WO2014020910A1 - 未溶着量の測定方法及び超音波探傷装置 - Google Patents

未溶着量の測定方法及び超音波探傷装置 Download PDF

Info

Publication number
WO2014020910A1
WO2014020910A1 PCT/JP2013/004637 JP2013004637W WO2014020910A1 WO 2014020910 A1 WO2014020910 A1 WO 2014020910A1 JP 2013004637 W JP2013004637 W JP 2013004637W WO 2014020910 A1 WO2014020910 A1 WO 2014020910A1
Authority
WO
WIPO (PCT)
Prior art keywords
unwelded
amount
echo
beam path
probe
Prior art date
Application number
PCT/JP2013/004637
Other languages
English (en)
French (fr)
Inventor
祐司 武田
貴弘 山上
國雄 米倉
宏明 畠中
寛記 河井
有紗 柳原
Original Assignee
株式会社Ihiインフラシステム
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihiインフラシステム, 株式会社Ihi filed Critical 株式会社Ihiインフラシステム
Priority to US14/418,060 priority Critical patent/US9612226B2/en
Priority to EP13826436.1A priority patent/EP2881733A4/en
Priority to JP2014528002A priority patent/JP5916864B2/ja
Publication of WO2014020910A1 publication Critical patent/WO2014020910A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2487Directing probes, e.g. angle probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4436Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with a reference signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds

Definitions

  • the technique described in the present specification relates to a method for measuring a penetration depth of a welded portion (that is, a method for measuring an unwelded amount) and an ultrasonic flaw detector used therefor.
  • a steel deck that directly supports a live load is composed of a deck plate and vertical and horizontal ribs welded to the back surface of the deck plate.
  • a welded structure In such a welded structure, fatigue cracks may occur starting from the welded part due to long-term use. For this reason, in the road bridge specifications, in order to ensure sufficient fatigue resistance, the penetration depth at the welded portion of the deck plate and the U-rib having a U-shaped cross-section widely used as a vertical rib is the rib plate. It is specified that it is 75% or more of the thickness.
  • Ultrasonic inspection which is a kind of nondestructive inspection, is often used for inspection of welding quality in steel decks, etc., but a technique for directly measuring the penetration depth of the welded portion has not been sufficiently established.
  • the penetration depth can be guaranteed only by checking the welding construction record, and it is difficult to obtain sufficient reliability.
  • the present invention has been made in view of the above points, and is a method for measuring a penetration depth of a welded portion that can sufficiently ensure the reliability of a product manufactured by welding (in other words, a method for measuring an unwelded amount).
  • the purpose is to provide.
  • One embodiment of the present disclosure is a method for measuring an unwelded amount of a welded portion when welding a first member to a second member.
  • an echo returned to the probe by hitting an unwelded portion of a welded portion is defined as an F echo, and the reference level for evaluating the height of the F echo is used as the reference level.
  • the method includes a step of obtaining beam path length information based on an echo height and an echo height division line, and a step of obtaining a regression equation representing a relationship between the beam path length information and an unwelded amount.
  • the reference level used to evaluate the F echo height in this measurement method is the echo height division line defined in JIS Z 3060 “Ultrasonic flaw detection test method for steel welds”, specifically, One selected from the L / 2 line, the L line, the M line, and the H line.
  • the probe is arranged in a direction in which the ultrasonic beam is perpendicular to the weld line with respect to the weld specimen, and the probe is arranged in the ultrasonic beam direction.
  • the beam path length is determined by the height of the F echo that is irradiated from the probe at a predetermined refraction angle, hits the unwelded portion of the welded portion, and returns to the probe, and the echo height division line. Ask for information.
  • the height of the F echo decreases when it exceeds 0.5 skip and increases near 1.5 skip.
  • a measurement method for example, a method using the beam path when the F echo exceeds 0.5 skip and falls to the reference level as the above-mentioned beam path information (so-called beam path method), and a reference in the vicinity of 1.5 skip.
  • beam path method a method using the beam path when the F echo exceeds 0.5 skip and falls to the reference level as the above-mentioned beam path information
  • a reference in the vicinity of 1.5 skip There is a method of taking a beam path range (trajectory width) corresponding to the range exceeding the level and using this as beam path information (so-called trajectory width method).
  • the above-described regression equation is obtained based on the relationship between the beam path length or the trajectory width read here and the unwelded amount.
  • the probe that irradiates an ultrasonic beam with respect to a weld line between the first member and the second member is disposed, and a predetermined amount is provided from the probe.
  • the beam path information is obtained by measuring the height of the F echo that has been irradiated at a refraction angle and returned to the probe after hitting an unwelded portion, and the beam path information is applied to the regression equation to obtain the unwelded Calculating the quantity.
  • the penetration depth is obtained by subtracting the unwelded amount calculated from the plate thickness of the first member.
  • An ultrasonic flaw detector includes a probe that irradiates an object with ultrasonic waves, controls the operation of the probe, is reflected by an unwelded portion of the object, and A flaw detection unit that measures the height and beam path length of an ultrasonic wave that has returned to the probe, an AD conversion unit that converts a measurement value measured by the flaw detection unit into a digital value, and the AD conversion unit A signal storage unit for storing the converted measurement value; a memory for storing echo height division line data; and regression equation data representing a relationship between beam path information and an unwelded amount; and the signal storage unit Based on the measurement value stored in the memory and the data stored in the memory, an unwelded amount calculation unit that calculates an unwelded amount at the welded portion between the first member and the second member that are the objects; It has.
  • the unwelded amount calculation unit calculates a trajectory width in which the height of the F echo returned to the probe on the first member is a range of a beam path exceeding the echo height division line.
  • the unwelded amount may be calculated by obtaining the beam path length information and applying the locus width to the regression equation.
  • the unwelded amount calculation unit uses, as the beam path information, a beam path length at which the height of the F echo returned to the probe on the first member is equal to the echo height division line.
  • the unwelded amount may be calculated by obtaining and applying the beam path length to the regression equation.
  • ultrasonic flaw detectors it is possible to automatically calculate the unwelded amount, thereby preventing human error. Further, even if the operator is not skilled in measurement, it is possible to automatically calculate the beam path length information and the unwelded amount based on the measurement result.
  • the ultrasonic flaw detector determines that it is unacceptable, and the unwelded amount is equal to or less than the reference value. May further include a determination unit that determines that the test is acceptable.
  • Fig.1 (a) is a perspective view which shows the steel deck which comprises a bridge, (b) is a side view which expands and shows the welding part vicinity of a U rib and a deck plate.
  • 2 (a) is a cross-sectional view schematically showing a test piece (RB-41.No. 1) used in the measurement method according to an embodiment of the present disclosure, and (b) is shown in (a). It is a figure which shows the echo height division line obtained using the test piece, (c) is a figure which shows a response
  • FIG. 3 is a diagram showing an echo height division line obtained by using a predetermined test piece and a trajectory of the F echo returned to the probe.
  • FIG. 3 is a diagram showing an echo height division line obtained by using a predetermined test piece and a trajectory of the F echo returned to the probe.
  • FIG. 4A is a diagram showing a state where a U-rib having a thickness of 6 mm is scanned back and forth using a probe
  • FIG. 4B is a diagram showing a trajectory width based on a measurement result of an object. is there.
  • FIG. 5 shows the relationship between the locus width (mm) and the unwelded amount (mm) obtained when the thickness of the U rib is 6 mm and the L line of the echo height division line is used as the reference level. It is a figure which shows an example of a regression equation.
  • FIG. 6A is a diagram showing a state in which a U-rib having a thickness of 8 mm is scanned back and forth using a probe
  • FIG. 6B is a diagram showing a trajectory width based on a measurement result of an object. is there.
  • FIG. 7 shows the relationship between the locus width (mm) and the unwelded amount (mm) obtained when the plate thickness of the U rib is 8 mm and the M line of the echo height division line is used as the reference level. It is a figure which shows an example of a regression equation.
  • Fig.8 (a) is a block block diagram which shows an example of the ultrasonic flaw detector used for the measuring method of the penetration depth of the welding part which concerns on one Embodiment of this indication, (b) is based on a display part. It is a figure which shows an example of the measurement result in the displayed several places.
  • FIG. 9A is a diagram illustrating a state in which a U-rib is scanned back and forth using a probe
  • FIG. 9B is a diagram illustrating a beam path based on a measurement result of an object.
  • FIG. 10 shows an example of a regression equation representing the relationship between the beam path length (mm) and the unwelded amount (mm) obtained when the plate thickness of the U rib is 6 mm and the L / 2 line is used as the reference level.
  • FIG. FIG. 11 shows an example of a regression equation representing the relationship between the beam path length (mm) and the unwelded amount (mm) obtained when the plate thickness of the U rib is 8 mm and the L / 2 line is used as the reference level.
  • FIG. FIG. 10 shows an example of a regression equation representing the relationship between the beam path length (mm) and the unwelded amount (mm) obtained when the plate thickness of the U rib is 6 mm and the L / 2 line is used as the reference level.
  • FIG. 12 is a diagram illustrating a beam path based on the measurement result of the object.
  • FIG. 13 shows an example of a regression equation representing the relationship between the beam path length (mm) and the unwelded amount (mm) obtained when the plate thickness of the U rib is 8 mm and the L line is used as the reference level.
  • FIG. 13 shows an example of a regression equation representing the relationship between the beam path length (mm) and the unwelded amount (mm) obtained when the plate thickness of the U rib is 8 mm and the L line is used as the reference level.
  • FIG. 1 (a) is a perspective view showing a steel slab constituting a bridge
  • FIG. 1 (b) is an enlarged view of the vicinity of a welded portion between U-rib and deck plate (region A shown in FIG. 1 (a)).
  • FIG. 1 (a) is a perspective view showing a steel slab constituting a bridge
  • FIG. 1 (b) is an enlarged view of the vicinity of a welded portion between U-rib and deck plate (region A shown in FIG. 1 (a)).
  • a steel floor slab 1 shown in FIG. 1 (a) is a flat deck plate (second member) 2 and a U-rib (first member) welded to the back surface of the deck plate 2 and having a U-shaped cross section. Member) 3.
  • a weld bead 5 having a predetermined penetration depth that is, having a predetermined unwelded amount is formed at a welded portion between the U rib 3 and the deck plate 2.
  • the steel slab 1 is a measurement target.
  • FIG. 2 (b) is a diagram showing an echo height division line obtained using the test piece shown in FIG. 2 (a).
  • FIG. 3 shows the echo height division line and the probe. It is a figure which shows the locus
  • the relative height of the F echo is obtained on the basis of the echo height division line, and the relative echo height and the height of the remaining portion of the welded portion of the test piece (that is, the unfilled portion).
  • a calculation curve is created using the relationship with the welding amount), and a method for calculating the unwelded amount in the measurement object using this calculation curve is described.
  • Patent Document 2 F echo is measured at a position set according to the thickness of the U rib, the incident angle of the pulse, and the like to create master data, and the F echo observed at the position of the measurement object is recorded. A method of calculating the unwelded amount by applying to the master data is described.
  • the position of the probe is fixed and echoes reflected by the back surface facing the surface with which the probe contacts (so-called so-called) It is also conceivable to calculate the unwelded amount of the object to be measured using the ratio between the B echo and the F echo as an index.
  • the amplitude of the measurement value of the B echo is larger than that of the F echo, and the measurement value is not stable.
  • the inventors of the present application have found that the beam path length at which the height of the F echo is equal to the predetermined echo height division line, or the height of the F echo.
  • the range of the beam path in the range exceeding the predetermined echo dividing line shows a good relationship with the unwelded amount in the welded portion.
  • the inventors define the above-mentioned beam path and the range of the beam path as beam path information, and apply an ultrasonic beam at a predetermined angle to the surface where the weld beads of a plurality of weld specimens having different unwelded amounts are present.
  • the probe to be irradiated is scanned, the beam path information is obtained from the F echo returned to the probe by hitting the unwelded portion of the welded portion, and a regression equation is obtained based on the relationship between the beam path information and the unwelded amount. Obtained.
  • the inventors of the present application have conceived and actually confirmed that the amount of unwelded can be measured accurately and easily by applying the beam path information of the F echo measured for the measurement object.
  • embodiments of the present invention will be specifically described.
  • “trajectory width” means a range of a beam path in which the height of the F echo exceeds a predetermined echo division line set as a reference level (for example, W2-W1 shown in FIG. 3).
  • the inventors of the present application perform ultrasonic measurement of an object, obtain a “trajectory width” from the measurement result, and confirm that the unwelded amount is obtained by applying this to a regression equation prepared in advance. did.
  • an ultrasonic flaw detection test is performed in advance by the following procedure before an object to be measured is measured, and an echo height division line is obtained.
  • the measurement method according to this embodiment is a method based on JIS Z 3060 (2002) “Ultrasonic flaw detection test method for steel welds”.
  • ⁇ ⁇ Use a model that conforms to JIS Z 2352 as the ultrasonic flaw detector.
  • B5K10 ⁇ 10A70 is used as the probe.
  • the transducer dimensions of this probe are 10 mm ⁇ 10 mm, the frequency of the ultrasonic wave irradiated from the probe to the standard test piece is 5 MHz, and the refraction angle is 70 °.
  • A1 type STB is used as the standard test piece, and RB-41 No. 1 is used.
  • As the contact medium applied between the test piece and the probe glycerin paste or water is used.
  • the incident point and refraction angle are measured and the time axis is adjusted.
  • RB-41-No. 1 are sequentially arranged at positions (1) to (6) shown in FIG. 2 (a) on the upper surface and the rear surface of RB-41, and RB-41 No. 1 is irradiated with ultrasonic waves and the echo height in a predetermined standard hole is measured.
  • the maximum echo height measured at the standard hole is plotted against the beam path length as the H-line, which is the reference flaw detection sensitivity.
  • the M line is a line showing a value 6 dB lower than the H line
  • the L line is a line showing a value 6 dB lower than the M line
  • the L / 2 line is a line showing a value 6 dB lower than the L line. is there.
  • the echo height division line shown in FIG. 2B is obtained.
  • an ultrasonic beam is formed at a predetermined angle (for example, a right angle) with respect to the weld line with respect to a plurality of welded specimens composed of the U rib 3 and the deck plate 2 and having different unwelded amounts.
  • Ultrasonic measurement is performed by scanning the probe 7 on the U-rib 3 forward or backward, for example, in such a direction.
  • the thickness of the U rib 3 is 6 mm, which is the same as the U rib to be measured.
  • the height of the F echo which is irradiated from the probe 7 at a predetermined refraction angle (for example, 70 °) and hits the unwelded portion of the welded portion and returns to the probe 7 is measured.
