WO2014065084A1 - 電界発光素子およびその電界発光素子を用いた照明装置 - Google Patents

電界発光素子およびその電界発光素子を用いた照明装置 Download PDF

Info

Publication number
WO2014065084A1
WO2014065084A1 PCT/JP2013/076639 JP2013076639W WO2014065084A1 WO 2014065084 A1 WO2014065084 A1 WO 2014065084A1 JP 2013076639 W JP2013076639 W JP 2013076639W WO 2014065084 A1 WO2014065084 A1 WO 2014065084A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transparent electrode
refractive index
electroluminescent element
optical buffer
Prior art date
Application number
PCT/JP2013/076639
Other languages
English (en)
French (fr)
Inventor
昌宏 今田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014543210A priority Critical patent/JP6287848B2/ja
Publication of WO2014065084A1 publication Critical patent/WO2014065084A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/80Composition varying spatially, e.g. having a spatial gradient
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means

Definitions

  • the present invention relates to an electroluminescent element and an illumination device using the electroluminescent element.
  • the electroluminescent element is composed of an electroluminescent layer sandwiched between a planar cathode and an anode.
  • the anode is often a transparent electrode
  • the cathode is often a metal light reflecting electrode.
  • one of them is composed of a metal light reflecting electrode, light is extracted from the anode side of the transparent electrode and used as a single-sided light emitting device.
  • Substrate loss means the loss of light that cannot be extracted to the light extraction side due to total reflection at the interface between the transparent substrate and air, and usually has a loss of about 20%.
  • the waveguide loss means a loss of light that is totally reflected at the interface between the transparent electrode and the transparent substrate to generate a waveguide mode and is confined in the organic light emitting layer and the transparent electrode, and is usually about 20 to 25%. There is a loss.
  • Plasmon loss is a type of guided mode, where light enters a metal electrode and interacts with free electrons in the metal electrode, generating a plasmon mode and reducing the loss of light confined near the surface of the metal electrode. Meaning, there is usually a loss of about 30-40%.
  • Patent Document 1 discloses an organic light emitting device in which light use efficiency is improved by reducing waveguide loss and plasmon loss.
  • Patent Document 1 the portion that is normally a metal electrode is configured as a transparent electrode + optical buffer layer + reflecting mirror, and the refractive index of the optical buffer layer is made higher than that of the other layers to reduce plasmon loss.
  • a structure that reduces and improves light utilization efficiency is disclosed. However, further improvement in light utilization efficiency has been desired.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an electroluminescent element and an illuminating device using the electroluminescent element that can further improve the light use efficiency.
  • the optical buffer layer has a refractive index different between the light reflecting layer side and the second transparent electrode layer side, and the refractive index of the light reflecting layer side is the refractive index of the second transparent electrode layer side. Greater than rate.
  • the lighting device according to the present invention has the above-described electroluminescent element.
  • the present invention it is possible to further improve the light use efficiency in the electroluminescent element and the illumination device using the electroluminescent element.
  • FIG. 3 is a plan view of the organic electroluminescent element in the first embodiment.
  • FIG. 2 is a cross-sectional view of the organic electroluminescent element according to Embodiment 1 taken along line II-II in FIG. It is a figure which shows the material, film thickness, and refractive index of each layer of the organic electroluminescent element shown in FIG.
  • FIG. 6 is a diagram showing the result of calculating the plasmon mode light intensity distribution of the organic electroluminescent element in the first embodiment. It is the figure which expanded the organic light emitting layer vicinity of FIG. It is sectional drawing which shows the structure of the organic electroluminescent element in the background art 1.
  • FIG. 1 is a plan view of the organic electroluminescent element in the first embodiment.
  • FIG. 2 is a cross-sectional view of the organic electroluminescent element according to Embodiment 1 taken along line II-II in FIG. It is a figure which shows the material, film thickness, and refractive index of each layer of the organic electrolumin
  • FIG. 5 is a cross-sectional view showing the structure of an organic electroluminescent element in a second embodiment.
  • FIG. 6 is a cross-sectional view showing a structure of an organic electroluminescent element in a fourth embodiment.
  • FIG. 6 is a cross-sectional view showing the structure of an organic electroluminescent element in a fifth embodiment. It is a figure which shows the material, film thickness, and refractive index of each layer of the organic electroluminescent element shown in FIG. It is a figure which shows the result of having calculated the light intensity distribution of the plasmon mode of the organic electroluminescent element in Embodiment 5.
  • FIG. It is sectional drawing which shows the structure of the organic electroluminescent element in Embodiment 6.
  • FIG. 10 is a diagram illustrating a schematic configuration of a lighting device in a seventh embodiment.
  • FIG. 20 is a diagram illustrating a schematic configuration of a lighting device according to an eighth embodiment.
  • FIG. 1 is a plan view of the organic electroluminescent element 1 in the present embodiment
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1 of the organic electroluminescent element 1 in the present embodiment
  • FIG. 2 is a diagram showing the material, film thickness, and refractive index of each layer of the organic electroluminescent device 1 shown in FIG. 2
  • FIG. 4 is a diagram showing the result of calculating the plasmon mode light intensity distribution of the organic electroluminescent device 1
  • FIG. FIG. 5 is an enlarged view of the vicinity of the organic light emitting layer in FIG. 4. Note that the cross-sectional views in the following embodiments are cross-sections corresponding to the view taken along the line II-II in FIG.
  • the organic electroluminescent element 1 in the present embodiment includes a transparent substrate 10, a first transparent electrode layer 11 provided on one side of the transparent substrate 10, and a first transparent electrode layer 11.
  • the organic electroluminescent layer 20 provided on the opposite side to the side on which the transparent substrate 10 is provided, and the second transparent electrode layer provided on the opposite side of the organic electroluminescent layer 20 from the side on which the first transparent electrode layer 11 is provided. 15.
  • the organic electroluminescent layer 20 is sandwiched between the first transparent electrode layer 11 and the second transparent electrode layer 15.
  • the organic electroluminescent layer 20 includes a hole transport layer 12 located on the first transparent electrode layer 11 side, an electron transport layer 14 located on the second transparent electrode layer 15 side, and a hole transport.
  • An organic light emitting layer 13 sandwiched between the layer 12 and the electron transport layer 14 is included.
  • An optical buffer layer 16 is provided on the side of the second transparent electrode layer 15 opposite to the side on which the organic electroluminescent layer 20 is provided, and the side of the optical buffer layer 16 opposite to the side on which the second transparent electrode layer 15 is provided. Is provided with a light reflecting layer 30.
  • the refractive index of the optical buffer layer 16 is larger on the light reflecting layer 30 side than on the second transparent electrode layer 15 side.
  • the optical buffer layer 16 includes a first optical buffer layer 16a provided on the second transparent electrode layer 15 side, and a second optical buffer layer 16b provided on the light reflecting layer 30 side, and the second optical buffer layer 16b is provided.
  • the refractive index n2 of the buffer layer 16b is larger than the refractive index n1 of the first optical buffer layer 16a (n2> n1).
  • each layer constituting the organic electroluminescent element 1 having the above-described configuration will be described.
  • Glass is used for the transparent substrate 10.
  • the refractive index is 1.50.
  • 150 nm-thick ITO mixture of indium oxide and tin oxide
  • the refractive index is 1.83 + 0.007i.
  • ⁇ -NPD having a thickness of 40 nm is used.
  • ⁇ -NPD is 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl.
  • the refractive index is 1.78.
  • Alq3 having a film thickness of 30 nm is used.
  • Alq3 is tris (8-quinolinolato) aluminum.
  • the refractive index is 1.72 + 0.005i.
  • Alq3 having a film thickness of 40 nm is used.
  • the refractive index is 1.72 + 0.005i.
  • Ag having a thickness of 9 nm is used.
  • the refractive index is 0.128 + 3.17i.
  • the first optical buffer layer 16a Ta 2 O 5 having a thickness of 50 nm is used as a dielectric film.
  • the refractive index is 1.81.
  • the second optical buffer layer 16b the following three types of films were used in order to cause a refractive index difference with the first optical buffer layer 16a.
  • Ta 2 O 5 having a refractive index of 1.81, HfO 2 having a refractive index of 1.93, and Si 3 N 4 having a refractive index of 2.03 were used.
  • the refractive index difference ( ⁇ n) with Ta 2 O 5 is 0.00
  • the refractive index difference ( ⁇ n) with HfO 2 is 0.12
  • the refractive index difference ( ⁇ n) with Si 3 N 4 is 0.22. .
  • the light reflecting layer 30 is made of Ag having a thickness of 100 nm.
  • the refractive index is 0.128 + 3.17i.
  • 530 nm was used as the emission wavelength.
  • the calculation results in the other embodiments described below are the same, and the wavelength is used.
  • the horizontal axis indicates the relative distance based on the back surface of the organic electroluminescent element 1, and the left vertical axis indicates the normalized light intensity.
  • the refractive index difference ( ⁇ n) between the first optical buffer layer 16a and the second optical buffer layer 16b is changed from 0.00 to 0.22 using the above-described materials. It is a calculation result of the light intensity distribution of the plasmon mode.
  • the refractive index n2 of the second optical buffer layer 16b is larger than the refractive index n1 of the first optical buffer layer 16a.
  • the refractive index n1 of the first optical buffer layer 16a is fixed at 1.81
  • the refractive index n2 of the second optical buffer layer 16b is 2.03, 1.93, and 1.81, using the above-described film materials. Changed.
  • the plasmon mode is generated at the interface between the electron transport layer 14 and the second transparent electrode layer 15 which is the metal surface, so that the light intensity distribution thereof is the second transparent which is the metal electrode surface.
  • the electrode layer 15 is strongest.
  • the plasmon mode distributed in the second transparent electrode layer 15 constituting the organic electroluminescent layer 20 is decreased, and the intensity of the plasmon mode distributed in the organic light emitting layer 13 is decreased.
  • the ratio of the light generated in the organic light emitting layer 13 to be coupled to the plasmon mode is reduced, so that the plasmon loss can be reduced.
  • the use efficiency of light in the organic electroluminescent element 1 can be improved.
  • the material used for each layer of the organic electroluminescent element 1 is not limited to the above, and the following materials can be used.
