JP5935933B2 - Method for producing composite hollow container - Google Patents

Method for producing composite hollow container Download PDF

Info

Publication number
JP5935933B2
JP5935933B2 JP2015142340A JP2015142340A JP5935933B2 JP 5935933 B2 JP5935933 B2 JP 5935933B2 JP 2015142340 A JP2015142340 A JP 2015142340A JP 2015142340 A JP2015142340 A JP 2015142340A JP 5935933 B2 JP5935933 B2 JP 5935933B2
Authority
JP
Japan
Prior art keywords
container
metal member
resin layer
lid
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015142340A
Other languages
Japanese (ja)
Other versions
JP2015193263A (en
Inventor
堀 久司
久司 堀
諒 吉田
諒 吉田
正憲 遠藤
正憲 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2015142340A priority Critical patent/JP5935933B2/en
Publication of JP2015193263A publication Critical patent/JP2015193263A/en
Application granted granted Critical
Publication of JP5935933B2 publication Critical patent/JP5935933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、複合型中空容器の製造方法に関する。   The present invention relates to a method for producing a composite hollow container.

特許文献1には、樹脂部材と金属部材とを重ね合わせ、樹脂部材の一部を溶融させて両者を接合する技術が開示されている。この技術は、回転ツールと金属部材との間で発生する摩擦熱で、樹脂部材の一部を溶融させて溶着するものである。特許文献1には、この技術を利用して、樹脂製の容器と、金属製の蓋とを溶着して複合型の中空容器(以下、「複合型中空容器」と言う)を製造する技術が開示されている。   Patent Document 1 discloses a technique in which a resin member and a metal member are superposed, a part of the resin member is melted, and both are joined. In this technique, a part of the resin member is melted and welded by frictional heat generated between the rotary tool and the metal member. Patent Document 1 discloses a technique for manufacturing a composite hollow container (hereinafter referred to as “composite hollow container”) by welding a resin container and a metal lid using this technique. It is disclosed.

特開2010−158885号公報JP 2010-158885 A

しかし、樹脂部材と金属部材との親和性が低いため、従来の複合型中空容器の製造方法では、容器と蓋との結合力が小さいという問題があった。   However, since the affinity between the resin member and the metal member is low, the conventional method for manufacturing a composite hollow container has a problem that the bonding force between the container and the lid is small.

このような観点から、本発明は、樹脂部材と金属部材との結合力を大きくすることができる複合型中空容器の製造方法を提供することを課題とする。   From such a viewpoint, an object of the present invention is to provide a method for manufacturing a composite hollow container that can increase the bonding force between a resin member and a metal member.

このような課題を解決するために本発明は、流体が流通する複数の流路孔を有する金属部材と、前記流路孔の端部に連通するヘッダー流路孔を有する樹脂部材と、を含んで構成される複合型中空容器の製造方法であって、前記金属部材の先端面に複数の微細な凹部を形成する表面処理工程と、少なくとも前記表面処理工程を行った部位に熱可塑性樹脂を塗布して熱可塑性樹脂層を形成する樹脂層形成工程と、前記樹脂層形成工程で形成された樹脂付き金属部材と樹脂部材とを突き合わせつつ、前記熱可塑性樹脂層と前記樹脂部材との突合せ部に熱を発生させて溶着する接合工程と、を含み、前記金属部材は、アルミニウム製又はアルミニウム合金製であり、前記樹脂部材は、底部と前記底部に立設する枠状の側壁部と前記底部と前記側壁部とで構成された前記ヘッダー流路とを有し、前記接合工程では、前記樹脂付き金属部材と前記樹脂部材とを互いに近接する方向に押圧しながら相対的かつ直線的に往復運動させる摩擦圧接によって、前記金属部材の先端面に形成された前記熱可塑性樹脂層と前記側壁部の先端面との突合せ部を溶着することを特徴とする。   In order to solve such a problem, the present invention includes a metal member having a plurality of flow path holes through which a fluid flows, and a resin member having a header flow path hole communicating with an end of the flow path hole. A method for manufacturing a composite hollow container comprising: a surface treatment step for forming a plurality of fine recesses on a tip surface of the metal member; and applying a thermoplastic resin to at least the portion subjected to the surface treatment step The resin layer forming step for forming the thermoplastic resin layer, and the metal member with resin formed in the resin layer forming step and the resin member are abutted, and the butted portion between the thermoplastic resin layer and the resin member is A joining step of generating heat and welding, wherein the metal member is made of aluminum or an aluminum alloy, and the resin member includes a bottom portion, a frame-like side wall portion standing on the bottom portion, and the bottom portion. The side wall and The header flow path configured, and in the joining step, by the friction welding that reciprocally moves linearly and linearly while pressing the metal member with resin and the resin member in a direction close to each other, A butt portion between the thermoplastic resin layer formed on the front end surface of the metal member and the front end surface of the side wall portion is welded.

かかる製造方法によれば、表面処理工程によって形成された凹部に、塗布された熱可塑性樹脂が入り込んだ後に硬化するため、金属部材に熱可塑性樹脂層を確実に定着させることができる。また、接合工程では、突合せ部が樹脂同士となるため、接合する部材間の親和性が高くなり熱可塑性樹脂層と樹脂部材とが確実に溶着し、結合力を大きくすることができる。また、かかる製造方法によれば、部材を容易に成形できるとともに、耐食性、軽量性に富んだ製品を製造することができる。また、かかる製造方法によれば、短時間に容易に接合することができる。また、かかる製造方法によれば、流路孔及びヘッダー流路孔を備えた中空容器を容易に製造することができる。   According to this manufacturing method, since the applied thermoplastic resin is cured after entering the recess formed by the surface treatment step, the thermoplastic resin layer can be reliably fixed to the metal member. Further, in the joining step, since the butt portion is made of resin, the affinity between the members to be joined is increased, the thermoplastic resin layer and the resin member are reliably welded, and the bonding force can be increased. Moreover, according to this manufacturing method, while being able to shape | mold a member easily, the product rich in corrosion resistance and light weight can be manufactured. Moreover, according to this manufacturing method, it can join easily in a short time. Moreover, according to this manufacturing method, the hollow container provided with the flow-path hole and the header flow-path hole can be manufactured easily.

また、前記接合工程では、前記先端面の全周に亘って溶着することが好ましい。かかる製造方法によれば、複合型中空容器の密閉性を向上させることできる。   Moreover, in the said joining process, it is preferable to weld over the perimeter of the said front end surface. According to this manufacturing method, the hermeticity of the composite hollow container can be improved.

本発明に係る複合型中空容器の製造方法によれば、樹脂部材と金属部材との結合力を大きくすることができる。   According to the method for manufacturing a composite hollow container according to the present invention, the bonding force between the resin member and the metal member can be increased.

本発明の第一実施形態に係る液冷ジャケットを示す分解斜視図である。It is a disassembled perspective view which shows the liquid cooling jacket which concerns on 1st embodiment of this invention. 第一実施形態に係る液冷ジャケットを示す一部破断斜視図である。It is a partially broken perspective view which shows the liquid cooling jacket which concerns on 1st embodiment. 図2のI−I断面図である。It is II sectional drawing of FIG. 第一実施形態に係る液冷ジャケットの製造方法を示す斜視図であって、(a)は金属部材を示し、(b)は表面処理工程を示す。It is a perspective view which shows the manufacturing method of the liquid cooling jacket which concerns on 1st embodiment, Comprising: (a) shows a metal member and (b) shows a surface treatment process. 第一実施形態に係る液冷ジャケットの製造方法を示す図であって、(a)は樹脂層形成工程を示す斜視図であり、(b)は除去工程を示す断面図である。It is a figure which shows the manufacturing method of the liquid cooling jacket which concerns on 1st embodiment, Comprising: (a) is a perspective view which shows a resin layer formation process, (b) is sectional drawing which shows a removal process. 第一実施形態に係る液冷ジャケットの製造方法を示す斜視図であって、(a)は除去工程後を示し、(b)は切削工程を示す。It is a perspective view which shows the manufacturing method of the liquid cooling jacket which concerns on 1st embodiment, Comprising: (a) shows after a removal process, (b) shows a cutting process. 第一実施形態に係る液冷ジャケットの製造方法の切削工程を示す模式側面図である。It is a schematic side view which shows the cutting process of the manufacturing method of the liquid cooling jacket which concerns on 1st embodiment. 第一実施形態に係る液冷ジャケットの製造方法を示す斜視図であって、(a)は樹脂層形成工程後を示し、(b)は接合工程を示す。It is a perspective view which shows the manufacturing method of the liquid cooling jacket which concerns on 1st embodiment, Comprising: (a) shows after a resin layer formation process, (b) shows a joining process. 図8のII−II部分の模式断面図である。It is a schematic cross section of the II-II part of FIG. 本発明の第二実施形態に係る液冷ジャケットの製造方法を示す斜視図であって、(a)は表面処理工程を示し、(b)は切削工程を示す。It is a perspective view which shows the manufacturing method of the liquid cooling jacket which concerns on 2nd embodiment of this invention, Comprising: (a) shows a surface treatment process, (b) shows a cutting process. 第二実施形態に係る液冷ジャケットの製造方法を示す斜視図であって、(a)は切削工程後を示し、(b)は接合工程を示す。It is a perspective view which shows the manufacturing method of the liquid cooling jacket which concerns on 2nd embodiment, Comprising: (a) shows after a cutting process, (b) shows a joining process. 変形例を示す斜視図である。It is a perspective view which shows a modification. 本発明の第三実施形態に係る液冷ジャケットの製造方法を示す斜視図であって、(a)は金属部材を示し、(b)は表面処理工程を示す。It is a perspective view which shows the manufacturing method of the liquid cooling jacket which concerns on 3rd embodiment of this invention, Comprising: (a) shows a metal member, (b) shows a surface treatment process. 第三実施形態に係る液冷ジャケットの製造方法の樹脂層形成工程を示す斜視図である。It is a perspective view which shows the resin layer formation process of the manufacturing method of the liquid cooling jacket which concerns on 3rd embodiment. (a)は金属部材の変形例を示す斜視図であり、(b)はフィンの変形例を示す断面図である。(A) is a perspective view which shows the modification of a metal member, (b) is sectional drawing which shows the modification of a fin. 本発明の第四実施形態に係る液冷ジャケットを示す分解斜視図である。It is a disassembled perspective view which shows the liquid cooling jacket which concerns on 4th embodiment of this invention. 第四実施形態に係る液冷ジャケットを示す一部破断斜視図である。It is a partially broken perspective view which shows the liquid cooling jacket which concerns on 4th embodiment. 図17のIII−III断面図である。It is III-III sectional drawing of FIG. 第四実施形態に係る液冷ジャケットの製造方法を示す図であって、(a)は金属部材を示す平面図であり、(b)は樹脂層形成工程を示す平面図である。It is a figure which shows the manufacturing method of the liquid cooling jacket which concerns on 4th embodiment, Comprising: (a) is a top view which shows a metal member, (b) is a top view which shows a resin layer formation process. 第四実施形態に係る液冷ジャケットの製造方法の接合工程を示す斜視図である。It is a perspective view which shows the joining process of the manufacturing method of the liquid cooling jacket which concerns on 4th embodiment. 本発明の第五実施形態に係る液冷ジャケットを示す分解斜視図である。It is a disassembled perspective view which shows the liquid cooling jacket which concerns on 5th embodiment of this invention. 第五実施形態に係る液冷ジャケットの断面図である。It is sectional drawing of the liquid cooling jacket which concerns on 5th embodiment. 第五実施形態に係る液冷ジャケットの製造方法を示す図であって、(a)は金属部材を示す平面図であり、(b)は樹脂層形成工程を示す平面図である。It is a figure which shows the manufacturing method of the liquid cooling jacket which concerns on 5th embodiment, Comprising: (a) is a top view which shows a metal member, (b) is a top view which shows a resin layer formation process. 第五実施形態に係る液冷ジャケットの製造方法の接合工程を示す斜視図である。It is a perspective view which shows the joining process of the manufacturing method of the liquid cooling jacket which concerns on 5th embodiment. 本発明の第六実施形態に係る液冷ジャケットの製造方法を示す分解斜視図である。It is a disassembled perspective view which shows the manufacturing method of the liquid cooling jacket which concerns on 6th embodiment of this invention. 第六実施形態に係る液冷ジャケットの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the liquid cooling jacket which concerns on 6th embodiment. 実施例の接合条件等を示す表である。It is a table | surface which shows the joining conditions etc. of an Example.

