WO2014017323A1 - Conductive ink for reverse printing, process for producing thin-film transistor, and thin-film transistor produced by said process - Google Patents

Conductive ink for reverse printing, process for producing thin-film transistor, and thin-film transistor produced by said process Download PDF

Info

Publication number
WO2014017323A1
WO2014017323A1 PCT/JP2013/069184 JP2013069184W WO2014017323A1 WO 2014017323 A1 WO2014017323 A1 WO 2014017323A1 JP 2013069184 W JP2013069184 W JP 2013069184W WO 2014017323 A1 WO2014017323 A1 WO 2014017323A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
pattern
conductive
blanket
surface energy
Prior art date
Application number
PCT/JP2013/069184
Other languages
French (fr)
Japanese (ja)
Inventor
正義 高武
直 義原
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2014526856A priority Critical patent/JPWO2014017323A1/en
Publication of WO2014017323A1 publication Critical patent/WO2014017323A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1292Multistep manufacturing methods using liquid deposition, e.g. printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO

Definitions

  • the present invention relates to a conductive ink for forming a conductive pattern by a reverse printing method, a method for manufacturing a thin film transistor using the same, and a thin film transistor formed by such a method.
  • Patent Document 1 As a printing method for forming a fine pattern of several micrometers, a reversal printing method (see Patent Document 1) is attracting attention as a printing method different from conventional general relief printing, intaglio printing, planographic printing, and stencil printing. .
  • Patent Document 2 discloses a coating process in which a resin is applied to a silicone resin surface to form a coated surface, and a relief plate formed in a predetermined shape is pressed against the coated surface to transfer the resin to the convex portion of the relief plate.
  • a relief reversal printing method comprising a removing step and a transfer step for transferring the resin remaining on the coated surface to the substrate is disclosed, thereby forming a color filter with uniform ink film thickness and resist patterning. It has been shown that images with high definition and high resin flatness can be obtained.
  • Patent Document 2 (Paragraph 0009) also describes that a precision pattern forming method can be applied to patterning of a printed circuit board and patterning of an electric circuit as an alternative to photolithography.
  • Patent Document 3 discloses a conductor material having a volume resistivity of 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less, an insulator material having a volume resistivity of 1 ⁇ 10 10 ⁇ ⁇ cm or more, and a volume resistivity of 1 ⁇ 10 6. -3 ⁇ ⁇ cm or more of a resistor material, characterized in that the viscosity in the step of forming a coated surface by applying to the release surface of these functional materials is adjusted to 50 mPa ⁇ s or less A method of manufacturing a printed wiring board by a printing method is disclosed. However, there is no specific description of the ink composition required to achieve fine electrical patterns that can be formed by reverse printing and that can be used practically.
  • the ink composition has a viscosity and surface energy that can form a uniform ink film on a blanket, and is in contact with a relief printing plate.
  • the dryness, tackiness, and cohesive force are developed so that a complete printed pattern can be formed on the blanket, and the ink coating on the blanket is completely on the substrate to be printed.
  • the viscosity of the ink is 5 mPa ⁇ s or less
  • the surface energy is 25 mN / m or less
  • Patent Document 4 discloses in detail the ink composition necessary for forming a precise pattern by the reverse printing method, it is necessary for imparting excellent conductive properties to the pattern formed with the conductive pattern forming ink. There is no disclosure about the ink composition.
  • a binder component is substantially used as a relief printing ink that can form a fine conductive pattern without transfer failure by a relief printing method and can impart excellent conductivity by low-temperature baking.
  • conductive particles having a volume average particle size (Mv) of 10 to 700 nm, a release agent, a surface energy adjusting agent, and a solvent component are essential components, and the solvent component has a surface energy of 27 mN / m or more at 25 ° C.
  • the ink of the present invention has excellent reversal printing characteristics, and although the obtained fine pattern can obtain high conductivity by low-temperature baking, the process window of reversal printing is narrow and there is a problem in mass productivity.
  • JP 55-44813 A Japanese Patent Laid-Open No. 11-58921 JP-A-2005-57118 JP 2005-126608 A WO2008 / 111484
  • the ink disclosed in Patent Document 5 has a large atmosphere dependency of the waiting time (waiting time) until the removal of unnecessary patterns after the ink film is formed on the blanket, and the pattern formed on the blanket is covered. Strict time management and atmospheric environment management were necessary because the allowable time range (range) in which the entire transfer to the transfer body can be performed was narrow.
  • the present inventors have intensively studied in view of the above circumstances, and found that the above problems can be solved by including a specific surface energy adjusting agent and a specific amount of water in a conventional relief printing ink.
  • the invention has been completed.
  • the present invention relates to a conductive ink that does not contain a binder component for forming a conductive pattern by a letterpress reverse printing method, and the conductive particles having a volume average particle size (Mv) of 2 to 250 nm are Dispersed in a liquid medium comprising an organic solvent containing an energy adjusting agent and / or a silicon-based surface energy adjusting agent and containing 0.5 to 40% of water as an essential component with respect to the total liquid medium
  • Mv volume average particle size
  • the present invention provides an ink for letterpress reversal printing that exhibits electrical conductivity through interparticle fusion bonding.
  • the present invention also relates to a conductive ink which does not contain a binder component for forming a conductive pattern on a transfer medium by a letterpress reverse printing method, and has a volume average particle diameter (Mv) of 2 to 250 nm. Is dispersed in a liquid medium comprising an organic solvent containing a fluorine-based surface energy adjusting agent and / or a silicon-based surface energy adjusting agent and containing 0.5 to 40% of water as an essential component with respect to the total liquid medium.
  • a method for producing a thin film transistor comprising a step of forming a conductive pattern by a letterpress reversal printing method using a letterpress reversal printing ink that exhibits conductivity by melt bonding between particles. It is to provide.
  • the present invention provides a conductive ink which does not contain a binder component for forming a conductive pattern by a letterpress reverse printing method, and the conductive particles having a volume average particle diameter (Mv) of 2 to 250 nm are formed on a fluorine-based surface.
  • a liquid medium comprising an organic solvent containing an energy adjusting agent and / or a silicon-based surface energy adjusting agent and containing 0.5 to 40% of water as an essential component with respect to the total liquid medium
  • the present invention provides a thin film transistor containing a conductive pattern formed by a letterpress reversal printing method using an ink for letterpress reversal printing that exhibits conductivity by interparticle fusion bonding.
  • the ink for reversal printing of the present invention has wide process tolerance, is excellent in image pattern transferability, and can stably form a fine conductive pattern without defective transfer even in an actual production process. Further, by using the conductive ink of the present invention, a fine pattern formed by letterpress reversal printing can be imparted with excellent conductivity having a specific resistance of 1 ⁇ 10 ⁇ 5 ⁇ cm or less by heat treatment at low temperature and short time.
  • the thin film transistor manufacturing method of the present invention has excellent process tolerance, electrical conductivity, and reliability in the conductive pattern manufacturing process. You can enjoy the advantages. The obtained thin film transistor becomes more reliable.
  • the conductive ink of the present invention relates to a conductive ink for forming a conductive pattern by a letterpress reverse printing method.
  • the letterpress reverse printing method means forming a uniform ink film on the liquid repellent surface of the blanket, pressing the letterpress on the ink film surface, and removing the ink in the portion that contacts the letterpress from the blanket.
  • the ink remaining on the blanket is transferred to a transfer medium.
  • any known and commonly used rubber or elastomer can be used as long as the release surface of the blanket used for letterpress reverse printing has a uniform overall film thickness, excellent surface smoothness and a liquid-repellent surface.
  • the material for forming such a blanket release surface include silicone elastomers such as vinyl silicone rubber and fluorinated silicone rubber, various fluororesin elastomers, ethylene propylene rubber, and olefin elastomers.
  • silicone elastomers and fluorine elastomers can be suitably used because of their excellent liquid repellency and excellent pattern releasability.
  • silicone elastomers have appropriate liquid repellency, solvent resistance, and solvent swelling properties, and are more excellent as rubbers for release surfaces of blankets.
  • PDMS polydimethylsilicone
  • the ink for letterpress reversal printing of the present invention is a conductive ink containing no binder component, and the conductive particles having a volume average particle diameter (Mv) of 2 to 250 nm are composed of a fluorine-based surface energy adjusting agent and / or a silicon-based ink.
  • a low-temperature firing characterized by containing a surface energy adjusting agent and being dispersed in a liquid medium composed of an organic solvent containing 0.5 to 40% by weight of water as an essential component with respect to the total liquid medium. It is an ink for letterpress reversal printing that exhibits excellent electrical conductivity substantially by melt bonding between particles.
  • the relief printing ink of the present invention may be included in the relief printing ink of the present invention.
  • the relief printing ink may be simply abbreviated as conductive ink.
  • conductive ink In general conductive ink, a large amount of binder component mainly composed of resin is included in order to develop transfer printability, film-forming property and a certain degree of conductivity. In order to promote the binding, it is preferable not to include a binder component that inhibits the binding. Since the preferred conductive ink of the present invention does not substantially contain a binder component, the conductive particles are melt-bonded even in a lower temperature heat treatment, and the conductivity is significantly higher than that of a system containing the binder component. be able to.
  • the conductive ink as described above of the present invention exhibits excellent conductivity comparable to bulk silver when baked at a heat treatment temperature of 80 ° C. or higher and lower than 180 ° C., preferably 100 ° C. or higher and 150 ° C. or lower. I can do it.
  • binder component used in general conductive ink include, for example, natural rubber, olefin resin, polyether such as polyethylene oxide, polypropylene oxide, unsaturated polyester resin, acrylic resin, phenol resin, melamine Resins, benzoguanamine resins, epoxy resins, urethane resins, vinyl polyester resins, petroleum resins, rosin resins, silicone resins, polyvinyl alcohol, vinyl chloride, vinyl acetate, vinyl chloride vinyl acetate copolymers, cellulose Resin, natural polysaccharides and the like, and the preferred conductive ink of the present invention does not contain any of these resins.
  • natural rubber olefin resin
  • polyether such as polyethylene oxide, polypropylene oxide
  • unsaturated polyester resin acrylic resin, phenol resin, melamine Resins, benzoguanamine resins, epoxy resins, urethane resins, vinyl polyester resins, petroleum resins, rosin resins, silicone resins, polyvinyl alcohol, vinyl chloride, vinyl
  • the amount of the resin component different from these binder components is also 10% or less, more preferably 5% or less, still more preferably based on the total mass of the conductive particles contained in the conductive ink. Is preferably 3% or less.
  • An ink containing more than 10% of a resin component is not preferable because it may inhibit the expression of conductivity due to heat treatment at a low temperature.
  • the present inventors dispersed conductive particles having a specific particle diameter in a liquid medium composed of an organic solvent containing a fluorine-based surface energy adjusting agent and / or a silicon-based surface energy adjusting agent and a specific ratio of water. It was found that by using a conductive ink, an excellent letterpress reverse printing characteristic was exhibited without including a binder component.
  • Mv Mean Volume Diameter
  • the conductive particles include gold (Au), silver (Ag), copper (Cu), nickel (Ni), zinc (Zn), aluminum (Al), iron (Fe), platinum (Pt), palladium ( Metal particles such as Pd), tin (Sn), chromium (Cr), lead (Pb), and alloys of these metals such as palladium alloys (Ag / Pd) and core-shell particles; zinc oxide (ZnO), indium tin oxide (ITO) ), In addition to conductive metal oxide particles such as indium zinc oxide (IZO), if necessary; metal complexes such as carboxylic acid silver salts and silver aminocarboxylic acid salts, 180 such as silver oxide (Ag 2 O) A thermally decomposable compound that thermally decomposes at a temperature of 0 ° C. or lower to give a conductive metal; conductive polymer particles such as polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT / PSS
  • silver and / or copper particles that is, nano-silver particles, nano-copper particles, silver-copper alloy nanoparticles, and core-shell particles having silver and / or copper as a core are better conductive. It is preferable because it is possible to obtain properties.
  • any known and commonly used dispersion stabilizer can be used.
  • alkylamines polyvinylpyrrolidone, polyethyleneimine, polyethylene glycol, polyvinylpyrrolidone, alkyl A thiol, alkyl thioether, a phthalocyanine compound whose terminal is substituted with an alkylamino group, and a mixture or copolymer thereof can be used.
  • preferred dispersion stabilizers are organic compounds containing substantially basic nitrogen atoms.
  • organic compound containing a basic nitrogen atom a low molecular organic compound such as a monoalkylamine or polyoxyalkyleneamine having a primary amino group such as dodecylamine can be used. From the viewpoint of protecting the conductive particles, it is preferable to use a polymer organic compound.
  • Examples of such a polymer compound include polyvinyl pyrrolidone, a polyvinyl pyrrolidone polymer which is a copolymer of vinyl pyrrolidone and other monomers, a polyethylene imine, a copolymer of ethylene imine and other monomers.
  • the polyethyleneimine type polymer etc. which are can be mentioned.
  • These high molecular compounds containing a basic nitrogen atom may be a binary copolymer or a ternary copolymer from the viewpoint of the number of constituent monomers, and may be a straight chain from the viewpoint of the molecular structure. From the viewpoint of localization in the copolymer of individual monomers, a random copolymer, a block copolymer, or a graft copolymer may be used.
  • the silver ions When combined with silver nanoparticles in the presence of these polymer compounds, the silver ions are easily reduced at room temperature or under heating in the presence of an appropriate reducing agent after coordination with the nitrogen atom of the polymer compound. Particularly preferred.
  • the polymer compound containing a basic nitrogen atom preferably has an average molecular weight of 5,000 to 30,000.
  • Examples of such a polymer organic compound containing a basic nitrogen atom include, for example, Polyvinylpyrrolidone K series (registered trademark) manufactured by Nippon Shokubai Co., Ltd., Epomin (registered trademark) series which is polyethyleneimine manufactured by the same company, WO2008 / A polymer compound having a polyethyleneimine chain and a nonionic hydrophilic segment as described in Japanese Patent No. 143061 can be used.
  • the conductive particles protected with an organic compound containing a basic nitrogen atom are added with a metal oxide or a metal ion solution in a medium in which the polymer compound is dispersed. It can be easily obtained by reducing oxides or ions and stabilizing them as metal nanoparticles.
  • the metal nanoparticle dispersion produced in this way is excellent in dispersion stability and storage characteristics, and potentially has the electrical function of conductive particles.
  • a fluorine-based surface energy adjusting agent and / or a silicon-based surface energy adjusting agent can be used as the surface energy adjusting agent.
  • fluorine-based surface energy adjusting agent examples include well-known and commonly used low-molecular or high-molecular fluorine-based surface energy adjusting agents.
  • DIC Corporation's Megafax series and 3M's Novec series Is applicable.
  • a fluorine-based film composed of a fluorinated (meth) acrylic polymer that can provide a coating film with excellent smoothness when applied with ink and can provide an excellent conductive film by interparticle fusion bonding of conductive particles.
  • a surface energy adjusting agent can be suitably applied.
  • silicon-based surface energy adjusting agent any known and commonly used silicon-based surface energy adjusting agent can be used.
  • a water-soluble surface energy adjusting agent of BYK series of Big Chemie Japan can be suitably used.
  • These surface energy adjusting agents are added in an amount of 0.05 to 5.0% by mass, preferably 0.1 to 0.5% by mass, based on 100% by mass of all components of the conductive ink. The amount added. If it is in the above range, ink repelling does not occur on a highly liquid-repellent blanket, and a uniform ink thin film can be easily obtained, and a substantial decrease in the conductivity of the ink coating after firing is also suppressed. it can.
  • Fluorine-based surface energy modifiers and silicon-based surface energy modifiers may be used alone, but in particular, by using both together, the release surface of the blanket can be used with a smaller amount of addition to the ink. This is particularly preferable because fine ink repellency can be suppressed.
  • Fluorine-type surface energy regulator / silicon-type surface energy regulator 1 / 1-1 in conversion of the non volatile matter mass. /0.1 is preferable in that the above effective effect can be obtained.
  • the liquid medium in which the conductive particles are dispersed contains a fluorine-based surface energy adjusting agent and / or a silicon-based surface energy adjusting agent, and contains water as an essential component.
  • a liquid medium made of a solvent is used.
  • any solvent can be used as long as it is compatible with water alone or in a mixture and the applied conductive particles can be dispersed stably alone or in a mixture. it can.
  • organic solvents examples include alcohols such as methanol, ethanol, butyl alcohol, methoxybutanol, and tertiary butanol; polyhydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, and glycerin; ethyl acetate, methyl acetate, and isobutyl acetate.
  • Esters such as ethyl lactate and carbonates such as propylene carbonate; ethers such as isopropyl ether, methyl tertiary butyl ether and tetrahydrofuran; ketones such as acetone, methyl ethyl ketone, methyl butyl ketone, methyl isobutyl ketone, cyclohexanone and diacetone alcohol Class: methyl cellosolve, cellosolve, butyl cellosolve, diethylene glycol monomethyl ether, dipropylene glyco Glycol ethers such as ethylene monomethyl ether, propylene glycol monomethyl ether, glycol acetates such as ethylene glycol monomethyl ether acetate; glycol diethers such as methyl triglyme and ethyl monoglyme; cyclohexanone, methylcyclohexanone, Alicyclic hydrocarbons such as cyclohexanol and methylcyclohex
  • the conductive ink of the present invention preferably contains an organic solvent (sometimes referred to as a blanket swellable liquid) that can swell the blanket release surface, other than the organic solvent described above.
  • an organic solvent sometimes referred to as a blanket swellable liquid
  • it is first required to form a uniform ink thin film having no defects on the smooth surface and the liquid repellent release surface of the blanket. At this time, if a fine repellency is generated, a pattern defect occurs.
  • an organic solvent that can swell the blanket release surface in the liquid medium of the present invention in which conductive particles are dispersed the present inventors can easily form a uniform ink film that is free from defects and has no defects. I found that it can be formed.
  • the organic solvent has a rubber weight increase rate of 10% or more, more preferably 20% or more when the PDMS rubber is immersed in a solvent for 15 minutes. Can be suitably applied.
  • the content of the blanket-swellable liquid in the conductive particle dispersion medium including water is preferably 5 to 70%, more preferably 20 to 50%, based on mass.
  • blanket swellable liquid examples include dimethyl carbonate, diethyl carbonate, isopropyl acetate, npropyl acetate, butyl acetate, methoxybutyl acetate, dioxane, isopropyl alcohol, butanol, methyl monoglyme, ethyl monoglyme, and methyldiglyme.
  • Ethyl diglyme ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monomethyl ether acetate, diethylene glycol monobutyl ether acetate, dipropylene glycol dimethyl ether, propylene glycol n butyl ether, propylene glycol n propyl ether, dipropylene glycol n butyl ether, di Propylene glycol n propyl ether, propi Glycol monomethyl ether acetate, octanol, etc. can be suitably used.
  • the present inventors By incorporating water in the scope of the present invention into the conventional conductive ink, the present inventors have transferred patterns from a blanket, that is, removal of unnecessary patterns by punching plates, and image lines formed on the blanket. In addition to improving the transferability of the pattern to the transfer target, it does not substantially increase the time required to dry the ink film (standby time) in order to form an appropriate pattern by punching and has a wide allowable range. I discovered that the transferable time (range) was realized.
  • an unnecessary pattern is formed by punching from the viewpoint of shortening the printing tact time. It is necessary for the standby time to be completely removed from the blanket release surface and to form a sharp image line to be reasonably short.
  • the image line pattern formed on the blanket is completely transferred to the transferred object side. A long time range (range), that is, a wide process window is required.
  • the liquid medium is composed of water and an organic solvent, and contains 0.5 to 40% of water with respect to the total liquid medium (total of water and organic solvent) on a mass basis. Characterized by the application of a liquid medium.
  • the water content is preferably 0.5 to 30%, more preferably 0.5 to 20%.
  • the amount of water added is less than 0.5%, it is not preferable because the effect described above becomes small. That is, the effect of improving the releasability of the pattern from the blanket is not sufficient, and it is difficult to sufficiently widen the allowable time width (range) in which the pattern formed on the blanket by the punching plate can be completely transferred onto the transfer target.
  • it exceeds 40% the drying property of the ink film is extremely lowered, and a long standby time is required, so that it is difficult to shorten the printing tact time. Furthermore, it becomes difficult to suppress fine repellency on the release surface of the liquid repellent blanket.
  • the conductive ink of the present invention containing not only an organic solvent but also water as an essential component is used, it can be removed by a printing plate at a normal atmosphere of about 25 ° C. and a relative humidity of about 50%, with a waiting time of 1 minute or less.
  • a sharp fine line having a line width of 5 ⁇ m or less can be formed, and a longer transfer permissible time (range) can be realized as compared with a conventional relief printing ink containing only an organic solvent.
  • the conductive ink of the present invention can easily realize a transfer allowable time range (range) of 10 minutes or more to a transfer target.
  • the printing tact can be further shortened by forcibly drying the ink surface applied on the blanket with a gentle breeze such as dry air.
  • the conductive ink of the present invention has sufficient pattern formability and transferability even in such forced drying.
  • the surface energy at 25 ° C. of the conductive ink is preferably adjusted to 27 mN / m or less by adding the above-described surface energy adjusting agent.
  • the surface energy of the ink is more preferably 21 mN / m or less.
  • the release surface may be subjected to ozone UV or ozone plasma treatment for the purpose of suppressing fine repellency of ink on the release surface of the blanket.
  • these surface treatments for suppressing ink repellency and pattern transferability (separation) from the blanket release surface are in a trade-off relationship.
  • the conductive ink of the present invention is used, these surface treatments are performed. Even from the blanket liquid repellent surface, it is possible to easily transfer completely onto the transfer target without any pattern residue.
  • a release agent can be further added to the conductive ink of the present invention as necessary for the purpose of improving the image line pattern formability and pattern transferability.
  • the mold release agent include silicone oils such as KF96 series manufactured by Shin-Etsu Chemical Co., Ltd. and SH28 manufactured by Toray Dow Corning Co., Ltd. (both are trade names).
  • a low molecular weight silicone molecular weight of about 148 to 2000 which is a dimer to 30 mer of silicone is preferable because it has little influence on the conductivity of the coating film after ink patterning and baking.
  • silicone oil include silicones having a dynamic viscosity at 25 ° C. of 20 mm 2 / s or less of KF96 series manufactured by Shin-Etsu Chemical.
  • the content of the release agent is 0.05 to 5.0% by mass, preferably 0.1 to 1.0% by mass, when all the components of the conductive ink are 100% by mass.
  • the conductive ink of the present invention for example, alkylamines such as diethylamine, triethylamine, diisopropylamine, monoethanolamine, diethanolamine is used as necessary.
  • alkylamines such as diethylamine, triethylamine, diisopropylamine, monoethanolamine, diethanolamine is used as necessary.
  • Ethanolamines such as triethanolamine, various ammonium carbonates, various ammonium carbamates, amine compounds such as formic acid, acetic acid, propionic acid, nitric acid, phosphoric acid, hydrogen peroxide, amine nitrate, inorganic acids, organic acids, etc. It may be added.
  • the pattern transfer method of the relief printing method of the present invention for example, a method of contacting a blanket, which is a relief printing plate having a negative pattern in a parallel lithographic method, or a blanket wound around a roll is removed from a flat plate.
  • a method of rolling and contacting the plate a method of forming a blank plate on the roll side and rolling and contacting a flat blanket, a method of forming a blanket and a blank plate on a roll and bringing them into contact with each other can be applied.
  • a fine transistor capable of realizing high-definition thin film transistor printing can be easily formed by the letterpress reverse printing method.
  • a thin film transistor can be manufactured, and a thin film transistor containing a conductive pattern obtained by an insulating film, a semiconductor film, and a relief printing method can be formed using the conductive ink of the present invention.
  • the thin film transistor may be referred to as a TFT.
  • the basic steps for forming various conductive patterns of a thin film transistor by the letterpress reverse printing method of the present invention will be described below with reference to FIG.
  • Fig. 1 (a) The conductive ink of the present invention is applied on the liquid repellent release surface of the blanket (Fig. 1-2) to form a uniform ink film (Fig. 1-1), and the pattern can be formed by relief printing. Dry moderately. In this case, it is preferable to control the drying conditions by controlling the atmospheric temperature and humidity. Furthermore, a fine breeze of dry air may be used to shorten the drying time.
  • an ink film having a predetermined thickness can be formed by, for example, slit coating, bar coating, or spin coating.
  • the wet film thickness of the ink to be applied is adjusted to 0.1 ⁇ m to 5 ⁇ m, more preferably 0.15 ⁇ m to 1.5 ⁇ m, from the viewpoint of subsequent fine pattern formability, drying property, and conductivity obtained by ink modification To preferred.
  • a uniform ink thin film having no pinholes can be easily formed on the liquid repellent surface.
  • Pattern forming process by punching plate FIG. 1 (b) A relief plate 3 corresponding to the punched plate is prepared. Next, lightly press the release plate with the negative pattern of the required TFT electrode pattern on the relief plate (Fig. 2-3) against the ink film, and then release it to remove the conductive ink in the portion that comes into contact with the relief portion of the release plate. Remove the coating pattern. As a result, a conductive ink pattern to be a conductive pattern of the TFT is formed on the blanket release surface. It is important to make the contact with the ink film surface on the blanket of the punching plate as light as possible.
  • the material of the stencil used here there are no particular limitations on the material of the stencil used here as long as it can remove ink from the blanket release surface of the ink film.
  • various metals such as glass, silicon, and stainless steel, and various resins can be used.
  • the processing method for these relief plates there is no limitation on the processing method for these relief plates, and an optimum method for the material, pattern accuracy, relief plate depth, etc. can be selected.
  • a processing method such as wet etching or dry etching can be applied.
  • metal wet etching, electroforming, sandblasting, etc.
  • a resin such as a material, a processing method such as photolithography etching, laser, or focused ion beam can be suitably applied.
  • Transfer process Fig. 1 (c) The conductive ink pattern formed on the blanket release surface is lightly pressed against the transfer target (FIGS. 1-4) to completely transfer the pattern.
  • a coating film pattern corresponding to the conductive pattern serving as the basis of the bottom gate bottom contact type TFT is formed on the substrate to be transferred.
  • the formed conductive pattern imparts conductivity using a known conductive ink modification method.
  • these conductive ink modification methods for example, hot air oven firing, infrared radiation firing, light firing with a xenon lamp, plasma firing, electromagnetic wave firing, and the like can be applied.
  • These reforming methods may be applied alone or in combination of two or more reforming methods. Specifically, by heating and drying the above-mentioned coating pattern, the conductive pattern in the coating pattern obtained above can be melt-bonded between the particles to form a conductive pattern. it can.
  • the most common baking method is hot-air oven heating baking, but if the preferred ink for letterpress reversal printing of the present invention using nano silver is used, the baking time is 80 ° C. or higher and 180 ° C. or lower and within 5 minutes. A conductive film having a specific resistance on the order of ⁇ cm can be easily formed.
  • the transfer target of the gate array pattern is generally a substrate made of various films, glass, silicon or the like. After forming a gate insulating film on the gate array pattern formed on these substrates, the gate array pattern is aligned with the pattern through the insulating film, and then the source / drain array pattern is formed in the same manner as the gate array pattern is formed.
  • a basic BGBC TFT can be formed by laminating semiconductor layers. The source / drain may be referred to as S / D.
  • the pattern transfer method of the relief printing method of the present invention for example, a method of bringing a blanket and a blanket into contact with each other by a parallel lithographic method, a method of rolling a blanket wound around a roll and bringing it into contact with a plate on a flat plate, A method of forming a punching plate on the roll side and rolling and bringing it into contact with a flat blanket, a method of forming a blanket and a punching plate on a roll and bringing them into contact with each other can be applied.
  • FIG. 2 shows a model diagram of a bottom gate bottom contact (BGBC) transistor element as an example of a transistor that can be formed according to the present invention.
  • a gate insulating film (FIG. 2-7) is formed on the gate array pattern (FIG. 2-8) formed on the substrate (FIG. 2-9) by the method of the present invention, and then aligned with the gate pattern through the insulating film.
  • an S / D array pattern (FIGS. 2-5) is formed by letterpress reverse printing.
  • a semiconductor layer (FIGS. 2-6) is formed on the S / D electrode and the gate insulating film to form a transistor basic structure.
  • the structure of the transistor that can be formed is not limited, and besides BGBC, various transistors having a horizontal transistor and a vertical structure including a top gate bottom contact can be formed.
  • each electric component constituting the transistor such as a gate electrode, a data line, a signal line, an S / D pattern, and a pixel electrode is formed by a letterpress inversion printing method.
  • the material and forming method of the gate insulating film applicable in the present invention there are no particular limitations on the material and forming method of the gate insulating film applicable in the present invention, and known materials and forming methods can be used.
  • applicable materials include inorganic materials such as silicon nitride and silicon oxide, and inorganic materials such as parylene, polyimide, polyvinylphenol, polystyrene, epoxy resin, polymethyl methacrylate, polyamide resin, fluorine resin, melamine resin, and silsesquioxane resin.
  • Thermoplastic resins such as organic hybrid resins, silicone resins, and urethane resins, thermal crosslinking, and energy beam crosslinking resins can be applied.
  • film forming methods include known methods such as spin coating, slit die coating, letterpress reverse printing, screen printing, gravure printing, flexographic printing, ink jet, vacuum deposition, and CVD.
  • the semiconductor material applicable in the present invention and the formation method thereof are not limited.
  • the semiconductor material include inorganic semiconductors such as silicon, IGZOx, and ZnO; phthalocyanine derivatives, porphyrin derivatives, naphthalene tetracarboxylic acid diimide derivatives, fullerene derivatives, pentacene, pentacene.
  • Polycyclic aromatic compounds such as triisopropylsilyl (TIPS) pentacene, fluorinated pentacene, fluorinated tetracene, perylene, tetracene, pyrene, phenanthrene, coronene and derivatives thereof, thiophenes such as benzothienothiophene, dinaphthothienothiophene, oligothiophene Derivatives, thiazole derivatives, fullerene derivatives, other low molecular semiconductors that combine thiophene, phenylene, vinylene, etc., and organic semiconductors that become organic semiconductors by heating, etc.
  • TIPS triisopropylsilyl
  • Precursor polythiophene, poly (3-hexylthiophene), polythiophene polymer such as PQT-12, thiophene-thienothiophene copolymer such as B10TTT, PB12TTT, PB14TTT, fluorene polymer such as F8T2, etc., paraphenylene
  • polymer semiconductors such as phenylene vinylene polymers such as vinylene, arylamine polymers such as polytriarylamine, and other carbon compounds such as carbon nanotubes and fullerenes can be applied.
  • a known method can be applied to the method for forming the semiconductor layer. For example, known methods such as percoat, slit die coat, spin coat, ink jet, flexographic printing, gravure printing, letterpress reverse printing, and vacuum deposition can be applied.
  • the printing of the conductive pattern on the transfer medium using the conductive ink of the present invention is performed by a letterpress reverse printing method.
  • the transfer target includes plastic, silicon, paper, glass, ceramics, and metal.
  • the transfer body includes a stacked body in which the gate electrode and the gate insulating film are stacked in this order on the transfer body before the S / D electrode in FIG. 2 is provided.
  • a conductive pattern corresponding to the S / D electrode can be provided on the gate insulating film of the laminate with the conductive ink of the present invention.
  • the conductivity of the conductive pattern is reduced when a binder component is added.
  • the ink is adjusted without adding the binder component, the cohesiveness of the ink is reduced, and a relief printing plate or transferred image is obtained. There was a portion that was not transferred as intended (transfer residue), and it was difficult to form a fine pattern with high definition.
  • the conductive ink of the present invention by having the above-described ink composition, the ink is easily released from the release surface of the blanket by the kiss touch of the release plate, so that complete transfer is easily realized. And a fine pattern with a line width of 5 ⁇ m or less can be easily formed.
  • a conductive layer (conductive pattern) can be formed by drying the conductive pattern printed on the transfer medium as necessary and then baking it at a temperature lower than conventional temperatures, such as 80 ° C. or higher and 180 ° C. or lower. it can.
  • the conductive layer thus formed can be used for flexible substrate wiring, electromagnetic wave shields, transparent electrodes (touch panels), etc., in addition to the formation of various conductive parts of organic semiconductors.
  • the thin film transistor of the present invention is manufactured using the conductive ink of the present invention, a part having conductivity required, specifically, a transistor such as a gate electrode, a data line, a signal line, an S / D electrode, and a pixel electrode It is only necessary that at least some of the electrode constituent elements constituting the above are formed by the letterpress reverse printing method as described above.
  • a conductive pattern made of a conductive film can be formed by a letterpress reverse printing method to form a TFT.
  • a ink for forming an insulating film or a semiconductor film a heat-drying type or a heat-curing type ink is used, and each coating film is formed on a transferred body by wet-on-wet coating.
  • the insulating film and the semiconductor film can be heated at once to form a TFT.
  • Finesphere SVE102 Nano silver dispersion manufactured by Nippon Paint Co., Ltd. (Mv: about 20 nm, solid content: about 30%, ethanol dispersion, containing about 2% or less nanoparticle dispersant)
  • Finesphere SVW102 Nano silver dispersion manufactured by Nippon Paint Co., Ltd.
  • NASH-010 Nano silver dispersion manufactured by DIC Corporation (Mv: about 15 nm, solid content: about 70%, aqueous dispersion, including dispersant containing 3% or less polyethyleneimine polymer)
  • CU387E2 Core shell nano copper (core Ag, shell Cu) manufactured by DIC Corporation, solid content of about 45%, ethanol dispersion, particle size of about 35 nm
  • F-555 Fluoro-based surface energy regulator Megafac manufactured by DIC Corporation, comprising a fluorinated (meth) acrylic polymer.
  • BYK-333 Silicone surface energy regulator manufactured by Big Chemie, Inc.
  • PC Propylene carbonate
  • IPAC Isopropyl acetate
  • IPA Isopropyl alcohol
  • KF96-1cs Silicone oil manufactured by Shin-Etsu Chemical Co., Ltd.
  • PVA Polyvinyl alcohol
  • a relief printing ink having a water / total liquid medium ratio of about 7.5% was prepared.
  • the ink surface energy was 21 mN / m or less.
  • the content of the blanket swellable liquid in the liquid medium including water was in the range of 20 to 50% on a mass basis.
  • a grid-like conductive pattern with a line width of about 15 ⁇ m is produced on a PC (polycarbonate) film by the letterpress reverse printing method using a glass punch having a grid-like recess with a line width of about 15 ⁇ m. did. In an atmosphere at an ambient temperature of 25 ° C.
  • the ink is uniformly applied to the PDMS smooth surface, which is the release surface of the blanket, with a bar coater so that the wet film thickness is about 0.3 ⁇ m, and left for about 1 minute Waiting time)
  • the bar coater so that the wet film thickness is about 0.3 ⁇ m, and left for about 1 minute Waiting time
  • the ink was cut off by the punching plate, and an image line having a sharp edge was formed.
  • the time width (range) of the standing was changed immediately after removing the pattern, 30 seconds, 1 minute, 3 minutes, 5 minutes, 10 minutes, and the ink pattern formed on the blanket was transferred to the transfer object.
  • the PC film was lightly pressed to completely transfer the pattern.
  • the pattern was completely transferred to the PC film 10 minutes after the pattern was formed on the blanket, and no residue was observed on the blanket.
  • the ink thin film formed by solid transfer on the PC film was baked at 150 ° C. for 5 minutes to melt-bond between particles, and the specific resistance was measured to be 5.3 ⁇ 10 ⁇ 6 ⁇ ⁇ cm. .
  • an ink for letterpress reverse printing having a water / total liquid medium ratio of about 16% was prepared.
  • the ink surface energy was 21 mN / m or less.
  • the content of the blanket swellable liquid in the liquid medium including water was in the range of 20 to 50% on a mass basis.
  • Ink is applied to the smooth surface of the PDMS rubber, which is the release surface of the blanket that has been subjected to UV ozone treatment for about 30 seconds, so that the wet film thickness is about 0.3 ⁇ m with a bar coater in an atmosphere of 25 ° C. and 48% relative humidity It was applied evenly.
  • a grid pattern having a line width of about 15 ⁇ m was formed in the same manner as in Example 1 except that a fine breeze of dry air was blown onto the ink-coated surface for about 30 seconds and dried.
  • the ink was cut off by the punching plate, and an image line having a sharp edge was formed.
  • the time width (range) of the standing was changed immediately after removing the pattern, 30 seconds, 1 minute, 3 minutes, 5 minutes, 10 minutes, and the ink pattern formed on the blanket was transferred to the transfer object.
  • the PC film was lightly pressed to completely transfer the pattern.
  • the pattern was completely transferred to the PC film in all 10 minutes immediately after that, and no residue was observed on the blanket.
  • IPA 10% dimethyl carbonate (blanket swellable liquid) 30%
  • methyl monoglyme 10% bladenket swellable liquid
  • Example 2 Using this ink, a grid pattern having a line width of about 15 ⁇ m was formed on the blanket in the same manner as in Example 1. The ink was cut off by the punching plate, and an image line having a sharp edge was formed. Next, the time width (range) of the standing was changed immediately after removing the pattern, 30 seconds, 1 minute, 3 minutes, 5 minutes, 10 minutes, and the ink pattern formed on the blanket was transferred to the transfer object. The PC film was lightly pressed to completely transfer the pattern. The pattern was completely transferred to the PC film 10 minutes after the pattern was formed on the blanket, and no residue was observed on the blanket. Order to intergranular fusion bonding, separately ink film was transferred to form a solid and fired 5 minutes at 0.99 ° C. on a PC film was measured for specific resistance was 8.3 ⁇ 10 -6 ⁇ ⁇ cm.
  • the ink for letterpress reversal printing of Comparative Example 1 containing a larger amount of water than specified in the present invention has a drastic decrease in the drying property of the ink film.
  • Example 1 in which forced drying was performed has a wide allowable time range (range) in which all transfer is possible, as in Example 1 in which forced drying is not performed. It can be seen that the printing tact time can be shortened. Furthermore, as can be seen from the comparison between Example 1 and Example 3, compared with Example 3 using only the fluorine-based surface energy adjusting agent, the combined use of the fluorine-based surface energy adjusting agent and the silicone-based surface energy adjusting agent. It can be seen that Example 1 can suppress fine ink repellency on the release surface of the blanket and can further increase the conductivity with a smaller amount of the surface energy adjusting agent added.
  • the ink is applied to the smooth surface of the PDMS rubber, which is the release surface of the blanket that has been subjected to UV ozone treatment for about 30 seconds, so that the wet film thickness is about 0.3 ⁇ m by a bar coater in an atmosphere of 25 ° C. and 48% relative humidity Was applied uniformly, and a lattice pattern having a line width of about 15 ⁇ m was formed on the blanket in the same manner as in Example 1.
  • the ink was completely cut by the punching plate, and an image line having a sharp edge was obtained.
  • the time width (range) of the standing was changed immediately after pattern formation, 30 seconds later, 1 minute later, 3 minutes later, 5 minutes later, and 10 minutes later, and the ink pattern formed on the blanket was transferred to the object to be transferred.
  • the PC film was pressed lightly to transfer the pattern.
  • the pattern was completely transferred to the PC film 10 minutes after the pattern was formed on the blanket, and no residue was observed on the blanket.
  • the ink thin film formed by transferring the ink onto a PC film was baked at 170 ° C. for 30 minutes, and then the specific resistance was measured. As a result, it was 7.9 ⁇ 10 ⁇ 6 ⁇ ⁇ cm. there were.
  • Comparative Example 2 48% Finesphere SVE102, 1.2% F-555, 30.1% ethanol, 20% IPAC, 0.5% PC, 0.2% KF96-1cs as a release agent Thus, a conductive ink containing no water was prepared.
  • a lattice pattern having a line width of about 15 ⁇ m was formed on the blanket in the same manner as in Example 1.
  • the ink was completely cut by the punching plate, and an image line having a sharp edge was obtained.
  • the time width (range) of the standing was changed immediately after removing the pattern, 30 seconds, 1 minute, 3 minutes, 5 minutes, 10 minutes, and the ink pattern formed on the blanket was transferred to the transfer object.
  • the PC film was lightly pressed to try to transfer the pattern. Immediately after that, the pattern was almost completely transferred onto the PC film until 1 minute, but after 3 minutes, part of the pattern remained on the blanket, and after 5 minutes, it was not transferred at all.
  • the ink film with the ink is formed by transferring a solid onto the PC film was baked for 30 minutes at 180 ° C., was measured resistivity was 9.6 ⁇ 10 -6 ⁇ ⁇ cm.
  • Comparative Example 3 48% fine sphere SVE102 (solid content approx. 30%), 1.1% megafac F-555 (solid content approx. 30%), 20.2% ethanol, 25% IPAC (blanket) Swellable liquid), 0.5% PC, 0.2% KF96-1cs as a release agent, and 5% PVA as a binder resin with respect to the total amount of ink, thereby adding water according to Comparative Example 3 A conductive ink not containing was produced.
  • a grid pattern having a line width of about 15 ⁇ m was formed on the blanket in the same manner as in Example 1.
  • the ink breakage due to the punching plate was slightly worse, and many fine burrs were observed at the edge of the image line.
  • the time width (range) of the standing was changed immediately after removing the pattern, 30 seconds, 1 minute, 3 minutes, 5 minutes, 10 minutes, and the ink pattern formed on the blanket was changed to the substrate to be transferred.
  • the resulting glass plate was pressed and transferred. Immediately after that, the pattern was transferred almost completely onto the PC film to be transferred, but after 5 minutes, part of the pattern remained on the blanket and was not transferred at all after 10 minutes.
  • the conductivity was 2.6 ⁇ 10 ⁇ 2 ⁇ ⁇ cm when the ink thin film formed by solidly transferring the ink on a PC film was baked at 190 ° C. for 30 minutes and the specific resistance was measured.
  • the conductive ink of Comparative Example 2 which does not substantially contain water, has not only a narrow allowable time range (range) that can be completely transferred, but also has high conductivity. In order to obtain a pattern, baking at a high temperature for a long time is necessary. Further, it can be seen from the comparison between Comparative Example 2 and Comparative Example 3 that the conductive ink of Comparative Example 3 containing no water and containing a binder component has a narrow allowable time range (range) in which the entire transfer can be performed.
  • a relief printing ink having a water / liquid medium ratio of about 3.7% was prepared.
  • the ink surface energy prepared was 21 mN / m or less.
  • a grid-like conductive pattern having a line width of about 15 ⁇ m was formed on the release surface made of blanket PDMS rubber by the same method as in Example 1.
  • the ink was completely cut by the punching plate, and a grid pattern having sharp edges was obtained.
  • the range after pattern formation on the blanket is changed immediately after pattern removal, 30 seconds, 1 minute, 3 minutes, 5 minutes, 10 minutes, and the ink pattern formed on the blanket to be transferred
  • the PC film to be transferred was lightly pressed and transferred. The pattern was completely transferred to the transfer medium 10 minutes after the start, and no residue was observed on the blanket.
  • the formed pattern was pre-fired in an air atmosphere at 150 ° C. for 5 minutes, and then fired in air using a xenon flash lamp manufactured by USHIO INC. With a pulse width of 0.6 ms, a voltage of 650 V, and an estimated irradiation energy of 10 J / m 2 . To obtain a copper fired film having a thickness of about 170 nm. The conductivity of the film obtained by fusion bonding between particles was about 7 ⁇ 10 ⁇ 6 ⁇ cm.
  • a TFT array having the bottom gate bottom contact (BGBC) structure shown in FIG. 3 was prepared by the following procedure.
  • a UV-curable ink for a gate insulating film mainly composed of a silsesquioxane compound having an acryloyl group, a bismaleimide, a polyfunctional acrylate, and an organic solvent for viscosity adjustment
  • the gate insulation is applied on the gate electrode array pattern created in step 1 and then cured with a UV curing device using a high-pressure mercury lamp as the light source with an illuminance of 200 mW / cm 2 and an integrated light amount of about 1800 mJ / cm 2.
  • a film was formed.
  • a PC substrate on which a gate insulating film on the gate electrode array was formed was prepared.
  • Example 3 Formation of Source / Drain Electrode
  • the conductive ink prepared in Example 1 was used with a slit coater on a film substrate transparent blanket on which a PDMS rubber smooth surface having a thickness of about 0.1 mm as a pattern release surface was formed on a transparent film. A uniform ink film was formed. After moderate drying, the source / drain electrode array pattern is formed on the blanket in the same manner as the formation of the gate electrode array using a glass blank plate with the negative pattern of the TFT source / drain electrode array pattern as a convex portion. Formed.
  • the aligner uses the aligner to adjust the position so that the gate electrode array pattern of the PC film substrate formed in the previous two steps and the corresponding part of the source / drain electrode array pattern overlap each other through the gate insulating film, and lightly press the two together
  • the entire region was transferred onto the PC film substrate on which the gate electrode array and the gate insulating film were formed so that the corresponding portion of the source / drain electrode array pattern overlapped the corresponding portion of the gate electrode pattern through the insulating film.
  • the substrate is then baked in an oven at 150 ° C.
  • TFT electrode pattern arrays each having a drain electrode array were prepared.
  • FIG. 3 shows a 200 ppi BGBC type organic transistor array having a channel length of about 5 ⁇ m and a wiring width of about 5 ⁇ m formed by this manufacturing method.
  • the elements prepared in the above 1 to 4 were subjected to heat treatment at 150 ° C. for about 5 minutes in a glove box, and then used in a glow box using a semiconductor parameter measuring apparatus (Keithley 4200).
  • the field-effect mobility at a drain voltage load of ⁇ 40 V was about 0.04 cm 2 / Vs, and the ON / OFF (maximum drain current value / minimum value) was about 1 ⁇ 10 8.
  • the threshold voltage (Vth) was ⁇ 5V.
  • the thin film transistor in which the transistor structure including the insulating film and the semiconductor film including the conductive film formed using the conductive ink for reversal printing of the present invention was manufactured by the printing method effectively functions as a transistor.
  • the conductive ink of the present invention is optimal for forming a fine and precise printed pattern on a substrate to be printed by a letterpress reverse printing method, and includes an organic semiconductor electrode, wiring, flexible substrate wiring, electromagnetic wave shield, transparent electrode ( It can be used for manufacturing a touch panel).

