WO2014057948A1 - Method for producing heat sink and method for producing heat exchanger plate - Google Patents

Method for producing heat sink and method for producing heat exchanger plate Download PDF

Info

Publication number
WO2014057948A1
WO2014057948A1 PCT/JP2013/077380 JP2013077380W WO2014057948A1 WO 2014057948 A1 WO2014057948 A1 WO 2014057948A1 JP 2013077380 W JP2013077380 W JP 2013077380W WO 2014057948 A1 WO2014057948 A1 WO 2014057948A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
cut
plate
lid
cutting
Prior art date
Application number
PCT/JP2013/077380
Other languages
French (fr)
Japanese (ja)
Inventor
堀 久司
伸城 瀬尾
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to CN201380053097.6A priority Critical patent/CN104718049B/en
Priority to KR1020157011219A priority patent/KR101665275B1/en
Publication of WO2014057948A1 publication Critical patent/WO2014057948A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/28Grooving workpieces
    • B23C3/30Milling straight grooves, e.g. keyways
    • B23C3/305Milling straight grooves, e.g. keyways in which more than one milling tool is used simultaneously, e.g. for sheet material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1275Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding involving metallurgical change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/10Heat sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2220/00Closure means, e.g. end caps on header boxes or plugs on conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding
    • F28F2275/062Fastening; Joining by welding by impact pressure or friction welding

Definitions

  • the present invention relates to a heat sink manufacturing method and a heat transfer plate manufacturing method.
  • Patent Document 1 discloses a method of manufacturing a heat sink by cutting a block to be cut including a base plate and a block portion formed on the base plate.
  • the block portion is cut with a multi-cutter to form a plurality of fins.
  • a plurality of disk cutters are stacked with a gap.
  • a plurality of fins standing on the base plate can be formed by moving the multi-cutter relative to the block portion while the disk cutter is rotated.
  • an object of the present invention is to provide a method of manufacturing a heat sink and a method of manufacturing a heat transfer plate that can improve formability and workability.
  • the present invention provides a friction stirring step for performing friction stirring on the surface of the block to be cut, and a multi-cutter in which a plurality of disk cutters are stacked, and a plurality of pieces are provided on the back side of the block to be cut.
  • the present invention also includes a lid groove closing step of inserting a lid plate into a lid groove formed around a concave groove that opens on the surface of the block to be cut, a side wall of the lid groove, and a side surface of the lid plate.
  • the present invention also includes a lid plate insertion step of inserting a lid plate into the groove that opens on the surface of the block to be cut, and friction stir along the abutting portion between the side wall of the groove and the side surface of the lid plate.
  • the present invention provides a heat medium tube insertion step of inserting a heat medium tube into a concave groove formed in a bottom surface of a cover groove opened on the surface of the block to be cut, and inserting a cover plate into the cover groove.
  • a heat medium tube insertion step of inserting a heat medium tube into a groove opened on the surface of the block to be cut a cover plate insertion step of inserting a cover plate into the groove, and a side wall of the groove
  • a joining step of performing frictional stirring along the abutting portion with the side surface of the lid plate and a cutting step of forming a plurality of fins on the back side of the block to be cut with a multi-cutter in which a plurality of disk cutters are stacked.
  • cutting step cutting is performed in a state in which tensile stress is applied to the back surface of the block to be cut due to thermal contraction after the joining step.
  • the cutting process is performed in a state in which warpage occurs in the block to be cut due to thermal contraction after friction stirring, and tensile stress acts on the back surface of the block to be cut.
  • the friction between a disk cutter and a fin can be made small compared with the past. Therefore, a disk cutter can be rotated smoothly and a moldability and workability
  • operativity can be improved.
  • frictional heat is also generated on the back side of the block to be cut by the cutting process, the warp generated in the block to be cut can be corrected by heat shrinkage caused by the frictional heat.
  • a burr cutting step of cutting a burr generated by the friction stirring from the surface of the block to be cut is preferable to include a burr cutting step of cutting a burr generated by the friction stirring from the surface of the block to be cut. According to this manufacturing method, the surface of the block to be cut can be smoothed.
  • the joining step it is preferable to flow a plastic fluidized material fluidized by frictional heat into a gap formed around the heat medium pipe.
  • the cover plate presses the upper part of the heat medium pipe by the pressing force of the rotary tool for friction stirring, and at least the upper part of the cover plate and the block to be cut are frictionally stirred. Is preferred.
  • the heat medium pipe and the block to be cut can be brought into close contact with each other, the gap around the heat medium pipe can be reduced, and the water tightness and the air tightness can be improved.
  • the present invention is a method of manufacturing a heat sink using a block to be cut having a base plate and a block portion formed on the back surface of the base plate, and the back surface of the base plate includes the block portion.
  • An exposed part that is exposed to the surroundings is formed, and a plurality of fins are formed on the back side of the block part by a friction stirring process that performs friction stirring on the surface of the base plate and a multi-cutter in which a plurality of disk cutters are stacked.
  • Cutting, and in the cutting step cutting is performed in a state in which a tensile stress is applied to the back surface of the block portion by heat shrinkage after the friction stirring step.
  • the present invention is also a method for manufacturing a heat transfer plate from a block to be cut having a base plate and a block portion formed on the back surface of the base plate, wherein the back surface of the base plate includes An exposed portion that is exposed to the periphery is formed, a lid groove closing step of inserting a lid plate into a lid groove formed around a concave groove that opens on the surface of the base plate, a side wall of the lid groove, and the A joining step of performing frictional stirring along the abutting portion with the side surface of the cover plate, and a cutting step of forming a plurality of fins on the back side of the block portion with a multi-cutter in which a plurality of disk cutters are stacked, In the cutting step, cutting is performed in a state in which a tensile stress is applied to the back surface of the block portion by heat shrinkage after the joining step.
  • the present invention is also a method for manufacturing a heat transfer plate from a block to be cut having a base plate and a block portion formed on the back surface of the base plate, wherein the back surface of the base plate includes An exposed portion that is exposed to the periphery is formed, and a lid plate insertion step of inserting a lid plate into the concave groove that opens on the surface of the base plate; and a butt portion between the side wall of the concave plate and the side surface of the lid plate And a cutting step of forming a plurality of fins on the back side of the block portion with a multi-cutter in which a plurality of disk cutters are stacked, and in the cutting step, after the joining step It cuts in the state in which the tensile stress acted on the back surface of the said block part by heat contraction of this.
  • the present invention is also a method for manufacturing a heat transfer plate from a block to be cut having a base plate and a block portion formed on the back surface of the base plate, wherein the back surface of the base plate includes A heat medium tube inserting step of inserting a heat medium tube into a concave groove formed in a bottom surface of a cover groove opened on a surface of the base plate, wherein an exposed portion that is exposed to the periphery is formed; and the lid A multi-cutter in which a lid groove closing step of inserting a lid plate into the groove, a joining step of performing frictional stirring along the abutting portion between the side wall of the lid groove and the side surface of the lid plate, and a plurality of disk cutters are laminated A cutting step of forming a plurality of fins on the back side of the block portion, and in the cutting step, cutting is performed in a state in which a tensile stress is applied to the back surface of the block portion by heat shrinkage after the joining step. It is characterized by that.
  • a heat medium tube insertion step in which a heat medium tube is inserted into a concave groove that is formed on the surface of the base plate, and a lid plate insertion step in which a lid plate is inserted into the concave groove.
  • the cutting process is performed in a state in which warpage occurs in the block to be cut due to thermal contraction after friction stirring, and tensile stress acts on the back surface of the block portion.
  • the friction between a disk cutter and a fin can be made small compared with the past. Therefore, a disk cutter can be rotated smoothly and a moldability and workability
  • operativity can be improved.
  • frictional heat is also generated on the back side of the block to be cut by the cutting process, the warp generated in the block to be cut can be corrected by heat shrinkage caused by the frictional heat.
  • the exposed portion is formed around the block portion, it is possible to secure an attachment allowance of a cover member or the like covering the fin, for example, around the fin formed by cutting.
  • a burr cutting step of cutting a burr generated by the friction stirring from the surface of the base plate is preferable to include a burr cutting step of cutting a burr generated by the friction stirring from the surface of the base plate. According to this manufacturing method, the surface of the block to be cut can be smoothed.
  • the joining step it is preferable to flow a plastic fluidized material fluidized by frictional heat into a gap formed around the heat medium pipe.
  • the lid plate presses the upper portion of the heat medium pipe by the pressing force of the rotary tool for friction stirring, and at least the upper portion of the lid plate and the base plate are frictionally stirred. preferable.
  • the gap around the heat medium pipe can be reduced, and water tightness and air tightness are improved. Can do.
  • the moldability and workability can be improved.
  • FIG. 1 It is a perspective view which shows the heat exchanger plate which concerns on 2nd embodiment of this invention. It is sectional drawing which shows the manufacturing method of the heat exchanger plate which concerns on 2nd embodiment, Comprising: (a) shows a preparatory process, (b) shows a cover plate insertion process. It is sectional drawing which shows the manufacturing method of the heat exchanger plate which concerns on 2nd embodiment, Comprising: (a) shows in the joining process, (b) shows after a joining process. It is a perspective view which shows the heat exchanger plate which concerns on 3rd embodiment of this invention.
  • the heat transfer plate 1 mainly includes a base portion 2, a plurality of fins 3, and a cover plate 4.
  • the heat transfer plate 1 is, for example, an instrument that cools an object by circulating a fluid through the hollow portion of the base portion 2.
  • the base portion 2 has a substantially rectangular parallelepiped shape.
  • a concave groove 5 and a cover groove 6 are formed in the base portion 2.
  • a cover plate 4 is embedded in the surface 2 a of the base body 2.
  • a plurality of fins 3 are formed on the back surface 2 b of the base body 2.
  • the fin 3 is integrally formed with the base body 2.
  • the fins 3 are arranged in parallel at equal intervals, and are extended in parallel with the longitudinal direction of the base body 2.
  • the material of the base portion 2 and the fin 3 is not particularly limited as long as it can be frictionally stirred and can be cut, but in this embodiment, an aluminum alloy is used.
  • the lid plate 4 is a metal member disposed in the lid groove 6.
  • the material of the cover plate 4 is not particularly limited, in the present embodiment, the cover plate 4 is formed of an aluminum alloy as with the base body portion 2.
  • the lid plate 4 has a shape that is inserted into the lid groove 6 without a gap.
  • the concave groove 5 is a groove formed inside the base portion 2.
  • the recessed groove 5 is recessed on the bottom surface of the lid groove 6.
  • the concave groove 5 has a U shape in cross section and a U shape in plan view.
  • the concave groove 5 is a portion that becomes a fluid flow path. Both end portions of the concave groove 5 are open to the side surface 2c.
  • the lid groove 6 is wider than the concave groove 5, and is formed continuously with the concave groove 5 on the surface 2 a side of the concave groove 5.
  • the lid groove 6 has a rectangular shape in sectional view and opens on the surface 2a side.
  • the base part 2 and the cover plate 4 are joined by friction stirring.
  • the two plasticized regions W and W are formed by performing friction stir welding along the abutting portions J and J between the base portion 2 and the cover plate 4.
  • the preparation process is a process of preparing the block 10 to be cut and the cover plate 4.
  • the block 10 to be cut is a block made of an aluminum alloy which is a base of the base portion 2 and the fins 3 and has a substantially rectangular parallelepiped shape.
  • the preparation step first, the block 10 to be cut is fixed to the gantry K via a clamp (not shown), and then the surface 10a of the block 10 to be cut is cut with an end mill or the like to form the lid groove 6.
  • a concave groove 5 narrower than the cover groove 6 is formed on the bottom surface of the groove.
  • the to-be-cut block 10 was formed by cutting process, you may use the raw material in which the ditch
  • the lid groove closing step is a step of inserting the lid plate 4 into the lid groove 6.
  • the cover plate 4 is inserted into the cover groove 6, the pair of side walls of the cover groove 6 and the pair of side surfaces of the cover plate 4 are brought into contact with each other, whereby the abutting portions J and J are formed.
  • the lid groove closing step is performed, the lid groove 6 and the lid plate 4 are fixed with a clamp so that the lid groove 6 and the lid plate 4 do not move.
  • the joining process is a process of performing friction stir welding on the abutting portions J and J with the rotary tool F.
  • the rotary tool F includes a columnar shoulder Fa and a pin Fb depending from the lower end surface of the shoulder Fa.
  • friction stir welding is performed so that the plasticized region W is formed over the entire length of the abutting portion J in the depth direction.
  • friction stir welding may be performed by disposing a tab material on the end surface of the block 10 to be cut and setting a start point and an end point of the rotary tool F on the tab material. Thereby, workability is improved and the finished surface can be cleaned.
  • the cutting process is a process of forming the fin by cutting the block 10 to be cut using the multi-cutter M.
  • the front and back of the block to be cut 10 are turned over, and the block 10 to be cut is fixed via a clamp with the gantry K and the surface 10a facing each other.
  • clamping is performed so that tensile stress acts on the back surface 10b and compressive stress acts on the front surface 10a.
  • the multi-cutter M is composed of a rotation axis Ma and a plurality of disk cutters Mb formed on the rotation axis Ma.
  • the disk cutter Mb has a disk shape, and a blade is formed at the periphery.
  • the disk cutter Mb is arranged perpendicular to the rotation axis Ma.
  • the thickness of the disk cutter Mb is equal to the gap between the fins 3 and 3 to be formed.
  • the gap between the disk cutters Mb and Mb is equal to the thickness of the fin 3 to be formed.
  • the multi-cutter M is arranged so that the plane whose normal is the central axis of the rotation axis Ma and the installation surface of the gantry K are perpendicular to each other, and then cutting is performed while maintaining this parallelism.
  • the central axis of the rotation axis Ma is arranged on a vertical line passing through the ridge line 10e on the upper side of the block 10 to be cut, and then the multi-cutter M is directed toward the ridge line 10e. Lower to a predetermined depth.
  • the block 10 to be cut and the multi-cutter M are moved relative to the ridgeline 10f while maintaining a predetermined depth.
  • the moving direction of the multi-cutter M with respect to the block 10 to be cut is such that a virtual cut surface (10 g in FIG. 4A) is upwardly convex when the block 10 is cut along a vertical plane including the rotation axis Ma. Set to be.
  • the multi-cutter M is moved from the ridge line 10e that is convex upward toward the ridge line 10f that is also convex upward.
  • the multi-cutter M is moved upward and separated from the block 10 to be cut.
  • the heat transfer plate 1 shown in FIG. 1 is manufactured.
  • heat shrinkage occurs by frictional stirring on the surface 10a of the block 10 to be cut, and tensile stress acts on the back surface 10b of the block 10 to be cut. Then, compressive stress acts on the surface 10a. Since the cutting process is performed in a state where tensile stress is applied to the back surface 10b of the block 10 to be cut, the disk cutter Mb is hardly sandwiched between the fins 3 and 3. That is, since the cutting is performed in a state in which the compressive stress is applied to the front surface 10a and the tensile stress is applied to the back surface 10b, when the fins 3 and 3 are formed, the fins 3 and 3 are slightly opened away from each other.
  • the disk cutter Mb is less likely to be restrained by the fins 3, the friction between the disk cutter Mb and the fins 3 can be reduced as compared with the conventional case, and the disk cutter Mb can be smoothly rotated. Therefore, the waviness phenomenon etc. of the fin 3 can be prevented, so that the moldability can be improved. In addition, since the load on the multi-cutter M can be reduced, the disk cutter Mb can rotate stably and workability can be improved.
  • frictional heat is also generated on the back surface 10b side of the block 10 to be cut by the cutting process.
  • the warp of the block 10 to be cut generated in the joining process can be corrected by the heat shrinkage caused by the frictional heat. Thereby, the heat-transfer plate 1 with high flatness can be formed.
  • a heat transfer plate having high thermal conductivity can be manufactured by integrally forming the base portion 2 and the fins 3 by a cutting process. Moreover, the thickness of the fin 3 and the clearance gap between the fins 3 and 3 can be set easily by using the multi-cutter M.
  • the longitudinal direction of the fin 3 and the longitudinal direction of the block 10 to be cut are arranged in parallel, but they may be arranged so as to intersect with each other. Further, warpage of the block 10 to be cut may be corrected by deforming the block 10 to be cut by roll forming or pressing.
  • the heat transfer plate 1 ⁇ / b> A according to the second embodiment is mainly configured by a base portion 2, fins 3, and a cover plate 4.
  • 1 A of heat exchanger plates differ from 1st embodiment by the point which is not provided with the cover groove
  • the base part 2 is formed with a concave groove 5 serving as a fluid flow path.
  • the concave groove 5 has a U shape in cross section and a U shape in plan view.