  • the trajectory width is obtained from the measurement result of the F echo using the echo height division line, and the regression equation is obtained based on the relationship between the trajectory width and the unwelded amount.
  • the L line of the echo height division line is used as the reference level for evaluating the F echo height.
  • the reference level is not limited to the L line as long as it can accurately estimate the unwelded amount, and can be arbitrarily set.
  • FIG. 5 is a diagram showing an example of a regression equation representing the relationship between the trajectory width (mm) and the unwelded amount (mm) obtained when the plate thickness of the U rib is 6 mm.
  • This regression equation can be obtained by plotting the measurement result and using, for example, the least square method.
  • the locus width is obtained from the height of the measured F echo using the L line of the echo height division line shown in FIG. 3B as a reference level. Subsequently, by applying the obtained trajectory width to the regression equation shown in FIG. 5, the unwelded amount at the welded portion of the steel deck 1 can be calculated.
  • the steel floor slab 1 is a measurement object, according to the above-mentioned road bridge specification, it is a criterion that the penetration depth is 75% or more of the U-rib plate thickness, and the thickness of the U-rib 3 is 6 mm. Then, if the unwelded amount is 1.5 mm or less, it is determined to be acceptable, and if it exceeds 1.5 mm, it is determined to be unacceptable.
  • the measuring object of the measuring method of this embodiment is not restricted to a steel deck, but can be applied to any structure produced by welding.
  • the unwelded amount of the welded portion can be calculated based on the measurement result of the actually welded product, it is possible to perform pass / fail determination of the penetration depth for each product. It becomes possible. Therefore, a highly reliable product can be shipped, and a bridge that is less prone to fatigue cracks can be constructed. Furthermore, since the echo height division line used in the measurement, the regression equation, the measurement result of the steel deck 1 that was the measurement object, etc. remain as data, the inspection results should be verified later using these data. Can do.
  • the measurement error of the unwelded amount can be reduced to about ⁇ 0.5 mm or less even when the thickness of the U rib 3 is 6 mm, which is more accurate than before. It has been confirmed that high measurement can be achieved.
  • the amount of welding can be measured without using a B echo whose measurement value is unstable, so that the measurement accuracy is increased as compared with the method using the ratio of the B echo and the F echo. Can do.
  • the measurement method according to the present embodiment conforms to JIS Z 3060 (2002) “Ultrasonic flaw detection test method for steel welds” as described above, and uses equipment and standard test pieces defined by JIS. There is no need to prepare special equipment.
  • a dedicated ultrasonic flaw detector that stores a program for performing the above-described method can be used.
  • measurement is performed using a general-purpose ultrasonic flaw detector, signal storage, and measurement result image. Processing such as conversion may be performed by a personal computer or the like. It should be noted that the calculation of the trajectory width and the calculation of the unwelded amount can be performed manually without using the ultrasonic flaw detector.
  • an echo height division line shown in FIG. 3 (b) is obtained by the same method using the same test piece and equipment as when the thickness of the U-rib 3 is 6 mm.
  • an ultrasonic beam is formed at a predetermined angle (with respect to the weld line) with respect to a plurality of welded specimens composed of the U rib 3 and the deck plate 2 and having different unwelded amounts.
  • ultrasonic measurement is performed by scanning the probe 7 on the U-rib 3 forward or backward in a direction of a right angle.
  • the height of the F echo which is irradiated from the probe 7 at a predetermined refraction angle (for example, 70 °) and hits the unwelded portion of the welded portion and returns to the probe 7 is measured.
  • the flaw detection skip can be set to 1.5 skip, 2.5 skip, 3.5 skip, or the like. Among these, as described above, it is most preferable to scan the probe 7 in the vicinity of a position where the flaw detection skip is 1.5 skip.
  • the trajectory width is obtained from the measurement result of the F echo using the echo height division line, and the regression equation is obtained based on the relationship between the trajectory width and the unwelded amount.
  • the M line of the echo height division line is used as the reference level for obtaining the locus width.
  • the reference level is not limited to the M line as long as it can accurately estimate the unwelded amount, and can be arbitrarily set.
  • FIG. 7 is a diagram showing an example of a regression equation representing the relationship between the locus width (mm) and the unwelded amount (mm) obtained when the thickness of the U rib is 8 mm.
  • the probe 7 is moved back and forth on the U-rib 3 in the direction in which the ultrasonic beam is perpendicular to the weld line with respect to the steel slab 1 to be measured.
  • the height of the F echo which is scanned and irradiated from the probe 7 at a predetermined refraction angle and hits an unwelded portion and returns to the probe is measured.
  • the locus width is obtained from the height of the measured F echo using the M line of the echo height division line shown in FIG. 3B as a reference level. Subsequently, by applying the obtained trajectory width to the regression equation shown in FIG. 7, the unwelded amount at the welded portion of the steel deck 1 can be calculated.
  • the unwelded amount satisfies a predetermined standard.
  • the unwelded amount is 2.0 mm or less, it is acceptable, and the thickness exceeds 2.0 mm. If it is determined to be unacceptable. Note that the pass / fail criterion can be set as appropriate according to the measurement target.
  • the thickness of the U rib 3 is not particularly limited. If the thickness of the U rib 3 is within a range in which a reflection echo having a sufficient height can be observed, the regression corresponding to the plate thickness is performed. It is possible to apply the method of this embodiment by obtaining an equation.
  • -Ultrasonic flaw detector- Fig.8 (a) is a block block diagram which shows an example of the ultrasonic flaw detector used for the measuring method of the penetration depth of the welding part which concerns on one Embodiment of this indication.
  • an ultrasonic flaw detector 11 controls a probe 7 that irradiates an object with ultrasonic waves, the operation of the probe 7, and is reflected within the object.
  • a flaw detector (pulser receiver) 13 that measures the F echo height and beam path length of the ultrasonic wave returned to the probe 7, and an AD converter that converts the measurement value measured by the flaw detector 13 into a digital value 15, a signal storage unit 19 that stores the measurement value converted by the AD conversion unit 15, and a memory 29 that stores regression height data representing the relationship between the echo height division line data and the beam path length information and the unwelded amount, Based on the measurement value stored in the signal storage unit 19 and the data stored in the memory 29, the beam path information such as the trajectory width, the U rib (first member) and the deck plate (second member) that are the objects.
  • Welding parts with It includes a unwelded amount calculating unit 17 for calculating the unwelded amount, and a determination unit 21 acceptability based on the unwelded amount calculated by the unwelded amount calculating
  • the ultrasonic flaw detector 11 further includes an image processing unit 23 that performs image processing on the unwelded amount data calculated by the unwelded amount calculating unit 17 and a display unit 25 that displays the image-processed unwelded amount data. You may have.
  • the probe 7 is disposed on a predetermined surface of the measurement object via glycerin or water. In the measurement method described above, measurement is performed with the refraction angle set to 70 °.
  • the probe 7 may be a part of the ultrasonic flaw detector 11 or may be connected to the ultrasonic flaw detector 11 as a separate member.
  • the signal storage unit 19 is composed of a known memory or the like. When used in the measurement method described above, the signal storage unit 19 stores a digitized measurement value or the like of the measurement object. Further, the memory 29 stores data on each line of the echo height division line, data on the beam path information such as the trajectory width of the inspection / measurement object, and data on the regression equation obtained using the beam path information such as the trajectory width. , And data of the unwelded amount calculated by the unwelded amount calculating unit 17 are stored. These data are stored as data at each measurement position in the longitudinal direction of the measurement object.
  • the unwelded amount calculation unit 17 puts the probe 7 on the object in a direction in which the ultrasonic beam is perpendicular to the weld line between the first member (U rib) and the second member (deck plate).
  • the height of the F echo which is irradiated at a predetermined refraction angle and hits the unwelded portion of the welded portion and returns to the probe 7 is the echo height division line set as the reference level.
  • the range of the beam path exceeding the range is obtained as beam path information (here, the trajectory width).
  • the unwelded amount calculation unit 17 also calculates the unwelded amount by applying the regression width obtained in advance based on the relationship between the locus width and the unwelded amount to the unwelded amount calculator 17. To do. A program for automatically performing these calculations may be stored in advance in a memory (a memory separate from the memory 29) of the ultrasonic flaw detector 11 or the like. Or you may have the hardware constitutions which the unwelding amount calculation part 17 can perform the above-mentioned calculation.
  • the determination unit 21 determines that the measurement value calculated by the unwelded amount calculation unit 17 exceeds the reference value set in advance according to the measurement object, and determines, as an example, a signal indicating failure. Output.
  • the determination unit 21 determines that the measurement value is acceptable when the measured value is equal to or less than a predetermined reference value, and outputs a signal indicating acceptance as an example.
  • the ultrasonic flaw detector 11 may further include a configuration that emits a warning sound when it is determined to be unacceptable, or a configuration for marking a determination result on an object when it is determined as unacceptable. However, the determination unit 21 may not be provided, and the ultrasonic flaw detector 11 may have a configuration for performing the calculation of the unwelded amount.
  • the unwelded amount is measured at a predetermined interval in the longitudinal direction of the measurement object (here, the U-rib) (that is, the direction in which the weld line extends), and the measurement result data is stored in the signal storage unit 19.
  • the image processing unit 23 performs a process of graphing the calculated unwelded amount and position information (position information in the extension direction of the weld line). Specifically, the image processing unit 23 outputs image data representing the unwelded amount calculated for a plurality of measurement locations in the extension direction of the weld line for each of the plurality of measurement locations. Based on this image data, the display unit 25 displays the unwelded amount for each position in the weld line direction in a visually recognizable manner.
  • FIG. 8B is a diagram illustrating an example of measurement results at a plurality of locations displayed by the display unit 25.
  • the display unit 25 is not necessarily included in the ultrasonic flaw detection apparatus 11, and the measurement result may be displayed on a screen of a computer or the like connected to the ultrasonic flaw detection apparatus 11.
  • the unwelded amount can be automatically calculated, so that an artificial mistake can be prevented. Further, even if the operator is not skilled in measurement, the trajectory width and the unwelded amount can be automatically calculated based on the measurement result, and the penetration depth can be inspected.
  • the steel deck 1 shown in FIG. 1 (a) is used as the measurement object, as in the method of the first embodiment.
  • the inventor of the present application further examined a method for accurately measuring the penetration depth of the welded portion. As a result, a beam in which the height of the F echo of the ultrasonic wave irradiated with a predetermined refraction angle is equal to a predetermined echo segmentation line. It has been found that when the path length is W (see FIGS. 2 and 9B), W increases in correlation with an increase in the amount of unwelded welding.
  • the inventors of the present application further researched, performed ultrasonic measurement of the object, obtained the beam path W of the F echo from the measurement result, and applied this to the regression equation prepared in advance.
  • the inventors came up with a method that can measure the amount of welding.
  • the above-mentioned “beam path length information” is “beam path length W at which the height of the F echo becomes equal to a predetermined echo division line set as a reference level”.
  • the measurement method of the present embodiment will be specifically described.
  • an ultrasonic flaw detection test is performed in advance by the following procedure before an object to be measured is measured, and an echo height division line is obtained.
  • the measurement method according to this embodiment is a method based on JIS Z 3060 (2002) “Ultrasonic flaw detection test method for steel welds”.
  • ⁇ ⁇ Use a model that conforms to JIS Z 2352 as the ultrasonic flaw detector.
  • B5K10 ⁇ 10A70 is used as the probe.
  • the transducer dimensions of this probe are 10 mm ⁇ 10 mm, the frequency of the ultrasonic wave irradiated from the probe to the standard test piece is 5 MHz, and the refraction angle is 70 °.
  • A1 type STB is used as the standard test piece, and RB-41 No. 1 is used.
  • As the contact medium applied between the test piece and the probe glycerin paste or water is used.
  • the incident point and refraction angle are measured and the time axis is adjusted.
  • RB-41-No. 1 are sequentially arranged at positions (1) to (6) shown in FIG. 2 (a) on the upper surface and the rear surface of RB-41, and RB-41 No. 1 is irradiated with ultrasonic waves and the echo height in a predetermined standard hole is measured.
  • the maximum echo height measured with a standard hole having a diameter of 3 mm is plotted against the beam path length as the H line, which is the reference flaw detection sensitivity.
  • the M line is a line showing a value 6 dB lower than the H line
  • the L line is a line showing a value 6 dB lower than the M line
  • the L / 2 line is a line showing a value 6 dB lower than the L line. is there.
  • the echo height division line shown in FIG. 2B is obtained.
  • a U-rib is formed in a direction in which the ultrasonic beam is perpendicular to the weld line with respect to a plurality of weld specimens composed of the U-rib 3 and the deck plate 2 and having different unwelded amounts.
  • Ultrasonic measurement is performed by scanning the probe 7 on the front and rear 3 forward and backward.
  • the flaw detection skip is set to a range from 0.5 skip to 1 skip.
  • the height of the F echo that is irradiated from the probe 7 at a predetermined refraction angle (for example, 70 °), hits an unwelded portion of the welded portion, and returns to the probe 7 is measured.
  • the thickness of the U rib 3 is 6 mm, which is the same as the U rib to be measured.
  • a beam path W in which the echo height of the F echo is equal to the echo division line set as the reference level is obtained, and based on the relationship between the beam path W and the unwelded amount.
  • the L / 2 line of the echo height division line is used as the reference level.