Abstract

Provided is a conductive ink which is for use in letterpress reverse printing and which exhibits a wider permissible time range for transferring the whole of a pattern formed on a blanket to a substrate. Specifically provided is a conductive ink which is for use in letterpress reverse printing and which can form a conductive pattern through the fusion-bonding among conductive particles, said conductive ink being characterized by comprising: conductive particles which have a volume-mean particle diameter (Mv) of 2 to 250nm; and a liquid medium which comprises a water-containing organic solvent and contains a fluorine-based surface energy regulator and/or a silicone-based surface energy regulator and in which the conductive particles are dispersed. Also provided are: a process for producing a thin-film transistor, characterized by including a step for forming a pattern-wise coating of the conductive ink on a substrate by a letterpress reverse printing method, and then fusion-bonding the conductive particles contained in the pattern-wise coating to form a conductive pattern; and a thin-film transistor.

Description

反転印刷用導電性インキ及び薄膜トランジスタの製造方法及び該製造法方法で形成された薄膜トランジスタConductive ink for reverse printing, method for manufacturing thin film transistor, and thin film transistor formed by the method
 本発明は、反転印刷法により導電性パターンを形成するための導電性インキ及びそれを用いた薄膜トランジスタの製造方法及びかかる方法で形成された薄膜トランジスタに関する。 The present invention relates to a conductive ink for forming a conductive pattern by a reverse printing method, a method for manufacturing a thin film transistor using the same, and a thin film transistor formed by such a method.
 近年、数ミクロンメートルの微細なパターンを形成する印刷法として、従来の一般的な凸版、凹版、平版、孔版とは異なる印刷法として、反転印刷法(特許文献1参照)が再び注目されている。 In recent years, as a printing method for forming a fine pattern of several micrometers, a reversal printing method (see Patent Document 1) is attracting attention as a printing method different from conventional general relief printing, intaglio printing, planographic printing, and stencil printing. .
 特許文献2には、シリコーン樹脂面に樹脂を塗布して塗布面を形成する塗布工程と、該塗布面に対して所定の形状で形成された凸版を押圧して凸版の凸部分に樹脂を転写除去する工程と、塗布面に残った樹脂を基盤に転写する転写工程からなる凸版反転印刷法が開示されており、これによりインキ膜厚にムラのないカラーフィルターの形成や、レジスト剤パターンニングを高精細かつ樹脂平坦性の高い画像を得ることができることが示されている。特許文献2(段落0009)には、また、精密パターン形成方法として、フォトリソ技術の代替として、プリント基板のパターニングや電気回路のパターニングに応用できることが記載されている。 Patent Document 2 discloses a coating process in which a resin is applied to a silicone resin surface to form a coated surface, and a relief plate formed in a predetermined shape is pressed against the coated surface to transfer the resin to the convex portion of the relief plate. A relief reversal printing method comprising a removing step and a transfer step for transferring the resin remaining on the coated surface to the substrate is disclosed, thereby forming a color filter with uniform ink film thickness and resist patterning. It has been shown that images with high definition and high resin flatness can be obtained. Patent Document 2 (Paragraph 0009) also describes that a precision pattern forming method can be applied to patterning of a printed circuit board and patterning of an electric circuit as an alternative to photolithography.
 特許文献3には、体積抵抗率が1×10-4Ω・cm以下である導電体材料、体積抵抗率が1×1010Ω・cm以上である絶縁体材料、体積抵抗率が1×10-3Ω・cm以上である抵抗体材料であって、これら機能性材料の離型性面に塗布して塗布面を形成する工程における粘度を50mPa・s以下に調整することを特徴とする反転印刷法による印刷配線版を製造する方法が開示されている。しかしながら反転印刷法によるファインパターンの形成が可能でかつ実用可能な電気特性を実現するために要求されるインキ組成について具体的に示されていない。 Patent Document 3 discloses a conductor material having a volume resistivity of 1 × 10 −4 Ω · cm or less, an insulator material having a volume resistivity of 1 × 10 10 Ω · cm or more, and a volume resistivity of 1 × 10 6. -3 Ω · cm or more of a resistor material, characterized in that the viscosity in the step of forming a coated surface by applying to the release surface of these functional materials is adjusted to 50 mPa · s or less A method of manufacturing a printed wiring board by a printing method is disclosed. However, there is no specific description of the ink composition required to achieve fine electrical patterns that can be formed by reverse printing and that can be used practically.
 特許文献4には、反転印刷法によって微細で精密な印刷パターンを形成する際に、インキ組成物がブランケット上で均一なインキ被膜を形成できるような粘度、表面エネルギーを有し、凸版との接触によって印刷パターンが形成されるまでに、完全な印刷パターンがブランケット上に形成できるような乾燥性、粘着性、凝集力が発現され、さらにブランケット上のインキ塗膜が完全に被印刷基材上に転写できるような粘着性、凝集力を具えた精密パターンニングインキ組成物として、インキの粘度5mPa・s以下、表面エネルギーが25mN/m以下であり、揮発性溶剤と、この揮発性溶剤に可溶な樹脂と不溶な固形物を含有し、揮発性溶剤が速乾性溶剤と遅乾性溶剤の混合物であるインキ組成物が開示されている。特許文献4には反転印刷法により精密パターンを形成するために必要となるインキ組成について詳しく開示されているものの、導電パターン形成用インキで形成されたパターンに優れた導電特性を付与するために必要となるインキ組成について開示は無い。 In Patent Document 4, when a fine and precise printing pattern is formed by a reversal printing method, the ink composition has a viscosity and surface energy that can form a uniform ink film on a blanket, and is in contact with a relief printing plate. Before the printed pattern is formed, the dryness, tackiness, and cohesive force are developed so that a complete printed pattern can be formed on the blanket, and the ink coating on the blanket is completely on the substrate to be printed. As a precision patterning ink composition with adhesiveness and cohesiveness that can be transferred, the viscosity of the ink is 5 mPa · s or less, the surface energy is 25 mN / m or less, and it is soluble in a volatile solvent and this volatile solvent. An ink composition is disclosed which contains a solid resin and an insoluble solid, and the volatile solvent is a mixture of a fast-drying solvent and a slow-drying solvent. Although Patent Document 4 discloses in detail the ink composition necessary for forming a precise pattern by the reverse printing method, it is necessary for imparting excellent conductive properties to the pattern formed with the conductive pattern forming ink. There is no disclosure about the ink composition.
 特許文献5には凸版反転印刷法により転写不良が無く微細な導電性パターンを形成することができ、かつ低温焼成で優れた導電性を付与できる凸版反転印刷用インキとして、実質的にバインダー成分を含まず、体積平均粒径(Mv)が10~700nmの導電性粒子、離型剤、表面エネルギー調整剤、溶剤成分を必須成分とし、前記溶剤成分が25℃での表面エネルギーが27mN/m以上の溶剤と、大気圧下での沸点が120℃以下の揮発性の溶剤との混合物であり、25℃におけるインキの表面エネルギーが10~21mN/mであることを特徴とする導電性インキが開示されている。 本発明のインキは優れた反転印刷特性を有し、得られた微細パターンは低温焼成で高い導電性が得られるものの、反転印刷のプロセスウィンドウが狭く、量産性に課題があった。 In Patent Document 5, a binder component is substantially used as a relief printing ink that can form a fine conductive pattern without transfer failure by a relief printing method and can impart excellent conductivity by low-temperature baking. Not included, conductive particles having a volume average particle size (Mv) of 10 to 700 nm, a release agent, a surface energy adjusting agent, and a solvent component are essential components, and the solvent component has a surface energy of 27 mN / m or more at 25 ° C. And a volatile solvent having a boiling point of 120 ° C. or lower under atmospheric pressure, and the surface energy of the ink at 25 ° C. is 10 to 21 mN / m. Has been. The ink of the present invention has excellent reversal printing characteristics, and although the obtained fine pattern can obtain high conductivity by low-temperature baking, the process window of reversal printing is narrow and there is a problem in mass productivity.
特開昭55-44813号公報JP 55-44813 A 特開平11-58921号公報Japanese Patent Laid-Open No. 11-58921 特開2005-57118公報JP-A-2005-57118 特開2005-126608公報JP 2005-126608 A WO2008/111484公報WO2008 / 111484
 凸版反転印刷法は、1)ブランケット上に均一なインキ膜を形成し、適度に乾燥させた後、2)ネガの凸版パターンを有する抜き版を押し付け、これと接触する部分のインキを取り除き、ブランケット上に必要なパターンを形成し、3)このパターンを被転写体に全転写し、目的とするパターンを形成する印刷法である。 In the letterpress reverse printing method, 1) a uniform ink film is formed on the blanket and dried appropriately. 2) the punching plate having a negative relief pattern is pressed, the ink in contact with this is removed, and the blanket 3) A printing method in which a necessary pattern is formed and 3) this pattern is fully transferred to a transfer medium to form a target pattern.
 特許文献5に開示のインキは、ブランケットへのインキ膜形成した後に不要パターンの除去を開始するまでの待ち時間(待機時間)の雰囲気依存性が大きく、また、ブランケット上に形成されたパターンを被転写体へ全転写できる許容時間範囲(レンジ)狭いため厳密な時間管理および雰囲気環境管理が必要であった。 The ink disclosed in Patent Document 5 has a large atmosphere dependency of the waiting time (waiting time) until the removal of unnecessary patterns after the ink film is formed on the blanket, and the pattern formed on the blanket is covered. Strict time management and atmospheric environment management were necessary because the allowable time range (range) in which the entire transfer to the transfer body can be performed was narrow.
 本発明は、凸版反転印刷のプロセスウィンドウが広く、すなわち精密微細で欠陥の無い導電性に優れた導電性パターンを量産スケールで形成できる凸版反転印刷用インキの提供を目的としている。また本発明は、この様して得られた導電性パターンを含む薄膜トランジスタの提供を目的としている。 An object of the present invention is to provide an ink for letterpress reversal printing, which can form a conductive pattern having a wide process window for letterpress reversal printing, that is, precise and fine, and having excellent conductivity without defects, on a mass production scale. Another object of the present invention is to provide a thin film transistor including the conductive pattern thus obtained.
 本発明者等は、上記実情に鑑み鋭意検討したところ、従来の凸版反転印刷用インキに、特定の表面エネルギー調整剤と特定量の水を含有させることで、上記課題を解決できることを見い出し、本発明を完成するに至った。 The present inventors have intensively studied in view of the above circumstances, and found that the above problems can be solved by including a specific surface energy adjusting agent and a specific amount of water in a conventional relief printing ink. The invention has been completed.
 即ち本発明は、凸版反転印刷法によって導電性パターンを形成するためのバインダー成分を含まない導電性インキであって、体積平均粒子径(Mv)が2~250nmの導電性粒子が、フッ素系表面エネルギー調整剤及び/またはシリコン系表面エネルギー調整剤を含有し且つ全液媒体に対し0.5~40%の水を必須成分として含有する有機溶剤からなる液媒体中に分散していることを特徴とする、粒子間溶融結合により導電性を発現する凸版反転印刷用インキを提供するものである。 That is, the present invention relates to a conductive ink that does not contain a binder component for forming a conductive pattern by a letterpress reverse printing method, and the conductive particles having a volume average particle size (Mv) of 2 to 250 nm are Dispersed in a liquid medium comprising an organic solvent containing an energy adjusting agent and / or a silicon-based surface energy adjusting agent and containing 0.5 to 40% of water as an essential component with respect to the total liquid medium The present invention provides an ink for letterpress reversal printing that exhibits electrical conductivity through interparticle fusion bonding.
 また本発明は、被転写体に、凸版反転印刷法によって導電性パターンを形成するためのバインダー成分を含まない導電性インキであって、体積平均粒子径(Mv)が2~250nmの導電性粒子が、フッ素系表面エネルギー調整剤及び/またはシリコン系表面エネルギー調整剤を含有し且つ全液媒体に対し0.5~40%の水を必須成分として含有する有機溶剤からなる液媒体中に分散していることを特徴とする、粒子間溶融結合により導電性を発現する凸版反転印刷用インキを用い、凸版反転印刷法により導電性パターンを形成する工程を含むことを特徴とする薄膜トランジスタの製造方法を提供するものである。 The present invention also relates to a conductive ink which does not contain a binder component for forming a conductive pattern on a transfer medium by a letterpress reverse printing method, and has a volume average particle diameter (Mv) of 2 to 250 nm. Is dispersed in a liquid medium comprising an organic solvent containing a fluorine-based surface energy adjusting agent and / or a silicon-based surface energy adjusting agent and containing 0.5 to 40% of water as an essential component with respect to the total liquid medium. A method for producing a thin film transistor comprising a step of forming a conductive pattern by a letterpress reversal printing method using a letterpress reversal printing ink that exhibits conductivity by melt bonding between particles. It is to provide.
 さらに本発明は、凸版反転印刷法によって導電性パターンを形成するためのバインダー成分を含まない導電性インキであって、体積平均粒子径(Mv)が2~250nmの導電性粒子が、フッ素系表面エネルギー調整剤及び/またはシリコン系表面エネルギー調整剤を含有し且つ全液媒体に対し0.5~40%の水を必須成分として含有する有機溶剤からなる液媒体中に分散していることを特徴とする粒子間溶融結合により導電性を発現する凸版反転印刷用インキを用いて、凸版反転印刷法により形成された導電性パターンを含有する薄膜トランジスタを提供するものである。 Furthermore, the present invention provides a conductive ink which does not contain a binder component for forming a conductive pattern by a letterpress reverse printing method, and the conductive particles having a volume average particle diameter (Mv) of 2 to 250 nm are formed on a fluorine-based surface. Dispersed in a liquid medium comprising an organic solvent containing an energy adjusting agent and / or a silicon-based surface energy adjusting agent and containing 0.5 to 40% of water as an essential component with respect to the total liquid medium The present invention provides a thin film transistor containing a conductive pattern formed by a letterpress reversal printing method using an ink for letterpress reversal printing that exhibits conductivity by interparticle fusion bonding.
 本発明の凸版反転印刷用インキは、広いプロセス許容性を有し、画線パターンの転写性に優れ、実生産プロセスにおいても微細精細な導電性パターンを転写不良無く安定的に形成することができる。また本発明の導電性インキを用いることにより、凸版反転印刷により形成した微細パターンを低温短時間の熱処理で膜の比抵抗が1×10-5Ωcm以下の優れた導電性を付与できる。 The ink for reversal printing of the present invention has wide process tolerance, is excellent in image pattern transferability, and can stably form a fine conductive pattern without defective transfer even in an actual production process. . Further, by using the conductive ink of the present invention, a fine pattern formed by letterpress reversal printing can be imparted with excellent conductivity having a specific resistance of 1 × 10 −5 Ωcm or less by heat treatment at low temperature and short time.
 また本発明の薄膜トランジスタの製造方法は、上記した通り、導電性パターンの製造工程において、優れた、プロセス許容性、導電性及び信頼性を兼備するので、一連の薄膜トランジスタの製造工程においても前記優れた長所を享受することができる。得られた薄膜トランジスタは、より信頼性に優れたものとなる。 Further, as described above, the thin film transistor manufacturing method of the present invention has excellent process tolerance, electrical conductivity, and reliability in the conductive pattern manufacturing process. You can enjoy the advantages. The obtained thin film transistor becomes more reliable.
凸版反転印刷法でのトランジスタ形成の基本工程を示す図The figure which shows the basic process of transistor formation by letterpress reverse printing 本発明のBGBCトランジスタ素子のモデル図Model diagram of BGBC transistor element of the present invention 本発明で得られた、200ppiの印刷方式での薄膜トランジスタ(TFT)アレイThin film transistor (TFT) array with 200 ppi printing method obtained by the present invention
 以下、発明を実施するための形態に基づき、本発明を説明する。
 本発明の導電性インキは、凸版反転印刷法により導電性パターンを形成するための導電性インキに関するものである。
Hereinafter, the present invention will be described based on modes for carrying out the invention.
The conductive ink of the present invention relates to a conductive ink for forming a conductive pattern by a letterpress reverse printing method.
 本発明において凸版反転印刷法とは、ブランケットの撥液表面上に均一なインキ膜を形成し、該インキ膜面に凸版を押圧して該凸版に接触する部分のインキをブランケット上から除去したのち、ブランケット上に残ったインキを被転写体に転写する印刷方法である。 In the present invention, the letterpress reverse printing method means forming a uniform ink film on the liquid repellent surface of the blanket, pressing the letterpress on the ink film surface, and removing the ink in the portion that contacts the letterpress from the blanket. In this printing method, the ink remaining on the blanket is transferred to a transfer medium.
 凸版反転印刷に供するブランケットの離型面は全体の膜厚が均一で、表面平滑性に優れ且つ撥液表面を有するものであれば公知慣用のゴムやエラストマーがいずれも使用できる。この様なブランケット離型面を形成する材質としては、例えば、ビニルシリコーンゴム、フッ素化シリコーンゴム等のシリコーン系エラストマー、各種フッ素樹脂系エラストマー、エチレンプロピレンゴム、オレフィン系エラストマーなどが用いられる。中でもシリコーン系エラストマーおよびフッ素系エラストマーは撥液性がすぐれ、パターンの離型性に優れることから好適に使用できる。特にシリコーン系エラストマーは適度の撥液性、耐溶剤性、溶剤膨潤性を有しておりブランケットの離型面用ゴムとして、より優れている。なかでもポリジメチルシリコーン(PDMS)ゴムは、高い撥液性と適度の溶剤吸収性を有しており、微細パターンの形成性及びパターンの転写性に優れていることから、凸版反転印刷用ブランケット材料として、特に優れた特性を有している。 Any known and commonly used rubber or elastomer can be used as long as the release surface of the blanket used for letterpress reverse printing has a uniform overall film thickness, excellent surface smoothness and a liquid-repellent surface. Examples of the material for forming such a blanket release surface include silicone elastomers such as vinyl silicone rubber and fluorinated silicone rubber, various fluororesin elastomers, ethylene propylene rubber, and olefin elastomers. Among these, silicone elastomers and fluorine elastomers can be suitably used because of their excellent liquid repellency and excellent pattern releasability. In particular, silicone elastomers have appropriate liquid repellency, solvent resistance, and solvent swelling properties, and are more excellent as rubbers for release surfaces of blankets. Among them, polydimethylsilicone (PDMS) rubber has high liquid repellency and moderate solvent absorbability, and is excellent in fine pattern formation and pattern transfer. As such, it has particularly excellent characteristics.
 本発明の凸版反転印刷用インキは、バインダー成分を含まない導電性インキであって、体積平均粒子径(Mv)が2~250nmの導電性粒子が、フッ素系表面エネルギー調整剤及び/又はシリコン系表面エネルギー調整剤を含有し、且つ、全液媒体に対し0.5~40重量%の水を必須成分とする有機溶剤からなる液媒体中に分散していることを特徴とする、低温焼成で実質的に粒子間溶融結合により優れた導電性を発現する凸版反転印刷用インキである。 The ink for letterpress reversal printing of the present invention is a conductive ink containing no binder component, and the conductive particles having a volume average particle diameter (Mv) of 2 to 250 nm are composed of a fluorine-based surface energy adjusting agent and / or a silicon-based ink. A low-temperature firing characterized by containing a surface energy adjusting agent and being dispersed in a liquid medium composed of an organic solvent containing 0.5 to 40% by weight of water as an essential component with respect to the total liquid medium. It is an ink for letterpress reversal printing that exhibits excellent electrical conductivity substantially by melt bonding between particles.
 もちろん、粒子間接触により導電性を発現しうる導電性粒子を、本発明の凸版反転印刷用インキ中に一部含んでいても良い。以下、凸版反転印刷用インキは、単に導電性インキと略記される場合がある。 Of course, a part of the conductive particles capable of developing conductivity by contact between the particles may be included in the relief printing ink of the present invention. Hereinafter, the relief printing ink may be simply abbreviated as conductive ink.
 一般的な導電性インキにおいては、転写印刷性や製膜性及びある程度の導電性を発現させるために、主に樹脂からなるバインダー成分を多量に含有させているが、導電性粒子の粒子間溶融結合を促進するためには、それを阻害するバインダー成分を含ませないことが好ましい。本発明の好適な導電性インキは、実質的にバインダー成分を含まないため、より低温の熱処理においても導電性粒子が溶融結合し、バインダー成分を含有する系に比べ格段に高い導電性を発現することができる。 In general conductive ink, a large amount of binder component mainly composed of resin is included in order to develop transfer printability, film-forming property and a certain degree of conductivity. In order to promote the binding, it is preferable not to include a binder component that inhibits the binding. Since the preferred conductive ink of the present invention does not substantially contain a binder component, the conductive particles are melt-bonded even in a lower temperature heat treatment, and the conductivity is significantly higher than that of a system containing the binder component. be able to.
 本発明の上記した様な導電性インキは、80℃以上高くとも180℃未満の熱処理温度、好ましくは100℃以上150℃以下で焼成した際に、バルク銀に匹敵する優れた導電性を発現させることが出来る。 The conductive ink as described above of the present invention exhibits excellent conductivity comparable to bulk silver when baked at a heat treatment temperature of 80 ° C. or higher and lower than 180 ° C., preferably 100 ° C. or higher and 150 ° C. or lower. I can do it.
