 2008-04-28 2010-06-09 深圳市大族激光科技股份有限公司 光学镜头
CN101639564B (zh) * 2009-04-29 2010-10-06 深圳市大族激光科技股份有限公司 激光应用大孔径的光学镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130115A (ja) * 1987-11-17 1989-05-23 Konica Corp レーザービーム用レンズ系
JPH0990216A (ja) * 1995-09-22 1997-04-04 Matsushita Electric Ind Co Ltd テレセントリックfθレンズ
JP2004126194A (ja) * 2002-10-02 2004-04-22 Y E Data Inc fθレンズ
CN101093275A (zh) * 2007-07-13 2007-12-26 中国科学院上海光学精密机械研究所 大口径激光成像镜头
CN101369047A (zh) * 2008-04-28 2009-02-18 深圳市大族激光科技股份有限公司 光学镜头
CN101639565A (zh) * 2009-04-29 2010-02-03 深圳市大族激光科技股份有限公司 激光应用大孔径的光学镜头
CN102313968A (zh) * 2010-06-29 2012-01-11 深圳市大族激光科技股份有限公司 一种紫外激光fθ镜头、激光打标机及激光刻划机

Also Published As

Publication number Publication date
CN104769474A8 (zh) 2017-02-08
US9739984B2 (en) 2017-08-22
US20150293333A1 (en) 2015-10-15
CN104769474B (zh) 2017-03-29
JP6019244B2 (ja) 2016-11-02
CN104769474A (zh) 2015-07-08
EP2908163A1 (en) 2015-08-19
EP2908163B1 (en) 2017-10-04
JP2016504610A (ja) 2016-02-12
EP2908163A4 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2014067085A1 (zh) 一种超紫外激光打标Fθ镜头及激光加工设备
WO2014067097A1 (zh) 一种远红外激光加工用Fθ镜头及激光加工设备
WO2014012416A1 (zh) 一种红外激光变倍扩束***及激光加工设备
WO2014067103A1 (zh) 一种近红外激光聚焦镜头及激光印刷设备
WO2009004966A1 (ja) 撮像レンズ及び撮像装置並びに携帯端末
WO2022088307A1 (zh) 一种输出光束形状可调的高功率全光纤激光合束器
TWI664044B (zh) 一種適於在雷射加工工藝中使用的F-theta鏡頭
CN110261999B (zh) 光学***和成像镜头
WO2015024233A1 (zh) 红外大幅面远心激光打标Fθ镜头
WO2014012415A1 (zh) 一种紫外激光变倍扩束***及激光加工设备
WO2014012417A1 (zh) 一种绿光激光变倍扩束***及激光加工设备
WO2016041161A1 (zh) 远心光学镜头
WO2015024231A1 (zh) 大视场消色差镜头
WO2016082172A1 (zh) 激光刻线用光学镜头
JPH0462562B2 (zh)
CN213888711U (zh) 一种用于激光切割加工的远心透镜
WO2016029396A1 (zh) 光学镜头
WO2016086376A1 (zh) 3d打印机及其采用的镜头模组
CN207301460U (zh) 一种实现激光扫描与同轴监控一体的高倍显微物镜光路***
WO2016082171A1 (zh) F-θ型光刻镜头
CN220567132U (zh) 一种变倍照明镜头以及照明***
JP7241853B1 (ja) 対物レンズ
CN217305708U (zh) 一种用于数字无掩模光刻机的投影物镜和光刻曝光***
GB2186388A (en) Five-element copying zoom lens system
JP2001208976A (ja) 顕微鏡用対物レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887391

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14439410

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015540009

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012887391

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012887391

Country of ref document: EP