WO2014021688A1 - Cathode material, method for manufacturing same, and secondary battery using cathode material - Google Patents

Cathode material, method for manufacturing same, and secondary battery using cathode material Download PDF

Info

Publication number
WO2014021688A1
WO2014021688A1 PCT/KR2013/007015 KR2013007015W WO2014021688A1 WO 2014021688 A1 WO2014021688 A1 WO 2014021688A1 KR 2013007015 W KR2013007015 W KR 2013007015W WO 2014021688 A1 WO2014021688 A1 WO 2014021688A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
ether
negative electrode
carbon
alcohol
Prior art date
Application number
PCT/KR2013/007015
Other languages
French (fr)
Korean (ko)
Inventor
홍영진
김철환
이재훈
Original Assignee
(주)오렌지파워
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)오렌지파워 filed Critical (주)오렌지파워
Publication of WO2014021688A1 publication Critical patent/WO2014021688A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery technology, and more particularly, to a negative electrode material, a manufacturing method thereof, and a secondary battery using the same.
  • a secondary battery is a battery which can be charged and discharged using an electrode material having excellent reversibility, and is a nickel-hydrogen (Ni-MH) battery, a lithium (Li) battery, a lithium ion (Li-ion) battery, etc., depending on the positive and negative electrode materials. It can be divided into.
  • Such secondary batteries are increasingly being applied as a power source for smart devices such as smart phones, portable computers, and electronic devices such as electronic paper, or vehicles such as bicycles and electric vehicles.
  • the standard electrode potential of lithium metal can be used as electromotive force as it is, and thus a high output battery can be obtained, and the capacity of the battery can be approached to the theoretical capacity, thereby maximizing energy density.
  • dendritic lithium lithium dendrite
  • the dendritic lithium blocks the pores of the separator inside the battery to block the movement of ionic materials, thereby reducing the charge / discharge efficiency.
  • the dendritic lithium grows excessively, the dendritic lithium penetrates the separator to provide a positive electrode and The negative electrode can be shorted.
  • the technical problem to be solved by the present invention is to provide a negative electrode material for a secondary battery having a high capacity and high output, while having a high reliability and improved life using lithium itself as a negative electrode material.
  • Another technical problem to be solved by the present invention is to provide a manufacturing method capable of economically and quickly forming a large amount of the negative electrode material having the aforementioned advantages.
  • Another technical problem to be solved by the present invention is to provide a secondary battery using a negative electrode material having the above-described advantages.
  • anode material for solving the above technical problem, a lithium metal core; And a carbon film on the lithium metal core.
  • the lithium metal core may include voids therein.
  • the negative electrode material may include an intermediate void between the lithium metal core and the inner wall of the carbon film.
  • the carbon film may include at least one through hole.
  • a method of manufacturing a negative electrode material includes: providing a lithium precursor; Providing a liquid organic compound; Adding the lithium precursor into the liquid organic compound to form a dispersion solution; Irradiating ultrasonic waves in the dispersion solution; Filtering or drying the dispersion solution to obtain intermediate particles containing the liquid organic compound inside or on the surface; And heat treating the intermediate particles to form a carbon film on the lithium metal core by a carbon reduction reaction of the lithium precursor and pyrolysis of the liquid organic compound.
  • the lithium precursor is lithium oxide (Li 2 O or Li 2 O 2 ), lithium nitrate (LiNO 3 ) and lithium carbonate (Li 2 CO 3 ), lithium hydroxide (LiOH), lithium acetate (LiC 2 H 3 O 2 ) and Lithium oxalate (Li 2 C 2 O 4 ) It may be any one or a mixture thereof.
  • the concentration of the dispersion solution may be in the range of 0.1 mM to 100 M.
  • the liquid organic compound is a hydrocarbon system having 6 to 20 carbon atoms; Alcohol based; Ether type; And it may be one or a mixture of two or more selected from the group consisting of ester compounds.
  • the hydrocarbon compound may be any one or a mixture of hexene, nonene, dodecene, pentacene, toluene, xylene, chlorobenzoic acid, benzene, hexadecine, tetradecine and octadecine.
  • carbon-containing natural or synthetic polymeric materials may be dissolved in the liquid organic compound as an additional carbon source.
  • the polymer material is chitosan, glucose, sucrose, maltose, lactose, starch, glycogen, polystyrene (PS), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyacrylonitrile (PAN), One or a mixture of polyethylene (PE) and polyvinylpyrrolidone (PVP).
  • a method of manufacturing a negative electrode material may include providing a lithium precursor; Providing a mixed solution comprising water or an organic solvent and a carbon precursor dissolved therein; Adding the lithium precursor into the mixed solution to provide a dispersion solution; Irradiating ultrasonic waves in the dispersion solution; Filtering or drying the dispersion solution to obtain intermediate particles containing the carbon precursor inside or on the surface; And heat treating the intermediate particles to form a carbon film on the lithium metal core by a carbon reduction reaction of the lithium precursor and pyrolysis of the liquid organic compound.
  • the lithium precursor is lithium oxide (Li 2 O or Li 2 O 2 ), lithium nitrate (LiNO 3 ) and lithium carbonate (Li 2 CO 3 ), lithium hydroxide (LiOH), lithium acetate (LiC 2 H 3 O 2 ) and Lithium oxalate (Li 2 C 2 O 4 ) It may be any one or a mixture thereof.
  • the concentration of the dispersion solution may be in the range of 0.1 mM to 100 M.
  • the organic solvent is a hydrocarbon-based; Alcohol based; Ether type; And it may be one or a mixture of two or more selected from the group consisting of ester compounds.
  • the carbon precursor may comprise any one or mixtures of carbon-containing natural and synthetic polymeric materials.
  • the polymeric material is chitosan, glucose, sucrose, maltose, lactose, starch, glycogen, polystyrene (PS), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyacrylo Nitrile (PAN), polyethylene (PE) and polyvinylpyrrolidone (PVP) or mixtures thereof.
  • PS polystyrene
  • PE polyethylene
  • PP polypropylene
  • PVC polyvinyl chloride
  • PAN polyacrylo Nitrile
  • PE polyethylene
  • PVP polyvinylpyrrolidone
  • a secondary battery includes a negative electrode including the negative electrode material, a positive electrode and a separator between the negative electrode and the positive electrode.
  • lithium which is a negative electrode material
  • lithium metal core lithium, which is a negative electrode material
  • lithium may be classified by a predetermined volume to induce stable oxidation and reduction reactions at the negative electrode.
  • dendritic growth of lithium can be suppressed by the oxidation and reduction reaction of lithium occurring uniformly as lithium ions come and go through the carbon film.
  • lithium ions come and go through the through holes formed in the carbon film, not only high-efficiency charging and discharging are possible but also a voltage close to the theory can be obtained.
  • the optimum dispersion of the intermediate particles to be the material core and uniform wetting of the liquid carbon source can be induced to grow a dense carbon film through subsequent heat treatment.
  • a manufacturing method capable of forming a large amount of particulate negative material economically and quickly can be provided.
  • a secondary battery having a high output and a long life of a high capacity having the above-described advantages can be provided.
  • FIG. 1A through 1C are cross-sectional views illustrating cathode materials according to various embodiments of the present invention, respectively.
  • FIG. 2 is a schematic view for explaining charge and discharge of the negative electrode materials according to these embodiments.
  • FIG. 3A is a flowchart illustrating a method of manufacturing a negative electrode material according to an exemplary embodiment of the present invention
  • FIG. 3B schematically illustrates an apparatus for manufacturing a negative electrode material
  • FIGS. 3C and 3D are schematic views of intermediate particles and negative electrode materials, respectively. Show the image.
  • 4A and 4B are scanning electron microscopy and transmission electron microscopy images of particulate cathode material formed in accordance with one embodiment of the present invention.
  • FIG. 1A to 1C are cross-sectional views illustrating cathode materials 100A, 100B, and 100C, respectively, according to various embodiments of the present disclosure, and FIG. 2 illustrates filling of cathode materials 100A, 100B, and 100C according to these embodiments. Schematic diagram for explaining discharge.
  • the negative electrode material 100A includes a lithium metal core 10 and a carbon film 20 formed on the lithium metal core 10.
  • the lithium metal core 10 is an aggregate of nanocrystals or agglomerates of monoatomic lithium granulated as crystals of a grown size, and may function as an active material of a negative electrode.
  • the lithium metal core 10 may have a void 10V therein by reduction and / or heat shrinkage of a lithium precursor described later.
  • the void 10V may be a single cavity in which a plurality of cavities or cavities are connected to each other in the lithium metal core 10 and extend to the surface of the lithium metal core 10 to cover the inside and the surface of the lithium metal core 10. It is also possible to form passages for connecting.
  • the void 10V increases the reaction surface area of the lithium metal core 10 so that lithium ions are easily oxidized or reduced inside the negative electrode material 100A during charging and discharging of the battery.
  • the carbon film 20 surrounding the lithium metal core 10 may be a crystalline or amorphous carbon film. Preferably, it may be an amorphous carbon film.
  • the carbon film 20 has high crystallinity, it is similar to a kind of graphite, and may react with the electrolyte at the surface. However, since the low crystalline or amorphous carbon film has excellent chemical corrosion resistance, the carbon film 20 does not react with the electrolyte during charging and discharging, so that decomposition of the electrolyte is suppressed, so that the lifetime of the negative electrode material 100 may be improved.
  • the carbon film 20 may have a mixture of SP2 graphite structure having conductivity and diamond structure of SP3 having insulation, and in order for the carbon film 20 to have conductivity, the SP2 has a larger mole fraction than that of SP3.
  • the thickness of the carbon film 20 may be 2 nm to 5 ⁇ m, which is illustrative only and the present invention is not limited thereto.
  • the carbon film 20 functions as a physical barrier that isolates the internal lithium metal core 10 from other lithium metal cores in the entire cathode. As a result, aggregation between the lithium metal cores 10 does not occur.
  • the carbon film 20 provides a conductive surface to secure a conductive path for charge and discharge between the cathode materials 100A.
  • the thickness of the carbon film 20 is less than 2 nm, it does not function effectively as the above-described physical barrier, and due to the weak mechanical strength, the carbon film 20 may be destroyed by stresses that may occur during charging and discharging of the battery.
  • the thickness of the carbon film 20 exceeds 5 ⁇ m, the physical distance of the diffusion barrier of lithium ions is increased, and the charge and discharge efficiency and the output voltage are reduced, and the volume of the material core is larger than that of the carbon film 30. Relatively lower, energy density can be reduced.
  • the particulate negative material 100A may have an average particle diameter in the range of 30 nm to 200 ⁇ m.
  • the average particle diameter of the negative electrode material 100A may be determined by the following parameters such as irradiation time of ultrasonic wave, ultrasonic intensity, ratio of the liquid organic compound and dispersed particles in the dispersion solution, and temperature of the dispersion solution, and optionally, a surfactant. It can be adjusted by controlling.
  • the negative electrode material 100A having the lithium metal core 10 inside and the carbon film 20 on the skin is generally spherical. However, this is exemplary, and the negative electrode material 100A may be an ellipsoid in addition to a spherical shape, and may have an irregularity such as a grain of rice or a potato. When the negative electrode material 100A formed as described above is used to form a negative electrode, the filling density thereof can be improved.
  • the carbon film 20 of the cathode material 100B may include one or two through holes 20H. Lithium ions not only pass through the carbon film 20 but also freely pass between the lithium metal core 10 and the electrolyte outside the carbon film 20 (see EL in FIG. 2) through the through holes 20H.
  • lithium ion Li + dissolved in the external electrolyte EL is lithium metal inside the carbon film 20, as indicated by arrow A, through the through holes 20H formed in the carbon film 20 during charging. It can be freely delivered to the core 10 and reduced.
  • lithium of the lithium metal core 10 is oxidized, and Li + is released from the lithium metal core 10.
  • Lithium ion Li + freely passing through the through holes 20H compensates for the lithium permeation amount limited by the carbon film 20, enabling not only high efficiency and high capacity charging but also electrical energy by the carbon film 20 during discharge. The high output voltage close to the theoretical voltage can be obtained by compensating for the consumption of.
  • metal / metalloids capable of lithium alloying as active materials in a resilient matrix for example, Sn or Si
  • these elastic matrices are physical, chemical, and electrical giant barriers to the movement of lithium ions, making it difficult to obtain high-efficiency charge and discharge, and output compared to the case of using lithium itself as an active material. Is low.
  • the carbon film 20 defining the particle shape and lithium itself as the active material provide a physical and diffusion barrier having a limited thickness, but optionally, the through hole 20H.
  • the negative electrode material 100C may further include an intermediate void 30 between the inner wall of the carbon film 20 and the lithium metal core 10.
  • the intermediate voids 30 can alleviate the volume expansion caused by the charge and discharge of the negative electrode material 100C.
  • the intermediate void 30 may be generated by a difference in thermal expansion rate between the material core 10 and the carbon film 20 during cooling after the heat treatment process described below.
  • FIG. 3A is a flowchart illustrating a method of manufacturing a negative electrode material according to an exemplary embodiment of the present invention
  • FIG. 3B schematically illustrates an apparatus for manufacturing a negative electrode material
  • FIGS. 3C and 3D show an intermediate particle 100I and a negative electrode material, respectively. A typical image of 100 is shown.
  • a lithium precursor constituting the lithium metal core is prepared (S10).
  • the lithium precursor may be a salt containing lithium oxide or lithium.
  • the lithium oxide is, for example, Li 2 O or Li 2 O 2
  • the salt containing lithium is, for example, lithium nitrate (LiNO 3 ), lithium carbonate (Li 2 CO 3 ), lithium hydroxide ( LiOH), and lithium oxalate (Li 2 C 2 O 4 ) or a mixture thereof.
  • the lithium precursor may be another lithium oxide, carbonate, oxalate, nitrate, acetate, nitrate or chloride selected from materials dispersible in the dispersion solution described below.