〔第一実施形態〕
本発明の第一実施形態について図面を用いて詳細に説明する。本発明に係る複合型中空容器の製造方法は、樹脂部材と金属部材とを接合して複合型の中空容器を製造するものである。複合型中空容器の用途は特に制限されないが、本実施形態では、樹脂部材と金属部材とを接合してなる液冷ジャケットを製造する場合を例示する。
[First embodiment]
A first embodiment of the present invention will be described in detail with reference to the drawings. The method for manufacturing a composite hollow container according to the present invention is to manufacture a composite hollow container by joining a resin member and a metal member. The use of the composite hollow container is not particularly limited, but in this embodiment, a case where a liquid cooling jacket formed by joining a resin member and a metal member is illustrated.

図1に示すように、液冷ジャケット1は、樹脂製の容器2と、金属製の蓋3とで構成されている。容器2は、底部11と、底部11から立ち上がる側壁部12とで構成されている。容器2は、特許請求の範囲の「樹脂部材」に相当する。底部11は、平面視矩形を呈する。側壁部12は、平面視矩形枠状を呈する。側壁部12の板厚は一定になっている。容器2の材料は樹脂であれば特に制限されないが、本実施形態では例えばポリプロピレンで形成されている。   As shown in FIG. 1, the liquid cooling jacket 1 includes a resin container 2 and a metal lid 3. The container 2 includes a bottom part 11 and a side wall part 12 rising from the bottom part 11. The container 2 corresponds to a “resin member” in the claims. The bottom 11 has a rectangular shape in plan view. The side wall portion 12 has a rectangular frame shape in plan view. The thickness of the side wall portion 12 is constant. Although the material of the container 2 will not be restrict | limited especially if it is resin, in this embodiment, it is formed, for example with polypropylene.

蓋3は、容器2の開口を塞ぐ部材である。蓋3は、特許請求の範囲の「樹脂付き金属部材」に相当する。蓋3は、ベース板21と、ベース板21に並設された複数のフィン22と、複数個所に形成された熱可塑性樹脂層23とで構成されている。ベース板21は、平面視矩形を呈する板状部材である。ベース板21の大きさは、側壁部12の外縁と同じ大きさになっている。   The lid 3 is a member that closes the opening of the container 2. The lid 3 corresponds to a “metal member with resin” in the claims. The lid 3 includes a base plate 21, a plurality of fins 22 arranged side by side on the base plate 21, and thermoplastic resin layers 23 formed at a plurality of locations. The base plate 21 is a plate-like member that has a rectangular shape in plan view. The size of the base plate 21 is the same size as the outer edge of the side wall portion 12.

フィン22は、ベース板21の表面21aに垂直に形成されている。フィン22は、ベース板21の長手方向に対して平行に等間隔で並設されている。フィン22の高さは、側壁部12の高さと同じ寸法になっている。ベース板21及びフィン22の材料は金属であれば特に制限されないが、本実施形態ではアルミニウム合金である。ベース板21とフィン22とは一体形成されている。   The fins 22 are formed perpendicular to the surface 21 a of the base plate 21. The fins 22 are arranged in parallel at equal intervals in parallel to the longitudinal direction of the base plate 21. The height of the fin 22 is the same as the height of the side wall portion 12. The material of the base plate 21 and the fins 22 is not particularly limited as long as it is a metal, but in this embodiment is an aluminum alloy. The base plate 21 and the fins 22 are integrally formed.

熱可塑性樹脂層23は、熱可塑性樹脂で形成された層であって、表面21aの周縁部及びフィン22の先端面22aに形成されている。熱可塑性樹脂の種類は特に制限されないが、本実施形態ではPPS(ポリフェニレンサルファイド、ポリプラスチックス社製)を用いている。熱可塑性樹脂層23は、表面21aの周縁部の全周に亘って形成されている。また、熱可塑性樹脂層23は、フィン22の先端面22aの全面に形成されている。熱可塑性樹脂層23の厚さは数十〜数百μm程度であるが、図1では説明の便宜上実際の寸法よりも厚く描画している。   The thermoplastic resin layer 23 is a layer formed of a thermoplastic resin, and is formed on the peripheral portion of the surface 21 a and the front end surface 22 a of the fin 22. The type of the thermoplastic resin is not particularly limited, but PPS (polyphenylene sulfide, manufactured by Polyplastics) is used in the present embodiment. The thermoplastic resin layer 23 is formed over the entire periphery of the peripheral edge portion of the surface 21a. The thermoplastic resin layer 23 is formed on the entire front end surface 22 a of the fin 22. The thickness of the thermoplastic resin layer 23 is about several tens to several hundreds μm, but in FIG. 1, it is drawn thicker than the actual dimensions for convenience of explanation.

図2に示すように、容器2の開口を蓋3で塞ぐと、側壁部12の先端面12aと蓋3の表面21aの周縁部とが突き合わされて第一突合せ部J1が形成される。第一突合せ部J1は、平面視矩形枠状を呈する。また、図3に示すように、本実施形態では、フィン22の先端面22aと底部11とが突き合わされて複数の第二突合せ部J2が形成される。液冷ジャケット1は、第一突合せ部J1及び第二突合せ部J2がそれぞれ溶着されることにより接合されている。液冷ジャケット1は、フィン22,22同士の隙間やフィン22と側壁部12との隙間に流体が流れることにより、ベース板21に載置される装置等を冷却することができる。   As shown in FIG. 2, when the opening of the container 2 is closed with the lid 3, the front end surface 12a of the side wall portion 12 and the peripheral edge portion of the surface 21a of the lid 3 are abutted to form a first abutting portion J1. The first butting portion J1 has a rectangular frame shape in plan view. As shown in FIG. 3, in the present embodiment, the front end surface 22 a of the fin 22 and the bottom portion 11 are abutted to form a plurality of second abutting portions J <b> 2. The liquid cooling jacket 1 is joined by welding the first butting portion J1 and the second butting portion J2. The liquid cooling jacket 1 can cool a device or the like placed on the base plate 21 when a fluid flows through a gap between the fins 22 and 22 or a gap between the fin 22 and the side wall portion 12.

なお、本実施形態では、液冷ジャケット1は平面視矩形状を呈するが、平面視円形状、楕円形状又は他の多角形状を呈するように形成されてもよい。   In the present embodiment, the liquid cooling jacket 1 has a rectangular shape in plan view, but may be formed to have a circular shape in plan view, an elliptical shape, or another polygonal shape.

次に、第一実施形態に係る液冷ジャケットの製造方法について説明する。液冷ジャケットの製造方法は、主に準備工程と、接合工程とを行う。準備工程は、容器2及び蓋3を用意する工程である。準備工程における、表面処理工程、樹脂層形成工程、除去工程及び切削工程は、蓋3(樹脂付き金属部材)を形成するための工程である。   Next, the manufacturing method of the liquid cooling jacket which concerns on 1st embodiment is demonstrated. The manufacturing method of a liquid cooling jacket mainly performs a preparation process and a joining process. The preparation process is a process of preparing the container 2 and the lid 3. The surface treatment process, the resin layer forming process, the removing process, and the cutting process in the preparation process are processes for forming the lid 3 (metal member with resin).

まず、表面処理工程に先だって、容器2及び金属部材30を用意する。容器2は、図1に示すように、射出成形によって一体形成する。一方、図4の(a)に示すように、例えば、ダイカストによって金属部材30を形成する。   First, the container 2 and the metal member 30 are prepared prior to the surface treatment process. As shown in FIG. 1, the container 2 is integrally formed by injection molding. On the other hand, as shown in FIG. 4A, for example, the metal member 30 is formed by die casting.

金属部材30は、ベース板31と、ベース板31に形成されたブロック部32とを備えている。ブロック部32は、直方体を呈し、ベース板31の中央に形成されている。ブロック部32の表面32aの面積は、ベース板31の裏面31bの面積よりも小さくなっている。金属部材30は、アルミニウム等切削加工が可能な金属であれば特に制限されないが、本実施形態ではアルミニウム合金で形成されている。   The metal member 30 includes a base plate 31 and a block portion 32 formed on the base plate 31. The block portion 32 has a rectangular parallelepiped shape and is formed at the center of the base plate 31. The area of the front surface 32 a of the block portion 32 is smaller than the area of the back surface 31 b of the base plate 31. Although the metal member 30 will not be restrict | limited especially if it is a metal which can be cut, such as aluminum, in this embodiment, it is formed with the aluminum alloy.

図4の(a)及び(b)に示すように、表面処理工程は、ベース板31の表面31a及びブロック部32の表面32a、4つの側面32bに微細な凹部を形成する工程である。表面処理工程では、各面に微細な凹部が形成されればその形成方法は特に制限されないが、例えば、エッチング処理、アルマイト処理、スプレードライ法等を行う。   As shown in FIGS. 4A and 4B, the surface treatment step is a step of forming fine recesses on the surface 31a of the base plate 31, the surface 32a of the block portion 32, and the four side surfaces 32b. In the surface treatment step, the formation method is not particularly limited as long as fine concave portions are formed on each surface. For example, etching treatment, alumite treatment, spray drying method, or the like is performed.

エッチング処理は、例えば、塩酸溶液中に塩化アルミニウム六水和物を添加して調製したエッチング液に該当部位を浸漬させて行う。一方、アルマイト処理は、希硫酸やシュウ酸などを用いてアルミニウム合金を陽極として電気分解することにより、該当部位を電気化学的に酸化させて行う。   The etching process is performed, for example, by immersing the corresponding part in an etching solution prepared by adding aluminum chloride hexahydrate to a hydrochloric acid solution. On the other hand, the alumite treatment is performed by electrochemically oxidizing the corresponding part by electrolysis using an aluminum alloy as an anode using dilute sulfuric acid or oxalic acid.

スプレードライ法は、高速化した粒子を該当部位に衝突させて、部材の表面の改質や造形を行う。また、ワイヤーブラシ等で該当面を粗く削って凹部を形成してもよい。   In the spray drying method, the surface of the member is modified or shaped by colliding the accelerated particles with the corresponding part. Further, the concave surface may be formed by roughing the corresponding surface with a wire brush or the like.

図5の(a)に示すように、樹脂層形成工程は、ベース板31の表面31a及びブロック部32の表面32a及び4つの側面32bに熱可塑性樹脂を塗布して熱可塑性樹脂層23を形成する工程である。熱可塑性樹脂を塗布すると、溶融した熱可塑性樹脂が表面処理工程で形成された凹部に入り込んだ後、硬化する。これにより、ベース板31に対して熱可塑性樹脂層23が確実に定着する。   As shown in FIG. 5A, in the resin layer forming step, the thermoplastic resin layer 23 is formed by applying a thermoplastic resin to the surface 31a of the base plate 31, the surface 32a of the block 32, and the four side surfaces 32b. It is a process to do. When the thermoplastic resin is applied, the molten thermoplastic resin is cured after entering the recess formed in the surface treatment process. Thereby, the thermoplastic resin layer 23 is reliably fixed to the base plate 31.