  • the reference level is not limited to the L / 2 line as long as it can accurately estimate the unwelded amount, and can be arbitrarily set.
  • the broken line shown in FIG. 9B shows the change in the F echo height observed by the probe 7 during scanning.
  • FIG. 10 shows the relationship between the beam path length W (mm) where the echo height of the F echo is equal to the level of the L / 2 line and the unwelded amount (mm) when the plate thickness of the U rib is 6 mm. It is a figure which shows an example of the regression equation to represent. This regression equation can be obtained by plotting the measurement result and using, for example, the least square method.
  • the probe 7 is moved back and forth on the U-rib 3 in the direction in which the ultrasonic beam is perpendicular to the welding line with respect to the steel slab 1 to be measured.
  • the height of the F echo which is irradiated from the probe 7 at a predetermined refraction angle and hits the unwelded portion and returns to the probe is measured.
  • the flaw detection skip is set in a range from about 0.5 skip to 1 skip, and measurement by the probe 7 is started from a position as close as possible to the welded portion.
  • the probe 7 is moved in the direction of moving away. In this way, it is possible to easily detect the beam path information even when an unskilled worker performs measurement.
  • the beam path length W when the height of the measured F echo has decreased to the reference level is obtained.
  • the unwelded amount at the welded portion of the steel deck 1 can be calculated.
  • the steel floor slab 1 is a measurement object, according to the above-mentioned road bridge specification, it is a criterion that the penetration depth is 75% or more of the U-rib plate thickness, and the thickness of the U-rib 3 is 6 mm. Then, if the unwelded amount is 1.5 mm or less, it is determined to be acceptable, and if it exceeds 1.5 mm, it is determined to be unacceptable.
  • the measuring object of the measuring method of this embodiment is not restricted to a steel deck, but can be applied to any structure produced by welding.
  • the unwelded amount of the welded portion can be calculated based on the measurement result of the actually welded product, it is possible to perform pass / fail determination of the penetration depth for each product. It becomes possible. Therefore, a highly reliable product can be shipped, and a bridge that is less prone to fatigue cracks can be constructed. Furthermore, since the echo height division line used in the measurement, the regression equation, the measurement result of the steel deck 1 that was the measurement object, etc. remain as data, the inspection results should be verified later using these data. Can do.
  • the measurement error of the unwelded amount can be about ⁇ 0.5 mm or less.
  • the unwelded amount can be confirmed immediately from the beam path length using a regression equation, the quickness of confirmation of the penetration depth is high.
  • the amount of welding can be measured without using a B echo whose measurement value is unstable, so that the measurement accuracy is increased as compared with the method using the ratio of the B echo and the F echo. Can do.
  • the measurement method according to the present embodiment conforms to JIS Z 3060 (2002) “Ultrasonic flaw detection test method for steel welds” as described above, and uses equipment and standard test pieces defined by JIS. There is no need to prepare special equipment.
  • a dedicated ultrasonic flaw detector storing a program for performing the above-described method can be used.
  • measurement is performed using a general-purpose ultrasonic flaw detector, and measurement results are imaged. May be performed by a personal computer or the like.
  • an echo height division line shown in FIG. 2 (b) is obtained by the same method using the same test piece and equipment as when the thickness of the U-rib 3 is 6 mm.
  • the probe 7 on the U-rib 3 is formed in a direction in which the ultrasonic beam is perpendicular to the weld line with respect to a plurality of weld specimens that are constituted by the U-rib 3 and the deck plate 2 and have different unwelded amounts. Is measured by ultrasonic scanning.
  • the flaw detection skip is in the range from about 0.5 skip to 1 skip.
  • the height of the F echo which is irradiated from the probe 7 at a predetermined refraction angle (for example, 70 °) and hits the unwelded portion of the welded portion and returns to the probe 7 is measured.
  • a beam path W at which the height of the F echo of the weld specimen is equal to the reference level is obtained, and a regression equation is obtained based on the relationship between the beam path W and the unwelded amount.
  • the L / 2 line of the echo height division line is used as the reference level for obtaining the beam path length W.
  • the reference level is not limited to the L / 2 line as long as it can accurately estimate the unwelded amount, and can be arbitrarily set.
  • FIG. 11 is a diagram showing an example of a regression equation representing the relationship between the beam path length W (mm) and the unwelded amount (mm) obtained when the plate thickness of the U rib is 8 mm.
  • the probe 7 is moved back and forth on the U-rib 3 in the direction in which the ultrasonic beam is perpendicular to the welding line with respect to the steel slab 1 to be measured.
  • the height of the F echo which is irradiated from the probe 7 at a predetermined refraction angle and hits the unwelded portion and returns to the probe is measured.
  • the flaw detection skip is set in a range from 0.5 skip to 1 skip, and measurement by the probe 7 is started from a position as close as possible to the weld location. If the probe 7 is moved in a direction away from the beam, the beam path information can be easily detected.
  • the calculated unwelded amount satisfies a predetermined standard.
  • the penetration depth is 75% or more of the U-rib plate thickness, and the thickness of the U-rib 3 is 8 mm.
  • the unwelded amount is 2.0 mm or less, it is determined to be acceptable, and when it exceeds 2.0 mm, it is determined to be unacceptable.
  • the thickness of the U rib 3 is not particularly limited. If the thickness of the U rib 3 is within a range in which a reflection echo having a sufficient height can be observed, the regression corresponding to the plate thickness is performed. It is possible to apply the method of this embodiment by obtaining an equation.
  • the reference level for obtaining the beam path length W can be appropriately changed in consideration of the height of the F echo, the size of noise, and the like.
  • the thickness of the U rib 3 is 8 mm. In this case, an example in which the unwelded amount is calculated using a reference level different from the example described above will be described.
  • an echo height division line shown in FIG. 2 (b) is obtained by a similar method using the same test piece and equipment as described above.
  • the probe 7 on the U-rib 3 is formed in a direction in which the ultrasonic beam is perpendicular to the weld line with respect to a plurality of weld specimens that are constituted by the U-rib 3 and the deck plate 2 and have different unwelded amounts. Is scanned back and forth to perform ultrasonic measurement.
  • the height of the F echo which is irradiated from the probe 7 at a predetermined refraction angle (for example, 70 °) and hits the unwelded portion of the welded portion and returns to the probe 7 is measured.
  • the beam path length W when the height of the F echo of the weld specimen is equal to the reference level is obtained, and a regression equation is obtained based on the relationship between the beam path length W and the unwelded amount.
  • the L line of the echo height division line is used as the reference level for obtaining the beam path length W.
  • FIG. 13 shows an example of a regression equation representing the relationship between the beam path length W (mm) and the unwelded amount (mm) obtained when the plate thickness of the U rib is 8 mm and the L line is used as the reference level.
  • the probe 7 is moved back and forth on the U-rib 3 in the direction in which the ultrasonic beam is perpendicular to the welding line with respect to the steel slab 1 to be measured.
  • the height of the F echo which is scanned and irradiated from the probe 7 at a predetermined refraction angle and hits an unwelded portion and returns to the probe is measured.
  • the flaw detection skip is set in a range from 0.5 skip to 1 skip, and measurement by the probe 7 is started from a position as close as possible to the weld location.
  • the probe 7 is moved in a direction away from the probe.
  • a beam path length W at which the measured F echo height becomes equal to the reference level is obtained. Subsequently, by applying the obtained beam path length W to the regression equation shown in FIG. 13, it is possible to calculate the unwelded amount at the welded portion of the steel deck 1.
  • two or more types of echo segmentation lines can be used to calculate the beam path length W.
  • Which line is used as the reference level may be appropriately selected according to the measurement conditions and the like. Moreover, what is necessary is just to set suitably the criteria of a pass / fail according to a measuring object.
  • the ultrasonic flaw detector used in the method for measuring the penetration depth of the weld according to this embodiment is the same as the ultrasonic flaw detector according to the first embodiment shown in FIG. It is the same. Therefore, the ultrasonic flaw detector according to the present embodiment will be described below with the aid of FIGS. 8 (a) and 8 (b).
  • the ultrasonic flaw detector 11 controls the probe 7 that irradiates the object with ultrasonic waves, the operation of the probe 7, and the inside of the object.
  • a flaw detector (pulser receiver) 13 that measures the height of the F echo and the beam path of the ultrasonic wave reflected by the probe and returned to the probe 7, and the measurement value measured by the flaw detector 13 is converted into a digital value.
  • the AD conversion unit 15, the signal storage unit 19 for storing the measurement value converted by the AD conversion unit 15, and the regression equation data representing the relationship between the echo height division line data and the beam path information and the unwelded amount are stored.
  • the beam path information such as the beam path W, the U-rib (first member) and the deck as the object.
  • Plate second member
  • An unwelded amount calculation unit 17 that calculates the height (unwelded amount) of the remaining portion of the weld at the welded portion, and a determination unit 21 that determines pass / fail based on the unwelded amount calculated by the unwelded amount calculator 17. And.
  • the ultrasonic flaw detector 11 further includes an image processing unit 23 that performs image processing on the unwelded amount data calculated by the unwelded amount calculating unit 17 and a display unit 25 that displays the image-processed unwelded amount data. You may have.
  • the probe 7 is disposed on a predetermined surface of the measurement object via glycerin or water. In the measurement method described above, measurement is performed with the refraction angle set to 70 °.
  • the probe 7 may be a part of the ultrasonic flaw detector 11 or may be connected to the ultrasonic flaw detector 11 as a separate member.
  • the signal storage unit 19 is composed of a known memory or the like. When used in the measurement method described above, the signal storage unit 19 stores a digitized measurement value or the like of the measurement object. Further, the memory 29 stores data on each line of the echo height division line, beam path information data such as the beam path of the inspection / measurement object, and regression equation data obtained using the beam path information such as the beam path. , And data of the unwelded amount calculated by the unwelded amount calculating unit 17 are stored.
  • the unwelded amount calculation unit 17 is irradiated at a predetermined refraction angle when the probe 7 is scanned back and forth on the object in a direction in which the ultrasonic beam is perpendicular to the weld line of the weld specimen, A beam path W at a position where the height of the F echo returned to the probe 7 upon hitting the unwelded portion of the welded portion becomes equal to the reference level indicated by the echo height division line is obtained as beam path information.
  • These data are stored as data at each measurement position in the longitudinal direction of the measurement object.
  • the unwelded amount calculation unit 17 performs the ultrasonic beam on the first member in a direction in which the ultrasonic beam is perpendicular to the weld line between the first member (U rib) and the second member (deck plate).
  • the beam path length is determined from the measured value of the height of the F echo that is irradiated from the probe 7 at a predetermined refraction angle and hits the unwelded portion and returns to the probe 7.
  • Find W The unwelded amount calculation unit 17 also calculates the unwelded amount by applying the beam path length W to a regression equation obtained in advance based on the relationship between the beam path length W and the unwelded amount.
  • a program for automatically performing these calculations may be stored in advance in a memory (a memory separate from the memory 29) of the ultrasonic flaw detector 11 or the like. Or you may have the hardware constitutions which the unwelding amount calculation part 17 can perform the above-mentioned calculation.
  • the determination unit 21 determines that the measurement value calculated by the unwelded amount calculation unit 17 exceeds the reference value set in advance according to the measurement object, and determines, as an example, a signal indicating failure. Output.
  • the determination unit 21 determines that the measurement value is acceptable when the measured value is equal to or less than a predetermined reference value, and outputs a signal indicating acceptance as an example.
  • the ultrasonic flaw detector 11 may further include a configuration that emits a warning sound when it is determined to be unacceptable, or a configuration for marking a determination result on an object when it is determined as unacceptable. However, the determination unit 21 may not be provided, and the ultrasonic flaw detector 11 may have a configuration for performing the calculation of the unwelded amount.
  • the measurement result data is stored in the signal storage unit 19.
  • the image processing unit 23 performs a process of graphing the calculated unwelded amount and position information (position information in the extension direction of the weld line). Specifically, the image processing unit 23 outputs image data representing the unwelded amount calculated for a plurality of measurement locations in the extension direction of the weld line for each of the plurality of measurement locations. Based on this image data, the display unit 25 displays the unwelded amount for each position in the weld line direction in a visually recognizable manner.
  • FIG. 8B is a diagram illustrating an example of measurement results at a plurality of locations displayed by the display unit 25.
  • the measurement result can be easily grasped by displaying the measurement result of the penetration depth of the welded portion.
  • the display unit 25 is not necessarily included in the ultrasonic flaw detection apparatus 11, and the measurement result may be displayed on a screen of a computer or the like connected to the ultrasonic flaw detection apparatus 11.
  • the unwelded amount can be automatically calculated, so that an artificial mistake can be prevented. Further, even if the operator is not skilled in measurement, it is possible to automatically calculate the beam path length W and the unwelded amount based on the measurement result.
  • the penetration depth measuring method and the ultrasonic flaw detection apparatus described above are examples of the embodiment, and the measurement conditions of the object, the equipment to be used, the configuration of the ultrasonic flaw detection apparatus, etc. are within the scope of the present invention. It is possible to change as appropriate.
  • the penetration depth measurement method according to an embodiment of the present disclosure is useful for increasing the reliability of infrastructure such as a bridge.