  • the lithium precursor may be an organic molecular compound such as lithium acetate (LiC 2 H 3 O 2 ), another conjugated compound, or chelate.
  • the lithium precursor does not contain any metal other than lithium, so that the pure lithium metal core can be obtained only by the carbon reduction reaction described later.
  • These lithium precursors are solid particles and may be powders including primary particles having a diameter in the range of several nm to several tens nm depending on the properties of the material, or secondary particles having a size of several tens of nm to several hundred nm formed by aggregation of the primary particles. Can be. In some embodiments, processes such as milling may be performed to uniformize the size of the lithium precursor.
  • the lithium precursor is easily decomposed even at temperatures below 300 ° C., but is preferably selected from materials that do not exhibit growth mechanisms such as Ostwald ripening during mass synthesis. This is because when there is growth by Oswald life, the size of the particles increases rapidly, so that the size control is not easy, and the size dispersion of the particles may increase.
  • a liquid organic compound which is a carbon source is prepared (S20).
  • the liquid organic compound may be one or a mixture of two or more selected from the group consisting of hydrocarbon, alcohol, ether and ester compounds.
  • the hydrocarbon may be hexene, nonene, dodecene, pentacene, toluene, xylene, chlorobenzoic acid, benzene, hexadecine, tetradecine and octadecine.
  • this is exemplary, and other linear or branched liquid hydrocarbons in the carbon number range of 6 to 20 may be applied.
  • the alcohol compound is ethyl alcohol, methyl alcohol, glycerol, propylene glycol, isopropyl alcohol, isobutyl alcohol, polyvinyl alcohol, cyclohexanol, octyl alcohol, decanol, hexatecanol, ethylene glycol, 1.2- Octanediol, 1,2-dodecanediol and 1,2-hexadecanediol, or mixtures thereof.
  • the alcoholic organic solvent other primary alcohols, secondary alcohols and tertiary alcohols or mixtures thereof may be used.
  • the ether compound is, for example, octyl ether, butyl ether, hexyl ether, benzyl ether, phenyl ether, decyl ether, ethyl methyl ether, dimethyl ether, diethyl ether, diphenyl ether, tetrahydrofuran, and 1,4-dioxane.
  • Cycle ethers and polyethers such as polyethylene glycol (PEG), polypropylene glycol (PPG), polytetramethylene glycol (PTMG), polyoxymethylene (POM), polytetrahydrofuran.
  • PEG polyethylene glycol
  • PPG polypropylene glycol
  • PTMG polytetramethylene glycol
  • POM polyoxymethylene
  • the aforementioned polyethers are exemplary, and other aliphatic or aromatic polyethers may be used as the ether-based organic solvent.
  • the ester compound may be polyethylene terephthalate, acrylate ester and cellulose acetate, isobutyl acetate, isopropyl acetate, aryl hexanoate, benzyl acetate, bonyl acetate, butyl acetate Or cyclic esters such as lactones.
  • one or a mixture of carbon-containing natural and synthetic polymeric materials can be further added as a carbon precursor to increase the concentration of the carbon source using the liquid organic compound as a solvent and soluble therein.
  • the polymer material is chitosan, glucose, sucrose, maltose, lactose, starch, glycogen, polystyrene (PS), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyacrylonitrile (PAN), One or a mixture of polyethylene (PE) and polyvinylpyrrolidone (PVP).
  • a dispersion solution DL is prepared by adding the lithium precursor into a liquid organic compound 20P (S30).
  • the concentration of the dispersion solution DL may be, for example, 0.1 mM to 100 M.
  • concentration of the dispersion solution (DL) is low, the yield is small, and when the concentration is high, it is difficult to maintain the dispersed state even by irradiation of ultrasonic waves, which may make it difficult to wet the liquid organic compound.
  • the lithium precursor may be dispersed as it is or present in a state where some or all of it is dissociated, dissolved, oxidized and reduced.
  • the particles derived from the powder or precursor in the dispersion solution DL are collectively called dispersed particles, and 10P in FIG. 3B refers to the dispersed particles.
  • Reference numeral 25P denotes a natural or synthetic carbon-containing polymer optionally added as described above.
  • a stirring process may be performed to enhance dispersibility, and optionally, the dispersion solution DL may be cooled to below room temperature to limit the growth of the dispersed particles 10P.
  • Amine surfactants such as oleylamine and / or octanoic acid, decanoic acid, lauric acid, hexadecanoic acid, oleic acid, It may further include a surfactant such as erucic acid, stearic acid, benzoic acid or biphenylcarboxylic acid. The surfactant may improve surface stability of the dispersed particles 10P in the dispersion solution DL.
  • the surfactant may be formed in the shape of the dispersed particles 10P, for example, spherical, nanorods, tetrapods, and tripods, by controlling the surface stability of the dispersed particles 10P in the dispersion solution DL. It may be appropriately selected to control the shape, such as.
  • the dispersed particles should have the required average diameter, and it is required to overcome the bonding force of the dispersed particles wetted with the liquid organic compound in the dispersion solution (DL) to prevent aggregation and precipitation.
  • ultrasonic irradiation maintains dispersion and disperses liquid organic compounds as compared to conventional mixing methods such as rotor stator mixers, piston homogenizers, gear pumps or wet grinding methods such as bit milling, colloid milling and ball milling. It has been found to be effective in uniformly wetting the particles, as well as in terms of cost and time. This is believed to be due to the fact that the ultrasonic irradiation causes a wave of pressure in the dispersion solution (DL) and hence the cavitation, and the generation of micro turbulence affects the wetting.
  • DL dispersion solution
  • the irradiated ultrasound may have an output density ranging from several W / ml to several hundred W / ml with respect to the unit volume of the dispersion solution DL. If the power density of the ultrasonic wave is low, the binding force between the wetted dispersed particles may not be overcome and a dispersion effect may not be obtained. On the contrary, if the power density is too high, the expansion of the micro bubbles in the dispersion solution prevents the uniform wetting of the liquid organic compound to the dispersed particles, and as a result, the intermediate particles with the liquid organic compound uniformly adsorbed onto the dispersed particles. You will not be able to collect them.
  • the frequency of the irradiated ultrasound is several tens of KHz to several MHz, the ultrasonic irradiation time may be 10 minutes to 2 hours.
  • the frequency and time of the ultrasonic wave consider the pressure applied to the liquid organic compound, so that the liquid organic compound can be uniformly wetted to the dispersed particles while maintaining a uniform dispersion, and selected by considering the concentration and viscosity of the dispersion solution (DL). Can be.
  • the dispersion solution DL may be filtered or dried to obtain an intermediate particle 100I on which the liquid organic compound 20P, and optionally the polymer material 25P, is adsorbed onto the dispersed particles 10P.
  • the liquid organic compound 20P may not only be adsorbed on the surface of the intermediate particles 100I but may also be enclosed within the intermediate particles 100I when a plurality of sub intermediate particles are aggregated.
  • the obtained intermediate particles 100I are heat-treated to form a carbon film 20 on the lithium metal core 10 (S60).
  • the heat treatment may be performed in the range of 200 ° C to 1500 ° C. If the temperature is less than 200 ° C., thermal decomposition of the organic compound derived from the liquid organic compound does not occur, and at a temperature exceeding 1500 ° C., the carbon film 20 is decomposed and a carbon film is not formed on the lithium metal core 10. .
  • the carbon 20a derived from the carbon source inside the intermediate particles 100I by the heat treatment, and other impurities such as the Hydrogen, oxygen or other impurities derived from precursors and / or liquid organic compounds diffuse to the surface inside the intermediate particles 100I, and hydrogen and oxygen are discharged from the intermediate particles 100I in the form of carbon dioxide or water vapor.
  • the carbon film 20 begins to grow on the surface of the intermediate particle 100I due to the carbon 20a diffused from the inside of the intermediate particle 100I to the surface, whereby a dense carbon film 20 may be formed.
  • the reduction reaction of the lithium precursor 10P may be promoted.
  • a lithium metal core 10 of reduced lithium can be formed.
  • the through hole 20H is formed by the rupture appearing in a part of the carbon film 20 by the diffusion of carbon, the discharge of carbon dioxide and water vapor, and optionally the reduction reaction of the lithium precursor 10P.
  • the generation of the through holes 20H depends on the process parameters described above, for example, the concentration of the dispersion solution, the output of the ultrasonic waves, and the heat treatment temperature.
  • the resultant is cooled (S70).
  • an intermediate void between the inner wall of the carbon film 20 and the lithium metal core 10 by controlling the cooling rate of the cooling to take advantage of the difference in thermal expansion coefficient of the lithium metal core 10 and the carbon film 20. 30 may be provided. Since the thermal expansion coefficient of the lithium metal core 10 is larger than that of the carbon film 20, the intermediate void 30 may be formed in the carbon film 20 by quenching the resultant.
  • 4A and 4B are scanning electron microscopy and transmission electron microscopy images of particulate cathode material formed in accordance with one embodiment of the present invention.
  • the particulate negative material was prepared using Li 2 O and octyl ether as the liquid organic compound.
  • the negative electrode materials obtained from the dispersion solution by ultrasonic irradiation have a spherical or elliptic shape separated from each other and granulated.
  • the particulate negative material has an average particle diameter of 250 nm and a size uniformity deviation is 10% or less. Therefore, according to the embodiment of the present invention, the particulate negative material consisting of a highly reactive lithium metal core and a carbon film can be formed safely, in a large amount and economically through a wet process.
  • a secondary battery may be provided using a negative electrode, a positive electrode, and a separator for separating these electrodes and a non-aqueous electrolyte using the above-described negative electrode material.
  • the particulate negative material may be mixed with a binder and provided on a current collector to form a negative electrode.
  • the binder is vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (PVDF), polyacrylonitrile, polymethyl methacrylate (polymethylmethacrylate)
  • PVDF-co-HFP vinylidene fluoride-hexafluoropropylene copolymer
  • PVDF polyvinylidene fluoride
  • polyacrylonitrile polymethyl methacrylate
  • Polymer materials such as polytetrafluoroethylene (PTFE), styrenebutadiene rubber (SBR), and ethylene-propylene-diene copolymer (EPDM).
  • PTFE polytetrafluoroethylene
  • SBR styrenebutadiene rubber
  • EPDM ethylene-propylene-diene copolymer
  • the binder may be another polymeric material, petroleum pitch, coal tar having conductivity, but the present invention is not limited thereto
  • the carbon film of the particulate negative electrode material may serve as a conductive material, it is possible to secure conductive paths between the particulate negative electrode materials in physical contact with each other.
  • a conductive material may be further added to the particulate negative material for cathode formation.
  • the conductive material may be, for example, carbon black and ultra fine graphite particles, fine carbon such as acetylene black, nano metal particle paste, or indium tin oxide (ITO) paste.
  • the negative electrode may be provided by laminating a mixed composition of the negative electrode material, the binder, and optionally the conductive material on a current collector or on another surface.
  • the positive electrode may include lithium salts such as lithium manganese oxide, lithium cobalt oxide or litum ion phosphate. Similar to the negative electrode, the positive electrode may further be provided with a binder and a conductive material.
  • the separator may be, for example, a polymer microporous membrane, a woven fabric, a nonwoven fabric, a ceramic, an intrinsic solid polymer electrolyte membrane, a gel solid polymer electrolyte membrane, or a combination thereof.
  • the intrinsic solid polymer electrolyte membrane may include, for example, a linear polymer material or a crosslinked polymer material.
  • the gel polymer electrolyte membrane may be, for example, a combination of any one of a plasticizer-containing polymer containing a salt, a filler-containing polymer, or a pure polymer.
  • the solid electrolyte layer is, for example, polyethylene, polypropylene, polyimide, polysulfone, polyurethane, polyvinyl chloride, polystyrene, polyethylene oxide, polypropylene oxide, polybutadiene, cellulose, carboxymethyl cellulose, nylon, polyacryl Ronitrile, polyvinylidene fluoride, polytetrafluoroethylene, copolymer of vinylidene fluoride and hexafluoropropylene, copolymer of vinylidene fluoride and trifluoroethylene, vinylidene fluoride and tetrafluoroethylene Copolymers of polymethyl acrylate, polyethyl acrylate, polyethyl acrylate, polymethyl methacrylate, polyethyl methacrylate, polybutyl acrylate, polybutyl methacrylate, polyvinylacetate, and polyvinyl alcohol Made of any one or a combination thereof It may include a polymer matrix, additive
  • the materials listed with respect to the above-mentioned separators are exemplary, and are easy to change shape as a separator, excellent mechanical strength, do not tear or crack in deformation of the electrode structure, having any suitable electronic insulation and excellent ion conductivity
  • the material can be selected.
  • the separator may be a single layer film or a multilayer film, and the multilayer film may be a stack of the same single film or a stack of single film formed of different materials.
  • the laminate may have a structure including a ceramic coating film on the surface of a polymer electrolyte film such as polyolefin.
  • the electrolyte may be an organic carbonate solution or a mixture of a lithium compound mixed with the organic carbonate solution as a non-aqueous electrolyte.
  • the organic carbonate may be an organic solvent such as ethylene carbonate (EC), dimethyl carbonate (DMC) or diethyl ether (DEE), and the present invention is not limited thereto.
  • the organic carbonate is aprotic and has a high polarity. Other organic solvents having a high dielectric constant may be applied.
  • the lithium compound may be selected from materials having good solubility and chemical stability such as Li (CR 3 SO 2 ) 2 N, LiAsF 6 , LiPF 6 or LiBF 4 .
  • a battery made of the above materials may be selected in various sizes and shapes to adjust the capacity of the battery.
  • three-dimensional packaging may be provided by a method such as stacking, bending and / or winding to provide a battery having various volumes and shapes such as a cylindrical battery, a square battery and a coin-type battery or a flexible battery.
  • the battery according to the embodiment of the present invention may be applied as a small battery that may be attached to clothes, bags, or the like and may be integrated with the cloth of clothes and bags, or may be applied as a medium-large battery for power storage or electric power storage of an automobile. .