  • the transparent substrate 10 can be made of a transparent material suitable for the emission wavelength of the organic electroluminescent element 1, such as quartz, sapphire, and plastic, in addition to glass. If a flexible material such as very thin glass or resin film is used, the light source can be curved.
  • the organic electroluminescent device 1 shown in FIGS. 1 and 2 has a bottom emission configuration in which each layer is stacked on the transparent substrate 10 and light is extracted from the transparent substrate 10 side.
  • the light reflecting layer 30 is a substrate for stacking.
  • a top emission configuration in which light is extracted from the side opposite to the substrate.
  • ITO mixed indium oxide and tin oxide
  • IZO mixed indium oxide and zinc oxide
  • IGZO indium (In) Oxidize gallium (Ga) and zinc (Zn) to give crystallinity
  • conductive metal oxide material transparent oxide semiconductor
  • ZnO transparent oxide semiconductor
  • SnO 2 transparent oxide semiconductor
  • CuI thin translucent Metal thin film
  • a conductive resin PEDOT / PSS, etc.
  • a film in which conductive wires and conductive fine particles such as carbon nanotubes, metal nanowires such as Ag, and nanoparticles of Ag and Cu are dispersed in the conductive resin is used. It may be used.
  • a metal thin film may be used for one of the first transparent electrode layer 11 and the second transparent electrode layer 15, and a film made of a conductive metal oxide may be used for either of the other.
  • the second transparent electrode layer 15 on the cathode side has a metal thin film having a work function suitable for electron injection
  • the first transparent electrode layer 11 on the anode side has a work function suitable for hole injection. It is preferable to use a conductive metal oxide.
  • ITO for the first transparent electrode layer 11 and a silver thin film for the second transparent electrode layer 15.
  • ITO has the advantage of high light transmittance
  • the metal thin film has the advantage that it can be formed at a low temperature.
  • a film thickness of several nanometers to several tens of nanometers is suitable for increasing the light transmittance.
  • the conductive metal oxide has a thickness of 10 nm to 200 nm suitable for reducing the surface resistance.
  • the hole transport layer 12 As the hole transport layer 12, the organic light emitting layer 13, and the electron transport layer 14 constituting the organic electroluminescent layer 20, various materials generally used in organic EL elements can be used.
  • an electron injection layer, a hole injection layer, a carrier block layer, and the like may be combined.
  • the optical buffer layer 16 in addition to various organic materials that are transparent at the emission wavelength of the organic EL, TiO 2 , SiO 2 , ZnO, Al 2 O 3 , Ta 2 O 5 , HfO 2 , ZrO 2 , KTaO 3 , MgO
  • a material such as Si 3 N 4 , AlN, GaN, SiC, or Y 2 O 3 can be used.
  • a material whose refractive index is adjusted by mixing fine particles having a diameter of 100 nm or less, such as TiO 2 and ZrO 2 , with an organic resin may be used.
  • a metal material such as Ag, Al, Au, Sn, Ti, Ni, Na, Ca, Zn, an alloy containing any of them can be used, and light may be reflected.
  • a dielectric mirror in which dielectric films such as TiO 2 / SiO 2 are laminated in multiple layers may be used.
  • the organic electroluminescent element 1 shown in FIG. 2 has a bottom emission configuration, but may have a top emission configuration in which the layer configuration is reversed. Furthermore, the cathode and the anode may be reversed. That is, in order from the substrate side, substrate 10 / first transparent electrode layer 11 (cathode) / electron transport layer 14 / organic light emitting layer 13 / hole transport layer 12 / second transparent electrode layer 15 (anode) / first optical buffer.
  • the layer 16a / second optical buffer layer 16b / light reflecting layer 30 may be arranged in this order.
  • FIG. 6 is a cross-sectional view showing the structure of the organic electroluminescent element 2 in the background art 1
  • FIG. 7 is a diagram showing the material, film thickness, and refractive index of each layer of the organic electroluminescent element 2 shown in FIG. 6, and FIG. It is a figure which shows the result of having calculated the light intensity distribution of the plasmon mode of the organic electroluminescent element in the background art 1.
  • FIG. 9 is a cross-sectional view showing the structure of the organic electroluminescent element 3 in Background Art 2
  • FIG. 10 is a diagram showing the material, film thickness, and refractive index of each layer of the organic electroluminescent element 3 shown in FIG. It is a figure which shows the result of having calculated the light intensity distribution of the plasmon mode of the organic electroluminescent element in the background art 2.
  • FIG. 9 is a cross-sectional view showing the structure of the organic electroluminescent element 3 in Background Art 2
  • FIG. 10 is a diagram showing the material, film thickness, and refractive
  • the organic electroluminescent element 2 in the background art 1 includes a transparent substrate 10, a first transparent electrode layer 11 provided on one surface side of the transparent substrate 10, and a transparent substrate of the first transparent electrode layer 11. 10 is provided with an organic electroluminescent layer 20 provided on the opposite side to the side on which 10 is provided, and a metal electrode layer 15A provided on the opposite side of the organic electroluminescent layer 20 from the side on which the first transparent electrode layer 11 is provided. The organic electroluminescent layer 20 is sandwiched between the first transparent electrode layer 11 and the metal electrode layer 15A.
  • the organic electroluminescent layer 20 includes a hole transport layer 12 located on the first transparent electrode layer 11 side, an electron transport layer 14 located on the metal electrode layer 15A side, a hole transport layer 12 and an electron transport layer 14. And an organic light emitting layer 13 sandwiched therebetween.
  • the material, film thickness, and refractive index of each layer constituting the organic electroluminescent element 2 having the above-described configuration will be described.
  • Glass is used for the transparent substrate 10.
  • the refractive index is 1.50.
  • 150 nm-thick ITO mixture of indium oxide and tin oxide
  • the refractive index is 1.83 + 0.007i.
  • the hole transport layer 12 For the hole transport layer 12, ⁇ -NPD having a thickness of 40 nm is used. The refractive index is 1.78.
  • Alq3 having a film thickness of 30 nm is used.
  • Alq3 having a film thickness of 40 nm is used.
  • the refractive index is 1.72 + 0.005i.
  • the metal electrode layer 15A as the cathode Ag with a film thickness of 100 nm is used.
  • the refractive index is 0.128 + 3.17i.
  • the buffer layer is not provided, and it can be considered that the metal electrode layer 15A also serves as the light reflecting layer.
  • FIG. 8 shows the calculation result of the light intensity distribution of the plasmon mode in the organic electroluminescent element 2 having the above configuration.
  • the horizontal axis indicates the relative distance based on the back surface of the organic electroluminescent element 2
  • the left vertical axis indicates the normalized light intensity.
  • the plasmon mode has the strongest intensity on the metal surface, and decreases exponentially with increasing distance from the metal surface, but the organic luminescent layer 13 has a strong plasmon mode of about 0.4 to 0.5. Is present. A part of the light emitted from the organic light emitting layer 13 is coupled to the plasmon mode, and is eventually lost as a plasmon loss. Therefore, in order to reduce the plasmon loss, it is important to reduce the light intensity of the plasmon mode existing in the organic light emitting layer 13 as much as possible.
  • the organic electroluminescent element 3 in the background art 2 includes a transparent substrate 10, a first transparent electrode layer 11 provided on one surface side of the transparent substrate 10, and a transparent substrate of the first transparent electrode layer 11.
  • the organic electroluminescent layer 20 is sandwiched between the first transparent electrode layer 11 and the second transparent electrode layer 15.
  • the organic electroluminescent layer 20 includes a hole transport layer 12 located on the first transparent electrode layer 11 side, an electron transport layer 14 located on the second transparent electrode layer 15 side, a hole transport layer 12 and an electron transport layer 14. And an organic light emitting layer 13 sandwiched between.
  • An optical buffer layer 16 is provided on the side of the second transparent electrode layer 15 opposite to the side on which the organic electroluminescent layer 20 is provided, and the side of the optical buffer layer 16 opposite to the side on which the second transparent electrode layer 15 is provided. Is provided with a light reflecting layer 30.
  • the material, film thickness, and refractive index of each layer constituting the organic electroluminescent element 3 having the above configuration will be described.
  • Glass is used for the transparent substrate 10.
  • the refractive index is 1.50.
  • For the first transparent electrode layer 11 as the anode 150 nm-thick ITO (mixture of indium oxide and tin oxide) is used.
  • the refractive index is 1.83 + 0.007i.
  • the hole transport layer 12 For the hole transport layer 12, ⁇ -NPD having a film thickness of 40 nm is used. The refractive index is 1.78.
  • Alq3 having a film thickness of 30 nm is used.
  • Alq3 having a film thickness of 40 nm is used.
  • the refractive index is 1.72 + 0.005i.
  • Ag with a film thickness of 100 nm is used.
  • the refractive index is 0.128 + 3.17i.
  • the first optical buffer layer 16 uses Ta 2 O 5 having a thickness of 100 nm as a dielectric film.
  • the refractive index is 1.81.
  • the light reflecting layer 30 is made of Ag having a thickness of 100 nm.
  • the refractive index is 0.128 + 3.17i.
  • FIG. 11 shows the result of calculating the light intensity distribution of the plasmon mode in the organic electroluminescent element 3 having the above configuration.
  • the horizontal axis indicates the relative distance based on the back surface of the organic electroluminescent element 3, and the left vertical axis indicates the normalized light intensity.
  • the second transparent electrode layer 15 is a thin film metal electrode, and the side on which the organic electroluminescent layer 20 is provided of the second transparent electrode layer 15.
  • the optical buffer layer 16 reffractive index 1.81
  • the light reflecting layer 30 By providing the optical buffer layer 16 (refractive index 1.81) and the light reflecting layer 30 on the opposite side, the distance between the organic electroluminescent layer 20 and the light reflecting layer 30 is as shown in FIG. It is possible to be farther than in the case of 2.
  • the intensity of the plasmon mode distributed in the organic light emitting layer 13 can be reduced to 0.2 or less.
  • the optical buffer layer 16 has different refractive indexes on the light reflection layer 30 side and the second transparent electrode layer 15 side, and the refraction on the light reflection layer 30 side.
  • the refractive index is larger than the refractive index on the second transparent electrode layer 15 side.
  • the optical buffer layer 16 includes a first optical buffer layer 16a provided on the second transparent electrode layer 15 side, and a second optical buffer layer 16b provided on the light reflecting layer 30 side, and the second optical buffer layer 16b is provided.
  • a configuration is adopted in which the refractive index n2 of the buffer layer 16b is larger than the refractive index n1 of the first optical buffer layer 16a.