  • the concave groove 5 is open to the surface 2a of the base portion 2, and both end portions are open to the side surface 2c.
  • the cover plate 4 has a rectangular shape in cross section and a U shape in plan view. The cover plate 4 is disposed above the concave groove 5 without a gap.
  • the base part 2 and the cover plate 4 are joined by friction stirring.
  • a single plasticized region W is formed by friction stir welding with the abutting portions J and J between the base portion 2 and the lid plate 4.
  • the preparation step is a step of preparing the block 10 to be cut and the cover plate 4.
  • the block 10 to be cut is a block made of an aluminum alloy which is a base of the base portion 2 and the fins 3 and has a substantially rectangular parallelepiped shape.
  • the preparation step first, the block 10 to be cut is fixed to the mount K via a clamp, and then the surface 10a of the block 10 to be cut is cut with an end mill or the like to form the groove 5.
  • the cover plate insertion step is a step of inserting the cover plate 4 into the groove 5.
  • the width of the cover plate 4 is equal to the width of the upper portion of the concave groove 5.
  • the joining process is a process of performing friction stir welding on the abutting portions J and J with the rotary tool F.
  • the outer diameter of the shoulder Fa of the rotary tool F is slightly larger than the width of the concave groove 5.
  • the back surface 10b of the block 10 to be cut is cut to form a plurality of fins 3.
  • the lid groove 6 is omitted and the width of the lid plate 4 is narrower than that of the first embodiment, so that the abutting portions J and J are friction stir welded by a single movement of the rotary tool F. Can do. Thereby, work labor can be reduced.
  • the heat transfer plate 1 ⁇ / b> B according to the third embodiment is mainly configured by a base portion 2, fins 3, a cover plate 4, and a heat medium pipe 7.
  • the heat transfer plate 1 ⁇ / b> B is different from the first embodiment in that it includes a heat medium pipe 7.
  • a description will be given focusing on the parts that are different from the first embodiment.
  • the heat medium pipe 7 is a cylindrical member having a hollow portion therein, and is formed of copper in this embodiment.
  • the heat medium pipe 7 is formed in a U shape in plan view so as to be disposed in the concave groove 5.
  • a preparation process, a heat medium tube insertion process, a lid groove closing process, a joining process, and a cutting process are performed.
  • the preparation step is a step of preparing the block 10 to be cut, the heat medium pipe 7, and the cover plate 4.
  • the block 10 to be cut is a block made of an aluminum alloy which is a base of the base portion 2 and the fins 3 and has a substantially rectangular parallelepiped shape.
  • the preparation step first, the block 10 to be cut is fixed to the gantry K via a clamp, and then the surface 10a of the block 10 to be cut is cut with an end mill or the like to form the lid groove 6, and the bottom surface of the lid groove 6 is recessed.
  • Groove 5 is formed. Thereby, the ditch
  • the depth and width of the concave groove 5 are formed to be approximately equal to the outer diameter of the heat medium pipe 7.
  • the heat medium tube 7 is inserted into the groove 5.
  • the lid groove closing step the lid plate 4 is inserted into the lid groove 6.
  • the joining step is a step of performing friction stir welding on the abutting portions J and J with the rotary tool F.
  • region W may be formed over the full length of the depth direction of the butt
  • the back surface 10b of the block 10 to be cut is cut to form a plurality of fins 3.
  • friction stirring may be performed so that the plastic fluid material flows around the heat medium pipe 7.
  • the width of the lid groove 6 and the lid plate 4 is shorter than that of the first embodiment.
  • the lid groove closing step a gap Q surrounded by the outer peripheral surface of the heat medium pipe 7, the concave groove 5 and the lower surface of the lid plate 4 is formed.
  • the metal around the pin Fb is fluidized and the plastic fluid material flows into the gap Q.
  • the heat transfer plate 1 ⁇ / b> C according to the fourth embodiment is a form close to the second embodiment, and is different from the second embodiment in that a heat medium pipe 7 is provided.
  • a description will be given centering on portions that are different from the second embodiment.
  • the heat medium pipe 7 is a cylindrical member having a hollow portion therein, and is formed of copper in this embodiment.
  • the heat medium pipe 7 is formed in a U shape in plan view so as to be disposed in the concave groove 5.
  • a preparation step a heat medium tube insertion step, a lid plate insertion step, a joining step, and a cutting step are performed.
  • the preparation step is a step of preparing the block 10 to be cut, the heat medium pipe 7, and the cover plate 4.
  • the block 10 to be cut is fixed to the mount K with a clamp, and then the surface 10a of the block 10 to be cut is cut with an end mill or the like to form the groove 5.
  • the bottom portion 5a of the concave groove 5 has an arc shape, and the upper portion 5b has a constant width.
  • the heat medium tube 7 is inserted into the bottom 5a of the groove 5.
  • the lid plate insertion step the lid plate 4 is inserted into the upper portion 5 b of the groove 5. Thereby, the upper surface of the cover plate 4 and the surface 10a become flush.
  • the joining process is a process of performing friction stir welding on the abutting portions J and J with the rotary tool F.
  • the outer diameter of the shoulder Fa of the rotary tool F is slightly larger than the width of the concave groove 5.
  • the cover plate 4 presses the upper part of the heat medium pipe 7 by the pressing force of the rotary tool F, and the upper part of the cover plate 4 and the block 10 to be cut are friction stir welded.
  • the back surface 10b of the block 10 to be cut is cut to form a plurality of fins 3.
  • the method for manufacturing a heat transfer plate according to the fourth embodiment described above it is possible to obtain substantially the same effect as that of the second embodiment. Moreover, according to this embodiment, 1 C of heat exchanger plates with which the heat medium pipe
  • the heat transfer plate 1 ⁇ / b> D mainly includes a base plate 21, a plurality of fins 22, and a lid plate 23.
  • the heat transfer plate 1D is different from the first embodiment in that an exposed portion 26 exposed around the fins 22 is formed on the back surface 21b of the base plate 21.
  • the base plate 21 has a plate shape.
  • a concave groove 24 and a cover groove 25 are formed in the base plate 21.
  • the fins 22 are formed perpendicular to the back surface 21 b of the base plate 21.
  • the fins 22 have a plate shape and are formed at equal intervals.
  • the fins 22 are formed in parallel with the longitudinal direction of the base plate 21.
  • the lid plate 23 has the same shape as the lid groove 25.
  • the lid plate 23 is disposed in the lid groove 25 without a gap.
  • the lid plate 23 is preferably formed of the same material as the base plate 21. The lid plate 23 and the base plate 21 are joined by friction stirring.
  • the concave groove 24 is a groove formed on the bottom surface of the lid groove 25.
  • the concave groove 24 penetrates from one side surface 21c to the other side surface 21d.
  • the lid groove 25 is wider than the concave groove 24 and is formed continuously with the concave groove 24.
  • the lid groove 25 has a rectangular shape in sectional view and penetrates from one side surface 21c to the other side surface 21d.
  • a method for manufacturing a heat transfer plate according to the fifth embodiment will be described in detail with reference to the drawings.
  • a preparation process, a lid groove closing process, a joining process, and a cutting process are performed.
  • the preparation process is a process of preparing the block 31 to be cut.
  • the block 31 to be cut includes a base plate 21 and a block portion 32 formed on the base plate 21.
  • the block 31 to be cut is integrally formed by die casting.
  • the kind in particular of the block 31 to be cut is not restrict
  • the block portion 32 is formed at the center of the back surface 21b of the base plate 21.
  • the block portion 32 has a rectangular parallelepiped shape and is smaller than the base plate 21. That is, the area of the front surface (back surface 32 b) of the block portion 32 is smaller than the area of the back surface 21 b of the base plate 21.
  • An exposed portion 26 exposed around the block portion 32 is formed on the back surface 21 b of the base plate 21.
  • the exposed portion 26 has a rectangular frame shape in plan view.
  • a concave groove 24 and a cover groove 25 are formed on the surface 21a of the base plate 21. Specifically, after the block 31 to be cut is fixed to the gantry K via a clamp, the concave groove 24 and the cover groove 25 are formed on the surface 21a using an end mill or the like.
  • the lid groove closing step is a step of inserting the lid plate 23 into the lid groove 25.
  • the lid plate 23 By inserting the lid plate 23 into the lid groove 25, the side wall portion of the lid groove 25 and the side surface of the lid plate 23 are abutted to form an abutting portion.
  • the joining step is a step of performing friction stir welding on the abutting portion with the rotary tool F.
  • the clamp of the gantry K is released. If the work block 31 is left as it is, heat shrinkage occurs in the plasticized regions W and W, and the entire work block 31 is deformed so that the surface 21a side is concave. That is, the block 31 to be cut is warped so as to be convex toward the back surface 32b, compressive stress is generated on the front surface 21a side, and tensile stress is generated on the back surface 32b side.
  • the cutting process is a process of forming the plurality of fins 22 by cutting the block portion 32 using the multi-cutter M.
  • the front and back of the block 31 to be cut are turned over, the gantry K and the base plate 21 are made to face each other, and the block 31 to be cut is fixed to the gantry K with a clamp.
  • clamping is performed so that tensile stress acts on the back surface 32b and compressive stress acts on the front surface 21a.
  • the multi-cutter M is installed so that the plane whose normal is the central axis of the rotation axis Ma and the installation surface of the gantry K are perpendicular to each other, and then the cutting is performed while maintaining this parallel relationship.
  • the cutting step after the central axis of the rotation axis Ma is arranged on a vertical line passing through the ridge line 32 e of the block portion 32, the multi-cutter M is lowered toward the ridge line 32 e to a predetermined depth.
  • the multi-cutter M When the multi-cutter M is lowered to a predetermined depth, the multi-cutter M is relatively moved toward the ridgeline 32f of the block portion 32 while maintaining the depth.
  • the moving direction of the multi-cutter M with respect to the block to be cut 31 is set so that the virtual cut surface when the block to be cut 31 is cut in a vertical plane including the rotation axis Ma is convex upward.
  • the multi-cutter M is moved from the ridge line 32e that is convex upward to the ridge line 32f that is also convex upward.
  • the multi-cutter M is moved upward and separated from the block part 32.
  • the heat transfer plate 1D shown in FIG. 15 is manufactured through the above steps.
  • thermal contraction occurs by frictional stirring on the surface 21 a of the base plate 21, and tensile stress acts on the back surface 32 b of the block portion 32. Since the cutting process is performed in a state in which a tensile stress is applied to the back surface 32b of the block portion 32, the disk cutter Mb is hardly sandwiched between the fins 22 and 22. That is, since the cutting is performed in a state in which the compressive stress is applied to the front surface 21a and the tensile stress is applied to the back surface 32b, when the fins 22 and 22 are formed, the fins 22 and 22 are slightly opened in a direction away from each other.
  • the disk cutter Mb is less likely to be restrained by the fins 3, the friction between the disk cutter Mb and the fins 22 can be reduced as compared with the conventional case, and the disk cutter Mb can be smoothly rotated. Thereby, while being able to improve workability
  • frictional heat is generated on the back surface 32b side of the block portion 32 by the cutting process.
  • the warp generated in the block 31 to be cut can be corrected by the heat shrinkage caused by the frictional heat.
  • the thickness of the fin 22 and the gap between the fins 22 and 22 can be easily set.
  • the heat transfer plate 1D of the fifth embodiment includes an exposed portion 26 on which the fins 22 are not formed on the back surface 21b of the base plate 21. Since the exposed portion 26 is formed so as to surround the periphery of the group of fins 22, it can be used as a mounting allowance for a cover member or other mounting member that covers the group of fins 22.
  • the exposed part 26 is provided over the perimeter of the fin 22 group in this embodiment, it may be provided only in a part of fin 22 group.
  • the longitudinal direction of the fins 22 and the longitudinal direction of the base plate 21 are arranged in parallel, but they may be arranged so as to intersect each other.
  • the heat transfer plate 1 ⁇ / b> E according to the sixth embodiment is mainly configured by a base plate 21, a plurality of fins 22, and a cover plate 23.
  • the heat transfer plate 1E is different from the fifth embodiment in that it does not have the cover groove 25. Since the configuration around the cover plate 23 and the recessed groove 24 of the fifth embodiment is substantially the same as that of the second embodiment, detailed description thereof is omitted. Further, the configuration of the fins 22 of the fifth embodiment is substantially the same as that of the fifth embodiment, and thus detailed description thereof is omitted.
  • the heat transfer plate 1 ⁇ / b> F mainly includes a base plate 21, a plurality of fins 22, a cover plate 23, and a heat medium pipe 27.
  • the heat transfer plate 1F is different from the fifth embodiment in that it includes a heat medium pipe 27. Since the configuration around the lid plate 23, the concave groove 24, the lid groove 25, and the heat medium pipe 27 of the seventh embodiment is substantially the same as that of the third embodiment, detailed description thereof is omitted. Further, the configuration of the fins 22 of the seventh embodiment is substantially the same as that of the fifth embodiment, and thus detailed description thereof is omitted.
  • the heat transfer plate 1 ⁇ / b> G is mainly configured by a base plate 21, a plurality of fins 22, a cover plate 23, and a heat medium pipe 27.
  • the heat transfer plate 1G is different from the sixth embodiment in that it includes a heat medium pipe 27. Since the configuration around the cover plate 23, the recessed groove 24, and the heat medium pipe 27 of the eighth embodiment is substantially the same as that of the sixth embodiment, detailed description thereof is omitted. Further, the configuration of the fins 22 of the eighth embodiment is substantially the same as that of the fifth embodiment, and thus detailed description thereof is omitted.
  • the heat sink 1 ⁇ / b> H includes a base portion 41 and a plurality of fins 42.
  • the manufacturing method of the heat sink according to the ninth embodiment performs a friction stirring process and a cutting process.
  • a friction stirring step friction stirring is performed on the block 51 to be cut.
  • the block 51 to be cut is an aluminum alloy serving as a base of the base portion 41 and the fins 42 and has a rectangular parallelepiped shape.
  • the friction agitation step the block 51 to be cut is fixed to the mount K via a clamp, and then the rotated rotary tool F is moved onto the surface 51a of the block 51 to be cut.
  • the movement trajectory of the rotary tool F for friction stirring is not particularly limited, in the present embodiment, it is moved in a circular shape.
  • a plasticized region W is formed in the movement trajectory of the rotary tool F.
  • the clamp is released and the block 51 to be cut is left as it is.
  • Thermal contraction occurs in the plasticized region W of the block 51 to be cut, and the surface 51a side is deformed to be concave. That is, the block 51 to be cut is warped so as to be convex toward the back surface 51b, compressive stress is generated on the front surface 51a side, and tensile stress is generated on the back surface 51b side.
  • the multi-cutter is used to cut the back surface 51b of the block 51 to be cut on which the tensile stress is applied in the same manner as the cutting process shown in FIG. 4 of the first embodiment. To form fins.
  • thermal contraction occurs by frictional stirring on the front surface 51a of the block 51 to be cut, and tensile stress acts on the back surface 51b of the block 51 to be cut. Since the cutting process is performed in a state where the tensile stress is applied to the back surface 51b of the block 51 to be cut, the disk cutter is difficult to be sandwiched between the fins 42 and 42. Thereby, since the friction between a disk cutter and the fin 42 can be made small compared with the past, a disk cutter can be rotated smoothly. Therefore, workability can be improved, the waviness phenomenon of the fins 3 can be prevented, and the moldability can be improved.
  • frictional heat is generated on the back surface 51b side of the block 51 to be cut by the cutting process.
  • the warp of the block 51 to be cut generated in the friction stir process can be corrected by the heat shrinkage caused by the frictional heat.
  • the heat sink 1H with high flatness can be formed.
  • the heat sink 1J according to the tenth embodiment includes a base plate 61 and a plurality of fins 62.
  • the heat sink 1J is different from the ninth embodiment in that an exposed portion 64 exposed around the fins 62 is formed on the back surface 61b of the base plate 61.
  • a preparation process, a friction stirring process, and a cutting process are performed.
  • a block 71 to be cut is prepared.
  • the block 71 to be cut is composed of a base plate 61 and a block portion 63.
  • the block 71 to be cut is made of a metal member that can be frictionally stirred, and is integrally formed by die casting.
  • the block portion 63 is formed at the center of the back surface 61 b of the base plate 61.
  • the block 63 has a rectangular parallelepiped shape and is smaller than the base plate 61. That is, the area of the front surface (back surface 63 b) of the block portion 63 is smaller than the area of the back surface 61 b of the base plate 61.
  • An exposed portion 64 that is exposed around the block portion 63 is formed around the back surface 61 b of the base plate 61.
  • the rotating tool F is used to perform friction stirring on the surface 61a of the base plate 61.
  • the fins 62 are formed in the same manner as in FIG. 18 described in the fifth embodiment. Thereby, the heat sink 1J is formed.
  • the exposed part 64 is formed around the fin 62 group, it can be used as an attachment allowance for a cover member or other attachment member that covers the fin 62 group.
  • a burr cutting step of cutting off burrs generated by friction stirring of the rotary tool F from the surface of the block to be cut or the base plate may be performed.
  • the surface of a to-be-cut block or a base board can be smoothed.
  • the number and shape of the concave grooves 5 and 24 through which the fluid flows and the heat medium pipes 7 and 27, the arrangement positions, and the like may be appropriately designed depending on the use of the heat transfer plate.
  • the method of forming the block to be cut is not limited to die casting, and the extruded block may be formed by cutting.
  • the block to be cut having a rectangular shape in plan view is used.
  • a block to be cut having a circular shape, an elliptical shape, or another polygonal shape in plan view may be used.
  • an annealing process for annealing the blocks 10 and 31 to be cut may be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Milling Processes (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