 一般の導電性インキに用いられる上記バインダー成分の具体例としては、例えば、天然ゴム、オレフィン系樹脂、ポリエチレンオキサイド、ポリプロピレンオキサイド等のポリエーテル類、不飽和ポリエステル系樹脂、アクリル樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、エポキシ樹脂、ウレタン樹脂、ビニルポリエステル系樹脂、石油系樹脂、ロジン系樹脂、シリコーン系樹脂、ポリビニルアルコール、塩化ビニル、酢酸ビニル、塩化ビニル酢酸ビニル共重体等のビニル系樹脂、セルロース系樹脂、天然多糖類等が挙げられ、本発明の好適な導電性インキは、これらの樹脂をいずれも含まないものである。 Specific examples of the binder component used in general conductive ink include, for example, natural rubber, olefin resin, polyether such as polyethylene oxide, polypropylene oxide, unsaturated polyester resin, acrylic resin, phenol resin, melamine Resins, benzoguanamine resins, epoxy resins, urethane resins, vinyl polyester resins, petroleum resins, rosin resins, silicone resins, polyvinyl alcohol, vinyl chloride, vinyl acetate, vinyl chloride vinyl acetate copolymers, cellulose Resin, natural polysaccharides and the like, and the preferred conductive ink of the present invention does not contain any of these resins.
 しかしながら、本発明の特定の粒子径の導電性粒子の分散剤や、用いる必須成分や任意に添加される添加剤によっては、原料等として一部に樹脂成分を含有する可能性もある。本発明の導電性インキにおいては、これらバインダー成分とは異なる樹脂成分量も、導電性インキに含まれる当該導電性粒子の全質量に対して、10%以下、より好ましくは5%以下、更に好ましくは3%以下とすることが好ましい。10%を超えて樹脂成分を含有するインキは、低温での熱処理による導電性発現を阻害する場合があるので好ましくない。 However, depending on the dispersant for the conductive particles having a specific particle diameter of the present invention, the essential components to be used, and optional additives, there is a possibility that a resin component is partially contained as a raw material. In the conductive ink of the present invention, the amount of the resin component different from these binder components is also 10% or less, more preferably 5% or less, still more preferably based on the total mass of the conductive particles contained in the conductive ink. Is preferably 3% or less. An ink containing more than 10% of a resin component is not preferable because it may inhibit the expression of conductivity due to heat treatment at a low temperature.
 さらに、本発明者らは特定の粒子径の導電性粒子を、フッ素系表面エネルギー調整剤及び/またはシリコン系表面エネルギー調整剤と特定の割合の水を含む有機溶剤からなる液媒体に分散させた導電性インキとすることにより、バインダー成分を含まずとも、優れた凸版反転印刷特性を示すことを見い出した。 Furthermore, the present inventors dispersed conductive particles having a specific particle diameter in a liquid medium composed of an organic solvent containing a fluorine-based surface energy adjusting agent and / or a silicon-based surface energy adjusting agent and a specific ratio of water. It was found that by using a conductive ink, an excellent letterpress reverse printing characteristic was exhibited without including a binder component.
 本発明の導電性インキの調製に用いる導電性粒子の粒子径は、体積平均粒径(Mv=Mean Volume Diameter)2~250nmであることが好ましく、5~100nmが更に好ましい。これらナノオーダーの粒径を有する粒子を用いることにより、線幅数μmの微細な画線を形成でき、且つ優れた転写印刷特性を得ることができる。この優れた転写印刷特性は、かかる微粒子の適用により、インキの半乾燥状態での適度の粒子間凝集力が有効に働くためであると推定される。 The particle diameter of the conductive particles used in the preparation of the conductive ink of the present invention is preferably 2 to 250 nm, more preferably 5 to 100 nm, by volume average particle diameter (Mv = Mean Volume Diameter). By using particles having a nano-order particle size, a fine image line having a line width of several μm can be formed, and excellent transfer printing characteristics can be obtained. This excellent transfer printing property is presumed to be due to the fact that moderate cohesion between particles in the semi-dried state of the ink works effectively by applying such fine particles.
 これら導電性粒子として、例えば、金(Au)、銀(Ag)、銅(Cu)、ニッケル(Ni)、亜鉛(Zn)、アルミ(Al)、鉄(Fe)、白金(Pt)、パラジウム(Pd)、スズ(Sn),クロム(Cr)、鉛(Pb)等の金属粒子及びパラジウム合金(Ag/Pd)等のこれら金属の合金およびコアシェル粒子;酸化亜鉛(ZnO)、酸化インジウムスズ(ITO)、酸化インジウム酸化亜鉛(IZO)等の導電性金属酸化物粒子のほか、必要に応じて;カルボン酸銀塩、アミノカルボン酸銀塩等の金属錯体、酸化銀(AgO)等の180℃以下で熱分解して導電性金属を与える熱分解性化合物;ポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT/PSS)等の導電性高分子粒子を含んでいてもよい。 Examples of the conductive particles include gold (Au), silver (Ag), copper (Cu), nickel (Ni), zinc (Zn), aluminum (Al), iron (Fe), platinum (Pt), palladium ( Metal particles such as Pd), tin (Sn), chromium (Cr), lead (Pb), and alloys of these metals such as palladium alloys (Ag / Pd) and core-shell particles; zinc oxide (ZnO), indium tin oxide (ITO) ), In addition to conductive metal oxide particles such as indium zinc oxide (IZO), if necessary; metal complexes such as carboxylic acid silver salts and silver aminocarboxylic acid salts, 180 such as silver oxide (Ag 2 O) A thermally decomposable compound that thermally decomposes at a temperature of 0 ° C. or lower to give a conductive metal; conductive polymer particles such as polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT / PSS) may be included.
 これらの導電性粒子中でも、銀及び/又は銅の粒子、すなわち、ナノ銀粒子、ナノ銅粒子、銀と銅の合金ナノ粒子、銀及び/または銅をコアとするコアシェル粒子が、より良好な導電性を得ることができるので好ましい。 Among these conductive particles, silver and / or copper particles, that is, nano-silver particles, nano-copper particles, silver-copper alloy nanoparticles, and core-shell particles having silver and / or copper as a core are better conductive. It is preferable because it is possible to obtain properties.
 本発明の特定の粒子径の導電性粒子の分散安定剤としては、公知慣用の分散安定剤がいずれも使用できるが、例えば、アルキルアミン類、ポリビニルピロリドン、ポリエチレンイミン、ポリエチレングリコール、ポリビニルピロリドン、アルキルチオール、アルキルチオエーテル、アルキルアミノ基で末端を置換したフタロシアニン化合物およびこれらの混合物、共重合体が使用できる。 As the dispersion stabilizer for the conductive particles having a specific particle diameter of the present invention, any known and commonly used dispersion stabilizer can be used. For example, alkylamines, polyvinylpyrrolidone, polyethyleneimine, polyethylene glycol, polyvinylpyrrolidone, alkyl A thiol, alkyl thioether, a phthalocyanine compound whose terminal is substituted with an alkylamino group, and a mixture or copolymer thereof can be used.
 なかでも、好ましい分散安定剤は、実質的に塩基性窒素原子を含有する有機化合物である。 Among them, preferred dispersion stabilizers are organic compounds containing substantially basic nitrogen atoms.
 塩基性窒素原子を含有する有機化合物としては、例えばドデシルアミンの様な第1級アミノ基を有するモノアルキルアミン、ポリオキシアルキレンアミン等の低分子の有機化合物を用いることも出来るが、確実に導電性粒子を保護する観点から、高分子の有機化合物を用いることが好ましい。 As the organic compound containing a basic nitrogen atom, a low molecular organic compound such as a monoalkylamine or polyoxyalkyleneamine having a primary amino group such as dodecylamine can be used. From the viewpoint of protecting the conductive particles, it is preferable to use a polymer organic compound.
 この様な高分子化合物としては、例えば、ポリビニルピロリドン、ビニルピロリドンとその他の単量体との共重合体であるポリビニルピロリドン系ポリマー、ポリエチレンイミン、エチレンイミンとその他の単量体との共重合体であるポリエチレンイミン系ポリマー等を挙げることが出来る。 Examples of such a polymer compound include polyvinyl pyrrolidone, a polyvinyl pyrrolidone polymer which is a copolymer of vinyl pyrrolidone and other monomers, a polyethylene imine, a copolymer of ethylene imine and other monomers. The polyethyleneimine type polymer etc. which are can be mentioned.
 これら塩基性窒素原子を含有する高分子化合物としては、構成単量体数の観点から、二元共重合体でも三元共重合体であっても良いし、その分子構造の観点から、直鎖状でも分岐状でも良いし、個々の単量体の共重合体中の局在性の観点から、ランダム共重合体、ブロック共重合体或いはグラフト共重合体であっても良い。これら高分子化合物の存在下で銀ナノ粒子と併用すると、その銀イオンが高分子化合物の窒素原子に配位した後、適当な還元剤の存在下、室温または加熱状態で容易に還元されるため特に好ましい。 These high molecular compounds containing a basic nitrogen atom may be a binary copolymer or a ternary copolymer from the viewpoint of the number of constituent monomers, and may be a straight chain from the viewpoint of the molecular structure. From the viewpoint of localization in the copolymer of individual monomers, a random copolymer, a block copolymer, or a graft copolymer may be used. When combined with silver nanoparticles in the presence of these polymer compounds, the silver ions are easily reduced at room temperature or under heating in the presence of an appropriate reducing agent after coordination with the nitrogen atom of the polymer compound. Particularly preferred.
 塩基性窒素原子を含有する高分子化合物としては、平均分子量5,000~30,000のものが好ましい。 The polymer compound containing a basic nitrogen atom preferably has an average molecular weight of 5,000 to 30,000.
 この様な塩基性窒素原子を含有する高分子有機化合物としては、例えば、日本触媒(株)製ポリビニルピロリドンKシリーズ(登録商標)、同社製ポリエチレンイミンであるエポミン(登録商標)シリーズや、WO2008/143061公報に記載されている様な、ポリエチレンイミン鎖とノニオン性の親水性セグメントとを有する高分子化合物を用いることが出来る。 Examples of such a polymer organic compound containing a basic nitrogen atom include, for example, Polyvinylpyrrolidone K series (registered trademark) manufactured by Nippon Shokubai Co., Ltd., Epomin (registered trademark) series which is polyethyleneimine manufactured by the same company, WO2008 / A polymer compound having a polyethyleneimine chain and a nonionic hydrophilic segment as described in Japanese Patent No. 143061 can be used.
 本発明において最適な、塩基性窒素原子を含有する有機化合物で保護された導電性粒子は、当該高分子化合物を分散した媒体中に、金属の酸化物又は金属のイオン溶液を加え、該金属の酸化物又はイオンを還元し、金属ナノ粒子として安定化することで容易に得ることが出来る。このようにして製造した金属ナノ粒子分散体は、分散安定性、保存特性に優れ、導電性粒子が有する電気的機能を潜在的に有している。 In the present invention, the conductive particles protected with an organic compound containing a basic nitrogen atom are added with a metal oxide or a metal ion solution in a medium in which the polymer compound is dispersed. It can be easily obtained by reducing oxides or ions and stabilizing them as metal nanoparticles. The metal nanoparticle dispersion produced in this way is excellent in dispersion stability and storage characteristics, and potentially has the electrical function of conductive particles.
表面エネルギー調整剤としては、フッ素系表面エネルギー調整剤及び/又はシリコン系表面エネルギー調整剤が使用できる。 As the surface energy adjusting agent, a fluorine-based surface energy adjusting agent and / or a silicon-based surface energy adjusting agent can be used.
 フッ素系の表面エネルギー調整剤としては、公知慣用の低分子型または高分子型のフッ素系の表面エネルギー調整剤がいずれも挙げられ、例えば、DIC株式会社のメガファックシリーズや3M社のノベックシリーズが適用できる。中でも、インキを塗布した際により平滑性に優れた塗膜が得られ、導電性粒子の粒子間溶融結合により優れた導電性皮膜をえることができるフッ素化(メタ)アクリル重合体からなるフッ素系表面エネルギー調整剤が、好適に適用できる。 Examples of the fluorine-based surface energy adjusting agent include well-known and commonly used low-molecular or high-molecular fluorine-based surface energy adjusting agents. For example, DIC Corporation's Megafax series and 3M's Novec series Is applicable. Above all, a fluorine-based film composed of a fluorinated (meth) acrylic polymer that can provide a coating film with excellent smoothness when applied with ink and can provide an excellent conductive film by interparticle fusion bonding of conductive particles. A surface energy adjusting agent can be suitably applied.
 一方、シリコン系表面エネルギー調整剤としては、公知慣用のシリコン系の表面エネルギー調整剤がいずれも挙げられ、例えば、ビッグケミー・ジャパンのBYKシリーズの水溶性の表面エネルギー調整剤が好適に使用できる。 On the other hand, as the silicon-based surface energy adjusting agent, any known and commonly used silicon-based surface energy adjusting agent can be used. For example, a water-soluble surface energy adjusting agent of BYK series of Big Chemie Japan can be suitably used.
 これら表面エネルギー調整剤の添加は、導電性インキの全構成成分を100質量%とした時、有効成分で、0.05~5.0質量%、好ましくは0.1~0.5質量%の添加量である。上記した範囲であれば、撥液性の高いブランケット上においてインキはじきが発生せず均一なインキ薄膜を容易に得ることができ、且つ焼成後のインキ塗膜の導電性の実質的な低下も抑制できる。 These surface energy adjusting agents are added in an amount of 0.05 to 5.0% by mass, preferably 0.1 to 0.5% by mass, based on 100% by mass of all components of the conductive ink. The amount added. If it is in the above range, ink repelling does not occur on a highly liquid-repellent blanket, and a uniform ink thin film can be easily obtained, and a substantial decrease in the conductivity of the ink coating after firing is also suppressed. it can.
 フッ素系表面エネルギー調整剤とシリコン系表面エネルギー調整剤とは、それらを単独で用いても良いが、なかでも、両者を併用することにより、インキへのより少ない添加量で、ブランケットの離型面でのインキ微細なハジキを抑制することができるので特に好ましい。フッ素系表面エネルギー調整剤とシリコン系表面エネルギー調整剤との併用割合に特に制限は無いが、不揮発分の質量換算で、フッ素系表面エネルギー調整剤/シリコン系表面エネルギー調整剤=1/1~1/0.1であることが、上記有効な効果が得られる点で好ましい。 Fluorine-based surface energy modifiers and silicon-based surface energy modifiers may be used alone, but in particular, by using both together, the release surface of the blanket can be used with a smaller amount of addition to the ink. This is particularly preferable because fine ink repellency can be suppressed. Although there is no restriction | limiting in particular in the combined ratio of a fluorine-type surface energy regulator and a silicon-type surface energy regulator, Fluorine-type surface energy regulator / silicon-type surface energy regulator = 1 / 1-1 in conversion of the non volatile matter mass. /0.1 is preferable in that the above effective effect can be obtained.
 本発明の導電性インキの調製に当たっては、前記導電性粒子を分散する液媒体として、フッ素系表面エネルギー調整剤及び/又はシリコン系表面エネルギー調整剤を含有し、水を必須成分として含有する、有機溶剤からなる液媒体が用いられる。 In preparing the conductive ink of the present invention, the liquid medium in which the conductive particles are dispersed contains a fluorine-based surface energy adjusting agent and / or a silicon-based surface energy adjusting agent, and contains water as an essential component. A liquid medium made of a solvent is used.
 本発明の導電性インキに適用できる水以外の有機溶剤としては、単独又は混合物で水と相溶し、適用する導電性粒子を単独また混合物で安定的に分散できるものであれば特に制限無く適用できる。 As the organic solvent other than water that can be applied to the conductive ink of the present invention, any solvent can be used as long as it is compatible with water alone or in a mixture and the applied conductive particles can be dispersed stably alone or in a mixture. it can.
 これら有機溶剤としては、例えば、メタノール、エタノール、ブチルアルコール、メトキシブタノール、ターシャリーブタノール等のアルコール類;エチレングリコール、プロピレングリコール、ジエチレングリコール、グリセリン等の多価アルコール類;酢酸エチル、酢酸メチル、酢酸イソブチル、乳酸エチル等のエステル類およびプロピレンカーボネート等の炭酸エステル類;イソプロピルエーテル、メチルターシャリーブチルエーテル、テトラヒドロフラン等のエーテル類;アセトン、メチルエチルケトン、メチルブチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジアセトンアルコール等のケトン類;メチルセロソルブ、セロソルブ、ブチルセロソルブ、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のグリコールエーテル類;エチレングリコールモノメチルエーテルアセテート等のグリコールアセテート類;メチルトリグライム、エチルモノグライム等のグリコールジエーテル類;シクロヘキサノン、メチルシクロヘキサノン、シクロヘキサノール、メチルシクロヘキサノール等の脂環式炭化水素類;ノルマルへキサン等の脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;クロルベンゼン、オルトジクロロベンゼン等の塩化芳香族炭化水素類;ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエチレン、トリクロロエチレン等の塩化脂肪族炭化水素類から選ばれる単独又は混合溶剤が適宜適用できる。中でも、低分子アルコール系溶剤を必須成分として含有する混合系溶剤とすることが、水との相溶性に優れ且つ導電粒子の分散安定に優れることから好ましい。 Examples of these organic solvents include alcohols such as methanol, ethanol, butyl alcohol, methoxybutanol, and tertiary butanol; polyhydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, and glycerin; ethyl acetate, methyl acetate, and isobutyl acetate. Esters such as ethyl lactate and carbonates such as propylene carbonate; ethers such as isopropyl ether, methyl tertiary butyl ether and tetrahydrofuran; ketones such as acetone, methyl ethyl ketone, methyl butyl ketone, methyl isobutyl ketone, cyclohexanone and diacetone alcohol Class: methyl cellosolve, cellosolve, butyl cellosolve, diethylene glycol monomethyl ether, dipropylene glyco Glycol ethers such as ethylene monomethyl ether, propylene glycol monomethyl ether, glycol acetates such as ethylene glycol monomethyl ether acetate; glycol diethers such as methyl triglyme and ethyl monoglyme; cyclohexanone, methylcyclohexanone, Alicyclic hydrocarbons such as cyclohexanol and methylcyclohexanol; Aliphatic hydrocarbons such as normal hexane; Aromatic hydrocarbons such as toluene and xylene; Chloroaromatic hydrocarbons such as chlorobenzene and orthodichlorobenzene A single or mixed solvent selected from chlorinated aliphatic hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, dichloroethylene, and trichloroethylene can be appropriately applied. Among these, a mixed solvent containing a low molecular alcohol solvent as an essential component is preferable because of excellent compatibility with water and excellent dispersion stability of conductive particles.
 本発明の導電性インキには、上記した有機溶剤以外の、ブランケット離型面を膨潤できる有機溶剤(ブランケット膨潤性液体という場合がある。)を含有させることが好ましい。凸版反転印刷は、先ずブランケットの平滑表面撥液性の離型面上に欠陥の無い均一なインキ薄膜を形成することが要求される。この際、微小なハジキが発生するとパターン欠陥となる。本発明者らは、導電性粒子を分散する本発明の液媒体中にブランケット離型面を膨潤できる有機溶剤を含有することにより、インキの微小ハジキが無く欠陥の無い均質なインキ膜を容易に形成できることを発見した。 The conductive ink of the present invention preferably contains an organic solvent (sometimes referred to as a blanket swellable liquid) that can swell the blanket release surface, other than the organic solvent described above. In letterpress reversal printing, it is first required to form a uniform ink thin film having no defects on the smooth surface and the liquid repellent release surface of the blanket. At this time, if a fine repellency is generated, a pattern defect occurs. By including an organic solvent that can swell the blanket release surface in the liquid medium of the present invention in which conductive particles are dispersed, the present inventors can easily form a uniform ink film that is free from defects and has no defects. I found that it can be formed.
 ブランケット膨潤性液体としては、例えば、ブランケット離型面にPDMSゴムを用いた場合、PDMSゴムを溶剤に15分間浸漬したときのゴム重量増加率が10%以上さらに好ましくは20%以上である有機溶剤が好適に適用できる。ブランケット膨潤性液体の水を含めた導電粒子分散液媒体中の含有率は、質量基準で5~70%であることが好ましく、さらに好ましくは20~50%である。 As the blanket swellable liquid, for example, when PDMS rubber is used for the blanket release surface, the organic solvent has a rubber weight increase rate of 10% or more, more preferably 20% or more when the PDMS rubber is immersed in a solvent for 15 minutes. Can be suitably applied. The content of the blanket-swellable liquid in the conductive particle dispersion medium including water is preferably 5 to 70%, more preferably 20 to 50%, based on mass.
 この様なブランケット膨潤性液体としては、例えば、ジメチルカーボネート、ジエチルカーボネート、酢酸イソプロピル、酢酸nプロピル、酢酸ブチル、酢酸メトキシブチル、ジオキサン、イソプロピルアルコール、ブタノール、メチルモノグライム、エチルモノグライム、メチルジグライム、エチルジグライム、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールジメチルエーテル、プロピレングリコールnブチルエーテル、プロピレングリコールnプロピルエーテル、ジプロピレングリコールnブチルエーテル、ジプロピレングリコールnプロピルエーテル、プロピレングリコールモノメチルエーテルアセテート、オクタノール、等が好適に使用できる。 Examples of such a blanket swellable liquid include dimethyl carbonate, diethyl carbonate, isopropyl acetate, npropyl acetate, butyl acetate, methoxybutyl acetate, dioxane, isopropyl alcohol, butanol, methyl monoglyme, ethyl monoglyme, and methyldiglyme. , Ethyl diglyme, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monomethyl ether acetate, diethylene glycol monobutyl ether acetate, dipropylene glycol dimethyl ether, propylene glycol n butyl ether, propylene glycol n propyl ether, dipropylene glycol n butyl ether, di Propylene glycol n propyl ether, propi Glycol monomethyl ether acetate, octanol, etc. can be suitably used.
 本発明者らは、従来の導電性インキに本発明の範囲で水を含有させることにより、ブランケットからのパターンの転写性すなわち、抜き版による不要パターンの除去、及びブランケット上に形成された画線パターンの被転写体への転写性を向上させるだけでなく、抜き版で適切なパターンを形成するためにインキ膜の乾燥に要する時間(待機時間)を実質的に延ばす事無く、許容範囲の広い転写可能時間(レンジ)を実現することを発見した。 By incorporating water in the scope of the present invention into the conventional conductive ink, the present inventors have transferred patterns from a blanket, that is, removal of unnecessary patterns by punching plates, and image lines formed on the blanket. In addition to improving the transferability of the pattern to the transfer target, it does not substantially increase the time required to dry the ink film (standby time) in order to form an appropriate pattern by punching and has a wide allowable range. I discovered that the transferable time (range) was realized.