  • the intensity of the plasmon mode distributed in the organic light emitting layer 13 is 0.15 or less when the refractive index difference ( ⁇ n) is 0.12. In the case where the refractive index difference ( ⁇ n) is 0.22, the intensity of the plasmon mode distributed in the organic light emitting layer 13 is reduced to 0.125 or less.
  • the refractive index difference (n1) between the refractive index n1 of the first optical buffer layer 16a and the refractive index n2 of the second optical buffer layer 16b is made larger than 0.00, the ratio of the light generated in the organic light emitting layer 13 to be coupled to the plasmon mode is reduced, and the plasmon loss can be reduced. As a result, it is possible to improve the light use efficiency in the organic electroluminescent element 1.
  • FIG. 12 is a cross-sectional view showing the structure of the organic electroluminescent element 1A in the present embodiment
  • FIG. 13 is a diagram showing the result of calculating the plasmon mode light intensity distribution of the organic electroluminescent element 1A.
  • the optical buffer layer 16 has different refractive indexes on the light reflecting layer 30 side and the second transparent electrode layer 15 side, and the refractive index on the light reflecting layer 30 side. This has a configuration in which the refractive index is larger than the refractive index on the second transparent electrode layer 15 side.
  • the optical buffer layer 16 includes a first optical buffer layer 16a provided on the second transparent electrode layer 15 side, and a second optical buffer layer 16b provided on the light reflecting layer 30 side, and the second optical buffer layer 16b is provided.
  • a configuration in which the refractive index n2 of the buffer layer 16b is larger than the refractive index n1 of the first optical buffer layer 16a is adopted.
  • the optical buffer layer 16A has a single layer structure.
  • light is reflected from the second transparent electrode layer 15 side so that the refractive index of the optical buffer layer 16 is larger on the light reflecting layer 30 side than on the second transparent electrode layer 15 side.
  • a structure that changes gradually toward the layer 30 side is adopted.
  • Other configurations are the same as those of the organic electroluminescent element 1 in the first embodiment.
  • the refractive index between them is n1.
  • the plasmon mode normalized light intensity distribution was calculated for the case of gradually changing from n to n2. Specifically, the refractive index of the optical buffer layer 16A is gradually changed from 1.82 to 1.93 and 2.03 from the second transparent electrode layer 15 side toward the light reflecting layer 30 side. I let you.
  • the optical buffer layer 16A is made of, for example, a material in which a material 1 having a refractive index n1 and a material 2 having a refractive index n2 are mixed, and the ratio of the material 1 and the material 2 is the second transparent electrode layer 15.
  • a mixing method that gradually changes from the side toward the light reflecting layer 30 side can be considered.
  • a conductive material may be used for the optical buffer layer 16.
  • the second transparent electrode 15, the optical buffer layer 16 (the first optical buffer layer 16 a and the second optical buffer layer 16 b), and the light reflecting layer 30 as a whole contribute to conduction.
  • the resistance value of the light emitting element can be reduced.
  • FIG. 14 shows a cross-sectional structure of organic electroluminescent element 1B in the fourth embodiment.
  • the optical buffer layer 16 (at least one of the first optical buffer layer 16a and the second optical buffer layer 16b) has fine particles 16c having a light scattering effect. May be added.
  • light (waveguide mode or glass mode) guided inside the organic electroluminescent element 1B can be extracted to the outside of the organic electroluminescent element 1B by scattering, and the light utilization efficiency is further improved. improves.
  • fine particles 16c having a light scattering effect are added to both the first optical buffer layer 16a and the second optical buffer layer 16b. At least one of the first optical buffer layer 16a and the second optical buffer layer 16b may be used. Moreover, you may make it add the microparticles
  • the size of the fine particles 16c is preferably 100 nm or less if only the refractive index adjustment is performed, and 100 nm or more if the scattering effect is expected.
  • the material of the fine particles 16c inorganic materials such as SiO 2 , ZrO 2 and TiO 2 , organic materials such as PMMA (Poly methyl methacrylate), etc. can be used in combination.
  • the addition amount is preferably 1 wt% (deposition percentage) or more, and this configuration can also be adopted in each embodiment described below.
  • FIG. 15 is a cross-sectional view showing the structure of the organic electroluminescent element 1C in the present embodiment
  • FIG. 16 is a diagram showing the material, film thickness, and refractive index of each layer of the organic electroluminescent element 1C shown in FIG. These are figures which show the result of having calculated the light intensity distribution of the plasmon mode of the organic electroluminescent element in this Embodiment.
  • the refractive index of the optical buffer layers 16 and 16A (the refractive index on the second transparent electrode layer side) is higher than the refractive index of the organic light emitting layer 13. . If the refractive index of the optical buffer layers 16 and 16A is higher than the refractive index of the organic light emitting layer 13, the optical distance can be increased, which is advantageous in reducing the plasmon mode. Therefore, in the present embodiment, it will be described that the same effect can be obtained even when the refractive indexes of the optical buffer layers 16 and 16A are 1.65 + ⁇ n and are lower than those of other layers.
  • the optical buffer layer 16 having the two-layer structure of the first optical buffer layer 16a and the second optical buffer layer 16b which is employed in the first embodiment, is employed.
  • FIG. 15 shows an organic electroluminescent element 1C according to the present embodiment. Except for the first optical buffer layer 16a and the second optical buffer layer 16b constituting the optical buffer layer 16, the other configurations are the same as those of the organic electroluminescent element 1 in the first embodiment shown in FIGS.
  • TYZ65 having a film thickness of 50 nm is used for the first optical buffer layer 16a.
  • the refractive index is 1.65.
  • TYZ65 is a product number of a high refractive type hard coating agent “LIODURAS (registered trademark)” manufactured by Toyo Ink Co., Ltd.
  • the following five types of films were used in order to cause a refractive index difference with the first optical buffer layer 16a.
  • TYZ65 with a refractive index of 1.65, MgO with a refractive index of 1.74, Ta 2 O 5 with a refractive index of 1.81, HfO 2 with a refractive index of 1.93, and Si 3 N 4 with a refractive index of 2.03 were used.
  • the refractive index difference ( ⁇ n) from TYZ65 is 0.00
  • the refractive index difference ( ⁇ n) from MgO having a refractive index of 1.74 is 0.09
  • the refractive index difference ( ⁇ n) from Ta 2 O 5 is 0.16.
  • the difference in refractive index ( ⁇ n) from HfO 2 is 0.28
  • the difference in refractive index ( ⁇ n) from Si 3 N 4 is 0.38.
  • FIG. 17 shows the result of calculating the plasmon mode light intensity distribution in the organic electroluminescent element 1C having the above-described film configuration.
  • 530 nm was used as the emission wavelength.
  • the horizontal axis indicates the relative distance based on the back surface of the organic electroluminescent element 1, and the left vertical axis indicates the normalized light intensity.
  • the optical buffer layer 16 has a two-layer structure of the first optical buffer layer 16a and the second optical buffer layer 16b.
  • optical buffer layer 16 has a two-layer structure of the first optical buffer layer 16a and the second optical buffer layer 16b, and the same applies to the organic electroluminescent element 1A according to the second embodiment. The effect of this can be obtained.
  • FIG. 18 is a cross-sectional view showing the structure of the organic electroluminescent element 1D in the present embodiment
  • FIG. 19 is a diagram showing the material, film thickness, and refractive index of each layer of the organic electroluminescent element 1D shown in FIG. These are figures which show the result of having calculated the light intensity distribution of the plasmon mode of the organic electroluminescent element in this Embodiment.
  • the first optical buffer layer 16a and the second optical buffer layer 16b are the same. Comparison was made between a case where the refractive index is present (case 1) and a case where the relationship between the refractive index n1 of the first optical buffer layer 16a and the refractive index n2 of the second optical buffer layer 16b is n1 ⁇ n2 (case 2). Is. In case 2, the refractive index is different from that of the first and fifth embodiments in the material of the first optical buffer layer 16a. Other configurations are the same as those of the organic electroluminescent element 1 according to the first embodiment shown in FIGS.
  • TYZ69 is a product number of a high refractive type hard coat agent “LIODURAS (registered trademark)” manufactured by Toyo Ink Co., Ltd.
  • FIG. 20 shows the result of calculating the plasmon mode light intensity distribution in the organic electroluminescent element 1D having the above-described film configuration.
  • 530 nm was used as the emission wavelength.
  • the horizontal axis indicates the relative distance based on the back surface of the organic electroluminescent element 1, and the left vertical axis indicates the normalized light intensity.
  • the high refractive index layer (second optical buffer layer 16 b) / low refractive index layer (first optical buffer) compared to Case 1 consisting of a single refractive index layer. It can be seen that in the case 2 consisting of two layers 16a), the plasmon mode distributed in the organic light emitting layer 13 is reduced, and there is an effect of reducing the plasmon loss.
  • FIG. 21 shows a schematic configuration of lighting apparatus 1000 in the present embodiment.
  • the lighting device 1000 in the present embodiment is a ceiling lighting device using the organic electroluminescent element 1100 in each of the above embodiments on a ceiling 1200 of a room.
  • FIG. 22 shows a schematic configuration of lighting apparatus 2000 in the present embodiment.
  • the lighting device 2000 in the present embodiment is a lighting stand, and the organic electroluminescent element 2200 in each of the above embodiments is used for the head 2100 portion.
  • the electroluminescent element and the illuminating device using the electroluminescent element in the present embodiment the electroluminescent element and the illuminating device using the electroluminescent element that can further improve the utilization efficiency of light. It is possible to provide.
  • 1, 1A, 1B, 1C, 1D, 1000 2000 Organic electroluminescent element, 10 transparent substrate, 11 first transparent electrode layer, 12 hole transport layer, 13 organic light emitting layer, 14 electron transport layer, 15 second transparent electrode Layer, 15A metal electrode layer, 16, 16A, 16B optical buffer layer, 16a first optical buffer layer, 16b second optical buffer layer, 16c fine particles, 20 organic electroluminescent layer, 30 light reflecting layer, 1000 illumination device, 1200 ceiling 2000 lighting equipment, 2100 heads.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 この電界発光素子(1)は、第1透明電極層(11)と、第2透明電極層(15)と、第1透明電極層(11)と第2透明電極層(15)とに挟まれた電界発光層(20)と、第2透明電極層(15)の電界発光層(20)が設けられる側とは反対側に設けられる光学バッファ層(16)と、光学バッファ層(16)の第2透明電極層(15)が設けられる側とは反対側に設けられる光反射層(30)とを備え、光学バッファ層(16)は、光反射層(30)側と第2透明電極層(16)側とで異なる屈折率を有し、光反射層(30)側の屈折率が第2透明電極層(16)側の屈折率よりも大きい。