熱可塑性樹脂の種類は、特に制限されないが、例えば、ABS樹脂、ポリプロピレン、ポリエチレン、ポリフェニレンサルファイド等を用いればよい。樹脂層形成工程において、熱可塑性樹脂を塗布する方法は特に制限されるものではない。本実施形態では、金属部材30を射出成形型(図示省略)に設置した後、熱可塑性樹脂を射出して塗布している。なお、金属部材30の一部を樹脂液に含浸させるいわゆるドブ漬けによって熱可塑性樹脂層23を形成してもよい。   The type of the thermoplastic resin is not particularly limited, and for example, ABS resin, polypropylene, polyethylene, polyphenylene sulfide, etc. may be used. In the resin layer forming step, the method for applying the thermoplastic resin is not particularly limited. In this embodiment, after the metal member 30 is installed in an injection mold (not shown), a thermoplastic resin is injected and applied. Note that the thermoplastic resin layer 23 may be formed by so-called dipping so that a part of the metal member 30 is impregnated with a resin liquid.

図5の(b)に示すように、除去工程は、ブロック部32の4つの側面32bに塗布された熱可塑性樹脂層23を除去する工程である。熱可塑性樹脂層23を除去する方法は特に制限されないが、本実施形態ではエンドミル等で切削除去している。除去工程では、少なくとも側面32bに塗布された熱可塑性樹脂を除去すればよいが、本実施形態では、図5の(b)の一点鎖線で示すラインに沿って切削除去する。つまり、本実施形態では、ブロック部32の側面32b及び表面32aの一部とこれらの部位に形成された熱可塑性樹脂層23とを切削除去する。   As shown in FIG. 5B, the removing step is a step of removing the thermoplastic resin layer 23 applied to the four side surfaces 32 b of the block portion 32. The method for removing the thermoplastic resin layer 23 is not particularly limited, but in the present embodiment, it is removed by cutting with an end mill or the like. In the removal step, at least the thermoplastic resin applied to the side surface 32b may be removed, but in this embodiment, the removal is performed along a line indicated by a one-dot chain line in FIG. That is, in the present embodiment, the side surface 32b and part of the surface 32a of the block portion 32 and the thermoplastic resin layer 23 formed at these portions are removed by cutting.

除去工程後は、図6の(a)に示すように、ブロック部32の4つの側面32b金属面の全てが露出するとともに、ブロック部32の周囲に沿って表面31aの一部が露出する。   After the removing step, as shown in FIG. 6A, all the four side surfaces 32b of the block 32 are exposed, and a part of the surface 31a is exposed along the periphery of the block 32.

図6の(b)に示すように、切削工程は、マルチカッターMでブロック部32を切削してフィンを形成する工程である。マルチカッターMは、回転軸Maと、回転軸Maに並設された複数の円盤カッターMbとで構成されている。円盤カッターMbは、隙間をあけて並設されており、周縁部には刃(図省略)が形成されている。隣り合う円盤カッターMb,Mbの隙間は、フィン22の厚さと同等である。また、円盤カッターMbの厚さは、隣り合うフィン22同士の隙間と同等である。   As shown in FIG. 6B, the cutting process is a process of cutting the block 32 with the multi-cutter M to form fins. The multi-cutter M is composed of a rotation axis Ma and a plurality of disk cutters Mb arranged in parallel to the rotation axis Ma. The disk cutters Mb are arranged side by side with a gap, and a blade (not shown) is formed at the peripheral edge. The gap between adjacent disk cutters Mb and Mb is equal to the thickness of the fin 22. Further, the thickness of the disk cutter Mb is equal to the gap between the adjacent fins 22.

図7に示すように、切削工程では、回転軸Maとブロック部32の稜線32cとが平行となるようにマルチカッターMを配置するとともに、ブロック部32の稜線32cを通る鉛直線と、回転軸Maの中心とが重なる位置にマルチカッターMを配置する。そして、マルチカッターMとブロック部32とを近接させて、円盤カッターMbとブロック部32を接触させる。   As shown in FIG. 7, in the cutting process, the multi-cutter M is arranged so that the rotation axis Ma and the ridge line 32 c of the block part 32 are parallel, and the vertical line passing through the ridge line 32 c of the block part 32 and the rotation axis The multi-cutter M is disposed at a position where the center of Ma overlaps. And the multi cutter M and the block part 32 are made to adjoin, and the disk cutter Mb and the block part 32 are made to contact.

円盤カッターMbを所定の深さまで挿入したら、ブロック部32に対するマルチカッターMの高さ位置を一定に維持しつつ、他方の稜線32dに向けて相対移動させる。回転軸Maの中心と他方の稜線32dを通る鉛直線とが重なる位置まで移動させたら、マルチカッターMとブロック部32とが離間するように相対移動させる。なお、マルチカッターMの挿入方法及び離脱方法は、この方法に限定されるものではない。   When the disk cutter Mb is inserted to a predetermined depth, the multi-cutter M is moved relative to the other ridgeline 32d while keeping the height position of the multi-cutter M constant with respect to the block portion 32. When the center of the rotation axis Ma and the vertical line passing through the other ridge line 32d are moved to a position where they overlap each other, the multi-cutter M and the block part 32 are moved relative to each other. Note that the insertion method and the removal method of the multi-cutter M are not limited to this method.

図8の(a)に示すように、切削工程によって、先端面22aに熱可塑性樹脂層23が形成された複数のフィン22(熱可塑性樹脂層23付きフィン22)が形成される。以上の表面処理工程と、樹脂層形成工程と、除去工程と、切削工程とによって蓋3が形成される。   As shown in FIG. 8A, a plurality of fins 22 (fins 22 with a thermoplastic resin layer 23) in which the thermoplastic resin layer 23 is formed on the distal end surface 22a are formed by the cutting process. The lid 3 is formed by the above surface treatment process, resin layer formation process, removal process, and cutting process.

図8の(b)に示すように、接合工程は、容器2と蓋3とを突き合わせた後、摩擦圧接を行って容器2と蓋3とを溶着する工程である。蓋3に容器2をかぶせると、蓋3の表面21aの周縁部と容器2の側壁部12の先端面12a(図1参照)とが突き合わされて第一突合せ部J1が形成される。また、底部11とフィン22の先端面22aとが突き合わされて複数の第二突合せ部J2が形成される(図3参照)。   As shown in FIG. 8B, the joining step is a step of welding the container 2 and the lid 3 by performing friction welding after the container 2 and the lid 3 are brought into contact with each other. When the container 2 is covered with the lid 3, the peripheral edge portion of the surface 21a of the lid 3 and the front end surface 12a (see FIG. 1) of the side wall portion 12 of the container 2 are abutted to form the first abutting portion J1. Moreover, the bottom part 11 and the front end surface 22a of the fin 22 are abutted to form a plurality of second abutting parts J2 (see FIG. 3).

摩擦圧接では、摩擦工程と圧接工程とを行う。摩擦工程では、容器2と蓋3とを互いに近接する方向に押圧しながら往復移動させる。本実施形態では、フィン22の長手方向と平行に容器2と蓋3とを相対的かつ直線的に往復移動させる。本実施形態では、蓋3は移動させず、容器2のみを直線的に往復移動させている。   In the friction welding, a friction process and a pressure welding process are performed. In the friction process, the container 2 and the lid 3 are reciprocated while being pressed in directions close to each other. In the present embodiment, the container 2 and the lid 3 are reciprocated relatively and linearly in parallel with the longitudinal direction of the fins 22. In this embodiment, the lid 3 is not moved, and only the container 2 is linearly reciprocated.

摩擦工程における条件は適宜設定すればよいが、周波数を100〜260Hz、振幅を1.0〜2.0mm、摩擦圧力を3.0〜10.0MPaに設定する。摩擦工程の時間を1〜3秒程度に設定する。摩擦工程が終了したら、直ちに圧接工程に移行する。   The conditions in the friction process may be set as appropriate, but the frequency is set to 100 to 260 Hz, the amplitude is set to 1.0 to 2.0 mm, and the friction pressure is set to 3.0 to 10.0 MPa. The time for the friction process is set to about 1 to 3 seconds. When the friction process is completed, the process immediately proceeds to the pressure contact process.

圧接工程では、容器2及び蓋3を相対移動させずに互いに近接する方向に押圧する。圧接工程における条件は適宜設定すればよいが、例えば、アップセット圧力(冷却圧力)を3.0〜12MPa、冷却時間を2〜10秒程度に設定する。   In the pressure contact process, the container 2 and the lid 3 are pressed in directions close to each other without relatively moving. The conditions in the pressure contact process may be set as appropriate. For example, the upset pressure (cooling pressure) is set to 3.0 to 12 MPa, and the cooling time is set to about 2 to 10 seconds.

摩擦工程によって第一突合せ部J1及び第二突合せ部J2に摩擦熱が発生した後、往復移動を停止させ、圧接工程によってアプセット圧力を付与すると、ベース板21と側壁部12とが溶着するとともに、フィン22と底部11とが溶着する。より詳しくは、図9に示すように、摩擦熱が発生することによって、熱可塑性樹脂層23が溶融するとともに、側壁部12の先端面12aも溶融して両者が溶着する。   After frictional heat is generated in the first butting section J1 and the second butting section J2 by the friction process, when the reciprocating movement is stopped and the upset pressure is applied by the pressing process, the base plate 21 and the side wall section 12 are welded, The fin 22 and the bottom part 11 are welded. More specifically, as shown in FIG. 9, when the frictional heat is generated, the thermoplastic resin layer 23 is melted, and the front end surface 12 a of the side wall portion 12 is also melted so that both are welded.

摩擦圧接の際には、第一突合せ部J1及び第二突合せ部J2には、軟化した母材が押し出されることによってバリが発生する。必要に応じて、第一突合せ部J1の側方に発生したバリを、カッター装置を用いて切除する。以上の工程により液冷ジャケット1が完成する。   During the friction welding, burrs are generated in the first butted portion J1 and the second butted portion J2 by pushing out the softened base material. If necessary, burrs generated on the side of the first butting portion J1 are cut out using a cutter device. The liquid cooling jacket 1 is completed through the above steps.

以上説明した第一実施形態に係る液冷ジャケットの製造方法によれば、表面処理工程によって形成された凹部31c(図9参照)に、塗布された熱可塑性樹脂が入り込んだ後に硬化するため、金属で形成されたベース板21(31)に熱可塑性樹脂層23を確実に定着させることができる。また、接合工程では、第一突合せ部J1及び突合せ部J2において樹脂同士が突き合わされるため、接合する部材間の親和性が高くなり容器と熱可塑性樹脂層とが確実に溶着し、結合力を大きくすることができる。   According to the manufacturing method of the liquid cooling jacket according to the first embodiment described above, since the applied thermoplastic resin is cured after entering the recess 31c (see FIG. 9) formed by the surface treatment process, the metal The thermoplastic resin layer 23 can be reliably fixed to the base plate 21 (31) formed in the above. In the joining process, since the resins are abutted at the first abutting portion J1 and the abutting portion J2, the affinity between the members to be joined is increased, and the container and the thermoplastic resin layer are reliably welded, and the bonding force is increased. Can be bigger.

また、本実施形態では、第一突合せ部J1に加えて、底部11とフィン22の先端面22aとの突合せ部J2も溶着されるため、より強固に接合することができる。   In the present embodiment, in addition to the first butting portion J1, the butting portion J2 between the bottom portion 11 and the tip end surface 22a of the fin 22 is also welded.