Landscapes

  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

 未溶着量の測定方法は、超音波ビームを照射する探触子を用いてエコー高さ区分線を作成するステップと、未溶着量が異なる複数の溶接試験体の溶接ビードがある面に、所定の角度で超音波ビームを照射する探触子を走査させ、溶接箇所の未溶着部分に当たって探触子へと戻ってきたFエコーの高さと、エコー高さ区分線とによりビーム路程情報を求めるステップと、ビーム路程情報と未溶着量との関係を表す回帰式を求めるステップとを含む。

Description

未溶着量の測定方法及び超音波探傷装置
 本明細書に記載された技術は、溶接部分の溶け込み深さの測定方法(すなわち、未溶着量の測定方法)及びこれに用いられる超音波探傷装置に関する。
 鋼橋において、活荷重を直接支持する鋼床版は、デッキプレートと、デッキプレートの裏面に溶接される縦リブ及び横リブとで構成されている。このような溶接構造物では、長期間の使用により溶接部分を起点として疲労亀裂が発生する場合がある。このため、道路橋示方書では、十分な耐疲労性を確保するために、デッキプレートと、縦リブとして広く用いられるU字状の断面を有するUリブとの溶接部分における溶け込み深さがリブ板厚の75%以上である旨規定されている。
 鋼床版等における溶接品質の検査には、非破壊検査の一種である超音波検査がよく用いられるが、上記溶接部の溶け込み深さを直接測定する技術が十分に確立されていない。
 そのため、従来は事前に溶接施工試験を行い、基準を満たす溶け込み深さを確保できる溶接条件を確認し、当該溶接条件を再現することによって溶け込み深さが基準を満たすことを保証してきた。
特開2009-180646号公報 特開2004-333387号公報 特開2007-178197号公報
 しかしながら、事前に設定した溶接条件を再現する方法では、溶接施工記録を確認することでしか溶け込み深さを保証することができず、十分な信頼性を得るのが難しい。
 本発明は、かかる点に鑑みてなされたものであり、溶接によって製造された製品の信頼性を十分に確保できる溶接部の溶け込み深さの測定方法、(言い換えれば、未溶着量の測定方法)を提供することを目的とする。
 本開示の一実施形態は、第1の部材を第2の部材に溶接する際の溶接部の未溶着量の測定方法である。当該方法は、超音波ビームを照射する探触子を用いて、溶接箇所の未溶着部分に当たって前記探触子へと戻ってきたエコーをFエコーとし、当該Fエコー高さを評価する基準レベルとしてエコー高さ区分線を設定するステップと、未溶着量が異なる複数の溶接試験体の溶接ビードがある面に、所定の角度で超音波ビームを照射する探触子を走査させて得られたFエコーの高さと、エコー高さ区分線とによりビーム路程情報を求めるステップと、前記ビーム路程情報と未溶着量との関係を表す回帰式を求めるステップとを含む。
 例えば、当該測定方法でFエコー高さを評価する基準レベルとして用いられるのは、JIS Z 3060「鋼溶接部の超音波探傷試験方法」に規定されるエコー高さ区分線、具体的には、L/2線、L線、M線、H線から選択された1つである。また、この測定方法においてビーム路程情報を求めるステップでは、溶接試験体について、溶接線に対して超音波ビームが直角となる方向に前記探触子を配置し、超音波ビーム方向に前記探触子を前後に走査させ、前記探触子から所定の屈折角で照射され、溶接箇所の未溶着部分に当たって前記探触子へと戻ってきたFエコーの高さと、エコー高さ区分線とによってビーム路程情報を求める。
 ここで、Fエコーの高さは、探触子を例えば溶接ビードに接する位置から遠ざかる方向に走査した時、0.5スキップを超えると低下し、1.5スキップ付近で高くなる。このため、測定方法として、例えばFエコーが0.5スキップを超え基準レベルまで低下した時のビーム路程を上述のビーム路程情報として用いる方法(いわゆるビーム路程法)と、1.5スキップ付近で基準レベルを越える範囲に相当するビーム路程の範囲(軌跡幅)を取り、これをビーム路程情報として用いる方法(いわゆる軌跡幅法)とがある。ここで読み取ったビーム路程又は軌跡幅とを未溶着量との関係に基づいて上述の回帰式が求められる。
 本開示の実施形態に係る測定方法は、前記第1の部材と前記第2の部材との溶接線に対して超音波ビームを照射する前記探触子を配置し、前記探触子から所定の屈折角で照射され、未溶着部分に当たって前記探触子へと戻ってきたFエコーの高さを測定して前記ビーム路程情報を求め、前記ビーム路程情報を前記回帰式にあてはめることで前記未溶着量を算出するステップとをさらに含む。前記第1の部材の板厚から算出された未溶着量を減じることにより、溶け込み深さが求められる。
 この方法によれば、実際に溶接された製品の測定結果に基づいて溶接箇所の未溶着量を算出し、溶け込み深さを求めることができるので、製品ごとの合否判定を行うことが可能となる。そのため、信頼性の高い製品を出荷することができ、疲労亀裂の生じにくい橋梁等を構築することができる。
 本開示の一実施形態に係る超音波探傷装置は、対象物に超音波を照射する探触子と、前記探触子の動作を制御するとともに、前記対象物の未溶着部で反射され、前記探触子へと戻ってきた超音波のFエコー高さ及びビーム路程を測定する探傷部と、前記探傷部によって測定された測定値をデジタル値に変換するAD変換部と、前記AD変換部によって変換された前記測定値を保存する信号保存部と、エコー高さ区分線のデータと、ビーム路程情報と未溶着量との関係を表す回帰式のデータとを保存するメモリと、前記信号保存部に保存された前記測定値及び前記メモリに保存されたデータに基づいて、前記対象物である第1の部材と第2の部材との溶接箇所における未溶着量を算出する未溶着量算出部とを備えている。
 そして、前記未溶着量算出部は、前記第1の部材上の前記探触子へと戻ってきたFエコーの高さが前記エコー高さ区分線を越えるビーム路程の範囲である軌跡幅を前記ビーム路程情報として求め、当該軌跡幅を前記回帰式にあてはめることで前記未溶着量を算出してもよい。
 あるいは、前記未溶着量算出部は、前記第1の部材上の前記探触子へと戻ってきたFエコーの高さが前記エコー高さ区分線に等しくなるビーム路程を、前記ビーム路程情報として求め、当該ビーム路程を前記回帰式にあてはめることで前記未溶着量を算出してもよい。
 これらの超音波探傷装置によれば、未溶着量の算出を自動的に行うことができるので、人為的なミスを防ぐことができる。また、作業者が測定に熟練していなくても、測定結果に基づいて自動的にビーム路程情報の算出及び未溶着量の算出等を行うことができる。
 超音波探傷装置は、前記未溶着量算出部で算出された前記未溶着量が所定の基準値を超えた場合には不合格と判定し、前記未溶着量が前記基準値以下である場合には合格と判定する判定部とをさらに備えていてもよい。
 本開示の一実施形態に係る溶接部における未溶着量の測定方法によれば、溶接によって製造された製品の信頼性を十分に確保することが可能となる。
図1(a)は、橋梁を構成する鋼床版を示す斜視図であり、(b)は、Uリブとデッキプレートとの溶接部付近を拡大して示す側面図である。 図2(a)は、本開示の一実施形態に係る測定方法に用いられる試験片(RB-41 No.1)を模式的に示す断面図であり、(b)は、(a)に示す試験片を用いて得られたエコー高さ区分線を示す図であり、(c)は、(a)に示す試験片上の位置とビーム路程との対応を示す図である。 図3は、所定の試験片を用いて得られたエコー高さ区分線と、探触子へと戻ってきたFエコーの軌跡とを示す図である。 図4(a)は、板厚6mmのUリブ上を探触子を用いて前後に走査する様子を示す図であり、(b)は、対象物の測定結果に基づく軌跡幅を示す図である。 図5は、Uリブの板厚が6mmであり、基準レベルとしてエコー高さ区分線のL線を用いた場合に得られた軌跡幅(mm)と未溶着量(mm)との関係を表す回帰式の一例を示す図である。 図6(a)は、板厚8mmのUリブ上を探触子を用いて前後に走査する様子を示す図であり、(b)は、対象物の測定結果に基づく軌跡幅を示す図である。 図7は、Uリブの板厚が8mmであり、基準レベルとしてエコー高さ区分線のM線を用いた場合に得られた軌跡幅(mm)と未溶着量(mm)との関係を表わす回帰式の一例を示す図である。 図8(a)は、本開示の一実施形態に係る溶接部の溶け込み深さの測定方法に使用される超音波探傷装置の一例を示すブロック構成図であり、(b)は、表示部により表示された複数箇所での測定結果の一例を示す図である。 図9(a)は、Uリブ上を探触子を用いて前後に走査する様子を示す図であり、(b)は、対象物の測定結果に基づくビーム路程を示す図である。 図10は、Uリブの板厚が6mmであり、基準レベルとしてL/2線を用いた場合に得られたビーム路程(mm)と未溶着量(mm)との関係を表す回帰式の一例を示す図である。 図11は、Uリブの板厚が8mmであり、基準レベルとしてL/2線を用いた場合に得られたビーム路程(mm)と未溶着量(mm)との関係を表す回帰式の一例を示す図である。 図12は、対象物の測定結果に基づくビーム路程を示す図である。 図13は、Uリブの板厚が8mmであり、基準レベルとしてL線を用いた場合に得られたビーム路程(mm)と未溶着量(mm)との関係を表す回帰式の一例を示す図である。
 図1(a)は、橋梁を構成する鋼床版を示す斜視図であり、(b)は、Uリブとデッキプレートとの溶接部付近(図1(a)に示す領域A)を拡大して示す側面図である。
 図1(a)に示す鋼床版1は、平板状のデッキプレート(第2の部材)2と、当該デッキプレート2の裏面に溶接され、U字状の断面を有するUリブ(第1の部材)3とを有している。図1(b)に示すように、Uリブ3とデッキプレート2との溶接部分には所定の溶け込み深さ(すなわち、所定の未溶着量を有する)の溶接ビード5が形成されている。
 本開示の一実施形態に係る溶接部の溶け込み深さの測定方法では、この鋼床版1を測定対象とする。
 本願発明者らは、精度良く溶接部の溶け込み深さの測定を行う方法を種々検討した。図2(b)は、図2(a)に示す試験片を用いて得られたエコー高さ区分線を示す図であり、図3は、当該エコー高さ区分線と、探触子へと戻ってきたFエコーの軌跡(図中の破線)とを示す図である。
 ここで、特許文献1には、エコー高さ区分線を基準として、Fエコーの相対的な高さを求め、この相対エコー高さと試験片の溶接部の溶け込み残り部の高さ(すなわち、未溶着量)との関係を用いて算定カーブを作成し、この算定カーブを用いて測定対象物における未溶着量を算定する方法が記載されている。
 特許文献2には、Uリブの板厚やパルスの入射角度等に応じて設定された位置でFエコーを測定してマスターデータを作成し、測定対象物の当該位置で観測されたFエコーをマスターデータにあてはめることで未溶着量を算出する方法が記載されている。
 この他に、Uリブ3(図1(a)、(b)参照)において、探触子の位置を固定した上で、探触子が接触する面に対向する裏面によって反射されたエコー(いわゆるBエコー)とFエコーとの比を指標として測定対象物の未溶着量を算定することも考えられる。
 図1(a)、(b)に示すUリブ上で探触子を溶接ビードに接する位置から遠ざかる方向に走査させつつ、所定の屈折角をもって溶接箇所の未溶着部分に超音波を照射すると、未溶着部分に当たって探触子へと戻ってきたFエコーが観測される。図3に示すように、このFエコーは、0.5スキップ付近で一旦低下した後、1.5スキップ付近で再び高くなる。
 特許文献1、2に記載された方法等では、Fエコーの高さが高くなる位置で探触子を固定する必要があるので、探触子は0.5スキップよりも溶接部に近い位置に配置される(図3に示す破線参照)。ところが、Uリブ厚さが6mm程度と薄い場合、探触子が溶接部に接触して正確な測定が困難になる場合がある。
 さらに、BエコーとFエコーとの比を用いる方法においては、Bエコーの測定値の振れ幅がFエコーに比べて大きく、測定値が安定しないため、誤差が大きくなる可能性がある。
 本願発明者らは、上記の課題に鑑みて精度良く且つ簡易な測定方法をさらに探索した結果、Fエコーの高さが、所定のエコー高さ区分線と等しくなるビーム路程、又はFエコーの高さが、所定のエコー区分線を越える範囲におけるビーム路程の範囲が溶接部分における未溶着量と良好な関連性を示すことを見出した。
 そして、発明者らは、上述のビーム路程やビーム路程の範囲をビーム路程情報と定義し、未溶着量が異なる複数の溶接試験体の溶接ビードがある面に、所定の角度で超音波ビームを照射する探触子を走査させ、溶接箇所の未溶着部分に当たって探触子へと戻ってきたFエコーからビーム路程情報を求め、このビーム路程情報と未溶着量との関係に基づいて回帰式を得た。さらに、本願発明者らは、測定対象物について測定されたFエコーのビーム路程情報をあてはめることで、精度良く簡易に未溶着量が測定できることに想到し、実際に確認した。以下、本発明の実施形態について具体的に説明する。
  (第1の実施形態)
 上述のビーム路程情報が、「軌跡幅」である例について、以下詳細に説明する。本明細書において、「軌跡幅」とは、Fエコーの高さが、基準レベルとして設定された所定のエコー区分線を越えるビーム路程の範囲(例えば図3に示すW2-W1)を意味するものとする。本願発明者らは、対象物の超音波測定を行い、その測定結果から「軌跡幅」を求め、これを予め作成しておいた回帰式にあてはめることで、未溶着量が求められることを確認した。
  -測定方法の手順-
 <エコー高さ区分線の作成>
 本実施形態に係る測定方法では、測定対象物を測定する前に予め以下の手順で超音波探傷試験を行い、エコー高さ区分線を得ておく。本実施形態に係る測定方法は、JIS Z 3060(2002)「鋼溶接部の超音波探傷試験方法」に準拠する方法である。
 超音波探傷装置としては、JIS Z 2352に適合する機種を用いる。探触子としては一例としてB5K10x10A70を用いる。この探触子の振動子寸法は10mm×10mmであり、探触子から標準試験片に照射する超音波の周波数は5MHz、屈折角は70°である。
 標準試験片としてはA1形STBを使用し、対比試験片としてはRB-41 No.1を使用する。試験片と探触子との間に塗布される接触媒質としては、グリセリンペースト又は水が用いられる。
 まず、A1形STB標準試験片を用いて、入射点、屈折角の測定と時間軸の調整とを行う。
 次いで、RB-41 No.1の上面及び裏面上の、図2(a)に示す位置(1)~(6)に探触子を順次配置して、所定の屈折角(ここでは70°)でRB-41 No.1に超音波を照射して所定の標準穴でのエコー高さを測定する。ここで、標準穴で測定された最大エコー高さをビーム路程に対してプロットしたものをH線とし、基準探傷感度とする。なお、M線はH線よりも6dB低い値を示す線であり、L線はM線よりも6dB低い値を示す線であり、L/2線はL線よりも6dB低い値を示す線である。以上のようにして、図2(b)に示すエコー高さ区分線を得る。
 <回帰式の作成>
 図4(a)に示すように、Uリブ3とデッキプレート2とで構成され、未溶着量の異なる複数の溶接試験体について、溶接線に対して超音波ビームが所定の角度(例えば直角)となる方向にUリブ3上の探触子7を例えば前方又は後方に走査させて超音波測定を行う。Uリブ3の厚さは測定対象とするUリブと同じ6mmとする。ここでは、探触子7から所定の屈折角(例えば70°)で照射され、溶接箇所の未溶着部分に当たって探触子7へと戻ってきたFエコーの高さを測定する。