Description

電界発光素子およびその電界発光素子を用いた照明装置
 この発明は、電界発光素子およびその電界発光素子を用いた照明装置に関する。
 近年、有機EL(Electro-Luminescence)、無機EL等の電界発光素子を用いた発光効率の高い面光源が注目を集めている。電界発光素子は平面型の陰極と陽極とに挟まれた電界発光層から構成される。一般的には陽極を透明電極とし、陰極を金属製の光反射電極に構成される場合が多い。一方を金属製の光反射電極で構成した場合には、光は透明電極の陽極側から取り出され、片面発光型の発光デバイスとして用いられている。
 たとえば、従来の有機発光素子においては、基板損失、導波損失およびプラズモン損失が生じることから、それらの損失を少なくし、より多くの光を取り出すことが課題となっている。
 基板損失とは、透明基板と空気との界面で全反射して光取り出し側に取り出せない光の損失を意味し、通常20%程度の損失がある。
 導波損失とは、透明電極と透明基板との界面で全反射して導波モードが発生し、有機発光層及び透明電極内に閉じ込められる光の損失を意味し、通常20~25%程度の損失がある。
 プラズモン損失とは、導波モードの一種であり、光が、金属電極へ入射して金属電極内の自由電子と作用し、プラズモンモードが発生して金属電極の表面近傍に閉じ込められる光の損失を意味し、通常30~40%程度の損失がある。
 特開2011-233288号公報(特許文献1)には、導波損失およびプラズモン損失を減らすことで、光の利用効率を向上させた有機発光素子が開示されている。
特開2011-233288号公報
 特許文献1においては、通常金属電極となっている部分を、透明電極+光学バッファ層+反射ミラーの構成にし、さらに光学バッファ層の屈折率を、他の層よりも高くすることでプラズモン損失を低減し、光の利用効率を向上する構造を開示している。しかし、光の利用効率の更なる向上が望まれてきている。
 本発明は、上記問題に鑑みてなされたものであり、光の利用効率の更なる向上を可能とする、電界発光素子およびその電界発光素子を用いた照明装置を提供することを目的とする。
 この発明に基づいた電界発光素子においては、第1透明電極層と、第2透明電極層と、上記第1透明電極層と上記第2透明電極層とに挟まれた電界発光層と、上記第2透明電極層の上記電界発光層が設けられる側とは反対側に設けられる光学バッファ層と、上記光学バッファ層の上記第2透明電極層が設けられる側とは反対側に設けられる光反射層とを備え、上記光学バッファ層は、上記光反射層側と上記第2透明電極層側とで異なる屈折率を有し、上記光反射層側の屈折率が上記第2透明電極層側の屈折率よりも大きい。
 この発明に基づいた照明装置においては、上述の電界発光素子を有する。
 この発明によれば、電界発光素子およびその電界発光素子を用いた照明装置において、光の利用効率の更なる向上を可能とする。
実施の形態1における有機電界発光素子の平面図である。 実施の形態1における有機電界発光素子の図1中のII-II線矢視断面図である。 図2に示す有機電界発光素子の各層の材料、膜厚、屈折率を示す図である。 実施の形態1における有機電界発光素子のプラズモンモードの光強度分布を計算した結果を示す図である。 図4の有機発光層近傍を拡大した図である。 背景技術1における有機電界発光素子の構造を示す断面図である。 図6に示す有機電界発光素子の各層の材料、膜厚、屈折率を示す図である。 背景技術1における有機電界発光素子のプラズモンモードの光強度分布を計算した結果を示す図である。 背景技術2における有機電界発光素子の構造を示す断面図である。 図9に示す有機電界発光素子の各層の材料、膜厚、屈折率を示す図である。 背景技術2における有機電界発光素子のプラズモンモードの光強度分布を計算した結果を示す図である。 実施の形態2における有機電界発光素子の構造を示す断面図である。 実施の形態2における有機電界発光素子のプラズモンモードの光強度分布を計算した結果を示す図である。 実施の形態4における有機電界発光素子の構造を示す断面図である。 実施の形態5における有機電界発光素子の構造を示す断面図である。 図15に示す有機電界発光素子の各層の材料、膜厚、屈折率を示す図である。 実施の形態5における有機電界発光素子のプラズモンモードの光強度分布を計算した結果を示す図である。 実施の形態6における有機電界発光素子の構造を示す断面図である。 図18に示す有機電界発光素子の各層の材料、膜厚、屈折率を示す図である。 実施の形態6における有機電界発光素子のプラズモンモードの光強度分布を計算した結果を示す図である。 実施の形態7における照明装置の概略構成を示す図である。 実施の形態8における照明装置の概略構成を示す図である。
 本発明に基づいた各実施の形態における電界発光素子およびその電界発光素子を用いた照明装置について、以下、図を参照しながら説明する。なお、以下に説明する各実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。また、同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。また、各実施の形態における構成を適宜組み合わせて用いることは当初から予定されていることである。
 (実施の形態1)
 図1から図5を参照して、実施の形態1における有機電界発光素子1について説明する。図1は、本実施の形態における有機電界発光素子1の平面図、図2は、本実施の形態における有機電界発光素子1の図1中のII-II線矢視断面図、図3は、図2に示す有機電界発光素子1の各層の材料、膜厚、屈折率を示す図、図4は、有機電界発光素子1のプラズモンモードの光強度分布を計算した結果を示す図、図5は、図4の有機発光層近傍を拡大した図である。なお、以下に示す各実施の形態における断面図は、図1中のII-II線矢視に相当する断面である。
 図1および2を参照して、本実施の形態における有機電界発光素子1は、透明基板10と、透明基板10の一方面側に設けられる第1透明電極層11と、第1透明電極層11の透明基板10が設けられる側とは反対側に設けられる有機電界発光層20と、有機電界発光層20の第1透明電極層11が設けられる側とは反対側に設けられる第2透明電極層15とを備える。有機電界発光層20は、第1透明電極層11と第2透明電極層15とにより挟み込まれる。
 本実施の形態においては、有機電界発光層20は、第1透明電極層11側に位置する正孔輸送層12と、第2透明電極層15側に位置する電子輸送層14と、正孔輸送層12と電子輸送層14とにより挟み込まれる有機発光層13とを含む。
 第2透明電極層15の有機電界発光層20が設けられる側とは反対側には光学バッファ層16が設けられ、この光学バッファ層16の第2透明電極層15が設けられる側とは反対側には、光反射層30が設けられている。
 本実施の形態では、光学バッファ層16の屈折率が、光反射層30側の方が、第2透明電極層15側よりも大きく設けられている。具体的には、光学バッファ層16は、第2透明電極層15側に設けられる第1光学バッファ層16aと、光反射層30側に設けられる第2光学バッファ層16bとを含み、第2光学バッファ層16bの屈折率n2は、第1光学バッファ層16aの屈折率n1よりも大きい(n2>n1)。
 図3を参照して、上記構成の有機電界発光素子1を構成する各層の材料、膜厚、屈折率の一例について説明する。透明基板10には、ガラスが用いられる。屈折率は1.50である。陽極としての第1透明電極層11には、膜厚150nmのITO(インジウム酸化物と錫酸化物の混合体)が用いられる。屈折率は、1.83+0.007iである。
 正孔輸送層12には、膜厚40nmのα-NPDが用いられる。α-NPDは、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニルである。屈折率は、1.78である。有機発光層13には、膜厚30nmのAlq3が用いられる。Alq3は、トリス(8-キノリノラト)アルミニウムである。屈折率は、1.72+0.005iである。電子輸送層14には、膜厚40nmのAlq3が用いられる。屈折率は、1.72+0.005iである。陰極としての第2透明電極層15には、膜厚9nmのAgが用いられる。屈折率は、0.128+3.17iである。