ここで、例えば、フィン22を形成した後に、フィン22の先端面22aに熱可塑性樹脂を射出することもできるが、この場合は複数枚形成されたフィン22の側面に熱可塑性樹脂が塗布されないように、射出成形型に入れ子等を配置しなければならず、射出成形作業が煩雑になる。しかし、本実施形態によれば、切削工程の前に樹脂層形成工程を行うことにより、ベース板31及びブロック部32の全体(表面31a、表面32a及び側面32b)に一括して熱可塑性樹脂を射出できるため、入れ子等が不要になる。これにより、本実施形態によれば、ベース板31及びブロック部32に対して容易に熱可塑性樹脂を塗布することができる。   Here, for example, after the fins 22 are formed, a thermoplastic resin can be injected to the front end surfaces 22a of the fins 22, but in this case, the thermoplastic resin is not applied to the side surfaces of the plurality of fins 22 formed. In addition, a nest or the like must be disposed in the injection mold, which complicates the injection molding operation. However, according to the present embodiment, by performing the resin layer forming step before the cutting step, the thermoplastic resin is collectively applied to the entire base plate 31 and the block portion 32 (surface 31a, surface 32a and side surface 32b). Since injection is possible, no nesting or the like is required. Thereby, according to the present embodiment, the thermoplastic resin can be easily applied to the base plate 31 and the block portion 32.

また、熱可塑性樹脂を塗布する方法は特に制限されないが、本実施形態のように射出成形によれば、熱可塑性樹脂のベース板31への定着性が良好となる。また、射出成形によれば、短時間で均一に熱可塑性樹脂を塗布することができる。   Further, the method for applying the thermoplastic resin is not particularly limited, but according to the injection molding as in the present embodiment, the fixing property of the thermoplastic resin to the base plate 31 is improved. Moreover, according to injection molding, a thermoplastic resin can be apply | coated uniformly in a short time.

また、図9に示すように、凹部31cに熱可塑性樹脂が入り込んだ後に硬化することにより、いわゆるアンカー効果による引き抜き抵抗を向上させることができる。凹部31cの形状は特に制限されないが、本実施形態のように、凹部31cの開口部に向かうにつれて開口径が小さくなるように形成されていることが好ましい。   Moreover, as shown in FIG. 9, the drawing resistance due to the so-called anchor effect can be improved by curing after the thermoplastic resin enters the recess 31c. The shape of the recess 31c is not particularly limited, but it is preferable that the opening diameter is reduced toward the opening of the recess 31c as in this embodiment.

また、第一突合せ部J1及び突合せ部J2に熱を発生させる手段も特に制限されないが、本実施形態のように摩擦圧接を採用すると、短時間で容易に接合することができる。   Further, the means for generating heat at the first butting portion J1 and the butting portion J2 is not particularly limited, but when friction welding is employed as in the present embodiment, the joining can be easily performed in a short time.

なお、摩擦工程の移動方向は、フィン22に対して斜め方向に容器2を移動させてもよいし、フィン22の板厚方向と平行に容器2を移動させてもよい。また、接合工程では、摩擦圧接によって摩擦熱を発生させたが、例えば、ベース板21に発熱装置を接触させてベース板21に熱を発生させてもよい。また、ベース板21の裏面に回転ツールを回転させてベース板21と回転ツールとの摩擦熱によって熱を発生させてもよい。また、熱可塑性樹脂層23と容器2の樹脂の種類は同一でもよいし、異なってもよい。   In addition, the moving direction of the friction process may move the container 2 in an oblique direction with respect to the fins 22 or may move the container 2 in parallel with the plate thickness direction of the fins 22. In the joining process, frictional heat is generated by friction welding. However, for example, heat may be generated in the base plate 21 by bringing a heat generating device into contact with the base plate 21. Alternatively, the rotating tool may be rotated on the back surface of the base plate 21 to generate heat by frictional heat between the base plate 21 and the rotating tool. Moreover, the kind of resin of the thermoplastic resin layer 23 and the container 2 may be the same, and may differ.

〔第二実施形態〕
次に、第二実施形態について説明する。第二実施形態に係る液冷ジャケットの製造方法は、表面処理工程、樹脂層形成工程及び接合工程が第一実施形態と相違する。第二実施形態に係る液冷ジャケットの製造方法では、相違点を中心に説明する。
[Second Embodiment]
Next, a second embodiment will be described. The liquid cooling jacket manufacturing method according to the second embodiment is different from the first embodiment in the surface treatment process, the resin layer forming process, and the bonding process. In the manufacturing method of the liquid cooling jacket which concerns on 2nd embodiment, it demonstrates centering around difference.

図10の(a)に示すように、表面処理工程では、ベース板31の表面31aの周縁部と、ブロック部32の表面32aのみに対して表面処理を行う。   As shown in FIG. 10A, in the surface treatment step, only the peripheral portion of the surface 31 a of the base plate 31 and the surface 32 a of the block portion 32 are subjected to surface treatment.

図10の(b)に示すように、樹脂層形成工程では、表面処理を行った部位、つまり、ベース板31の表面31aの周縁部と、ブロック部32の表面32aに熱可塑性樹脂を塗布し、熱可塑性樹脂層23を形成する。   As shown in FIG. 10B, in the resin layer forming step, a thermoplastic resin is applied to the surface-treated portion, that is, the peripheral portion of the surface 31a of the base plate 31 and the surface 32a of the block portion 32. Then, the thermoplastic resin layer 23 is formed.

図10(b)に示すように、切削工程では、マルチカッターMを用いてブロック部32の表面32aを切削する。本実施形態では、マルチカッターMの回転軸Maが、ブロック部32の長辺を構成する稜線32eと平行となるように配置し、この平行状態を維持しつつ切削する。   As shown in FIG. 10B, in the cutting process, the surface 32a of the block portion 32 is cut using a multi-cutter M. In this embodiment, it arrange | positions so that the rotating shaft Ma of the multi-cutter M may become parallel to the ridgeline 32e which comprises the long side of the block part 32, and it cuts, maintaining this parallel state.

図11の(a)に示すように、切削工程によって、先端面22aに熱可塑性樹脂層23が形成された状態で複数のフィン22が形成される。また、表面31aの周縁部に熱可塑性樹脂層23が形成される。これにより蓋3が形成される。   As shown to (a) of FIG. 11, the several fin 22 is formed in the state by which the thermoplastic resin layer 23 was formed in the front end surface 22a by a cutting process. Moreover, the thermoplastic resin layer 23 is formed in the peripheral part of the surface 31a. Thereby, the lid 3 is formed.

図11の(b)に示すように、接合工程は、容器2と蓋3とを突き合わせた後、摩擦圧接を行って蓋3と容器2とを溶着により接合する工程である。本実施形態では、フィン22の長手方向と平行(蓋3の短手方向と平行)に容器2及び蓋3を相対的に往復移動させる。   As shown in FIG. 11 (b), the joining step is a step of joining the lid 3 and the container 2 by welding by performing friction welding after the container 2 and the lid 3 are brought into contact with each other. In the present embodiment, the container 2 and the lid 3 are relatively reciprocally moved parallel to the longitudinal direction of the fins 22 (parallel to the short direction of the lid 3).

以上説明した第二実施形態に係る液冷ジャケットの製造方法によっても第一実施形態と略同等の効果を得ることができる。また、第二実施形態では、ベース板31の周縁部及び表面32aのみに樹脂を塗布するだけでよいため、第一実施形態の除去工程が不要になるというメリットがある。   Also by the liquid cooling jacket manufacturing method according to the second embodiment described above, substantially the same effect as that of the first embodiment can be obtained. Moreover, in 2nd embodiment, since it is only necessary to apply | coat resin only to the peripheral part and surface 32a of the base board 31, there exists an advantage that the removal process of 1st embodiment becomes unnecessary.

〔変形例〕
第一実施形態及び第二実施形態では、金属部材30をダイカストによって形成したが、他の成形方法で形成してもよい。例えば、図12に示すように、押出し成形によって金属部材30を形成してもよい。この変形例では、金属部材の長手方向を押出し方向として押出形材を得た後、中間ブロック部32Aの両端(2点鎖線で示す部分)を切削することで金属部材30を得ることができる。
[Modification]
In the first embodiment and the second embodiment, the metal member 30 is formed by die casting, but may be formed by other forming methods. For example, as shown in FIG. 12, the metal member 30 may be formed by extrusion molding. In this modification, the metal member 30 can be obtained by cutting the both ends (parts indicated by two-dot chain lines) of the intermediate block portion 32A after obtaining the extruded shape with the longitudinal direction of the metal member as the extrusion direction.

〔第三実施形態〕
次に、本発明の第三実施形態について説明する。第一実施形態では、マルチカッターMによって切削してフィン22を形成したが、第三実施形態に係る液冷ジャケットの製造方法は、蓋3のフィンが予め形成されている点で第一実施形態と相違する。また、フィンを形成した後に、熱可塑性樹脂を塗布する点で第一実施形態と相違する。
[Third embodiment]
Next, a third embodiment of the present invention will be described. In the first embodiment, the fin 22 is formed by cutting with the multi-cutter M, but the manufacturing method of the liquid cooling jacket according to the third embodiment is the first embodiment in that the fin of the lid 3 is formed in advance. Is different. Moreover, after forming a fin, it differs from 1st embodiment by the point which apply | coats a thermoplastic resin.

第三実施形態に係る液冷ジャケットの製造方法は、主に準備工程と、接合工程とを行う。準備工程は、表面処理工程と、樹脂層形成工程とを行う。準備工程は、主に蓋3を形成するための工程である。   The liquid cooling jacket manufacturing method according to the third embodiment mainly performs a preparation process and a joining process. In the preparation step, a surface treatment step and a resin layer forming step are performed. The preparation process is a process for mainly forming the lid 3.

まず、表面処理工程に先だって、容器2及び金属部材40を用意する。容器2(樹脂部材)は、図1に示すように、射出成形によって一体形成する。一方、図13の(a)に示すように、例えば、ダイカストによって金属部材40を形成する。金属部材40は、蓋3の素となる部材である。金属部材40は、ベース板41と、ベース板41に並設された複数のフィン42とで構成されている。   First, the container 2 and the metal member 40 are prepared prior to the surface treatment process. The container 2 (resin member) is integrally formed by injection molding as shown in FIG. On the other hand, as shown in FIG. 13A, for example, the metal member 40 is formed by die casting. The metal member 40 is a member that is a base of the lid 3. The metal member 40 includes a base plate 41 and a plurality of fins 42 arranged in parallel with the base plate 41.

図13の(a)及び(b)に示すように、表面処理工程では、ベース板41の表面41aの周縁部及びフィン42の先端面42aに対して微細な凹部を形成する。   As shown in FIGS. 13A and 13B, in the surface treatment process, fine concave portions are formed on the peripheral edge portion of the surface 41 a of the base plate 41 and the tip end surface 42 a of the fin 42.

図14の(a)に示すように、樹脂層形成工程では、表面処理工程を行った部位に熱可塑性樹脂層を塗布して熱可塑性樹脂層23を形成する。これにより、第一実施形態に係る蓋と同等の蓋3(樹脂付き金属部材)が形成される。   As shown in FIG. 14A, in the resin layer forming step, a thermoplastic resin layer 23 is formed by applying a thermoplastic resin layer to the portion where the surface treatment step has been performed. Thereby, the lid | cover 3 (metal member with resin) equivalent to the lid | cover which concerns on 1st embodiment is formed.

接合工程は、具体的な図示は省略するが、第一実施形態の図8の(b)と同じ要領で摩擦圧接を行って、容器2と蓋3とを接合する工程である。   Although not specifically illustrated, the joining step is a step of joining the container 2 and the lid 3 by performing friction welding in the same manner as in FIG. 8B of the first embodiment.

第三実施形態に係る液冷ジャケットの製造方法であっても第一実施形態と略同等の効果を得ることができる。また、第三実施形態では、蓋3に予めフィン22が形成された状態から蓋3を形成するため、マルチカッターM等を用いる必要が無い。   Even if it is the manufacturing method of the liquid cooling jacket which concerns on 3rd embodiment, the effect substantially equivalent to 1st embodiment can be acquired. Moreover, in 3rd embodiment, since the lid | cover 3 is formed from the state in which the fin 22 was previously formed in the lid | cover 3, it is not necessary to use the multi cutter M grade | etc.,.