 凸版反転印刷は1)ブランケットの離型面に均一なインキ膜を形成し、インキ膜を適度に乾燥し、ついで2)抜き版で不要パターンを取り除き、3)ブランケット上に残存形成したパターンを被転写体に完全転写し微細パターンを形成する方法である。2)でインキが乾燥不足であると、画線のニジミ、曲がり、寸法変化(収縮)が発生し、抜き版の形状を正確に再現できない。一方インキの乾燥が過ぎると、インキの凝集力が強くなりすぎパターン切れ性(形成性)が低下しシャープな画線エッジが得られず、最悪の場合、インキがブランケットに強く密着し、抜き版による不要パターンを取り除くことが困難となる。当然、その後のブランケットより被転写体へ塗布画線パターンの完全転写が困難となる。 In letterpress reverse printing, 1) a uniform ink film is formed on the release surface of the blanket, the ink film is dried appropriately, 2) an unnecessary pattern is removed with a printing plate, and 3) a pattern formed remaining on the blanket is covered. In this method, a fine pattern is formed by completely transferring to a transfer body. If the ink is insufficiently dried in 2), the image lines will be blurred, bent, and dimensional changes (shrinkage) will occur, making it impossible to accurately reproduce the shape of the punched plate. On the other hand, if the ink dries too much, the cohesive strength of the ink becomes too strong, and the pattern cut-off property (formability) declines, and a sharp image line edge cannot be obtained. It becomes difficult to remove unnecessary patterns due to. Naturally, it becomes difficult to completely transfer the applied image line pattern from the subsequent blanket to the transfer target.
 本発明に記載の凸版反転印刷法を用い、実生産レベルで、微細で欠陥の無い画線パターンを信頼性高く形成するためには、印刷タクトタイムを短くする観点から、抜き版により不要パターンをブランケット離型面より完全に除去しシャープな画線が形成できるようになる待機時間が適度に短いことが必要である。一方、生産プロセスにおける温度及び湿度変動等の外乱の影響を受けず信頼性が高く安定した品質の画線パターンを得るためには、ブランケット上に形成された画線パターンが被転写体側へ完全転写できる時間範囲(レンジ)が長いこと、すなわちプロセスウィンドウが広いことが要求される。 In order to form a fine and defect-free image line pattern with high reliability at the actual production level using the relief printing method described in the present invention, an unnecessary pattern is formed by punching from the viewpoint of shortening the printing tact time. It is necessary for the standby time to be completely removed from the blanket release surface and to form a sharp image line to be reasonably short. On the other hand, in order to obtain a reliable and stable quality image line pattern that is not affected by disturbances such as temperature and humidity fluctuations in the production process, the image line pattern formed on the blanket is completely transferred to the transferred object side. A long time range (range), that is, a wide process window is required.
 本発明の、特定の添加範囲内で水を必須成分として含む有機溶剤からなる液媒体から導電性インキを調製とすることにより、凸版反転印刷特性を向上できるだけでなく印刷のプロセスウィンドウを大幅に広げることができる。 By preparing a conductive ink from a liquid medium composed of an organic solvent containing water as an essential component within a specific addition range of the present invention, not only can the letterpress reverse printing characteristics be improved, but the printing process window can be greatly expanded. be able to.
 本発明においては、液媒体は、水と有機溶剤とから構成されるものであり、質量基準で全液媒体(水と有機溶剤の合計)に対し、0.5~40%の水を含有する液媒体の適用を特徴とする。水の含有量として好ましくは0.5~30%であり、さらに好ましくは0.5~20%である。 In the present invention, the liquid medium is composed of water and an organic solvent, and contains 0.5 to 40% of water with respect to the total liquid medium (total of water and organic solvent) on a mass basis. Characterized by the application of a liquid medium. The water content is preferably 0.5 to 30%, more preferably 0.5 to 20%.
 水の添加量が、上記の0.5%より少ないと、先に説明した効果が小さくなるので好ましくない。すなわちパターンのブランケットからの離型性向上効果が充分でなくまた抜き版でブランケット上に形成したパターンを被転写体上に完全転写できる許容時間幅(レンジ)を充分広げることが困難となる。また、上記の40%より多いと、インキ膜の乾燥性が極度に低下し、長時間の待機時間が必要となり印刷タクトタイムの短縮が困難となる。さらに撥液性のブランケット離型面での微細なハジキの抑制も困難となり好ましくない。 If the amount of water added is less than 0.5%, it is not preferable because the effect described above becomes small. That is, the effect of improving the releasability of the pattern from the blanket is not sufficient, and it is difficult to sufficiently widen the allowable time width (range) in which the pattern formed on the blanket by the punching plate can be completely transferred onto the transfer target. On the other hand, if it exceeds 40%, the drying property of the ink film is extremely lowered, and a long standby time is required, so that it is difficult to shorten the printing tact time. Furthermore, it becomes difficult to suppress fine repellency on the release surface of the liquid repellent blanket.
 有機溶剤だけでなく水をも必須成分として含有する本発明の導電性インキを用いれば、通常の雰囲気である約25℃、相対湿度約50%で、1分間以下の待機時間で、抜き版により線幅5μm以下のシャープな細線を形成でき、有機溶剤のみを含有していた従来の凸版反転印刷用インキに比べて、より長い転写許容時間(レンジ)を実現できる。本発明の導電性インキは10分以上の被転写体への転写許容時間範囲(レンジ)を容易に実現できる。 If the conductive ink of the present invention containing not only an organic solvent but also water as an essential component is used, it can be removed by a printing plate at a normal atmosphere of about 25 ° C. and a relative humidity of about 50%, with a waiting time of 1 minute or less. A sharp fine line having a line width of 5 μm or less can be formed, and a longer transfer permissible time (range) can be realized as compared with a conventional relief printing ink containing only an organic solvent. The conductive ink of the present invention can easily realize a transfer allowable time range (range) of 10 minutes or more to a transfer target.
 ブランケット上に塗布したインキ表面を乾燥空気等の微風で強制乾燥することで、さらに印刷タクトを短くすることもできる。本発明の導電性インキは、かかる強制乾燥においても、充分なパターン形成性と転写性を有する。 The printing tact can be further shortened by forcibly drying the ink surface applied on the blanket with a gentle breeze such as dry air. The conductive ink of the present invention has sufficient pattern formability and transferability even in such forced drying.
 本発明の導電性インキは、上述の表面エネルギー調整剤を添加により、導電性インキの25℃における表面エネルギーを27mN/m以下に調整することが好ましい。インキの表面エネルギーは21mN/m以下であることがより好ましい。これにより、ブランケットの撥液性の離型面に塗布されたインキ塗膜の平滑性が向上しより均一な皮膜を得ることができる。 In the conductive ink of the present invention, the surface energy at 25 ° C. of the conductive ink is preferably adjusted to 27 mN / m or less by adding the above-described surface energy adjusting agent. The surface energy of the ink is more preferably 21 mN / m or less. Thereby, the smoothness of the ink coating applied to the liquid repellent release surface of the blanket is improved, and a more uniform coating can be obtained.
 ブランケットの離型面でのインキの微小ハジキの抑制を目的として、離型面をオゾンUVやオゾンプラズマ処理を行ってもよい。一般にインキハジキ抑制のためのこれら表面処理とブランケット離型面からのパターン転写性(離れ)はトレードオフの関係にあるが、驚くべきことに、本発明の導電性インキを用いれば、これら表面処理されたブランケット撥液表面からでもパターン残り無く容易に被転写体上へ完全転写することができる。 The release surface may be subjected to ozone UV or ozone plasma treatment for the purpose of suppressing fine repellency of ink on the release surface of the blanket. In general, these surface treatments for suppressing ink repellency and pattern transferability (separation) from the blanket release surface are in a trade-off relationship. Surprisingly, when the conductive ink of the present invention is used, these surface treatments are performed. Even from the blanket liquid repellent surface, it is possible to easily transfer completely onto the transfer target without any pattern residue.
 本発明の導電性インキには、更に、画線パターンの形成性、パターン転写性を向上する目的で、必要に応じ離型剤を添加することができる。離型剤としては、信越化学(株)製KF96シリーズや東レ・ダウコーニング(株)製SH28(いずれも商品名)等のシリコーンオイルが好適に挙げられる。特に、シリコーンの2~30量体である低分子シリコーン(分子量にして148~2000程度)がインキパターンニング、焼成後の塗膜の導電性への影響が少なく好ましい。このようなシリコーンオイルとしては、信越化学製KF96シリーズの25℃の動的粘度が20mm/s以下のシリコーンが挙げられる。 A release agent can be further added to the conductive ink of the present invention as necessary for the purpose of improving the image line pattern formability and pattern transferability. Preferable examples of the mold release agent include silicone oils such as KF96 series manufactured by Shin-Etsu Chemical Co., Ltd. and SH28 manufactured by Toray Dow Corning Co., Ltd. (both are trade names). In particular, a low molecular weight silicone (molecular weight of about 148 to 2000) which is a dimer to 30 mer of silicone is preferable because it has little influence on the conductivity of the coating film after ink patterning and baking. Examples of such silicone oil include silicones having a dynamic viscosity at 25 ° C. of 20 mm 2 / s or less of KF96 series manufactured by Shin-Etsu Chemical.
 この離型剤の含有率は、導電性インキの全構成成分を100質量%とした時、0.05~5.0質量%、好ましくは0.1~1.0質量%が好ましい。この離型剤を添加することにより、溶剤や表面エネルギーの調整によってインキのブランケットへの濡れ性を増大させても、ブランケットからの剥離性を確保することができる。これにより、凸版反転印刷法における転写性を改善することができる。 The content of the release agent is 0.05 to 5.0% by mass, preferably 0.1 to 1.0% by mass, when all the components of the conductive ink are 100% by mass. By adding this release agent, the releasability from the blanket can be ensured even if the wettability of the ink to the blanket is increased by adjusting the solvent and surface energy. Thereby, the transferability in the relief printing method can be improved.
 本発明の導電性インキには必要に応じて、導電性粒子の分散性安定化や低温での焼成促進を目的として、例えば、ジエチルアミン、トリエチルアミン、ジイソプロピルアミン等のアルキルアミン類、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のエタノールアミン類、各種アンモニウムカルボナート、各種アンモニウムカーバメート類、蟻酸、酢酸、プロピオン酸、硝酸、リン酸、過酸化水素、硝酸アミン等のアミン化合物、無機酸、有機酸等を添加しても良い。 For the purpose of stabilizing the dispersibility of conductive particles and accelerating firing at low temperature, the conductive ink of the present invention, for example, alkylamines such as diethylamine, triethylamine, diisopropylamine, monoethanolamine, diethanolamine is used as necessary. Ethanolamines such as triethanolamine, various ammonium carbonates, various ammonium carbamates, amine compounds such as formic acid, acetic acid, propionic acid, nitric acid, phosphoric acid, hydrogen peroxide, amine nitrate, inorganic acids, organic acids, etc. It may be added.
 本発明の凸版反転印刷法のパターン転写方法に特に制限は無く、例えば、平行平版方式でネガパターンを有する凸版である抜き版とブランケットを接触させる方法や、ロールに巻きつけたブランケットを平板の抜き版上を転がし接触させる方法、ロール側に抜き版を形成し平板のブランケット上を転がし接触させる方法、ブランケット及び抜き版をロール上に形成し両者を接触させる方法等適用できる。 There is no particular limitation on the pattern transfer method of the relief printing method of the present invention, for example, a method of contacting a blanket, which is a relief printing plate having a negative pattern in a parallel lithographic method, or a blanket wound around a roll is removed from a flat plate. For example, a method of rolling and contacting the plate, a method of forming a blank plate on the roll side and rolling and contacting a flat blanket, a method of forming a blanket and a blank plate on a roll and bringing them into contact with each other can be applied.
 本発明の導電性インキを用いれば、凸版反転印刷法により、高精細な薄膜トランジスタの印刷形成を実現できる微細なトランジスタを容易に形成できる。具体的には、任意の被転写体と、絶縁膜及び半導体膜を形成する工程と、本発明の導電性インキを用い、凸版反転印刷法により導電性パターンを形成する工程を含ませることで、薄膜トランジスタを製造することができるし、本発明の導電性インキを用いて、絶縁膜、半導体膜及び凸版反転印刷法により得られた導電性パターンを含有する薄膜トランジスタを形成することができる。 If the conductive ink of the present invention is used, a fine transistor capable of realizing high-definition thin film transistor printing can be easily formed by the letterpress reverse printing method. Specifically, by including a step of forming an arbitrary transfer target, an insulating film and a semiconductor film, and a step of forming a conductive pattern by a relief printing method using the conductive ink of the present invention, A thin film transistor can be manufactured, and a thin film transistor containing a conductive pattern obtained by an insulating film, a semiconductor film, and a relief printing method can be formed using the conductive ink of the present invention.
 以下、薄膜トランジスタは、TFTと称する場合がある。また、以下、図1を用い本発明の凸版反転印刷法により薄膜トランジスタの各種導電パターン形成するための基本工程を示す。 Hereinafter, the thin film transistor may be referred to as a TFT. In addition, the basic steps for forming various conductive patterns of a thin film transistor by the letterpress reverse printing method of the present invention will be described below with reference to FIG.
インキング行程(インキ塗布工程) 図1(a)
 ブランケット(図1-2)の撥液性の離型面上に本発明の導電性インキを塗布して均一なインキ膜(図1-1)を形成し、凸版によるパターン形成が可能の状態まで適度に乾燥させる。この際雰囲気温度、湿度を制御し、乾燥条件をコントロールすることが好ましい。さらに乾燥時間の短縮のため乾燥空気の微風を利用しても良い。ブランケットの撥液性の離型面上へのインキ膜の形成方法に制限は無く、例えばスリットコート、バーコート、スピンコートで所定の膜厚のインキ膜を形成することができる。塗布するインキのウェット膜厚は0.1μm~5μm、さらに好ましくは0.15μm~1.5μmで調整するのが、その後の微細パターン形成性、乾燥性およびインキ改質により得られる導電性の観点から好ましい。本発明の凸版反転印刷用インキを用いれば、かかる撥液表面にピンホールの無い均一なインキ薄膜を容易に形成できる。使用するブランケットの構造に特に制限はないが、印刷面の圧力の均一化のためウレタンフォーム等のスポンジで裏打ちされたものが好適に使用できる。
Inking process (ink application process) Fig. 1 (a)
The conductive ink of the present invention is applied on the liquid repellent release surface of the blanket (Fig. 1-2) to form a uniform ink film (Fig. 1-1), and the pattern can be formed by relief printing. Dry moderately. In this case, it is preferable to control the drying conditions by controlling the atmospheric temperature and humidity. Furthermore, a fine breeze of dry air may be used to shorten the drying time. There is no limitation on the method of forming the ink film on the liquid repellent release surface of the blanket, and an ink film having a predetermined thickness can be formed by, for example, slit coating, bar coating, or spin coating. The wet film thickness of the ink to be applied is adjusted to 0.1 μm to 5 μm, more preferably 0.15 μm to 1.5 μm, from the viewpoint of subsequent fine pattern formability, drying property, and conductivity obtained by ink modification To preferred. By using the relief printing ink of the present invention, a uniform ink thin film having no pinholes can be easily formed on the liquid repellent surface. Although there is no restriction | limiting in particular in the structure of the blanket to be used, The thing backed with sponges, such as a urethane foam, can be used conveniently in order to equalize the pressure of a printing surface.
抜き版によるパターン形成工程 図1(b)
 抜き版に相当する凸版3を準備する。次いで、必要とするTFT電極パターンのネガパターンを凸版(図2-3)とする抜き版を上記インキ膜に軽く押し当て、次いで離すことにより抜き版の凸部と接触する部分の導電性インキの塗膜パターンを取り除く。これによりTFTの導電性パターンとなる導電性インキパターンをブランケット離型面上に形成する。抜き版のブランケット上のインキ膜面への接触はできるだけ軽くすることが肝要である。過剰な接触圧は、ブランケットの離型面を形成するゴムの過剰な変形を引き起こし、インキ膜の抜き版の凹部への接触によるパターン欠陥(底当たり)やブランケット変形によるパターン形成位置のずれを引き起こし好ましくない。本発明の凸版反転印刷用インキを用いれば、インキ膜へ抜き版をわずかに接触させる(キスタッチ)だけで容易にブランケット上から不要なインキパターンを除去することができる。これにより例えばゲートアレイゲートパターンやソース/ドレイン等のTFTの構成要素となる各種導電パターンをブランケット離型面上に形成する。
Pattern forming process by punching plate FIG. 1 (b)
A relief plate 3 corresponding to the punched plate is prepared. Next, lightly press the release plate with the negative pattern of the required TFT electrode pattern on the relief plate (Fig. 2-3) against the ink film, and then release it to remove the conductive ink in the portion that comes into contact with the relief portion of the release plate. Remove the coating pattern. As a result, a conductive ink pattern to be a conductive pattern of the TFT is formed on the blanket release surface. It is important to make the contact with the ink film surface on the blanket of the punching plate as light as possible. Excessive contact pressure causes excessive deformation of the rubber that forms the release surface of the blanket, causing pattern defects (per bottom) due to contact with the recesses in the release plate of the ink film, and displacement of the pattern formation position due to blanket deformation. It is not preferable. If the relief printing ink of the present invention is used, an unnecessary ink pattern can be easily removed from the blanket simply by bringing the punching plate into slight contact with the ink film (kiss touch). As a result, for example, various conductive patterns which are constituent elements of the TFT such as the gate array gate pattern and the source / drain are formed on the blanket release surface.
 ここで使用する抜き版の材質はインキ膜をブランケット離型面よりインキを除去できるものであれば特に限定されるものは無く、例えば、ガラス、シリコン、ステンレス等の各種金属、各種樹脂が使用できる。これらの凸版への加工方法にも制限は無く、材質、パターン精度、凸版深さ等に最適な方法を選択できる。例えばガラス、シリコンを材質とする場合はウェットエッチング、ドライエッチング等の加工方法が適用できる。金属の場合はウェットエッチング、電鋳加工、サンドブラスト等が適用できる。また樹脂を材質とする場合はフォトリソエッチング、レーザー、収束イオンビーム等の加工方法が好適に適用できる。 There are no particular limitations on the material of the stencil used here as long as it can remove ink from the blanket release surface of the ink film. For example, various metals such as glass, silicon, and stainless steel, and various resins can be used. . There is no limitation on the processing method for these relief plates, and an optimum method for the material, pattern accuracy, relief plate depth, etc. can be selected. For example, when glass or silicon is used, a processing method such as wet etching or dry etching can be applied. In the case of metal, wet etching, electroforming, sandblasting, etc. can be applied. Further, when a resin is used as a material, a processing method such as photolithography etching, laser, or focused ion beam can be suitably applied.
転写工程 図1(c)
 ブランケット離型面上に形成した導電性インキパターンを被転写体(図1-4)に軽く押し当て該パターンを全転写する。こうして、例えば、ボトムゲートボトムコンタクト型TFTの基礎となる導電性パターンに対応する塗膜パターンを被転写体となる基板上に形成する。形成した導電パターンは公知の導電性インキ改質方法を用いて導電性を付与する。これら導電性インキ改質方法として例えば、熱風オーブン焼成、赤外輻射焼成、キセノンランプ等による光焼成、プラズマ焼成、電磁波焼成等が適用できる。これら改質方法は単独で適用しても良く、また2種類以上の改質方法を複合して行っても良い。具体的には、上記した塗膜パターンを加熱することで乾燥焼成して、上記で得られた塗膜パターン中の導電性粒子を粒子間溶融結合させることで、導電性パターンを形成することができる。
Transfer process Fig. 1 (c)
The conductive ink pattern formed on the blanket release surface is lightly pressed against the transfer target (FIGS. 1-4) to completely transfer the pattern. In this way, for example, a coating film pattern corresponding to the conductive pattern serving as the basis of the bottom gate bottom contact type TFT is formed on the substrate to be transferred. The formed conductive pattern imparts conductivity using a known conductive ink modification method. As these conductive ink modification methods, for example, hot air oven firing, infrared radiation firing, light firing with a xenon lamp, plasma firing, electromagnetic wave firing, and the like can be applied. These reforming methods may be applied alone or in combination of two or more reforming methods. Specifically, by heating and drying the above-mentioned coating pattern, the conductive pattern in the coating pattern obtained above can be melt-bonded between the particles to form a conductive pattern. it can.
 最も一般的な焼成方法は、熱風オーブン加熱焼成であるが、好適な、ナノ銀を用いた本発明の凸版反転印刷用インキを用いれば、80℃以上180℃以下で5分以内の焼成時間で比抵抗がμΩcmのオーダーの導電膜を容易に形成できる。 The most common baking method is hot-air oven heating baking, but if the preferred ink for letterpress reversal printing of the present invention using nano silver is used, the baking time is 80 ° C. or higher and 180 ° C. or lower and within 5 minutes. A conductive film having a specific resistance on the order of μΩcm can be easily formed.
 ボトムゲートボトムコンタクト形のTFTを形成する場合、ゲートアレイパターンの被転写体は一般に各種フィルム、ガラス、シリコン等の基板になる。これら基板に形成したゲートアレイパターン上にゲート絶縁膜を形成した後、絶縁膜を通しゲートアレイパターンとパターンのアライメントを行いゲートアレイパターンの形成と同じ方法でソース/ドレインアレイパターンを形成し、ついで半導体層を積層することによりBGBC型のTFTの基本を形成できる。尚、ソース/ドレインはS/Dと称される場合もある。 When forming a bottom gate bottom contact type TFT, the transfer target of the gate array pattern is generally a substrate made of various films, glass, silicon or the like. After forming a gate insulating film on the gate array pattern formed on these substrates, the gate array pattern is aligned with the pattern through the insulating film, and then the source / drain array pattern is formed in the same manner as the gate array pattern is formed. A basic BGBC TFT can be formed by laminating semiconductor layers. The source / drain may be referred to as S / D.
 本発明の凸版反転印刷法のパターン転写方法に特に制限は無く、例えば平行平版方式で抜き版とブランケットを接触させる方法や、ロールに巻きつけたブランケットを平板の抜き版上を転がし接触させる方法、ロール側に抜き版を形成し平板のブランケット上を転がし接触させる方法、ブランケット及び抜き版をロール上に形成し両者を接触させる方法等適用できる。 There is no particular limitation on the pattern transfer method of the relief printing method of the present invention, for example, a method of bringing a blanket and a blanket into contact with each other by a parallel lithographic method, a method of rolling a blanket wound around a roll and bringing it into contact with a plate on a flat plate, A method of forming a punching plate on the roll side and rolling and bringing it into contact with a flat blanket, a method of forming a blanket and a punching plate on a roll and bringing them into contact with each other can be applied.
 図2に、本発明により形成できるトランジスタの例として、ボトムゲートボトムコンタクト型(BGBC)トランジスタ素子のモデル図を示す。本発明の方法で基板上(図2-9)に形成したゲートアレイパターン(図2-8)上にゲート絶縁膜(図2-7)を形成し、ついで、絶縁膜を通しゲートパターンとアライメントを行いS/Dアレイパターン(図2-5)を凸版反転印刷法で形成する。さらにS/D電極およびゲート絶縁膜上に半導体層(図2-6)を形成しトランジスタ基本構造を形成する。 FIG. 2 shows a model diagram of a bottom gate bottom contact (BGBC) transistor element as an example of a transistor that can be formed according to the present invention. A gate insulating film (FIG. 2-7) is formed on the gate array pattern (FIG. 2-8) formed on the substrate (FIG. 2-9) by the method of the present invention, and then aligned with the gate pattern through the insulating film. And an S / D array pattern (FIGS. 2-5) is formed by letterpress reverse printing. Further, a semiconductor layer (FIGS. 2-6) is formed on the S / D electrode and the gate insulating film to form a transistor basic structure.
 本発明のトランジスタ形成法によれば、形成できるトランジスタの構造に制限はなく、BGBCの他、トップゲートボトムコンタクトも含む横型トランジスタや縦型構造を有する各種トランジスタを形成できる。 According to the transistor formation method of the present invention, the structure of the transistor that can be formed is not limited, and besides BGBC, various transistors having a horizontal transistor and a vertical structure including a top gate bottom contact can be formed.
 本発明のトランジスタはゲート電極、データ線、信号線、S/Dパターン、画素電極等のトランジスタを構成する各電構成要素のうち少なくとも一部が凸版転反転印刷法で形成されていれば良い。 In the transistor of the present invention, it is sufficient that at least a part of each electric component constituting the transistor such as a gate electrode, a data line, a signal line, an S / D pattern, and a pixel electrode is formed by a letterpress inversion printing method.
 本発明で適用できるゲート絶縁膜材質および形成方法に特に制限は無く公知の材料、形成方法を用いることができる。適用できる材質として例えば、窒化珪素、酸化シリコン等の無機材料や、パリレン、ポリイミド、ポリビニルフェノール、ポリスチレン、エポキシ樹脂、ポリメチルメタクリレート、ポリアミド樹脂、フッ素樹脂、メラミン樹脂、シルセスキオキサン樹脂等の無機有機ハイブリット樹脂、シリコーン樹脂、ウレタン樹脂等の熱可塑樹脂や熱架橋、エネルギー線架橋樹脂が適用できる。また膜形成法として例えば、スピンコート、スリットダイコート、凸版反転印刷、スクリーン印刷、グラビア印刷、フレキソ印刷、インクジェット、真空蒸着、CVD等の公知の方法が持ちられる。 There are no particular limitations on the material and forming method of the gate insulating film applicable in the present invention, and known materials and forming methods can be used. Examples of applicable materials include inorganic materials such as silicon nitride and silicon oxide, and inorganic materials such as parylene, polyimide, polyvinylphenol, polystyrene, epoxy resin, polymethyl methacrylate, polyamide resin, fluorine resin, melamine resin, and silsesquioxane resin. Thermoplastic resins such as organic hybrid resins, silicone resins, and urethane resins, thermal crosslinking, and energy beam crosslinking resins can be applied. Examples of film forming methods include known methods such as spin coating, slit die coating, letterpress reverse printing, screen printing, gravure printing, flexographic printing, ink jet, vacuum deposition, and CVD.
 本発明で適用できる半導体材料及びその形成方法に制限は無い、半導体材料として例えば、シリコン、IGZOx、ZnO等の無機半導体;フタロシアニン誘導体、ポリフィリン誘導体、ナフタレンテトラカルボン酸ジイミド誘導体、フラーレン誘導体、ペンタセン、ペンタセントリイソプロピルシリル(TIPS)ペンタセン、フッ素化ペンタセン、フッ素化テトラセン、ペリレン、テトラセン、ピレン、フェナントレン、コロネン等の多環芳香族化合物およびその誘導体、ベンゾチエノチオフェン、ジナフトチエノチオフェン、オリゴチオフェン等のチオフェン誘導体、チアゾール誘導体、フラーレン誘導体、その他チオフェン、フェニレン、ビニレン等を組み合わせた各種低分子半導体および加熱等により有機半導体となる有機半導体前駆体;ポリチオフェン、ポリ(3-ヘキシルチオフェン)、PQT-12等のポリチオフェン系高分子、B10TTT、PB12TTT、PB14TTT等のチオフェン-チエノチオフェン共重合体、F8T2等のフルオレン系高分子、その他、パラフェニレンビニレン等のフェニレンビニレン系高分子、ポリトリアリールアミン等のアリールアミン系高分子等の各種高分子半導体;その他カーボンナノチューブ、フラーレン等の炭素化合物が適用できる。また半導体層の形成方法も公知の方法が適用できる。例えば、パーコート、スリットダイコート、スピンコート、インクジェット、フレキソ印刷、グラビア印刷、凸版反転印刷法、真空蒸着法等の公知の方法が適用できる。 The semiconductor material applicable in the present invention and the formation method thereof are not limited. Examples of the semiconductor material include inorganic semiconductors such as silicon, IGZOx, and ZnO; phthalocyanine derivatives, porphyrin derivatives, naphthalene tetracarboxylic acid diimide derivatives, fullerene derivatives, pentacene, pentacene. Polycyclic aromatic compounds such as triisopropylsilyl (TIPS) pentacene, fluorinated pentacene, fluorinated tetracene, perylene, tetracene, pyrene, phenanthrene, coronene and derivatives thereof, thiophenes such as benzothienothiophene, dinaphthothienothiophene, oligothiophene Derivatives, thiazole derivatives, fullerene derivatives, other low molecular semiconductors that combine thiophene, phenylene, vinylene, etc., and organic semiconductors that become organic semiconductors by heating, etc. Precursor: polythiophene, poly (3-hexylthiophene), polythiophene polymer such as PQT-12, thiophene-thienothiophene copolymer such as B10TTT, PB12TTT, PB14TTT, fluorene polymer such as F8T2, etc., paraphenylene Various polymer semiconductors such as phenylene vinylene polymers such as vinylene, arylamine polymers such as polytriarylamine, and other carbon compounds such as carbon nanotubes and fullerenes can be applied. A known method can be applied to the method for forming the semiconductor layer. For example, known methods such as percoat, slit die coat, spin coat, ink jet, flexographic printing, gravure printing, letterpress reverse printing, and vacuum deposition can be applied.
 本発明の導電性インキを用いた被転写体への導電性パターンの印刷は、凸版反転印刷法によって行われる。被転写体にも特に限定はなく、例えばプラスチック、シリコン、紙、ガラス、セラミックス、金属などが挙げられる。勿論、被転写体には、図2におけるS/D電極を設ける前の、被転写体上にゲート電極及びゲート絶縁膜がこの順に積層された積層体も、同様に包含される。この積層体の場合は、積層体のゲート絶縁膜上に、本発明の導電性インキにてS/D電極に相当する導電性パターンを設けることができる。 The printing of the conductive pattern on the transfer medium using the conductive ink of the present invention is performed by a letterpress reverse printing method. There are no particular limitations on the transfer target, and examples thereof include plastic, silicon, paper, glass, ceramics, and metal. Of course, the transfer body includes a stacked body in which the gate electrode and the gate insulating film are stacked in this order on the transfer body before the S / D electrode in FIG. 2 is provided. In the case of this laminate, a conductive pattern corresponding to the S / D electrode can be provided on the gate insulating film of the laminate with the conductive ink of the present invention.
 従来の一般的な導電性インキでは、バインダー成分を添加すると導電性パターンの導電性が低下する一方、バインダー成分を添加せずにインキを調整すると、インキの凝集性が低下し、凸版や被転写体に意図したように転写されない部分(転写残り)が生じて高精細な微細パターンの形成に困難があった。これに対して本発明の導電性インキによれば、上述のインキ組成を有することにより、抜き版のキスタッチによりブランケットの離型面よりインキが容易に離型するために完全転写を容易に実現することができ、線幅5μm以下の高精細な微細パターンを容易に形成することができる。 In conventional general conductive inks, the conductivity of the conductive pattern is reduced when a binder component is added. On the other hand, when the ink is adjusted without adding the binder component, the cohesiveness of the ink is reduced, and a relief printing plate or transferred image is obtained. There was a portion that was not transferred as intended (transfer residue), and it was difficult to form a fine pattern with high definition. On the other hand, according to the conductive ink of the present invention, by having the above-described ink composition, the ink is easily released from the release surface of the blanket by the kiss touch of the release plate, so that complete transfer is easily realized. And a fine pattern with a line width of 5 μm or less can be easily formed.
 被転写体に印刷された導電性パターンは、必要に応じて乾燥させた後80℃以上180℃以下といった、従来よりも低温で焼成することにより、導電層(導電性パターン)を形成することができる。このようにして形成された導電層は、有機半導体の各種導電部位の形成のほか、フレキシブル基板配線、電磁波シールド、透明電極(タッチパネル)等に利用することができる。 A conductive layer (conductive pattern) can be formed by drying the conductive pattern printed on the transfer medium as necessary and then baking it at a temperature lower than conventional temperatures, such as 80 ° C. or higher and 180 ° C. or lower. it can. The conductive layer thus formed can be used for flexible substrate wiring, electromagnetic wave shields, transparent electrodes (touch panels), etc., in addition to the formation of various conductive parts of organic semiconductors.
 本発明の導電性インキで本発明の薄膜トランジスタを製造する場合は、導電性が要求される部位、具体的には、ゲート電極、データ線、信号線、S/D電極、画素電極等の、トランジスタを構成する各電極構成要素のうち、少なくとも一部の要素が、上記した様な凸版反転印刷法で形成されていれば良い。 When the thin film transistor of the present invention is manufactured using the conductive ink of the present invention, a part having conductivity required, specifically, a transistor such as a gate electrode, a data line, a signal line, an S / D electrode, and a pixel electrode It is only necessary that at least some of the electrode constituent elements constituting the above are formed by the letterpress reverse printing method as described above.
 勿論、導電膜からなる導電性パターンのみならず、絶縁膜や半導体膜を、凸版反転印刷法にて形成してTFTとすることも可能である。絶縁膜や半導体膜を形成するためのインキとして、加熱乾燥型または加熱硬化型のインキを用いて、ウエットオンウエット塗布により、各塗膜を被転写体上に形成することで、それを導電膜、絶縁膜及び半導体膜を一度に加熱してTFTとすることも可能である。 Of course, not only a conductive pattern made of a conductive film, but also an insulating film or a semiconductor film can be formed by a letterpress reverse printing method to form a TFT. As a ink for forming an insulating film or a semiconductor film, a heat-drying type or a heat-curing type ink is used, and each coating film is formed on a transferred body by wet-on-wet coating. Alternatively, the insulating film and the semiconductor film can be heated at once to form a TFT.
 以下、実施例をもって本発明を具体的に説明する。また、特に断りのない場合、「%」は質量基準によるものとする。 Hereinafter, the present invention will be specifically described with reference to examples. Unless otherwise specified, “%” is based on mass.
 実施例および比較例に示す導電性インキの原料として、次に示すものを用いた。
・ファインスフェアSVE102:日本ペイント(株)製ナノ銀分散体(Mv約20nm、固形分約30%、エタノール分散体、約2%以下のナノ粒子分散剤を含む。)
・ファインスフェアSVW102:日本ペイント(株)製ナノ銀分散体(Mv約20nm、固形分約30%、水分散体、約2%以下のナノ粒子分散剤を含む)
・NASH-010:DIC(株)製ナノ銀分散体(Mv約15nm、固形分約70%、水分散体、3%以下のポリエチレンイミン系ポリマーを含有する分散剤を含む)
・CU387E2:DIC(株)製コアシェルナノ銅(コアAg、シェルCu)、固形分約45%、エタノール分散体、粒子径約35nm
・F-555:フッ素化(メタ)アクリル重合体からなる、DIC(株)製フッ素系表面エネルギー調整剤メガファック。
・BYK-333:ビッグケミー社製シリコン系表面エネルギー調整剤
・PC:プロピレンカーボネート
・IPAC:酢酸イソプロピル
・IPA:イソプロピルアルコール
・KF96-1cs:信越化学工業(株)製シリコーンオイル
・PVA:ポリビニルアルコール
The following were used as raw materials for the conductive inks shown in the Examples and Comparative Examples.
Finesphere SVE102: Nano silver dispersion manufactured by Nippon Paint Co., Ltd. (Mv: about 20 nm, solid content: about 30%, ethanol dispersion, containing about 2% or less nanoparticle dispersant)
Finesphere SVW102: Nano silver dispersion manufactured by Nippon Paint Co., Ltd. (Mv: about 20 nm, solid content: about 30%, water dispersion, containing about 2% or less nanoparticle dispersant)
NASH-010: Nano silver dispersion manufactured by DIC Corporation (Mv: about 15 nm, solid content: about 70%, aqueous dispersion, including dispersant containing 3% or less polyethyleneimine polymer)
CU387E2: Core shell nano copper (core Ag, shell Cu) manufactured by DIC Corporation, solid content of about 45%, ethanol dispersion, particle size of about 35 nm
F-555: Fluoro-based surface energy regulator Megafac manufactured by DIC Corporation, comprising a fluorinated (meth) acrylic polymer.
BYK-333: Silicone surface energy regulator manufactured by Big Chemie, Inc. PC: Propylene carbonate, IPAC: Isopropyl acetate, IPA: Isopropyl alcohol, KF96-1cs: Silicone oil manufactured by Shin-Etsu Chemical Co., Ltd., PVA: Polyvinyl alcohol
 NASH-010を21%、F-555を0.5%、BYK333を0.1%、エタノールを47.6%、炭酸ジメチル(ブランケット膨潤性液体)を30%、グリセリンを0.8%配合することにより、水/全液媒体の比が約7.5%の凸版反転印刷用インキを調製した。インキ表面エネルギーは21mN/m以下であった。ブランケット膨潤性液体の、水を含めた液媒体中の含有率は、質量基準で20~50%の範囲にあった。 21% NASH-010, 0.5% F-555, 0.1% BYK333, 47.6% ethanol, 30% dimethyl carbonate (blanket swellable liquid), 0.8% glycerin Thus, a relief printing ink having a water / total liquid medium ratio of about 7.5% was prepared. The ink surface energy was 21 mN / m or less. The content of the blanket swellable liquid in the liquid medium including water was in the range of 20 to 50% on a mass basis.
 線幅約15μmの格子状の凹部を有するガラス製の抜き版を用い凸版反転印刷法で、以下に示す手順にて線幅約15μmの格子状の導電性パターンをPC(ポリカーボネート)フィルム上に作製した。雰囲気温度25℃、相対湿度48%の雰囲気で、ブランケットの離型面となるPDMS平滑面にバーコーターによりウェット膜厚が約0.3μmになるようインキを均一に塗布し、約1分間放置(待機時間)自然乾燥させた後、抜き版となるネガパターンのガラス凸版をブランケット上のインキ塗布面へ軽くタッチし、次いで離して不要部分のインキを除去し、線幅約15μmの格子状画線をブランケット上に形成した。 A grid-like conductive pattern with a line width of about 15 μm is produced on a PC (polycarbonate) film by the letterpress reverse printing method using a glass punch having a grid-like recess with a line width of about 15 μm. did. In an atmosphere at an ambient temperature of 25 ° C. and a relative humidity of 48%, the ink is uniformly applied to the PDMS smooth surface, which is the release surface of the blanket, with a bar coater so that the wet film thickness is about 0.3 μm, and left for about 1 minute Waiting time) After air-drying, lightly touch the negative-patterned glass relief plate on the blanket ink application surface and then release to remove unnecessary ink, and a grid-like image line with a line width of about 15 μm Was formed on the blanket.
 抜き版によるインキの切れは良好でシャープなエッジを有する画線を形成できた。次いで放置の時間幅(レンジ)をパターン抜き直後、30秒後、1分後、3分後、5分後、10分後と時間を変え、ブランケット上に形成されたインキパターンに被転写体となるPCフィルム上を軽く押し付け該パターンを完全転写した。ブランケット上にパターン形成直後から10分後全てにおいてパターンは完全にPCフィルムに転写し、ブランケット上への残存は認められなかった。別途PCフィルム上にベタで転写し形成したインキ薄膜を、粒子間溶融結合させるため、150℃で5分焼成し、比抵抗を測定したところ、5.3×10-6Ω・cmであった。 The ink was cut off by the punching plate, and an image line having a sharp edge was formed. Next, the time width (range) of the standing was changed immediately after removing the pattern, 30 seconds, 1 minute, 3 minutes, 5 minutes, 10 minutes, and the ink pattern formed on the blanket was transferred to the transfer object. The PC film was lightly pressed to completely transfer the pattern. The pattern was completely transferred to the PC film 10 minutes after the pattern was formed on the blanket, and no residue was observed on the blanket. Separately, the ink thin film formed by solid transfer on the PC film was baked at 150 ° C. for 5 minutes to melt-bond between particles, and the specific resistance was measured to be 5.3 × 10 −6 Ω · cm. .
 NASH-010を35%、F-555を0.6%、BYK333を0.1%、エタノールを22.5%、炭酸ジメチルを31%、メチルジグライムを10%、グリセリンを0.8%配合することにより、水/全液媒体の比が約16%の凸版反転印刷用インキを調製した。インキ表面エネルギーは21mN/m以下であった。ブランケット膨潤性液体の、水を含めた液媒体中の含有率は、質量基準で20~50%の範囲にあった。 Contains 35% NASH-010, 0.6% F-555, 0.1% BYK333, 22.5% ethanol, 31% dimethyl carbonate, 10% methyldiglyme, and 0.8% glycerin Thus, an ink for letterpress reverse printing having a water / total liquid medium ratio of about 16% was prepared. The ink surface energy was 21 mN / m or less. The content of the blanket swellable liquid in the liquid medium including water was in the range of 20 to 50% on a mass basis.
 約30秒間UVオゾン処理を行ったブランケットの離型面となるPDMSゴム平滑面に、雰囲気温度25℃、相対湿度48%の雰囲気でバーコーターによりウェット膜厚が約0.3μmになるようインキを均一に塗布した。約30秒間ドライエアーの微風をインキ塗布面に吹きかけ乾燥させた以外実施例1と同じ方法で線幅約15μmの格子パターンを形成した。 Ink is applied to the smooth surface of the PDMS rubber, which is the release surface of the blanket that has been subjected to UV ozone treatment for about 30 seconds, so that the wet film thickness is about 0.3 μm with a bar coater in an atmosphere of 25 ° C. and 48% relative humidity It was applied evenly. A grid pattern having a line width of about 15 μm was formed in the same manner as in Example 1 except that a fine breeze of dry air was blown onto the ink-coated surface for about 30 seconds and dried.
 抜き版によるインキの切れは良好でシャープなエッジを有する画線を形成できた。次いで放置の時間幅(レンジ)をパターン抜き直後、30秒後、1分後、3分後、5分後、10分後と時間を変え、ブランケット上に形成されたインキパターンに被転写体となるPCフィルムを軽く押し付け該パターンを完全転写した。直後から10分後全てにおいてパターンは完全にPCフィルムに転写し、ブランケット上への残存は認められなかった。粒子間溶融結合させるため、別途ガラス上にベタで転写し形成したインキ薄膜を150℃で3分焼成し、比抵抗を測定したところ、4.6×10-6Ω・cmであった。 The ink was cut off by the punching plate, and an image line having a sharp edge was formed. Next, the time width (range) of the standing was changed immediately after removing the pattern, 30 seconds, 1 minute, 3 minutes, 5 minutes, 10 minutes, and the ink pattern formed on the blanket was transferred to the transfer object. The PC film was lightly pressed to completely transfer the pattern. The pattern was completely transferred to the PC film in all 10 minutes immediately after that, and no residue was observed on the blanket. Order to intergranular fusion bonding, separately ink film was transferred to form a solid and fired for 3 minutes at 0.99 ° C. on glass was measured for specific resistance was 4.6 × 10 -6 Ω · cm.
 NASH-010を21%、F-555を1.2%、エタノールを27%、IPAを10%、炭酸ジメチル(ブランケット膨潤性液体)を30%、メチルモノグライムを10%(ブランケット膨潤性液体)、グリセリンを0.8%配合することにより、水/全液媒体の比が約10%の凸版反転印刷用インキを調製した。インキの表面エネルギーは21mN/m以下であった。ブランケット膨潤性液体の、水を含めた液媒体中の含有率は、質量基準で20~50%の範囲にあった。 NASH-010 21%, F-555 1.2%, ethanol 27%, IPA 10%, dimethyl carbonate (blanket swellable liquid) 30%, methyl monoglyme 10% (blanket swellable liquid) By adding 0.8% of glycerin, an ink for letterpress reverse printing having a water / total liquid medium ratio of about 10% was prepared. The surface energy of the ink was 21 mN / m or less. The content of the blanket swellable liquid in the liquid medium including water was in the range of 20 to 50% on a mass basis.
 このインキを用いて、実施例1と同じ方法で線幅約15μmの格子状パターンをブランケット上に形成した。抜き版によるインキの切れは良好でシャープなエッジを有する画線を形成できた。次いで放置の時間幅(レンジ)をパターン抜き直後、30秒後、1分後、3分後、5分後、10分後と時間を変え、ブランケット上に形成されたインキパターンに被転写体となるPCフィルム上を軽く押し付け該パターンを完全転写した。ブランケット上にパターン形成直後から10分後全てにおいてパターンは完全にPCフィルムに転写し、ブランケット上への残存は認められなかった。粒子間溶融結合させるため、別途PCフィルム上にベタで転写し形成したインキ薄膜を150℃で5分焼成し、比抵抗を測定したところ、8.3×10-6Ω・cmであった。 Using this ink, a grid pattern having a line width of about 15 μm was formed on the blanket in the same manner as in Example 1. The ink was cut off by the punching plate, and an image line having a sharp edge was formed. Next, the time width (range) of the standing was changed immediately after removing the pattern, 30 seconds, 1 minute, 3 minutes, 5 minutes, 10 minutes, and the ink pattern formed on the blanket was transferred to the transfer object. The PC film was lightly pressed to completely transfer the pattern. The pattern was completely transferred to the PC film 10 minutes after the pattern was formed on the blanket, and no residue was observed on the blanket. Order to intergranular fusion bonding, separately ink film was transferred to form a solid and fired 5 minutes at 0.99 ° C. on a PC film was measured for specific resistance was 8.3 × 10 -6 Ω · cm.
比較例1
 NASH-010(固形分約70%水分散体)を45%、F-555を1%、BYK333を0.2%、IPAを19%、炭酸ジメチルを14%、メチルジグライムを5%、グリセリン0.8%、水を15%配合することにより、水/全液媒体の比が約43%の凸版反転印刷用インキを調製した。
Comparative Example 1
NASH-010 (solid dispersion about 70% aqueous dispersion) 45%, F-555 1%, BYK333 0.2%, IPA 19%, dimethyl carbonate 14%, methyldiglyme 5%, glycerin By blending 0.8% and 15% water, an ink for letterpress reverse printing having a water / total liquid medium ratio of about 43% was prepared.
 バーコーターによるブランケットのPDMSゴム離型面へのインキング時にブランケット上に微小なハジキが多数発生した。実施例2と同じ方法で乾燥空気の微風を用い5分以上インキ面の乾燥を行ったが、乾燥ムラが激しく均一なインキ乾燥膜を得ることが困難であった。さらに実施例2と同様の方法で抜き版を用いてブランケット上に形成した導電性インキのパターンは画線にニジミや線幅の縮小が顕著であった。 A lot of fine repellents were generated on the blanket when inking the blanket onto the PDMS rubber release surface by the bar coater. The ink surface was dried for 5 minutes or more by using the same dry air as in Example 2, but it was difficult to obtain a uniform ink dry film with severe drying unevenness. Further, the pattern of the conductive ink formed on the blanket using the punching plate in the same manner as in Example 2 was noticeably marked on the image line and the line width was significantly reduced.
 実施例1と比較例1との対比からわかる通り、本発明で規定したのより多量に水を含有する比較例1の凸版反転印刷用インキは、インキ膜の乾燥性が極度に低下し、長時間の待機時間が必要となり、印刷タクトタイムの短縮及び撥液性のブランケット離型面での微細なハジキの抑制が困難であることは明白である。 As can be seen from the comparison between Example 1 and Comparative Example 1, the ink for letterpress reversal printing of Comparative Example 1 containing a larger amount of water than specified in the present invention has a drastic decrease in the drying property of the ink film. Clearly, it is difficult to shorten the printing tact time and suppress fine repellency on the liquid-repellent blanket release surface.
 また、実施例1と実施例2との対比からわかる通り、強制乾燥を行った実施例2は、強制乾燥を行わない実施例1と同様に、全転写できる許容時間範囲(レンジ)が広く、より印刷タクトタイムを短くし得ることがわかる。更に、実施例1と実施例3との対比からわかる通り、フッ素系表面エネルギー調整剤のみを用いた実施例3に比べて、フッ素系表面エネルギー調整剤及びシリコーン系表面エネルギー調整剤を併用した実施例1は、より少ない表面エネルギー調整剤の添加量で、ブランケットの離型面でのインキ微細なハジキを抑制することができ、より導電性をより高められことがわかる。 Further, as can be seen from the comparison between Example 1 and Example 2, Example 2 in which forced drying was performed has a wide allowable time range (range) in which all transfer is possible, as in Example 1 in which forced drying is not performed. It can be seen that the printing tact time can be shortened. Furthermore, as can be seen from the comparison between Example 1 and Example 3, compared with Example 3 using only the fluorine-based surface energy adjusting agent, the combined use of the fluorine-based surface energy adjusting agent and the silicone-based surface energy adjusting agent. It can be seen that Example 1 can suppress fine ink repellency on the release surface of the blanket and can further increase the conductivity with a smaller amount of the surface energy adjusting agent added.
 ファインスフェアSVE102を38%、ファインスフェアSVW102を10%、F-555を1.2%、エタノールを30.3%、IPAC(ブランケット膨潤性液体)を20%、PCを0.5%混合することにより水/全液媒体の比が約7.7%の凸版反転印刷用インキを調製した。インキ表面エネルギーは21mN/m以下であった。ブランケット膨潤性液体の、水を含めた液媒体中の含有率は、質量基準で20~50%の範囲にあった。約30秒間UVオゾン処理を行ったブランケットの離型面となるPDMSゴム平滑面に、雰囲気温度25℃、相対湿度48%の雰囲気でバーコーターによりウェット膜厚が約0.3μmになるよう該インキを均一に塗布し、実施例1と同じ方法で線幅約15μmの格子パターンをブランケット上に形成した。 Mix 38% of Finesphere SVE102, 10% of Finesphere SVW102, 1.2% of F-555, 30.3% of ethanol, 20% of IPAC (Blanket Swelling Liquid), and 0.5% of PC. In this way, an ink for letterpress reversal printing having a water / total liquid medium ratio of about 7.7% was prepared. The ink surface energy was 21 mN / m or less. The content of the blanket swellable liquid in the liquid medium including water was in the range of 20 to 50% on a mass basis. The ink is applied to the smooth surface of the PDMS rubber, which is the release surface of the blanket that has been subjected to UV ozone treatment for about 30 seconds, so that the wet film thickness is about 0.3 μm by a bar coater in an atmosphere of 25 ° C. and 48% relative humidity Was applied uniformly, and a lattice pattern having a line width of about 15 μm was formed on the blanket in the same manner as in Example 1.
 抜き版によるインキの切れは良好で、シャープなエッジを有する画線を得た。次いで放置の時間幅(レンジ)をパターン形成直後、30秒後、1分後、3分後、5分後、10分後と時間を変え、ブランケット上に形成されたインキパターンに被転写体となるPCフィルムを軽く押し付け該パターンの転写を行った。ブランケット上にパターン形成直後から10分後全てにおいてパターンは完全にPCフィルムに転写し、ブランケット上への残存は認められなかった。粒子間溶融結合させるため、該インキをPCフィルム上にベタで転写し形成したインキ薄膜を170℃で30分焼成した後、比抵抗を測定したところ、7.9×10-6Ω・cmであった。 The ink was completely cut by the punching plate, and an image line having a sharp edge was obtained. Next, the time width (range) of the standing was changed immediately after pattern formation, 30 seconds later, 1 minute later, 3 minutes later, 5 minutes later, and 10 minutes later, and the ink pattern formed on the blanket was transferred to the object to be transferred. The PC film was pressed lightly to transfer the pattern. The pattern was completely transferred to the PC film 10 minutes after the pattern was formed on the blanket, and no residue was observed on the blanket. In order to melt bond between particles, the ink thin film formed by transferring the ink onto a PC film was baked at 170 ° C. for 30 minutes, and then the specific resistance was measured. As a result, it was 7.9 × 10 −6 Ω · cm. there were.
比較例2
 ファインスフェアSVE102を48%、F-555を1.2%、エタノールを30.1%、IPACを20%、PCを0.5%、離型剤として、KF96-1csを0.2%配合することにより、水を含有しない導電性インキを調製した。
Comparative Example 2
48% Finesphere SVE102, 1.2% F-555, 30.1% ethanol, 20% IPAC, 0.5% PC, 0.2% KF96-1cs as a release agent Thus, a conductive ink containing no water was prepared.
 本インキを用い実施例1と同じ方法で線幅約15μmの格子パターンをブランケット上に形成した。抜き版によるインキの切れは良好で、シャープなエッジを有する画線を得た。次いで放置の時間幅(レンジ)をパターン抜き直後、30秒後、1分後、3分後、5分後、10分後と時間を変え、ブランケット上に形成されたインキパターンに被転写体となるPCフィルムを軽く押し付け該パターンの転写を試みた。直後から1分まではパターンはほぼ完全にPCフィルム上に転写したが3分後には一部ブランケットに残存し、5分後以降では全く転写しなくなった。該インキをPCフィルム上にベタで転写し形成したインキ薄膜を180℃で30分焼成した後、比抵抗を測定したところ、9.6×10-6Ω・cmであった。 Using this ink, a lattice pattern having a line width of about 15 μm was formed on the blanket in the same manner as in Example 1. The ink was completely cut by the punching plate, and an image line having a sharp edge was obtained. Next, the time width (range) of the standing was changed immediately after removing the pattern, 30 seconds, 1 minute, 3 minutes, 5 minutes, 10 minutes, and the ink pattern formed on the blanket was transferred to the transfer object. The PC film was lightly pressed to try to transfer the pattern. Immediately after that, the pattern was almost completely transferred onto the PC film until 1 minute, but after 3 minutes, part of the pattern remained on the blanket, and after 5 minutes, it was not transferred at all. After the ink film with the ink is formed by transferring a solid onto the PC film was baked for 30 minutes at 180 ° C., was measured resistivity was 9.6 × 10 -6 Ω · cm.
比較例3
 ナノ銀分散体としてファインスフェアSVE102(固形分約30%)を48%、メガファックF-555(固形分約30%)を1.1%、エタノールを20.2%、IPACを25%(ブランケット膨潤性液体)、PCを0.5%、離型剤として、KF96-1csを0.2%、バインダー樹脂としてPVAを全インキ量に対し5%配合することにより、比較例3に係る水を含有しない導電性インキを製造した。
Comparative Example 3
48% fine sphere SVE102 (solid content approx. 30%), 1.1% megafac F-555 (solid content approx. 30%), 20.2% ethanol, 25% IPAC (blanket) Swellable liquid), 0.5% PC, 0.2% KF96-1cs as a release agent, and 5% PVA as a binder resin with respect to the total amount of ink, thereby adding water according to Comparative Example 3 A conductive ink not containing was produced.
 実施例1と同じ方法で線幅約15μmの格子パターンをブランケット上に形成した。抜き版によるインキの切れはやや悪く画線のエッジに多くの微細なバリが認められた。次いで放置の時間幅(レンジ)をパターン抜き直後、30秒後、1分後、3分後、5分後、10分後と時間を変え、ブランケット上に形成されたインキパターンを被転写基板となるガラス板を押し付け転写した。直後から3分まではパターンはほぼ完全に被転写体となるPCフィルム上に転写したが5分後には一部ブランケットに残存し、10分以上では全く転写しなかった。導電性は該インキをPCフィルム上にベタで転写し形成したインキ薄膜を190℃で30分焼成した後比抵抗を測定したところ、2.6×10-2Ω・cmであった。 A grid pattern having a line width of about 15 μm was formed on the blanket in the same manner as in Example 1. The ink breakage due to the punching plate was slightly worse, and many fine burrs were observed at the edge of the image line. Next, the time width (range) of the standing was changed immediately after removing the pattern, 30 seconds, 1 minute, 3 minutes, 5 minutes, 10 minutes, and the ink pattern formed on the blanket was changed to the substrate to be transferred. The resulting glass plate was pressed and transferred. Immediately after that, the pattern was transferred almost completely onto the PC film to be transferred, but after 5 minutes, part of the pattern remained on the blanket and was not transferred at all after 10 minutes. The conductivity was 2.6 × 10 −2 Ω · cm when the ink thin film formed by solidly transferring the ink on a PC film was baked at 190 ° C. for 30 minutes and the specific resistance was measured.
 実施例4と比較例2との対比からわかる通り、水を実質的に含有しない比較例2の導電性インキは、全転写できる許容時間範囲(レンジ)が狭いばかりか、高導電性の導電性パターンを得るのに、高温かつ長時間の焼成が必要である。また比較例2と比較例3との対比から、水を全く含有せず、かつバインダー成分を含有する比較例3の導電性インキは、全転写できる許容時間範囲(レンジ)が狭いことが分かる。 As can be seen from the comparison between Example 4 and Comparative Example 2, the conductive ink of Comparative Example 2, which does not substantially contain water, has not only a narrow allowable time range (range) that can be completely transferred, but also has high conductivity. In order to obtain a pattern, baking at a high temperature for a long time is necessary. Further, it can be seen from the comparison between Comparative Example 2 and Comparative Example 3 that the conductive ink of Comparative Example 3 containing no water and containing a binder component has a narrow allowable time range (range) in which the entire transfer can be performed.
 CU-387E2(固形分約45%エタノール分散体)を38%、F-555を1%、エタノールを33.9%、炭酸ジメチルを23%、水を3%、グリセリンを1%、TEAを0.1%配合することにより、水/液媒体比が約3.7%の凸版反転印刷用インキを調製した。調製したインキ表面エネルギーは21mN/m以下であった。 CU-387E2 (ethanol dispersion of about 45% solid content) 38%, F-555 1%, ethanol 33.9%, dimethyl carbonate 23%, water 3%, glycerin 1%, TEA 0 By mixing 1%, a relief printing ink having a water / liquid medium ratio of about 3.7% was prepared. The ink surface energy prepared was 21 mN / m or less.
 実施例1と同じ方法で線幅約15μmの格子状の導電パターンをブランケットのPDMSゴムからなる離型面上に形成した。抜き版によるインキの切れは良好で、シャープなエッジを有する格子状パターンを得た。ブランケット上へのパターン形成後のレンジをパターン抜き直後、30秒後、1分後、3分後、5分後、10分後と時間を変え、ブランケット上に形成されたインキパターンに被転写体となるPCフィルムを軽く押し付け転写した。直後から10分後全てにおいてパターンは完全に被転写体に転写し、ブランケット上への残存は認められなかった。 A grid-like conductive pattern having a line width of about 15 μm was formed on the release surface made of blanket PDMS rubber by the same method as in Example 1. The ink was completely cut by the punching plate, and a grid pattern having sharp edges was obtained. The range after pattern formation on the blanket is changed immediately after pattern removal, 30 seconds, 1 minute, 3 minutes, 5 minutes, 10 minutes, and the ink pattern formed on the blanket to be transferred The PC film to be transferred was lightly pressed and transferred. The pattern was completely transferred to the transfer medium 10 minutes after the start, and no residue was observed on the blanket.
 形成したパターンを空気雰囲気で150℃、5分のプレ焼成を行った後、ウシオ電機製のキセノンフラッシュランプを用い空気中でパルス幅0.6ms、電圧650V、推定照射エネルギー10J/mで焼成を行い膜厚約170nmの銅焼成膜を得た。粒子間溶融結合され得られた膜の導電性は約7×10-6Ωcmであった。 The formed pattern was pre-fired in an air atmosphere at 150 ° C. for 5 minutes, and then fired in air using a xenon flash lamp manufactured by USHIO INC. With a pulse width of 0.6 ms, a voltage of 650 V, and an estimated irradiation energy of 10 J / m 2 . To obtain a copper fired film having a thickness of about 170 nm. The conductivity of the film obtained by fusion bonding between particles was about 7 × 10 −6 Ωcm.
(有機トランジスタアレイの作成)
 図3に示すボトムゲートボトムコンタクト(BGBC)構造を有するTFTアレイを以下の手順で作成した。
(Creation of organic transistor array)
A TFT array having the bottom gate bottom contact (BGBC) structure shown in FIG. 3 was prepared by the following procedure.
1.ゲート電極の形成
 実施例1で使用した導電性インキを用い、ブランケットの離型面となるPDMSゴム平滑面にバーコーターにより均一なインキ膜を形成し、適度に乾燥させた後、ゲート電極パターンのネガパターンの凸部を形成したガラス製抜き版に軽く押し当て、抜き版とブランケットを離すことによりインキ膜の不要な部分を除去した。ブランケット上に残存したゲート電極パターンにポリカーボネート(PC)フィルムを軽く押し付け、該ゲート電極アレイパターンをPCフィルム上に転写した。粒子間溶融結合させるため、次いで該PCフィルムをオーブン中で150℃、5分焼成し、PCフィルム上にゲート電極パターンを形成した。
1. Formation of Gate Electrode Using the conductive ink used in Example 1, a uniform ink film was formed by a bar coater on the smooth surface of the PDMS rubber that was the release surface of the blanket, and after drying appropriately, the gate electrode pattern An unnecessary portion of the ink film was removed by lightly pressing against a glass punched plate on which a convex portion of the negative pattern was formed, and releasing the punched plate and the blanket. A polycarbonate (PC) film was lightly pressed against the gate electrode pattern remaining on the blanket, and the gate electrode array pattern was transferred onto the PC film. In order to melt bond between particles, the PC film was then baked in an oven at 150 ° C. for 5 minutes to form a gate electrode pattern on the PC film.
2.絶縁膜の形成
 アクリロイル基を有するシルセスキオキサン化合物とビスマレイミドと多官能アクリレートと粘度調整用の有機溶剤を主成分とするUV硬化型のゲート絶縁膜用インキを用い、スピンコート法により上記1で作成したゲート電極アレイパターン上に塗布し、次いで、高圧水銀ランプを光源とするUV硬化装置を用い、照度200mW/cmで積算光量約1800mJ/cmで硬化させ膜厚約1μmのゲート絶縁膜を形成した。これによりゲート電極アレイ上ゲート絶縁膜を形成したPC基板を調製した。
2. Formation of Insulating Film Using a UV-curable ink for a gate insulating film mainly composed of a silsesquioxane compound having an acryloyl group, a bismaleimide, a polyfunctional acrylate, and an organic solvent for viscosity adjustment, the above-mentioned 1 The gate insulation is applied on the gate electrode array pattern created in step 1 and then cured with a UV curing device using a high-pressure mercury lamp as the light source with an illuminance of 200 mW / cm 2 and an integrated light amount of about 1800 mJ / cm 2. A film was formed. As a result, a PC substrate on which a gate insulating film on the gate electrode array was formed was prepared.
3.ソース/ドレイン電極の形成
 透明フィルムにパターン離型面となる厚さ約0.1mmのPDMSゴム平滑面を形成したフィルム基板透明ブランケット上に、スリットコーターにより、実施例1で調製した導電インキを用い均一なインキ薄膜を形成した。適度に乾燥させた後、TFTのソース/ドレイン電極アレイパターンのネガパターンを凸部とするガラス抜き版を用いて、ゲート電極アレイの形成と同じ方法でブランケット上に該ソース・ドレイン電極アレイパターンを形成した。アライナーを用い先の2の工程で形成したPCフィルム基板のゲート電極アレイパターンと該ソース/ドレイン電極アレイパターンの該当部分がゲート絶縁膜を通し上下に重なるよう位置調整を行い、両者を軽く押しあてソース/ドレイン電極アレイパターンの該当部位が絶縁膜を介してゲート電極パターン該当部位に重なるようにゲート電極アレイとゲート絶縁膜が形成されたPCフィルム基板上に全転写した。粒子間溶融結合させるため、次いでオーブン中で150℃、5分焼成し、PCフィルム上に厚さ約0.15μmのゲート電極アレイ、厚さ約1μmの絶縁膜、厚さ約0.15μmのソース/ドレイン電極アレイがそれぞれ形成されたTFT電極パターンアレイを作成した。
3. Formation of Source / Drain Electrode The conductive ink prepared in Example 1 was used with a slit coater on a film substrate transparent blanket on which a PDMS rubber smooth surface having a thickness of about 0.1 mm as a pattern release surface was formed on a transparent film. A uniform ink film was formed. After moderate drying, the source / drain electrode array pattern is formed on the blanket in the same manner as the formation of the gate electrode array using a glass blank plate with the negative pattern of the TFT source / drain electrode array pattern as a convex portion. Formed. Use the aligner to adjust the position so that the gate electrode array pattern of the PC film substrate formed in the previous two steps and the corresponding part of the source / drain electrode array pattern overlap each other through the gate insulating film, and lightly press the two together The entire region was transferred onto the PC film substrate on which the gate electrode array and the gate insulating film were formed so that the corresponding portion of the source / drain electrode array pattern overlapped the corresponding portion of the gate electrode pattern through the insulating film. In order to melt-bond between particles, the substrate is then baked in an oven at 150 ° C. for 5 minutes, a gate electrode array having a thickness of about 0.15 μm, an insulating film having a thickness of about 1 μm, and a source having a thickness of about 0.15 μm on a PC film. / TFT electrode pattern arrays each having a drain electrode array were prepared.
4.有機半導体膜の形成
 ポリヘキシルチオフェン(P3HT)を有機半導体とする凸版反転印刷用半導体インキを用いて、前記3のソース/ドレイン電極の形成と同じ方法で、ソース/ドレイン電極間にまたがり半導体インキ層の下部がソース電極、ゲート絶縁膜、ゲート電極に接触するボトムゲートボトムコンタクト型(BGBC)のTFTアレイを調製した。図3に本製造法で形成したチャネル長約5μm、配線幅約5μmの200ppiのBGBC型の有機トランジスタアレイを示す。
4). Formation of organic semiconductor film Semiconductor ink layer straddling between source / drain electrodes in the same manner as the formation of the source / drain electrodes in 3 above, using semiconductor ink for letterpress reverse printing using polyhexylthiophene (P3HT) as an organic semiconductor A bottom-gate bottom-contact (BGBC) TFT array was prepared in which the lower part of the TFT contacts the source electrode, the gate insulating film, and the gate electrode. FIG. 3 shows a 200 ppi BGBC type organic transistor array having a channel length of about 5 μm and a wiring width of about 5 μm formed by this manufacturing method.
トランジスタ特性の評価
 前記1~4で作成した素子は、グローブボックス中で、150℃、約5分の熱処理を行った後に、該素子の半導体パラメーター測定装置(ケースレー社4200)を用いてグローボックス中、遮光下で半導体特性を測定したところ、-40Vのドレイン電圧負荷での電界効果移動度が約0.04cm/Vs、ON/OFF(ドレイン電流最大値/最小値)が約1×10、閾値電圧(Vth)が-5Vであった。
Evaluation of transistor characteristics The elements prepared in the above 1 to 4 were subjected to heat treatment at 150 ° C. for about 5 minutes in a glove box, and then used in a glow box using a semiconductor parameter measuring apparatus (Keithley 4200). When semiconductor characteristics were measured under light shielding, the field-effect mobility at a drain voltage load of −40 V was about 0.04 cm 2 / Vs, and the ON / OFF (maximum drain current value / minimum value) was about 1 × 10 8. The threshold voltage (Vth) was −5V.
 本発明の反転印刷用導電性インキを用いて形成した導電膜を含む、絶縁膜及び半導体膜を含めた全てトランジスタ構造を印刷方式で製造した薄膜トランジスタが、トランジスタとして有効に機能することを確認した。 It was confirmed that the thin film transistor in which the transistor structure including the insulating film and the semiconductor film including the conductive film formed using the conductive ink for reversal printing of the present invention was manufactured by the printing method effectively functions as a transistor.
 本発明の導電性インキは、凸版反転印刷法により微細で精密な印刷パターンを被印刷基材上に形成するのに最適であり、有機半導体電極、配線、フレキシブル基板配線、電磁波シールド、透明電極(タッチパネル)等の製造に利用することができる。 The conductive ink of the present invention is optimal for forming a fine and precise printed pattern on a substrate to be printed by a letterpress reverse printing method, and includes an organic semiconductor electrode, wiring, flexible substrate wiring, electromagnetic wave shield, transparent electrode ( It can be used for manufacturing a touch panel).
1 導電性インキに基づくインキ塗膜
2 ブランケット
3 抜き版(凸版)
4 被転写体
5 ソース/ドレイン電極(導電膜)
6 半導体膜
7 ゲート絶縁膜
8 ゲート電極(導電膜)
9 被転写体
1 Ink coating film based on conductive ink 2 Blanket 3 Extraction plate (Letter)
4 Transfer object 5 Source / drain electrode (conductive film)
6 Semiconductor film 7 Gate insulating film 8 Gate electrode (conductive film)
9 Transferee

Claims (6)

  1.  凸版反転印刷法によって導電性パターンを形成するためのバインダー成分を含まない導電性インキであって、体積平均粒子径(Mv)が2~250nmの導電性粒子が、フッ素系表面エネルギー調整剤及び/またはシリコン系表面エネルギー調整剤を含有し且つ全液媒体に対し0.5~40質量%の水を必須成分として含有する有機溶剤からなる液媒体中に分散していることを特徴とする、粒子間溶融結合により導電性を発現する凸版反転印刷用インキ。 A conductive ink which does not contain a binder component for forming a conductive pattern by a letterpress reverse printing method and has a volume average particle diameter (Mv) of 2 to 250 nm, is a fluorine-based surface energy adjusting agent and / or Or particles dispersed in a liquid medium comprising an organic solvent containing a silicon-based surface energy adjusting agent and containing 0.5 to 40% by mass of water as an essential component with respect to the total liquid medium Ink for letterpress reversal printing that develops electrical conductivity by hot melt bonding.
  2.  前記導電性粒子が、銀及び/又は銅である請求項1記載の凸版反転印刷用導電性インキ。 The conductive ink for letterpress reverse printing according to claim 1, wherein the conductive particles are silver and / or copper.
  3. フッ素系表面エネルギー調整剤及びシリコン系表面エネルギー調整剤を含有する請求項1または2記載の凸版反転印刷用導電性インキ。 The conductive ink for letterpress reverse printing according to claim 1 or 2, comprising a fluorine-based surface energy adjusting agent and a silicon-based surface energy adjusting agent.
  4. 前記導電性粒子の粒子間溶融結合が80℃以上180℃未満の温度で起こることを特徴とする請求項1~3のいずれか一項に記載の凸版反転印刷用導電性インキ。 The conductive ink for letterpress reverse printing according to any one of claims 1 to 3, wherein the melt bonding between particles of the conductive particles occurs at a temperature of 80 ° C or higher and lower than 180 ° C.
  5.  請求項1~4のいずれか一項に記載の凸版反転印刷用導電性インキを用い、凸版反転印刷法により導電性パターンを形成する工程を含むことを特徴とする薄膜トランジスタの製造方法。 5. A method for producing a thin film transistor, comprising a step of forming a conductive pattern by a letterpress reversal printing method using the conductive ink for letterpress reversal printing according to any one of claims 1 to 4.
  6.  凸版反転印刷法によって導電性パターンを形成するためのバインダー成分を含まない導電性インキであって、体積平均粒子径(Mv)が2~250nmの導電性粒子が、フッ素系表面エネルギー調整剤及び/またはシリコン系表面エネルギー調整剤を含有し且つ全液媒体に対し0.5~40質量%の水を必須成分として含有する有機溶剤からなる液媒体中に分散していることを特徴とする粒子間溶融結合により導電性を発現する凸版反転印刷用インキを用いて、凸版反転印刷法により形成された導電性パターンを含有する薄膜トランジスタ。 A conductive ink which does not contain a binder component for forming a conductive pattern by a letterpress reverse printing method and has a volume average particle diameter (Mv) of 2 to 250 nm, is a fluorine-based surface energy adjusting agent and / or Or between particles, characterized by being dispersed in a liquid medium comprising an organic solvent containing a silicon-based surface energy adjusting agent and containing 0.5 to 40% by mass of water as an essential component with respect to the total liquid medium A thin film transistor containing a conductive pattern formed by a letterpress reversal printing method using a letterpress reversal printing ink that exhibits conductivity by melt bonding.
PCT/JP2013/069184 2012-07-26 2013-07-12 Conductive ink for reverse printing, process for producing thin-film transistor, and thin-film transistor produced by said process WO2014017323A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014526856A JPWO2014017323A1 (en) 2012-07-26 2013-07-12 Conductive ink for reverse printing, method for manufacturing thin film transistor, and thin film transistor formed by the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012165778 2012-07-26
JP2012-165778 2012-07-26

Publications (1)

Publication Number Publication Date
WO2014017323A1 true WO2014017323A1 (en) 2014-01-30

Family

ID=49997138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069184 WO2014017323A1 (en) 2012-07-26 2013-07-12 Conductive ink for reverse printing, process for producing thin-film transistor, and thin-film transistor produced by said process

Country Status (3)

Country Link
JP (1) JPWO2014017323A1 (en)
TW (1) TW201410802A (en)
WO (1) WO2014017323A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11104813B2 (en) 2015-06-02 2021-08-31 Asahi Kasei Kabushiki Kaisha Dispersion
US11760895B2 (en) 2017-07-27 2023-09-19 Asahi Kasei Kabushiki Kaisha Copper oxide ink and method for producing conductive substrate using same, product containing coating film and method for producing product using same, method for producing product with conductive pattern, and product with conductive pattern
JP7420762B2 (en) 2020-05-27 2024-01-23 三ツ星ベルト株式会社 ink composition
JP7477581B2 (en) 2017-03-16 2024-05-01 旭化成株式会社 Dispersion, method for producing conductive patterned structure using same, and conductive patterned structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111484A1 (en) * 2007-03-15 2008-09-18 Dic Corporation Conductive ink for letterpress reverse printing
WO2010113931A1 (en) * 2009-03-31 2010-10-07 Dic株式会社 Organic semiconductor ink composition and method for forming organic semiconductor pattern using same
JP2011178832A (en) * 2010-02-26 2011-09-15 Dic Corp Ultraviolet-curable ink for inkjet recording, insulation film obtained therefrom, electronic element and process for production thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4173051B2 (en) * 2003-05-22 2008-10-29 シヤチハタ株式会社 Water-based ballpoint pen ink
JP5152631B2 (en) * 2006-09-15 2013-02-27 株式会社リコー Ink jet recording ink, ink jet recording ink set, ink jet recording ink-media set, ink cartridge, ink jet recording method, ink jet recording apparatus.
JP2009102480A (en) * 2007-10-22 2009-05-14 Dic Corp Inkjet recording ink, ink set and inkjet recording method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111484A1 (en) * 2007-03-15 2008-09-18 Dic Corporation Conductive ink for letterpress reverse printing
WO2010113931A1 (en) * 2009-03-31 2010-10-07 Dic株式会社 Organic semiconductor ink composition and method for forming organic semiconductor pattern using same
JP2011178832A (en) * 2010-02-26 2011-09-15 Dic Corp Ultraviolet-curable ink for inkjet recording, insulation film obtained therefrom, electronic element and process for production thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11104813B2 (en) 2015-06-02 2021-08-31 Asahi Kasei Kabushiki Kaisha Dispersion
JP7477581B2 (en) 2017-03-16 2024-05-01 旭化成株式会社 Dispersion, method for producing conductive patterned structure using same, and conductive patterned structure
US11760895B2 (en) 2017-07-27 2023-09-19 Asahi Kasei Kabushiki Kaisha Copper oxide ink and method for producing conductive substrate using same, product containing coating film and method for producing product using same, method for producing product with conductive pattern, and product with conductive pattern
JP7420762B2 (en) 2020-05-27 2024-01-23 三ツ星ベルト株式会社 ink composition

Also Published As

Publication number Publication date
JPWO2014017323A1 (en) 2016-07-11
TW201410802A (en) 2014-03-16

Similar Documents

Publication Publication Date Title
JP4730623B2 (en) THIN FILM TRANSISTOR, METHOD FOR PRODUCING THIN FILM TRANSISTOR, AND ELECTRONIC DEVICE
US20120153285A1 (en) Solution processable passivation layers for organic electronic devices
CN102334392B (en) The manufacture method of electronic unit and the electronic unit manufactured by the method
JP2011216647A (en) Method for manufacturing pattern-formed body, method for manufacturing functional element, and method for manufacturing semiconductor element
KR101384573B1 (en) Method for forming pattern, method for manufacturing semiconductor device and semiconductor device
Kim et al. Laser-printed interdigitated Ag electrodes for organic thin film transistors
CN101743623A (en) Laminate structure, electronic device, and display device
KR101235699B1 (en) Process for Patterning Thin-film of Solution Type
WO2014017323A1 (en) Conductive ink for reverse printing, process for producing thin-film transistor, and thin-film transistor produced by said process
US8048725B2 (en) Method of forming pattern and method of producing electronic element
US9486996B2 (en) Gravure printing process using silver nanoparticle inks for high quality conductive features
JP4760844B2 (en) Electronic component manufacturing method and electronic component manufactured by the method
KR101811099B1 (en) Method for producing an organic electronic device and organic electronic device
JP5332145B2 (en) Multilayer structure, electronic device, electronic device array, and display device
JP2011259001A (en) Method of producing patterned body, method of manufacturing functional element and method of manufacturing semiconductor element
JP2007201056A (en) Thin-film transistor and manufacturing method thereof
JP2010219447A (en) Ink for organic transistor, electrode of organic transistor and method of forming the same, and organic transistor
Itoh et al. Fabrication of Polymer-Based Transistors with Carbon Nanotube Source Drain Electrodes Using Softlithography Techniques
JP5103982B2 (en) Method for manufacturing organic semiconductor element
JP5811522B2 (en) Thin film transistor manufacturing method
US20080119010A1 (en) Manufacturing method of organic semiconductor device
Jingsheng et al. Bottom gate organic thin-film transistors fabricated by ultraviolet transfer embossing with improved device performance
TW201015215A (en) Composition for forming photosensitive dielectric material and application thereof
JP6620556B2 (en) Functional material lamination method and functional material laminate
Shi Advanced chemical science-based high-resolution low-cost printing for high performance printed electronics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823728

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014526856

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13823728

Country of ref document: EP

Kind code of ref document: A1