The problem addressed by the present invention is to provide: a method that is for producing a heat sink and that can increase moldability and workability; and a method for producing a heat exchanger plate. The present invention is characterized by containing: a lid groove occlusion step for inserting a lid plate (4) into a lid groove (6) formed at the periphery of a concave groove (5) opened at the surface (10a) of a block (10) to be cut; a welding step for performing friction stirring along the abutment of the lateral surface of the lid plate (4) and the lateral wall of the lid groove (6); and a cutting step for forming a plurality of fins at the reverse side of the block (10) to be cut by means of a multi-cutter (M) resulting from a plurality of disc cutters (Mb) being stacked. The present invention is further characterized in that in the cutting step, by means of thermal contraction after the welding step, cutting is performed in the state of tensile stress acting on the reverse surface (10b) of the block (10) to be cut.

Description

ヒートシンクの製造方法及び伝熱板の製造方法Heat sink manufacturing method and heat transfer plate manufacturing method
 本発明は、ヒートシンクの製造方法及び伝熱板の製造方法に関する。 The present invention relates to a heat sink manufacturing method and a heat transfer plate manufacturing method.
 特許文献1には、ベース板とこのベース板に形成されたブロック部とを備えた被切削ブロックを切削して、ヒートシンクを製造する方法が開示されている。当該ヒートシングの製造方法では、ブロック部をマルチカッターで切削して複数のフィンを形成している。マルチカッターは、複数枚の円盤カッターが隙間をあけて積層されている。円盤カッターを回転させた状態で、ブロック部に対してマルチカッターを相対移動させることにより、ベース板に立設する複数のフィンを形成することができる。 Patent Document 1 discloses a method of manufacturing a heat sink by cutting a block to be cut including a base plate and a block portion formed on the base plate. In the heat sink manufacturing method, the block portion is cut with a multi-cutter to form a plurality of fins. In the multi-cutter, a plurality of disk cutters are stacked with a gap. A plurality of fins standing on the base plate can be formed by moving the multi-cutter relative to the block portion while the disk cutter is rotated.
特開2009-56520号公報JP 2009-56520 A
 従来の製造方法では、マルチカッターをブロック部に挿入する際、切削加工中の円盤カッターとフィン(ブロック部)との摩擦が大きくなり、円盤カッターの円滑な回転が妨げられる場合がある。円盤カッターが円滑に回転しないと、形成されたフィンの波打ち現象が発生したり、フィン及び円盤カッターの欠損を招来したりするおそれがある。 In the conventional manufacturing method, when the multi-cutter is inserted into the block part, friction between the disk cutter and the fin (block part) during the cutting process increases, and smooth rotation of the disk cutter may be hindered. If the disk cutter does not rotate smoothly, there is a possibility that the waving phenomenon of the formed fins occurs or the fins and the disk cutter are damaged.
 このような観点から、本発明は、成形性及び作業性を向上させることができるヒートシンクの製造方法及び伝熱板の製造方法を提供することを課題とする。 From such a viewpoint, an object of the present invention is to provide a method of manufacturing a heat sink and a method of manufacturing a heat transfer plate that can improve formability and workability.
 このような課題を解決するために本発明は、被切削ブロックの表面に、摩擦攪拌を行う摩擦攪拌工程と、複数枚の円盤カッターが積層されたマルチカッターで前記被切削ブロックの裏側に複数のフィンを形成する切削工程と、を含み、前記切削工程では、前記摩擦攪拌工程後の熱収縮により、前記被切削ブロックの裏面に引張応力が作用した状態で切削することを特徴とする。 In order to solve such a problem, the present invention provides a friction stirring step for performing friction stirring on the surface of the block to be cut, and a multi-cutter in which a plurality of disk cutters are stacked, and a plurality of pieces are provided on the back side of the block to be cut. A cutting step of forming fins, wherein in the cutting step, cutting is performed in a state in which a tensile stress is applied to the back surface of the block to be cut due to thermal contraction after the friction stirring step.
 また、本発明は、被切削ブロックの表面に開口する凹溝の周囲に形成された蓋溝に、蓋板を挿入する蓋溝閉塞工程と、前記蓋溝の側壁と前記蓋板の側面との突合部に沿って摩擦攪拌を行う接合工程と、複数枚の円盤カッターが積層されたマルチカッターで前記被切削ブロックの裏側に複数のフィンを形成する切削工程と、を含み、前記切削工程では、前記接合工程後の熱収縮により、前記被切削ブロックの裏面に引張応力が作用した状態で切削することを特徴とする。 The present invention also includes a lid groove closing step of inserting a lid plate into a lid groove formed around a concave groove that opens on the surface of the block to be cut, a side wall of the lid groove, and a side surface of the lid plate. A joining step of performing frictional stirring along the abutting portion, and a cutting step of forming a plurality of fins on the back side of the block to be cut with a multi-cutter in which a plurality of disk cutters are stacked, and in the cutting step, Cutting is performed in a state in which a tensile stress is applied to the back surface of the block to be cut by heat shrinkage after the joining step.
 また、本発明は、被切削ブロックの表面に開口する凹溝に蓋板を挿入する蓋板挿入工程と、前記凹溝の側壁と前記蓋板の側面との突合部に沿って摩擦攪拌を行う接合工程と、複数枚の円盤カッターが積層されたマルチカッターで前記被切削ブロックの裏側に複数のフィンを形成する切削工程と、を含み、前記切削工程では、前記接合工程後の熱収縮により、前記被切削ブロックの裏面に引張応力が作用した状態で切削することを特徴とする。 The present invention also includes a lid plate insertion step of inserting a lid plate into the groove that opens on the surface of the block to be cut, and friction stir along the abutting portion between the side wall of the groove and the side surface of the lid plate. A cutting step of forming a plurality of fins on the back side of the block to be cut with a multi-cutter in which a plurality of disk cutters are stacked, and in the cutting step, by heat shrinkage after the joining step, Cutting is performed in a state where tensile stress is applied to the back surface of the block to be cut.
 また、本発明は、被切削ブロックの表面に開口する蓋溝の底面に形成された凹溝に、熱媒体用管を挿入する熱媒体用管挿入工程と、前記蓋溝に蓋板を挿入する蓋溝閉塞工程と、前記蓋溝の側壁と前記蓋板の側面との突合部に沿って摩擦攪拌を行う接合工程と、複数枚の円盤カッターが積層されたマルチカッターで前記被切削ブロックの裏側に複数のフィンを形成する切削工程と、を含み、前記切削工程では、前記接合工程後の熱収縮により、前記被切削ブロックの裏面に引張応力が作用した状態で切削することを特徴とする。 Further, the present invention provides a heat medium tube insertion step of inserting a heat medium tube into a concave groove formed in a bottom surface of a cover groove opened on the surface of the block to be cut, and inserting a cover plate into the cover groove. A lid groove closing step, a joining step of performing frictional stirring along the abutting portion between the side wall of the lid groove and the side surface of the lid plate, and a back side of the block to be cut by a multi-cutter in which a plurality of disk cutters are stacked A cutting step of forming a plurality of fins, wherein in the cutting step, cutting is performed in a state in which tensile stress is applied to the back surface of the block to be cut due to thermal contraction after the joining step.
 また、被切削ブロックの表面に開口する凹溝に、熱媒体用管を挿入する熱媒体用管挿入工程と、前記凹溝に蓋板を挿入する蓋板挿入工程と、前記凹溝の側壁と前記蓋板の側面との突合部に沿って摩擦攪拌を行う接合工程と、複数枚の円盤カッターが積層されたマルチカッターで前記被切削ブロックの裏側に複数のフィンを形成する切削工程と、を含み、前記切削工程では、前記接合工程後の熱収縮により、前記被切削ブロックの裏面に引張応力が作用した状態で切削することを特徴とする。 Also, a heat medium tube insertion step of inserting a heat medium tube into a groove opened on the surface of the block to be cut, a cover plate insertion step of inserting a cover plate into the groove, and a side wall of the groove A joining step of performing frictional stirring along the abutting portion with the side surface of the lid plate, and a cutting step of forming a plurality of fins on the back side of the block to be cut with a multi-cutter in which a plurality of disk cutters are stacked. In the cutting step, cutting is performed in a state in which tensile stress is applied to the back surface of the block to be cut due to thermal contraction after the joining step.
 かかる製造方法は、摩擦攪拌後の熱収縮により、被切削ブロックに反りが発生し、被切削ブロックの裏面に引張応力が作用した状態で切削工程を行うものである。これにより、従来に比べて円盤カッターとフィンとの間の摩擦を小さくすることができる。よって、円盤カッターを円滑に回転させることができ、成形性及び作業性を高めることができる。また、切削工程によって被切削ブロックの裏面側にも摩擦熱が発生するため、この摩擦熱に起因する熱収縮によって、被切削ブロックに発生した反りを矯正することができる。 In this manufacturing method, the cutting process is performed in a state in which warpage occurs in the block to be cut due to thermal contraction after friction stirring, and tensile stress acts on the back surface of the block to be cut. Thereby, the friction between a disk cutter and a fin can be made small compared with the past. Therefore, a disk cutter can be rotated smoothly and a moldability and workability | operativity can be improved. Further, since frictional heat is also generated on the back side of the block to be cut by the cutting process, the warp generated in the block to be cut can be corrected by heat shrinkage caused by the frictional heat.
 また、前記摩擦攪拌によって生じたバリを前記被切削ブロックの表面から切除するバリ切除工程を含むことが好ましい。かかる製造方法によれば、被切削ブロックの表面を平滑にすることができる。 Further, it is preferable to include a burr cutting step of cutting a burr generated by the friction stirring from the surface of the block to be cut. According to this manufacturing method, the surface of the block to be cut can be smoothed.
 また、前記接合工程において、前記熱媒体用管の周囲に形成された空隙部に、摩擦熱によって流動化された塑性流動材を流入させることが好ましい。 Also, in the joining step, it is preferable to flow a plastic fluidized material fluidized by frictional heat into a gap formed around the heat medium pipe.
 かかる製造方法によれば、熱媒体用管の周囲の空隙を小さくすることができるため、水密性及び気密性を高めることができる。 According to such a manufacturing method, since the gap around the heat medium pipe can be reduced, water tightness and air tightness can be improved.
 また、前記接合工程において、摩擦攪拌を行う回転ツールの押圧力によって前記蓋板が前記熱媒体用管の上部を押圧するとともに、前記蓋板の少なくとも上部と前記被切削ブロックとを摩擦攪拌することが好ましい。 Further, in the joining step, the cover plate presses the upper part of the heat medium pipe by the pressing force of the rotary tool for friction stirring, and at least the upper part of the cover plate and the block to be cut are frictionally stirred. Is preferred.
 かかる製造方法によれば、熱媒体用管と被切削ブロックとを密着させることができるため、熱媒体用管の周囲の空隙を小さくすることができ、水密性及び気密性を高めることができる。 According to this manufacturing method, since the heat medium pipe and the block to be cut can be brought into close contact with each other, the gap around the heat medium pipe can be reduced, and the water tightness and the air tightness can be improved.
 また、本発明は、ベース板と前記ベース板の裏面に形成されたブロック部とを有する被切削ブロックを用いてヒートシンクを製造する方法であって、前記ベース板の裏面には、前記ブロック部の周りに露出する露出部が形成されており、記ベース板の表面に摩擦攪拌を行う摩擦攪拌工程と、複数枚の円盤カッターが積層されたマルチカッターで前記ブロック部の裏側に複数のフィンを形成する切削工程と、を含み、前記切削工程では、前記摩擦攪拌工程後の熱収縮により、前記ブロック部の裏面に引張応力が作用した状態で切削することを特徴とする。 Further, the present invention is a method of manufacturing a heat sink using a block to be cut having a base plate and a block portion formed on the back surface of the base plate, and the back surface of the base plate includes the block portion. An exposed part that is exposed to the surroundings is formed, and a plurality of fins are formed on the back side of the block part by a friction stirring process that performs friction stirring on the surface of the base plate and a multi-cutter in which a plurality of disk cutters are stacked. Cutting, and in the cutting step, cutting is performed in a state in which a tensile stress is applied to the back surface of the block portion by heat shrinkage after the friction stirring step.
 また、本発明は、ベース板と前記ベース板の裏面に形成されたブロック部とを有する被切削ブロックから伝熱板を製造する方法であって、前記ベース板の裏面には、前記ブロック部の周りに露出する露出部が形成されており、前記ベース板の表面に開口する凹溝の周囲に形成された蓋溝に、蓋板を挿入する蓋溝閉塞工程と、前記蓋溝の側壁と前記蓋板の側面との突合部に沿って摩擦攪拌を行う接合工程と、複数枚の円盤カッターが積層されたマルチカッターで前記ブロック部の裏側に複数のフィンを形成する切削工程と、を含み、前記切削工程では、前記接合工程後の熱収縮により、前記ブロック部の裏面に引張応力が作用した状態で切削する。 The present invention is also a method for manufacturing a heat transfer plate from a block to be cut having a base plate and a block portion formed on the back surface of the base plate, wherein the back surface of the base plate includes An exposed portion that is exposed to the periphery is formed, a lid groove closing step of inserting a lid plate into a lid groove formed around a concave groove that opens on the surface of the base plate, a side wall of the lid groove, and the A joining step of performing frictional stirring along the abutting portion with the side surface of the cover plate, and a cutting step of forming a plurality of fins on the back side of the block portion with a multi-cutter in which a plurality of disk cutters are stacked, In the cutting step, cutting is performed in a state in which a tensile stress is applied to the back surface of the block portion by heat shrinkage after the joining step.
 また、本発明は、ベース板と前記ベース板の裏面に形成されたブロック部とを有する被切削ブロックから伝熱板を製造する方法であって、前記ベース板の裏面には、前記ブロック部の周りに露出する露出部が形成されており、前記ベース板の表面に開口する凹溝に蓋板を挿入する蓋板挿入工程と、前記凹溝の側壁と前記蓋板の側面との突合部に沿って摩擦攪拌を行う接合工程と、複数枚の円盤カッターが積層されたマルチカッターで前記ブロック部の裏側に複数のフィンを形成する切削工程と、を含み、前記切削工程では、前記接合工程後の熱収縮により、前記ブロック部の裏面に引張応力が作用した状態で切削することを特徴とする。 The present invention is also a method for manufacturing a heat transfer plate from a block to be cut having a base plate and a block portion formed on the back surface of the base plate, wherein the back surface of the base plate includes An exposed portion that is exposed to the periphery is formed, and a lid plate insertion step of inserting a lid plate into the concave groove that opens on the surface of the base plate; and a butt portion between the side wall of the concave plate and the side surface of the lid plate And a cutting step of forming a plurality of fins on the back side of the block portion with a multi-cutter in which a plurality of disk cutters are stacked, and in the cutting step, after the joining step It cuts in the state in which the tensile stress acted on the back surface of the said block part by heat contraction of this.
 また、本発明は、ベース板と前記ベース板の裏面に形成されたブロック部とを有する被切削ブロックから伝熱板を製造する方法であって、前記ベース板の裏面には、前記ブロック部の周りに露出する露出部が形成されており、前記前記ベース板の表面に開口する蓋溝の底面に形成された凹溝に、熱媒体用管を挿入する熱媒体用管挿入工程と、前記蓋溝に蓋板を挿入する蓋溝閉塞工程と、前記蓋溝の側壁と前記蓋板の側面との突合部に沿って摩擦攪拌を行う接合工程と、複数枚の円盤カッターが積層されたマルチカッターで前記ブロック部の裏側に、複数のフィンを形成する切削工程と、を含み、前記切削工程では、前記接合工程後の熱収縮により、前記ブロック部の裏面に引張応力が作用した状態で切削することを特徴とする。 The present invention is also a method for manufacturing a heat transfer plate from a block to be cut having a base plate and a block portion formed on the back surface of the base plate, wherein the back surface of the base plate includes A heat medium tube inserting step of inserting a heat medium tube into a concave groove formed in a bottom surface of a cover groove opened on a surface of the base plate, wherein an exposed portion that is exposed to the periphery is formed; and the lid A multi-cutter in which a lid groove closing step of inserting a lid plate into the groove, a joining step of performing frictional stirring along the abutting portion between the side wall of the lid groove and the side surface of the lid plate, and a plurality of disk cutters are laminated A cutting step of forming a plurality of fins on the back side of the block portion, and in the cutting step, cutting is performed in a state in which a tensile stress is applied to the back surface of the block portion by heat shrinkage after the joining step. It is characterized by that.
 また、ベース板と前記ベース板の裏面に形成されたブロック部とを有する被切削ブロックを用いて伝熱板を製造する方法であって、前記ベース板の裏面には、前記ブロック部の周りに露出する露出部が形成されており、前記ベース板の表面に開口する凹溝に、熱媒体用管を挿入する熱媒体用管挿入工程と、前記凹溝に蓋板を挿入する蓋板挿入工程と、前記凹溝の側壁と前記蓋板の側面との突合部に沿って摩擦攪拌を行う接合工程と、複数枚の円盤カッターが積層されたマルチカッターで前記ブロック部の裏側に複数のフィンを形成する切削工程と、を含み、前記切削工程では、前記接合工程後の熱収縮により、前記ブロック部の裏面に引張応力が作用した状態で切削することを特徴とする。 Further, a method of manufacturing a heat transfer plate using a block to be cut having a base plate and a block portion formed on the back surface of the base plate, wherein the back surface of the base plate is around the block portion. A heat medium tube insertion step in which a heat medium tube is inserted into a concave groove that is formed on the surface of the base plate, and a lid plate insertion step in which a lid plate is inserted into the concave groove. A plurality of fins on the back side of the block portion by a joining step of performing frictional stirring along the abutting portion between the side wall of the groove and the side surface of the cover plate, and a multi-cutter in which a plurality of disk cutters are stacked. A cutting process to be formed, wherein the cutting process is performed in a state in which a tensile stress is applied to the back surface of the block portion by heat shrinkage after the joining process.
 かかる製造方法は、摩擦攪拌後の熱収縮により、被切削ブロックに反りが発生し、ブロック部の裏面に引張応力が作用した状態で切削工程を行うものである。これにより、従来に比べて円盤カッターとフィンとの間の摩擦を小さくすることができる。よって、円盤カッターを円滑に回転させることができ、成形性及び作業性を高めることができる。また、切削工程によって被切削ブロックの裏面側にも摩擦熱が発生するため、この摩擦熱に起因する熱収縮によって、被切削ブロックに発生した反りを矯正することができる。 In this manufacturing method, the cutting process is performed in a state in which warpage occurs in the block to be cut due to thermal contraction after friction stirring, and tensile stress acts on the back surface of the block portion. Thereby, the friction between a disk cutter and a fin can be made small compared with the past. Therefore, a disk cutter can be rotated smoothly and a moldability and workability | operativity can be improved. Further, since frictional heat is also generated on the back side of the block to be cut by the cutting process, the warp generated in the block to be cut can be corrected by heat shrinkage caused by the frictional heat.
 また、かかる製造方法によれば、ブロック部の周りに露出部が形成されているため、切削によって形成されたフィンの周りに、例えばフィンを覆うカバー部材等の取り付け代を確保することができる。 Further, according to such a manufacturing method, since the exposed portion is formed around the block portion, it is possible to secure an attachment allowance of a cover member or the like covering the fin, for example, around the fin formed by cutting.
 また、前記摩擦攪拌によって生じたバリを前記ベース板の表面から切除するバリ切除工程を含むことが好ましい。かかる製造方法によれば、被切削ブロックの表面を平滑にすることができる。 Further, it is preferable to include a burr cutting step of cutting a burr generated by the friction stirring from the surface of the base plate. According to this manufacturing method, the surface of the block to be cut can be smoothed.
 また、前記接合工程において、前記熱媒体用管の周囲に形成された空隙部に、摩擦熱によって流動化された塑性流動材を流入させることが好ましい。 Also, in the joining step, it is preferable to flow a plastic fluidized material fluidized by frictional heat into a gap formed around the heat medium pipe.
 かかる製造方法によれば、熱媒体用管の周囲の空隙を小さくすることができるため、水密性及び気密性を高めることができる。 According to such a manufacturing method, since the gap around the heat medium pipe can be reduced, water tightness and air tightness can be improved.
 また、前記接合工程において、摩擦攪拌を行う回転ツールの押圧力によって前記蓋板が前記熱媒体用管の上部を押圧するとともに、前記蓋板の少なくとも上部と前記ベース板とを摩擦攪拌することが好ましい。 Further, in the joining step, the lid plate presses the upper portion of the heat medium pipe by the pressing force of the rotary tool for friction stirring, and at least the upper portion of the lid plate and the base plate are frictionally stirred. preferable.
 かかる製造方法によれば、熱媒体用管と被切削ブロック又はベース板とを密着させることができるため、熱媒体用管の周囲の空隙を小さくすることができ、水密性及び気密性を高めることができる。 According to this manufacturing method, since the heat medium pipe and the block to be cut or the base plate can be brought into close contact with each other, the gap around the heat medium pipe can be reduced, and water tightness and air tightness are improved. Can do.
 本発明に係るヒートシンクの製造方法及び伝熱板の製造方法によれば、成形性及び作業性を向上させることができる。 According to the heat sink manufacturing method and the heat transfer plate manufacturing method according to the present invention, the moldability and workability can be improved.
本発明の第一実施形態に係る伝熱板を示す斜視図である。It is a perspective view which shows the heat exchanger plate which concerns on 1st embodiment of this invention. 第一実施形態に係る伝熱板の製造方法を示す断面図であって、(a)は準備工程を示し、(b)は蓋溝閉塞工程を示す。It is sectional drawing which shows the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, Comprising: (a) shows a preparatory process, (b) shows a cover groove | channel obstruction | occlusion process. 第一実施形態に係る伝熱板の製造方法を示す断面図であって、(a)は接合工程中を示し、(b)は接合工程後を示す。It is sectional drawing which shows the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, Comprising: (a) shows in the joining process, (b) shows after a joining process. 第一実施形態に係る伝熱板の製造方法を示す図であって、(a)は切削工程前を示す断面図であり、(b)は切削工程中を示す側面図である。It is a figure which shows the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, Comprising: (a) is sectional drawing before a cutting process, (b) is a side view which shows the inside of a cutting process. 本発明の第二実施形態に係る伝熱板を示す斜視図である。It is a perspective view which shows the heat exchanger plate which concerns on 2nd embodiment of this invention. 第二実施形態に係る伝熱板の製造方法を示す断面図であって、(a)は準備工程を示し、(b)は蓋板挿入工程を示す。It is sectional drawing which shows the manufacturing method of the heat exchanger plate which concerns on 2nd embodiment, Comprising: (a) shows a preparatory process, (b) shows a cover plate insertion process. 第二実施形態に係る伝熱板の製造方法を示す断面図であって、(a)は接合工程中を示し、(b)は接合工程後を示す。It is sectional drawing which shows the manufacturing method of the heat exchanger plate which concerns on 2nd embodiment, Comprising: (a) shows in the joining process, (b) shows after a joining process. 本発明の第三実施形態に係る伝熱板を示す斜視図である。It is a perspective view which shows the heat exchanger plate which concerns on 3rd embodiment of this invention. 第三実施形態に係る伝熱板の製造方法を示す断面図であって、(a)は準備工程を示し、(b)は蓋溝閉塞工程を示す。It is sectional drawing which shows the manufacturing method of the heat exchanger plate which concerns on 3rd embodiment, Comprising: (a) shows a preparatory process, (b) shows a cover groove | channel obstruction | occlusion process. 第三実施形態に係る伝熱板の製造方法を示す断面図であって、(a)は接合工程中を示し、(b)は接合工程後を示す。It is sectional drawing which shows the manufacturing method of the heat exchanger plate which concerns on 3rd embodiment, Comprising: (a) shows in the joining process, (b) shows after a joining process. 第三実施形態に係る伝熱板の製造方法の変形例を示す断面図である。It is sectional drawing which shows the modification of the manufacturing method of the heat exchanger plate which concerns on 3rd embodiment. 本発明の第四実施形態に係る伝熱板を示す斜視図である。It is a perspective view which shows the heat exchanger plate which concerns on 4th embodiment of this invention. 第四実施形態に係る伝熱板の製造方法を示す断面図であって、(a)は準備工程を示し、(b)は蓋板挿入工程を示す。It is sectional drawing which shows the manufacturing method of the heat exchanger plate which concerns on 4th embodiment, Comprising: (a) shows a preparatory process, (b) shows a cover plate insertion process. 第四実施形態に係る伝熱板の製造方法を示す断面図であって、(a)は接合工程中を示し、(b)は接合工程後を示す。It is sectional drawing which shows the manufacturing method of the heat exchanger plate which concerns on 4th embodiment, Comprising: (a) shows in the joining process, (b) shows after a joining process. 第五実施形態に係る伝熱板を示す斜視図である。It is a perspective view which shows the heat exchanger plate which concerns on 5th embodiment. 第五実施形態に係る伝熱板の製造方法を示す断面図であって、(a)は被切削ブロックを示す斜視図を示し、(b)は準備工程を示す。It is sectional drawing which shows the manufacturing method of the heat exchanger plate which concerns on 5th embodiment, Comprising: (a) shows the perspective view which shows a to-be-cut block, (b) shows a preparatory process. 第五実施形態に係る伝熱板の製造方法を示す断面図であって、(a)は接合工程中を示し、(b)は接合工程後を示す。It is sectional drawing which shows the manufacturing method of the heat exchanger plate which concerns on 5th embodiment, Comprising: (a) shows in the joining process, (b) shows after a joining process. 第五実施形態に係る伝熱板の製造方法の切削工程を示す断面図である。It is sectional drawing which shows the cutting process of the manufacturing method of the heat exchanger plate which concerns on 5th embodiment. 第六実施形態に係る伝熱板を示す斜視図である。It is a perspective view which shows the heat exchanger plate which concerns on 6th embodiment. 第七実施形態に係る伝熱板を示す斜視図である。It is a perspective view which shows the heat exchanger plate which concerns on 7th embodiment. 第八実施形態に係る伝熱板を示す斜視図である。It is a perspective view which shows the heat exchanger plate which concerns on 8th embodiment. 第九実施形態に係るヒートシンクを示す斜視図である。It is a perspective view which shows the heat sink which concerns on 9th embodiment. 第九実施形態に係るヒートシンクの製造方法を示す図であって、(a)は摩擦攪拌工程を示す斜視図であり、(b)は摩擦攪拌工程後を示す断面図である。It is a figure which shows the manufacturing method of the heat sink which concerns on 9th embodiment, Comprising: (a) is a perspective view which shows a friction stirring process, (b) is sectional drawing after a friction stirring process. 第十実施形態に係るヒートシンクの製造方法を示す斜視図であって、(a)は切削工程後を示し、(b)は摩擦攪拌工程後を示す。It is a perspective view which shows the manufacturing method of the heat sink which concerns on 10th embodiment, Comprising: (a) shows after a cutting process, (b) shows after a friction stirring process.
〔第一実施形態〕
 本発明の第一実施形態について図面を用いて詳細に説明する。図1に示すように、第一実施形態に係る伝熱板1は、基体部2と、複数のフィン3と、蓋板4とで主に構成されている。伝熱板1は、例えば、基体部2の中空部に流体を流通させて対象物を冷却する器具である。
[First embodiment]
A first embodiment of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, the heat transfer plate 1 according to the first embodiment mainly includes a base portion 2, a plurality of fins 3, and a cover plate 4. The heat transfer plate 1 is, for example, an instrument that cools an object by circulating a fluid through the hollow portion of the base portion 2.
 基体部2は、略直方体を呈する。基体部2には、凹溝5と、蓋溝6とが形成されている。基体部2の表面2aには、蓋板4が埋設されている。基体部2の裏面2bには、複数のフィン3が形成されている。 The base portion 2 has a substantially rectangular parallelepiped shape. A concave groove 5 and a cover groove 6 are formed in the base portion 2. A cover plate 4 is embedded in the surface 2 a of the base body 2. A plurality of fins 3 are formed on the back surface 2 b of the base body 2.
 フィン3は、基体部2と一体形成されている。フィン3は、等間隔で並設され、基体部2の長手方向と平行に延設されている。基体部2及びフィン3の材質は、摩擦攪拌可能でかつ切削加工が可能であれば特に制限されないが、本実施形態ではアルミニウム合金を用いている。 The fin 3 is integrally formed with the base body 2. The fins 3 are arranged in parallel at equal intervals, and are extended in parallel with the longitudinal direction of the base body 2. The material of the base portion 2 and the fin 3 is not particularly limited as long as it can be frictionally stirred and can be cut, but in this embodiment, an aluminum alloy is used.
 蓋板4は、蓋溝6に配置される金属部材である。蓋板4の材質は特に制限されないが、本実施形態では、基体部2と同様にアルミニウム合金で形成されている。蓋板4は、蓋溝6に隙間無く挿入される形状になっている。 The lid plate 4 is a metal member disposed in the lid groove 6. Although the material of the cover plate 4 is not particularly limited, in the present embodiment, the cover plate 4 is formed of an aluminum alloy as with the base body portion 2. The lid plate 4 has a shape that is inserted into the lid groove 6 without a gap.
 凹溝5は、基体部2の内部に形成された溝である。凹溝5は、蓋溝6の底面に凹設されている。凹溝5は、断面視U字状を呈するとともに、平面視U字状を呈する。凹溝5は、流体の流路となる部位である。凹溝5の両端部は側面2cにそれぞれ開口している。 The concave groove 5 is a groove formed inside the base portion 2. The recessed groove 5 is recessed on the bottom surface of the lid groove 6. The concave groove 5 has a U shape in cross section and a U shape in plan view. The concave groove 5 is a portion that becomes a fluid flow path. Both end portions of the concave groove 5 are open to the side surface 2c.
 蓋溝6は、凹溝5よりも幅広になっており、凹溝5の表面2a側において凹溝5に連続して形成されている。蓋溝6は、断面視矩形を呈し、表面2a側に開口している。 The lid groove 6 is wider than the concave groove 5, and is formed continuously with the concave groove 5 on the surface 2 a side of the concave groove 5. The lid groove 6 has a rectangular shape in sectional view and opens on the surface 2a side.
 基体部2と蓋板4とは摩擦攪拌によって接合されている。本実施形態では、基体部2と蓋板4との突合部J,Jに沿って摩擦攪拌接合を行うことで、2条の塑性化領域W,Wが形成されている。 The base part 2 and the cover plate 4 are joined by friction stirring. In the present embodiment, the two plasticized regions W and W are formed by performing friction stir welding along the abutting portions J and J between the base portion 2 and the cover plate 4.
 次に、本実施形態に係る伝熱板の製造方法について説明する。伝熱板の製造方法では、準備工程と、蓋溝閉塞工程と、接合工程と、切削工程とを行う。 Next, a method for manufacturing the heat transfer plate according to this embodiment will be described. In the method for manufacturing a heat transfer plate, a preparation process, a cover groove closing process, a joining process, and a cutting process are performed.
 図2の(a)に示すように、準備工程は、被切削ブロック10と、蓋板4とを用意する工程である。被切削ブロック10は、基体部2及びフィン3の素となるアルミニウム合金製のブロックであり、略直方体を呈する。準備工程では、まず、クランプ(図示省略)を介して被切削ブロック10を架台Kに固定した後、被切削ブロック10の表面10aをエンドミル等で切削して蓋溝6を形成し、蓋溝6の底面に蓋溝6よりも幅狭の凹溝5を形成する。 2A, the preparation process is a process of preparing the block 10 to be cut and the cover plate 4. The block 10 to be cut is a block made of an aluminum alloy which is a base of the base portion 2 and the fins 3 and has a substantially rectangular parallelepiped shape. In the preparation step, first, the block 10 to be cut is fixed to the gantry K via a clamp (not shown), and then the surface 10a of the block 10 to be cut is cut with an end mill or the like to form the lid groove 6. A concave groove 5 narrower than the cover groove 6 is formed on the bottom surface of the groove.
 なお、本実施形態では、被切削ブロック10を切削加工によって形成したが、例えばダイカスト等によって予め凹溝5及び蓋溝6が形成された素形材を被切削ブロック10として用いてもよい。 In addition, in this embodiment, although the to-be-cut block 10 was formed by cutting process, you may use the raw material in which the ditch | groove 5 and the cover groove | channel 6 were formed previously by die-casting etc. as the to-be-cut block 10, for example.
 図2の(b)に示すように、蓋溝閉塞工程は、蓋溝6に蓋板4を挿入する工程である。蓋溝6に蓋板4を挿入すると、蓋溝6の一対の側壁と蓋板4の一対の側面とがそれぞれ突き合わされることにより、突合部J,Jが形成される。蓋溝閉塞工程を行ったら、蓋溝6と蓋板4とが移動しないようにクランプで固定する。 2 (b), the lid groove closing step is a step of inserting the lid plate 4 into the lid groove 6. When the cover plate 4 is inserted into the cover groove 6, the pair of side walls of the cover groove 6 and the pair of side surfaces of the cover plate 4 are brought into contact with each other, whereby the abutting portions J and J are formed. When the lid groove closing step is performed, the lid groove 6 and the lid plate 4 are fixed with a clamp so that the lid groove 6 and the lid plate 4 do not move.
 図3の(a)に示すように、接合工程は、回転ツールFで突合部J,Jに対して摩擦攪拌接合を行う工程である。回転ツールFは、円柱状のショルダFaと、ショルダFaの下端面から垂下するピンFbとで構成されている。接合工程では、突合部Jの深さ方向の全長に亘って塑性化領域Wが形成されるように摩擦攪拌接合を行う。 3 (a), the joining process is a process of performing friction stir welding on the abutting portions J and J with the rotary tool F. The rotary tool F includes a columnar shoulder Fa and a pin Fb depending from the lower end surface of the shoulder Fa. In the joining step, friction stir welding is performed so that the plasticized region W is formed over the entire length of the abutting portion J in the depth direction.
 なお、具体的な図示は省略するが、被切削ブロック10の端面にタブ材を配置して、タブ材に回転ツールFの始点及び終点を設定して摩擦攪拌接合を行ってもよい。これにより、作業性が向上するとともに、仕上がり面をきれいにすることができる。 In addition, although a specific illustration is omitted, friction stir welding may be performed by disposing a tab material on the end surface of the block 10 to be cut and setting a start point and an end point of the rotary tool F on the tab material. Thereby, workability is improved and the finished surface can be cleaned.
 図3の(b)に示すように、接合工程を行った後、架台Kのクランプを解除して、被切削ブロック10をそのまま存置すると、塑性化領域W,Wにおいて熱収縮が発生し、表面10aが凹状となるように変形する。すなわち、被切削ブロック10が裏面10b側に凸状となるように反り、表面10a側に圧縮応力が発生し、裏面10b側に引張応力が発生する。 As shown in FIG. 3B, after performing the joining process, when the clamp of the gantry K is released and the block 10 to be cut is left as it is, heat shrinkage occurs in the plasticized regions W and W, and the surface It deform | transforms so that 10a may become concave shape. That is, the block 10 to be cut is warped so as to be convex toward the back surface 10b, compressive stress is generated on the front surface 10a side, and tensile stress is generated on the back surface 10b side.
 図4の(a)に示すように、切削工程は、マルチカッターMを用いて被切削ブロック10を切削してフィンを形成する工程である。まず、被切削ブロック10の表裏をひっくり返し、架台Kと表面10aとを対向させてクランプを介して被切削ブロック10を固定する。切削工程中は、裏面10bに引張応力が作用し、表面10aに圧縮応力が作用するようにクランプする。 As shown in FIG. 4A, the cutting process is a process of forming the fin by cutting the block 10 to be cut using the multi-cutter M. First, the front and back of the block to be cut 10 are turned over, and the block 10 to be cut is fixed via a clamp with the gantry K and the surface 10a facing each other. During the cutting process, clamping is performed so that tensile stress acts on the back surface 10b and compressive stress acts on the front surface 10a.
 マルチカッターMは、回転軸Maと、回転軸Maに形成された複数の円盤カッターMbとで構成されている。円盤カッターMbは、円板状を呈し、周縁部に刃が形成されている。円盤カッターMbは、回転軸Maに対して垂直に配置されている。円盤カッターMbの厚さは、形成されるフィン3,3同士の隙間と同等になる。円盤カッターMb,Mbの隙間は、形成されるフィン3の厚さと同等になる。 The multi-cutter M is composed of a rotation axis Ma and a plurality of disk cutters Mb formed on the rotation axis Ma. The disk cutter Mb has a disk shape, and a blade is formed at the periphery. The disk cutter Mb is arranged perpendicular to the rotation axis Ma. The thickness of the disk cutter Mb is equal to the gap between the fins 3 and 3 to be formed. The gap between the disk cutters Mb and Mb is equal to the thickness of the fin 3 to be formed.
 切削工程では、回転軸Maの中心軸を法線とする平面と、架台Kの設置面とが垂直となるようにマルチカッターMを配置した後、この平行を維持した状態で切削する。図4の(b)に示すように、切削工程では、回転軸Maの中心軸を、被切削ブロック10の上側の稜線10eを通る鉛直線上に配置した後、マルチカッターMを稜線10eに向けて所定の深さまで下降させる。 In the cutting process, the multi-cutter M is arranged so that the plane whose normal is the central axis of the rotation axis Ma and the installation surface of the gantry K are perpendicular to each other, and then cutting is performed while maintaining this parallelism. As shown in FIG. 4B, in the cutting step, the central axis of the rotation axis Ma is arranged on a vertical line passing through the ridge line 10e on the upper side of the block 10 to be cut, and then the multi-cutter M is directed toward the ridge line 10e. Lower to a predetermined depth.
 そして、所定の深さを保った状態で、稜線10fまで被切削ブロック10とマルチカッターMとを相対移動させる。被切削ブロック10に対するマルチカッターMの移動方向は、回転軸Maを含む鉛直面で被切削ブロック10を切断した場合の仮想切断面(図4の(a)の符号10g)が、上方に凸状となるように設定する。本実施形態では、図4の(b)に示すように、上方に凸状となる稜線10eから、同じく上方に凸状となる稜線10fに向けてマルチカッターMを移動させる。 Then, the block 10 to be cut and the multi-cutter M are moved relative to the ridgeline 10f while maintaining a predetermined depth. The moving direction of the multi-cutter M with respect to the block 10 to be cut is such that a virtual cut surface (10 g in FIG. 4A) is upwardly convex when the block 10 is cut along a vertical plane including the rotation axis Ma. Set to be. In the present embodiment, as shown in FIG. 4B, the multi-cutter M is moved from the ridge line 10e that is convex upward toward the ridge line 10f that is also convex upward.
 被切削ブロック10の上側の稜線10fを通る鉛直線と回転軸Maの中心軸とが重なる位置まで移動させたら、マルチカッターMを上方に移動させて被切削ブロック10から離間させる。以上の工程によって、図1に示す伝熱板1が製造される。 When the vertical line passing through the ridge line 10f on the upper side of the block 10 to be cut and the center axis of the rotation axis Ma are overlapped, the multi-cutter M is moved upward and separated from the block 10 to be cut. Through the above steps, the heat transfer plate 1 shown in FIG. 1 is manufactured.
 以上説明した本実施形態に係る伝熱板の製造方法によれば、被切削ブロック10の表面10aに摩擦攪拌を行うことで熱収縮が発生し、被切削ブロック10の裏面10bに引張応力が作用し、表面10aに圧縮応力が作用する。切削工程は、被切削ブロック10の裏面10bに引張応力が作用した状態で行うため、円盤カッターMbがフィン3,3同士に挟まれ難くなる。つまり、表面10aに圧縮応力が作用しつつ、裏面10bに引張応力が作用した状態で切削するため、フィン3,3が形成されるとこれらのフィン3,3同士が離間する方向に若干開く。そのため、円盤カッターMbがフィン3に拘束されにくくなり、従来に比べて円盤カッターMbとフィン3との間の摩擦を小さくすることができ、円盤カッターMbを円滑に回転させることができる。よって、フィン3の波打ち現象等を防ぐことができるため、成形性を高めることができる。また、マルチカッターMへの負荷を低減できるため、円盤カッターMbが安定して回転し、作業性を高めることができる。 According to the method for manufacturing a heat transfer plate according to the present embodiment described above, heat shrinkage occurs by frictional stirring on the surface 10a of the block 10 to be cut, and tensile stress acts on the back surface 10b of the block 10 to be cut. Then, compressive stress acts on the surface 10a. Since the cutting process is performed in a state where tensile stress is applied to the back surface 10b of the block 10 to be cut, the disk cutter Mb is hardly sandwiched between the fins 3 and 3. That is, since the cutting is performed in a state in which the compressive stress is applied to the front surface 10a and the tensile stress is applied to the back surface 10b, when the fins 3 and 3 are formed, the fins 3 and 3 are slightly opened away from each other. Therefore, the disk cutter Mb is less likely to be restrained by the fins 3, the friction between the disk cutter Mb and the fins 3 can be reduced as compared with the conventional case, and the disk cutter Mb can be smoothly rotated. Therefore, the waviness phenomenon etc. of the fin 3 can be prevented, so that the moldability can be improved. In addition, since the load on the multi-cutter M can be reduced, the disk cutter Mb can rotate stably and workability can be improved.
 また、切削工程によって被切削ブロック10の裏面10b側にも摩擦熱が発生する。この摩擦熱に起因する熱収縮によって、接合工程で発生した被切削ブロック10の反りを矯正することができる。これにより、平坦性の高い伝熱板1を形成することができる。 Further, frictional heat is also generated on the back surface 10b side of the block 10 to be cut by the cutting process. The warp of the block 10 to be cut generated in the joining process can be corrected by the heat shrinkage caused by the frictional heat. Thereby, the heat-transfer plate 1 with high flatness can be formed.
 また、切削工程によって基体部2とフィン3とを一体形成することで、熱伝導性の高い伝熱板を製造することができる。また、マルチカッターMを用いることで、フィン3の厚さや、フィン3,3同士の隙間を容易に設定することができる。 In addition, a heat transfer plate having high thermal conductivity can be manufactured by integrally forming the base portion 2 and the fins 3 by a cutting process. Moreover, the thickness of the fin 3 and the clearance gap between the fins 3 and 3 can be set easily by using the multi-cutter M.
 なお、本実施形態では、フィン3の長手方向と、被切削ブロック10の長手方向が平行となるように配置しているが、交差するように配置してもよい。また、ロールフォーミングや、プレスによって被切削ブロック10を変形させることにより、被切削ブロック10の反りを矯正してもよい。 In this embodiment, the longitudinal direction of the fin 3 and the longitudinal direction of the block 10 to be cut are arranged in parallel, but they may be arranged so as to intersect with each other. Further, warpage of the block 10 to be cut may be corrected by deforming the block 10 to be cut by roll forming or pressing.
〔第二実施形態〕
 本発明の第二実施形態について図面を用いて説明する。図5に示すように、第二実施形態に係る伝熱板1Aは、基体部2と、フィン3と、蓋板4とで主に構成されている。伝熱板1Aは、蓋溝6を備えていない点で第一実施形態と相違する。第二実施形態では、第一実施形態と相違する部分を中心に説明する。
[Second Embodiment]
A second embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 5, the heat transfer plate 1 </ b> A according to the second embodiment is mainly configured by a base portion 2, fins 3, and a cover plate 4. 1 A of heat exchanger plates differ from 1st embodiment by the point which is not provided with the cover groove | channel 6. FIG. In the second embodiment, the description will focus on the parts that are different from the first embodiment.
 基体部2には、流体の流路となる凹溝5が形成されている。凹溝5は、断面視U字状を呈するとともに、平面視U字状を呈する。凹溝5は、基体部2の表面2aに開口するとともに、両端部が側面2cに開口している。蓋板4は、断面視矩形を呈するとともに、平面視U字状を呈する。蓋板4は、凹溝5の上部に隙間無く配置される。 The base part 2 is formed with a concave groove 5 serving as a fluid flow path. The concave groove 5 has a U shape in cross section and a U shape in plan view. The concave groove 5 is open to the surface 2a of the base portion 2, and both end portions are open to the side surface 2c. The cover plate 4 has a rectangular shape in cross section and a U shape in plan view. The cover plate 4 is disposed above the concave groove 5 without a gap.
 基体部2と蓋板4とは摩擦攪拌によって接合されている。本実施形態では、基体部2と蓋板4との突合部J,Jに対して摩擦攪拌接合されることで1条の塑性化領域Wが形成されている。 The base part 2 and the cover plate 4 are joined by friction stirring. In the present embodiment, a single plasticized region W is formed by friction stir welding with the abutting portions J and J between the base portion 2 and the lid plate 4.
 次に、本実施形態の伝熱板の製造方法について説明する。伝熱板の製造方法では、準備工程と、蓋板挿入工程と、接合工程と、切削工程とを行う。 Next, a method for manufacturing the heat transfer plate of this embodiment will be described. In the method for manufacturing a heat transfer plate, a preparation process, a cover plate insertion process, a joining process, and a cutting process are performed.
 図6の(a)に示すように、準備工程は、被切削ブロック10と蓋板4とを用意する工程である。被切削ブロック10は、基体部2及びフィン3の素となるアルミニウム合金製のブロックであり、略直方体を呈する。準備工程では、まず、クランプを介して被切削ブロック10を架台Kに固定した後、被切削ブロック10の表面10aをエンドミル等で切削し、凹溝5を形成する。 As shown in FIG. 6A, the preparation step is a step of preparing the block 10 to be cut and the cover plate 4. The block 10 to be cut is a block made of an aluminum alloy which is a base of the base portion 2 and the fins 3 and has a substantially rectangular parallelepiped shape. In the preparation step, first, the block 10 to be cut is fixed to the mount K via a clamp, and then the surface 10a of the block 10 to be cut is cut with an end mill or the like to form the groove 5.
 図6の(b)に示すように、蓋板挿入工程は、凹溝5に蓋板4を挿入する工程である。蓋板4の幅は、凹溝5の上部の幅と同等になっている。凹溝5に蓋板4を挿入すると、蓋板4の上面と表面10aとが面一になる。 As shown in FIG. 6 (b), the cover plate insertion step is a step of inserting the cover plate 4 into the groove 5. The width of the cover plate 4 is equal to the width of the upper portion of the concave groove 5. When the cover plate 4 is inserted into the concave groove 5, the upper surface of the cover plate 4 and the surface 10a are flush with each other.
 図7の(a)に示すように、接合工程は、回転ツールFで突合部J,Jに対して摩擦攪拌接合を行う工程である。回転ツールFのショルダFaの外径は、凹溝5の幅よりも若干大きくなっている。 7 (a), the joining process is a process of performing friction stir welding on the abutting portions J and J with the rotary tool F. As shown in FIG. The outer diameter of the shoulder Fa of the rotary tool F is slightly larger than the width of the concave groove 5.
 図7の(b)に示すように、接合工程を行った後、架台Kのクランプを解除して、被切削ブロック10をそのまま存置すると、塑性化領域Wに熱収縮が発生し、表面10aが凹状となるように変形する。すなわち、被切削ブロック10が裏面10b側に凸状となるように反り、表面10a側に圧縮応力が発生し、裏面10b側に引張応力が発生する。 As shown in FIG. 7B, after performing the joining process, when the clamp of the gantry K is released and the block 10 to be cut is left as it is, thermal shrinkage occurs in the plasticized region W, and the surface 10a becomes Deforms to be concave. That is, the block 10 to be cut is warped so as to be convex toward the back surface 10b, compressive stress is generated on the front surface 10a side, and tensile stress is generated on the back surface 10b side.
 切削工程では、第一実施形態の図4で説明したように、マルチカッターMを用いて、被切削ブロック10の裏面10bを切削して、複数のフィン3を形成する。 In the cutting process, as described with reference to FIG. 4 of the first embodiment, using the multi-cutter M, the back surface 10b of the block 10 to be cut is cut to form a plurality of fins 3.
 以上説明した第二実施形態に係る伝熱板の製造方法によっても第一実施形態と略同等の効果を得ることができる。また、本実施形態では蓋溝6を省略するとともに、蓋板4の幅を第一実施形態よりも狭くしているため、一回の回転ツールFの移動で突合部J,Jを摩擦攪拌接合ができる。これにより、作業手間を少なくすることができる。 By the method for manufacturing a heat transfer plate according to the second embodiment described above, it is possible to obtain substantially the same effect as that of the first embodiment. Further, in the present embodiment, the lid groove 6 is omitted and the width of the lid plate 4 is narrower than that of the first embodiment, so that the abutting portions J and J are friction stir welded by a single movement of the rotary tool F. Can do. Thereby, work labor can be reduced.
〔第三実施形態〕
 本発明の第三実施形態について図面を用いて説明する。図8に示すように、第三実施形態に係る伝熱板1Bは、基体部2と、フィン3と、蓋板4と、熱媒体用管7とで主に構成されている。伝熱板1Bは、熱媒体用管7を備えている点で、第一実施形態と相違する。第三実施形態では、第一実施形態と相違する部分を中心に説明する。
[Third embodiment]
A third embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 8, the heat transfer plate 1 </ b> B according to the third embodiment is mainly configured by a base portion 2, fins 3, a cover plate 4, and a heat medium pipe 7. The heat transfer plate 1 </ b> B is different from the first embodiment in that it includes a heat medium pipe 7. In the third embodiment, a description will be given focusing on the parts that are different from the first embodiment.
 熱媒体用管7は、内部に中空部を有する円筒部材であって、本実施形態では銅で形成されている。熱媒体用管7は、凹溝5に配置されるように、平面視U字状に形成されている。 The heat medium pipe 7 is a cylindrical member having a hollow portion therein, and is formed of copper in this embodiment. The heat medium pipe 7 is formed in a U shape in plan view so as to be disposed in the concave groove 5.
 第三実施形態に係る伝熱板の製造方法では、準備工程と、熱媒体用管挿入工程と、蓋溝閉塞工程と、接合工程と、切削工程とを行う。 In the heat transfer plate manufacturing method according to the third embodiment, a preparation process, a heat medium tube insertion process, a lid groove closing process, a joining process, and a cutting process are performed.
 図9の(a)に示すように、準備工程は、被切削ブロック10と、熱媒体用管7と、蓋板4とを用意する工程である。被切削ブロック10は、基体部2及びフィン3の素となるアルミニウム合金製のブロックであり、略直方体を呈する。準備工程では、まず、クランプを介して被切削ブロック10を架台Kに固定した後、被切削ブロック10の表面10aをエンドミル等で切削して蓋溝6を形成し、蓋溝6の底面に凹溝5を形成する。これにより、平面視U字状を呈する凹溝5及び蓋溝6が形成される。凹溝5の深さ及び幅は、熱媒体用管7の外径と略同等に形成する。 As shown in FIG. 9 (a), the preparation step is a step of preparing the block 10 to be cut, the heat medium pipe 7, and the cover plate 4. The block 10 to be cut is a block made of an aluminum alloy which is a base of the base portion 2 and the fins 3 and has a substantially rectangular parallelepiped shape. In the preparation step, first, the block 10 to be cut is fixed to the gantry K via a clamp, and then the surface 10a of the block 10 to be cut is cut with an end mill or the like to form the lid groove 6, and the bottom surface of the lid groove 6 is recessed. Groove 5 is formed. Thereby, the ditch | groove 5 and the cover groove | channel 6 which show a planar view U-shape are formed. The depth and width of the concave groove 5 are formed to be approximately equal to the outer diameter of the heat medium pipe 7.
 図9の(b)に示すように、熱媒体用管挿入工程では、凹溝5に熱媒体用管7を挿入する。蓋溝閉塞工程では、蓋溝6に蓋板4を挿入する。 As shown in FIG. 9B, in the heat medium tube insertion step, the heat medium tube 7 is inserted into the groove 5. In the lid groove closing step, the lid plate 4 is inserted into the lid groove 6.
 図10の(a)に示すように、接合工程は、回転ツールFで突合部J,Jに対して摩擦攪拌接合を行う工程である。接合工程では、突合部Jの深さ方向の全長に亘って塑性化領域Wが形成されるように設定する。 As shown in FIG. 10A, the joining step is a step of performing friction stir welding on the abutting portions J and J with the rotary tool F. In a joining process, it sets so that the plasticization area | region W may be formed over the full length of the depth direction of the butt | matching part J. FIG.
 図10の(b)に示すように、接合工程を行った後、クランプを解除して、被切削ブロック10をそのまま存置すると、塑性化領域W,Wにおいて熱収縮が発生し、表面10aが凹状となるように変形する。すなわち、被切削ブロック10が裏面10b側に凸状となるように反り、表面10a側に圧縮応力が発生し、裏面10b側に引張応力が発生する。 As shown in FIG. 10B, after the joining process is performed, when the clamp is released and the block 10 to be cut is left as it is, heat shrinkage occurs in the plasticized regions W and W, and the surface 10a has a concave shape. It transforms to become. That is, the block 10 to be cut is warped so as to be convex toward the back surface 10b, compressive stress is generated on the front surface 10a side, and tensile stress is generated on the back surface 10b side.
 切削工程では、第一実施形態の図4で説明したように、マルチカッターMを用いて、被切削ブロック10の裏面10bを切削して、複数のフィン3を形成する。 In the cutting process, as described with reference to FIG. 4 of the first embodiment, using the multi-cutter M, the back surface 10b of the block 10 to be cut is cut to form a plurality of fins 3.
 以上説明した第三実施形態に係る伝熱板の製造方法によっても第一実施形態と略同等の効果を得ることができる。また、本実施形態に係る製造方法によれば、熱媒体用管7とフィン3とを備えた伝熱板1Bを容易に形成することができる。 By the method for manufacturing a heat transfer plate according to the third embodiment as described above, substantially the same effect as that of the first embodiment can be obtained. Moreover, according to the manufacturing method which concerns on this embodiment, the heat exchanger plate 1B provided with the pipe | tube 7 for heat media and the fin 3 can be formed easily.
 なお、図11に示すように、接合工程では、熱媒体用管7の周囲に塑性流動材が流入するように摩擦攪拌を行ってもよい。この変形例では、蓋溝6及び蓋板4の幅が第一実施形態よりも短くなっている。 As shown in FIG. 11, in the joining step, friction stirring may be performed so that the plastic fluid material flows around the heat medium pipe 7. In this modification, the width of the lid groove 6 and the lid plate 4 is shorter than that of the first embodiment.
 蓋溝閉塞工程によって、熱媒体用管7の外周面と凹溝5と蓋板4の下面で囲まれた隙間Qが形成される。接合工程によって、突合部Jに対して回転ツールFを挿入すると、ピンFbの周囲の金属が流動化して、塑性流動材が隙間Qに流入する。これにより、熱媒体用管7の隙間Qを金属で埋めることが出来るため、水密性及び気密性の高い伝熱板1Bを製造することができる。 By the lid groove closing step, a gap Q surrounded by the outer peripheral surface of the heat medium pipe 7, the concave groove 5 and the lower surface of the lid plate 4 is formed. When the rotary tool F is inserted into the abutting portion J by the joining process, the metal around the pin Fb is fluidized and the plastic fluid material flows into the gap Q. Thereby, since the gap Q of the heat medium pipe 7 can be filled with the metal, the heat transfer plate 1B having high water tightness and high air tightness can be manufactured.
〔第四実施形態〕
 本発明の第四実施形態について図面を用いて説明する。図12に示すように、第四実施形態に係る伝熱板1Cは、第二実施形態に近い形態であって、熱媒体用管7を備えている点で第二実施形態と相違する。第四実施形態では、第二実施形態と相違する部分を中心に説明する。
[Fourth embodiment]
A fourth embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 12, the heat transfer plate 1 </ b> C according to the fourth embodiment is a form close to the second embodiment, and is different from the second embodiment in that a heat medium pipe 7 is provided. In the fourth embodiment, a description will be given centering on portions that are different from the second embodiment.
 熱媒体用管7は、内部に中空部を有する円筒部材であって、本実施形態では銅で形成されている。熱媒体用管7は、凹溝5に配置されるように、平面視U字状に形成されている。 The heat medium pipe 7 is a cylindrical member having a hollow portion therein, and is formed of copper in this embodiment. The heat medium pipe 7 is formed in a U shape in plan view so as to be disposed in the concave groove 5.
 次に、本実施形態の伝熱板の製造方法について説明する。伝熱板の製造方法では、準備工程と、熱媒体用管挿入工程と、蓋板挿入工程と、接合工程と、切削工程とを行う。 Next, a method for manufacturing the heat transfer plate of this embodiment will be described. In the heat transfer plate manufacturing method, a preparation step, a heat medium tube insertion step, a lid plate insertion step, a joining step, and a cutting step are performed.
 図13の(a)に示すように、準備工程は、被切削ブロック10と、熱媒体用管7と、蓋板4とを用意する工程である。準備工程では、まず、被切削ブロック10をクランプで架台Kに固定した後、被切削ブロック10の表面10aをエンドミル等で切削し、凹溝5を形成する。凹溝5の底部5aは円弧状になっており、上部5bは一定の幅になっている。 As shown in FIG. 13 (a), the preparation step is a step of preparing the block 10 to be cut, the heat medium pipe 7, and the cover plate 4. In the preparation step, first, the block 10 to be cut is fixed to the mount K with a clamp, and then the surface 10a of the block 10 to be cut is cut with an end mill or the like to form the groove 5. The bottom portion 5a of the concave groove 5 has an arc shape, and the upper portion 5b has a constant width.
 図13の(b)に示すように、熱媒体用管挿入工程は、凹溝5の底部5aに熱媒体用管7を挿入する。蓋板挿入工程は、凹溝5の上部5bに蓋板4を挿入する。これにより、蓋板4の上面と表面10aとが面一になる。 As shown in FIG. 13B, in the heat medium tube insertion step, the heat medium tube 7 is inserted into the bottom 5a of the groove 5. In the lid plate insertion step, the lid plate 4 is inserted into the upper portion 5 b of the groove 5. Thereby, the upper surface of the cover plate 4 and the surface 10a become flush.
 図14の(a)に示すように、接合工程は、回転ツールFで突合部J,Jに対して摩擦攪拌接合を行う工程である。回転ツールFのショルダFaの外径は、凹溝5の幅よりも若干大きくなっている。また、接合工程では、回転ツールFの押圧力によって、蓋板4が熱媒体用管7の上部を押圧するとともに、蓋板4の上部と被切削ブロック10とを摩擦攪拌接合する。 As shown in FIG. 14A, the joining process is a process of performing friction stir welding on the abutting portions J and J with the rotary tool F. The outer diameter of the shoulder Fa of the rotary tool F is slightly larger than the width of the concave groove 5. Further, in the joining step, the cover plate 4 presses the upper part of the heat medium pipe 7 by the pressing force of the rotary tool F, and the upper part of the cover plate 4 and the block 10 to be cut are friction stir welded.
 図14の(b)に示すように、接合工程を行った後、架台Kのクランプを解除して、被切削ブロック10をそのまま存置すると、塑性化領域Wに熱収縮が発生し、表面10aが凹状となるように変形する。 As shown in FIG. 14 (b), after the joining process is performed, when the clamp of the gantry K is released and the block 10 to be cut is left as it is, heat shrinkage occurs in the plasticized region W, and the surface 10a becomes Deforms to be concave.
 切削工程では、第一実施形態の図4で説明したように、マルチカッターMを用いて、被切削ブロック10の裏面10bを切削して、複数のフィン3を形成する。 In the cutting process, as described with reference to FIG. 4 of the first embodiment, using the multi-cutter M, the back surface 10b of the block 10 to be cut is cut to form a plurality of fins 3.
 以上説明した第四実施形態に係る伝熱板の製造方法によれば、第二実施形態と略同等の効果を得ることができる。また、本実施形態によれば、熱媒体用管7が埋設された伝熱板1Cを容易に製造することができる。また、本実施形態では蓋溝6を省略するとともに、蓋板4の幅を第一実施形態よりも狭くしているため、一回の回転ツールFの移動で突合部J,Jを摩擦攪拌接合ができる。これにより、作業手間を少なくすることができる。 According to the method for manufacturing a heat transfer plate according to the fourth embodiment described above, it is possible to obtain substantially the same effect as that of the second embodiment. Moreover, according to this embodiment, 1 C of heat exchanger plates with which the heat medium pipe | tube 7 was embed | buried can be manufactured easily. Further, in the present embodiment, the lid groove 6 is omitted and the width of the lid plate 4 is narrower than that of the first embodiment, so that the abutting portions J and J are friction stir welded by a single movement of the rotary tool F. Can do. Thereby, work labor can be reduced.
〔第五実施形態〕
 本発明の第五実施形態について図面を参照して説明する。図15に示すように、第五実施形態に係る伝熱板1Dは、ベース板21と、複数のフィン22と、蓋板23とで主に構成されている。伝熱板1Dは、ベース板21の裏面21bにおいて、フィン22の周りに露出する露出部26が形成されている点で第一実施形態と相違する。
[Fifth embodiment]
A fifth embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 15, the heat transfer plate 1 </ b> D according to the fifth embodiment mainly includes a base plate 21, a plurality of fins 22, and a lid plate 23. The heat transfer plate 1D is different from the first embodiment in that an exposed portion 26 exposed around the fins 22 is formed on the back surface 21b of the base plate 21.
 ベース板21は、板状を呈する。ベース板21には、凹溝24と蓋溝25とが形成されている。フィン22は、ベース板21の裏面21bに対して垂直に形成されている。フィン22は、板状を呈し、等間隔に形成されている。フィン22は、ベース板21の長手方向と平行に形成されている。 The base plate 21 has a plate shape. A concave groove 24 and a cover groove 25 are formed in the base plate 21. The fins 22 are formed perpendicular to the back surface 21 b of the base plate 21. The fins 22 have a plate shape and are formed at equal intervals. The fins 22 are formed in parallel with the longitudinal direction of the base plate 21.
 蓋板23は、蓋溝25と同じ形状を呈する。蓋板23は、蓋溝25に隙間無く配置される。蓋板23は、ベース板21と同じ材料で形成されることが好ましい。蓋板23とベース板21とは摩擦攪拌によって接合されている。 The lid plate 23 has the same shape as the lid groove 25. The lid plate 23 is disposed in the lid groove 25 without a gap. The lid plate 23 is preferably formed of the same material as the base plate 21. The lid plate 23 and the base plate 21 are joined by friction stirring.
 凹溝24は、蓋溝25の底面に形成された溝である。凹溝24は、一方の側面21cから他方の側面21dまで貫通している。蓋溝25は、凹溝24よりも幅広になっており、凹溝24に連続して形成されている。蓋溝25は、断面視矩形を呈し、一方の側面21cから他方の側面21dまで貫通している。 The concave groove 24 is a groove formed on the bottom surface of the lid groove 25. The concave groove 24 penetrates from one side surface 21c to the other side surface 21d. The lid groove 25 is wider than the concave groove 24 and is formed continuously with the concave groove 24. The lid groove 25 has a rectangular shape in sectional view and penetrates from one side surface 21c to the other side surface 21d.
 次に、第五実施形態に係る伝熱板の製造方法について図面を参照して詳細に説明する。本実施形態に係る伝熱板の製造方法では、準備工程と、蓋溝閉塞工程と、接合工程と、切削工程とを行う。 Next, a method for manufacturing a heat transfer plate according to the fifth embodiment will be described in detail with reference to the drawings. In the method for manufacturing a heat transfer plate according to the present embodiment, a preparation process, a lid groove closing process, a joining process, and a cutting process are performed.
 図16の(a)に示すように、準備工程は、被切削ブロック31を用意する工程である。被切削ブロック31は、ベース板21とこのベース板21に形成されたブロック部32とで構成されている。被切削ブロック31は、本実施形態ではダイカストによって一体形成されている。被切削ブロック31の種類は特に制限されないが、本実施形態ではアルミニウム合金で形成されている。 As shown in FIG. 16A, the preparation process is a process of preparing the block 31 to be cut. The block 31 to be cut includes a base plate 21 and a block portion 32 formed on the base plate 21. In the present embodiment, the block 31 to be cut is integrally formed by die casting. Although the kind in particular of the block 31 to be cut is not restrict | limited, In this embodiment, it is formed with the aluminum alloy.
 ブロック部32は、ベース板21の裏面21bの中央に形成されている。ブロック部32は、直方体を呈し、ベース板21よりも小さく形成されている。つまり、ブロック部32の表面(裏面32b)の面積は、ベース板21の裏面21bの面積よりも小さくなっている。ベース板21の裏面21bには、ブロック部32の周りに露出する露出部26が形成されている。露出部26は、平面視矩形枠状を呈する。 The block portion 32 is formed at the center of the back surface 21b of the base plate 21. The block portion 32 has a rectangular parallelepiped shape and is smaller than the base plate 21. That is, the area of the front surface (back surface 32 b) of the block portion 32 is smaller than the area of the back surface 21 b of the base plate 21. An exposed portion 26 exposed around the block portion 32 is formed on the back surface 21 b of the base plate 21. The exposed portion 26 has a rectangular frame shape in plan view.
 図16の(b)に示すように、準備工程では、ベース板21の表面21aに凹溝24と、蓋溝25とを形成する。具体的には、クランプを介して被切削ブロック31を架台Kに固定した後、エンドミル等を用いて表面21aに凹溝24及び蓋溝25を形成する。 As shown in FIG. 16 (b), in the preparation step, a concave groove 24 and a cover groove 25 are formed on the surface 21a of the base plate 21. Specifically, after the block 31 to be cut is fixed to the gantry K via a clamp, the concave groove 24 and the cover groove 25 are formed on the surface 21a using an end mill or the like.
 蓋溝閉塞工程は、蓋溝25に蓋板23を挿入する工程である。蓋溝25に蓋板23を挿入することにより、蓋溝25の側壁部と蓋板23の側面とが突き合わされて、突合部が形成される。 The lid groove closing step is a step of inserting the lid plate 23 into the lid groove 25. By inserting the lid plate 23 into the lid groove 25, the side wall portion of the lid groove 25 and the side surface of the lid plate 23 are abutted to form an abutting portion.
 図17の(a)に示すように、接合工程は、回転ツールFで突合部に対して摩擦攪拌接合を行う工程である。 As shown in FIG. 17A, the joining step is a step of performing friction stir welding on the abutting portion with the rotary tool F.
 図17の(b)に示すように、接合工程を行った後、架台Kのクランプを解除する。被切削ブロック31をそのまま存置すると、塑性化領域W,Wに熱収縮が発生し、表面21a側が凹状となるように被切削ブロック31全体が変形する。すなわち、被切削ブロック31が裏面32b側に凸状となるように反り、表面21a側に圧縮応力が発生し、裏面32b側に引張応力が発生する。 As shown in FIG. 17B, after the joining process is performed, the clamp of the gantry K is released. If the work block 31 is left as it is, heat shrinkage occurs in the plasticized regions W and W, and the entire work block 31 is deformed so that the surface 21a side is concave. That is, the block 31 to be cut is warped so as to be convex toward the back surface 32b, compressive stress is generated on the front surface 21a side, and tensile stress is generated on the back surface 32b side.
 図18に示すように、切削工程は、マルチカッターMを用いてブロック部32を切削して複数のフィン22を形成する工程である。まず、被切削ブロック31の表裏をひっくり返し、架台Kとベース板21とを対向させ、クランプで被切削ブロック31を架台Kに固定する。切削工程中は、裏面32bに引張応力が作用し、表面21aに圧縮応力が作用するようにクランプする。 As shown in FIG. 18, the cutting process is a process of forming the plurality of fins 22 by cutting the block portion 32 using the multi-cutter M. First, the front and back of the block 31 to be cut are turned over, the gantry K and the base plate 21 are made to face each other, and the block 31 to be cut is fixed to the gantry K with a clamp. During the cutting process, clamping is performed so that tensile stress acts on the back surface 32b and compressive stress acts on the front surface 21a.
 切削工程では、回転軸Maの中心軸を法線とする平面と、架台Kの設置面とが垂直となるようにマルチカッターMを設置した後、この平行関係を維持した状態で切削する。図18に示すように、切削工程では、回転軸Maの中心軸をブロック部32の稜線32eを通る鉛直線上に配置した後、マルチカッターMを稜線32eに向けて所定の深さまで下降させる。 In the cutting process, the multi-cutter M is installed so that the plane whose normal is the central axis of the rotation axis Ma and the installation surface of the gantry K are perpendicular to each other, and then the cutting is performed while maintaining this parallel relationship. As shown in FIG. 18, in the cutting step, after the central axis of the rotation axis Ma is arranged on a vertical line passing through the ridge line 32 e of the block portion 32, the multi-cutter M is lowered toward the ridge line 32 e to a predetermined depth.
 マルチカッターMを所定の深さまで下降させたら、その深さを保った状態で、ブロック部32の稜線32fに向けて相対的に移動させる。被切削ブロック31に対するマルチカッターMの移動方向は、回転軸Maを含む鉛直面で被切削ブロック31を切断した場合の仮想切断面が、上方に凸状となるように設定する。本実施形態では、上方に凸状となる稜線32eから、同じく上方に凸状となる稜線32fに向けてマルチカッターMを移動させる。 When the multi-cutter M is lowered to a predetermined depth, the multi-cutter M is relatively moved toward the ridgeline 32f of the block portion 32 while maintaining the depth. The moving direction of the multi-cutter M with respect to the block to be cut 31 is set so that the virtual cut surface when the block to be cut 31 is cut in a vertical plane including the rotation axis Ma is convex upward. In the present embodiment, the multi-cutter M is moved from the ridge line 32e that is convex upward to the ridge line 32f that is also convex upward.
 ブロック部32の稜線32fを通る鉛直線と回転軸Maの中心軸とが重なる位置まで移動させたら、マルチカッターMを上方に移動させてブロック部32から離間させる。以上の工程によって図15に示す伝熱板1Dが製造される。 When the vertical line passing through the ridgeline 32f of the block part 32 and the central axis of the rotation axis Ma are moved to a position where they overlap, the multi-cutter M is moved upward and separated from the block part 32. The heat transfer plate 1D shown in FIG. 15 is manufactured through the above steps.
 以上説明した本実施形態に係る伝熱板の製造方法によれば、ベース板21の表面21aに摩擦攪拌を行うことで熱収縮が発生し、ブロック部32の裏面32bに引張応力が作用する。切削工程は、ブロック部32の裏面32bに引張応力が作用した状態で行うため、円盤カッターMbがフィン22,22同士に挟まれ難くなる。つまり、表面21aに圧縮応力が作用しつつ、裏面32bに引張応力が作用した状態で切削するため、フィン22,22が形成されるとこれらのフィン22,22同士が離間する方向に若干開く。そのため、円盤カッターMbがフィン3に拘束されにくくなり、従来に比べて円盤カッターMbとフィン22との間の摩擦を小さくすることができ、円盤カッターMbを円滑に回転させることができる。これにより、作業性を高めることができるとともに、フィン22の成形性を高めることができる。 According to the method for manufacturing a heat transfer plate according to the present embodiment described above, thermal contraction occurs by frictional stirring on the surface 21 a of the base plate 21, and tensile stress acts on the back surface 32 b of the block portion 32. Since the cutting process is performed in a state in which a tensile stress is applied to the back surface 32b of the block portion 32, the disk cutter Mb is hardly sandwiched between the fins 22 and 22. That is, since the cutting is performed in a state in which the compressive stress is applied to the front surface 21a and the tensile stress is applied to the back surface 32b, when the fins 22 and 22 are formed, the fins 22 and 22 are slightly opened in a direction away from each other. Therefore, the disk cutter Mb is less likely to be restrained by the fins 3, the friction between the disk cutter Mb and the fins 22 can be reduced as compared with the conventional case, and the disk cutter Mb can be smoothly rotated. Thereby, while being able to improve workability | operativity, the moldability of the fin 22 can be improved.
 また、切削工程によってブロック部32の裏面32b側にも摩擦熱が発生する。この摩擦熱に起因する熱収縮によって、被切削ブロック31に発生した反りを矯正することができる。 Also, frictional heat is generated on the back surface 32b side of the block portion 32 by the cutting process. The warp generated in the block 31 to be cut can be corrected by the heat shrinkage caused by the frictional heat.
 また、マルチカッターMを用いることで、フィン22の厚さや、フィン22,22同士の隙間を容易に設定することができる。 Also, by using the multi-cutter M, the thickness of the fin 22 and the gap between the fins 22 and 22 can be easily set.
 また、第五実施形態の伝熱板1Dは、ベース板21の裏面21bにフィン22が形成されていない露出部26を備えている。この露出部26は、フィン22群の周囲を囲むように形成されているため、フィン22群を覆うカバー部材や他の取付部材の取り付け代として利用することができる。 Further, the heat transfer plate 1D of the fifth embodiment includes an exposed portion 26 on which the fins 22 are not formed on the back surface 21b of the base plate 21. Since the exposed portion 26 is formed so as to surround the periphery of the group of fins 22, it can be used as a mounting allowance for a cover member or other mounting member that covers the group of fins 22.
 なお、露出部26は、本実施形態では、フィン22群の全周囲に亘って設けられているが、フィン22群の一部に設けられているだけでもよい。また、本実施形態では、フィン22の長手方向と、ベース板21の長手方向が平行となるように配置しているが、交差するように配置してもよい。 In addition, although the exposed part 26 is provided over the perimeter of the fin 22 group in this embodiment, it may be provided only in a part of fin 22 group. In the present embodiment, the longitudinal direction of the fins 22 and the longitudinal direction of the base plate 21 are arranged in parallel, but they may be arranged so as to intersect each other.
〔第六実施形態〕
 本発明の第六実施形態について図面を参照して説明する。図19に示すように、第六実施形態に係る伝熱板1Eは、ベース板21と、複数のフィン22と、蓋板23とで主に構成されている。伝熱板1Eは、蓋溝25を有さない点で第五実施形態と相違する。第五実施形態の蓋板23及び凹溝24周りの構成については第二実施形態と略同等であるため、詳細な説明は省略する。また、第五実施形態のフィン22の構成については第五実施形態と略同等であるため、詳細な説明は省略する。
[Sixth embodiment]
A sixth embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 19, the heat transfer plate 1 </ b> E according to the sixth embodiment is mainly configured by a base plate 21, a plurality of fins 22, and a cover plate 23. The heat transfer plate 1E is different from the fifth embodiment in that it does not have the cover groove 25. Since the configuration around the cover plate 23 and the recessed groove 24 of the fifth embodiment is substantially the same as that of the second embodiment, detailed description thereof is omitted. Further, the configuration of the fins 22 of the fifth embodiment is substantially the same as that of the fifth embodiment, and thus detailed description thereof is omitted.
〔第七実施形態〕
 本発明の第七実施形態について図面を参照して説明する。図20に示すように、第七実施形態に係る伝熱板1Fは、ベース板21と、複数のフィン22と、蓋板23と、熱媒体用管27とで主に構成されている。伝熱板1Fは、熱媒体用管27を備え備えている点で第五実施形態と相違する。第七実施形態の蓋板23、凹溝24、蓋溝25及び熱媒体用管27周りの構成については第三実施形態と略同等であるため、詳細な説明は省略する。また、第七実施形態のフィン22の構成については第五実施形態と略同等であるため、詳細な説明は省略する。
[Seventh embodiment]
A seventh embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 20, the heat transfer plate 1 </ b> F according to the seventh embodiment mainly includes a base plate 21, a plurality of fins 22, a cover plate 23, and a heat medium pipe 27. The heat transfer plate 1F is different from the fifth embodiment in that it includes a heat medium pipe 27. Since the configuration around the lid plate 23, the concave groove 24, the lid groove 25, and the heat medium pipe 27 of the seventh embodiment is substantially the same as that of the third embodiment, detailed description thereof is omitted. Further, the configuration of the fins 22 of the seventh embodiment is substantially the same as that of the fifth embodiment, and thus detailed description thereof is omitted.
〔第八実施形態〕
 本発明の第八実施形態について図面を参照して説明する。図21に示すように、第八実施形態に係る伝熱板1Gは、ベース板21と、複数のフィン22と、蓋板23と、熱媒体用管27とで主に構成されている。伝熱板1Gは、熱媒体用管27を備えている点で第六実施形態と相違する。第八実施形態の蓋板23、凹溝24及び熱媒体用管27周りの構成については第六実施形態と略同等であるため、詳細な説明は省略する。また、第八実施形態のフィン22の構成については、第五実施形態と略同等であるため、詳細な説明は省略する。
[Eighth embodiment]
An eighth embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 21, the heat transfer plate 1 </ b> G according to the eighth embodiment is mainly configured by a base plate 21, a plurality of fins 22, a cover plate 23, and a heat medium pipe 27. The heat transfer plate 1G is different from the sixth embodiment in that it includes a heat medium pipe 27. Since the configuration around the cover plate 23, the recessed groove 24, and the heat medium pipe 27 of the eighth embodiment is substantially the same as that of the sixth embodiment, detailed description thereof is omitted. Further, the configuration of the fins 22 of the eighth embodiment is substantially the same as that of the fifth embodiment, and thus detailed description thereof is omitted.
〔第九実施形態〕
 本発明の第九実施形態について図面を参照して説明する。図22に示すように、第九実施形態に係るヒートシンク1Hは、基体部41と、複数のフィン42とで構成されている。
[Ninth embodiment]
A ninth embodiment of the present invention will be described with reference to the drawings. As illustrated in FIG. 22, the heat sink 1 </ b> H according to the ninth embodiment includes a base portion 41 and a plurality of fins 42.
 第九実施形態に係るヒートシンクの製造方法は、摩擦攪拌工程と、切削工程を行う。図23の(a)に示すように、摩擦攪拌工程では、被切削ブロック51に対して摩擦攪拌を行う。被切削ブロック51は、基体部41及びフィン42の素となるアルミニウム合金であって、直方体を呈する。摩擦攪拌工程では、クランプを介して被切削ブロック51を架台Kに固定した後、被切削ブロック51の表面51a上に、回転させた回転ツールFを移動させる。摩擦攪拌用の回転ツールFの移動軌跡は特に制限されないが、本実施形態では、円形状に移動させる。回転ツールFの移動軌跡には塑性化領域Wが形成される。 The manufacturing method of the heat sink according to the ninth embodiment performs a friction stirring process and a cutting process. As shown in FIG. 23A, in the friction stirring step, friction stirring is performed on the block 51 to be cut. The block 51 to be cut is an aluminum alloy serving as a base of the base portion 41 and the fins 42 and has a rectangular parallelepiped shape. In the friction agitation step, the block 51 to be cut is fixed to the mount K via a clamp, and then the rotated rotary tool F is moved onto the surface 51a of the block 51 to be cut. Although the movement trajectory of the rotary tool F for friction stirring is not particularly limited, in the present embodiment, it is moved in a circular shape. A plasticized region W is formed in the movement trajectory of the rotary tool F.
 摩擦攪拌工程が終了したら、クランプを解除して被切削ブロック51をそのまま存置する。被切削ブロック51の塑性化領域Wに熱収縮が発生し、表面51a側が凹状となるように変形する。すなわち、被切削ブロック51が裏面51b側に凸状となるように反り、表面51a側に圧縮応力が発生し、裏面51b側に引張応力が発生する。 When the friction stirring process is completed, the clamp is released and the block 51 to be cut is left as it is. Thermal contraction occurs in the plasticized region W of the block 51 to be cut, and the surface 51a side is deformed to be concave. That is, the block 51 to be cut is warped so as to be convex toward the back surface 51b, compressive stress is generated on the front surface 51a side, and tensile stress is generated on the back surface 51b side.
 切削工程では、具体的な図示は省略するが、第一実施形態の図4に示す切削工程と同じ要領で、引張応力が作用している被切削ブロック51の裏面51bに対してマルチカッターで切削してフィンを形成する。 In the cutting process, although not specifically illustrated, the multi-cutter is used to cut the back surface 51b of the block 51 to be cut on which the tensile stress is applied in the same manner as the cutting process shown in FIG. 4 of the first embodiment. To form fins.
 第九実施形態に係るヒートシンクの製造方法においても、被切削ブロック51の表面51aに摩擦攪拌を行うことで熱収縮が発生し、被切削ブロック51の裏面51bに引張応力が作用する。切削工程は、被切削ブロック51の裏面51bに引張応力が作用した状態で行うため、円盤カッターがフィン42,42に挟まれ難くなる。これにより、従来に比べて円盤カッターとフィン42との間の摩擦を小さくすることができるため、円盤カッターを円滑に回転させることができる。よって、作業性を高めることができるとともに、フィン3の波打ち現象等を防ぎ、成形性を高めることができる。 Also in the heat sink manufacturing method according to the ninth embodiment, thermal contraction occurs by frictional stirring on the front surface 51a of the block 51 to be cut, and tensile stress acts on the back surface 51b of the block 51 to be cut. Since the cutting process is performed in a state where the tensile stress is applied to the back surface 51b of the block 51 to be cut, the disk cutter is difficult to be sandwiched between the fins 42 and 42. Thereby, since the friction between a disk cutter and the fin 42 can be made small compared with the past, a disk cutter can be rotated smoothly. Therefore, workability can be improved, the waviness phenomenon of the fins 3 can be prevented, and the moldability can be improved.
 また、切削工程によって、被切削ブロック51の裏面51b側にも摩擦熱が発生する。この摩擦熱に起因する熱収縮によって、摩擦攪拌工程で発生した被切削ブロック51の反りを矯正することができる。これにより、平坦性の高いヒートシンク1Hを形成することができる。 Also, frictional heat is generated on the back surface 51b side of the block 51 to be cut by the cutting process. The warp of the block 51 to be cut generated in the friction stir process can be corrected by the heat shrinkage caused by the frictional heat. Thereby, the heat sink 1H with high flatness can be formed.
〔第十実施形態〕
 次に、本発明の第十実施形態について説明する。図24の(a)に示すように、第十実施形態に係るヒートシンク1Jは、ベース板61と、複数のフィン62とで構成されている。ヒートシンク1Jは、ベース板61の裏面61bにおいて、フィン62の周りに露出する露出部64が形成されている点で、第九実施形態と相違する。
[Tenth embodiment]
Next, a tenth embodiment of the present invention will be described. As shown in FIG. 24A, the heat sink 1J according to the tenth embodiment includes a base plate 61 and a plurality of fins 62. The heat sink 1J is different from the ninth embodiment in that an exposed portion 64 exposed around the fins 62 is formed on the back surface 61b of the base plate 61.
 第十実施形態に係るヒートシンクの製造方法では、準備工程と、摩擦攪拌工程と、切削工程とを行う。図24の(b)に示すように、準備工程では、被切削ブロック71を用意する。被切削ブロック71は、ベース板61と、ブロック部63とで構成されている。被切削ブロック71は、摩擦攪拌可能な金属部材で構成されており、ダイカストによって一体形成されている。 In the method of manufacturing a heat sink according to the tenth embodiment, a preparation process, a friction stirring process, and a cutting process are performed. As shown in FIG. 24B, in the preparation step, a block 71 to be cut is prepared. The block 71 to be cut is composed of a base plate 61 and a block portion 63. The block 71 to be cut is made of a metal member that can be frictionally stirred, and is integrally formed by die casting.
 ブロック部63は、ベース板61の裏面61bの中央に形成されている。ブロック部63は、直方体を呈しベース板61よりも小さく形成されている。つまり、ブロック部63の表面(裏面63b)の面積は、ベース板61の裏面61bの面積よりも小さくなっている。ベース板61の裏面61bの周囲には、ブロック部63の周りに露出する露出部64が形成されている。 The block portion 63 is formed at the center of the back surface 61 b of the base plate 61. The block 63 has a rectangular parallelepiped shape and is smaller than the base plate 61. That is, the area of the front surface (back surface 63 b) of the block portion 63 is smaller than the area of the back surface 61 b of the base plate 61. An exposed portion 64 that is exposed around the block portion 63 is formed around the back surface 61 b of the base plate 61.
 図24の(b)に示すように、摩擦攪拌工程では、回転ツールFを用いてベース板61の表面61aに対して摩擦攪拌を行う。切削工程は、第五実施形態で説明した図18と同じ要領でフィン62を形成する。これにより、ヒートシンク1Jが形成される。 As shown in FIG. 24 (b), in the friction stirring step, the rotating tool F is used to perform friction stirring on the surface 61a of the base plate 61. In the cutting process, the fins 62 are formed in the same manner as in FIG. 18 described in the fifth embodiment. Thereby, the heat sink 1J is formed.
 以上説明したヒートシンクの製造方法によれば、第九実施形態と略同等の効果を奏することができる。また、フィン62群の周囲に露出部64が形成されるため、フィン62群をカバーするカバー部材や他の取付部材の取り付け代として利用することができる。 According to the heat sink manufacturing method described above, substantially the same effect as that of the ninth embodiment can be obtained. Moreover, since the exposed part 64 is formed around the fin 62 group, it can be used as an attachment allowance for a cover member or other attachment member that covers the fin 62 group.
 以上本発明の実施形態について説明したが、本発明の趣旨に反しない範囲において適宜設計変更が可能である。例えば、各実施形態の接合工程及び摩擦攪拌工程の終了後、回転ツールFの摩擦攪拌によって生じたバリを被切削ブロック又はベース板の表面から切除するバリ切除工程を行ってもよい。これにより、被切削ブロック又はベース板の表面を平滑にすることができる。 Although the embodiments of the present invention have been described above, design changes can be made as appropriate without departing from the spirit of the present invention. For example, after the joining step and the friction stirring step of each embodiment, a burr cutting step of cutting off burrs generated by friction stirring of the rotary tool F from the surface of the block to be cut or the base plate may be performed. Thereby, the surface of a to-be-cut block or a base board can be smoothed.
 また、流体が流通する凹溝5,24及び熱媒体用管7,27の本数や形状、配設位置等は伝熱板の用途に投じて適宜設計すればよい。また、被切削ブロックの成形方法はダイカストに限定されるものではなく、押出形材を切削して形成してもよい。また、本実施形態では、平面視矩形の被切削ブロックを用いたが、例えば、平面視円形、楕円形、他の多角形よりなる形状の被切削ブロックを用いてもよい。 Further, the number and shape of the concave grooves 5 and 24 through which the fluid flows and the heat medium pipes 7 and 27, the arrangement positions, and the like may be appropriately designed depending on the use of the heat transfer plate. Further, the method of forming the block to be cut is not limited to die casting, and the extruded block may be formed by cutting. In the present embodiment, the block to be cut having a rectangular shape in plan view is used. However, for example, a block to be cut having a circular shape, an elliptical shape, or another polygonal shape in plan view may be used.
 また、接合工程後、又は、摩擦攪拌工程後に被切削ブロック10,31に対して焼鈍を行う焼鈍処理を行ってもよい。これにより、被切削ブロック10,31に生じた加工歪みを取り除き、組織を軟化させることができるため、フィンを形成する切削工程を好適に行うことができる。 Further, after the joining process or after the friction stirring process, an annealing process for annealing the blocks 10 and 31 to be cut may be performed. Thereby, since the process distortion which arose in the to- be-cut blocks 10 and 31 can be removed and a structure | tissue can be softened, the cutting process which forms a fin can be performed suitably.
 1   伝熱板
 1A  伝熱板
 1B  伝熱板
 1C  伝熱板
 1D  伝熱板
 1E  伝熱板
 1F  伝熱板
 1G  伝熱板
 1H  ヒートシンク
 1J  ヒートシンク
 2   基体部
 2a  表面
 2b  裏面
 3   フィン
 4   凹溝
 5   蓋溝
 6   蓋板
 7   熱媒体用管
 10  被切削ブロック
 10a 表面
 10b 裏面
 21  ベース板
 22  フィン
 23  ブロック部
 24  凹溝
 25  蓋溝
 26  蓋板
 27  熱媒体用管
 31  被切削ブロック
 F   回転ツール
 J   突合部
 W   塑性化領域
DESCRIPTION OF SYMBOLS 1 Heat-transfer plate 1A Heat-transfer plate 1B Heat-transfer plate 1C Heat-transfer plate 1D Heat-transfer plate 1E Heat-transfer plate 1F Heat-transfer plate 1G Heat-transfer plate 1H Heat-sink 1J Heat-sink 2 Base part 2a Surface 2b Back surface 3 Fin 4 Groove 5 Lid Groove 6 Cover plate 7 Heat medium tube 10 Block to be cut 10a Front surface 10b Back surface 21 Base plate 22 Fin 23 Block portion 24 Concave groove 25 Cover groove 26 Cover plate 27 Heat medium tube 31 Block to be cut F Rotating tool J Joint portion W Plasticization region

Claims (18)

  1.  被切削ブロックの表面に、摩擦攪拌を行う摩擦攪拌工程と、
     複数枚の円盤カッターが積層されたマルチカッターで前記被切削ブロックの裏側に複数のフィンを形成する切削工程と、を含み、
     前記切削工程では、前記摩擦攪拌工程後の熱収縮により、前記被切削ブロックの裏面に引張応力が作用した状態で切削することを特徴とするヒートシンクの製造方法。
    On the surface of the block to be cut, a friction stirring step for performing friction stirring,
    A cutting step of forming a plurality of fins on the back side of the block to be cut with a multi-cutter in which a plurality of disk cutters are stacked, and
    In the cutting step, the heat sink is subjected to thermal contraction after the friction stirring step, and cutting is performed in a state in which tensile stress is applied to the back surface of the block to be cut.
  2.  前記摩擦攪拌によって生じたバリを前記被切削ブロックの表面から切除するバリ切除工程を含むことを特徴とする請求の範囲第1項に記載のヒートシンクの製造方法。 2. The method of manufacturing a heat sink according to claim 1, further comprising a burr cutting step of cutting a burr generated by the friction stirring from a surface of the block to be cut.
  3.  ベース板と前記ベース板の裏面に形成されたブロック部とを有する被切削ブロックを用いてヒートシンクを製造する方法であって、
     前記ベース板の裏面には、前記ブロック部の周りに露出する露出部が形成されており、
     前記ベース板の表面に摩擦攪拌を行う摩擦攪拌工程と、
     複数枚の円盤カッターが積層されたマルチカッターで前記ブロック部の裏側に複数のフィンを形成する切削工程と、を含み、
     前記切削工程では、前記摩擦攪拌工程後の熱収縮により、前記ブロック部の裏面に引張応力が作用した状態で切削することを特徴とするヒートシンクの製造方法。
    A method of manufacturing a heat sink using a block to be cut having a base plate and a block portion formed on the back surface of the base plate,
    An exposed portion that is exposed around the block portion is formed on the back surface of the base plate,
    A friction stirring step of performing friction stirring on the surface of the base plate;
    A cutting step of forming a plurality of fins on the back side of the block portion with a multi-cutter in which a plurality of disk cutters are laminated,
    In the cutting step, the heat sink is cut in a state in which a tensile stress is applied to the back surface of the block portion by heat shrinkage after the friction stirring step.
  4.  前記摩擦攪拌によって生じたバリを前記ベース板の表面から切除するバリ切除工程を含むことを特徴とする請求の範囲第3項に記載のヒートシンクの製造方法。 4. The method of manufacturing a heat sink according to claim 3, further comprising a burr cutting step of cutting a burr generated by the friction stirring from a surface of the base plate.
  5.  被切削ブロックの表面に開口する凹溝の周囲に形成された蓋溝に、蓋板を挿入する蓋溝閉塞工程と、
     前記蓋溝の側壁と前記蓋板の側面との突合部に沿って摩擦攪拌を行う接合工程と、
     複数枚の円盤カッターが積層されたマルチカッターで前記被切削ブロックの裏側に複数のフィンを形成する切削工程と、を含み、
     前記切削工程では、前記接合工程後の熱収縮により、前記被切削ブロックの裏面に引張応力が作用した状態で切削することを特徴とする伝熱板の製造方法。
    A lid groove closing step of inserting a lid plate into the lid groove formed around the concave groove opening on the surface of the block to be cut;
    A joining step of performing frictional stirring along the abutting portion between the side wall of the lid groove and the side surface of the lid plate;
    A cutting step of forming a plurality of fins on the back side of the block to be cut with a multi-cutter in which a plurality of disk cutters are stacked, and
    In the said cutting process, it cuts in the state in which the tensile stress acted on the back surface of the said to-be-cut block by the thermal contraction after the said joining process, The manufacturing method of the heat exchanger plate characterized by the above-mentioned.
  6.  被切削ブロックの表面に開口する凹溝に蓋板を挿入する蓋板挿入工程と、
     前記凹溝の側壁と前記蓋板の側面との突合部に沿って摩擦攪拌を行う接合工程と、
     複数枚の円盤カッターが積層されたマルチカッターで前記被切削ブロックの裏側に複数のフィンを形成する切削工程と、を含み、
     前記切削工程では、前記接合工程後の熱収縮により、前記被切削ブロックの裏面に引張応力が作用した状態で切削することを特徴とする伝熱板の製造方法。
    A lid plate insertion step of inserting the lid plate into the groove that opens on the surface of the block to be cut;
    A joining step of performing frictional stirring along the abutting portion between the side wall of the concave groove and the side surface of the lid plate;
    A cutting step of forming a plurality of fins on the back side of the block to be cut with a multi-cutter in which a plurality of disk cutters are stacked, and
    In the said cutting process, it cuts in the state in which the tensile stress acted on the back surface of the said to-be-cut block by the thermal contraction after the said joining process, The manufacturing method of the heat exchanger plate characterized by the above-mentioned.
  7.  被切削ブロックの表面に開口する蓋溝の底面に形成された凹溝に、熱媒体用管を挿入する熱媒体用管挿入工程と、
     前記蓋溝に蓋板を挿入する蓋溝閉塞工程と、
     前記蓋溝の側壁と前記蓋板の側面との突合部に沿って摩擦攪拌を行う接合工程と、
     複数枚の円盤カッターが積層されたマルチカッターで前記被切削ブロックの裏側に複数のフィンを形成する切削工程と、を含み、
     前記切削工程では、前記接合工程後の熱収縮により、前記被切削ブロックの裏面に引張応力が作用した状態で切削することを特徴とする伝熱板の製造方法。
    A heat medium tube insertion step of inserting the heat medium tube into the concave groove formed in the bottom surface of the lid groove opening on the surface of the block to be cut;
    A lid groove closing step of inserting a lid plate into the lid groove;
    A joining step of performing frictional stirring along the abutting portion between the side wall of the lid groove and the side surface of the lid plate;
    A cutting step of forming a plurality of fins on the back side of the block to be cut with a multi-cutter in which a plurality of disk cutters are stacked, and
    In the said cutting process, it cuts in the state in which the tensile stress acted on the back surface of the said to-be-cut block by the thermal contraction after the said joining process, The manufacturing method of the heat exchanger plate characterized by the above-mentioned.
  8.  前記接合工程において、前記熱媒体用管の周囲に形成された空隙部に、摩擦熱によって流動化された塑性流動材を流入させることを特徴とする請求の範囲第7項に記載の伝熱板の製造方法。 The heat transfer plate according to claim 7, wherein in the joining step, a plastic fluidized material fluidized by frictional heat is caused to flow into a gap formed around the heat medium pipe. Manufacturing method.
  9.  被切削ブロックの表面に開口する凹溝に、熱媒体用管を挿入する熱媒体用管挿入工程と、
     前記凹溝に蓋板を挿入する蓋板挿入工程と、
     前記凹溝の側壁と前記蓋板の側面との突合部に沿って摩擦攪拌を行う接合工程と、
     複数枚の円盤カッターが積層されたマルチカッターで前記被切削ブロックの裏側に複数のフィンを形成する切削工程と、を含み、
     前記切削工程では、前記接合工程後の熱収縮により、前記被切削ブロックの裏面に引張応力が作用した状態で切削することを特徴とする伝熱板の製造方法。
    A heat medium pipe insertion step of inserting the heat medium pipe into the concave groove opened on the surface of the block to be cut;
    A lid plate insertion step of inserting a lid plate into the concave groove;
    A joining step of performing frictional stirring along the abutting portion between the side wall of the concave groove and the side surface of the lid plate;
    A cutting step of forming a plurality of fins on the back side of the block to be cut with a multi-cutter in which a plurality of disk cutters are stacked, and
    In the said cutting process, it cuts in the state in which the tensile stress acted on the back surface of the said to-be-cut block by the thermal contraction after the said joining process, The manufacturing method of the heat exchanger plate characterized by the above-mentioned.
  10.  前記接合工程において、摩擦攪拌を行う回転ツールの押圧力によって前記蓋板が前記熱媒体用管の上部を押圧するとともに、前記蓋板の少なくとも上部と前記被切削ブロックとを摩擦攪拌することを特徴とする請求の範囲第9項に記載の伝熱板の製造方法。 In the joining step, the lid plate presses the upper portion of the heat medium pipe by a pressing force of a rotary tool that performs friction stirring, and at least the upper portion of the lid plate and the block to be cut are frictionally stirred. A method for manufacturing a heat transfer plate according to claim 9.
  11.  前記摩擦攪拌によって生じたバリを前記被切削ブロックの表面から切除するバリ切除工程を含むことを特徴とする請求の範囲第5,6,7,9項のいずれか一項に記載の伝熱板の製造方法。 The heat transfer plate according to any one of claims 5, 6, 7, and 9, further comprising a burr cutting step of cutting a burr generated by the friction stirring from a surface of the block to be cut. Manufacturing method.
  12.  ベース板と前記ベース板の裏面に形成されたブロック部とを有する被切削ブロックから伝熱板を製造する方法であって、
     前記ベース板の裏面には、前記ブロック部の周りに露出する露出部が形成されており、
     前記ベース板の表面に開口する凹溝の周囲に形成された蓋溝に、蓋板を挿入する蓋溝閉塞工程と、
     前記蓋溝の側壁と前記蓋板の側面との突合部に沿って摩擦攪拌を行う接合工程と、
     複数枚の円盤カッターが積層されたマルチカッターで前記ブロック部の裏側に複数のフィンを形成する切削工程と、を含み、
     前記切削工程では、前記接合工程後の熱収縮により、前記ブロック部の裏面に引張応力が作用した状態で切削することを特徴とする伝熱板の製造方法。
    A method for producing a heat transfer plate from a block to be cut having a base plate and a block portion formed on the back surface of the base plate,
    An exposed portion that is exposed around the block portion is formed on the back surface of the base plate,
    A lid groove closing step of inserting the lid plate into the lid groove formed around the concave groove opening on the surface of the base plate;
    A joining step of performing frictional stirring along the abutting portion between the side wall of the lid groove and the side surface of the lid plate;
    A cutting step of forming a plurality of fins on the back side of the block portion with a multi-cutter in which a plurality of disk cutters are laminated,
    In the said cutting process, it cuts in the state in which the tensile stress acted on the back surface of the said block part by the thermal contraction after the said joining process, The manufacturing method of the heat exchanger plate characterized by the above-mentioned.
  13.  ベース板と前記ベース板の裏面に形成されたブロック部とを有する被切削ブロックから伝熱板を製造する方法であって、
     前記ベース板の裏面には、前記ブロック部の周りに露出する露出部が形成されており、
     前記ベース板の表面に開口する凹溝に蓋板を挿入する蓋板挿入工程と、
     前記凹溝の側壁と前記蓋板の側面との突合部に沿って摩擦攪拌を行う接合工程と、
     複数枚の円盤カッターが積層されたマルチカッターで前記ブロック部の裏側に複数のフィンを形成する切削工程と、を含み、
     前記切削工程では、前記接合工程後の熱収縮により、前記ブロック部の裏面に引張応力が作用した状態で切削することを特徴とする伝熱板の製造方法。
    A method for producing a heat transfer plate from a block to be cut having a base plate and a block portion formed on the back surface of the base plate,
    An exposed portion that is exposed around the block portion is formed on the back surface of the base plate,
    A lid plate insertion step of inserting a lid plate into a concave groove opened on the surface of the base plate;
    A joining step of performing frictional stirring along the abutting portion between the side wall of the concave groove and the side surface of the lid plate;
    A cutting step of forming a plurality of fins on the back side of the block portion with a multi-cutter in which a plurality of disk cutters are laminated,
    In the said cutting process, it cuts in the state in which the tensile stress acted on the back surface of the said block part by the thermal contraction after the said joining process, The manufacturing method of the heat exchanger plate characterized by the above-mentioned.
  14.  ベース板と前記ベース板の裏面に形成されたブロック部とを有する被切削ブロックから伝熱板を製造する方法であって、
     前記ベース板の裏面には、前記ブロック部の周りに露出する露出部が形成されており、
     前記前記ベース板の表面に開口する蓋溝の底面に形成された凹溝に、熱媒体用管を挿入する熱媒体用管挿入工程と、
     前記蓋溝に蓋板を挿入する蓋溝閉塞工程と、
     前記蓋溝の側壁と前記蓋板の側面との突合部に沿って摩擦攪拌を行う接合工程と、
     複数枚の円盤カッターが積層されたマルチカッターで前記ブロック部の裏側に、複数のフィンを形成する切削工程と、を含み、
     前記切削工程では、前記接合工程後の熱収縮により、前記ブロック部の裏面に引張応力が作用した状態で切削することを特徴とする伝熱板の製造方法。
    A method for producing a heat transfer plate from a block to be cut having a base plate and a block portion formed on the back surface of the base plate,
    An exposed portion that is exposed around the block portion is formed on the back surface of the base plate,
    A heat medium tube insertion step of inserting a heat medium tube into a concave groove formed in a bottom surface of a lid groove opened on the surface of the base plate;
    A lid groove closing step of inserting a lid plate into the lid groove;
    A joining step of performing frictional stirring along the abutting portion between the side wall of the lid groove and the side surface of the lid plate;
    A cutting step of forming a plurality of fins on the back side of the block portion with a multi-cutter in which a plurality of disk cutters are laminated,
    In the cutting step, the heat transfer plate is cut in a state in which a tensile stress is applied to the back surface of the block portion by heat shrinkage after the joining step.
  15.  前記接合工程において、前記熱媒体用管の周囲に形成された空隙部に、摩擦熱によって流動化された塑性流動材を流入させることを特徴とする請求の範囲第14項に記載の伝熱板の製造方法。 15. The heat transfer plate according to claim 14, wherein, in the joining step, a plastic fluidized material fluidized by frictional heat is caused to flow into a gap formed around the heat medium pipe. Manufacturing method.
  16.  ベース板と前記ベース板の裏面に形成されたブロック部とを有する被切削ブロックを用いて伝熱板を製造する方法であって、
     前記ベース板の裏面には、前記ブロック部の周りに露出する露出部が形成されており、
     前記ベース板の表面に開口する凹溝に、熱媒体用管を挿入する熱媒体用管挿入工程と、
     前記凹溝に蓋板を挿入する蓋板挿入工程と、
     前記凹溝の側壁と前記蓋板の側面との突合部に沿って摩擦攪拌を行う接合工程と、
     複数枚の円盤カッターが積層されたマルチカッターで前記ブロック部の裏側に複数のフィンを形成する切削工程と、を含み、
     前記切削工程では、前記接合工程後の熱収縮により、前記ブロック部の裏面に引張応力が作用した状態で切削することを特徴とする伝熱板の製造方法。
    A method of manufacturing a heat transfer plate using a block to be cut having a base plate and a block portion formed on the back surface of the base plate,
    An exposed portion that is exposed around the block portion is formed on the back surface of the base plate,
    A heat medium tube insertion step of inserting a heat medium tube into the groove formed in the surface of the base plate;
    A lid plate insertion step of inserting a lid plate into the concave groove;
    A joining step of performing frictional stirring along the abutting portion between the side wall of the concave groove and the side surface of the lid plate;
    A cutting step of forming a plurality of fins on the back side of the block portion with a multi-cutter in which a plurality of disk cutters are laminated,
    In the cutting step, the heat transfer plate is cut in a state in which a tensile stress is applied to the back surface of the block portion by heat shrinkage after the joining step.
  17.  前記接合工程において、摩擦攪拌を行う回転ツールの押圧力によって前記蓋板が前記熱媒体用管の上部を押圧するとともに、前記蓋板の少なくとも上部と前記ベース板とを摩擦攪拌することを特徴とする請求の範囲第16項に記載の伝熱板の製造方法。 In the joining step, the lid plate presses the upper portion of the heat medium pipe by a pressing force of a rotary tool for friction stirring, and at least the upper portion of the lid plate and the base plate are frictionally stirred. The method for manufacturing a heat transfer plate according to claim 16.
  18.  前記摩擦攪拌によって生じたバリを前記ベース板の表面から切除するバリ切除工程を含むことを特徴とする請求の範囲第12,13,14,16項のいずれか一項に記載の伝熱板の製造方法。 The heat transfer plate according to any one of claims 12, 13, 14, and 16, further comprising a burr cutting step of cutting a burr generated by the friction stirring from a surface of the base plate. Production method.
PCT/JP2013/077380 2012-10-10 2013-10-08 Method for producing heat sink and method for producing heat exchanger plate WO2014057948A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380053097.6A CN104718049B (en) 2012-10-10 2013-10-08 The manufacture method of radiator and the manufacture method of heat transfer plate
KR1020157011219A KR101665275B1 (en) 2012-10-10 2013-10-08 Method for producing heat sink and method for producing heat exchanger plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012224837A JP5754431B2 (en) 2012-10-10 2012-10-10 Heat sink manufacturing method and heat transfer plate manufacturing method
JP2012-224837 2012-10-10

Publications (1)

Publication Number Publication Date
WO2014057948A1 true WO2014057948A1 (en) 2014-04-17

Family

ID=50477416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077380 WO2014057948A1 (en) 2012-10-10 2013-10-08 Method for producing heat sink and method for producing heat exchanger plate

Country Status (4)

Country Link
JP (1) JP5754431B2 (en)
KR (1) KR101665275B1 (en)
TW (1) TWI492806B (en)
WO (1) WO2014057948A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047300A1 (en) * 2014-09-25 2016-03-31 日本軽金属株式会社 Radiator manufacturing method and radiator
JP2018141624A (en) * 2018-06-06 2018-09-13 日本軽金属株式会社 Radiator

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6409404B2 (en) * 2014-08-20 2018-10-24 日本軽金属株式会社 Heat transfer plate manufacturing method and heat transfer plate
JP6547517B2 (en) * 2015-08-26 2019-07-24 日本軽金属株式会社 Heat exchanger manufacturing method
CN106513808A (en) * 2017-01-10 2017-03-22 广东欧珀移动通信有限公司 Machining cutter and shell machining method
KR20200079642A (en) * 2018-12-26 2020-07-06 엘지이노텍 주식회사 Power converting apparatus
JP7191324B2 (en) * 2019-03-12 2022-12-19 株式会社片山製作所 Machining jig for cooling body
JP7377533B2 (en) * 2020-03-03 2023-11-10 京浜ラムテック株式会社 Method for manufacturing metal structures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004358536A (en) * 2003-06-06 2004-12-24 Nippon Light Metal Co Ltd Method of joining metallic member, method of producing radiator, and radiator
JP2009056520A (en) * 2007-08-30 2009-03-19 Nippon Light Metal Co Ltd Grooving method
JP2009297761A (en) * 2008-06-16 2009-12-24 Nippon Light Metal Co Ltd Method for producing heat transmit plate
JP2010075938A (en) * 2008-09-24 2010-04-08 Nippon Light Metal Co Ltd Method of manufacturing heat transfer plate

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6227430B1 (en) * 1998-04-30 2001-05-08 The Boeing Company FSW tool design for thick weld joints
JP4325260B2 (en) * 2003-04-15 2009-09-02 日本軽金属株式会社 Manufacturing method of heat transfer element
SE0301381D0 (en) * 2003-05-12 2003-05-12 Sapa Ab Extruded heat sink with integrated thermosyphon
US6994242B2 (en) * 2003-12-09 2006-02-07 The Boeing Company Friction stir weld tool and method
WO2005088714A1 (en) * 2004-03-08 2005-09-22 Remmele Engineering, Inc. Cold plate and method of making the same
CN102248276B (en) * 2007-04-16 2013-10-30 日本轻金属株式会社 Heat transfer plate and method of manufacturing same
CN101420835B (en) * 2007-10-26 2011-03-30 财团法人工业技术研究院 Low melting point alloy thermal interface material and radiating module applying same
CN103551799B (en) * 2008-02-21 2016-05-25 日本轻金属株式会社 The manufacture method of heat transfer plate
CN101588706B (en) * 2008-05-23 2012-05-23 中山伟强科技有限公司 Radiating module and welding method thereof
JP5531573B2 (en) * 2008-12-09 2014-06-25 日本軽金属株式会社 Method for joining resin member and metal member, method for manufacturing liquid cooling jacket, and liquid cooling jacket
JP5262822B2 (en) * 2009-02-23 2013-08-14 日本軽金属株式会社 Manufacturing method of liquid cooling jacket
TWI411691B (en) * 2010-12-22 2013-10-11 Ind Tech Res Inst Metal thermal interface material and heat dissipation device
TWI506874B (en) * 2012-03-22 2015-11-01 Hon Hai Prec Ind Co Ltd Socket

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004358536A (en) * 2003-06-06 2004-12-24 Nippon Light Metal Co Ltd Method of joining metallic member, method of producing radiator, and radiator
JP2009056520A (en) * 2007-08-30 2009-03-19 Nippon Light Metal Co Ltd Grooving method
JP2009297761A (en) * 2008-06-16 2009-12-24 Nippon Light Metal Co Ltd Method for producing heat transmit plate
JP2010075938A (en) * 2008-09-24 2010-04-08 Nippon Light Metal Co Ltd Method of manufacturing heat transfer plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047300A1 (en) * 2014-09-25 2016-03-31 日本軽金属株式会社 Radiator manufacturing method and radiator
JP2016064484A (en) * 2014-09-25 2016-04-28 日本軽金属株式会社 Method for production of radiator, and the radiator
CN106170356A (en) * 2014-09-25 2016-11-30 日本轻金属株式会社 The manufacture method of radiator and radiator
JP2018141624A (en) * 2018-06-06 2018-09-13 日本軽金属株式会社 Radiator

Also Published As

Publication number Publication date
KR101665275B1 (en) 2016-10-11
CN104718049A (en) 2015-06-17
TWI492806B (en) 2015-07-21
JP5754431B2 (en) 2015-07-29
JP2014076504A (en) 2014-05-01
KR20150064153A (en) 2015-06-10
TW201417918A (en) 2014-05-16

Similar Documents

Publication Publication Date Title
JP5754431B2 (en) Heat sink manufacturing method and heat transfer plate manufacturing method
JP6443391B2 (en) Liquid cooling jacket manufacturing method and liquid cooling jacket
JP4325260B2 (en) Manufacturing method of heat transfer element
WO2017033849A1 (en) Method for manufacturing liquid-cooled jacket, and liquid-cooled jacket
WO2019064848A1 (en) Method for producing liquid-cooled jacket
TW201414560A (en) Method for producing heat exchanger plate and method for friction stir welding
JP5772778B2 (en) Heat sink manufacturing method
WO2019038972A1 (en) Liquid cooling jacket manufacturing method
JP5340338B2 (en) Pipe connection method for heat exchanger
JP2014079975A (en) Method for manufacturing a composite hollow container and composite hollow container
JP2009115448A (en) Heat plate and its manufacturing method
WO2019038969A1 (en) Liquid cooling jacket manufacturing method
JP5935933B2 (en) Method for producing composite hollow container
JP2009103440A (en) Heat plate and its manufacturing method
JP6973308B2 (en) How to manufacture a liquid-cooled jacket
JP2010150819A (en) Method for manufacturing frame body, sliding screen, and fittings
JP6577696B2 (en) Manufacturing method of composite plate without internal flow path
JP4618327B2 (en) Metal member joining method and radiator manufacturing method
JP6056786B2 (en) Joining method
JP6409404B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP6927130B2 (en) Manufacturing method of heat transfer plate
JP6973212B2 (en) How to manufacture a liquid-cooled jacket
JP2018141624A (en) Radiator
WO2016047300A1 (en) Radiator manufacturing method and radiator
JP6487623B2 (en) Joining method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157011219

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13844665

Country of ref document: EP

Kind code of ref document: A1