第三実施形態では、金属部材40をダイカストによって形成したが、他の成形方法で形成してもよい。例えば、図15の(a)に示すように、押出し成形によって金属部材40を形成してもよい。この変形例では、金属部材40の長手方向を押出し方向として押出形材を得た後、中間フィン22Aの両端(2点差線の部分)を削除することで、金属部材40を得ることができる。   In the third embodiment, the metal member 40 is formed by die casting, but may be formed by other forming methods. For example, as shown in FIG. 15A, the metal member 40 may be formed by extrusion molding. In this modification, the metal member 40 can be obtained by removing the both ends (parts of the two-dot chain line) of the intermediate fin 22A after obtaining the extruded shape with the longitudinal direction of the metal member 40 as the extrusion direction.

また、金属部材40を、マルチカッターMを用いて形成してもよい。この場合は、金属部材30(図4の(a)参照)を用意した後、ブロック部32に対してマルチカッターMを挿入して、フィンを形成すればよい(切削工程)。その後の工程(表面処理工程、樹脂層形成工程及び接合工程)については、第三実施形態と同等である。   Further, the metal member 40 may be formed using the multi-cutter M. In this case, after preparing the metal member 30 (see FIG. 4A), the multi-cutter M may be inserted into the block portion 32 to form fins (cutting process). The subsequent steps (surface treatment step, resin layer forming step, and bonding step) are the same as those in the third embodiment.

また、図15の(b)に示すように、フィン22の先端面22aに溝22bを設けてもよい。溝22bは、先端面22aから離間するにつれて開口径が大きくなるように形成されている。先端面22a及び溝22bに熱可塑性樹脂が塗布されて、熱可塑性樹脂層が形成された後、容器2と溶着すると、溝22bに樹脂が入り込んだ状態で硬化する。これにより、フィン22に対する底部11の引き抜き抵抗が大きくなるため、フィン22と容器2との結合力をより高めることができる。   Further, as shown in FIG. 15B, a groove 22 b may be provided on the tip surface 22 a of the fin 22. The groove 22b is formed such that the opening diameter increases as the distance from the tip surface 22a increases. After the thermoplastic resin is applied to the front end surface 22a and the groove 22b and the thermoplastic resin layer is formed, and then welded to the container 2, the resin is cured while entering the groove 22b. Thereby, since the pulling-out resistance of the bottom part 11 with respect to the fin 22 becomes large, the coupling force of the fin 22 and the container 2 can be raised more.

なお、第一実施形態乃至第三実施形態について説明したが、これに限定されるものではない。例えば、本実施形態では、第一突合せ部J1に加えて、突合せ部J2につても溶着させたが、フィン22と底部11とは溶着させずに離間するように構成してもよい。また、本実施形態では、表面処理工程で凹部31cを形成した領域と、熱可塑性樹脂層23を形成した領域は同等であるが、樹脂層形成工程では少なくとも凹部31cを形成した箇所に熱可塑性樹脂層23を形成すればよい。   In addition, although 1st embodiment thru | or 3rd embodiment was described, it is not limited to this. For example, in the present embodiment, the butt portion J2 is welded in addition to the first butt portion J1, but the fin 22 and the bottom portion 11 may be separated without being welded. In the present embodiment, the region in which the concave portion 31c is formed in the surface treatment step is equivalent to the region in which the thermoplastic resin layer 23 is formed. However, in the resin layer forming step, the thermoplastic resin is at least at the portion where the concave portion 31c is formed. The layer 23 may be formed.

また、本実施形態では、容器2を樹脂とし蓋3を金属としたが、容器を金属とし、蓋を樹脂としてもよい。蓋を樹脂とする場合は、容器の底部にフィンを形成することが好ましい。この場合は、容器の側壁部の先端面やフィンの先端面に表面処理工程及び樹脂層形成工程を行った後に、蓋と容器(樹脂付き金属部材)とを接合工程で接合すればよい。   In this embodiment, the container 2 is made of resin and the lid 3 is made of metal, but the container may be made of metal and the lid may be made of resin. When the lid is made of resin, it is preferable to form fins at the bottom of the container. In this case, the lid and the container (metal member with resin) may be joined in the joining step after the surface treatment process and the resin layer forming process are performed on the distal end surface of the side wall of the container and the distal end surface of the fin.

〔第四実施形態〕
図16に示すように、第四実施形態に係る液冷ジャケット51は、樹脂製の容器52と、金属製の蓋53とで構成されている。液冷ジャケット51は、支持部63が形成されている点で、第一実施形態と相違する。
[Fourth embodiment]
As shown in FIG. 16, the liquid cooling jacket 51 according to the fourth embodiment includes a resin container 52 and a metal lid 53. The liquid cooling jacket 51 is different from the first embodiment in that a support portion 63 is formed.

容器52は、底部61と、底部61から立ち上がる側壁部62と、底部61から立ち上がり側壁部62に連続する支持部63とで構成されている。容器52は、特許請求の範囲の「樹脂部材」に相当する。容器52は、射出成形によって一体形成されている。   The container 52 includes a bottom portion 61, a side wall portion 62 that rises from the bottom portion 61, and a support portion 63 that continues from the bottom portion 61 to the rising side wall portion 62. The container 52 corresponds to a “resin member” in the claims. The container 52 is integrally formed by injection molding.

支持部63は、板状を呈し、側壁部62と同等の高さになっている。支持部63は、側壁部62の短辺部に連続し、当該短辺部に対して垂直に形成されている。支持部63の長さは、側壁部62の長辺部の2/3程度になっている。   The support part 63 has a plate shape and has a height equivalent to that of the side wall part 62. The support portion 63 is continuous with the short side portion of the side wall portion 62 and is formed perpendicular to the short side portion. The length of the support part 63 is about 2/3 of the long side part of the side wall part 62.

蓋53は、容器52の開口を塞ぐ部材である。蓋53は、ベース板71と、ベース板71に並設された複数のフィン72と、熱可塑性樹脂層73と、スペース部74とで構成されている。蓋53は、特許請求の範囲の「樹脂付き金属部材」に相当する。   The lid 53 is a member that closes the opening of the container 52. The lid 53 includes a base plate 71, a plurality of fins 72 provided in parallel to the base plate 71, a thermoplastic resin layer 73, and a space portion 74. The lid 53 corresponds to a “metal member with resin” in the claims.

ベース板71は、平面視矩形を呈する板状部材である。ベース板71の大きさは、側壁部62の外縁と同じ大きさになっている。   The base plate 71 is a plate-like member that has a rectangular shape in plan view. The base plate 71 has the same size as the outer edge of the side wall 62.

フィン72は、ベース板71の表面71aに垂直に形成されている。フィン72は、ベース板71の長手方向に対して平行に等間隔で並設されている。フィン72の高さは、側壁部62の高さよりも小さくなっている。   The fins 72 are formed perpendicular to the surface 71 a of the base plate 71. The fins 72 are arranged in parallel at equal intervals in parallel to the longitudinal direction of the base plate 71. The height of the fin 72 is smaller than the height of the side wall portion 62.

スペース部74とは、複数枚並設されたフィン72群のうちフィン72が形成されていない空間を意味する。スペース部74は、支持部63を挿通するための空間である。   The space portion 74 means a space in which the fins 72 are not formed among the plurality of fins 72 arranged in parallel. The space portion 74 is a space for inserting the support portion 63.

熱可塑性樹脂層73は、熱可塑性樹脂で形成された層であって、表面71aの周縁部と、表面71aのうち支持部63に対応する位置とに形成されている。   The thermoplastic resin layer 73 is a layer formed of a thermoplastic resin, and is formed at a peripheral edge portion of the surface 71a and a position corresponding to the support portion 63 in the surface 71a.

図17に示すように、容器52を蓋53で塞ぐと、側壁部62の先端面62aと蓋53の表面71aの周縁部とが突き合わされて第一突合せ部J1が形成される。第一突合せ部J1は、平面視矩形枠状を呈する。また、図18に示すように、支持部63の先端面63aとベース板71の表面71aとが突き合わされて第三突合せ部J3が形成される。液冷ジャケット51は、第一突合せ部J1と第三突合せ部J3とがそれぞれ溶着されることにより接合されている。   As shown in FIG. 17, when the container 52 is closed with a lid 53, the front end surface 62a of the side wall portion 62 and the peripheral edge portion of the surface 71a of the lid 53 are abutted to form the first abutting portion J1. The first butting portion J1 has a rectangular frame shape in plan view. Further, as shown in FIG. 18, the tip end face 63a of the support part 63 and the surface 71a of the base plate 71 are abutted to form a third abutting part J3. The liquid cooling jacket 51 is joined by welding the first butting portion J1 and the third butting portion J3.

次に、第四実施形態に係る液冷ジャケットの製造方法について説明する。液冷ジャケットの製造方法は、主に準備工程と、接合工程とを行う。準備工程では、表面処理工程と、樹脂層形成工程とを行う。表面処理工程及び樹脂層形成工程は、蓋53を用意するための工程である。   Next, the manufacturing method of the liquid cooling jacket which concerns on 4th embodiment is demonstrated. The manufacturing method of a liquid cooling jacket mainly performs a preparation process and a joining process. In the preparation process, a surface treatment process and a resin layer forming process are performed. The surface treatment step and the resin layer formation step are steps for preparing the lid 53.

まず、表面処理工程に先だって、容器52及び金属部材80を用意する。容器52は、図16を参照するように、射出成形によって一体形成する。一方、図19の(a)に示すように、例えば、ダイカストによって金属部材80を形成する。金属部材80は、蓋53の素となる部材である。金属部材80は、ベース板81と、ベース板81に並設された複数のフィン82とで構成されている。   First, the container 52 and the metal member 80 are prepared prior to the surface treatment process. As shown in FIG. 16, the container 52 is integrally formed by injection molding. On the other hand, as shown in FIG. 19A, the metal member 80 is formed by die casting, for example. The metal member 80 is a member that is a base of the lid 53. The metal member 80 includes a base plate 81 and a plurality of fins 82 provided in parallel to the base plate 81.

表面処理工程は、ベース板81の裏面81aの周縁部及び裏面81aのうち支持部13が溶着される部位に微細な凹部を形成する工程である。   A surface treatment process is a process of forming a fine recessed part in the site | part to which the support part 13 is welded among the peripheral part of the back surface 81a of the base board 81, and the back surface 81a.

図19の(b)に示すように、樹脂層形成工程は、ベース板81の裏面81aの周縁部及び裏面81aのうち支持部63に溶着される部位に熱可塑性樹脂を塗布する工程である。つまり、樹脂層形成工程では、表面処理工程で凹部が形成された部位に樹脂を塗布して、熱可塑性樹脂層73を形成する。これにより、蓋53が形成される。   As shown in FIG. 19B, the resin layer forming step is a step of applying a thermoplastic resin to the peripheral portion of the back surface 81a of the base plate 81 and the portion of the back surface 81a that is welded to the support portion 63. That is, in the resin layer forming step, the thermoplastic resin layer 73 is formed by applying resin to the portion where the concave portion is formed in the surface treatment step. Thereby, the lid 53 is formed.

図20に示すように、接合工程は、容器52と蓋53とを突き合わせた後、摩擦圧接を行って容器52と蓋53とを溶着により接合する工程である。蓋53に容器52をかぶせると、ベース板71の表面71aの周縁部と側壁部62の先端面62aとが突き合わされて第一突合せ部J1が形成される。また、支持部63の先端面63aとベース板71とが突き合わされて第三突合せ部J3が形成される。   As shown in FIG. 20, the joining step is a step of joining the container 52 and the lid 53 by welding by performing friction welding after the container 52 and the lid 53 are brought into contact with each other. When the container 52 is placed on the lid 53, the peripheral edge portion of the surface 71a of the base plate 71 and the front end surface 62a of the side wall portion 62 are abutted to form the first abutting portion J1. Further, the front end surface 63a of the support portion 63 and the base plate 71 are abutted to form a third abutting portion J3.