 また、図4(b)に示すように、エコー高さ区分線を用いてFエコーの測定結果から軌跡幅を求め、この軌跡幅と未溶着量との関係に基づいて回帰式を求める。図4(b)に示す例では、Fエコー高さを評価する基準レベルとしてエコー高さ区分線のL線を用いている。ただし、基準レベルは未溶着量を精度良く推定できるレベルであればL線に限られず、任意に設定することができる。
 図5は、Uリブの板厚が6mmである場合に得られた軌跡幅(mm)と未溶着量(mm)との関係を表す回帰式の一例を示す図である。この回帰式は、測定結果をプロットし、例えば最小二乗法を用いて得ることができる。
 <未溶着量測定/合否判定>
 次に、測定対象となる鋼床版1に対し、図4(a)に示すように、溶接線に対して超音波ビームが直角となる方向にUリブ3上で探触子7を前後に走査させ、探触子7から所定の屈折角で照射され、未溶着部分に当たって前記探触子へと戻ってきたFエコーの高さを測定する。
 次いで、図3(b)に示すエコー高さ区分線のL線を基準レベルとして、測定されたFエコーの高さから軌跡幅を求める。続いて、得られた軌跡幅を図5に示す回帰式にあてはめることにより、鋼床版1の溶接箇所における未溶着量を算出できる。回帰式がY=0.06198X+0.2725である場合、例えば軌跡幅が20mmとすると、未溶着量は約1.51mmであると算出できる。
 最後に、算出された未溶着量が所定の基準を満たしているか否かを判定する。鋼床版1を測定対象とする場合、上述の道路橋示方書によれば、溶け込み深さがUリブ板厚の75%以上であることが判定基準であり、Uリブ3の厚みが6mmとすると、未溶着量が1.5mm以下であれば合格、1.5mmを越えていれば不合格と判定する。
 なお、本実施形態の測定方法の測定対象は鋼床版に限られず、溶接により作製される構造物であれば適用可能である。
  -測定方法の効果-
 本実施形態に係る測定方法によれば、実際に溶接された製品の測定結果に基づいて溶接箇所の未溶着量を算出することができるので、製品ごとの溶け込み深さの合否判定を行うことが可能となる。そのため、信頼性の高い製品を出荷することができ、疲労亀裂の生じにくい橋梁を構築することができる。さらに、測定の際に用いたエコー高さ区分線、回帰式、測定対象となった鋼床版1の測定結果等がデータとして残るので、後にこれらのデータを用いて検査結果の検証を行うことができる。
 また、溶接ルート部の溶け込み形状にばらつきがあるため、探触子7の位置を固定して測定する特許文献1、2に記載された方法では適切な高さの反射エコーが得られないことがあるが、本実施形態の方法では、Uリブ3(第1の部材)上で探触子7を前後に走査させて測定を行うので、精度良く未溶着量を算出することができる。
 特許文献1、2の方法は、エコー高さで評価するため、Uリブ3の厚みが薄い場合に探触子7が溶接部に接触するため使用できない可能性がある。これに対し、本実施形態の測定方法によれば、超音波を溶接箇所に直射する方法に比べて溶接箇所から離れた位置でFエコーを測定し、未溶着量の算出を行うことができるため、Uリブの厚みが6mm以下である場合であっても軌跡幅を求めることができ、未溶着量を算出することが可能となっている。実際に本実施形態の方法を用いて測定した結果によれば、Uリブ3の厚みが6mmの場合でも未溶着量の測定誤差を±0.5mm以下程度にすることができ、従来よりも精度の高い測定が可能になることが確認されている。
 また、本実施形態の測定方法では、測定値が不安定なBエコーを用いることなく未溶着量を測定できるので、BエコーとFエコーとの比を用いる方法に比べて測定精度を高くすることができる。
 また、本実施形態に係る測定方法は、上述のようにJIS Z 3060(2002)「鋼溶接部の超音波探傷試験方法」に準拠しており、JISで定められた機器や標準試験片を用いて実施できるので、特殊な設備等を用意する必要がない。測定には、上述の方法を実施するためのプログラム等を格納した専用の超音波探傷装置を用いることもできるが、汎用の超音波探傷装置を用いて測定し、信号の保存、測定結果の画像化等の処理をパーソナルコンピュータ等で行うようにしてもよい。なお、軌跡幅の算出や未溶着量の算出を超音波探傷装置によらず、人手で行うことも可能である。
  -Uリブの板厚を変更した場合の例-
 デッキプレート2に溶接されるUリブ3の厚みが6mmである場合を例にとって本実施形態の測定方法を説明したが、Uリブ3の厚みが変わった場合にも同様の方法で溶接部の溶け込み深さの測定を行うことができる。Uリブ3の厚みが8mmである場合の測定手順について以下に説明する。
 まず、Uリブ3の板厚が6mmである場合と同じ試験片及び機器を用いた同様の方法により、図3(b)に示すエコー高さ区分線を得る。
 次に、図6(a)に示すように、Uリブ3とデッキプレート2とで構成され、未溶着量の異なる複数の溶接試験体について、溶接線に対して超音波ビームが所定の角度(例えば直角)となる方向にUリブ3上の探触子7を前方又は後方に走査させて超音波測定を行う。ここでは、探触子7から所定の屈折角(例えば70°)で照射され、溶接箇所の未溶着部分に当たって探触子7へと戻ってきたFエコーの高さを測定する。
 ここで、探触子7を前後に走査させる際には、探傷スキップを1.5スキップ、2.5スキップ、3.5スキップ等とすることができる。このうち、上述のように、探傷スキップが1.5スキップとなる位置付近で探触子7を走査することが最も好ましい。
 また、図6(b)に示すように、エコー高さ区分線を用いてFエコーの測定結果から軌跡幅を求め、この軌跡幅と未溶着量との関係に基づいて回帰式を求める。ここでは、軌跡幅を求めるための基準レベルとして、エコー高さ区分線のM線を用いている。ただし、基準レベルは未溶着量を精度良く推定できるレベルであればM線に限られず、任意に設定することができる。
 図7は、Uリブの板厚が8mmである場合に得られた軌跡幅(mm)と未溶着量(mm)との関係を表す回帰式の一例を示す図である。
 次に、測定対象となる鋼床版1に対し、図6(a)に示すように、溶接線に対して超音波ビームが直角となる方向にUリブ3上で探触子7を前後に走査させ、探触子7から所定の屈折角で照射され、未溶着部分に当たって前記探触子へと戻ってきたFエコーの高さを測定する。
 次いで、図3(b)に示すエコー高さ区分線のM線を基準レベルとして、測定されたFエコーの高さから軌跡幅を求める。続いて、得られた軌跡幅を図7に示す回帰式にあてはめることにより、鋼床版1の溶接箇所における未溶着量を算出できる。
 最後に、算出された未溶着量が所定の基準を満たしているか否かを判定する。鋼床版1を測定対象とする場合、上述の道路橋示方書によればUリブ3の厚みが8mmとすると、未溶着量が2.0mm以下であれば合格、2.0mmを越えていれば不合格と判定する。なお、合否の判定基準は測定対象によって適宜設定することができる。
 以上のように、本実施形態の測定方法を用いれば、Uリブ3の板厚が8mmである場合にも精度良く未溶着量の測定及び溶け込み深さの測定を行うことが可能となる。このように、本実施形態の測定方法において、Uリブ3の厚みは特に限定されず、Uリブ3の厚みが十分な高さの反射エコーを観測できる範囲にあれば、板厚に対応した回帰式を求めることで本実施形態の方法を適用することが可能である。
  -超音波探傷装置-
 図8(a)は、本開示の一実施形態に係る溶接部の溶け込み深さの測定方法に使用される超音波探傷装置の一例を示すブロック構成図である。
 同図に示すように、本実施形態に係る超音波探傷装置11は、対象物に超音波を照射する探触子7と、探触子7の動作を制御するとともに、対象物内で反射され、探触子7へと戻ってきた超音波のFエコー高さ及びビーム路程を測定する探傷部(パルサーレシーバー)13と、探傷部13によって測定された測定値をデジタル値に変換するAD変換部15と、AD変換部15によって変換された測定値を保存する信号保存部19と、エコー高さ区分線のデータ及びビーム路程情報と未溶着量の関係を表す回帰式データを保存するメモリ29と、信号保存部19に保存された測定値及びメモリ29に保存されたデータに基づいて、軌跡幅等のビーム路程情報や、対象物であるUリブ(第1の部材)とデッキプレート(第2の部材)との溶接箇所における未溶着量を算出する未溶着量算出部17と、未溶着量算出部17で算出された未溶着量に基づいて合否を判定する判定部21とを備えている。
 超音波探傷装置11は、未溶着量算出部17によって算出された未溶着量のデータを画像処理する画像処理部23と、画像処理された未溶着量のデータを表示する表示部25とをさらに備えていてもよい。
 探触子7は、グリセリン又は水を介して測定対象物の所定の面上に配置される。上述の測定方法では、屈折角を70°に設定して測定する。探触子7は、超音波探傷装置11の一部であってもよいし、別個の部材として超音波探傷装置11に接続されてもよい。
 信号保存部19は、公知のメモリ等で構成される。上述の測定方法に用いられる場合、信号保存部19には、測定対象物のデジタル化された測定値等が保存される。また、メモリ29には、エコー高さ区分線の各線のデータ、検査/測定対象物の軌跡幅等のビーム路程情報のデータ、軌跡幅等のビーム路程情報を用いて得られた回帰式のデータ、及び未溶着量算出部17により算出された未溶着量のデータ等が保存される。これらのデータは測定対象物の長手方向の各測定位置におけるデータとして保存される。
 未溶着量算出部17は、第1の部材(Uリブ)と第2の部材(デッキプレート)との溶接線に対して超音波ビームが直角となる方向に対象物上で探触子7を前後に走査させた場合に、所定の屈折角で照射され、溶接箇所の未溶着部分に当たって探触子7へと戻ってきたFエコーの高さが、基準レベルとして設定されたエコー高さ区分線を越えるビーム路程の範囲をビーム路程情報(ここでは軌跡幅)として求める。
 次いで、未溶着量算出部17は、未溶着量算出部17はまた、当該軌跡幅を軌跡幅と未溶着量との関係に基づいてあらかじめ求められた回帰式にあてはめることで未溶着量を算出する。これらの演算を自動的に行うためのプログラムは超音波探傷装置11のメモリ(メモリ29とは別個のメモリ)等に予め格納されていてもよい。あるいは、未溶着量算出部17が上述の演算を行うことができるようなハードウェア構成を有していてもよい。
 判定部21は、未溶着量算出部17で算出された測定値が測定対象物に応じて予め設定された基準値を越えた場合には不合格と判定し、一例として不合格を示す信号を出力する。判定部21はまた、測定値が所定の基準値以下である場合には合格と判定し、一例として合格を示す信号を出力する。超音波探傷装置11は、不合格と判定された場合には警告音を発する構成や、不合格と判定された場合に判定結果を対象物にマーキングするための構成をさらに備えていてもよい。ただし、判定部21を設けず、超音波探傷装置11が未溶着量の算出までを行う構成を有していてもよい。
 なお、測定対象物(ここではUリブ)の長手方向(すなわち、溶接線の伸長方向)に所定の間隔で未溶着量の測定を行い、測定結果のデータは信号保存部19に保存される。この場合、画像処理部23は、算出された未溶着量と位置情報(溶接線の伸長方向における位置情報)とをグラフ化する処理を行う。具体的に、画像処理部23は、溶接線の伸長方向における複数の測定箇所について算出された未溶着量を複数の測定箇所ごとに表した画像データを出力する。表示部25は、この画像データに基づき、溶接線方向の位置ごとの未溶着量を視覚的に認識可能な方法で表示する。
 図8(b)は、表示部25により表示された複数箇所での測定結果の一例を示す図である。このように、未溶着量の測定結果を表示することで、測定結果の把握を容易に行うことができるようになる。なお、表示部25は必ずしも超音波探傷装置11に含まれている必要はなく、超音波探傷装置11に接続されたコンピュータ等の画面に測定結果を表示してもよい。
 本実施形態の超音波探傷装置11によれば、未溶着量の算出を自動的に行うことができるので、人為的なミスを防ぐことができる。また、作業者が測定に熟練していなくても、測定結果に基づいて自動的に軌跡幅の算出及び未溶着量の算出が可能であり、溶け込み深さの検査を行うことができる。
  (第2の実施形態)
 本発明の第2の実施形態に係る溶接部の溶け込み深さの測定方法では、第1の実施形態の方法と同様に、図1(a)に示す鋼床版1を測定対象とする。本願発明者は、精度良く溶接部の溶け込み深さの測定を行う方法をさらに検討したところ、所定の屈折角をもって照射された超音波のFエコーの高さが所定のエコー区分線と等しくなるビーム路程をW(図2、図9(b)参照)とするとき、溶接部分における未溶着量の増加に相関してWが増加することを見出した。
 そこで、本願発明者らはさらに研究を重ね、対象物の超音波測定を行い、その測定結果からFエコーのビーム路程Wを求め、これを予め作成しておいた回帰式にあてはめることで、未溶着量を測定できる方法に想到した。この方法で、上述の「ビーム路程情報」は、「Fエコーの高さが基準レベルとして設定された所定のエコー区分線と等しくなるビーム路程W」となっている。以下、本実施形態の測定方法について具体的に説明する。
  -測定方法の手順-
 <エコー高さ区分線の作成>
 本実施形態に係る測定方法では、測定対象物を測定する前に予め以下の手順で超音波探傷試験を行い、エコー高さ区分線を得ておく。本実施形態に係る測定方法は、JIS Z 3060(2002)「鋼溶接部の超音波探傷試験方法」に準拠する方法である。
 超音波探傷装置としては、JIS Z 2352に適合する機種を用いる。探触子としては一例としてB5K10x10A70を用いる。この探触子の振動子寸法は10mm×10mmであり、探触子から標準試験片に照射する超音波の周波数は5MHz、屈折角は70°である。
 標準試験片としてはA1形STBを使用し、対比試験片としてはRB-41 No.1を使用する。試験片と探触子との間に塗布される接触媒質としては、グリセリンペースト又は水が用いられる。
 まず、A1形STB標準試験片を用いて、入射点、屈折角の測定と時間軸の調整とを行う。
 次いで、RB-41 No.1の上面及び裏面上の、図2(a)に示す位置(1)~(6)に探触子を順次配置して、所定の屈折角(ここでは70°)でRB-41 No.1に超音波を照射して所定の標準穴でのエコー高さを測定する。ここで、直径が3mmの標準穴で測定された最大エコー高さをビーム路程に対してプロットしたものをH線とし、基準探傷感度とする。なお、M線はH線よりも6dB低い値を示す線であり、L線はM線よりも6dB低い値を示す線であり、L/2線はL線よりも6dB低い値を示す線である。以上のようにして、図2(b)に示すエコー高さ区分線を得る。
 <回帰式の作成>
 図9(a)に示すように、Uリブ3とデッキプレート2とで構成され、未溶着量の異なる複数の溶接試験体について、溶接線に対して超音波ビームが直角となる方向にUリブ3上の探触子7を前後に走査させて超音波測定を行う。探触子7を走査させる際には、探傷スキップを0.5スキップから1スキップまでの範囲とする。探触子7から所定の屈折角(例えば70°)で照射され、溶接箇所の未溶着部分に当たって探触子7へと戻ってきたFエコーの高さを測定する。Uリブ3の厚さは測定対象とするUリブと同じ6mmとする。
 また、図9(b)に示すように、Fエコーのエコー高さが基準レベルとして設定されたエコー区分線と等しくなるビーム路程Wを求め、このビーム路程Wと未溶着量との関係に基づいて回帰式を求める。図9(b)に示す例では、エコー高さ区分線のL/2線を基準レベルとして用いている。ただし、基準レベルは未溶着量を精度良く推定できるレベルであればL/2線に限られず、任意に設定することができる。なお、図9(b)に示す破線は、走査中の探触子7で観測されるFエコー高さの変化を示す。
