WO2014061983A9 - 전해동박, 이를 포함하는 전기부품 및 전지, 및 전해동박 제조방법 - Google Patents

전해동박, 이를 포함하는 전기부품 및 전지, 및 전해동박 제조방법 Download PDF

Info

Publication number
WO2014061983A9
WO2014061983A9 PCT/KR2013/009231 KR2013009231W WO2014061983A9 WO 2014061983 A9 WO2014061983 A9 WO 2014061983A9 KR 2013009231 W KR2013009231 W KR 2013009231W WO 2014061983 A9 WO2014061983 A9 WO 2014061983A9
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
electrolytic copper
heat treatment
additive
tensile strength
Prior art date
Application number
PCT/KR2013/009231
Other languages
English (en)
French (fr)
Other versions
WO2014061983A1 (ko
Inventor
이선형
조태진
박슬기
송기덕
Original Assignee
일진머티리얼즈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130118495A external-priority patent/KR20140050541A/ko
Application filed by 일진머티리얼즈 주식회사 filed Critical 일진머티리얼즈 주식회사
Publication of WO2014061983A1 publication Critical patent/WO2014061983A1/ko
Publication of WO2014061983A9 publication Critical patent/WO2014061983A9/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolytic copper foil, an electric component and a battery including an electrolytic copper foil, and a method for manufacturing an electrolytic copper foil, and more particularly, to a low roughness, high strength and high elongated electrolytic copper foil having high tensile strength and elongation even after high temperature heat treatment.
  • Copper foil is generally used as an electrical power collector of a secondary battery.
  • the copper foil is mainly used as a rolled copper foil rolled, but the manufacturing cost is expensive and it is difficult to manufacture a wide copper foil.
  • the rolled copper foil must use lubricating oil during rolling, adhesion to the active material may be degraded by contamination of the lubricating oil, and thus, the layer discharge cycle characteristics of the battery may be reduced.
  • Lithium batteries are accompanied by volume change during layer discharge and exothermic phenomenon due to overcharge.
  • the copper foil is effective to improve adhesion to the electrode active material and to prevent the occurrence of wrinkles, breaks, etc. in the copper foil as a current collector by being less affected by the copper base material in relation to the expansion and contraction of the active material layer according to the layer discharge cycle. Should have a low surface roughness. Therefore, high-strength, high-strength and low-light copper foils capable of withstanding volumetric changes and exothermic phenomena of lithium batteries and excellent adhesion to active materials are required.
  • ICs for inner leads disposed in device halls located in the center of the product A plurality of terminals of the chip are directly bonded, and at this time, a current is instantaneously heated by using a bonding device and a constant pressure is applied. Therefore, the inner lead formed by the etching of the electrolytic copper foil is pulled out by the bonding pressure and stretched.
  • One aspect of the present invention is to provide a new electrolytic copper foil.
  • Another aspect of the invention provides an electrical component comprising the electrolytic copper foil. Will be.
  • Another aspect of the invention is to provide a battery comprising the electrolytic copper foil.
  • Another aspect of the present invention is to provide a method for producing the electrolytic copper foil.
  • the surface roughness Rz of the precipitated surface is less than lA, and after heat treatment, an electrolytic copper foil having a tensile strength of 40 kgf / rmn 2 or more and an elongation of 4% or more is presented.
  • an insulating substrate And the electrolytic copper foil attached to one surface of the insulating substrate, and an electric component including a circuit formed by etching the electrolytic copper foil is provided.
  • a battery including the electrolytic copper foil is provided.
  • Additive B is a sulfonic acid or metal salt thereof of a compound containing a sulfur atom, and additive C is a nonionic water soluble polymer;
  • an electrolytic copper foil having low surface roughness and high strength and having high stretch can be obtained.
  • FIG. 1 is an X-ray diffraction (XRD) spectrum of the precipitated surface of the electrolytic copper foil prepared in Example 1.
  • FIG. 1 is an X-ray diffraction (XRD) spectrum of the precipitated surface of the electrolytic copper foil prepared in Example 1.
  • Example 2 is a scanning electron microscope photograph of the surface of the electrolytic copper foil prepared in Example 1;
  • FIG. 3 is a scanning electron microscope photograph of the surface of the electrolytic copper foil prepared in Example 2.
  • FIG. 4 is a scanning electron microscope photograph of the surface of the electrolytic copper foil prepared in Example 3.
  • FIG. 4 is a scanning electron microscope photograph of the surface of the electrolytic copper foil prepared in Example 3.
  • Example 5 is a scanning micrograph photograph of the surface of the electrolytic copper foil prepared in Example 4.
  • Electrolytic copper foil according to an exemplary embodiment of the present invention has a surface roughness Rz of the precipitated surface is ⁇ ⁇ or less, the tensile strength after heat treatment is more than 40 kgf / mm2, the elongation is more than 4%.
  • the electrolytic copper foil has a high roughness of 40 kgi / mm 2 and a high roughness of 40 kgi / mm 2 even though the surface roughness of the low roughness Rz is less than or equal to ⁇ .
  • the electrolytic copper foil has a high elongation of 4% or more even after high temperature.
  • the electrolytic copper foil may be used simultaneously for a printed circuit board (PCB) / FPC (flexible PCB) and a current collector for a battery.
  • PCB printed circuit board
  • FPC flexible PCB
  • the surface roughness Rz of the precipitated surface of the electrolytic copper foil is greater than 1.4, the contact surface of the surface of the electrodeposited copper foil for the negative electrode current collector and the active material may be reduced, so that the lifespan of the layer discharge cycle and the initial capacity of the charge may be lowered.
  • the surface roughness Rz of the precipitation surface exceeds 1.4, it is not easy to form a high density circuit having a fine pitch in the printed wiring board.
  • the electrolytic copper foil has a high strength characteristics of 40kgf / mm 2 to 70kgf / mm 2 tensile strength.
  • the electrolytic copper foil has a tensile strength of 40kgf / mm2 to even after heat treatment 70kgf / mm2.
  • the heat treatment may be carried out at 15 CTC to 22 CTC, for example, and may be performed at 18 CTC in detail.
  • the heat treatment may be carried out over 30 minutes, 1 hour, 2 hours and several hours, but may be carried out for at least 1 hour to maintain a constant tensile strength.
  • the heat treatment is to measure the tensile strength of the electrolytic copper foil, and is a treatment to obtain a tensile strength or elongation maintained at a value which does not change to a certain level when the electrolytic copper foil is stored or put into a subsequent process.
  • the electrolytic copper foil has a tensile strength of less than 40kgf / mm 2 after heat treatment, it may be difficult to handle because the mechanical strength is weak.
  • the electrolytic copper foil has a tensile strength after heat treatment similar to the tensile strength before heat treatment.
  • the tensile strength after the heat treatment of the electrolytic copper foil is preferably 85% to 99% of the anneal strength before the heat treatment. It is easy to handle in the process and the yield is high.
  • the electrolytic copper foil may have an elongation of 2% to 15% before heat treatment.
  • the electrolytic copper foil may have an elongation of 4% to 15% after heat treatment, and the heat treatment may be performed at 18 CTC for 1 hour.
  • the elongation after heat treatment may be 1 to 4.5 times the elongation before heat treatment.
  • the elongation after heat treatment in the electrolytic copper foil is less than 4%, cracks may occur when the subsequent process is a high temperature process.
  • the process of manufacturing the negative electrode current collector is a high temperature process, and cracks may occur due to a volume change of the active material layer during layer discharge. So After elongation, the specified elongation must be maintained.
  • the electrolytic copper foil has a ratio of the intensity of the diffraction peak (1 (200)) to the (200) crystal plane (1 (200)) and the intensity of the diffraction peak (1 (111)) to the (111) crystal plane in the XRD spectrum of the precipitation surface.
  • / 1 (111) may be 0.5 to 1.0.
  • the diffraction angle for the (111) crystal plane is shown at the diffraction angle (2 ⁇ ) 43.0 ° ⁇ 1.0 ° in the XRD spectrum for the precipitation surface, and the diffraction angle (2 ⁇ ) 50.5 ° ⁇ 1.0 It shows a diffraction peak with respect to the (200) crystal plane at °, the intensity ratio 1 (200) / 1 (111) may be 0.5 to 1.0 or more.
  • 1 (200) / 1 (111) may be 0.5 to 0.8 in the electrolytic copper foil.
  • the Bb M (200) / M (lll) of the orientation index obtained from the orientation index (M ( ⁇ )) with respect to the (111) crystal plane may be 1.1 to 1.5.
  • the electrolytic copper foil may have an elongation of 10% or more after heat treatment at 180 ° C. for 1 hour. That is, the electrolytic copper foil may have a high elongation of 10% or more after high temperature heat treatment. For example, the electrolytic copper foil may have an elongation of 10% to 20% after high temperature heat treatment. For example, the electrolytic copper foil has an elongation of 10% to 15% after high temperature heat treatment. Can be. For example, the electrolytic copper foil may have an elongation of 10% to 13% after high temperature heat treatment. The electrolytic copper foil may have an elongation of 1% or more before heat treatment. For example, the electrolytic copper foil may have an elongation of 2% to 20% before heat treatment.
  • the electrolytic copper foil may have an elongation of 5% to 20% before heat treatment.
  • the electrolytic copper foil has an elongation of 5% to before heat treatment. May be 15%.
  • the electrolytic copper foil may have an elongation of 5% to 10% before heat treatment.
  • the term “before heat treatment” refers to a temperature of 25 ° C. to 130 ° C. before annealing at a high temperature.
  • the elongation is a value obtained by dividing the stretched distance by the initial length of the electrolytic copper foil immediately before the electrolytic copper foil is broken. to be.
  • the surface roughness Rz of the electrodeposited copper foil may be less than or equal to .Tim.
  • the total thawing foil may be used as both a copper foil for PCB / FPC and a copper foil for negative electrode current collector for secondary batteries by having a low roughness of Rz of 0.7 or less.
  • the electrolytic copper foil may have a precipitation surface and a surface roughness Rz of 0.5 or less.
  • the surface roughness Rz of the precipitation surface of the electrolytic copper foil may be 0.45 / ⁇ or less.
  • the surface roughness Ra of the electrodeposited copper foil may be 0.15 im or less.
  • the electrolytic copper foil may be used as both a copper foil for PCB / FPC and a copper foil for negative electrode current collector for secondary batteries by having a low roughness Ra of 0.15 zm or less.
  • the surface roughness Ra of the precipitation surface of the electrolytic copper foil may be less than or equal to O. Uim.
  • the surface roughness Ra of the deposition surface of the electrolytic copper foil may be less than or equal to O. ll im. * 33:
  • the tensile strength of the electrolytic copper foil may be 85% or more of the tensile strength before the heat treatment.
  • the tensile strength after heat treatment for 1 hour at 18CTC of the electrolytic copper foil may be 90% or more of the tensile strength before heat treatment.
  • the tensile strength before heat treatment is the tensile strength of the copper foil obtained without high temperature thermal treatment.
  • Tensile strength before heat treatment of the electrolytic copper foil may be 40kgf / mm2 to 70kgf / mm2.
  • Glossiness (Gs (60 °)) in the width direction of the precipitation surface in the electrolytic copper foil may be 500 or more.
  • the glossiness (Gs (60 0 )) of the width direction of the precipitation surface in the electrolytic copper foil may be 500 to 1000.
  • the glossiness is a value measured according to JIS Z 871-1997.
  • the thickness of the electrolytic copper foil may be 35 or less.
  • the thickness of the electrolytic copper foil may be 6 to 35 m.
  • the thickness of the electrolytic copper foil may be 6 to 18 pm.
  • the thickness of the electrolytic copper foil may be 2 to 10.
  • An electrical component includes an insulating substrate; And the insulating base It includes; the above-mentioned electrolytic copper foil attached to one surface of, and includes a circuit formed by etching the electrolytic copper foil.
  • the electrical component is, for example, a TAB tape, a printed wiring board (PCB), a flexible printed wiring board (FPC, Flexible PCB), and the like, but not necessarily limited thereto. Anything that can be used in the field is possible.
  • a battery according to an exemplary embodiment includes the electrolytic copper foil.
  • the electrolytic copper foil may be used as a negative electrode straw whole of the battery, but is not necessarily limited thereto and may be used as other components used in the battery.
  • the battery is not particularly limited and includes a primary battery and a secondary battery, and a battery using an electrolytic copper foil as a current collector such as a lithium ion battery, a lithium polymer battery, a lithium air battery, and the like can be used in the art. All is possible.
  • Electrolytic copper foil manufacturing method is an additive A; Additive B; Electrolyzing a copper electrolyte solution comprising the additive C and an additive D; wherein the additive A is at least one selected from the group consisting of a thiourea-based compound and a compound in which a thiol group is connected to a heterocyclic ring containing nitrogen,
  • the additive B is a sulfonic acid or a metal salt thereof of a compound containing a sulfur atom, and the additive C is a nonionic water-soluble polymer;
  • the additive D is a phenazinium compound.
  • the electrolytic copper foil manufacturing method may include a low thickness copper foil having a thin thickness, high mechanical strength and high stretching by including additives of a new composition.
  • the copper electrolyte may include chlorine (chlorine ion) having a concentration of 1 to 40 ppm.
  • chlorine chlorine ion
  • the presence of a small amount of chlorine ions in the copper electrolyte increases the initial nucleation site during electroplating, resulting in fine grains and the precipitation of CuC12 formed at the grain boundary interface, which inhibits crystal growth when heated to high temperatures, thereby providing thermal stability at high temperatures. Can improve.
  • the concentration of the chlorine ion is less than 1 ppm, the concentration of chlorine ions required in the sulfuric acid-copper sulfate electrolyte may be insufficient, so that the tensile strength before heat treatment may be lowered and thermal stability at high temperature may be lowered.
  • the concentration of chlorine ion is more than 40 ppm, the surface roughness of the precipitated surface is increased, making it difficult to manufacture low roughness electrolytic copper foil, low tensile strength before heat treatment, and low thermal stability at high temperature.
  • the content of the additive A is 1 to lOppm
  • the content of the additive B is 10 to 200ppm
  • the content of the additive C is 5 to 40ppm
  • the content of the additive D may be 1 to 100ppm.
  • the additive A may improve the production stability of the electrolytic copper foil and improve the strength of the electrolytic copper foil. If the content of the additive A is less than lppm, the tensile strength of the electrolytic copper foil may be lowered. If the content of the additive A is more than lOppm, the surface roughness of the precipitated surface may increase, making it difficult to manufacture the electrolytic copper foil of low roughness, and the tensile strength may be reduced.
  • Additive B in the copper electrolyte may improve the surface gloss of the electrolytic copper foil.
  • the content of the additive B is less than lOppm, the gloss of the electrolytic copper foil may be lowered.
  • the content of the additive B is more than 200 ppm, the surface roughness of the precipitated surface is increased. It is difficult to manufacture low roughness electrolytic copper foil and the tensile strength of the electrolytic copper foil may be reduced.
  • the additive C may lower the surface roughness of the electrolytic copper foil and improve surface glossiness. If the content of the additive C is less than 5ppm, the surface roughness of the precipitated surface is increased, making it difficult to manufacture low-temperature electrolytic copper foil, and the gloss of the electrolytic copper foil may be lowered. It may not be economical.
  • the additive D in the copper electrolyte may serve to improve the flatness of the surface of the electrolytic copper foil. If the content of the additive D is less than lppm, the surface roughness of the precipitated surface is increased, making it difficult to manufacture 3 ⁇ 4 thawed foil of low degree, and the gloss of the electrolytic copper foil may be lowered. It may become unstable and the tensile strength of the electrolytic copper foil may be impaired.
  • the thiourea compound may be a compound represented by Formula 1:
  • R1, R2, R3 and R4 are independently an alkyl group having 1 to 10 carbon atoms, and R2 and R4 may be connected to each other to form a ring.
  • the thiourea-based compound is diethylthiourea, ethylenethiourea, acetylenethiourea, dipropylthiourea, dibutylthiourea, N-trifluoro N-trifluoroacetylthiourea N-ethylthiourea, N-cyanoacetylthiourea, N-allylthiotirea, o_lrylthio Urea (o-tolylthiourea), ⁇ , ⁇ '-butylene thiourea ( ⁇ , ⁇ '-butylene thiourea), thiozolidinethiol, 4-thiazolinethiol, 4-methyl-2-pyri It may be one or more selected from the group consisting of midithiol (4—methyl-2—pyrimidinethiol), 2-thiouracil, but is not necessarily limited to any of the thiourea compounds that can be used as an additive in the art.
  • the sulfonic acid or metal salt thereof of the compound containing the sulfur atom is, for example, a bis- (3-sulfopropyl) -disulfide disodium salt (SPS) represented by the following Chemical Formula 5; 1-propanesulfonic acid (MPS), 3- (N, N-dimethylthiocarbamoyl) -thiopropanesulfonate sodium salt (DPS) represented by the following formula (7), 3- [(amino- Iminomethyl) thio] -1-propanesulfonate sodium salt (UPS), eethyldithiocarbonato-S- (3-sulfopropyl) -ester sodium salt represented by the following formula (9): (10) 3- (benzothiazolyl-2-hammercapto) -propyl-sulfonic acid sodium salt (ZPS), ethylenedithiodipropylsulfonic acid sodium salt, thioglycolic acid, thio
  • the nonionic water-soluble polymer is polyethylene glycol, polyglycerol, hydroxyethyl cellulose, carboxymethyl cellulose (Carboxymethylcellulose), nonylpe Nonylphenol polyglycol ether, Octane diol-bis- (Polyalkylene glycol ether), Octane to polyalkylene glycol ether, Oleic acid poly Glycol ethers (eic acid polyglycol ether), polyethylene propylene glycol, polyethylene glycol dimethyl ether, polyoxypropylene glycol, polyvinyl alcohol, ⁇ -Naph may be one or more selected from the group consisting of ⁇ -naphthol polyglycol ether, stearic acid polyglycol ether, stearyl alcohol polyglycol ether, but Water-soluble which can be used as a scavenger in the art without limitation Any polymer may be used, for example, the polyethylene glycol may have a molecular weight of
  • the phenazinium compound may be a compound represented by Formula 11 below:
  • the phenazinium compound is not a polymer.
  • the phenazinium compound may be at least one selected from the group consisting of safranin-O (Safaranine-O) represented by the following Equation 12, Janus Green BUanus Green B) represented by the following Formula 13, and the like. .
  • the temperature of the copper electrolyte used in the manufacturing method may be 30 to 6CTC, but is not necessarily limited to this range and may be appropriately adjusted within a range capable of achieving the object of the present invention.
  • the temperature of the copper electrolyte may be 40 to 50 ° C.
  • the current density used in the manufacturing method may be 20 to 500 A / dm 2, but is not necessarily limited to this range and may be appropriately adjusted within a range capable of achieving the object of the present invention.
  • the current density is 30 to 40
  • the copper electrolyte may be sulfuric acid-copper sulfate copper electrolyte.
  • the concentration of Cu 2+ ions in the sulfuric acid-copper sulfate copper electrolyte may be 60 g / L to 180 g / L, but is not necessarily limited to this range and may be appropriately adjusted within a range capable of achieving the object of the present invention.
  • the concentration of Cu 2+ may be 65 g / L to 175 g / L.
  • the copper electrolyte may be prepared by a known method.
  • the concentration of ⁇ Cu2 + ions can be obtained by controlling the iron content of copper ions or copper sulfate, and the concentration of S042 + ions can be obtained by adjusting the amount of sulfuric acid and copper sulfate added.
  • the concentration of the additives included in the copper electrolyte solution may be obtained from the amount and molecular weight of the additives added to the copper electrolyte solution, or may be obtained by analyzing the additives contained in the copper electrolyte solution by a known method such as column chromatography.
  • the electrolytic copper foil may be manufactured by a known method except for using the above-described copper electrolytic backing.
  • the electrolytic copper foil may be prepared by supplying and electrolyzing the copper electrolyte between the curved negative electrode surface of the rotating titanium drum-shaped titanium and the positive electrode to precipitate the electrolytic copper foil on the negative electrode surface and winding it continuously to produce an electrolytic copper foil.
  • electrolytic copper foil In order to manufacture electrolytic copper foil, a 3L electrolytic cell system capable of circulating at 20 L / min was used and the silver conductivity of the copper electrolyte was kept constant at 45 ° C.
  • the anode was a 5mm thick, 10 x 10 cm2 Dimentionally Stable Electrode (DSE) plate, and the cathode was a titanium plate with the same size and thickness as the anode.
  • DSE Dimentionally Stable Electrode
  • plating was performed at a current density of 35 A / dm 2: An electrolytic copper foil having a thickness of 18 ⁇ was prepared.
  • the basic composition of the copper electrolyte is as follows:
  • H2S04 80 ⁇ 150g / L
  • Silver chlorine and additives are added to the additive copper electrolyte, and the composition of the added additives and chloride ions is shown in Table 1 below.
  • ppm is the same concentration as mg / L.
  • the scanning electron micrograph of the prepared electrolytic copper foil precipitation surface (matte surface, M surface) is shown in FIG.
  • PEG polyethylene glycol (canto chemical Cas No. 25322-68-3)
  • the electrolytic copper foils of Examples 1 to 4 had a flat surface and a low roughness compared to those of Comparative Copper Samples 1 to 4.
  • Glossiness was measured about the surface of the precipitation surface of the electrolytic copper foil obtained in Examples 1-4 and Comparative Examples 1-4.
  • Glossiness was measured by irradiating measurement light on the surface of the copper foil along the flow direction (MD direction) of the electrolytic copper foil at an incident angle of 60 °, and measuring the intensity of light reflected at a reflection angle of 60 °. It measured based on 8741-1997.
  • the electrolytic copper foils of Examples 1 to 4 exhibited improved glossiness as compared to the electrolytic copper foils of Comparative Examples 1 to 4.
  • X-ray diffraction (XRD) spectra of the precipitated surfaces of the electrolytic copper foils obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were measured.
  • XRD for Example 1 The spectrum is shown in FIG.
  • the peak intensity of the (111) crystal plane was the highest, followed by the (200) crystal plane.
  • K200) / I (i n) which is the ratio of the intensity (K20Q) of the diffraction peak with respect to the (200) crystal plane and the intensity (1 (111)) of the diffraction peak with respect to the (111) crystal plane, was 0.605.
  • Orientation indexes are S. Yoshimura, S. Yoshihara, T. Shirakashi, E. Sato, Electrochim. Measurement was performed using the orientation index (M) proposed in Acta 39, 589 (1994).
  • the orientation index XM is calculated as follows.
  • IFR (111) IF (111) / ⁇ IF (111) + IF (200) + IF (220) + IF (311) ⁇
  • IR (111) I (111) / ⁇ I (111) + 1 (200) + 1 (220) + 1 (311) 1
  • IF (lll) is the XRD intensity on JCPDS Cards and 1 (111) is the experimental value. If M (lll) is greater than 1, it has a preferred orientation parallel to the (111) plane, and if M is less than 1, it means that the preferred orientation is reduced. Table 3
  • Precipitation surface and gloss surface roughness Rz and Ra of the electrolytic copper foil obtained in Examples 1-4 and Comparative Examples 1-4 were measured according to JISB 0601- 1994 standard. Surface roughness Rz and Ra obtained by the measuring method are shown in Table 4 below. The lower the value, the lower the roughness.
  • the same electrolytic copper foil used for the measurement of tensile strength and elongation at room temperature was taken out after heat treatment at 180 ° C for 1 hour, and the tensile strength and Elongation was measured and referred to as high temperature tensile strength and high temperature elongation.
  • the electrolytic copper foils of Examples 1 to 4 have a low surface roughness Rz of less than 0.5 / im, a tensile strength of 40 kgf / mm 2 or more after high temperature heat treatment, and an elongation of 10% or more after high temperature heat treatment. High.
  • the electrolytic copper foils of Comparative Examples 1 to 4 have higher surface roughness and lower elongation after high temperature heat treatment than i electrolytic copper foils of Examples 1 to 4, so that they can be used as negative current collectors for secondary batteries and / or low-low copper foils for PDB / FPC. Not suitable for.
  • the invention is not to be limited by the foregoing embodiments and the accompanying drawings, which are to be interpreted by the appended claims.
  • it will be apparent to those skilled in the art that various forms of substitution, modification, and alteration are possible without departing from the technical spirit of the present invention described in the claims with respect to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

석출면의 표면조도 Rz가 1.4μm 이하이며, 열처리 후 인장강도가 40kgf/mm2 이상이며 연신율이 4% 이상인 전해동박이 제시된다. 상기 전해동박은 저조도 및 고강도를 유지하면서 높은 연신율을 나타내어, 중대형 리튬이온 2차 전지의 집전체 및 TCP(Tape Carrie Package)에 사용되는 TAB(Tape Automated Bonding)용 반도체 팩킹(packing)용 기판 등에 사용될 수 있다.

Description

【명세서】
【발명의 명칭】
전해동박, 이를 포함하는 전기부품 및 전지, 및 전해동박 제조방법 【기술분야】
본 발명은 전해동박, 전해동박을 포함하는 전기부품 및 전지, 및 전해동박 의 제조방법에 관한 것으로, 보다 상세하게는 고온 열처리 후에도 높은 인장강도 와 연신율을 동시에 구비한 저조도, 고강도 및 고연신 전해동박에 관한 것이다.
【배경기술】
이차전지의 집전체로는 일반적으로 동박이 사용된다. 상기 동박은 압연가 공에 의한 압연동박이 주로 사용되나, 제조비용이 고가이고 광폭의 동박 제조가 어렵다. 또한, 압연동박은 압연 가공시 윤활유를 사용해야 하기 때문에 윤활유의 오염에 의해 활물질과의 밀착성이 저하되어 전지의 층방전 사이클 특성이 저하될 수 있다.
리튬전지는 층방전시 체적변화 및 과층전에 따른 발열현상을 수반한다. 또한, 전극활물질과의 밀착성을 향상시키고 층방전 사이클에 따른 활물질층의 팽 창 수축과 관련하여 동박 기재에 영향을 덜 받아 집전체로서의 동박에 주름, 파 단 등의 발생을 방지하는 효과가 있도록 동박의 표면 조도가 낮아야 한다. 따라 서, 리튬전지의 체적변화 및 발열현상을 견딜 수 있고 활물질과의 밀착성이 우수 한 고연신, 고강도 및 저조도 동박이 요구된다.
또한, 전자기기의 경박단소 요구로 인하여 고기능화, 소형화, 경량화에 따 른 적은 면적 내에: 회로의 집적도를 높이고자 반도체실장기판이나 메인보드 기판 의 미세 배선화에 대한 요구가 증가하고 있다. 이러한 미세 패턴을 가지는 프린 트 배선판의 제조에 두꺼운 동박이 이용되면 배선 회로 형성을 위한 에칭 시간이 길어지고 배선 패턴의 측벽 수직성이 저하된다. 특히, 에칭에 의해 형성되는 배선 패턴의 배선 선폭이 좁은 경우에는 배선이 단선될 수 있다. 따라서, 미세 피치 희 로를 얻기 위해서는, 보다 두께가 얇은 동박이 요구된다. 그러나, 얇은 동박은 동 박의 두께가 제한되므로 기계적 강도가 약해 프린트 배;선 기판의 제조시에 구김 이나 꺽임 등의 불량 발생 빈도가 높아진다.
그리고, TCP Tape Carrier Package)에 사용되는 TAB(Tape Automated Bonding)용 반도체 팩킹 (packing) 기판 등에서: 제품의 중앙부에 위치하는 디바 이스홀 (device hall)에 배치되는 이너리드 (inner lead)에 대해 IC 칩의 복수의 단 자를 직접 본딩하게 되며, 이 때 본딩장치를 이용하여 순간적으로 전류를 홀려 가열하며 일정한 압력을 가한다. 따라서, 전해동박의 에칭에 의하여 형성된 이너 리드가 본딩압에 의하여 당겨져 늘어나게 된다. ―
따라서, 두께가 얇고, 기계적 강도가 높으면서도 고연신이 가능한 저조도 동박이 요구된다.
【발명의 상세한 설명】
【기술적 과제】
본 발명의 한 측면은 새로운 전해동박을 제공하는 것이다.
본 발명의 다른 한 측면은 상기 전해동박을 포함하는 전기부품을 제공하 는 것이다.
본 발명의 또 다른 한 측면은 상기 전해동박을 포함하는 전지를 제공하는 것이다.
본 발명의 또 다른 한 측면은 상기 전해동박의 제조방법을 제공하는 것이 다.
【기술적 해결방법】
본 발명의 한 측면에 따라 석출면의 표면조도 Rz가 lA 이하이며, 열처 리 후 인장강도가 40kgf/rmn2이상이며, 연신율이 4% 이상인 전해동박이 제시된 다.
본 발명의 다른 한 측면에 따라, 절연성 기재; 및 상기 절연성 기재의 일 표면에 부착된 상기 전해동박;을 포함하며, 상기 전해동박을 에칭하여 형성된 회 로를 포함하는 전기부품이 제시된다.
본 발명의 또 다른 한 측면에 따라, 상기 전해동박을 포함하는 전지가 제 시된다. - 본 발명의 또 다른 한 측면에 따라, 첨가제 A; 첨가제 B; 첨가제 C 및 첨 가제 D;를 포함하는 구리전해액을 전해하는 단계를 포함하며, 상기 첨가제 A가 티오우레아계 화합물 및 질소를 포함하는 헤테로고리에 티올기가 연결된 화합물 로 이루어진 군에서 선택된 하나 이상이며, 상기 첨가제 B가 황원자를 포함하는 화합물의 술폰산 또는 그의 금속염이며, 상기 첨가제 C가 비이온성 수용성 고분 자이며; 상기 첨가제 D가 페나지늄계 화합물인 전해동박 제조방법이 제시된다. 【유리한 효과】
본 발명의 한 측면에 따르면 새로운 조성의 첨가제를 포함하는 구리전해 액을 사용함에 의하여 표면조도가 낮으면서도 고강도를 가지고 고연신이 가능한 전해동박이 얻어질 수 있다.
【도면의 간단한 설명】
도 1은 실시예 1에서 제조된 전해동박의 석출면에 대한 XRD(X-ray diffraction) 스펙트럼이다.
도 2는 실시예 1에서 제조된 전해동박의 표면에 대한 주사전자현미경 사 진이다.
도 3은 실시예 2에서 제조된 전해동박의 표면에 대한 주사전자현미경 사 진이다.
도 4는 실시예 3에서 제조된 전해동박의 표면에 대한 주사전자현미경 사 진이다.
도 5는 실시예 4에서 제조된 전해동박의 표면에 대한 주사잔자현미경 사 진이다.
도 6은 비교예 1에서 제조된 전해동박의 표면에 대한 주사전자현미경 사 진이다.
도 7은 비교예 2에서 제조된 전해동박의 표면에 대한 주사전자현미경 사 진이다.
도 8은 비교예 3에서 제조된 전해동박의 표면에 대한 주사전자현미경 사 진이다.
도 9는 비교예 4에서 제조된 전해동박의 표면에 대한 주사전자현미경 사 진이다.
【발명의 실시를 위한 형태】
이하에서는 바람직한 실시예들에 따른 전해동박, 상기 전해동박을 포함하 는 전기부품 및 전지, 및 전해동박 제조방법에 관하여 더욱 상세히 설명한다. 예시적인 일실사예에 따른 전해동박은 석출면의 표면조도 Rz가 Ι ΛίΜ 이 하이며, 열처라후 인장강도가 40 kgf/mm2이상이며, 면신율이 4% 이상이다. 상기 전해동박은 표면조도가 Rz가 Ι Λμαι 이하의 저조도 동박이면서도 40kgi/mm2이상의 높은 인장강도를 가자므로 기계적 강도가 높다. 이와 동시에, 상기 전해동박은 고온을 거친 후에도 4% 이상의 고연신율을 가진다.
따라서, 상기 전해동박은 PCB(Printed Circuit Board)/FPC(Flexible PCB) 용도 및 전지의 집전체 용도로 동시에 사용될 수 있다.
상기 전해동박에서 석출면의 표면조도 Rz가 1.4 를 초과이면 음극집전체 용 전해동박의 표면과 활물질과의 접촉면이 작아져서 층방전 사이클의 수명 및 충전 초기의 전기 용량이 낮아질 수 있다. 또한, 상기 석출면의 표면조도 Rz가 1.4 를 초과이면 프린트배선판에서 미세 피치를 가지는 고밀도 회로를 형성하는 것이 용이하지 않다.
상기 전해동박은 인장강도가 40kgf/mm2 내지 70kgf/mm2로 고강도 특성 을 갖는다. 또한, 상기 전해동박은 열처리 후에도 인장강도가 40kgf/mm2 내지 70kgf/mm2이다. 열처리는 예를 들어 15CTC 내지 22CTC에서 수행될 수 있고, 상 세하게는 18CTC에서 수행될 수 있다. 열처리는 30분, 1시간, 2시간 및 몇시간에 걸쳐 수행될 수 있으나 1시간 이상 수행되어야 일정한 인장강도가 유지될 수 있 다. 열처리는 전해동박의 인장강도를 측정하기 위한 것으로서, 전해동박을 보관하 거나 후속공정에 투입한 경우 일정 수준으로 변하지 않는 값으로 유지되는 인장 강도나 연신율을 얻기 위한 처리이다.
상기 전해동박은 열처리 후 인장강도가 40kgf/mm2미만이면 기계적 강도 가 약해 취급이 어려울 수 있다.
상기 전해동박은 열처리 후의 인장강도가 열처리 전의 인장강도와 유사한 것이 바람직하다ᅳ 상기 전해동박의 열처리 후의 인장강도는 열처리 전 언장강도 의 85% 내지 99%인 것이 바람직한데, 열처리 후에도 강도를 유지하면 후속되는 공정에서의 취급이 용이하고 수율이 높아진다.
상기 전해동박은 열처리 전 연신율이 2% 내지 15%일 수 있다. 또한, 상 기 전해동박은 열처리 후 연신율이 4% 내지 15%일 수 있는데, 열처리는 18CTC 에서 1시간 수행될 수 있다. 또는, 열처리 후 연신율은 열처리 전 연신율의 1배 내지 4.5배일 수 있다.
상기 전해동박에서 열처리 후 연신율이 4% 미만이면, 후속공정이 고온공 정인 경우 크랙이 발생할 수 있다. 예를 들어, 상기 전해동박이 이차전지의 음극 집전체로 사용되는 경우, 음극집전체 제조시의 공정이 고온공정이고, 층방전시에 활물질 층의 부피변화가 수반되므로 크랙이 발생하여 불량을 유발할 수 있으므로 열처;리 후 소정 연신율을 유지하여야 한다.
상기 전해동박은 석출면에 대한 XRD 스펙트럼에서 (200) 결정면에 대한 회절 피크의 강도 (1(200))와 (111) 결정면에 대한 회절 피크의 강도 (1(111))의 비 인 1(200)/1(111)가 0.5 내지 1.0일 수 있다.
예를 들어, 도 1에서 보여지는 바와 같이 석출면에 대한 XRD 스펙트럼에 서 회절 각도 (2Θ) 43.0°士 1.0°에서 (111) 결정면에 대한 회절 피크를 나타내며, 회절 각도 (2Θ) 50.5°士 1.0°에서 (200) 결정면에 대한 회절 피크를 나타내며, 이 들의 강도비 1(200)/1(111)가 0.5 내지 1.0이상일 수 있다.
예를 들어ᅳ 상기 전해동박에서 1(200)/1(111)가 0.5 내지 0.8일 수 있다.상 기 전해동박에서 상기 석출면에 대한 XRD 스펙트럼에서 (200) 결정면에 대한 배향지수 (M(2Q0))와 (111) 결정면에 대한 배향지수 (Μ(ηυ)로부터 얻어지는 배 향지수의 비언 M(200)/M(l l l)가 1.1 내지 1.5일 수 있다. 상기 배향지수 (orientation index)는 임의의 시료에 대한 특정 결정면의 상대적인 피크 강도를 모든 결정면에 대하여 무배향인 표준 시료에서 얻어지는 특성 결정면의 상대적인 피크 강도로 나누어준 값이다. 예를 들어, 상기 전해동박에서 M(200)/M(l l l)가 1.2 내지 1.4일 수 있다.
상기 전해동박은 180°C에서 1시간 열처리 후 연신율이 10% 이상일 수 있다. 즉, 상기 전해동박은 고온열처리 후 연신율이 10% 이상인 고연신율을 가 질 수 있다. 예를 들어, 상기 전해동박은 고온열처리 후 연신율이 10% 내지 20% 일 수 있다. 예를 들어, 상기 전해동박은 고온열처리 후 연신율이 10% 내지 15% 일 수 있다. 예를 들어, 상기 전해동박은 고온열처리 후 연신율이 10% 내지 13% 일 수 있다. 상기 전해동박은 열처리 전 연신율이 1% 이상일 수 있다. 예를 들어, 상기 전해동박은 열처리 전 연신율이 2% 내지 20%일 수 있다. 예를 들어, 상기 전해동박은 열처리 전 연신율이 5% 내지 20%일 수 있다. 예를 들어ᅳ 상기 전해 동박은 열처리 전 연신율이 5% 내지. 15%일 수 있다. 예를 들어, 상기 전해동박 은 열처리 전 연신율이 5% 내지 10%일 수 있다. 상기 "열처리 전''어라는 용어 는 고온상태로 열처리하기 전의 온도인 25 °C 내지 130 °C를 의미한다. 상기 연신 율은 전해동박이 파단되기 직전까지 연신된 거리를 전해동박의 최초길이로 나눈 값이다.
상기 전해동박은 석출면의 표면조도 Rz가 .Tim 이하일 수 있다. 상기 전 해동박은 Rz가 0.7 이하인 저조도를 가짐에 의하여 PCB/FPC 용 동박 및 이차 전지용 음극집전체용 동박으로 모두 사용될 수 있다. 예를 들어, 상기 전해동박은 석출면와 표면조도 Rz가 0.5 이하일 수 있다. 예를 들어, 상기 전해동박은 석 출면의 표면조도 Rz가 0.45/ΛΙΙ 이하일 수 있다.
상기 전해동박은 석출면의 표면조도 Ra가 0.15im 이하일 수 있다. 상기 전해동박은 Ra가 0.15 zm 이하인 저조도를 가짐에 의하여 PCB/FPC 용 동박 및 이차전지용 음극집전체용 동박으로 모두 사용될 수 있다. 예를 들어, 상기 전해동 박은 석출면의 표면조도 Ra가 O. Uim 이하일 수 있다. 예를 들어, 상기 전해동박 은 석출면의 표면조도 Ra가 O. l l im 이하일 수 있다. *33상기 전해동박의: 열처리 후 인장강도가 열처리 전 인장강도의 85% 이 상일 수 있다. 예를 들어, 상기 전해동박의 18CTC에서 1시간 동안 열처리 후 인 장강도가 열처리 전 인장강도의 90% 이상일 수 있다. 상기 열처리 전 인장강도 는 고온 열처뫼 없이 얻어진 동박의 인장강도이다. 상기 전해동박의 열처리 전 인장강도는 40kgf/mm2 내지 70kgf/mm2일 수 있다.
상기 전해동박에서 석출면의 폭 방향에 대한 광택도 (Gs(60°))가 500 이상 일 수 있다. 예를 들어, 상기 전해동박에서 석출면의 폭 방향에 대한 광택도 (Gs(600))가 500 내지 1000일 수 있다. 상기 광택도는 JIS Z 871 - 1997에 따라 측정된 값이다.
상기 전해동박의 두께는 35 이하일 수 있다. 예를 들어, 상기 전해동박 의 두께는 6 내지 35 m 일 수 있다. 예를 들어, 상기 전해동박의 두께는 6내지 18pm 일 수 있다. 또한, 예를 들어 상기 전해동박의 두께는 2 내지 10 일 수 있다.
상기 전해동박은 절연수지 등과 접착할 필요가 있는 경우, 밀착성을 실용 수준 또는 그 이상으로 만들기 위해서 표면 처리가 추가적으로 실시될 수 있다. 동박 상에서의 표면 처리로서는, 예를 들면 내열 및 내화학성 처리, 크로메이트 처리, 실란 커플링 처리 중 어느 하나 또는 이들의 조합 등을 들 수 있고, 어떤 표면 처리를 어떻게 실시하는가는 절연수지로 이용하는 수지나 공정조건에 따라 서 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 선택하여 수행된다. 예시적인 일실시예에 따른 전기부품은 절연성 기재; 및 상기 절연성 기재 의 일 표면에 부착된 상술한 전해동박;을 포함하며, 상기 전해동박을 에칭하여 형성된 회로를 포함한다.
상기 전기부품은 예를 들어 , TAB 테이프, 프린트배선판 (PCB), 연성프린트 배선판 (FPC, Flexible PCB) 등이나 반드시 이들로 한정되지 않으며, 상기 전해동 박을 절연성 기재상에 부착시켜 사용하는 것으로서 당해 기술분야에서 사용할 수 있는 것이라면 모두 가능하다.
예시적인 일실시예에 따른 전지는 상기 전해동박을 포함한다. 상기 전해 동박은 상기 전지의 음극짚전체로 사용될 수 있으나 반드시 이들로 한정되지 않 으며 전지에 사용되는 다른 구성요소로도 사용될 수 있다. 상기 전지는 특별히 한정되지 않으며 1차 전지, 2차 전지를 모두 포함하며, 리튬이온전지, 리튬폴리머 전지, 리튬공기전지 등 전해동박을 집전체로 사용하는 전지로서 당해기술분야에 서 사용할 수 있는 전지라면 모두 가능하다.
예시적인 일실시예에 따른 전해동박 제조방법은 첨가제 A; 첨가제 B; 첨 가제 C 및 첨가제 D;를 포함하는 구리전해액을 전해하는 단계를 포함하며, 상기 첨가제 A가 티오우레아계 화합물 및 질소를 포함하는 헤테로고리에 티올기가 연 결된 화합물로 이루어진 군에서 선택된 하나 이상이며, 상기 첨가제 B가 황원자 를 포함하는 화합물의 술폰산 또는 그의 금속염이며, 상기 첨가제 C가 비이온성 수용성 고분자이며; 상기 첨가제 D가 페나지늄 (phenazinium)계 화합물이다. 상기 전해동박 제조방법은 새로운 조성의 첨가제들을 포함함에 의하여 두 께가 얇고, 기계적 강도가 높으면서도 고연신이 가능한 저조도 동박을 제조할 수 있다. 상기 구리전해액은 농도 1 내지 40ppm의 염소 (염소이온)를 포함할 수 있 다. 구리전해액 중에 염소이온이 소량 존재하게 되면 전해도금시 초기 핵생성 사 이트가 많아져서 결정립이 미세하게 되고 결정립계 계면에 형성되는 CuC12의 석 출물들이 고온으로 가열시 결정 성장을 억제하여 고온에서의 열적 안정성을 향상 시킬 수 있다. 상기 염소이온의 농도가 1 ppm 미만이면 황산-황산동 전해액 중 에 필요한 염소이온의 농도가 부족하여 열처리 전 인장강도가 저하되고 고온에서 의 열적 안정성이 저하될 수 있다. 염소이온의 농도가 40 ppm 초과이면 석출면 의 표면조도가 상승하여 저조도의 전해동박 제조가 어렵고 열처리 전 인장강도가 저:하되고 고온에서의 열적 안정성이 저하될 수 있다.
상기 구리전해액에서 상기 첨가제: A의 함량이 1 내지 lOppm이며, 상기 첨가제 B의 함량이 10 내지 200ppm이며, 상기 첨가제 C의 함량이 5 내지 40ppm이며, 상기 첨가제 D의 함량이 1 내지 lOppm 일 수 있다.
상기 구리전해액에서 첨가제 A는 전해동박의 제조 안정화를 향상시키고 전해동박의 강도를 향상시킬 수 있다. 상기 첨가제 A의 함량이 lppm 미만이면 전해동박의 인장강도가 저하될 수 있으며, 상기 첨가제 A의 함량이 lOppm 초과 이면 석출면의 표면조도가 상승하여 저조도의 전해동박 제조가 어렵고 인장강도 가 저하될 수 있다.
상기 구리전해액에서 첨가제 B는 전해동박의 표면광택을 향상시킬 수 있 다. 상기 첨가제 B의 함량이 lOppm 미만이면 전해동박의 광택이 저하될 수 있 으며, 상기 첨가제 B의 함량이 200ppm 초과이면 석출면의 표면조도가 상승하여 저조도의 전해동박 제조가 어렵고 전해동박의 인장강도가 저하될 수 있다.
상기 구리전해액에서 첨가제 C는 전해동박의 표면 조도를 낮추고 표면광 택을 향상시킬 수 있다. 상기 첨가제 C의 함량이 5ppm 미만이면 석출면의 표면 조도가 상승하여 저도도의 전해동박 제조가 어렵고 전해동박의 광택이 저하될 수 있으며, 상기 첨가제 C의 함량이 40ppm 초과이면 전해동박의 물성이나 외관에 차이가 없으며 경제적이지 못할 수 있다.
상기 구리전해액에서 첨가제 D는 전해동박의 표면을 평평함을 향상시키는 역할을 수행할 수 있다. 상기 첨가제 D의 함량이 lppm 미만이면 석출면의 표면 조도가 상승하여 저도도의 ¾해동박 제조가 어렵고 전해동박의 광택이 저하될 수 있으며, 상기 철가제 D의 함량이 40ppm 초과이면 전해동박의 석출상태가 불안 정해지고 전해동박의 인장강도가 저해될 수 있다.
상기 티오우레아 화합물은 하기 화학식 1로 표시되는 화합물일 수 있다:
〈화학식 1>
Figure imgf000014_0001
상기 식에서, Rl, R2, R3 및 R4는 서로 독립적으로 탄소수 1 내지 10의 알킬기이며, 상기 R2 및 R4는 서로 연결되어 고리를 형성할 수 있다.
예를 들어, 상기 티오우레아계 화합물은 디에틸티오우레아, 에틸렌티오우 레아, 아세틸렌티오우레아, 디프로필티오우레아, 디부틸티오우레아, N-트리플루오 로아세틸티 i오우레아 (N-trifluoroacetylthiourea) N-에틸티오우레아 (N- ethylthiourea), N-시아노아세틸티오우레아 (N-cyanoacetylthiourea), N-알릴티오 우레아 (N-allylthiotirea), o_를릴티오우레아 (o-tolylthiourea), Ν,Ν'-부틸렌 티오 우레아 (Ν,Ν'-butylene thiourea), 티오졸리딘티올 (thiazolidinethiol), 4-티아졸리 티올 (4_thiazolinethiol), 4—메틸 -2-피리미딘티올 (4— methyl-2— pyrimidinethiol), 2-티오우라실 (2-thiouracil)로 이루어진 군에서 선택된 하나 이상일 수 있으나 반드시 이들로 한정되지 않으며 당해 기술분야에서 첨가제로 사용가능한 티오우 레아 화합물이라면 모두 가능하다. 상기 질소를 포함하는 해테로고리에 티올기가 연결된 화합물은 예를 들어, 하기 화학식 2로 표시되는 2-머캅토 -5-벤조이미다 졸 술폰산 소듐염 '(2_mercapto—5—benzoimidazole sulfonic acid sodium salt), 하 기 화학식 3으로 표시되는 소듐 3—(5—머캅토 - 1ᅳ테트라졸릴)벤젠 술포네이트 (Sodium 3-(5-mercapto- 1 -tetrazolyDbenzene sulfonate), 하기. 화학식 4로 표 시되는 2-머캅토 벤조티아졸 (2-mercapto benzothiazole)일 수 있다.
〈화학식 2>
Figure imgf000015_0001
<화학식 3>
Figure imgf000015_0002
<화학식 4>
Figure imgf000016_0001
상기 황원자를 포함하는 화합물의 술폰산 또는 그의 금속염은 예를 들어, 하기 화학식 5로 표시되는 비스 -(3-술포프로필) -디설파이드 디소듐염 (SPS), 하 기 화학식 6으로 표시되는 3ᅳ머캅토—1-프로판술폰산 (MPS), 하기 화학식 7로 표 시되는 3-(N,N-디메틸티오카바모일) -티오프로판술포네이트 소듐염 (DPS), 하기 화학식 8로 표시되는 3- [(아미노-이미노메틸)티오] -1-프로판술포네이트 소듐염 (UPS), 하기 화학식 9로 표시되는 으에틸디티오카보네이토 -S-(3-설포프로필) - 에스테르 소듐염 (OPX), 하기 화학식 10으로 표시되는 3- (벤조티아졸릴 -2ᅳ머캅 토) -프로필-술폰산 소듐염 (ZPS), 에틸렌디티오디프로필술폰산 소듐염 (Ethylenedithiodipropylsulfonic acid sodium salt), 티오글리콜산 (Thioglycolic acid), 티오포스포릭산— o-에틸 -비스 -(ω-술포프로필)에스테르 디소듐염 (Thiophosphoric acid_0_ethy卜 bis—(toᅳ sulfopropyD'ester disodium salt), 티오 포스포릭산-트리스—(ω-술포프로필)에스테르 트리소듐염 (Thiophosphoric acid- tris- (Q)-sulfopropyl)ester trisodium salt)으로 이루어진 군에서 선택된 하나 이 상일 수 있으나 반드시 이들로 한정되지 않으며 당해 기술분야에서 첨가제로 사 용할 수 있는 황원자를 포함하는 화합물의 술폰산 또는 그의 금속염이라면 모두 가능하다.
〈화학식 5>
Figure imgf000017_0001
<화학식 6〉
HS_CH2-CH2ᅳ CH2-S03
〈화학식 7〉 N— C-S-C H2— CH2-C H2-S03 Na
〈화학식 8〉
Figure imgf000017_0002
〈화학식 9〉
Figure imgf000017_0003
〈화학식 10〉
Figure imgf000017_0004
상기 비이온성 수용성 고분자는 폴리에틸렌글리콜, 폴리글리세린, 하이 록시에틸셀롤로오스, 카르복시메틸샐를로오스 (Carboxymethylcellulose), 노닐페 놀 폴리글리콜에테르 (Nonylphenol polyglycol ether), 옥탄 디올—비스—(폴리알킬 렌 글리콜 에테르 (Octane diol-bis-(polyalkylene glycol ether), 옥탄을 폴리알킬 렌 글리콜 에테르 (Ocatanol polyalkylene glycol ether), 올레익산 폴리글리콜 에 테르 (이 eic acid polyglycol ether), 폴리에틸렌 프로필렌 글리콜 (Polyethylene propylene glycol), 폴리에틸렌 글리콜 다메틸 에테르 (Polyethylene glycol dimethyl ether), 폴리옥시프로필렌 글리콜 (Polyoxypropylene glycol), 폴리비닐 알코올 (Polyvinyl alcohol), β-나프를 폴리글리콜 에테르 (β-naphthol polyglycol ether), 스테아릭산 폴리글리콜 에테르 (Stearic acid polyglycol eter), 스테아릴 알코올 폴리글리콜 에테르 (Stearyl alcohol polyglycol ether)로 이루어진 군에서 선택된 하나 이상일 수 있으나 반드시 이들로 한정되지 않으며 당해 기술분야에 서 철가제로 사용될 수 있는 수용성 고분자라면 모두 가능하다. 예를 들어, 상기 폴리에틸렌글리콜은 분자량이 2000 내지 20000일 수 있다.
상기 페나지늄계 화합물이 하기 화학식 11로 표시되는 화합물일 수 있다:
〈화학식 11〉
Figure imgf000018_0001
상기 식에서,
Rl, R2, R4, R5, R6, R7', R7", R8 및 R9는 서로 독립적으로 수소, 탄소수 1 내지 10의 알킬기 또는 탄소수 6 내지 20의 아릴기이며, X는 -N=N-C6H4- N(CH3)2, 수소, 탄소수 1 내지 10의 알킬기 또는 탄소수 6 내지 20의 아릴기이 며 , A는 할로겐 원소이다. 상기 페나지늄계 화합물은 중합체가 아니다.
예를 들어, 상기 페나지늄계 화합물은 하기 하학식 12로 표시되는 사프라 닌 -O(Safaranine-O), 하기 화학식 13으로 표시되는 야누스 그린 BUanus Green B) 등으로 이루어진 군에서 선택된 하나 이상일 수 있다.
〈화학식 12>
Figure imgf000019_0001
<화학식 13>
Figure imgf000019_0002
상기 제조방법에서 사용되는 구리전해액의 온도는 30 내지 6CTC일 수 있 으나, 반드시 이러한 범위로 한정되는 것은 아니며 본 발명의 목적을 달성할 수 있는 범위 내에서 적절히 조절될 수 있다. 예를 들어, 상기 구리전해액의 온도는 40 내지 50°C일 수 있다. 상기 제조방법에서 사용되는 전류밀도는 20 내지 500A/dm2일 수 있으나, 반드시 이러한 범위로 한정되는 것은 아니며 본 발명의 목적을 달성할 수 있는 범위 내에서 적절히 조절될 수 있다. 예를 들어, 상기 전류밀도는 30 내지 40
A/dm2일 수 있다. 상기 구리전해액은 황산-황산동 구리전해액일 수 있다. 상기 황산-황산동 구리전해액에서 상기 Cu2+이온의 농도는 60g/L 내지 180g/L일 수 있으나 반드시 이러한 범위로 한정되는 것은 아니며 본 발명의 목적을 달성할 수 있는 범위 내에서 적절히 조절될 수 있다. 예를 들어, 상기 Cu2+의 농도는 65g/L 내지 175g/L 일 수 있다.
상기 구리전해액은 공지의 방법으로 제조될 수 있다. 예를 들어ᅳ Cu2+ 이 온의 농도는 구리 이온 또는 황산구리의 철가량을 조절하여 얻을 수 있으며, S042+이온의 농도는 황산 및 황산구리의 첨가량을 조절하여 얻을 수 있다.
상기 구리전해액에 포함되는 첨가제들의 농도는 구리전해액에 투입되는 첨가제의 투입량 및 분자량에서 얻어지거나, 구리전해액에 포함된 첨가제들을 컬 럼크로마토그래피와 같은 공지의 방법으로 분석하여 얻을 수 있다.
상기 전해동박의 제조방법은 상술한 구리전해벡을 사용한 것을 제외하고 는 공지의 방법으로 제조될 수 있다.
예를 들어, 상기 전해동박은 회전하는 티탄제 드럼상 티탄의 곡면상 음극 표면과 양극 사이에 상기 구리전해액을 공급하고 전해하여 음극 표면에 전해동박 을 석출시키고 이를 연속적으로 권취하여 전해동박을 제조할 수 있다.
이하 실시예를 들어 본 발명을 더욱 상세히 설명하나, 본 발명이 이에 한 정되는 것은 아니다.
(전해동박의 제조)
실시^ 1 1
전해에 의한 전해동박을 제조하기 위해 20L/min으로 순환 가능한 3L용량 의 전해조 시스템을 이용하였고 구리전해액의 은도는 45 °C로 일정하게 유지하였 다. 양극은 두께가 5mm이고, 크기가 10 x l0cm2의 DSE(Dimentionally Stable Electrode) 극판을 사용하였으며, 음극은 양극과 동일한 크기 및 두께를 가진 티 타늄 극판을 사용하였다.
Cu2+이온의 이동을 원활하게 하기 위하여 전류밀도는 35A/dm2로 도금 을 실시하였으며:, 18^ 두께의 전해동박을 제조하였다.
구리전해액의 기본조성은 다음과 같다:
CuS04-5H20: 250~400g/L
H2S04: 80~150g/L
상가 구리전해액에 염소이은 및 첨가제가 추가되며, 첨가된 첨가제 및 염 소이온의 조성은 하기 표 1에 나타내었다. 하기 표 1에서 ppm은 mg/L와 동일한 농도이다.
제조된 전해동박 석출면 (matte 면, M면)표면의 주사전자현미경 사진을 도 2에 나타내었다.
실시예 2 내지 4 및 비교예 1 내지 4
구리전해액의 조성을 하기 표 1에서와 같이 변경한 것을 제외하고는 실시 예 1과 동일한 방법으로 전해동박을 제조하였다. 실시예 2 내지 4 및 비교예 1 내지 4에서 제조된 전해동박의 석출면 표면의 주사전자현미경 사진을 도 3 내지 9에 각각 나타내었다.
【표 1】
Figure imgf000022_0001
상거 i 표 1에서 약자들은 하기 화합물들을 의미한다.
DET: 디에틸 티오우레아
SPS: 비스 -(3-술포프로필) -다설파이드
MPS: 3-머갑토 -1-프로판술폰산
PEG: 폴리에틸렌글리콜 (칸토 케미칼 Cas No. 25322-68-3)
ZPS: 3- (벤조티아졸릴— 2-머갑토) -프로필-술폰산 소듬염
JGB: 야누스 그린 B
2M-SS; 2—머캅토 -5ᅳ벤조이미다졸 술폰산
DDAC: 디알릴디:메틸암모늄클로라이드
PGL: 폴리글리세린 (KCI, PGL 104KC) 평가예: 1: 주사전자현미경 실험
실시예 1 내지 4 및 비교예 1 내지 4에서: 얻어진 전해동박의 석출면의 표면에 대하여 주사전자현미경을 측정하여 그 결과를 도 2 내지 9에 각각 나타 내었다.
도 2 내지 9에서 보여지는 바와 같이 실시예 1 내지 4의 전해동박은 비 교예 1 내지 4의 전해동박에 비하여 표면이 평탄하고 조도가 낮았다.
평가예 2: 광택도 측정
실시예 1 내지 4 및 비교예 1 내지 4에서 얻어진 전해동박의 석출면의 표면에 대하여 광택도를 측정하였다. 상기 광택도는 JIS Z 871-1997에 따라 측 정된 값이다.
광택도의 측정은 전해동박의 흐름 방향 (MD 방향)을 따라 당해 동박의 표면에 입사각 60°로 측정광을 조사하고, 반사각 60°로 반사된 빛의 강도를 측정 한 것으로 광택도 측정 방법인 JIS Z 8741- 1997에 준거하여 측정하였다.
측정 결과를 하기 표 2에 나타내었다.
【표 2】
Figure imgf000024_0001
상기 표 2에 기재된 바와 같이, 실시예 1 내지 4의 전해동박은 비교예 1 내지 4의 전해동박에 비하여 향상된 광택도를 나타내었다.
평가예 3: XRD 실험
실시예 1 내지 4 및 비교예 1 내지 4에서 얻어진 전해동박의 석출면에 대하여 XRD(X-ray diffraction) 스펙트럼을 측정하였다. 실시예 1에 대한 XRD 스펙트럼을 도 1에 나타내었다.
도 1에서 보여지는 바와 같이 (111) 결정면의 피크 강도가 가장 높으며, 다음이 (200) 결정면이었다.
상기 (200) 결정면에 대한 회절 피크의 강도 (K20Q))와 (111) 결정면에 대한 회절 피크의 강도 (1(111))의 비인 K200)/I(i n)는 0.605이었다.
또한, 상기 석출면에 대한 XRD 스펙트럼에서 (111), (200), (220), (311), (222) 결정면에 대한 배향지수 (orientation index, M)를 측정하여 그 결과를 하기 표 3에 나타내었다.
배향지수는 S.Yoshimura, S. Yoshihara, T.Shirakashi, E.Sato, Electrochim. Acta 39, 589(1994)에서 제안한 배향지수 (M)을 사용하여 측정하였 다.
예를 들어, (111) 면을 갖는 시편의 경우 다음과 같은 방법으로 배향지수 (orientation indexXM)을 계산한다.
IFR(111)=IF(111)/{IF(111)+ IF(200)+ IF(220)+ IF(311)}
IR(111)=I(111)/{I(111)+ 1(200)+ 1(220)+ 1(311)1
M(111)=IR(111)/IFR(111)
IF(l l l)은 JCPDS 카드 (Cards) 에서의 XRD 강도이며 1(111)은 실험값이 다. M(l l l)이 1보다 크면 (111)면에 평행한 우선 방위를 가지며, M이 1보다 작 으면 우선방위가 감소함을 의미한다. 【표 3】
Figure imgf000026_0001
상기 표 3을 참조하여, 상기 석출면에 대한 XRD 스펙트럼에서 (200)결정 면에 대한 배향지수 (M(200))와 (111) 결정면에 대한 배향지수 (M(l l l))로부터 얻 어지는 배향지수의 비인 M(200)/M(l l l)는 1.31이었다.
평가예 4: 표면 조도 (Rz) 측정
실시예 1 내지 4 및 비교예 1 내지 4에서 얻어진 전해동박의 석출면 및 광택면 표면 조도 Rz 및 Ra를 JISB 0601- 1994 규격에 따라 측정하였다. 상기 측정방법으로 얻어진 표면 조도 Rz 및 Ra를 하기 표 4에 나타내었다. 값이 낮을 수록 거칠기가 낮음을 의미한다.
평가예 5: 상온 인장강도, 상온 연신율, 고온 인장강도 및 고온 연신율 측 정
실시예 1 내지 4 및 비교예 1 내지 4에서 얻어진 전해동박을 폭 12.7mm X 게이지 길이 50mm로 인장시편을 채취한 후 50.8 mm/min의 크로스해드 속도 로 인장시험을 IPC-TM— 650 2.4.18B 규격에 따라 실시하여 측정되는 언장강도 의 최대하중을 상온 인장강도라고 하고, 파단시의 연신율을 상온 연신율이라고 하였다. 여기서 상온은 25°C이다.
상온에서의 인장강도 및 연신율 측겋에 사용된 전해동박과 동일한 전해동 박을 180°C에서 1시간 열처리 후 꺼내어 상기와 동일한 방법으로 인장강도 및 연신율을 측정하고 고온 인장강도 및 고온 연신율이라고 하였다.
상기 측정방법으로 얻어진 상온 인장강도, 상온 연신율, 고온 인장강도, 고온 연신율을 하기 표 4에 나타내었다.
【표 4】
Figure imgf000027_0001
상기 표 4에서 보여지는 바와 같이 실시예 1 내지 4의 전해동박은 표면 조도 Rz가 0.5/im 미만으로 낮고, 고온 열처리 후 인장강도가 40kgf/mm2이상이 며, 고온 열처리 후 연신율이 대부분 10% 이상으로 높았다. 이에 비해, 비교예 1 내지 4의 전해동박은 실시예 1 내지 4의 전해동박에 i 비하여 표면조도가 높고, 고온 열처리 후 연신율이 낮아 이차전지용 음극집전체 및 /또는 PDB/FPC용 저저도 동박으로 사용하기에 부적합하였다. 본 발명은상술한 실시형태 및 첨부된 도면에 의해 한정되는 것이 아나라, 첨부된 청구범위에 의해 해석되어야 한다. 또한, 본 발명에 대하여 청구범위에 기 재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 형태의 치환, 변형 및 변경이 가능하다는 것은 당해 기술분야의 통상의 지식을 가진 자에게 자 명할 것이다.

Claims

【청구의 범위】
【청구항 11
석출면의 표면조도 Rz가 1.4;皿 이하이며,
열처리 후 인장강도가 40kgf/mm2이상이며, 연신율이 4%이상인 전해동박.
【청구항 2】
청구항 1에 있어서,
열처리 전 인장강도가 40kgf/mm2 내지 70kgf/mm2인 것을 특징으로 하 는 전해동박.
[청구항 3】
청구항 1에 있어서,
열처리 후 인장강도는 40kgf/mm2 내지 70kgf/mm2인 것을 특징으로 하 는 전해동박.
【청구항 4】
청구항 3에 있어서,
18CTC에서 1시간 열처리 후 인장강도는 40kgf/mm2 내지 70kgf/mm2인 것을 특징으로 하는 전해동박.
【청구항 5】
청구항 1에 있어서,
열처리 후 인장강도는 열처리 전 인장강도의 85% 내지 99%인 것을 특징 으로 하는 전해동박.
【청구항 6】
청구항 1에 있어서,
열처리 전 연신율이 2% 내지 15%인 것올 특징으로 하는 전해동박.
【청구항 7】
청구항 1에 있어서,
열처리 후 연신율이 4% 내지 15%인 것을 특징으로 하는 전해동박.
【청구항 8】
청구항 7에 있어서,
180°C에서 1시간 열처리 후 연신율아 4% 내지 15%인 것을 특¾으로 하 는 전해동박.
【청구항 9】
청구항 1에 있어서,
열처리 후 연신율은 열처리 전 연신율의 1배 내지 4.5배인 것을 특징으로 하는 전해동박.
【청구항 10】
청구항 1에 있어서,
상기 석출면에 대한 XRD 스펙트럼에서 (200) 결정면에 대한 회절 피크의 강도 (1(200))와 (111) 결정면에 대한 희절 피크의 강도 (1(111))의 비인 1(200)/1(111)가 0.5 에서 1.0인 전해동박.
【청구항 111 청구항 1에 있어서 ;
상기 석출면에 대한 XRD 스펙트럼에서 (200) 결정면에 대한 배향지수 (M(200))와 (111) 결정면에 대한 배향지수 (M(l l l))로부터 얻어지는 배향지수의 비인 M(200)/M(l l l)가 1.1 에서 1.5인 전해동박.
【청구항 12】
청구항 1에 있어서,
상기 석출면의 표면조도 Rz가 O.lim 이하인 전해동박.
【청구항 13】
청구항 있어서,
상기 석출면의 표면조도 Ra가 0.15;皿 이하인 전해동박.
【청구항 14】
청구항 1에 있어서,
상기 석출면의 폭 방향에 대한 광택도 (Gs(600))가 500 이상인 전해동박.
[청구항 15】
청구항 1에 있어서,
두께가 2 zm 내지 인 전해동박.
【청구항 16】
절연성 기재; 및
상기 절연성 기재의 일 표면에 부착된 청구항 1 내지 청구항 15 중 어느 한 항에 따른 전해동박;을 포함하며, 상기1 전해동박을 에칭하여 형성된 회로를 포함하는 전기부품.
【청구항 17】
청구항 1 내자 청구항 15 중 어느 한 항에 따른 전해동박을 포함하는 전 지'.
【청구항 18]
첨가제 A; 첨가제 B; 첨가제 C 및 첨가제 D;를 포함하는 구리전해액을 전해하는 단계를 포함하며,
상기 첨가제 A가 티오우레아계 화합물 및 질소를 포함하는 해테로고리에 티올기가 연결된 화합물로 이루어진 군에서 선택된 하나 이상이며,
상기 첨가제 B가 황원자를 포함하는 화합물의 술폰산 또는 그의 금속염이 며:,
상기 첨가제 C가 비이온성 수용성 고분자이며;
상기 첨가제 D가 페나지늄계 화합물인 전해동박 제조방법.
[청구항 19】
청구항 18에 있어서,
상기 구리전해액이 농도 1 내지 40ppm의 염소를 포함하는 전해동박 제 조방법.
【청구항 20]
청구항 18에 있어서,
상기 첨가제 A의 함량이 1 내지 lOppm이며, 상기 첨가제 B의 함량이 10 내지 200ppm이며,
상기 철가제 C의 함량이 5 내지 40ppm이며,
상기 첨가제 D의 함량이 1 내지 lOppm인 전해동박 제조방법.
【청구항 21】
청구항 18에 있어서, 상기 티오우레아계 화합물이 디에틸티오우레아, 에틸 렌티오우레아, 아세틸렌티오우레아, 다프로필티오우레아, 디부틸티오우레아, N-트 리플루오로아세틸티오우레아 (N-trifluoroacetylthiourea), N-에틸티오우레아 (N_ ethylthiourea), N-시아노아세틸티오우레아 (N-cyanoacetylthiourea), N—알릴티오 우레아 (N-allykhiourea), o-를릴티오우레아 (o-tolylthiourea), Ν,Ν'-부틸렌 티오 우레아 (N,N"-butylene thiourea), 티오졸리딘티을 (thiazolidinethiol), 4-티아졸린 티올 (4-thiazolinethiol), 4-메틸 -2-피리미딘티올 (4— methyl-2-pyrimidinethiol) 및 2-티오우라실 (2-thiouracil)로 이루어진 군에서 선택된 하나 이상인 전해동박 제조방법.
【청구항 22】
청구항 18에 있어서, 상기 질소를 포함하는 헤테로고리에 티을기가 연결 된 화합물이 2—머캅토 -5-벤조이미다졸 술폰산 소듐염 (2-mercapto-5- benzoimidazole sulfonic acid sodium salt), 소듐 3一(5一머캅토— 1—테트라졸릴)벤 젠 술포네이트 (Sodium 3— (5— mercapto— 1— tetrazolyl)benzene sulfonate), 및 2— 머갑토 벤조티아졸 (2-mercapto benzothiazole)로 이루어진 군에서 선택된 하나 이상인 전해동박 제조방법.
【청구항 23]
청구항 18에 있어서, 상기 황원자를 포함하는 화합물의 술폰산 또는 그의 금속염이 비스 -(3-술포프로필) -디설파이드 다소듬염, 3-머캅토 - 1-프로판술폰산, 3— (Ν,Ν-디메틸티오카바모일) -티오프로판술포네이트 소듐염, 3- [(아미노-이미노 메틸)티오]— 1-프로판술포네이트 소듐염, 0-에틸다티오카보네이토 -S— (3-설포프로 필) -에스테르 소듐염, 3- (벤조티아졸릴 -2-머캅토) -프로필-술폰산 소듐염, 에틸렌 디티오디프로필술폰산 소듐염 (Ethylenedithiodipropylsulfonic acid sodium salt), 티오글리콜산 (Thioglycolic acid), 티오포스포릭산 -o-에틸 -비스 -(ω-술포프로필) 에스테르 디소듐염 '(Thiophosphoric acid_o-ethyl— bis一 (ω— sulfopropyDester disodium salt) 및 티오포스포릭산-트리스 -(ω-술포프로필)에스테르 트리소듐염 (Thiophosphoric acid-tris-(o)-sulfopropyl)ester trisodium salt)로 이루어진 군 에서 선택된 하나 이상인 전해동박 제조방법.
【청구항 24]
청구항 18에 있어서, 상기 비이온성 수용성 고분자가 폴리에틸렌글리콜, 폴리글리세린, 하이드록시에틸샐를로오스, 카르복시메틸샐를로오스
(Carboxymethylcellulose), 노닐페놀 폴리글리콜에테르 (Nonylphenol polyglycolether), 옥탄 디올-비스- (폴리알킬렌 글리콜 에테르 (Octane diol-bis- (polyalkylene glycol ether), 옥탄을 폴리알킬렌 글리콜 에테르 (Ocatanol polyalkylene glycol ether), 올레익산 폴리글리콜 에테르 (이 eic acid polyglycol ether), 폴리에탈렌 프로필렌 글리콜 (Polyethylene propylene glycol), 폴리에틸 렌 글리콜 디1메틸 에테르 (Polyethylene glycol dimethyl ether), 폴리옥시프로필 렌 글리콜 (Polyoxypropylene glycol), 폴리비닐 알코올 (Polyvinyl alcohol), β—나 프틀 폴리글리콜 에테르 (βᅳ naphthol polyglycol ether), 스테아릭산 폴리글리콜 에테르 (Stearic acid polyglycol eter) 및 스테아릴 알코을 폴리글리콜 에테르 (Stearyl alcohol polyglycol ether)로 이루어진 군에서 선택된 하나 이상인 전해 동박 제조방법.
【청구항 25】
청구항 18에 있어서, 상기 페나지늄계 화합물이 하기 화학식 11로 표시되 는 화합물인 전해동박 제조방법:
〈화학식 11>
Figure imgf000035_0001
상기 식에서, Rl, R2, R4, R5, R6, R7', R7", R8 및 R9는 서로 독립적으로 수소, 탄소수 1 내지 10의 알킬기 또는 탄소수 6 내지 20의 아릴기이며,
X는 -N=N-C6H4— N(CH3)2, 수소, 탄소수 1 내지 10의 알킬기 또는 탄 소수 6 내지 20의 아릴기이며,
A는 할로겐 원소이다.
【청구항 26] 청구항 18에 있어서,
상기 페나지늄계 화합물이 사프라닌— O(Safaranine-O) 및 야누스 그린 BUanus Green B)로 이루어진 군에서 선택된 하나 이상인 전해동박 제조방법.
PCT/KR2013/009231 2012-10-18 2013-10-16 전해동박, 이를 포함하는 전기부품 및 전지, 및 전해동박 제조방법 WO2014061983A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120116073 2012-10-18
KR10-2012-0116073 2012-10-18
KR10-2013-0118495 2013-10-04
KR1020130118495A KR20140050541A (ko) 2012-10-18 2013-10-04 전해동박, 이를 포함하는 전기부품 및 전지, 및 전해동박 제조방법

Publications (2)

Publication Number Publication Date
WO2014061983A1 WO2014061983A1 (ko) 2014-04-24
WO2014061983A9 true WO2014061983A9 (ko) 2015-02-05

Family

ID=50488484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009231 WO2014061983A1 (ko) 2012-10-18 2013-10-16 전해동박, 이를 포함하는 전기부품 및 전지, 및 전해동박 제조방법

Country Status (1)

Country Link
WO (1) WO2014061983A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111910222B (zh) * 2020-08-21 2022-08-23 九江德福科技股份有限公司 一种兼具光亮及整平作用的电解铜箔添加剂及应用
CN112839436B (zh) * 2020-12-30 2022-08-05 广东嘉元科技股份有限公司 一种高频高速印制电路板用电解铜箔及其制备方法
CN113337856B (zh) * 2021-05-24 2024-02-06 中国恩菲工程技术有限公司 一种用于双面光电解铜箔的添加剂以及铜箔的制备方法
CN114182310B (zh) * 2021-12-21 2023-08-22 深圳先进电子材料国际创新研究院 一种用于电解铜箔制造的电解液及其应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319620B1 (en) * 1998-01-19 2001-11-20 Mitsui Mining & Smelting Co., Ltd. Making and using an ultra-thin copper foil
TW200403358A (en) * 2002-08-01 2004-03-01 Furukawa Circuit Foil Electrodeposited copper foil and electrodeposited copper foil for secondary battery collector
DE10354860B4 (de) * 2003-11-19 2008-06-26 Atotech Deutschland Gmbh Halogenierte oder pseudohalogenierte monomere Phenaziniumverbindungen, Verfahren zu deren Herstellung sowie diese Verbindungen enthaltendes saures Bad und Verfahren zum elektrolytischen Abscheiden eines Kupferniederschlages
KR100941219B1 (ko) * 2005-03-31 2010-02-10 미쓰이 긴조꾸 고교 가부시키가이샤 전해 동박, 그 전해 동박을 이용하여 얻어진 표면 처리 전해 동박, 그 표면 처리 전해 동박을 이용한 동장 적층판 및 프린트 배선판
KR101115913B1 (ko) * 2009-04-28 2012-02-10 엘에스엠트론 주식회사 리튬 이차전지의 집전체용 동박
CN103221584B (zh) * 2010-11-22 2016-01-06 三井金属矿业株式会社 表面处理铜箔

Also Published As

Publication number Publication date
WO2014061983A1 (ko) 2014-04-24

Similar Documents

Publication Publication Date Title
JP6379207B2 (ja) 電解銅箔、並びにこれを含む電気部品及び電池
TWI504764B (zh) 電解銅箔、包含該箔的電氣組件和電池及其製備方法
KR101605071B1 (ko) 전해도금에 의한 구리호일
JP6014186B2 (ja) 電解銅箔、これを含む電気部品および電池
US9899683B2 (en) Electrolytic copper foil, electric component and battery including the same
KR101386093B1 (ko) 전해동박 제조용 구리전해액, 전해동박의 제조방법 및 전해동박
KR100389061B1 (ko) 전해 동박 제조용 전해액 및 이를 이용한 전해 동박 제조방법
CN102124148B (zh) 电沉积铜箔和覆铜层合板
TWI449814B (zh) 低內應力銅電鍍方法
KR20090026128A (ko) 전해 동박, 그 전해 동박을 이용한 표면 처리 동박 및 그 표면 처리 동박을 이용한 동박 적층판 및 그 전해 동박의 제조 방법
KR101571064B1 (ko) 전해동박, 이를 포함하는 전기부품 및 전지, 및 전해동박 제조방법
KR101571060B1 (ko) 전해동박, 이를 포함하는 전기부품 및 전지, 및 전해동박 제조방법
WO2014061983A9 (ko) 전해동박, 이를 포함하는 전기부품 및 전지, 및 전해동박 제조방법
CN105986288A (zh) 电解铜箔、包含该电解铜箔的电气部件及电池
EP3067442A1 (en) Electrolytic copper foil, electric component and battery including the same
KR101571063B1 (ko) 전해동박, 이를 포함하는 전기부품 및 전지, 및 전해동박 제조방법
KR101502373B1 (ko) 전해동박, 이를 포함하는 전기부품 및 전지
TW202346660A (zh) 控制電解銅箔特性的方法及其製造方法
TWI643982B (zh) 電解銅箔,包含該銅箔之電氣組件及電池
CN112030199B (zh) 一种用于先进封装的高速电镀铜添加剂及电镀液
KR20150062229A (ko) 전해동박, 이를 포함하는 전기부품 및 전지, 및 전해동박 제조방법
TW202336283A (zh) 具有高伸長率及高強度特性之電解銅箔
KR20240010058A (ko) 이차전지 집전체용 전해동박
TW202419688A (zh) 電解銅箔、其製造方法以及由其製成的製品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13847366

Country of ref document: EP

Kind code of ref document: A1