摩擦圧接では、第一実施形態と同様の手順によって、第一突合せ部J1と第三突合せ部J3とを接合する。   In the friction welding, the first butted portion J1 and the third butted portion J3 are joined by the same procedure as in the first embodiment.

以上説明した第四実施形態に係る液冷ジャケットの製造方法によれば、第一実施形態と同様の原理によって容器52の側壁部62と蓋53の周縁部との突合せ部が接合する。   According to the manufacturing method of the liquid cooling jacket according to the fourth embodiment described above, the butted portion between the side wall portion 62 of the container 52 and the peripheral portion of the lid 53 is joined by the same principle as in the first embodiment.

第一実施形態〜第三実施形態では、フィンを容器の底部に溶着するものであったが、第四実施形態のように側壁部62の高さがフィン72の高さよりも大きくなる場合がある。このような場合は、液冷ジャケットに内圧が作用すると、容器の中央部に内圧が集中するため、容器の中央部分の変形が大きくなって突合せ部が破壊されるおそれがある。しかし、本実施形態のように、第一突合せ部J1に加えて、容器52の支持部63と蓋53のベース板71の中央部とが第三突合せ部J3で溶着されるため、容器52と蓋53との結合力を向上させることができる。   In the first embodiment to the third embodiment, the fin is welded to the bottom of the container, but the height of the side wall 62 may be larger than the height of the fin 72 as in the fourth embodiment. . In such a case, when the internal pressure acts on the liquid cooling jacket, the internal pressure is concentrated on the central portion of the container, so that the deformation of the central portion of the container becomes large and the butt portion may be destroyed. However, as in the present embodiment, in addition to the first butting portion J1, the support portion 63 of the container 52 and the center portion of the base plate 71 of the lid 53 are welded at the third butting portion J3. The coupling force with the lid 53 can be improved.

また、支持部63は、本実施形態のように側壁部62から連続して形成されることで、容器52及び液冷ジャケット51の剛性を向上させることができる。   Moreover, the support part 63 can improve the rigidity of the container 52 and the liquid cooling jacket 51 by forming continuously from the side wall part 62 like this embodiment.

なお、本実施形態ではフィン72を設けたが、フィン72を省略してもよい。また、本実施形態では、支持部63を容器52に設けたが、支持部63を蓋53に設けてもよい。この場合は、表面71aの周縁部と支持部63の先端面に表面処理を施すとともに、当該表面処理を行った部位に熱可塑性樹脂層を形成して蓋を作成する。そして、当該蓋と容器とを突き合わせて接合工程によって各突合せ部を溶着すればよい。   In the present embodiment, the fins 72 are provided, but the fins 72 may be omitted. In this embodiment, the support portion 63 is provided on the container 52, but the support portion 63 may be provided on the lid 53. In this case, surface treatment is performed on the peripheral edge portion of the surface 71a and the front end surface of the support portion 63, and a thermoplastic resin layer is formed on the surface-treated portion to create a lid. And what is necessary is just to weld each butt | matching part by a joining process by matching the said lid | cover and a container.

また、本実施形態では、金属部材80をダイカストによって形成したが、金属部材をマルチカッターMで切削して形成してもよい。   In the present embodiment, the metal member 80 is formed by die casting. However, the metal member may be formed by cutting with a multi-cutter M.

〔第五実施形態〕
図21に示すように、第五実施形態に係る液冷ジャケット51Aは、樹脂製の容器52Aと、金属製の蓋53Aとで構成されている。液冷ジャケット51Aは、支持部63Aが側壁部62と離間している点で第四実施形態と相違する。
[Fifth embodiment]
As shown in FIG. 21, a liquid cooling jacket 51A according to the fifth embodiment includes a resin container 52A and a metal lid 53A. The liquid cooling jacket 51A is different from the fourth embodiment in that the support portion 63A is separated from the side wall portion 62.

容器52Aは、底部61と、底部61の端部から立ち上がる側壁部62と、底部61の中央から立ち上がる支持部63Aとで構成されている。容器52Aは、特許請求の範囲の「樹脂部材」に相当する。容器52Aは、射出成型によって一体形成されている。   The container 52 </ b> A includes a bottom portion 61, a side wall portion 62 that rises from an end portion of the bottom portion 61, and a support portion 63 </ b> A that rises from the center of the bottom portion 61. The container 52A corresponds to a “resin member” in the claims. The container 52A is integrally formed by injection molding.

支持部63Aは、円柱状を呈し、側壁部62と同等の高さになっている。支持部63Aは、底部61の中央において、側壁部62から離間して形成されている。   The support portion 63 </ b> A has a columnar shape and has the same height as the side wall portion 62. The support portion 63 </ b> A is formed in the center of the bottom portion 61 so as to be separated from the side wall portion 62.

蓋53Aは、ベース板71と、ベース板71に併設された複数のフィン72と、熱可塑性樹脂層73と、スペース部74とで構成されている。蓋53Aは、特許請求の範囲の「樹脂付き金属部材」に相当する。   The lid 53A includes a base plate 71, a plurality of fins 72 provided alongside the base plate 71, a thermoplastic resin layer 73, and a space portion 74. The lid 53A corresponds to the “metal member with resin” in the claims.

スペース部74とは、複数枚並設されたフィン72群のうちフィン72が形成されていない空間部分を意味する。スペース部74は、支持部63Aを挿通するための空間である。   The space part 74 means a space part in which the fins 72 are not formed among a plurality of fins 72 arranged in parallel. The space portion 74 is a space for inserting the support portion 63A.

熱可塑性樹脂層73は、熱可塑性樹脂で形成された層であって、表面71aの周縁部と、表面71aのうち支持部63Aに対応する位置に形成されている。   The thermoplastic resin layer 73 is a layer formed of a thermoplastic resin, and is formed at a position corresponding to the peripheral portion of the surface 71a and the support portion 63A on the surface 71a.

図22に示すように、容器52Aを蓋53Aで塞ぐと、側壁部62の先端面62aと蓋53Aの表面71aの周縁部とが突き合わされて第一突合せ部J1が形成される。第一突合せ部J1は、平面視矩形枠状を呈する。また、支持部63Aの先端面63Aaとベース板71の表面71aとが突き合わされて第三突合せ部J3が形成される。液冷ジャケット51Aは、第一突合せ部J1と第三突合せ部J3とがそれぞれ溶着されることにより接合されている。   As shown in FIG. 22, when the container 52A is closed with a lid 53A, the front end surface 62a of the side wall portion 62 and the peripheral edge portion of the surface 71a of the lid 53A are abutted to form a first abutting portion J1. The first butting portion J1 has a rectangular frame shape in plan view. Further, the front end surface 63Aa of the support portion 63A and the surface 71a of the base plate 71 are abutted to form a third abutting portion J3. The liquid cooling jacket 51A is joined by welding the first butting portion J1 and the third butting portion J3.

次に、第五実施形態に係る液冷ジャケットの製造方法について説明する。液冷ジャケットの製造方法は、主に準備工程と、接合工程とを行う。準備工程では、表面処理工程と、樹脂層形成工程とを行う。   Next, the manufacturing method of the liquid cooling jacket which concerns on 5th embodiment is demonstrated. The manufacturing method of a liquid cooling jacket mainly performs a preparation process and a joining process. In the preparation process, a surface treatment process and a resin layer forming process are performed.

まず、表面処理工程に先だって、容器52A及び金属部材80Aを用意する。容器52Aは、図21を参照するように、射出成形によって一体形成する。一方、図23の(a)に示すように、例えば、ダイカストによって金属部材80Aを形成する。金属部材80Aは、蓋53Aの素となる部材である。金属部材80Aは、ベース板81と、ベース板81に並設された複数のフィン82とで構成されている。   First, prior to the surface treatment step, a container 52A and a metal member 80A are prepared. As shown in FIG. 21, the container 52A is integrally formed by injection molding. On the other hand, as shown in FIG. 23A, for example, the metal member 80A is formed by die casting. The metal member 80A is a member serving as a base of the lid 53A. The metal member 80 </ b> A includes a base plate 81 and a plurality of fins 82 arranged in parallel with the base plate 81.

表面処理工程は、ベース板81の裏面81aの周縁部及び裏面81aのうち支持部63Aが溶着される部位に微細な凹部を形成する工程である。   A surface treatment process is a process of forming a fine recessed part in the site | part to which the support part 63A is welded among the peripheral part of the back surface 81a of the base board 81, and the back surface 81a.

図23の(b)に示すように、樹脂層形成工程は、ベース板81の裏面81aの周縁部及び裏面81aのうち支持部63Aに溶着される部位に熱可塑性樹脂を塗布する工程である。つまり、樹脂層形成工程では、表面処理工程で凹部が形成された部位に熱可塑性樹脂を塗布して、熱可塑性樹脂層73を形成する。これにより、蓋53Aが形成される。   As shown in FIG. 23B, the resin layer forming step is a step of applying a thermoplastic resin to the peripheral portion of the back surface 81a of the base plate 81 and the portion of the back surface 81a that is welded to the support portion 63A. That is, in the resin layer forming step, the thermoplastic resin layer 73 is formed by applying the thermoplastic resin to the portion where the concave portion is formed in the surface treatment step. Thereby, the lid 53A is formed.

図24に示すように、接合工程は、容器52と蓋53とを突き合わせた後、摩擦圧接を行って容器52と蓋53とを溶着により接合する工程である。蓋53に容器52をかぶせると、ベース板71の表面71aの周縁部と側壁部62の先端面62aとが突き合わされて第一突合せ部J1が形成される。また、支持部63Aの先端面63Aaとベース板71とが突き合わされて第三突合せ部J3が形成される。   As shown in FIG. 24, the joining step is a step of joining the container 52 and the lid 53 by welding by performing friction welding after the container 52 and the lid 53 are brought into contact with each other. When the container 52 is placed on the lid 53, the peripheral edge portion of the surface 71a of the base plate 71 and the front end surface 62a of the side wall portion 62 are abutted to form the first abutting portion J1. Further, the tip end face 63Aa of the support portion 63A and the base plate 71 are abutted to form a third abutting portion J3.

摩擦圧接では、第一実施形態と同様の手順によって、第一突合せ部J1と第三突合せ部J3とを接合する。   In the friction welding, the first butted portion J1 and the third butted portion J3 are joined by the same procedure as in the first embodiment.

以上説明した第五実施形態に係る液冷ジャケットの製造方法によれば、第四実施形態と同等の効果を得ることができる。また、第五実施形態のように、支持部63Aは側壁部62と離間して形成されていてもよい。また、本実施形態では支持部63Aを中央に1つだけ設けているが、他の位置に複数設けてもよい。なお、支持部63Aは本実施形態では円柱状としたが、角柱であってもよい。   According to the manufacturing method of the liquid cooling jacket which concerns on 5th embodiment demonstrated above, the effect equivalent to 4th embodiment can be acquired. Further, as in the fifth embodiment, the support portion 63 </ b> A may be formed apart from the side wall portion 62. In the present embodiment, only one support portion 63A is provided at the center, but a plurality of support portions 63A may be provided at other positions. Note that the support portion 63A is cylindrical in this embodiment, but may be a prism.

なお、本実施形態ではフィン72を設けたが、フィン72を省略してもよい。また、本実施形態では、支持部63Aを容器52に設けたが、支持部63Aを蓋53に設けてもよい。この場合は、表面71aの周縁部と支持部63Aの先端面に表面処理を施すとともに、当該表面処理を行った部位に熱可塑性樹脂層を形成して蓋を作成する。そして、当該蓋と容器とを突き合わせて接合工程によって各突合せ部を溶着すればよい。   In the present embodiment, the fins 72 are provided, but the fins 72 may be omitted. In this embodiment, the support portion 63A is provided in the container 52, but the support portion 63A may be provided in the lid 53. In this case, a surface treatment is performed on the peripheral portion of the surface 71a and the tip surface of the support portion 63A, and a lid is created by forming a thermoplastic resin layer on the surface-treated portion. And what is necessary is just to weld each butt | matching part by a joining process by matching the said lid | cover and a container.

〔第六実施形態〕
次に、本発明の第六実施形態に係る液冷ジャケットの製造方法について説明する。図25に示すように、第六実施形態に係る液冷ジャケット91は、複数の流路孔104とこの流路孔104の端部に連通するヘッダー流路孔113を有する点で他の実施形態と相違する。第六実施形態に係る液冷ジャケット91は、金属製の容器92と樹脂製の蓋93とが溶着される。
[Sixth embodiment]
Next, the manufacturing method of the liquid cooling jacket which concerns on 6th embodiment of this invention is demonstrated. As shown in FIG. 25, the liquid cooling jacket 91 according to the sixth embodiment is another embodiment in that it has a plurality of flow passage holes 104 and header flow passage holes 113 communicating with the end portions of the flow passage holes 104. Is different. In the liquid cooling jacket 91 according to the sixth embodiment, a metal container 92 and a resin lid 93 are welded.

容器92は、底部101と、底部101から立ち上がる側壁部102と、仕切り部103と、熱可塑性樹脂層105とで構成されている。容器92は、特許請求の範囲の「樹脂付き金属部材」に相当する。側壁部102は、平面視矩形枠状を呈する。容器92の内部は、仕切り部103によって複数の空間に仕切られる。当該空間は、流体を流通させるための流路孔104となる。   The container 92 includes a bottom portion 101, a side wall portion 102 that rises from the bottom portion 101, a partition portion 103, and a thermoplastic resin layer 105. The container 92 corresponds to a “metal member with resin” in the claims. The side wall 102 has a rectangular frame shape in plan view. The interior of the container 92 is partitioned into a plurality of spaces by the partition portion 103. The space becomes a flow path hole 104 for circulating a fluid.

熱可塑性樹脂層105は、熱可塑性樹脂の層であって、側壁部102の先端面(表面)の全周に亘って形成されている。   The thermoplastic resin layer 105 is a layer of thermoplastic resin, and is formed over the entire periphery of the front end surface (surface) of the side wall portion 102.

蓋93は、底部111と、底部111に対して垂直に形成された側壁部112とで構成されている。蓋93は、特許請求の範囲の「樹脂部材」に相当する。側壁部112は、平面視矩形枠状を呈する。蓋93の内部には、ヘッダー流路孔113が形成されている。   The lid 93 includes a bottom part 111 and a side wall part 112 formed perpendicular to the bottom part 111. The lid 93 corresponds to a “resin member” in the claims. The side wall 112 has a rectangular frame shape in plan view. A header channel hole 113 is formed inside the lid 93.

第六実施形態に係る液冷ジャケットの製造方法では、準備工程と、接合工程とを行う。準備工程では、表面処理工程と、樹脂層形成工程とを行う。表面処理工程及び樹脂層形成工程は、容器92を形成するための工程である。   In the manufacturing method of the liquid cooling jacket according to the sixth embodiment, a preparation process and a joining process are performed. In the preparation process, a surface treatment process and a resin layer forming process are performed. The surface treatment step and the resin layer formation step are steps for forming the container 92.

まず、表面処理工程に先だって、容器92の素となる金属部材と、蓋93とを用意する。金属部材は、本実施形態では、底部101と、側壁部102と、仕切り部103とで構成される。一方、蓋93は、射出成形によって一体形成される。   First, prior to the surface treatment step, a metal member serving as a base of the container 92 and a lid 93 are prepared. In this embodiment, the metal member includes a bottom portion 101, a side wall portion 102, and a partition portion 103. On the other hand, the lid 93 is integrally formed by injection molding.

表面処理工程では、側壁部102の先端面に微細な凹部を形成する。樹脂層形成工程では、表面処理によって凹部を形成した部位に熱可塑性樹脂層を形成する。これにより、容器92が形成される。   In the surface treatment step, a fine recess is formed on the front end surface of the side wall 102. In the resin layer forming step, a thermoplastic resin layer is formed at the site where the recess is formed by the surface treatment. Thereby, the container 92 is formed.

図26に示すように、接合工程では、容器92と蓋93とを摩擦圧接により接合する。摩擦工程における移動方向は特に制限されないが、本実施形態では蓋93の長手方向に沿って往復移動させる。以上の工程により、液冷ジャケット91が形成される。   As shown in FIG. 26, in the joining step, the container 92 and the lid 93 are joined by friction welding. The moving direction in the friction process is not particularly limited, but in the present embodiment, the moving direction is reciprocated along the longitudinal direction of the lid 93. The liquid cooling jacket 91 is formed by the above process.

以上説明した第六実施形態に係る液冷ジャケットの製造方法によれば、内部に流路孔104と、この流路孔104の端部に連通するヘッダー流路孔113とを備えた液冷ジャケット91を容易に製造することができる。また、第一実施形態では、容器を樹脂、蓋を金属としたが、本実施形態のように容器92を金属、蓋93を樹脂としてもよい。   According to the manufacturing method of the liquid cooling jacket according to the sixth embodiment described above, the liquid cooling jacket including the flow path hole 104 and the header flow path hole 113 communicating with the end of the flow path hole 104 inside. 91 can be easily manufactured. In the first embodiment, the container is made of resin and the lid is made of metal, but the container 92 may be made of metal and the lid 93 may be made of resin as in the present embodiment.

なお、本実施形態では、容器92を金属、蓋93を樹脂としたが、容器を樹脂とし、蓋を金属としてもよい。この場合は、蓋の側壁部の先端面に、表面処理工程及び樹脂層形成工程を行って熱可塑性樹脂層を形成した後、接合工程で接合すればよい。   In this embodiment, the container 92 is made of metal and the lid 93 is made of resin, but the container may be made of resin and the lid may be made of metal. In this case, the surface treatment step and the resin layer formation step are performed on the front end surface of the side wall portion of the lid to form the thermoplastic resin layer, and then bonded in the bonding step.

以上本発明の実施形態について説明したが、本発明の趣旨に反しない範囲において適宜設計変更が可能である。例えば、本実施形態では、液冷ジャケットの内部にフィン22や仕切り部103等内部の空間を仕切る部材を備えた形態を例示したが、これらの部材が無い形態であってもよい。   Although the embodiments of the present invention have been described above, design changes can be made as appropriate without departing from the spirit of the present invention. For example, in this embodiment, although the form provided with the member which partitions off interior space, such as the fin 22 and the partition part 103, was illustrated inside the liquid cooling jacket, the form without these members may be sufficient.

また、本実施形態では、フィンを板状に形成したが、例えば、ピン状(柱状)に形成してもよい。例えば、ピン状のフィンを形成する場合は、図6の(b)を参照すると、金属部材の長手方向と平行にマルチカッターを移動させて切削を行う第一切削工程の後、金属部材の短手方向と平行にマルチカッターを移動させて切削を行う第二切削工程を行えばよい。この工程によれば、角柱状のピン状のフィンを得ることができる。なお、ピンフィンとベース板とが一体形成された部材をダイカストによって形成してもよい。   Moreover, in this embodiment, although the fin was formed in plate shape, you may form in pin shape (columnar shape), for example. For example, when forming pin-shaped fins, referring to FIG. 6B, after the first cutting step of cutting by moving the multi-cutter parallel to the longitudinal direction of the metal member, the short of the metal member is formed. What is necessary is just to perform the 2nd cutting process which moves by moving a multi cutter parallel to a hand direction, and cuts. According to this step, a prismatic pin-shaped fin can be obtained. A member in which the pin fin and the base plate are integrally formed may be formed by die casting.

次に、本発明の実施例について説明する。以下では、第一実施形態と同様の符号を用いて説明する。実施例では、液冷ジャケットである試験体1〜3を、条件を変えて製造し、これらの試験体に対して耐圧試験を行った。第一実施形態と略同等の工程によって試験体1,2を製造した。一方、フィン22が容器2の底部11に溶着されていないものを試験体3とした。   Next, examples of the present invention will be described. Below, it demonstrates using the code | symbol similar to 1st embodiment. In the examples, test bodies 1 to 3 which are liquid cooling jackets were manufactured under different conditions, and a pressure resistance test was performed on these test bodies. Test bodies 1 and 2 were manufactured by a process substantially equivalent to the first embodiment. On the other hand, the test piece 3 is one in which the fins 22 are not welded to the bottom 11 of the container 2.

試験体1の製造工程を具体的に説明する。図4の(a)を参照するように、準備工程では、アルミニウム合金(JIS:A1050H12)によって金属部材30を形成した。ベース板31の板厚は4mm、横寸法30mm、縦寸法50mmである。ブロック部32の板厚は4mm、横寸法19mm、縦寸法39mmである。   The manufacturing process of the test body 1 will be specifically described. As shown in FIG. 4A, in the preparation step, the metal member 30 was formed of an aluminum alloy (JIS: A1050H12). The thickness of the base plate 31 is 4 mm, the horizontal dimension is 30 mm, and the vertical dimension is 50 mm. The block portion 32 has a thickness of 4 mm, a horizontal dimension of 19 mm, and a vertical dimension of 39 mm.

なお、JIS:A1050は、Si;0.25%以下、Fe;0.40%以下、Cu;0.05%以下、Mn;0.05%以下、Mg;0.05%以下、Zn;0.05%以下、V;0.05%以下、Ti;0.03%以下、Al;99.50%以上で構成されている。H12とは、熱処理等を行って引張強さ85N/mm、伸び16%、耐力75N/mm、硬さ23HVに調質されたものを言う。 In addition, JIS: A1050 is Si; 0.25% or less, Fe; 0.40% or less, Cu; 0.05% or less, Mn; 0.05% or less, Mg; 0.05% or less, Zn; 0.05% or less, V; 0.05% or less, Ti; 0.03% or less, Al; 99.50% or more. H12 and has a tensile strength of 85N / mm 2 subjected to a heat treatment, etc., 16% growth, yield strength 75N / mm 2, say what has been tempered to the hardness 23HV.

また、準備工程では、PPS(ポリフェニレンサルファイド、ポリプラスチックス社製)を用いて容器2を形成した。具体的には、金型温度150℃、樹脂温度320℃、射出速度100mm/s、保圧50MPa、保圧時間3秒に設定して、射出成形型(図示省略)のキャビティにPPSを射出して成形した。   In the preparation step, the container 2 was formed using PPS (polyphenylene sulfide, manufactured by Polyplastics). Specifically, a mold temperature of 150 ° C., a resin temperature of 320 ° C., an injection speed of 100 mm / s, a holding pressure of 50 MPa, and a holding pressure time of 3 seconds are set, and PPS is injected into the cavity of an injection mold (not shown). And molded.

図4の(b)を参照するように、金属部材30に対して表面処理を行った。本実施例では、エッチング処理を行って、金属部材30に亜鉛含有皮膜を形成した。具体的には、水酸化ナトリウム濃度100g/L及び酸化亜鉛濃度25g/Lの亜鉛含有水酸化ナトリウム水溶液を調整した。そして、この亜鉛含有水酸化ナトリウム水溶液中に金属部材30を室温下で3分間含浸させ、水洗した。   As shown in FIG. 4B, the metal member 30 was subjected to a surface treatment. In this example, an etching process was performed to form a zinc-containing film on the metal member 30. Specifically, a zinc-containing sodium hydroxide aqueous solution having a sodium hydroxide concentration of 100 g / L and a zinc oxide concentration of 25 g / L was prepared. The metal member 30 was impregnated in this zinc-containing aqueous sodium hydroxide solution at room temperature for 3 minutes and washed with water.