Abstract

The present invention relates to a cathode material and a method for manufacturing same. The cathode material, according to one embodiment of the present invention, comprises: a lithium metal core; and a carbon membrane on the lithium metal core.

Description

음극 재료, 이의 제조 방법 및 이를 이용한 이차 전지Anode material, method for manufacturing same and secondary battery using same
본 발명은 이차 전지 기술에 관한 것으로서, 더욱 상세하게는, 음극 재료, 이의 제조 방법 및 이를 이용한 이차 전지에 관한 것이다.The present invention relates to a secondary battery technology, and more particularly, to a negative electrode material, a manufacturing method thereof, and a secondary battery using the same.
최근에 리튬 전지, 리튬 이온 전지, 및 리튬 이온 폴리머 전지와 같은 이차 전지의 수요가 크게 증가하고 있다. 이차 전지는 가역성이 우수한 전극 재료를 사용하여 충전 및 방전이 가능한 전지로서, 양극 및 음극 재료에 따라 니켈-수소(Ni-MH) 전지, 리튬(Li) 전지, 리튬이온(Li-ion) 전지 등으로 구분될 수 있다. 이러한 이차 전지는 스마트폰, 휴대용 컴퓨터, 및 전자 종이와 같은 IT기기, 또는 자전거 및 전기 자동차와 같은 이동 수단의 전력 공급원으로 그 적용 분야가 점차적으로 확대되고 있다. Recently, the demand for secondary batteries such as lithium batteries, lithium ion batteries, and lithium ion polymer batteries has been greatly increased. A secondary battery is a battery which can be charged and discharged using an electrode material having excellent reversibility, and is a nickel-hydrogen (Ni-MH) battery, a lithium (Li) battery, a lithium ion (Li-ion) battery, etc., depending on the positive and negative electrode materials. It can be divided into. Such secondary batteries are increasingly being applied as a power source for smart devices such as smart phones, portable computers, and electronic devices such as electronic paper, or vehicles such as bicycles and electric vehicles.
리튬을 음극 재료로 사용하는 경우, 리튬 금속의 표준 전극 전위를 그대로 기전력으로 이용할 수 있으므로, 고출력 전지를 얻을 수 있으며, 전지의 용량을 이론 용량에 근접시킬 수 있어 에너지 밀도의 최대화가 가능하다. 그러나, 리튬 재료의 경우, 전지의 충전 및 방전에 의한 화학 반응에 따라 음극에서 결정성 돌기인 수지상 리튬(lithium dendrite)이 성장되는 문제점이 있다. 이러한 수지상 리튬은 전지 내부의 분리막의 기공을 막아 이온 물질의 이동을 차단시켜 충·방전 효율을 감소시키고, 상기 수지상 리튬이 과도하게 성장하는 경우에는, 상기 수지상 리튬이 분리막을 관통하여 전지의 양극 및 음극을 단락시킬 수 있다. When lithium is used as a negative electrode material, the standard electrode potential of lithium metal can be used as electromotive force as it is, and thus a high output battery can be obtained, and the capacity of the battery can be approached to the theoretical capacity, thereby maximizing energy density. However, in the case of lithium materials, there is a problem in that dendritic lithium (lithium dendrite), which is a crystalline protrusion, grows in the negative electrode according to a chemical reaction caused by charging and discharging of a battery. The dendritic lithium blocks the pores of the separator inside the battery to block the movement of ionic materials, thereby reducing the charge / discharge efficiency. When the dendritic lithium grows excessively, the dendritic lithium penetrates the separator to provide a positive electrode and The negative electrode can be shorted.
이러한 리튬 재료의 문제점 때문에, 이차 전지의 음극 재료로서 사이클 특성이 우수하고 372 mAh/g의 이론 용량을 갖는 탄소계 재료가 널리 상용화되었다. 그러나, 이차 전지의 응용이 소전력뿐만 아니라 중전력 및 대전력 분야까지 확대됨에 따라 점차 이차 전지의 고용량화 및 고출력화가 요구되고 있으며, 이에 따라, 탄소계 재료 대비 8 배 이상의 높은 이론 용량을 갖는 리튬 자체를 음극 재료로 사용하기 위한 기술이 요구된다.Because of this problem of lithium materials, carbon-based materials having excellent cycle characteristics and a theoretical capacity of 372 mAh / g have been widely commercialized as negative electrode materials for secondary batteries. However, as the application of secondary batteries expands to not only low power but also medium and high power fields, there is a demand for higher capacity and higher output of secondary batteries. Accordingly, lithium itself having a theoretical capacity of 8 times higher than carbon-based materials is required. There is a need for a technique for using N as a cathode material.
따라서, 본 발명이 해결하고자 하는 기술적 과제는, 리튬 자체를 음극 재료로 사용하여, 고용량 및 고출력을 가지면서도 신뢰성과 향상된 수명을 갖는 이차 전지용 음극 재료를 제공하는 것이다.Therefore, the technical problem to be solved by the present invention is to provide a negative electrode material for a secondary battery having a high capacity and high output, while having a high reliability and improved life using lithium itself as a negative electrode material.
또한, 본 발명이 해결하고자 하는 다른 기술적 과제는, 전술한 이점을 갖는 음극 재료를 경제적이고 신속하게 대량으로 형성할 수 있는 제조 방법을 제공하는 것이다.In addition, another technical problem to be solved by the present invention is to provide a manufacturing method capable of economically and quickly forming a large amount of the negative electrode material having the aforementioned advantages.
또한, 본 발명이 해결하고자 하는 또 다른 기술적 과제는, 전술한 이점을 갖는 음극 재료를 이용한 이차 전지를 제공하는 것이다.In addition, another technical problem to be solved by the present invention is to provide a secondary battery using a negative electrode material having the above-described advantages.
상기 기술적 과제를 해결하기 위한 본 발명의 일 실시예에 따른 음극 재료는, 리튬 메탈 코어; 및 상기 리튬 메탈 코어 상의 탄소막을 포함한다. 일부 실시예에서, 상기 리튬 메탈 코어는 내부에 보이드를 포함할 수 있다. 또한, 상기 음극 재료는 상기 리튬 메탈 코어와 상기 탄소막의 내벽 사이에 중간 보이드를 포함할 수도 있다. 또한, 상기 탄소막은 적어도 하나 이상의 관통 홀을 포함할 수도 있다.An anode material according to an embodiment of the present invention for solving the above technical problem, a lithium metal core; And a carbon film on the lithium metal core. In some embodiments, the lithium metal core may include voids therein. In addition, the negative electrode material may include an intermediate void between the lithium metal core and the inner wall of the carbon film. In addition, the carbon film may include at least one through hole.
상기 다른 기술적 과제를 해결하기 위한 본 발명의 일 실시예에 따른 음극 재료의 제조 방법은, 리튬 전구체를 제공하는 단계; 액상 유기 화합물을 제공하는 단계; 상기 액상 유기 화합물 내에 상기 리튬 전구체를 첨가하여 분산 용액을 형성하는 단계; 상기 분산 용액 내에 초음파를 조사하는 단계; 상기 분산 용액을 여과 또는 건조시켜, 내부 또는 표면에 상기 액상 유기 화합물이 포섭된 중간 입자를 수득하는 단계; 및 상기 중간 입자를 열처리하여, 상기 리튬 전구체의 탄소 환원 반응 및 상기 액상 유기 화합물의 열분해에 의해 리튬 메탈 코어 상에 탄소막을 형성하는 단계를 포함한다.According to one or more exemplary embodiments, a method of manufacturing a negative electrode material includes: providing a lithium precursor; Providing a liquid organic compound; Adding the lithium precursor into the liquid organic compound to form a dispersion solution; Irradiating ultrasonic waves in the dispersion solution; Filtering or drying the dispersion solution to obtain intermediate particles containing the liquid organic compound inside or on the surface; And heat treating the intermediate particles to form a carbon film on the lithium metal core by a carbon reduction reaction of the lithium precursor and pyrolysis of the liquid organic compound.
상기 리튬 전구체는 리튬 산화물(Li2O 또는 Li2O2), 리튬 질산염(LiNO3) 및 리튬 탄산염(Li2CO3), 리튬 수산염(LiOH), 리튬 아세테이트(LiC2H3O2) 및 리튬 옥살산염(Li2C2O4) 중 어느 하나 또는 이들의 혼합물일 수 있다. 또한, 상기 분산 용액의 농도는 0.1 mM 내지 100 M의 범위 내일 수 있다.The lithium precursor is lithium oxide (Li 2 O or Li 2 O 2 ), lithium nitrate (LiNO 3 ) and lithium carbonate (Li 2 CO 3 ), lithium hydroxide (LiOH), lithium acetate (LiC 2 H 3 O 2 ) and Lithium oxalate (Li 2 C 2 O 4 ) It may be any one or a mixture thereof. In addition, the concentration of the dispersion solution may be in the range of 0.1 mM to 100 M.
상기 액상 유기 화합물은, 탄소수가 6 내지 20 범위 내의 탄화수소계; 알코올계; 에테르계; 및 에스테르계 화합물로 이루어진 그룹에서 선택된 하나 또는 2 이상의 혼합물일 수 있다. 상기 탄화수소계 화합물은, 헥센, 노넨, 도데센, 펜타테센, 톨루엔, 크실렌, 클로로벤조익산, 벤젠, 헥사데신, 테트라데신 및 옥타데신 중 어느 하나 또는 이들의 혼합물일 수 있다.The liquid organic compound is a hydrocarbon system having 6 to 20 carbon atoms; Alcohol based; Ether type; And it may be one or a mixture of two or more selected from the group consisting of ester compounds. The hydrocarbon compound may be any one or a mixture of hexene, nonene, dodecene, pentacene, toluene, xylene, chlorobenzoic acid, benzene, hexadecine, tetradecine and octadecine.
일부 실시예에서는, 상기 초음파를 조사하는 단계 이전에, 추가적인 탄소 소스로서 상기 액상 유기 화합물 내에, 탄소 함유 천연 또는 합성 고분자 물질을 용해시킬 수 있다. 상기 고분자 물질은, 키토산, 글루코오스, 수크로오스, 말토오스, 락토오스, 전분, 글리코겐, 폴리스틸렌(PS), 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리비닐 클로라이드(PVC), 폴리아크리로니트릴(PAN), 폴리에틸렌(PE) 및 폴리비닐피롤리돈(PVP) 중 어느 하나 또는 이들의 혼합물을 포함할 수 있다. In some embodiments, prior to the step of irradiating the ultrasonic waves, carbon-containing natural or synthetic polymeric materials may be dissolved in the liquid organic compound as an additional carbon source. The polymer material is chitosan, glucose, sucrose, maltose, lactose, starch, glycogen, polystyrene (PS), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyacrylonitrile (PAN), One or a mixture of polyethylene (PE) and polyvinylpyrrolidone (PVP).
본 발명의 다른 실시예에 따른 음극 재료의 제조 방법은, 리튬 전구체를 제공하는 단계; 물 또는 유기 용매와 이에 용해되는 탄소 전구체를 포함하는 혼합 용액을 제공하는 단계; 상기 혼합 용액 내에 상기 리튬 전구체를 첨가하여 분산 용액을 제공하는 단계; 상기 분산 용액 내에 초음파를 조사하는 단계; 상기 분산 용액을 여과 또는 건조시켜, 내부 또는 표면에 상기 탄소 전구체가 포섭된 중간 입자를 수득하는 단계; 및 상기 중간 입자를 열처리하여, 상기 리튬 전구체의 탄소 환원 반응 및 상기 액상 유기 화합물의 열분해에 의해 리튬 메탈 코어 상에 탄소막을 형성하는 단계를 포함한다. According to another embodiment of the present invention, a method of manufacturing a negative electrode material may include providing a lithium precursor; Providing a mixed solution comprising water or an organic solvent and a carbon precursor dissolved therein; Adding the lithium precursor into the mixed solution to provide a dispersion solution; Irradiating ultrasonic waves in the dispersion solution; Filtering or drying the dispersion solution to obtain intermediate particles containing the carbon precursor inside or on the surface; And heat treating the intermediate particles to form a carbon film on the lithium metal core by a carbon reduction reaction of the lithium precursor and pyrolysis of the liquid organic compound.
상기 리튬 전구체는 리튬 산화물(Li2O 또는 Li2O2), 리튬 질산염(LiNO3) 및 리튬 탄산염(Li2CO3), 리튬 수산염(LiOH), 리튬 아세테이트(LiC2H3O2) 및 리튬 옥살산염(Li2C2O4) 중 어느 하나 또는 이들의 혼합물일 수 있다. 상기 분산 용액의 농도는 0.1 mM 내지 100 M의 범위 내일 수 있다. 상기 유기 용매는, 탄화수소계; 알코올계; 에테르계; 및 에스테르계 화합물로 이루어진 그룹에서 선택된 하나 또는 2 이상의 혼합물일 수 있다. 상기 탄소 전구체는 탄소 함유 천연 및 합성 고분자 물질 중 어느 하나 또는 이들의 혼합물을 포함할 수 있다. 일부 실시예에서, 상기 고분자 물질은, 키토산, 글루코오스, 수크로오스, 말토오스, 락토오스, 전분, 글리코겐, 폴리스틸렌(PS), 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리비닐 클로라이드(PVC), 폴리아크리로니트릴(PAN), 폴리에틸렌(PE) 및 폴리비닐피롤리돈(PVP) 중 어느 하나 또는 이들의 혼합물을 포함한다.The lithium precursor is lithium oxide (Li 2 O or Li 2 O 2 ), lithium nitrate (LiNO 3 ) and lithium carbonate (Li 2 CO 3 ), lithium hydroxide (LiOH), lithium acetate (LiC 2 H 3 O 2 ) and Lithium oxalate (Li 2 C 2 O 4 ) It may be any one or a mixture thereof. The concentration of the dispersion solution may be in the range of 0.1 mM to 100 M. The organic solvent is a hydrocarbon-based; Alcohol based; Ether type; And it may be one or a mixture of two or more selected from the group consisting of ester compounds. The carbon precursor may comprise any one or mixtures of carbon-containing natural and synthetic polymeric materials. In some embodiments, the polymeric material is chitosan, glucose, sucrose, maltose, lactose, starch, glycogen, polystyrene (PS), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyacrylo Nitrile (PAN), polyethylene (PE) and polyvinylpyrrolidone (PVP) or mixtures thereof.
또한, 본 발명의 또 다른 실시예에 따른 이차 전지는, 상기 음극 재료를 포함하는 음극, 양극 및 상기 음극과 상기 양극 사이의 분리막을 포함한다.In addition, a secondary battery according to another embodiment of the present invention includes a negative electrode including the negative electrode material, a positive electrode and a separator between the negative electrode and the positive electrode.
본 발명의 실시예에 따르면, 리튬 메탈 코어 상에 탄소막을 형성함으로써 음극 재료인 리튬을 일정한 부피만큼 분급하여, 음극에서 안정된 산화 및 환원 반응을 유도할 수 있다. 또한, 탄소막을 통하여, 리튬 이온이 왕래함으로써 리튬의 산화 및 환원 반응이 균일하게 일어남으로써 리튬의 수지상 성장이 억제될 수 있다. 선택적으로는, 탄소막에 형성된 관통 홀을 통하여 리튬 이온이 왕래하므로, 고효율의 충·방전이 가능할 뿐만 아니라, 이론에 가까운 전압을 얻을 수 있다. According to an embodiment of the present invention, by forming a carbon film on a lithium metal core, lithium, which is a negative electrode material, may be classified by a predetermined volume to induce stable oxidation and reduction reactions at the negative electrode. In addition, dendritic growth of lithium can be suppressed by the oxidation and reduction reaction of lithium occurring uniformly as lithium ions come and go through the carbon film. Optionally, since lithium ions come and go through the through holes formed in the carbon film, not only high-efficiency charging and discharging are possible but also a voltage close to the theory can be obtained.
또한, 본 발명의 실시예들에 따르면, 습식 합성법과 초음파 조사에 의해 재료 코어가 될 중간 입자의 최적 분산과 액상 탄소 소스의 균일한 웨팅을 유도하여, 후속 열처리를 통해 치밀한 탄소막을 성장시킬 수 있으며, 입자형 음극 재료를 경제적이고 신속하게 대량으로 형성할 수 있는 제조 방법이 제공될 수 있다.In addition, according to embodiments of the present invention, by wet synthesis method and ultrasonic irradiation, the optimum dispersion of the intermediate particles to be the material core and uniform wetting of the liquid carbon source can be induced to grow a dense carbon film through subsequent heat treatment. In addition, a manufacturing method capable of forming a large amount of particulate negative material economically and quickly can be provided.
또한, 본 발명의 실시예에 따르면, 전술한 이점을 갖는 고출력 및 고용량의 장수명을 갖는 이차 전지가 제공될 수 있다.Further, according to an embodiment of the present invention, a secondary battery having a high output and a long life of a high capacity having the above-described advantages can be provided.
도 1a 내지 도 1c는 각각 본 발명의 다양한 실시예들에 따른 음극 재료들을 나타내는 단면도이다.1A through 1C are cross-sectional views illustrating cathode materials according to various embodiments of the present invention, respectively.
도 2는 이들 실시예에 따른 음극 재료들의 충·방전을 설명하기 위한 모식도이다.2 is a schematic view for explaining charge and discharge of the negative electrode materials according to these embodiments.
도 3a는 본 발명의 일 실시예에 따른 음극 재료의 제조 방법을 나타내는 순서도이고, 도 3b는 음극 재료의 제조 장치를 모식적으로 나타내며, 도 3c 및 도 3d는 각각 중간 입자 및 음극 재료의 모식적 이미지를 도시한다.3A is a flowchart illustrating a method of manufacturing a negative electrode material according to an exemplary embodiment of the present invention, and FIG. 3B schematically illustrates an apparatus for manufacturing a negative electrode material, and FIGS. 3C and 3D are schematic views of intermediate particles and negative electrode materials, respectively. Show the image.
도 4a 및 도 4b는 본 발명의 일 실시예에 따라 형성된 입자형 음극 재료의 주사전자 현미경 및 투과전자 현미경 이미지이다.4A and 4B are scanning electron microscopy and transmission electron microscopy images of particulate cathode material formed in accordance with one embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.  오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다. The embodiments of the present invention are provided to more fully explain the present invention to those skilled in the art, and the following examples can be modified in various other forms, and the scope of the present invention is It is not limited to an Example. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the inventive concept to those skilled in the art.
또한, 이하의 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이며, 도면상에서 동일 부호는 동일한 요소를 지칭한다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는" 는 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다. In addition, in the following drawings, the thickness or size of each layer is exaggerated for convenience and clarity of description, the same reference numerals in the drawings refer to the same elements. As used herein, the term “and / or” includes any and all combinations of one or more of the listed items.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다.  본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다.  또한, 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는 "포함하는(comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an" and "the" may include the plural forms as well, unless the context clearly indicates otherwise. Also, as used herein, "comprise" and / or "comprising" specifies the presence of the mentioned shapes, numbers, steps, actions, members, elements and / or groups of these. It is not intended to exclude the presence or the addition of one or more other shapes, numbers, acts, members, elements and / or groups.
도 1a 내지 도 1c는 각각 본 발명의 다양한 실시예들에 따른 음극 재료(100A, 100B, 100C)를 나타내는 단면도이며, 도 2는 이들 실시예에 따른 음극 재료들(100A, 100B, 100C)의 충·방전을 설명하기 위한 모식도이다. 1A to 1C are cross-sectional views illustrating cathode materials 100A, 100B, and 100C, respectively, according to various embodiments of the present disclosure, and FIG. 2 illustrates filling of cathode materials 100A, 100B, and 100C according to these embodiments. Schematic diagram for explaining discharge.
도 1a를 참조하면, 음극 재료(100A)는 리튬 메탈 코어(10) 및 리튬 메탈 코어(10) 상에 형성된 탄소막(20)을 포함한다. 리튬 메탈 코어(10)는 나노 결정의 응집체이거나 성장된 크기의 결정으로서 입자화된 단원자 리튬의 덩어리이며, 음극의 활물질로서 기능할 수 있다. Referring to FIG. 1A, the negative electrode material 100A includes a lithium metal core 10 and a carbon film 20 formed on the lithium metal core 10. The lithium metal core 10 is an aggregate of nanocrystals or agglomerates of monoatomic lithium granulated as crystals of a grown size, and may function as an active material of a negative electrode.
리튬 메탈 코어(10)는 내부에 후술하는 리튬 전구체의 환원 및/또는 열수축에 의한 보이드(10V)를 가질 수 있다. 보이드(10V)는 리튬 메탈 코어(10) 내부에서 복수의 캐비티 또는 캐비티들이 서로 연결되어 단일 캐비티일 수 있으며, 리튬 메탈 코어(10)의 표면으로 연장되어 리튬 메탈 코어(10)의 내부와 표면을 연결하는 통로를 형성할 수도 있다. 보이드(10V)는 전지의 충·방전시 리튬 이온들이 음극 재료(100A)의 내부에서 산화 또는 환원되기 쉽도록 리튬 메탈 코어(10)의 반응 표면적을 증가시킨다. The lithium metal core 10 may have a void 10V therein by reduction and / or heat shrinkage of a lithium precursor described later. The void 10V may be a single cavity in which a plurality of cavities or cavities are connected to each other in the lithium metal core 10 and extend to the surface of the lithium metal core 10 to cover the inside and the surface of the lithium metal core 10. It is also possible to form passages for connecting. The void 10V increases the reaction surface area of the lithium metal core 10 so that lithium ions are easily oxidized or reduced inside the negative electrode material 100A during charging and discharging of the battery.
리튬 메탈 코어(10)를 둘러싸는 탄소막(20)은 결정질 또는 비정질 탄소막일 수 있다. 바람직하게는, 비정질 탄소막일 수 있다. 탄소막(20)이 고결정성을 갖는 경우, 일종의 흑연과 유사하며, 표면에서 전해액과 반응을 일으킬 수 있다. 그러나, 저결정성 또는 비정질 탄소막은 화학적 내식성이 우수하므로 충·방전시에 탄소막(20)이 전해액과 반응을 일으키지 않아, 전해액의 분해가 억제되므로 음극 재료(100)의 수명이 향상될 수 있다. 또한, 탄소막(20)은, 도전성을 갖는 SP2 흑연 구조와 절연성을 갖는 SP3의 다이아몬드 구조가 혼재될 수 있으며, 탄소막(20)이 도전성을 갖기 위해서, 상기 SP2가 SP3보다 더 큰 몰분률을 갖는다. The carbon film 20 surrounding the lithium metal core 10 may be a crystalline or amorphous carbon film. Preferably, it may be an amorphous carbon film. When the carbon film 20 has high crystallinity, it is similar to a kind of graphite, and may react with the electrolyte at the surface. However, since the low crystalline or amorphous carbon film has excellent chemical corrosion resistance, the carbon film 20 does not react with the electrolyte during charging and discharging, so that decomposition of the electrolyte is suppressed, so that the lifetime of the negative electrode material 100 may be improved. In addition, the carbon film 20 may have a mixture of SP2 graphite structure having conductivity and diamond structure of SP3 having insulation, and in order for the carbon film 20 to have conductivity, the SP2 has a larger mole fraction than that of SP3.
탄소막(20)의 두께는 2 nm 내지 5 ㎛일 수 있으며, 이는 예시적일 뿐 본 발명이 이에 제한되는 것은 아니다. 탄소막(20)은 내부의 리튬 메탈 코어(10)를 전체 음극 내에서 다른 리튬 메탈 코어들과 격리시키는 물리적 장벽으로서 기능한다. 이에 의해, 리튬 메탈 코어(10) 사이의 응집이 일어나지 않는다. 또한, 리튬 이온이 탄소막(20)을 투과하여 왕래하면서, 리튬의 산화 및 환원 반응이 일어나기 때문에, 음극의 전기 화학 반응이 급격히 일어나지 않을 뿐만 아니라 리튬 메탈 코어(10)의 전 표면에 대해 이러한 반응이 균일하게 일어나므로 리튬의 수지상 성장이 억제될 수 있다. 또한, 탄소막(20)은 도전성 표면을 제공함으로써 음극 재료들(100A) 사이에 충방전을 위한 도전 경로를 확보할 수 있도록 한다. The thickness of the carbon film 20 may be 2 nm to 5 μm, which is illustrative only and the present invention is not limited thereto. The carbon film 20 functions as a physical barrier that isolates the internal lithium metal core 10 from other lithium metal cores in the entire cathode. As a result, aggregation between the lithium metal cores 10 does not occur. In addition, since lithium ions penetrate through the carbon film 20, the oxidation and reduction reactions of lithium occur, so that the electrochemical reaction of the negative electrode does not occur suddenly, and such reaction is performed on the entire surface of the lithium metal core 10. Since it occurs uniformly, dendritic growth of lithium can be suppressed. In addition, the carbon film 20 provides a conductive surface to secure a conductive path for charge and discharge between the cathode materials 100A.
탄소막(20)의 두께가 2 nm 미만에서는 전술한 물리적 장벽으로서 효과적으로 기능하지 않고, 약한 기계적 강도로 인해 전지의 충·방전시 발생할 수 있는 응력에 의해 탄소막(20)이 파괴될 수 있다. 탄소막(20)의 두께가 5 ㎛를 초과하는 경우에는 리튬 이온의 확산 장벽의 물리적 거리가 증대되어, 충·방전 효율 및 출력 전압이 감소되고, 탄소막(30)의 부피에 비해 재료 코어의 부피가 상대적으로 낮아지면서 에너지 밀도가 감소될 수 있다.If the thickness of the carbon film 20 is less than 2 nm, it does not function effectively as the above-described physical barrier, and due to the weak mechanical strength, the carbon film 20 may be destroyed by stresses that may occur during charging and discharging of the battery. When the thickness of the carbon film 20 exceeds 5 µm, the physical distance of the diffusion barrier of lithium ions is increased, and the charge and discharge efficiency and the output voltage are reduced, and the volume of the material core is larger than that of the carbon film 30. Relatively lower, energy density can be reduced.
입자형 음극 재료(100A)는 30 nm 내지 200 ㎛ 범위 내의 평균 입경을 가질 수 있다. 이러한 음극 재료(100A)의 평균 입경은 후술하는 초음파의 조사 시간, 초음파 강도, 분산 용액 내 액상 유기 화합물과 분산 입자의 비율 및 및 분산 용액의 온도, 및 선택적으로는, 계면 활성제와 같은 공정 변수를 제어함으로써 조절될 수 있다. 내부에 리튬 메탈 코어(10)를 갖고 표피에 탄소막(20)을 갖는 음극 재료(100A)는 대체로 구형이다. 그러나, 이는 예시적이며, 음극 재료(100A)는 구형 이외에도 타원체일 수도 있으며, 쌀알, 감자 모양과 같은 부정형성을 가질 수도 있다. 이와 같이 형성된 입자형 음극 재료(100A)는, 이를 이용해 음극을 구성할 경우, 그 충진 밀도를 향상시킬 수 있다.The particulate negative material 100A may have an average particle diameter in the range of 30 nm to 200 μm. The average particle diameter of the negative electrode material 100A may be determined by the following parameters such as irradiation time of ultrasonic wave, ultrasonic intensity, ratio of the liquid organic compound and dispersed particles in the dispersion solution, and temperature of the dispersion solution, and optionally, a surfactant. It can be adjusted by controlling. The negative electrode material 100A having the lithium metal core 10 inside and the carbon film 20 on the skin is generally spherical. However, this is exemplary, and the negative electrode material 100A may be an ellipsoid in addition to a spherical shape, and may have an irregularity such as a grain of rice or a potato. When the negative electrode material 100A formed as described above is used to form a negative electrode, the filling density thereof can be improved.
도 1b를 참조하면, 음극 재료(100B)의 탄소막(20)은 하나 또는 2 이상의 관통 홀들(20H)을 포함할 수 있다. 리튬 이온은 탄소막(20)을 투과해서는 물론, 관통 홀들(20H)을 통해서 자유롭게 리튬 메탈 코어(10)와 탄소막(20) 외부의 전해질(도 2의 EL 참조) 사이에서 왕래하게 된다. Referring to FIG. 1B, the carbon film 20 of the cathode material 100B may include one or two through holes 20H. Lithium ions not only pass through the carbon film 20 but also freely pass between the lithium metal core 10 and the electrolyte outside the carbon film 20 (see EL in FIG. 2) through the through holes 20H.
도 2를 함께 참조하면, 외부 전해질(EL)에 용해된 리튬 이온 Li+은 충전시 탄소막(20)에 형성된 관통 홀들(20H)을 통하여, 화살표 A로 나타낸 바와 같이, 탄소막(20) 내부의 리튬 메탈 코어(10)로 자유롭게 전달되어 환원될 수 있다. 방전시에는, 화살표 B로 나타낸 바와 같이, 리튬 메탈 코어(10)의 리튬이 산화되어, Li+이 리튬 메탈 코어(10)로부터 방출된다. 관통 홀들(20H)을 통하여 자유롭게 왕래하는 리튬 이온 Li+은 탄소막(20)에 의해 제한되는 리튬의 투과량을 보상하여, 고효율 및 고용량의 충전이 가능할 뿐만 아니라, 방전시에도 탄소막(20)에 의한 전기 에너지의 소모를 보상하여 이론 전압에 가까운 고출력 전압을 얻을 수 있도록 한다.Referring to FIG. 2, lithium ion Li + dissolved in the external electrolyte EL is lithium metal inside the carbon film 20, as indicated by arrow A, through the through holes 20H formed in the carbon film 20 during charging. It can be freely delivered to the core 10 and reduced. At the time of discharge, as indicated by arrow B, lithium of the lithium metal core 10 is oxidized, and Li + is released from the lithium metal core 10. Lithium ion Li + freely passing through the through holes 20H compensates for the lithium permeation amount limited by the carbon film 20, enabling not only high efficiency and high capacity charging but also electrical energy by the carbon film 20 during discharge. The high output voltage close to the theoretical voltage can be obtained by compensating for the consumption of.
종래에 리튬 수지상 성장을 억제하기 위한 기술로서, 충·방전에 따른 부피 팽창의 버퍼로서 탄성 매트릭스(resilient matrix) 내에 활물질인 리튬 합금화가 가능한 금속/준금속 입자들, 예를 들면, Sn 또는 Si를 함침시키는 복합 재료가 제안된 바 있지만, 이러한 탄성 매트릭스는 리튬 이온의 이동에 대해 물리적, 화학적 및 전기적 거대 장벽이 되어 고효율의 충·방전을 얻기 어려우며, 활물질로서 리튬 그 자체를 사용하는 경우에 비해 출력이 낮다. 그러나, 본 발명의 실시예에 따르면, 입자 형태를 한정하는 탄소막(20)과 활물질로서 리튬 그 자체를 사용하므로, 제한된 두께를 갖는 물리적 및 확산 장벽을 제공하면서도, 선택적으로는, 관통 홀(20H)에 의해 리튬 이온의 이동을 촉진하여, 리튬의 수지상 성장을 억제하여 전지의 비가역성을 개선하면서도, 고속 충·방전과 고출력을 얻을 수 있도록 한다. Conventionally, as a technique for suppressing lithium dendritic growth, metal / metalloids capable of lithium alloying as active materials in a resilient matrix, for example, Sn or Si, are used as a buffer for volume expansion due to charge and discharge. Although impregnated composite materials have been proposed, these elastic matrices are physical, chemical, and electrical giant barriers to the movement of lithium ions, making it difficult to obtain high-efficiency charge and discharge, and output compared to the case of using lithium itself as an active material. Is low. However, according to the embodiment of the present invention, the carbon film 20 defining the particle shape and lithium itself as the active material provide a physical and diffusion barrier having a limited thickness, but optionally, the through hole 20H. By promoting the movement of lithium ions to suppress the dendritic growth of lithium to improve the irreversibility of the battery, it is possible to obtain a high speed charge and discharge and high output.
도 1c를 참조하면, 음극 재료(100C)는 탄소막(20)의 내벽과 리튬 메탈 코어(10) 사이에 중간 보이드(30)를 더 포함할 수 있다. 중간 보이드(30)는 음극 재료(100C)의 충·방전에 따른 부피 팽창을 완화할 수 있다. 이러한 중간 보이드(30)는 후술하는 열처리 공정 후 냉각시 재료 코어(10)와 탄소막(20) 사이의 열팽창률의 차이에 의해 생성될 수 있다. Referring to FIG. 1C, the negative electrode material 100C may further include an intermediate void 30 between the inner wall of the carbon film 20 and the lithium metal core 10. The intermediate voids 30 can alleviate the volume expansion caused by the charge and discharge of the negative electrode material 100C. The intermediate void 30 may be generated by a difference in thermal expansion rate between the material core 10 and the carbon film 20 during cooling after the heat treatment process described below.
도 3a는 본 발명의 일 실시예에 따른 음극 재료의 제조 방법을 나타내는 순서도이고, 도 3b는 음극 재료의 제조 장치를 모식적으로 나타내며, 도 3c 및 도 3d는 각각 중간 입자(100I) 및 음극 재료(100)의 모식적 이미지를 도시한다.3A is a flowchart illustrating a method of manufacturing a negative electrode material according to an exemplary embodiment of the present invention, and FIG. 3B schematically illustrates an apparatus for manufacturing a negative electrode material, and FIGS. 3C and 3D show an intermediate particle 100I and a negative electrode material, respectively. A typical image of 100 is shown.
도 3a를 참조하면, 리튬 메탈 코어를 구성할 리튬 전구체를 준비한다(S10). 상기 리튬 전구체는, 리튬 산화물 또는 리튬을 포함하는 염일 수 있다. 상기 리튬 산화물은, 예를 들면, Li2O 또는 Li2O2이며, 상기 리튬을 포함하는 염은, 예를 들면, 리튬 질산염(LiNO3), 리튬 탄산염(Li2CO3), 리튬 수산염(LiOH), 및 리튬 옥살산염(Li2C2O4) 중 어느 하나 또는 이들의 혼합물을 포함할 수 있다. 이들 재료들은 예시적이며, 본 발명이 이에 제한되는 것은 아니다. 예를 들면, 상기 리튬 전구체는, 후술하는 분산 용액에서 분산 가능한 물질 중에서 선택된 다른 리튬 산화물, 탄산염, 수산염, 질산염, 초산염, 질산화물, 염화물일 수 있다. 또는 상기 리튬 전구체는, 리튬 아세테이트(LiC2H3O2)와 같은 유기 분자 화합물이나 다른 공액 화합물 또는 킬레이트일 수도 있다. 바람직하게는, 상기 리튬 전구체는 리튬 이외에 다른 금속을 포함하지 않음으로써, 후술하는 탄소 환원 반응에 의해서만으로도 순수한 리튬 메탈 코어를 얻을 수 있도록 한다.Referring to FIG. 3A, a lithium precursor constituting the lithium metal core is prepared (S10). The lithium precursor may be a salt containing lithium oxide or lithium. The lithium oxide is, for example, Li 2 O or Li 2 O 2 , and the salt containing lithium is, for example, lithium nitrate (LiNO 3 ), lithium carbonate (Li 2 CO 3 ), lithium hydroxide ( LiOH), and lithium oxalate (Li 2 C 2 O 4 ) or a mixture thereof. These materials are exemplary and the present invention is not limited thereto. For example, the lithium precursor may be another lithium oxide, carbonate, oxalate, nitrate, acetate, nitrate or chloride selected from materials dispersible in the dispersion solution described below. Alternatively, the lithium precursor may be an organic molecular compound such as lithium acetate (LiC 2 H 3 O 2 ), another conjugated compound, or chelate. Preferably, the lithium precursor does not contain any metal other than lithium, so that the pure lithium metal core can be obtained only by the carbon reduction reaction described later.
이들 리튬 전구체는, 고상 입자로서 그 재료의 특성에 따라 수 nm 내지 수십 nm 범위의 직경을 갖는 일차 입자이거나 상기 일차 입자들이 응집되어 형성된 수십 nm 내지 수백 nm의 크기를 갖는 이차 입자를 포함하는 파우더일 수 있다. 일부 실시예에서는, 상기 리튬 전구체의 크기를 균일화하기 위해, 밀링과 같은 공정이 수행될 수도 있다.These lithium precursors are solid particles and may be powders including primary particles having a diameter in the range of several nm to several tens nm depending on the properties of the material, or secondary particles having a size of several tens of nm to several hundred nm formed by aggregation of the primary particles. Can be. In some embodiments, processes such as milling may be performed to uniformize the size of the lithium precursor.
상기 리튬 전구체는 300 ℃ 미만의 온도에서도 쉽게 분해되지만, 대량 합성시 오스왈드 라이프닝(Ostwald ripening)과 같은 성장 메터니즘이 발현되지 않는 재료 중에서 선택되는 것이 바람직하다. 오스왈드 라이프닝에 의한 성장이 있는 경우, 입자의 크기가 급속히 증가하여 크기 제어가 용이하지 않고, 입자의 크기 산포가 증가할 수 있기 때문이다.The lithium precursor is easily decomposed even at temperatures below 300 ° C., but is preferably selected from materials that do not exhibit growth mechanisms such as Ostwald ripening during mass synthesis. This is because when there is growth by Oswald life, the size of the particles increases rapidly, so that the size control is not easy, and the size dispersion of the particles may increase.
탄소 소스인 액상 유기 화합물을 준비한다(S20). 상기 액상 유기 화합물은 탄화수소계, 알코올계, 에테르계 및 에스테르계 화합물로 이루어진 그룹에서 선택된 하나 또는 2 이상의 혼합물일 수 있다. 예를 들면, 상기 탄화 수소는, 헥센, 노넨, 도데센, 펜타테센, 톨루엔, 크실렌, 클로로벤조익산, 벤젠, 헥사데신, 테트라데신 및 옥타데신일 수 있다. 그러나, 이는 예시적이며, 탄소수는 6 내지 20의 범위 내의 선형 또는 가지형의 다른 액상 탄화 수소가 적용될 수 있다. A liquid organic compound which is a carbon source is prepared (S20). The liquid organic compound may be one or a mixture of two or more selected from the group consisting of hydrocarbon, alcohol, ether and ester compounds. For example, the hydrocarbon may be hexene, nonene, dodecene, pentacene, toluene, xylene, chlorobenzoic acid, benzene, hexadecine, tetradecine and octadecine. However, this is exemplary, and other linear or branched liquid hydrocarbons in the carbon number range of 6 to 20 may be applied.
또한, 상기 알코올계 화합물은, 에틸알콜, 메틸알콜, 글리세롤, 프로필렌 글리콜, 이소프로필알콜, 이소부틸알콜, 폴리비닐알콜, 사이클로헥사놀, 옥틸알콜, 데카놀, 헥사테카놀, 에틸렌글리콜, 1.2-옥테인디올, 1,2-도데케인디올 및 1,2-헥사데케인디올 중 어느 하나 또는 이들의 혼합물일 수 있다. 그러나, 이는 예시적이며, 본 발명이 이에 제한되는 것은 아니다. 상기 알코올계 유기 용매로서 다른 1차 알코올, 2차 알코올 및 3차 알코올 또는 이들의 혼합물이 사용될 수도 있다.In addition, the alcohol compound is ethyl alcohol, methyl alcohol, glycerol, propylene glycol, isopropyl alcohol, isobutyl alcohol, polyvinyl alcohol, cyclohexanol, octyl alcohol, decanol, hexatecanol, ethylene glycol, 1.2- Octanediol, 1,2-dodecanediol and 1,2-hexadecanediol, or mixtures thereof. However, this is exemplary and the present invention is not limited thereto. As the alcoholic organic solvent, other primary alcohols, secondary alcohols and tertiary alcohols or mixtures thereof may be used.
상기 에테르계 화합물은, 옥틸에테르, 부틸에테르, 헥실에테르, 벤질에테르, 페닐에테르, 데실에테르, 에틸메틸에테르, 디메틸에테르, 디에틸에테르, 디페닐에테르, 테트라하이드로퓨란, 1,4-다이옥산과 같은 사이클 에테르 및 폴리에틸렌 글리콜(PEG), 폴리프로필렌 글리콜(PPG), 폴리테트라메틸렌 글리콜(PTMG), 폴리옥시메틸렌(POM), 폴리테트라하이드로퓨란과 같은 폴리에테르일 수도 있다. 전술한 폴리에테르는 예시적이며, 상기 에테르계 유기 용매로서 다른 지방족 또는 방향족 폴리에테르가 사용될 수도 있다.The ether compound is, for example, octyl ether, butyl ether, hexyl ether, benzyl ether, phenyl ether, decyl ether, ethyl methyl ether, dimethyl ether, diethyl ether, diphenyl ether, tetrahydrofuran, and 1,4-dioxane. Cycle ethers and polyethers such as polyethylene glycol (PEG), polypropylene glycol (PPG), polytetramethylene glycol (PTMG), polyoxymethylene (POM), polytetrahydrofuran. The aforementioned polyethers are exemplary, and other aliphatic or aromatic polyethers may be used as the ether-based organic solvent.
상기 에스테르계 화합물은, 폴리에틸렌 테레프탈레이트, 아크릴레이트 에스테르 및 셀룰로스 아세테이트, 이소부틸 아세테이트, 이소프로필 아세테이트, 아릴 헥사노에이트(allyl hexanoate), 벤질 아세테이트(benzyl acetate), 보닐 아세테이트(bornyl acetate), 부틸 아세테이트 또는 락톤과 같은 사이클릭 에스테르일 수도 있다.The ester compound may be polyethylene terephthalate, acrylate ester and cellulose acetate, isobutyl acetate, isopropyl acetate, aryl hexanoate, benzyl acetate, bonyl acetate, butyl acetate Or cyclic esters such as lactones.
다른 실시예에서는, 탄소 소스의 농도를 증가시키기 위해 탄소 전구체로서, 상기 액상 유기 화합물을 용매로서 이용하여 이에 용해 가능한 탄소 함유 천연 및 합성 고분자 물질 중 어느 하나 또는 이들의 혼합물을 더 첨가할 수 있다. 또 다른 실시예로서, 상기 액상 유기 화합물 대신에 다른 용매, 예를 들면, 물에 추가적인 수용성 탄소 함유 천연 및 합성 고분자 물질 중 어느 하나 또는 이들의 혼합물을 용해시킬 수 있다. 상기 고분자 물질은, 키토산, 글루코오스, 수크로오스, 말토오스, 락토오스, 전분, 글리코겐, 폴리스틸렌(PS), 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리비닐 클로라이드(PVC), 폴리아크리로니트릴(PAN), 폴리에틸렌(PE) 및 폴리비닐피롤리돈(PVP) 중 어느 하나 또는 이들의 혼합물일 수 있다.In another embodiment, one or a mixture of carbon-containing natural and synthetic polymeric materials can be further added as a carbon precursor to increase the concentration of the carbon source using the liquid organic compound as a solvent and soluble therein. As another example, it is possible to dissolve any one or a mixture of additional water soluble carbon containing natural and synthetic polymeric materials in another solvent, such as water, instead of the liquid organic compound. The polymer material is chitosan, glucose, sucrose, maltose, lactose, starch, glycogen, polystyrene (PS), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyacrylonitrile (PAN), One or a mixture of polyethylene (PE) and polyvinylpyrrolidone (PVP).
도 3a와 함께 도 3b를 함께 참조하면, 액상 유기 화합물(20P) 내에 상기 리튬 전구체를 첨가하여 분산 용액(DL)을 제조한다(S30). 분산 용액(DL)의 농도는, 예를 들면, 0.1 mM 내지 100 M 일 수 있다. 분산 용액(DL)의 농도가 낮으면 수율이 작고, 그 농도가 높아지면 초음파의 조사에 의해서도 분산 상태의 유지가 어려워 액상 유기 화합물의 웨팅이 어려울 수 있다. Referring to FIG. 3B together with FIG. 3A, a dispersion solution DL is prepared by adding the lithium precursor into a liquid organic compound 20P (S30). The concentration of the dispersion solution DL may be, for example, 0.1 mM to 100 M. When the concentration of the dispersion solution (DL) is low, the yield is small, and when the concentration is high, it is difficult to maintain the dispersed state even by irradiation of ultrasonic waves, which may make it difficult to wet the liquid organic compound.
분산 용액(DL) 내에서, 상기 리튬 전구체는 그대로 분산되거나 일부 또는 전부가 해리, 용해, 산화 및 환원된 상태로 존재할 수도 있다. 이하에서는, 분산 용액(DL) 내에서 상기 파우더 또는 전구체로부터 유래된 입자들을 통칭하여 분산 입자라고 하며, 도 3b의 10P는 상기 분산 입자를 가리킨다. 참조 번호 25P는, 전술한 바와 같이, 선택적으로 첨가된 천연 또는 합성 탄소 함유 고분자를 가리킨다. 일부 실시예에서는, 분산성의 강화를 위해 교반 공정이 수행될 수 있으며, 선택적으로는, 분산 용액(DL)은 분산 입자(10P)의 성장을 제한하기 위해 상온 이하로 냉각될 수도 있다.In the dispersion solution DL, the lithium precursor may be dispersed as it is or present in a state where some or all of it is dissociated, dissolved, oxidized and reduced. Hereinafter, the particles derived from the powder or precursor in the dispersion solution DL are collectively called dispersed particles, and 10P in FIG. 3B refers to the dispersed particles. Reference numeral 25P denotes a natural or synthetic carbon-containing polymer optionally added as described above. In some embodiments, a stirring process may be performed to enhance dispersibility, and optionally, the dispersion solution DL may be cooled to below room temperature to limit the growth of the dispersed particles 10P.
일부 실시예에서는, 상기 혼합 용액 내에 옥틸아민(octylamine), 트리옥틸아민(trioctylamine), 데실아민(decylamine), 도데실아민(dodecylamine), 테트라데실아민(tetradecylamine), 헥사데실아민(hexadecylamine), 올레일아민(oleylamine)과 같은 아민계 계면 활성제 및/또는 옥탄산(octanoic acid), 데칸산(decanoic acid), 라우르산(lauric acid), 헥사데칸산(hexadecanoic acid), 올레산(oleic acid), 에루신산(erucic acid), 스테아르산(stearic acid), 벤조산(benzoic acid) 또는 바이페닐카르복시산(biphenylcarboxylic acid)과 같은 계면 활성제를 더 포함할 수도 있다. 상기 계면 활성제는 분산 용액(DL) 내에서 분산 입자(10P)의 표면 안정성을 향상시킬 수 있다. 전술한 계면 활성제들은 예시적이며, 본 발명이 이에 제한되는 것은 아니다. 예를 들면, 상기 계면 활성제는, 분산 용액(DL) 내 분산 입자들(10P)의 표면 안정성의 제어를 통해 분산 입자(10P)의 형상, 예를 들면, 구형, 나노 로드, 테트라포드, 및 트리포드와 같은 형상을 제어할 수 있도록 적절히 선택될 수 있다.In some embodiments, octylamine, trioctylamine, decylamine, dodecylamine, tetratradecylamine, hexadecylamine, hexadecylamine, oleate in the mixed solution. Amine surfactants such as oleylamine and / or octanoic acid, decanoic acid, lauric acid, hexadecanoic acid, oleic acid, It may further include a surfactant such as erucic acid, stearic acid, benzoic acid or biphenylcarboxylic acid. The surfactant may improve surface stability of the dispersed particles 10P in the dispersion solution DL. The aforementioned surfactants are exemplary and the present invention is not limited thereto. For example, the surfactant may be formed in the shape of the dispersed particles 10P, for example, spherical, nanorods, tetrapods, and tripods, by controlling the surface stability of the dispersed particles 10P in the dispersion solution DL. It may be appropriately selected to control the shape, such as.
이후 전술한 바와 같이 제조된 분산 용액(DL) 내에 초음파 발생 장치(예를 들면, 초음파 프루브; SP)를 이용하여 초음파를 조사한다(S40). 균일한 탄소막의 형성을 위해서는 상기 분산 입자들이 요구되는 평균 직경을 가져야 하며, 분산 용액(DL) 내에서 액상 유기 화합물로 웨팅된 분산 입자들의 결합력을 극복하여 응집과 침전을 막는 것이 요구된다. Subsequently, ultrasonic waves are irradiated into the dispersion solution DL prepared as described above using an ultrasonic generator (for example, an ultrasonic probe; SP) (S40). In order to form a uniform carbon film, the dispersed particles should have the required average diameter, and it is required to overcome the bonding force of the dispersed particles wetted with the liquid organic compound in the dispersion solution (DL) to prevent aggregation and precipitation.
이러한 응용에 있어서, 로터 스테이터 믹서, 피스톤 호모나이저, 기어 펌프 또는 비트 밀링, 콜로이드 밀링 및 볼 밀링과 같은 습식 그라인딩법과 같은 종래의 혼합법에 비하여 초음파 조사는 분산 상태를 유지하면서 액상 유기 화합물이 상기 분산 입자들을 균일하게 웨팅하는데에 효과적일 뿐만 아니라, 비용 및 시간 측면에서도 이점이 있음이 파악되었다. 이는 초음파 조사가 분산 용액(DL)에 압력의 파동과 그에 따른 공동 현상을 초래하고, 마이크로 난류를 발생시키는 것이 웨팅에 영향을 미치기 때문인 것으로 여겨진다. In these applications, ultrasonic irradiation maintains dispersion and disperses liquid organic compounds as compared to conventional mixing methods such as rotor stator mixers, piston homogenizers, gear pumps or wet grinding methods such as bit milling, colloid milling and ball milling. It has been found to be effective in uniformly wetting the particles, as well as in terms of cost and time. This is believed to be due to the fact that the ultrasonic irradiation causes a wave of pressure in the dispersion solution (DL) and hence the cavitation, and the generation of micro turbulence affects the wetting.
조사되는 초음파는 분산 용액(DL)의 단위 부피에 대하여, 수 W/ml 내지 수백 W/ml의 범위의 출력 밀도를 가질 수 있다. 초음파의 출력 밀도가 낮으면, 웨팅된 분산 입자들 사이의 결합력을 극복하지 못하여 분산 효과를 얻을 수 없다. 반대로, 출력 밀도가 너무 높으면, 분산 용액 내에 생기는 마이크로 버블의 팽창으로 분산 입자들에 액상 유기 화합물이 균일하게 웨팅되는 것이 방해되고, 그 결과, 분산 입자 상에 액상 유기 화합물이 균일하게 흡착된 중간 입자를 수집할 수 없게 된다.The irradiated ultrasound may have an output density ranging from several W / ml to several hundred W / ml with respect to the unit volume of the dispersion solution DL. If the power density of the ultrasonic wave is low, the binding force between the wetted dispersed particles may not be overcome and a dispersion effect may not be obtained. On the contrary, if the power density is too high, the expansion of the micro bubbles in the dispersion solution prevents the uniform wetting of the liquid organic compound to the dispersed particles, and as a result, the intermediate particles with the liquid organic compound uniformly adsorbed onto the dispersed particles. You will not be able to collect them.
상기 조사되는 초음파의 주파수는 수십 KHz 내지 수 MHz 이며, 초음파 조사 시간은 10 분 내지 2 시간일 수 있다. 초음파의 주파수 및 시간은 액상 유기 화합물에 미치는 압력을 고려하여, 균일한 분산을 유지하면서도 액상 유기 화합물이 분산 입자들에 고르게 웨팅될 수 있도록 하며, 분산 용액(DL)의 농도와 점도를 고려하여 선택될 수 있다. The frequency of the irradiated ultrasound is several tens of KHz to several MHz, the ultrasonic irradiation time may be 10 minutes to 2 hours. The frequency and time of the ultrasonic wave consider the pressure applied to the liquid organic compound, so that the liquid organic compound can be uniformly wetted to the dispersed particles while maintaining a uniform dispersion, and selected by considering the concentration and viscosity of the dispersion solution (DL). Can be.
후속하여, 분산 용액(DL)을 여과 또는 건조시켜, 분산 입자(10P) 상에 액상 유기 화합물(20P), 및 선택적으로는 고분자 물질(25P)이 흡착된 중간 입자(100I)를 수득할 수 있다(S50). 액상 유기 화합물(20P)은 중간 입자(100I)의 표면에 흡착되어 있을 뿐만 아니라 복수의 서브 중간 입자들이 응집된 경우, 중간 입자(100I)의 내부에도 포섭될 수 있다.Subsequently, the dispersion solution DL may be filtered or dried to obtain an intermediate particle 100I on which the liquid organic compound 20P, and optionally the polymer material 25P, is adsorbed onto the dispersed particles 10P. (S50). The liquid organic compound 20P may not only be adsorbed on the surface of the intermediate particles 100I but may also be enclosed within the intermediate particles 100I when a plurality of sub intermediate particles are aggregated.
이후, 수득한 중간 입자(100I)를 열처리하여, 리튬 메탈 코어(10) 상에 탄소막(20)을 형성한다(S60). 상기 열처리하는 단계는 200 ℃ 내지 1500 ℃ 범위 내에서 수행될 수 있다. 온도가 200 ℃ 미만에서는, 상기 액상 유기 화합물로부터 유래된 유기 화합물의 열분해가 일어나지 않으며, 1500 ℃를 초과하는 온도에서는 오히려 탄소막(20)이 분해되어 리튬 메탈 코어(10) 상에 탄소막이 형성되지 않는다.Thereafter, the obtained intermediate particles 100I are heat-treated to form a carbon film 20 on the lithium metal core 10 (S60). The heat treatment may be performed in the range of 200 ° C to 1500 ° C. If the temperature is less than 200 ° C., thermal decomposition of the organic compound derived from the liquid organic compound does not occur, and at a temperature exceeding 1500 ° C., the carbon film 20 is decomposed and a carbon film is not formed on the lithium metal core 10. .
상기 열처리와 관련하여, 도 3c와 함께 도 3d를 참조하면, 상기 열처리에 의해 중간 입자(100I)의 내부에 있는 상기 탄소 소스로부터 유래된 탄소(20a), 그리고, 다른 불순물, 예를 들면, 상기 전구체 및/또는 액상 유기 화합물로부터 유래된 수소, 산소 또는 다른 불순물이 중간 입자(100I)의 내부에서 표면으로 확산되고, 수소 및 산소는 이산화 탄소 또는 수증기의 형태로 중간 입자(100I)로부터 배출된다. With respect to the heat treatment, referring to FIG. 3D in conjunction with FIG. 3C, the carbon 20a derived from the carbon source inside the intermediate particles 100I by the heat treatment, and other impurities such as the Hydrogen, oxygen or other impurities derived from precursors and / or liquid organic compounds diffuse to the surface inside the intermediate particles 100I, and hydrogen and oxygen are discharged from the intermediate particles 100I in the form of carbon dioxide or water vapor.
중간 입자(100I)의 내부로부터 표면으로 확산되는 탄소(20a)에 의해 중간 입자(100I)의 표면에서는 탄소막(20)이 성장하기 시작하며, 고결되어 치밀한 탄소막(20)이 형성될 수 있다. 또한, 상기 열처리 동안 탄소(20a)가 중간 입자(100')의 표면으로 확산되면서, 리튬 전구체(10P)의 환원 반응을 촉진할 수 있다. 그 결과, 환원된 리튬으로 된 리튬 메탈 코어(10)가 형성될 수 있다. The carbon film 20 begins to grow on the surface of the intermediate particle 100I due to the carbon 20a diffused from the inside of the intermediate particle 100I to the surface, whereby a dense carbon film 20 may be formed. In addition, as the carbon 20a diffuses to the surface of the intermediate particles 100 ′ during the heat treatment, the reduction reaction of the lithium precursor 10P may be promoted. As a result, a lithium metal core 10 of reduced lithium can be formed.
관통 홀(20H)은 상기 탄소의 확산과 이산화탄소 및 수증기의 배출, 및 선택적으로는 리튬 전구체(10P)의 환원 반응에 의해 탄소막(20)의 일부에서 나타나는 파열에 의해 형성되는 것으로 추측된다. 관통 홀(20H)의 생성은 전술한 공정 파라미터들, 예를 들면, 분산 용액의 농도, 초음파의 출력, 열처리 온도에 의존한다.It is assumed that the through hole 20H is formed by the rupture appearing in a part of the carbon film 20 by the diffusion of carbon, the discharge of carbon dioxide and water vapor, and optionally the reduction reaction of the lithium precursor 10P. The generation of the through holes 20H depends on the process parameters described above, for example, the concentration of the dispersion solution, the output of the ultrasonic waves, and the heat treatment temperature.
다시, 도 3b를 참조하면, 후속하여, 상기 결과물을 냉각시킨다(S70). 일부 실시예에서는, 상기 냉각의 냉각 속도를 제어하여, 리튬 메탈 코어(10)와 탄소막(20)의 열팽창률의 차이를 이용함으로써 탄소막(20)의 내벽과 리튬 메탈 코어(10) 사이에 중간 보이드(30)를 제공할 수도 있다. 리튬 메탈 코어(10)의 열팽창률이 탄소막(20)에 비하여 크므로, 상기 결과물을 급냉시킴으로써 탄소막(20) 내에 중간 보이드(30)를 형성할 수 있다.Again, referring to FIG. 3B, subsequently, the resultant is cooled (S70). In some embodiments, an intermediate void between the inner wall of the carbon film 20 and the lithium metal core 10 by controlling the cooling rate of the cooling to take advantage of the difference in thermal expansion coefficient of the lithium metal core 10 and the carbon film 20. 30 may be provided. Since the thermal expansion coefficient of the lithium metal core 10 is larger than that of the carbon film 20, the intermediate void 30 may be formed in the carbon film 20 by quenching the resultant.
도 4a 및 도 4b는 본 발명의 일 실시예에 따라 형성된 입자형 음극 재료의 주사전자 현미경 및 투과전자 현미경 이미지이다. 입자형 음극 재료는 Li2O를 이용하고, 액상 유기 화합물로서 옥틸 에테르를 사용하여 제조되었다.4A and 4B are scanning electron microscopy and transmission electron microscopy images of particulate cathode material formed in accordance with one embodiment of the present invention. The particulate negative material was prepared using Li 2 O and octyl ether as the liquid organic compound.
도 4a 및 도 4b를 참조하면, 초음파 조사에 의해 분산 용액으로부터 얻어진 음극 재료는 서로 분리되어 입자화된 구 또는 타원 형상을 갖는다. 입자형 음극 재료는 250 nm의 평균 입경을 가지며, 크기 균일도 편차가 10 % 이하이다. 따라서, 본 발명의 실시예에 따르면, 반응성이 큰 리튬 메탈 코어와 탄소막으로 이루어진 입자형 음극 재료가, 습식 공정을 통하여 안전하고, 대량이면서도 경제적으로 형성될 수 있다.4A and 4B, the negative electrode materials obtained from the dispersion solution by ultrasonic irradiation have a spherical or elliptic shape separated from each other and granulated. The particulate negative material has an average particle diameter of 250 nm and a size uniformity deviation is 10% or less. Therefore, according to the embodiment of the present invention, the particulate negative material consisting of a highly reactive lithium metal core and a carbon film can be formed safely, in a large amount and economically through a wet process.
전술한 음극 재료를 이용한 음극, 양극 및 이들 전극을 분리하는 분리막과 비수계 전해질을 이용하여 2차 전지가 제공될 수 있다. 일부 실시예에서, 상기 입자형 음극 재료는 바인더와 혼합되어 집전체 상에 제공되어, 음극을 형성할 수 있다. 상기 바인더는, 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride: PVDF), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리테트라불화에틸렌(polytetrafluoroethylene: PTFE), 스틸렌부타디엔 고무(styrenebutadiene rubber: SBR), 및 에틸렌프로필렌디엔 공중합체(ethylene-propylene-diene copolymer: EPDM)와 같은 폴리머계 재료일 수 있다. 다른 실시예에서, 상기 바인더는 도전성을 갖는 다른 폴리머계 재료, 석유 피치, 콜타르일 수도 있으며, 본 발명이 이들에 한정되는 것은 아니다.A secondary battery may be provided using a negative electrode, a positive electrode, and a separator for separating these electrodes and a non-aqueous electrolyte using the above-described negative electrode material. In some embodiments, the particulate negative material may be mixed with a binder and provided on a current collector to form a negative electrode. The binder is vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (PVDF), polyacrylonitrile, polymethyl methacrylate (polymethylmethacrylate) Polymer materials such as polytetrafluoroethylene (PTFE), styrenebutadiene rubber (SBR), and ethylene-propylene-diene copolymer (EPDM). In another embodiment, the binder may be another polymeric material, petroleum pitch, coal tar having conductivity, but the present invention is not limited thereto.
상기 입자형 음극 재료의 탄소막이 도전재로서 역할을 할 수 있으므로, 서로 물리적으로 접촉하는 입자형 음극 재료들끼리 도전 경로를 확보할 수 있다. 선택적으로는, 음극 형성을 위해 상기 입자형 음극 재료에 도전재가 더 첨가될 수도 있다. 상기 도전재는, 예를 들면, 카본 블랙 및 초미세 그라파이트 입자, 아세틸렌 블랙과 같은 파인 카본(fine carbon), 나노 금속 입자 페이스트, 또는 ITO(indium tin oxide) 페이스트일 수도 있다. 상기 음극 재료, 바인더, 및 선택적으로는, 도전재의 혼합 조성물을 집전체 상에 또는 다른 표면 상에 적층함으로써 음극이 제공될 수 있다.Since the carbon film of the particulate negative electrode material may serve as a conductive material, it is possible to secure conductive paths between the particulate negative electrode materials in physical contact with each other. Optionally, a conductive material may be further added to the particulate negative material for cathode formation. The conductive material may be, for example, carbon black and ultra fine graphite particles, fine carbon such as acetylene black, nano metal particle paste, or indium tin oxide (ITO) paste. The negative electrode may be provided by laminating a mixed composition of the negative electrode material, the binder, and optionally the conductive material on a current collector or on another surface.
상기 양극은 리튬 망간 산화물, 리튬 코발트 산화물 또는 리툼 이온 포스페이트와 같은 리튬 염들을 포함할 수 있다. 상기 음극과 유사하게, 상기 양극에도 바인더와 도전재가 더 제공될 수 있다.The positive electrode may include lithium salts such as lithium manganese oxide, lithium cobalt oxide or litum ion phosphate. Similar to the negative electrode, the positive electrode may further be provided with a binder and a conductive material.
상기 분리막은, 예를 들면, 폴리머계 미세다공막, 직포, 부직포, 세라믹, 진성 고체 고분자 전해질막, 겔 고체 고분자 전해질막 또는 이들의 조합일 수 있다. 상기 진성 고체 고분자 전해질막은, 예를 들면, 직쇄 폴리머 재료, 또는 가교 폴리머 재료를 포함할 수 있다. 상기 겔 고분자 전해질막은, 예를 들면, 염을 포함하는 가소제 함유 폴리머, 필러 함유 폴리머 또는 순 폴리머 중 어느 하나 이들의 조합일 수 있다. 상기 고체 전해질층은, 예를 들면, 폴리에틸렌, 폴리프로필렌, 폴리이미드, 폴리설폰, 폴리우레탄, 폴리염화비닐, 폴리스티렌, 폴리에틸렌옥사이드, 폴리프로필렌옥사이드, 폴리부타디엔, 셀룰로오스, 카르복시메틸셀룰로오스, 나일론, 폴리아크릴로니트릴, 폴리비닐리덴플루오라이드, 폴리테트라플루오로에틸렌, 비닐리덴플루오라이드와 헥사플루오로프로필렌의 공중합체, 비닐리덴플루오라드와 트리플루오로에틸렌의 공중합체, 비닐리덴플루오라이드와 테트라플루오로에틸렌의 공중합체, 폴리메틸아크릴레이트, 폴리에틸아크릴레이트, 폴리에틸아크릴레이트, 폴리메틸메타크릴레이트, 폴리에틸메타크릴레이트, 폴리부틸아크릴레이트, 폴리부틸메타크릴레이트, 폴리비닐아세테이트, 및 폴리비닐알콜 중 어느 하나 또는 이들의 조합으로 이루어진 고분자 메트릭스, 첨가제 및 전해액을 포함할 수 있다. 전술한 분리막에 관하여 열거한 재료들은 예시적이며, 분리막으로서 형상 변화가 용이하고, 기계적 강도가 우수하여 전극 구조체의 변형에도 찢어지거나 균열되지 않으며, 임의의 적합한 전자 절연성을 가지면서도 우수한 이온 전도성을 갖는 재료가 선택될 수 있다. 분리막은 단층막 또는 다층막일 수 있으며, 상기 다층막은 동일 단층막의 적층체이거나 다른 재료로 형성된 단층막의 적층체일 수 있다. 예를 들면, 상기 적층체는 폴리오레핀과 같은 고분자 전해질막의 표면에 세라믹 코팅막을 포함하는 구조를 가질 수도 있다. The separator may be, for example, a polymer microporous membrane, a woven fabric, a nonwoven fabric, a ceramic, an intrinsic solid polymer electrolyte membrane, a gel solid polymer electrolyte membrane, or a combination thereof. The intrinsic solid polymer electrolyte membrane may include, for example, a linear polymer material or a crosslinked polymer material. The gel polymer electrolyte membrane may be, for example, a combination of any one of a plasticizer-containing polymer containing a salt, a filler-containing polymer, or a pure polymer. The solid electrolyte layer is, for example, polyethylene, polypropylene, polyimide, polysulfone, polyurethane, polyvinyl chloride, polystyrene, polyethylene oxide, polypropylene oxide, polybutadiene, cellulose, carboxymethyl cellulose, nylon, polyacryl Ronitrile, polyvinylidene fluoride, polytetrafluoroethylene, copolymer of vinylidene fluoride and hexafluoropropylene, copolymer of vinylidene fluoride and trifluoroethylene, vinylidene fluoride and tetrafluoroethylene Copolymers of polymethyl acrylate, polyethyl acrylate, polyethyl acrylate, polymethyl methacrylate, polyethyl methacrylate, polybutyl acrylate, polybutyl methacrylate, polyvinylacetate, and polyvinyl alcohol Made of any one or a combination thereof It may include a polymer matrix, additives and the electrolyte. The materials listed with respect to the above-mentioned separators are exemplary, and are easy to change shape as a separator, excellent mechanical strength, do not tear or crack in deformation of the electrode structure, having any suitable electronic insulation and excellent ion conductivity The material can be selected. The separator may be a single layer film or a multilayer film, and the multilayer film may be a stack of the same single film or a stack of single film formed of different materials. For example, the laminate may have a structure including a ceramic coating film on the surface of a polymer electrolyte film such as polyolefin.
상기 전해액은 비수계 전해질로서 유기 탄산염 용액 또는 상기 유기 탄산염 용액에 리튬 화합물이 혼합된 혼합물일 수 있다. 상기 유기 탄산염은 에틸렌 탄산염(EC), 디메틸탄산 탄산염(DMC) 또는 디에틸에테르(DEE)와 같은 유기 용매일 수 있으며, 본 발명이 이에 제한되는 것은 아니며, 비수소이온성(aprotic)이고 높은 극성을 가지면서 유전 상수가 큰 다른 유기 용매가 적용될 수도 있다. 상기 리튬 화합물은 Li(CR3SO2)2N, LiAsF6, LiPF6 또는 LiBF4와 같은 양호한 용해도와 화학적 안정성을 갖는 물질 중에 선택될 수 있다.The electrolyte may be an organic carbonate solution or a mixture of a lithium compound mixed with the organic carbonate solution as a non-aqueous electrolyte. The organic carbonate may be an organic solvent such as ethylene carbonate (EC), dimethyl carbonate (DMC) or diethyl ether (DEE), and the present invention is not limited thereto. The organic carbonate is aprotic and has a high polarity. Other organic solvents having a high dielectric constant may be applied. The lithium compound may be selected from materials having good solubility and chemical stability such as Li (CR 3 SO 2 ) 2 N, LiAsF 6 , LiPF 6 or LiBF 4 .
전술한 재료들로 이루어진 전지는 전지의 용량 조절을 위해 그 부피와 형상이 다양하게 선택될 수 있다. 예를 들면, 쌓음, 굽힘 및/또는 감음과 같은 방법으로 3 차원적으로 패키징되어 원통형 전지, 각형 전지 및 코인형 전지 또는 플렉시블 전지와 같이 다양한 부피와 형상을 갖는 전지가 제공될 수 있다. A battery made of the above materials may be selected in various sizes and shapes to adjust the capacity of the battery. For example, three-dimensional packaging may be provided by a method such as stacking, bending and / or winding to provide a battery having various volumes and shapes such as a cylindrical battery, a square battery and a coin-type battery or a flexible battery.
본 발명의 실시예에 따른 전지는, 옷, 가방 등에 부착되거나 옷 및 가방의 천과 일체가 될 수 있는 소형 전지로서 응용되거나, 고용량화되어 자동차의 동력원 또는 전력 저장을 위한 중대형 전지로서 응용될 수 있다.The battery according to the embodiment of the present invention may be applied as a small battery that may be attached to clothes, bags, or the like and may be integrated with the cloth of clothes and bags, or may be applied as a medium-large battery for power storage or electric power storage of an automobile. .
이상에서 설명한 본 발명이 전술한 실시예 및 첨부된 도면에 한정되지 않으며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러가지 치환, 변형 및 변경이 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and alterations are possible within the scope without departing from the technical spirit of the present invention, which are common in the art. It will be apparent to those who have knowledge.

Claims (25)

  1. 리튬 메탈 코어; 및Lithium metal cores; And
    상기 리튬 메탈 코어 상의 탄소막을 포함하는 입자형 음극 재료.A particulate negative material comprising a carbon film on the lithium metal core.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 리튬 메탈 코어는 내부에 보이드를 포함하는 것을 특징으로 하는 입자형 음극 재료.The lithium metal core is a particulate negative material comprising a void therein.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 리튬 메탈 코어와 상기 탄소막의 내벽 사이에 중간 보이드를 포함하는 것을 특징으로 하는 입자형 음극 재료.And an intermediate void between the lithium metal core and the inner wall of the carbon film.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 탄소막은 적어도 하나 이상의 관통 홀을 포함하는 것을 특징으로 하는 입자형 음극 재료.And said carbon film comprises at least one through hole.
  5. 리튬 전구체를 제공하는 단계;Providing a lithium precursor;
    액상 유기 화합물을 제공하는 단계;Providing a liquid organic compound;
    상기 액상 유기 화합물 내에 상기 리튬 전구체를 첨가하여 분산 용액을 형성하는 단계;Adding the lithium precursor into the liquid organic compound to form a dispersion solution;
    상기 분산 용액 내에 초음파를 조사하는 단계;Irradiating ultrasonic waves in the dispersion solution;
    상기 분산 용액을 여과 또는 건조시켜, 내부 또는 표면에 상기 액상 유기 화합물이 포섭된 중간 입자를 수득하는 단계; 및Filtering or drying the dispersion solution to obtain intermediate particles containing the liquid organic compound inside or on the surface; And
    상기 중간 입자를 열처리하여, 상기 리튬 전구체의 탄소 환원 반응 및 상기 액상 유기 화합물의 열분해에 의해 내부의 리튬 메탈 코어 상에 탄소막을 형성하는 단계를 포함하는 음극 재료의 제조 방법.Heat treating the intermediate particles to form a carbon film on a lithium metal core therein by a carbon reduction reaction of the lithium precursor and pyrolysis of the liquid organic compound.
  6. 제 5 항에 있어서, The method of claim 5,
    상기 리튬 전구체는 리튬 산화물(Li2O 또는 Li2O2), 리튬 질산염(LiNO3) 및 리튬 탄산염(Li2CO3), 리튬 수산염(LiOH), 리튬 아세테이트(LiC2H3O2) 및 리튬 옥살산염(Li2C2O4) 중 어느 하나 또는 이들의 혼합물인 것을 특징으로 하는 음극 재료의 제조 방법.The lithium precursor is lithium oxide (Li 2 O or Li 2 O 2 ), lithium nitrate (LiNO 3 ) and lithium carbonate (Li 2 CO 3 ), lithium hydroxide (LiOH), lithium acetate (LiC 2 H 3 O 2 ) and A method for producing a negative electrode material, characterized in that any one of lithium oxalate (Li 2 C 2 O 4 ) or a mixture thereof.
  7. 제 5 항에 있어서, The method of claim 5,
    상기 분산 용액의 농도는 0.1 mM 내지 100 M의 범위 내인 것을 특징으로 하는 음극 재료의 제조 방법.Method for producing a negative electrode material, characterized in that the concentration of the dispersion solution is in the range of 0.1 mM to 100 M.
  8. 제 5 항에 있어서, The method of claim 5,
    상기 액상 유기 화합물은, 탄소수가 6 내지 20 범위 내의 탄화수소계; 알코올계; 에테르계; 및 에스테르계 화합물로 이루어진 그룹에서 선택된 하나 또는 2 이상의 혼합물인 것을 특징으로 하는 음극 재료의 제조 방법.The liquid organic compound is a hydrocarbon system having 6 to 20 carbon atoms; Alcohol based; Ether type; And one or two or more mixtures selected from the group consisting of ester compounds.
  9. 제 8 항에 있어서, The method of claim 8,
    상기 탄화수소계 화합물은, 헥센, 노넨, 도데센, 펜타테센, 톨루엔, 크실렌, 클로로벤조익산, 벤젠, 헥사데신, 테트라데신 및 옥타데신 중 어느 하나 또는 이들의 혼합물인 것을 특징으로 하는 음극 재료의 제조 방법.The hydrocarbon compound is hexene, nonene, dodecene, pentacene, toluene, xylene, chlorobenzoic acid, benzene, hexadecine, tetradecine and octadecine production of a negative electrode material, characterized in that Way.
  10. 제 8 항에 있어서, The method of claim 8,
    상기 알코올계 화합물은, 에틸알콜, 메틸알콜, 글리세롤, 프로필렌 글리콜, 이소프로필알콜, 이소부틸알콜, 폴리비닐알콜, 사이클로헥사놀, 옥틸알콜, 데카놀, 헥사테카놀, 에틸렌글리콜, 1.2-옥테인디올, 1,2-도데케인디올 및 1,2-헥사데케인디올 중 어느 하나 또는 이들의 혼합물을 포함하는 것을 특징으로 하는 음극 재료의 제조 방법.The alcohol compound is ethyl alcohol, methyl alcohol, glycerol, propylene glycol, isopropyl alcohol, isobutyl alcohol, polyvinyl alcohol, cyclohexanol, octyl alcohol, decanol, hexatecanol, ethylene glycol, 1.2-octane A diol, 1,2-dodecanediol and 1,2-hexadecanediol, any one or a mixture thereof.
  11. 제 8 항에 있어서, The method of claim 8,
    상기 에테르계 화합물은, 옥틸에테르, 부틸에테르, 헥실에테르, 벤질에테르, 페닐에테르, 데실에테르, 에틸메틸에테르, 디메틸에테르, 디에틸에테르, 디페닐에테르, 테트라하이드로퓨란, 1,4-다이옥산, 폴리에틸렌 글리콜(PEG), 폴리프로필렌 글리콜(PPG), 폴리테트라메틸렌 글리콜(PTMG), 폴리옥시메틸렌(POM) 및 폴리테트라하이드로퓨란 중 어느 하나 또는 이들의 혼합물을 포함하는 것을 특징으로 하는 음극 재료의 제조 방법.The ether compound is octyl ether, butyl ether, hexyl ether, benzyl ether, phenyl ether, decyl ether, ethyl methyl ether, dimethyl ether, diethyl ether, diphenyl ether, tetrahydrofuran, 1,4-dioxane, polyethylene Process for producing a negative electrode material comprising any one or a mixture of glycol (PEG), polypropylene glycol (PPG), polytetramethylene glycol (PTMG), polyoxymethylene (POM) and polytetrahydrofuran .
  12. 제 8 항에 있어서, The method of claim 8,
    상기 에스테르계 화합물은, 폴리에틸렌 테레프탈레이트, 아크릴레이트 에스테르 및 셀룰로스 아세테이트, 이소부틸 아세테이트, 이소프로필 아세테이트, 아릴 헥사노에이트(allyl hexanoate), 벤질 아세테이트(benzyl acetate), 보닐 아세테이트(bornyl acetate), 부틸 아세테이트 또는 락톤 중 어느 하나 또는 이들의 혼합물을 포함하는 것을 특징으로 하는 음극 재료의 제조 방법.The ester compound may be polyethylene terephthalate, acrylate ester and cellulose acetate, isobutyl acetate, isopropyl acetate, aryl hexanoate, benzyl acetate, bonyl acetate, butyl acetate Or lactones or mixtures thereof.
  13. 제 5 항에 있어서, 상기 초음파를 조사하는 단계 이전에,The method of claim 5, wherein prior to the step of irradiating the ultrasound,
    상기 액상 유기 화합물 내에, 탄소 함유 천연 또는 합성 고분자 물질을 용해시키는 것을 특징으로 하는 음극 재료의 제조 방법.A method for producing a negative electrode material, wherein a carbon-containing natural or synthetic high molecular material is dissolved in the liquid organic compound.
  14. 제 13 항에 있어서, The method of claim 13,
    상기 고분자 물질은, 키토산, 글루코오스, 수크로오스, 말토오스, 락토오스, 전분, 글리코겐, 폴리스틸렌(PS), 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리비닐 클로라이드(PVC), 폴리아크리로니트릴(PAN), 폴리에틸렌(PE) 및 폴리비닐피롤리돈(PVP) 중 어느 하나 또는 이들의 혼합물을 포함하는 것을 특징으로 하는 음극 재료의 제조 방법.The polymer material is chitosan, glucose, sucrose, maltose, lactose, starch, glycogen, polystyrene (PS), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyacrylonitrile (PAN), A process for producing a negative electrode material comprising any one or a mixture of polyethylene (PE) and polyvinylpyrrolidone (PVP).
  15. 리튬 전구체를 제공하는 단계;Providing a lithium precursor;
    물 또는 유기 용매와 이에 용해되는 탄소 전구체를 포함하는 혼합 용액을 제공하는 단계;Providing a mixed solution comprising water or an organic solvent and a carbon precursor dissolved therein;
    상기 혼합 용액 내에 상기 리튬 전구체를 첨가하여 분산 용액을 제공하는 단계;Adding the lithium precursor into the mixed solution to provide a dispersion solution;
    상기 분산 용액 내에 초음파를 조사하는 단계;Irradiating ultrasonic waves in the dispersion solution;
    상기 분산 용액을 여과 또는 건조시켜, 내부 또는 표면에 상기 탄소 전구체가 포섭된 중간 입자를 수득하는 단계; 및Filtering or drying the dispersion solution to obtain intermediate particles containing the carbon precursor inside or on the surface; And
    상기 중간 입자를 열처리하여, 상기 리튬 전구체의 탄소 환원 반응 및 상기 탄소 전구체의 열분해에 의해 리튬 메탈 코어 상에 탄소막을 형성하는 단계를 포함하는 음극 재료의 제조 방법.Heat treating the intermediate particles to form a carbon film on a lithium metal core by a carbon reduction reaction of the lithium precursor and pyrolysis of the carbon precursor.
  16. 제 15 항에 있어서, The method of claim 15,
    상기 리튬 전구체는 리튬 산화물(Li2O 또는 Li2O2), 리튬 질산염(LiNO3) 및 리튬 탄산염(Li2CO3), 리튬 수산염(LiOH), 리튬 아세테이트(LiC2H3O2) 및 리튬 옥살산염(Li2C2O4) 중 어느 하나 또는 이들의 혼합물인 것을 특징으로 하는 음극 재료의 제조 방법.The lithium precursor is lithium oxide (Li 2 O or Li 2 O 2 ), lithium nitrate (LiNO 3 ) and lithium carbonate (Li 2 CO 3 ), lithium hydroxide (LiOH), lithium acetate (LiC 2 H 3 O 2 ) and A method for producing a negative electrode material, characterized in that any one of lithium oxalate (Li 2 C 2 O 4 ) or a mixture thereof.
  17. 제 15 항에 있어서, The method of claim 15,
    상기 분산 용액의 농도는 0.1 mM 내지 100 M의 범위 내인 것을 특징으로 하는 음극 재료의 제조 방법.Method for producing a negative electrode material, characterized in that the concentration of the dispersion solution is in the range of 0.1 mM to 100 M.
  18. 제 15 항에 있어서, The method of claim 15,
    상기 유기 용매는, 탄소수가 6 내지 20 범위 내의 탄화수소계; 알코올계; 에테르계; 및 에스테르계 화합물로 이루어진 그룹에서 선택된 하나 또는 2 이상의 혼합물인 것을 특징으로 하는 음극 재료의 제조 방법.The organic solvent is a hydrocarbon system having 6 to 20 carbon atoms; Alcohol based; Ether type; And one or two or more mixtures selected from the group consisting of ester compounds.
  19. 제 18 항에 있어서, The method of claim 18,
    상기 탄화수소계 화합물은, 헥센, 노넨, 도데센, 펜타테센, 톨루엔, 크실렌, 클로로벤조익산, 벤젠, 헥사데신, 테트라데신 및 옥타데신 중 어느 하나 또는 이들의 혼합물인 것을 특징으로 하는 음극 재료의 제조 방법.The hydrocarbon compound is hexene, nonene, dodecene, pentacene, toluene, xylene, chlorobenzoic acid, benzene, hexadecine, tetradecine and octadecine production of a negative electrode material, characterized in that Way.
  20. 제 18 항에 있어서, The method of claim 18,
    상기 알코올계 화합물은, 에틸알콜, 메틸알콜, 글리세롤, 프로필렌 글리콜, 이소프로필알콜, 이소부틸알콜, 폴리비닐알콜, 사이클로헥사놀, 옥틸알콜, 데카놀, 헥사테카놀, 에틸렌글리콜, 1.2-옥테인디올, 1,2-도데케인디올 및 1,2-헥사데케인디올 중 어느 하나 또는 이들의 혼합물을 포함하는 것을 특징으로 하는 음극 재료의 제조 방법.The alcohol compound is ethyl alcohol, methyl alcohol, glycerol, propylene glycol, isopropyl alcohol, isobutyl alcohol, polyvinyl alcohol, cyclohexanol, octyl alcohol, decanol, hexatecanol, ethylene glycol, 1.2-octane A diol, 1,2-dodecanediol and 1,2-hexadecanediol, any one or a mixture thereof.
  21. 제 18 항에 있어서, The method of claim 18,
    상기 에테르계 화합물은, 옥틸에테르, 부틸에테르, 헥실에테르, 벤질에테르, 페닐에테르, 데실에테르, 에틸메틸에테르, 디메틸에테르, 디에틸에테르, 디페닐에테르, 테트라하이드로퓨란, 1,4-다이옥산, 폴리에틸렌 글리콜(PEG), 폴리프로필렌 글리콜(PPG), 폴리테트라메틸렌 글리콜(PTMG), 폴리옥시메틸렌(POM) 및 폴리테트라하이드로퓨란 중 어느 하나 또는 이들의 혼합물을 포함하는 것을 특징으로 하는 음극 재료의 제조 방법.The ether compound is octyl ether, butyl ether, hexyl ether, benzyl ether, phenyl ether, decyl ether, ethyl methyl ether, dimethyl ether, diethyl ether, diphenyl ether, tetrahydrofuran, 1,4-dioxane, polyethylene Process for producing a negative electrode material comprising any one or a mixture of glycol (PEG), polypropylene glycol (PPG), polytetramethylene glycol (PTMG), polyoxymethylene (POM) and polytetrahydrofuran .
  22. 제 18 항에 있어서, The method of claim 18,
    상기 에스테르계 화합물은, 폴리에틸렌 테레프탈레이트, 아크릴레이트 에스테르 및 셀룰로스 아세테이트, 이소부틸 아세테이트, 이소프로필 아세테이트, 아릴 헥사노에이트(allyl hexanoate), 벤질 아세테이트(benzyl acetate), 보닐 아세테이트(bornyl acetate), 부틸 아세테이트 또는 락톤 중 어느 하나 또는 이들의 혼합물을 포함하는 것을 특징으로 하는 음극 재료의 제조 방법.The ester compound may be polyethylene terephthalate, acrylate ester and cellulose acetate, isobutyl acetate, isopropyl acetate, aryl hexanoate, benzyl acetate, bonyl acetate, butyl acetate Or lactones or mixtures thereof.
  23. 제 15 항에 있어서, The method of claim 15,
    상기 탄소 전구체는 탄소 함유 천연 및 합성 고분자 물질 중 어느 하나 또는 이들의 혼합물을 포함하는 것을 특징으로 하는 음극 재료의 제조 방법.And the carbon precursor comprises any one of carbon-containing natural and synthetic polymeric materials or mixtures thereof.
  24. 제 23 항에 있어서, The method of claim 23,
    상기 고분자 물질은, 키토산, 글루코오스, 수크로오스, 말토오스, 락토오스, 전분, 글리코겐, 폴리스틸렌(PS), 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리비닐 클로라이드(PVC), 폴리아크리로니트릴(PAN), 폴리에틸렌(PE) 및 폴리비닐피롤리돈(PVP) 중 어느 하나 또는 이들의 혼합물을 포함하는 것을 특징으로 하는 음극 재료의 제조 방법.The polymer material is chitosan, glucose, sucrose, maltose, lactose, starch, glycogen, polystyrene (PS), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyacrylonitrile (PAN), A process for producing a negative electrode material comprising any one or a mixture of polyethylene (PE) and polyvinylpyrrolidone (PVP).
  25. 제 1 항 기재의 음극 재료를 포함하는 음극, 양극, 및 상기 음극과 상기 양극 사이의 분리막을 포함하는 이차 전지.A secondary battery comprising a negative electrode, a positive electrode, and a separator between the negative electrode and the positive electrode including the negative electrode material of claim 1.
PCT/KR2013/007015 2012-08-03 2013-08-02 Cathode material, method for manufacturing same, and secondary battery using cathode material WO2014021688A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120085445A KR101425437B1 (en) 2012-08-03 2012-08-03 Anode material for rechargeable battery, method of fabricating the same and rechargeable battery using the same
KR10-2012-0085445 2012-08-03

Publications (1)

Publication Number Publication Date
WO2014021688A1 true WO2014021688A1 (en) 2014-02-06

Family

ID=50028283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007015 WO2014021688A1 (en) 2012-08-03 2013-08-02 Cathode material, method for manufacturing same, and secondary battery using cathode material

Country Status (2)

Country Link
KR (1) KR101425437B1 (en)
WO (1) WO2014021688A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383539A (en) * 2017-03-10 2019-10-25 株式会社Lg化学 Cathode, its manufacturing method with carbon-base film and the lithium secondary battery comprising it

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105098188B (en) * 2014-04-28 2017-09-01 比亚迪股份有限公司 A kind of anode material for lithium-ion batteries additive and preparation method thereof, positive electrode and lithium ion battery containing the additive

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077461A (en) * 2001-09-03 2003-03-14 Nec Corp Negative electrode for secondary battery
KR20030045791A (en) * 2000-09-26 2003-06-11 하이드로 케벡 Methods of Carbon-Coated Redox Materials with Controlled Size
KR20070021125A (en) * 2004-08-17 2007-02-22 비와이디 컴퍼니 리미티드 Materials for negative electrodes of lithium ion batteries
US20090317719A1 (en) * 2008-06-20 2009-12-24 Toyota Motor Engineering & Manufacturing North America, Inc. Material With Core-Shell Structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030045791A (en) * 2000-09-26 2003-06-11 하이드로 케벡 Methods of Carbon-Coated Redox Materials with Controlled Size
JP2003077461A (en) * 2001-09-03 2003-03-14 Nec Corp Negative electrode for secondary battery
KR20070021125A (en) * 2004-08-17 2007-02-22 비와이디 컴퍼니 리미티드 Materials for negative electrodes of lithium ion batteries
US20090317719A1 (en) * 2008-06-20 2009-12-24 Toyota Motor Engineering & Manufacturing North America, Inc. Material With Core-Shell Structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383539A (en) * 2017-03-10 2019-10-25 株式会社Lg化学 Cathode, its manufacturing method with carbon-base film and the lithium secondary battery comprising it
CN110383539B (en) * 2017-03-10 2023-05-09 株式会社Lg新能源 Negative electrode having carbon-based thin film, method for manufacturing the same, and lithium secondary battery including the same

Also Published As

Publication number Publication date
KR101425437B1 (en) 2014-07-31
KR20140018761A (en) 2014-02-13

Similar Documents

Publication Publication Date Title
JP6464252B2 (en) Graphite secondary particles and lithium secondary battery containing the same
KR101714892B1 (en) Surface coated cathode active material, preparation method thereof and lithium secondary battery comprising the same
KR101830334B1 (en) Anode active material, method of fabricating the same and rechargeable battery using the same
AU2008279196B2 (en) Porous network negative electrodes for non-aqueous electrolyte secondary battery
CN110010848B (en) Surface-coated positive electrode active material, method for preparing same, and positive electrode and lithium secondary battery comprising same
EP1777761A2 (en) Lithium Rechargeable Battery
KR20150093542A (en) Positive active material, positive electrode and lithium battery containing the same, and manufacturing method thereof
KR20200073350A (en) Negative active material, lithium secondary battery including the material, and method for manufacturing the material
KR102264739B1 (en) Negative electrode active material, preparing method of the same, negative electrode and lithium secondary battery including the same
EP3761415A1 (en) Cathode active material for lithium secondary battery, method for manufacturing same, cathode comprising same for lithium secondary battery, and lithium secondary battery
KR20100132528A (en) Electrode and battery having the same
KR101777917B1 (en) Surface coated cathode active material, preparation method thereof and lithium secondary battery comprising the same
KR101849826B1 (en) Positive electrode active material, method for preparing the same, and secondary battery comprising the same
KR101541785B1 (en) Cathode active material, method of fabricating the same and battery having the same
JP6384596B2 (en) Anode materials for lithium-ion batteries
CN116799166A (en) Negative active material, method of preparing the same, and device including the same
WO2014021688A1 (en) Cathode material, method for manufacturing same, and secondary battery using cathode material
WO2013187707A1 (en) Anode for lithium secondary battery, method for manufacturing same, and lithium secondary battery using same
KR102434067B1 (en) Negative electrode for lithium secondarty battery, and lithium secondarty battery comprising the negative electrode
WO2014021689A1 (en) Cathode active material, method for manufacturing same, and secondary battery using cathode active material
KR102380024B1 (en) A composite anode, and lithium secondary battery comprising the anode
KR20170127238A (en) Surface coated positive active material for lithium secondary battery, method for preparing thereof, and lithium secondary battery comprising the same
KR20140031361A (en) Anode material for rechargeable battery, method of fabricating the same and rechargeable battery using the same
CN116742111B (en) Preparation method and application of titanium nitride fiber reinforced quasi-solid electrolyte
WO2017209495A1 (en) Lithium secondary battery separator and lithium secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24-06-2015 )

122 Ep: pct application non-entry in european phase

Ref document number: 13825963

Country of ref document: EP

Kind code of ref document: A1