 第1光学バッファ層16aには、誘電体膜として、膜厚50nmのTaが用いられる。屈折率は、1.81である。第2光学バッファ層16bには、第1光学バッファ層16aと屈折率差を生じさせるために、以下の3種類の膜を用いた場合について計算を行なった。屈折率1.81のTa、屈折率1.93のHfO、および屈折率2.03のSiを用いた。Taとの屈折率差(Δn)は0.00、HfOとの屈折率差(Δn)は0.12、Siとの屈折率差(Δn)は0.22となる。
 光反射層30には、膜厚100nmのAgが用いられる。屈折率は、0.128+3.17iである。
 以上の膜構成を備える有機電界発光素子1におけるプラズモンモードの光強度分布を計算した結果を、図4および図5に示す。なお、計算には発光波長として、530nmを用いた。以下に示す他の実施の形態における計算結果も同じで波長を用いている。図において、横軸は有機電界発光素子1の裏面を基準とした相対距離を示し、左縦軸は規格化光強度を示す。
 図4および図5においては、第1光学バッファ層16aと第2光学バッファ層16bとの屈折率差(Δn)を、上記した材料を用いて、0.00から、0.22まで変化させたときのプラズモンモードの光強度分布の計算結果である。ただし、第2光学バッファ層16bの屈折率n2は、第1光学バッファ層16aの屈折率n1よりも大きい屈折率である。第1光学バッファ層16aの屈折率n1は1.81に固定し、第2光学バッファ層16bの屈折率n2を、上記した膜材料を用いて、2.03、1.93、1.81と変化させた。
 図4および図5から明らかなように、プラズモンモードは金属表面である電子輸送層14と第2透明電極層15との界面で発生するため、その光強度分布は金属電極表面である第2透明電極層15でもっとも強くなる。
 屈折率差を0.00より大きくすることで、有機電界発光層20を構成する第2透明電極層15に分布するプラズモンモードが減少し、有機発光層13に分布するプラズモンモードの強度が低下していることが分かる。これによって、有機発光層13で生じる光がプラズモンモードに結合する割合が減少することでプラズモン損失の低減を図ることが可能となる。その結果、有機電界発光素子1における光の利用効率の向上を図ることを可能としている。
 有機電界発光素子1の各層に用いられる材料は、上記に限定されず、以下に示す材料を用いることができる。
 透明基板10には、ガラス以外に、石英、サファイア、プラスチックなど、有機電界発光素子1の発光波長に適した透明な材料を用いることができる。非常に薄いガラス、樹脂フィルムなどフレキシブルな材料を用いれば、光源を湾曲させることができる。
 なお、図1および図2に示す有機電界発光素子1は、透明基板10上に各層を積層し、透明基板10側から光を取り出すボトムエミッション構成であるが、光反射層30を積層用の基板として用い、この基板とは反対側から光を取り出すトップエミッション構成としてもよい。
 第1透明電極層11および第2透明電極層15には、ITO(インジウム酸化物と錫酸化物の混合体)、IZO(インジウム酸化物と亜鉛酸化物の混合体)、IGZO(インジウム(In)、ガリウム(Ga)および亜鉛(Zn)を酸化(Oxidize)させ、結晶性を持たせた半導体)、ZnO、SnO、CuIなどの導電性金属酸化物材料(透明酸化物半導体)、薄く透光性のある金属薄膜(金属材料としてはAg、Al、Au、Sn、Ti、Ni、Na、Ca、Znなどの金属材料やそれらのいずれかを含む合金などを用いることができ、導電性があるものであれば良い)、またはそれらを組み合わせた膜、たとえば、MIM(金属/ITO/金属)電極を用いてもよい。
 さらには、導電性樹脂(PEDOT/PSS等)を用い、導電性樹脂にカーボンナノチューブ、Ag等金属のナノワイヤー、Ag、Cuのナノ粒子などの導電性ワイヤー・導電性微粒子を分散させた膜を用いてもよい。
 また、第1透明電極層11および第2透明電極層15のいずれか一方には、金属薄膜が用いられ、いずれか他方には、導電性金属酸化物からなる膜が用いられてもよい。特に、陰極側としての第2透明電極層15には、電子注入に適した仕事関数を持つ金属薄膜、陽極側としての第1透明電極層11には、正孔注入に適した仕事関数を持つ導電性金属酸化物を用いることが好ましい。
 特に、第1透明電極層11にITOを用い、第2透明電極層15に銀薄膜を用いる形態が好適である。ITOには光透過率が高いという利点があり、金属薄膜には低温で成膜できるという利点がある。また、金属薄膜は、透明電極として用いる場合には光透過率を上げるために数nm~数10nmの膜厚が適している。また、導電性金属酸化物は、面抵抗を下げるために10nm~200nmの膜厚が適している。
 有機電界発光層20を構成する正孔輸送層12、有機発光層13、および、電子輸送層14としては、一般的に有機EL素子で使われている各種材料を使うことができる。またそれ以外に電子注入層、正孔注入層、キャリアブロック層などを組み合わせてもよい。
 光学バッファ層16としては、有機ELの発光波長において透明な各種有機材料に加えて、TiO、SiO、ZnO、Al、Ta、HfO、ZrO、KTaO、MgO、Si、AlN、GaN、SiC、Yなどの材料を用いることができる。さらには、有機樹脂にTiO、ZrOなどの直径100nm以下の微粒子を混ぜ込むことで、屈折率を調整したような材料を用いてもよい。
 光反射層30としては、Ag、Al、Au、Sn、Ti、Ni、Na、Ca、Znなどの金属材料やそれらのいずれかを含む合金などを用いることができ、光を反射すればよい。またTiO/SiOなどの誘電体膜を多層に積層させた誘電体ミラーでもよい。
 図2に示す有機電界発光素子1は、ボトムエミッション構成であるが、層構成を逆にしたトップエミッション構成でもよい。さらには、陰極と陽極とが逆転してもよい。つまり基板側から順番に、基板10/第1透明電極層11(陰極)/電子輸送層14/有機発光層13/正孔輸送層12/第2透明電極層15(陽極)/第1光学バッファ層16a/第2光学バッファ層16b/光反射層30の順番の構成でもよい。
 有機材料は、酸素や水分により劣化するため、ガスバリア層で封止して使用されるが、封止のための層および構造の図示は省略している。
 図4および図5に示した本実施の形態における有機電界発光素子1によって得られる効果を明確にするために、背景技術1における有機電界発光素子および背景技術2における有機電界発光素子の場合の、プラズモンモードの光強度分布を計算した結果を図6から図11に示す。
 図6は、背景技術1における有機電界発光素子2の構造を示す断面図、図7は、図6に示す有機電界発光素子2の各層の材料、膜厚、屈折率を示す図、図8は、背景技術1における有機電界発光素子のプラズモンモードの光強度分布を計算した結果を示す図である。図9は、背景技術2における有機電界発光素子3の構造を示す断面図、図10は、図9に示す有機電界発光素子3の各層の材料、膜厚、屈折率を示す図、図11は、背景技術2における有機電界発光素子のプラズモンモードの光強度分布を計算した結果を示す図である。
 (有機電界発光素子2(背景技術1))
 図6を参照して、背景技術1における有機電界発光素子2は、透明基板10と、透明基板10の一方面側に設けられる第1透明電極層11と、第1透明電極層11の透明基板10が設けられる側とは反対側に設けられる有機電界発光層20と、有機電界発光層20の第1透明電極層11が設けられる側とは反対側に設けられる金属電極層15Aとを備える。有機電界発光層20は、第1透明電極層11と金属電極層15Aとにより挟み込まれる。
 有機電界発光層20は、第1透明電極層11側に位置する正孔輸送層12と、金属電極層15A側に位置する電子輸送層14と、正孔輸送層12と電子輸送層14とにより挟み込まれる有機発光層13とを含む。
 図7を参照して、上記構成の有機電界発光素子2を構成する各層の材料、膜厚、屈折率について説明する。透明基板10には、ガラスが用いられる。屈折率は1.50である。陽極としての第1透明電極層11には、膜厚150nmのITO(インジウム酸化物と錫酸化物の混合体)が用いられる。屈折率は、1.83+0.007iである。
 正孔輸送層12には、膜厚40nmのα-NPDが用いられる。屈折率は、1.78である。有機発光層13には、膜厚30nmのAlq3が用いられる。電子輸送層14には、膜厚40nmのAlq3が用いられる。屈折率は、1.72+0.005iである。陰極としての金属電極層15Aには、膜厚100nmのAgが用いられる。屈折率は、0.128+3.17iである。有機電界発光素子2においては、バッファ層は設けられておらず、金属電極層15Aが光反射層を兼ねてると考えることができる。
 図8に、上記構成を備える有機電界発光素子2におけるプラズモンモードの光強度分布を計算した結果を示す。図において、横軸は有機電界発光素子2の裏面を基準とした相対距離を示し、左縦軸は規格化光強度を示す。
 図8から分かるように、プラズモンモードは金属表面でもっとも強度が強く、そこから離れるに従って指数関数的に減少しているが、有機発光層13におおよそ0.4~0.5程度の強いプラズモンモードが存在している。有機発光層13で発光した光の一部がこのプラズモンモードに結合し、最終的にプラズモン損失となって失われることになる。そのため、プラズモン損失を低減するためには、有機発光層13に存在するプラズモンモードの光強度を少しでも小さくすることが重要となる。
 (有機電界発光素子3(背景技術2))
 図9を参照して、背景技術2における有機電界発光素子3は、透明基板10と、透明基板10の一方面側に設けられる第1透明電極層11と、第1透明電極層11の透明基板10が設けられる側とは反対側に設けられる有機電界発光層20と、有機電界発光層20の第1透明電極層11が設けられる側とは反対側に設けられる第2透明電極層15とを備える。有機電界発光層20は、第1透明電極層11と第2透明電極層15とにより挟み込まれる。
 有機電界発光層20は、第1透明電極層11側に位置する正孔輸送層12と、第2透明電極層15側に位置する電子輸送層14と、正孔輸送層12と電子輸送層14とにより挟み込まれる有機発光層13とを含む。
 第2透明電極層15の有機電界発光層20が設けられる側とは反対側には光学バッファ層16が設けられ、この光学バッファ層16の第2透明電極層15が設けられる側とは反対側には、光反射層30が設けられている。
 図10を参照して、上記構成の有機電界発光素子3を構成する各層の材料、膜厚、屈折率について説明する。透明基板10には、ガラスが用いられる。屈折率は1.50である。陽極としての第1透明電極層11には、膜厚150nmのITO(インジウム酸化物と錫酸化物の混合体)が用いられる。屈折率は、1.83+0.007iである。
 正孔輸送層12には、膜厚40nmのα-NPDが用いられる。屈折率は、1.78である。有機発光層13には、膜厚30nmのAlq3が用いられる。電子輸送層14には、膜厚40nmのAlq3が用いられる。屈折率は、1.72+0.005iである。陰極としての第2透明電極層15には、膜厚100nmのAgが用いられる。屈折率は、0.128+3.17iである。第1光学バッファ層16には、誘電体膜として、膜厚100nmのTaが用いられる。屈折率は、1.81である。光反射層30には、膜厚100nmのAgが用いられる。屈折率は、0.128+3.17iである。
 図11に、上記構成を備える有機電界発光素子3におけるプラズモンモードの光強度分布を計算した結果を示す。図において、横軸は有機電界発光素子3の裏面を基準とした相対距離を示し、左縦軸は規格化光強度を示す。
 図11から分かるように、図8に示した計算結果に比べ、第2透明電極層15を薄膜金属電極にした上で、第2透明電極層15の有機電界発光層20が設けられる側とは反対側には光学バッファ層16(屈折率1.81)および光反射層30を設けることで、有機電界発光層20と光反射層30との間の距離が、図6に示す有機電界発光素子2の場合よりも遠くすることを可能とする。その結果、図8に示す計算結果に比較して、有機発光層13に分布するプラズモンモードの強度を0.2以下まで低減することを可能としている。
 さらに、本実施の形態における有機電界発光素子1においては、光学バッファ層16は、光反射層30側と第2透明電極層15側とで異なる屈折率を有し、光反射層30側の屈折率の方が、第2透明電極層15側の屈折率よりも大きくなる構成を有している。具体的には、光学バッファ層16は、第2透明電極層15側に設けられる第1光学バッファ層16aと、光反射層30側に設けられる第2光学バッファ層16bとを含み、第2光学バッファ層16bの屈折率n2は、第1光学バッファ層16aの屈折率n1よも大きくなる構成を採用している。
 この構成を採用することにより、図4および図5に示したように、屈折率差(Δn)が0.12の場合で、有機発光層13に分布するプラズモンモードの強度を0.15以下に低下させ、屈折率差(Δn)が0.22の場合で、有機発光層13に分布するプラズモンモードの強度を0.125以下に低下させている。
 その結果、本実施の形態における有機電界発光素子1によれば、上記したように、第1光学バッファ層16aの屈折率n1と第2光学バッファ層16bの屈折率n2との屈折率差(n1<n2)を0.00より大きくすることで、有機発光層13で生じる光がプラズモンモードに結合する割合が減少させて、プラズモン損失の低減を図ることを可能としている。その結果、有機電界発光素子1における光の利用効率の向上を図ることが可能となる。
 (実施の形態2)
 実施の形態2における有機電界発光素子1Aについて、図12および図13を参照して説明する。図12は、本実施の形態における有機電界発光素子1Aの構造を示す断面図、図13は、有機電界発光素子1Aのプラズモンモードの光強度分布を計算した結果を示す図である。
 上記実施の形態1における有機電界発光素子1においては、光学バッファ層16は、光反射層30側と第2透明電極層15側とで異なる屈折率を有し、光反射層30側の屈折率の方が、第2透明電極層15側の屈折率よりも大きくなる構成を有している。具体的には、光学バッファ層16は、第2透明電極層15側に設けられる第1光学バッファ層16aと、光反射層30側に設けられる第2光学バッファ層16bとを含み、第2光学バッファ層16bの屈折率n2は、第1光学バッファ層16aの屈折率n1よりも大きくなる構成を採用している。
 本実施の形態における有機電界発光素子1Aにおいては、図12に示すように、光学バッファ層16Aは1層構造である。光学バッファ層16の屈折率が、光反射層30側の方が、第2透明電極層15側よりも大きくなるように、光学バッファ層16Aの中で、第2透明電極層15側から光反射層30側に向けて徐々に大きくなるように変化する構造を採用している。他の構成は、実施の形態1における有機電界発光素子1と同じである。
 本実施の形態における光学バッファ層16Aにおいては、第2透明電極層15のすぐ上の屈折率をn1、光反射層30の手前の屈折率をn2としたときに、その間で屈折率が、n1からn2に徐々に変化した場合について、プラズモンモードの規格化光強度分布を計算した。具体的には、光学バッファ層16Aの屈折率を、第2透明電極層15側から光反射層30側に向けて、1.81、1.93、および2.03となるように徐々に変化させた。
 光学バッファ層16Aとしては、たとえば、屈折率n1の材料1と屈折率n2の材料2とが混じり合った材料から構成されており、材料1と材料2との割合が、第2透明電極層15側から光反射層30側に向けて徐々に変化するような混合の仕方が考えられる。
 図13に示すように、図5と同様にΔn=n2-n1が大きくなるほど、有機発光層13に分布するプラズモンモードの強度が小さくなり、プラズモンモードが低減されていることが分かる。
 (実施の形態3)
 実施の形態1および2に示す有機電界発光素子1,1Aにおいて、光学バッファ層16に導電性材料を用いてもよい。導電性材料を用いることで、第2透明電極15および光学バッファ層16(第1光学バッファ層16a、第2光学バッファ層16b)、および光反射層30の全体が導電に寄与するため、有機電界発光素子の抵抗値を低減することができる。
 その結果、有機電界発光素子1,1Aを大面積化したときに駆動電圧が上昇するのを避けることができる。また、有機電界発光素子1,1Aの輝度の面内分布の不均一を抑制することが可能となる。この構成は、以下に示す各実施の形態に採用することも可能である。
 (実施の形態4)
 図14に、実施の形態4における有機電界発光素子1Bの断面構造を示す。実施の形態1から3に示す有機電界発光素子1,1Aにおいて、光学バッファ層16(第1光学バッファ層16aおよび第2光学バッファ層16bの少なくともいずれか一方)に、光散乱効果のある微粒子16cを添加してもよい。この構成を採用することで、有機電界発光素子1Bに内部を導波する光(導波モードやガラスモード)を散乱によって有機電界発光素子1Bの外部に取り出すことが可能となり、さらに光利用効率が向上する。
 図14に示す有機電界発光素子1Bにおいては、光学バッファ層16Bとして、第1光学バッファ層16aおよび第2光学バッファ層16bのいずれにも、光散乱効果のある微粒子16cを添加している。第1光学バッファ層16aおよび第2光学バッファ層16bの少なくともいずれか一方でもかまわない。また、第1光学バッファ層16aおよび第2光学バッファ層16bの層全体ではなく、層の一部に光散乱効果のある微粒子を添加するようにしてもよい。
 また、光学バッファ層16Bに添加する微粒子の材料や添加量を適切に制御することで光学バッファ層16Bの屈折率を調整することも可能となる。微粒子16cのサイズとしては、屈折率調整のみであれば直径100nm以下、散乱効果も期待するのであれば直径100nm以上が望ましい。
 微粒子16cの材料としてはSiO、ZrO、TiOなどの無機材料や、PMMA(ポリメタクリル酸メチル樹脂(Poly methyl methacrylate)などの有機材料などを組み合わせて用いることができる。また十分な散乱を得るために、添加量としては1wt%(堆積パーセント)以上が望ましい。この構成は、以下に示す各実施の形態に採用することも可能である。
 (実施の形態5)
 図15から図17を参照して、本実施の形態における有機電界発光素子1Cについて説明する。図15は、本実施の形態における有機電界発光素子1Cの構造を示す断面図、図16は、図15に示す有機電界発光素子1Cの各層の材料、膜厚、屈折率を示す図、図17は、本実施の形態における有機電界発光素子のプラズモンモードの光強度分布を計算した結果を示す図である。
 実施の形態1から4においては、いずれも、光学バッファ層16,16Aの屈折率(第2透明電極層側の屈折率)が有機発光層13の屈折率に比べて高い屈折率になっている。光学バッファ層16,16Aの屈折率を有機発光層13の屈折率に比べて高くすると、光学的な距離を大きくすることができるため、プラズモンモードの低減に有利である。そこで、本実施の形態では、光学バッファ層16,16Aの屈折率を、1.65+Δnとし、他の層よりも低い場合についても同様の効果が得られることを説明する。光学バッファ層については、実施の形態1において採用した、第1光学バッファ層16aと第2光学バッファ層16bとの2層構造を有する光学バッファ層16を採用する。
 図15に、本実施の形態における有機電界発光素子1Cを示す。光学バッファ層16を構成する第1光学バッファ層16aおよび第2光学バッファ層16bを除き、他の構成は、図2および図3に示す実施の形態1における有機電界発光素子1と同じである。
 有機電界発光素子1Cにおいては、第1光学バッファ層16aには、膜厚50nmのTYZ65を用いている。屈折率は1.65である。TYZ65は、東洋インキ株式会社製の高屈折タイプのハードコート剤「LIODURAS(登録商標)」の製品番号である。
 第2光学バッファ層16bには、第1光学バッファ層16aと屈折率差を生じさせるために、以下の5種類の膜を用いた場合について計算を行なった。屈折率1.65のTYZ65、屈折率1.74のMgO、屈折率1.81のTa、屈折率1.93のHfO、および屈折率2.03のSiを用いた。TYZ65との屈折率差(Δn)は0.00、屈折率1.74のMgOとの屈折率差(Δn)は0.09、Taとの屈折率差(Δn)は0.16、HfOとの屈折率差(Δn)は0.28、Siとの屈折率差(Δn)は0.38となる。
 以上の膜構成を備える有機電界発光素子1Cにおけるプラズモンモードの光強度分布を計算した結果を、図17に示す。なお、計算には発光波長として、530nmを用いた。図において、横軸は有機電界発光素子1の裏面を基準とした相対距離を示し、左縦軸は規格化光強度を示す。
 光学バッファ層16の屈折率を1.65+Δnとし、他の層よりも低い場合であっても、光学バッファ層16を第1光学バッファ層16aと第2光学バッファ層16bとの2層構造として、第1光学バッファ層16aの屈折率n1と第2光学バッファ層16bの屈折率n2との関係において、Δn=n2-n1が大きくなるほど、有機発光層13に分布するプラズモンモードの強度が小さくなり、プラズモンモードが低減されていることが分かる。
 なお上記作用効果は、光学バッファ層16を第1光学バッファ層16aと第2光学バッファ層16bとの2層構造とした場合に限らず、実施の形態2における有機電界発光素子1Aにおいても、同様の作用効果を得ることができる。
 (実施の形態6)
 図18から図20を参照して、本実施の形態における有機電界発光素子1Dについて説明する。図18は、本実施の形態における有機電界発光素子1Dの構造を示す断面図、図19は、図18に示す有機電界発光素子1Dの各層の材料、膜厚、屈折率を示す図、図20は、本実施の形態における有機電界発光素子のプラズモンモードの光強度分布を計算した結果を示す図である。
 本実施の形態においては、光学バッファ層16を第1光学バッファ層16aおよび第2光学バッファ層16bの2層構造とした場合に、第1光学バッファ層16aと第2光学バッファ層16bとが同じ屈折率を有する場合(ケース1)と、第1光学バッファ層16aの屈折率n1と第2光学バッファ層16bの屈折率n2との関係がn1<n2となる場合(ケース2)とを比較したものである。また、ケース2において、実施の形態1および5とは、第1光学バッファ層16aの材料と屈折率が異なっている。他の構成は、図2および図3に示す実施の形態1における有機電界発光素子1と同じである。
 図19に示すように、ケース1においては、第1光学バッファ層16aおよび第2光学バッファ層16bには、膜厚50nmのTaを用いている。屈折率は1.81である。ケース2においては、第1光学バッファ層16aには、膜厚50nmのTYZ69を用いている。屈折率は1.69である。第2光学バッファ層16bには、膜厚50nmのHfO2を用いている。屈折率は1.93である。なお、TYZ69は、東洋インキ株式会社製の高屈折タイプのハードコート剤「LIODURAS(登録商標)」の製品番号である。
 以上の膜構成を備える有機電界発光素子1Dにおけるプラズモンモードの光強度分布を計算した結果を、図20に示す。なお、計算には発光波長として、530nmを用いた。図において、横軸は有機電界発光素子1の裏面を基準とした相対距離を示し、左縦軸は規格化光強度を示す。
 光学バッファ層16に2層構造を採用した場合において、単一の屈折率層からなるケース1に比べて、高屈折率層(第2光学バッファ層16b)/低屈折率層(第1光学バッファ層16a)の2層からなるケース2の方が、有機発光層13に分布するプラズモンモードが減少し、プラズモンロス低減効果があることが分かる。
 (実施の形態7)
 以下に上記各実施の形態に示す構成を備えた有機電界発光素子を用いた照明装置1000について説明する。図21に、本実施の形態における照明装置1000の概略構成を示す。本実施の形態における照明装置1000は、部屋の天井1200に、上記各実施の形態における有機電界発光素子1100を用いた天井照明装置である。
 (実施の形態8)
 以下に上記各実施の形態に示す構成を備えた有機電界発光素子を用いた他の照明装置について説明する。図22に、本実施の形態における照明装置2000の概略構成を示す。本実施の形態における照明装置2000は、照明スタンドであり、ヘッド2100の部分に、上記各実施の形態における有機電界発光素子2200を用いている。
 以上、本実施の形態における電界発光素子およびその電界発光素子を用いた照明装置によれば、光の利用効率の更なる向上を可能とする、電界発光素子およびその電界発光素子を用いた照明装置を提供することを可能としている。
 なお、本発明の各実施の形態における電界発光素子およびその電界発光素子を用いた照明装置について説明したが、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。したがって、本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
 1,1A,1B,1C,1D,1000,2000 有機電界発光素子、10 透明基板、11 第1透明電極層、12 正孔輸送層、13 有機発光層、14 電子輸送層、15 第2透明電極層、15A 金属電極層、16,16A,16B 光学バッファ層、16a 第1光学バッファ層、16b 第2光学バッファ層、16c 微粒子、20 有機電界発光層、30 光反射層、1000 照明装置、1200 天井、2000 照明装置、2100 ヘッド。

Claims (11)

  1.  第1透明電極層と、
     第2透明電極層と、
     前記第1透明電極層と前記第2透明電極層とに挟まれた電界発光層と、
     前記第2透明電極層の前記電界発光層が設けられる側とは反対側に設けられる光学バッファ層と、
     前記光学バッファ層の前記第2透明電極層が設けられる側とは反対側に設けられる光反射層と、を備え、
     前記光学バッファ層は、前記光反射層側と前記第2透明電極層側とで異なる屈折率を有し、前記光反射層側の屈折率が前記第2透明電極層側の屈折率よりも大きい、電界発光素子。
  2.  前記光学バッファ層は、
     前記第2透明電極層側に設けられる第1光学バッファ層と、
     前記光反射層側に設けられる第2光学バッファ層と、を含み、
     前記第2光学バッファ層の屈折率は、前記第1光学バッファ層の屈折率よりも大きい、請求項1に記載の電界発光素子。
  3.  前記光学バッファ層の屈折率は、前記第2透明電極層側から前記光反射層側に向けて徐々に大きくなるように変化する、請求項1に記載の電界発光素子。
  4.  前記光学バッファ層には、導電性を有する膜が用いられている、請求項1から3のいずれか1項に記載の電界発光素子。
  5.  前記光学バッファ層には、光散乱効果のある微粒子が分散されている、請求項1から3のいずれか1項に記載の電界発光素子。
  6.  前記光学バッファ層の前記第2透明電極層側の屈折率は、前記電界発光層の屈折率よりも大きい、請求項1から5のいずれか1項に記載の電界発光素子。
  7.  前記第1透明電極層および前記第2透明電極層の少なくとも一方には金属薄膜が用いられている、請求項1から6のいずれか1項に記載の電界発光素子。
  8.  前記第2透明電極層には金属薄膜が用いられ、前記第1透明電極層には導電性金属酸化物からなる膜が用いられている、請求項7に記載の電界発光素子。
  9.  前記第2透明電極層には銀薄膜が用いられ、前記第1透明電極層にはITOが用いられている、請求項8に記載の電界発光素子。
  10.  前記光反射層には、金属材料が用いられている、請求項1から9のいずれか1項に記載の電界発光素子。
  11.  請求項1から10のいずれか1項に記載の電界発光素子を有する照明装置。
PCT/JP2013/076639 2012-10-26 2013-10-01 電界発光素子およびその電界発光素子を用いた照明装置 WO2014065084A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014543210A JP6287848B2 (ja) 2012-10-26 2013-10-01 電界発光素子およびその電界発光素子を用いた照明装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012236506 2012-10-26
JP2012-236506 2012-10-26

Publications (1)

Publication Number Publication Date
WO2014065084A1 true WO2014065084A1 (ja) 2014-05-01

Family

ID=50544464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076639 WO2014065084A1 (ja) 2012-10-26 2013-10-01 電界発光素子およびその電界発光素子を用いた照明装置

Country Status (2)

Country Link
JP (1) JP6287848B2 (ja)
WO (1) WO2014065084A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194359A1 (ja) * 2014-06-20 2015-12-23 コニカミノルタ株式会社 電界発光素子の設計方法、その設計方法を用いて製造された電界発光素子、および、その設計方法を用いた電界発光素子の製造方法
JPWO2013179339A1 (ja) * 2012-05-30 2016-01-14 株式会社日立製作所 有機発光素子、光源装置およびそれらの製造方法
CN113555515A (zh) * 2021-07-16 2021-10-26 京东方科技集团股份有限公司 发光器件及显示面板
US11495777B2 (en) 2019-09-30 2022-11-08 Joled Inc. Self-luminous element, self-luminous panel, and self-luminous panel manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7031898B2 (ja) * 2019-09-30 2022-03-08 株式会社Joled 発光素子、自発光パネル、および、発光素子の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010097873A (ja) * 2008-10-17 2010-04-30 Fujifilm Corp 発光素子
WO2011043083A1 (ja) * 2009-10-09 2011-04-14 出光興産株式会社 有機エレクトロルミネッセンス素子
JP2011198540A (ja) * 2010-03-18 2011-10-06 Canon Inc 表示装置
WO2011132773A1 (ja) * 2010-04-22 2011-10-27 出光興産株式会社 有機エレクトロルミネッセンス素子及び照明装置
JP2011233288A (ja) * 2010-04-26 2011-11-17 Konica Minolta Holdings Inc 有機発光素子
JP2012014976A (ja) * 2010-07-01 2012-01-19 Canon Inc 発光素子とその製造方法
JP2012186107A (ja) * 2011-03-08 2012-09-27 Toshiba Corp 有機電界発光素子及び照明装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010097873A (ja) * 2008-10-17 2010-04-30 Fujifilm Corp 発光素子
WO2011043083A1 (ja) * 2009-10-09 2011-04-14 出光興産株式会社 有機エレクトロルミネッセンス素子
JP2011198540A (ja) * 2010-03-18 2011-10-06 Canon Inc 表示装置
WO2011132773A1 (ja) * 2010-04-22 2011-10-27 出光興産株式会社 有機エレクトロルミネッセンス素子及び照明装置
JP2011233288A (ja) * 2010-04-26 2011-11-17 Konica Minolta Holdings Inc 有機発光素子
JP2012014976A (ja) * 2010-07-01 2012-01-19 Canon Inc 発光素子とその製造方法
JP2012186107A (ja) * 2011-03-08 2012-09-27 Toshiba Corp 有機電界発光素子及び照明装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013179339A1 (ja) * 2012-05-30 2016-01-14 株式会社日立製作所 有機発光素子、光源装置およびそれらの製造方法
WO2015194359A1 (ja) * 2014-06-20 2015-12-23 コニカミノルタ株式会社 電界発光素子の設計方法、その設計方法を用いて製造された電界発光素子、および、その設計方法を用いた電界発光素子の製造方法
KR101825871B1 (ko) * 2014-06-20 2018-02-05 코니카 미놀타 가부시키가이샤 전계 발광 소자의 설계 방법 및 그 설계 방법을 사용한 전계 발광 소자의 제조 방법
US9893324B2 (en) 2014-06-20 2018-02-13 Konica Minolta, Inc. Method of designing electroluminescent device, electroluminescent device manufactured with the design method, and method of manufacturing electroluminescent device with the design method
US10115932B2 (en) 2014-06-20 2018-10-30 Konica Minolta, Inc. Method of designing electroluminescent device, electroluminescent device manufactured with the design method, and method of manufacturing electroluminescent device with the design method
US11495777B2 (en) 2019-09-30 2022-11-08 Joled Inc. Self-luminous element, self-luminous panel, and self-luminous panel manufacturing method
CN113555515A (zh) * 2021-07-16 2021-10-26 京东方科技集团股份有限公司 发光器件及显示面板

Also Published As

Publication number Publication date
JPWO2014065084A1 (ja) 2016-09-08
JP6287848B2 (ja) 2018-03-07

Similar Documents

Publication Publication Date Title
JP6287848B2 (ja) 電界発光素子およびその電界発光素子を用いた照明装置
EP3018721B1 (en) Substrate for organic light emitting device and organic light emitting device comprising same
JP4462074B2 (ja) エレクトロルミネッセンス素子
WO2013187119A1 (ja) 電界発光素子およびその電界発光素子を用いた照明装置
JP2007005784A (ja) 有機el素子
JP2008251217A (ja) 有機エレクトロルミネセンス素子
WO2020143404A1 (zh) 一种量子点发光器件及其制备方法
TWI469409B (zh) 有機電致發光元件
Amano et al. 49.4 L: Late‐News Paper: Highly Transmissive One Side Emission OLED Panel for Novel Lighting Applications
JPWO2014077093A1 (ja) 電界発光素子およびこれを備えた照明装置
KR20160035363A (ko) 플렉서블 기판 및 그 제조방법
WO2014156714A1 (ja) 面発光素子
JP2014086345A (ja) 電界発光素子およびその電界発光素子を用いた照明装置
WO2022247056A1 (zh) 显示面板及显示装置
KR101317276B1 (ko) 유기 발광 다이오드용 기판 및 이의 제조방법
JP2007265637A (ja) 有機エレクトロルミネッセンス素子
WO2019033794A1 (zh) 有机电致发光装置及其电极
US20200220100A1 (en) Top-emitting type organic electroluminescent device, manufacturing method thereof and display apparatus
Shanmuga Sundar et al. High efficient plastic substrate polymer white light emitting diode
US10770689B2 (en) Light emitting apparatus and lighting device
JP6387828B2 (ja) 電界発光素子およびその電界発光素子を用いた照明装置
TWI485901B (zh) 頂部發光式有機發光二極體結構
Kim et al. 49.2: A Study on Electron‐injecting and Surface‐modifying Layer for Transparent Organic Light Emitting Diodes
WO2021084599A1 (ja) 発光素子、発光装置及び表示装置
TWI539640B (zh) Organic light emitting diode device and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848255

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014543210

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848255

Country of ref document: EP

Kind code of ref document: A1