図5(a)を参照するように、樹脂層形成工程では、射出成形型を用いて金属部材30に熱可塑性樹脂を塗布した。熱可塑性樹脂は、本実施形態ではPPS(ポリフェニレンサルファイド、ポリプラスチックス社製)を用いた。具体的には、表面処理工程を行った金属部材30を射出成形型(図示省略)にセットし、金型温度150℃、樹脂温度320℃、射出速度100mm/s、保圧50MPa、保圧時間3秒に設定して、PPSを射出した。これにより、熱可塑性樹脂が塗布された金属部材30を得た。   As shown in FIG. 5A, in the resin layer forming step, a thermoplastic resin was applied to the metal member 30 using an injection mold. As the thermoplastic resin, PPS (polyphenylene sulfide, manufactured by Polyplastics Co., Ltd.) was used in this embodiment. Specifically, the metal member 30 subjected to the surface treatment process is set in an injection mold (not shown), a mold temperature of 150 ° C., a resin temperature of 320 ° C., an injection speed of 100 mm / s, a holding pressure of 50 MPa, and a holding time. PPS was injected with a setting of 3 seconds. Thereby, the metal member 30 with which the thermoplastic resin was apply | coated was obtained.

図5の(b)を参照するように、除去工程では、ブロック部32の4つの側面32bに塗布された熱可塑性樹脂を除去した。   As shown in FIG. 5B, in the removing step, the thermoplastic resin applied to the four side surfaces 32b of the block portion 32 was removed.

図6の(a)及び(b)に示すように、切削工程では、マルチカッターMを用いてブロック部32にフィンを形成した。これにより、フィン22の先端面22aに熱可塑性樹脂層23が形成された蓋3を得た。   As shown in FIGS. 6A and 6B, fins were formed in the block portion 32 using a multi-cutter M in the cutting process. As a result, the lid 3 in which the thermoplastic resin layer 23 was formed on the front end surface 22a of the fin 22 was obtained.

図8の(a)及び(b)に示すように、接合工程では、摩擦圧接により容器2と蓋3とを接合した。摩擦圧接の条件は、図25に示すとおりである。以上の工程によって試験体1を得た。   As shown in FIGS. 8A and 8B, in the joining process, the container 2 and the lid 3 were joined by friction welding. The conditions of friction welding are as shown in FIG. The test body 1 was obtained by the above process.

試験体2については、摩擦圧接における振幅と、摩擦時間を除いては、試験体1と同等の工程で製造した。   The test body 2 was manufactured in the same process as the test body 1 except for the amplitude in friction welding and the friction time.

試験体3は、フィン22が容器2の底部11に溶着されていない構造である。したがって、試験体3の製造方法では、除去工程において、図5(b)に示すブロック部32の4つの側面32bに塗布された熱可塑性樹脂のみならず、上面32aに塗布された熱可塑性樹脂をも除去した。ベース板21(31)の周縁部に対してのみ表面処理工程及び樹脂層形成工程を行った後、接合工程を行った。   The test body 3 has a structure in which the fins 22 are not welded to the bottom 11 of the container 2. Therefore, in the manufacturing method of the test body 3, in the removing step, not only the thermoplastic resin applied to the four side surfaces 32b of the block portion 32 shown in FIG. 5B but also the thermoplastic resin applied to the upper surface 32a. Was also removed. After performing the surface treatment process and the resin layer forming process only on the peripheral edge of the base plate 21 (31), the bonding process was performed.

<耐圧試験>
耐圧試験は、試験体1〜3の蓋3の一部に貫通孔を設け、当該貫通孔から試験体1〜3の内部にエアーを供給し、試験体1〜3の接合部分が破壊されるまでの印加圧力を計測した。本実施例では、30秒ごとに圧力を0.1MPa上昇させた。
<Pressure resistance test>
In the pressure resistance test, a through hole is provided in a part of the lid 3 of the test bodies 1 to 3, air is supplied from the through hole to the inside of the test bodies 1 to 3, and the joint portion of the test bodies 1 to 3 is destroyed. The applied pressure up to was measured. In this example, the pressure was increased by 0.1 MPa every 30 seconds.

図25に示すように、試験体1,2と試験体3とを対比すると、第一突合せ部J1に加えて第二突合せ部(フィン22の先端面22aと容器2の底部11との突合せ部)を溶着した方が、大きな圧力に耐えられることがわかった。また、フィン22を底部11に溶着しなくても0.1MPaの圧力に耐えられることがわかった。   As shown in FIG. 25, when the test bodies 1 and 2 and the test body 3 are compared, in addition to the first butting portion J1, the second butting portion (the butting portion between the tip surface 22a of the fin 22 and the bottom portion 11 of the container 2). ) Was able to withstand a large pressure. Further, it was found that the pressure of 0.1 MPa can be endured without welding the fin 22 to the bottom portion 11.

1 液冷ジャケット(複合型中空容器)
2 容器(樹脂部材)
3 蓋(樹脂付き金属部材)
11 底部
12 側壁部
12a 先端面
21 ベース板
21a 表面
21b 裏面
22 フィン
22a 先端面
24 熱可塑性樹脂層
30 金属部材
31c 凹部
104 流路孔
113 ヘッダー流路孔
M マルチカッター
Ma 回転軸
Hb 円盤カッター
J1 第一突合せ部
J2 第二突合せ部
J3 第三突合せ部
1 Liquid cooling jacket (composite hollow container)
2 Container (resin member)
3 Lid (Metal member with resin)
DESCRIPTION OF SYMBOLS 11 Bottom part 12 Side wall part 12a Front end surface 21 Base board 21a Front surface 21b Back surface 22 Fin 22a Front end surface 24 Thermoplastic resin layer 30 Metal member 31c Recessed part 104 Channel hole 113 Header channel hole M Multi cutter Ma Rotating shaft Hb Disk cutter J1 1st One butt section J2 Second butt section J3 Third butt section

Claims (2)

流体が流通する複数の流路孔を有する金属部材と、前記流路孔の端部に連通するヘッダー流路孔を有する樹脂部材と、を含んで構成される複合型中空容器の製造方法であって、
前記金属部材の先端面に複数の微細な凹部を形成する表面処理工程と、
少なくとも前記表面処理工程を行った部位に熱可塑性樹脂を塗布して熱可塑性樹脂層を形成する樹脂層形成工程と、
前記樹脂層形成工程で形成された樹脂付き金属部材と樹脂部材とを突き合わせつつ、前記熱可塑性樹脂層と前記樹脂部材との突合せ部に熱を発生させて溶着する接合工程と、を含み、
前記金属部材は、アルミニウム製又はアルミニウム合金製であり、
前記樹脂部材は、底部と前記底部に立設する枠状の側壁部と前記底部と前記側壁部とで構成された前記ヘッダー流路とを有し、
前記接合工程では、前記樹脂付き金属部材と前記樹脂部材とを互いに近接する方向に押圧しながら相対的かつ直線的に往復運動させる摩擦圧接によって、前記金属部材の先端面に形成された前記熱可塑性樹脂層と前記側壁部の先端面との突合せ部を溶着することを特徴とする複合型中空容器の製造方法。
A method for producing a composite hollow container comprising a metal member having a plurality of flow passage holes through which a fluid flows and a resin member having a header flow passage hole communicating with an end of the flow passage hole. And
A surface treatment step of forming a plurality of fine recesses on the tip surface of the metal member;
A resin layer forming step of forming a thermoplastic resin layer by applying a thermoplastic resin to at least the surface treatment step; and
Joining the resin-formed metal member formed in the resin layer forming step and the resin member, while generating heat at the butted portion of the thermoplastic resin layer and the resin member,
The metal member is made of aluminum or aluminum alloy,
The resin member has a bottom portion, a frame-like side wall portion standing on the bottom portion, the header channel formed by the bottom portion and the side wall portion,
In the joining step, the thermoplastic material formed on the front end surface of the metal member by friction welding that reciprocally moves linearly and reciprocally while pressing the metal member with resin and the resin member in directions close to each other. A method for manufacturing a composite hollow container, comprising welding a butted portion between a resin layer and a front end surface of the side wall portion.
前記接合工程では、前記先端面の全周に亘って溶着することを特徴とする請求項1に記載の複合型中空容器の製造方法。   The method for producing a composite hollow container according to claim 1, wherein in the joining step, welding is performed over the entire circumference of the tip surface.
JP2015142340A 2015-07-16 2015-07-16 Method for producing composite hollow container Active JP5935933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015142340A JP5935933B2 (en) 2015-07-16 2015-07-16 Method for producing composite hollow container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015142340A JP5935933B2 (en) 2015-07-16 2015-07-16 Method for producing composite hollow container

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012230100A Division JP5838949B2 (en) 2012-10-17 2012-10-17 Method for producing composite hollow container and composite hollow container

Publications (2)

Publication Number Publication Date
JP2015193263A JP2015193263A (en) 2015-11-05
JP5935933B2 true JP5935933B2 (en) 2016-06-15

Family

ID=54432751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015142340A Active JP5935933B2 (en) 2015-07-16 2015-07-16 Method for producing composite hollow container

Country Status (1)

Country Link
JP (1) JP5935933B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3905322A4 (en) * 2018-12-25 2022-09-21 Mitsui Chemicals, Inc. Cooling unit, method for manufacturing cooling unit, and structure
EP3951865A4 (en) * 2019-03-28 2022-12-28 Mitsui Chemicals, Inc. Cooling unit, cooling device, battery structure, and electric vehicle
US20230417493A1 (en) * 2020-12-02 2023-12-28 Mitsui Chemicals, Inc. Temperature control unit and method for manufacturing temperature control unit
EP4009364B8 (en) * 2020-12-03 2023-12-06 Hitachi Energy Ltd Arrangement of a power semiconductor module and a cooler
DE102022213549A1 (en) * 2022-12-13 2024-06-13 Robert Bosch Gesellschaft mit beschränkter Haftung Method for producing a cooling device, cooling device and assembly

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5326452B2 (en) * 2008-09-17 2013-10-30 宇部興産株式会社 Composite structure and manufacturing method thereof
WO2011087027A1 (en) * 2010-01-12 2011-07-21 日本軽金属株式会社 Liquid-cooled integrated substrate and method for manufacturing liquid-cooled integrated substrate
JP5899634B2 (en) * 2010-03-16 2016-04-06 宇部興産株式会社 Composite structure

Also Published As

Publication number Publication date
JP2015193263A (en) 2015-11-05

Similar Documents

Publication Publication Date Title
JP5838949B2 (en) Method for producing composite hollow container and composite hollow container
JP5935933B2 (en) Method for producing composite hollow container
EP3498416B1 (en) Bonded structure of heterogeneous materials and method for manufacturing same
JP7067305B2 (en) Member joining method and member joining device
WO2010067796A1 (en) Method for joining resin member with metal member, and liquid-cooled jacket manufacturing method
TWI492806B (en) The method of manufacturing the heat sink and the method of manufacturing the heat transfer plate
JP6203297B2 (en) Laser lap welding method
JP2002257490A (en) Heat plate and manufacturing method thereof
WO2017013978A1 (en) Joining method and method for manufacturing heat sink
JP5949836B2 (en) Liquid cooling jacket
CN108472762B (en) Joining method, method for manufacturing hollow container, and method for manufacturing liquid-cooled jacket
JP6065068B2 (en) Method for producing composite hollow container and composite hollow container
JPS6355413B2 (en)
JP4137089B2 (en) Method and apparatus for forming hollow molded article having thin film on inner surface
JP6973308B2 (en) How to manufacture a liquid-cooled jacket
JP7033012B2 (en) How to manufacture resin frames, fittings, and resin frames
JP6205094B2 (en) Method of manufacturing induction heating coil used for induction hardening
KR102453212B1 (en) Method for manufacturing a metal structure and the metal structure
JP5900410B2 (en) Member joining method
JP6311511B2 (en) Manufacturing method of glass joined body
JP6973212B2 (en) How to manufacture a liquid-cooled jacket
JP2021087984A (en) Welding method and structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160425

R150 Certificate of patent or registration of utility model

Ref document number: 5935933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350