 図10は、Uリブの板厚が6mmである場合での、Fエコーのエコー高さがL/2線のレベルと等しくなるビーム路程W(mm)と未溶着量(mm)との関係を表す回帰式の一例を示す図である。この回帰式は、測定結果をプロットし、例えば最小二乗法を用いて得ることができる。
 <未溶着量測定/合否判定>
 次に、測定対象となる鋼床版1に対し、図9(a)に示すように、溶接線に対して超音波ビームが直角となる方向に、Uリブ3上で探触子7を前後に走査させ、探触子7から所定の屈折角で照射され、未溶着部分に当たって前記探触子へと戻ってきたFエコーの高さを測定する。ここで、探触子7を走査させる際には、探傷スキップを0.5スキップ付近から1スキップまでの範囲とし、溶接箇所にできるだけ近い位置から探触子7による測定を始め、当該溶接箇所から遠ざかる方向に探触子7を移動させる。このようにすれば、熟練度の低い作業員が測定を行う場合でもビーム路程情報を容易に検出できる。
 次いで、図2(b)に示すエコー高さ区分線のL/2線を基準レベルとして、測定されたFエコーの高さが基準レベルまで低下した時のビーム路程Wを求める。続いて、得られたビーム路程Wを図10に示す回帰式にあてはめることにより、鋼床版1の溶接箇所における未溶着量が算出できる。回帰式がY=0.20546X-3.713である場合、例えばビーム路程Wが25mmとすると、未溶着量は約1.42mmであると算出できる。
 最後に、算出された未溶着量が所定の基準を満たしているか否かを判定する。鋼床版1を測定対象とする場合、上述の道路橋示方書によれば、溶け込み深さがUリブ板厚の75%以上であることが判定基準であり、Uリブ3の厚みが6mmとすると、未溶着量が1.5mm以下であれば合格、1.5mmを越えていれば不合格と判定する。
 なお、本実施形態の測定方法の測定対象は鋼床版に限られず、溶接により作製される構造物であれば適用可能である。
  -測定方法の効果-
 本実施形態に係る測定方法によれば、実際に溶接された製品の測定結果に基づいて溶接箇所の未溶着量を算出することができるので、製品ごとの溶け込み深さの合否判定を行うことが可能となる。そのため、信頼性の高い製品を出荷することができ、疲労亀裂の生じにくい橋梁を構築することができる。さらに、測定の際に用いたエコー高さ区分線、回帰式、測定対象となった鋼床版1の測定結果等がデータとして残るので、後にこれらのデータを用いて検査結果の検証を行うことができる。
 また、溶接ルート部の溶け込み形状にばらつきがあるため、探触子7の位置を固定して測定する特許文献1、2に記載された方法では適切な高さの反射エコーが得られないことがあるが、本実施形態の方法では、Uリブ3(第1の部材)上で探触子7を前後走査させて測定を行うので、精度良く未溶着量を算出することができる。
 実際に本実施形態の方法を用いて測定した結果によれば、Uリブ3の厚みが6mmの場合でも未溶着量の測定誤差を±0.5mm以下程度にすることができる。また、回帰式を用いてビーム路程から直ちに未溶着量を確認することができることから、溶け込み深さの確認の即応性が高い。
 また、本実施形態の測定方法では、測定値が不安定なBエコーを用いることなく未溶着量を測定できるので、BエコーとFエコーとの比を用いる方法に比べて測定精度を高くすることができる。
 また、本実施形態に係る測定方法は、上述のようにJIS Z 3060(2002)「鋼溶接部の超音波探傷試験方法」に準拠しており、JISで定められた機器や標準試験片を用いて実施できるので、特殊な設備等を用意する必要がない。測定には、上述の方法を実施するためのプログラム等を格納した専用の超音波探傷装置を用いることもできるが、汎用の超音波探傷装置を用いて測定し、測定結果の画像化等の処理をパーソナルコンピュータ等で行うようにしてもよい。
  -Uリブの板厚を変更した場合の例-
 デッキプレート2に溶接されるUリブの厚みが6mmである場合を例にとって本実施形態の測定方法を説明したが、Uリブ3の厚みが変わった場合にも同様の方法で溶接部の溶け込み深さの測定を行うことができる。Uリブ3の厚みが8mmである場合の測定手順について以下に説明する。
 まず、Uリブ3の板厚が6mmである場合と同じ試験片及び機器を用いた同様の方法により、図2(b)に示すエコー高さ区分線を得る。
 次に、Uリブ3とデッキプレート2とで構成され、未溶着量の異なる複数の溶接試験体について、溶接線に対して超音波ビームが直角となる方向にUリブ3上の探触子7を前後走査させて超音波測定を行う。探触子7を走査させる際には、探傷スキップを0.5スキップ付近から1スキップまでの範囲とする。ここでは、探触子7から所定の屈折角(例えば70°)で照射され、溶接箇所の未溶着部分に当たって探触子7へと戻ってきたFエコーの高さを測定する。
 続いて、溶接試験体のFエコーの高さが基準レベルに等しくなるビーム路程Wを求め、このビーム路程Wと未溶着量との関係に基づいて回帰式を求める。ここでは、ビーム路程Wを求めるための基準レベルとして、エコー高さ区分線のL/2線を用いる。基準レベルは未溶着量を精度良く推定できるレベルであればL/2線に限られず、任意に設定することができる。
 図11は、Uリブの板厚が8mmである場合に得られたビーム路程W(mm)と未溶着量(mm)との関係を表す回帰式の一例を示す図である。
 次に、測定対象となる鋼床版1に対し、図9(a)に示すように、溶接線に対して超音波ビームが直角となる方向に、Uリブ3上で探触子7を前後に走査させ、探触子7から所定の屈折角で照射され、未溶着部分に当たって前記探触子へと戻ってきたFエコーの高さを測定する。ここで、探触子7を前後に走査させる際には、探傷スキップを0.5スキップから1スキップまでの範囲とし、溶接箇所にできるだけ近い位置から探触子7による測定を始め、当該溶接箇所から遠ざかる方向に探触子7を移動させれば容易にビーム路程情報を検出できる。
 次いで、図2(b)に示すエコー高さ区分線のL/2線を基準レベルとして、測定されたFエコーの高さが基準レベルと等しくなるビーム路程Wを求める。続いて、得られたビーム路程Wを図11に示す回帰式にあてはめることにより、鋼床版1の溶接箇所における未溶着量を算出できる。
 最後に、算出された未溶着量が所定の基準を満たしているか否かを判定する。鋼床版1を測定対象とする場合、上述の道路橋示方書によれば溶け込み深さがUリブ板厚の75%以上であることが判定基準であり、Uリブ3の厚みを8mmとすると、未溶着量が2.0mm以下であれば合格、2.0mmを越えていれば不合格と判定する。
 以上のように、本実施形態の測定方法を用いれば、Uリブ3の板厚が8mmである場合にも精度良く未溶着量の測定及び溶け込み深さの測定を行うことが可能となる。このように、本実施形態の測定方法において、Uリブ3の厚みは特に限定されず、Uリブ3の厚みが十分な高さの反射エコーを観測できる範囲にあれば、板厚に対応した回帰式を求めることにより本実施形態の方法を適用することが可能である。
  -基準レベルを変更した場合の例-
 本実施形態の測定方法において、ビーム路程Wを求めるための基準レベルはFエコーの高さやノイズの大きさ等を考慮に入れて適宜変更可能であるが、以下ではUリブ3の板厚を8mmとした場合に、先に説明した例と異なる基準レベルを用いて未溶着量の算出を行う例について説明する。
 まず、上述の場合と同じ試験片及び機器を用いた同様の方法により、図2(b)に示すエコー高さ区分線を得る。
 次に、Uリブ3とデッキプレート2とで構成され、未溶着量の異なる複数の溶接試験体について、溶接線に対して超音波ビームが直角となる方向にUリブ3上の探触子7を前後に走査させて超音波測定を行う。ここでは、探触子7から所定の屈折角(例えば70°)で照射され、溶接箇所の未溶着部分に当たって探触子7へと戻ってきたFエコーの高さを測定する。
 続いて、図12に示すように、溶接試験体のFエコーの高さが基準レベルに等しくなる場合のビーム路程Wを求め、このビーム路程Wと未溶着量との関係に基づいて回帰式を求める。ここでは、ビーム路程Wを求めるための基準レベルとして、エコー高さ区分線のL線を用いる。
 図13は、Uリブの板厚が8mmで、基準レベルとしてL線を用いた場合に得られたビーム路程W(mm)と未溶着量(mm)との関係を表す回帰式の一例を示す図である。
 次に、測定対象となる鋼床版1に対し、図9(a)に示すように、溶接線に対して超音波ビームが直角となる方向に、Uリブ3上で探触子7を前後走査させ、探触子7から所定の屈折角で照射され、未溶着部分に当たって前記探触子へと戻ってきたFエコーの高さを測定する。ここで、探触子7を前後に走査させる際には、探傷スキップを0.5スキップから1スキップまでの範囲とし、溶接箇所にできるだけ近い位置から探触子7による測定を始め、当該溶接箇所から遠ざかる方向に探触子7を移動させる。
 次いで、図2(b)に示すエコー高さ区分線のL線を基準レベルとして、測定されたFエコーの高さが基準レベルと等しくなるビーム路程Wを求める。続いて、得られたビーム路程Wを図13に示す回帰式にあてはめることにより、鋼床版1の溶接箇所における未溶着量を算出できる。
 最後に、L/2線を基準レベルとして用いた場合と同様の方法で、算出された未溶着量が所定の基準を満たしているか否かを判定する。
 以上のように、本実施形態の測定方法においては、ビーム路程Wを算出するために二種類以上のエコー区分線を用いることができる。どの線を基準レベルとして用いるかは測定条件等に応じて適宜選択すればよい。また、合否の判定基準は測定対象によって適宜設定すればよい。
  -超音波探傷装置-
 本実施形態に係る溶接部の溶け込み深さの測定方法に使用される超音波探傷装置は、一部の機能を除いて図8(a)に示す第1の実施形態に係る超音波探傷装置と同様である。従って、以下では図8(a)、(b)を援用しての本実施形態の超音波探傷装置を説明する。
 図8(a)に示すように、本実施形態に係る超音波探傷装置11は、対象物に超音波を照射する探触子7と、探触子7の動作を制御するとともに、対象物内で反射され、探触子7へと戻ってきた超音波のFエコー高さ及びビーム路程を測定する探傷部(パルサーレシーバー)13と、探傷部13によって測定された測定値をデジタル値に変換するAD変換部15と、AD変換部15によって変換された測定値を保存する信号保存部19と、エコー高さ区分線のデータ及びビーム路程情報と未溶着量の関係を表す回帰式データを保存するメモリ29と、信号保存部19に保存された測定値及びメモリ29に保存されたデータに基づいて、ビーム路程W等のビーム路程情報や、対象物であるUリブ(第1の部材)とデッキプレート(第2の部材)との溶接箇所における溶け込み残り部の高さ(未溶着量)を算出する未溶着量算出部17と、未溶着量算出部17で算出された未溶着量に基づいて合否を判定する判定部21とを備えている。
 超音波探傷装置11は、未溶着量算出部17によって算出された未溶着量のデータを画像処理する画像処理部23と、画像処理された未溶着量のデータを表示する表示部25とをさらに備えていてもよい。
 探触子7は、グリセリン又は水を介して測定対象物の所定の面上に配置される。上述の測定方法では、屈折角を70°に設定して測定する。探触子7は、超音波探傷装置11の一部であってもよいし、別個の部材として超音波探傷装置11に接続されてもよい。
 信号保存部19は、公知のメモリ等で構成される。上述の測定方法に用いられる場合、信号保存部19には、測定対象物のデジタル化された測定値等が保存される。また、メモリ29には、エコー高さ区分線の各線のデータ、検査/測定対象物のビーム路程等、ビーム路程情報のデータ、ビーム路程等のビーム路程情報を用いて得られた回帰式のデータ、及び未溶着量算出部17により算出された未溶着量のデータ等が保存される。
 未溶着量算出部17は、溶接試験体の溶接線に対して超音波ビームが直角となる方向に対象物上で探触子7を前後走査させた場合に、所定の屈折角で照射され、溶接箇所の未溶着部分に当たって探触子7へと戻ってきたFエコーの高さがエコー高さ区分線に示された基準レベルに等しくなる位置でのビーム路程Wをビーム路程情報として求める。これらのデータは、測定対象物の長手方向の各測定位置におけるデータとして保存される。
 次いで、未溶着量算出部17は、第1の部材(Uリブ)と第2の部材(デッキプレート)との溶接線に対して超音波ビームが直角となる方向に、第1の部材上で探触子7を前後に走査させた場合に、探触子7から所定の屈折角で照射され、未溶着部分に当たって探触子7へと戻ってきたFエコーの高さの測定値からビーム路程Wを求める。未溶着量算出部17はまた、当該ビーム路程Wをビーム路程Wと未溶着量との関係に基づいてあらかじめ求められた回帰式にあてはめることで未溶着量を算出する。これらの演算を自動的に行うためのプログラムは超音波探傷装置11のメモリ(メモリ29とは別個のメモリ)等に予め格納されていてもよい。あるいは、未溶着量算出部17が上述の演算を行うことができるようなハードウェア構成を有していてもよい。
 判定部21は、未溶着量算出部17で算出された測定値が測定対象物に応じて予め設定された基準値を越えた場合には不合格と判定し、一例として不合格を示す信号を出力する。判定部21はまた、測定値が所定の基準値以下である場合には合格と判定し、一例として合格を示す信号を出力する。超音波探傷装置11は、不合格と判定された場合には警告音を発する構成や、不合格と判定された場合に判定結果を対象物にマーキングするための構成をさらに備えていてもよい。ただし、判定部21を設けず、超音波探傷装置11が未溶着量の算出までを行う構成を有していてもよい。
 なお、測定対象物(ここではUリブ)の長手方向(すなわち、溶接線の伸長方向)に所定の間隔で未溶着量測定を行う場合、測定結果のデータは信号保存部19に保存される。この場合、画像処理部23は、算出された未溶着量と位置情報(溶接線の伸長方向における位置情報)とをグラフ化する処理を行う。具体的に、画像処理部23は、溶接線の伸長方向における複数の測定箇所について算出された未溶着量を複数の測定箇所ごとに表した画像データを出力する。表示部25は、この画像データに基づき、溶接線方向の位置ごとの未溶着量を視覚的に認識可能な方法で表示する。
 図8(b)は、表示部25により表示された複数箇所での測定結果の一例を示す図である。このように、溶接部の溶け込み深さの測定結果を表示することで、測定結果の把握を容易に行うことができるようになる。なお、表示部25は必ずしも超音波探傷装置11に含まれている必要はなく、超音波探傷装置11に接続されたコンピュータ等の画面に測定結果を表示してもよい。
 本実施形態の超音波探傷装置11によれば、未溶着量の算出を自動的に行うことができるので、人為的なミスを防ぐことができる。また、作業者が測定に熟練していなくても、測定結果に基づいて自動的にビーム路程Wの算出及び未溶着量の算出等を行うことができる。
 以上で説明した溶け込み深さの測定方法及び超音波探傷装置は実施形態の一例であって、対象物の測定条件や使用する機器、超音波探傷装置の構成等は本発明の趣旨を逸脱しない範囲において適宜変更することが可能である。
 本開示の一実施形態に係る溶け込み深さの測定方法は、例えば橋梁等のインフラストラクチャーの信頼性を高めるのに有用である。
1   鋼床版
2   デッキプレート
3   Uリブ
5   溶接ビード
7   探触子
11   超音波探傷装置
13   探傷部
15   AD変換部
17   未溶着量算出部
19   信号保存部
21   判定部
23   画像処理部
25   表示部
29   メモリ

Claims (11)

  1.  溶接部における未溶着量の測定方法であって、
     超音波ビームを照射する探触子を用いて、溶接箇所の未溶着部分に当たって前記探触子へと戻ってきたエコーをFエコーとし、当該Fエコーの高さを評価する基準レベルとしてエコー高さ区分線を設定するステップと、
     未溶着量が異なる複数の溶接試験体の溶接ビードがある面に、所定の角度で超音波ビームを照射する探触子を走査させて得られたFエコーの高さと、前記エコー高さ区分線とによりビーム路程情報を求めるステップと、
     前記ビーム路程情報と未溶着量との関係を表す回帰式を求めるステップとを含んでいる測定方法。
  2.  請求項1に記載の測定方法において、
     第1の部材を第2の部材に溶接した場合に、前記第1の部材の溶接ビードがある面に所定の角度で超音波ビームを照射する探触子を走査させ、Fエコーの高さと前記エコー高さ区分線とによりビーム路程情報を求め、当該ビーム路程情報を前記回帰式にあてはめることで前記溶接部の未溶着量を算出するステップをさらに含んでいることを特徴とする測定方法。
  3.  請求項1又は2に記載の測定方法において、
     前記Fエコーの高さが、前記エコー高さ区分線を越えるビーム路程の範囲を軌跡幅とし、前記軌跡幅をビーム路程情報と定義することを特徴とする測定方法。
  4.  請求項1又は2に記載の測定方法において、
     前記Fエコーの高さが、前記エコー高さ区分線と等しくなるビーム路程を、ビーム路程情報と定義することを特徴とする測定方法。
  5.  請求項2に記載の測定方法において、
     前記第2の部材は鋼床版を構成するデッキプレートであり、
     前記第1の部材は、前記デッキプレートの一方の面に溶接され、U字状の断面を有するリブであることを特徴とする測定方法。
  6.  請求項1~5のうちいずれか1つに記載の測定方法において、
     算出された前記未溶着量が所定の基準値を超える場合には不合格と判定し、前記未溶着量が前記基準値以下である場合には合格と判定するステップをさらに含むことを特徴とする測定方法。
  7.  対象物に超音波を照射する探触子と、
     前記探触子の動作を制御するとともに、前記対象物の未溶着部で反射され、前記探触子へと戻ってきた超音波のFエコー高さ及びビーム路程を測定する探傷部と、
     前記探傷部によって測定された測定値をデジタル値に変換するAD変換部と、
     前記AD変換部によって変換された前記測定値を保存する信号保存部と、
     エコー高さ区分線のデータと、ビーム路程情報と未溶着量との関係を表す回帰式のデータとを保存するメモリと、
     前記信号保存部に保存された前記測定値と、前記メモリに保存されたデータとに基づいてビーム路程情報を求め、前記ビーム路程情報と前記メモリに保存された回帰式とを用いて、前記対象物である第1の部材と第2の部材との溶接箇所における未溶着量を算出する未溶着量算出部とを備えている超音波探傷装置。
  8.  請求項7に記載の超音波探傷装置において、
     前記未溶着量算出部は、前記第1の部材上の前記探触子へと戻ってきたFエコーの高さが前記エコー高さ区分線を越えるビーム路程の範囲である軌跡幅を前記ビーム路程情報として求め、当該軌跡幅を前記回帰式にあてはめることで前記未溶着量を算出することを特徴とする超音波探傷装置。
  9.  請求項7に記載の超音波探傷装置において、
     前記未溶着量算出部は、前記第1の部材上の前記探触子へと戻ってきたFエコーの高さが前記エコー高さ区分線に等しくなるビーム路程を、前記ビーム路程情報として求め、当該ビーム路程を前記回帰式にあてはめることで前記未溶着量を算出することを特徴とする超音波探傷装置。
  10.  請求項7~9のうちいずれか1つに記載の超音波探傷装置において、
     前記未溶着量算出部で算出された前記未溶着量が所定の基準値を超えた場合には不合格と判定し、前記未溶着量が前記基準値以下である場合には合格と判定する判定部をさらに備えていることを特徴とする超音波探傷装置。
  11.  請求項7~10のうちいずれか1つに記載の超音波探傷装置において、
     前記未溶着量は、前記第1の部材の長手方向にずらした複数の測定箇所について算出され、
     前記複数の測定箇所について算出された前記未溶着量を前記複数の測定箇所ごとに表した画像データを出力する画像処理部と、
     前記画像データに基づいて前記複数の測定箇所の位置ごとの前記未溶着量を表示する表示部とをさらに備えていることを特徴とする超音波探傷装置。
PCT/JP2013/004637 2012-07-31 2013-07-31 未溶着量の測定方法及び超音波探傷装置 WO2014020910A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/418,060 US9612226B2 (en) 2012-07-31 2013-07-31 Method for measuring height of lack of penetration and ultrasonic flaw detector
EP13826436.1A EP2881733A4 (en) 2012-07-31 2013-07-31 FUSION DEGREE MEASUREMENT METHOD AND ULTRASONIC FAULT DETECTION DEVICE
JP2014528002A JP5916864B2 (ja) 2012-07-31 2013-07-31 未溶着量の測定方法及び超音波探傷装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012170366 2012-07-31
JP2012-170367 2012-07-31
JP2012170367 2012-07-31
JP2012-170366 2012-07-31

Publications (1)

Publication Number Publication Date
WO2014020910A1 true WO2014020910A1 (ja) 2014-02-06

Family

ID=50027613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004637 WO2014020910A1 (ja) 2012-07-31 2013-07-31 未溶着量の測定方法及び超音波探傷装置

Country Status (4)

Country Link
US (1) US9612226B2 (ja)
EP (1) EP2881733A4 (ja)
JP (1) JP5916864B2 (ja)
WO (1) WO2014020910A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111208200A (zh) * 2020-02-28 2020-05-29 北京理工大学 一种Ti-Al系合金药型罩组织一致性检测装置和检测方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108956776A (zh) * 2018-06-22 2018-12-07 中铁大桥科学研究院有限公司 U肋全熔透角焊缝缺陷的超声波相控阵检测方法及***
CN111624325A (zh) * 2019-02-28 2020-09-04 上海捷规建筑工程咨询有限公司 基于bim的钢结构焊缝无损检测的方法和***
CN110007001A (zh) * 2019-04-28 2019-07-12 武汉国检检测技术有限公司 钢桥u肋专用多通道超声成像检测方法
CN112008959B (zh) * 2020-08-18 2022-02-18 长安大学 一种用于现场弯折frp筋的装置及弯折方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221309A (ja) * 1997-02-10 1998-08-21 Kajima Corp 溶接部の判別方法及び不溶着部の測定方法並びに溶接部の検査装置
JP2004333387A (ja) 2003-05-09 2004-11-25 Kawada Industries Inc 溶接部の超音波検査方法
JP2007178197A (ja) 2005-12-27 2007-07-12 Kawada Industries Inc 超音波探傷装置の探触子用の治具
JP2008209231A (ja) * 2007-02-26 2008-09-11 Metropolitan Expressway Co Ltd 鋼床版のデッキ内の亀裂の探傷のための探触子ホルダ、探傷装置及び探傷方法
JP2009180646A (ja) 2008-01-31 2009-08-13 Takada Kiko Kk 耐疲労鋼における部分溶け込み溶接の評価方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986006486A1 (en) * 1985-04-22 1986-11-06 Hitachi Construction Machinery Co., Ltd. Method of measuring angle of inclination of planar flaw in solid object with ultrasonic wave
WO1988009931A1 (en) 1987-06-08 1988-12-15 Hitachi Construction Machinery Co., Ltd. Method of measuring depth of surface opening defects of a solid material by using ultrasonic waves
WO2007004303A1 (ja) * 2005-07-06 2007-01-11 Central Research Institute Of Electric Power Industry 超音波探傷試験における傷高さ測定法並びに装置
JP4544240B2 (ja) * 2005-11-21 2010-09-15 Jfeスチール株式会社 管体の超音波探傷装置および超音波探傷方法
JP4785151B2 (ja) * 2006-07-11 2011-10-05 財団法人電力中央研究所 超音波探傷装置及び方法
US7757558B2 (en) * 2007-03-19 2010-07-20 The Boeing Company Method and apparatus for inspecting a workpiece with angularly offset ultrasonic signals
US7712369B2 (en) * 2007-11-27 2010-05-11 The Boeing Company Array-based system and method for inspecting a workpiece with backscattered ultrasonic signals
JP5192939B2 (ja) 2008-08-14 2013-05-08 三菱重工業株式会社 超音波探傷による欠陥高さ推定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221309A (ja) * 1997-02-10 1998-08-21 Kajima Corp 溶接部の判別方法及び不溶着部の測定方法並びに溶接部の検査装置
JP2004333387A (ja) 2003-05-09 2004-11-25 Kawada Industries Inc 溶接部の超音波検査方法
JP2007178197A (ja) 2005-12-27 2007-07-12 Kawada Industries Inc 超音波探傷装置の探触子用の治具
JP2008209231A (ja) * 2007-02-26 2008-09-11 Metropolitan Expressway Co Ltd 鋼床版のデッキ内の亀裂の探傷のための探触子ホルダ、探傷装置及び探傷方法
JP2009180646A (ja) 2008-01-31 2009-08-13 Takada Kiko Kk 耐疲労鋼における部分溶け込み溶接の評価方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2881733A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111208200A (zh) * 2020-02-28 2020-05-29 北京理工大学 一种Ti-Al系合金药型罩组织一致性检测装置和检测方法

Also Published As

Publication number Publication date
JP5916864B2 (ja) 2016-05-11
JPWO2014020910A1 (ja) 2016-07-21
US20150300992A1 (en) 2015-10-22
EP2881733A4 (en) 2015-07-08
EP2881733A1 (en) 2015-06-10
US9612226B2 (en) 2017-04-04

Similar Documents

Publication Publication Date Title
WO2016155403A1 (zh) 一种基于tofd和相控阵的超声波检测定位方法、装置
JP4785151B2 (ja) 超音波探傷装置及び方法
Camacho et al. Ultrasonic crack evaluation by phase coherence processing and TFM and its application to online monitoring in fatigue tests
CN105021142B (zh) 一种激光搭接焊缝宽度的测量方法和所用装置
JP5916864B2 (ja) 未溶着量の測定方法及び超音波探傷装置
JP5604738B2 (ja) 進展亀裂検出方法、装置およびプログラム
Feng et al. Enhanced sizing for surface cracks in welded tubular joints using ultrasonic phased array and image processing
CN106840053B (zh) 一种角焊缝焊脚尺寸及内部缺陷超声无损测量方法
JP2011027571A (ja) 配管減肉検査装置および配管減肉検査方法
CN115930851A (zh) 一种t型电子束焊缝熔宽的检测方法及装置
AU2004288099A1 (en) Method for checking a weld between two metal pipelines
JP5890437B2 (ja) 超音波探傷方法および超音波探傷装置
JP3535417B2 (ja) 超音波による欠陥高さ測定装置及び欠陥高さ測定方法
JP2007322350A (ja) 超音波探傷装置及び方法
JP6026245B2 (ja) 超音波検査方法及び超音波検査装置
RU2614186C1 (ru) Способ неразрушающего контроля степени поврежденности металлов контейнеров
CN103207240B (zh) 一种斜探头超声场纵向声压分布的测量方法
JP6089805B2 (ja) 測定装置、測定方法、プログラム及び記憶媒体
JP2008111742A (ja) ホイール溶接部の非破壊検査方法及び装置
JP3168946U (ja) 超音波探傷装置及び溶込み幅合否判定システム
JP2005147770A (ja) 超音波探傷装置
Ganhao Sizing with time-of-flight diffraction
KR20090085752A (ko) 초음파를 이용한 레이저 용접부의 용입폭 측정방법
JP2014070968A (ja) 超音波検査装置および超音波検査方法
KR100485450B1 (ko) 초음파 탐상 시험 장치 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13826436

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014528002

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14418060

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013826436

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE