WO2014007259A1 - 銅合金線材及びその製造方法 - Google Patents

銅合金線材及びその製造方法 Download PDF

Info

Publication number
WO2014007259A1
WO2014007259A1 PCT/JP2013/068160 JP2013068160W WO2014007259A1 WO 2014007259 A1 WO2014007259 A1 WO 2014007259A1 JP 2013068160 W JP2013068160 W JP 2013068160W WO 2014007259 A1 WO2014007259 A1 WO 2014007259A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
copper alloy
heat treatment
elongation
copper
Prior art date
Application number
PCT/JP2013/068160
Other languages
English (en)
French (fr)
Inventor
司 ▲高▼澤
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2013554707A priority Critical patent/JP5840235B2/ja
Priority to KR1020147026828A priority patent/KR101719889B1/ko
Priority to CN201380015337.3A priority patent/CN104169447B/zh
Priority to EP13813342.6A priority patent/EP2868758B1/en
Publication of WO2014007259A1 publication Critical patent/WO2014007259A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Definitions

  • the present invention relates to a copper alloy wire and a method for manufacturing the same, and more particularly to an ultrafine copper alloy wire for a magnet wire and a method for manufacturing the same.
  • a coil for a microspeaker used in a mobile phone, a smartphone, or the like is manufactured by winding an extra fine wire (magnet wire) having a wire diameter of 0.1 mm or less into a coil shape.
  • This winding processing requires toughness (elongation) as the workability that allows the formation of turns, and conventionally pure copper having excellent toughness has been used.
  • pure copper is excellent in electrical conductivity, it has a low strength, so there is a problem that fatigue resistance accompanying coil vibration is low.
  • Patent Document 1 a technique using a high concentration Cu—Ag alloy containing 2 to 15 mass% of Ag that can increase the tensile strength without decreasing the conductivity.
  • a processed metal or alloy has an increased tensile strength and a reduced elongation.
  • a heat treatment at a certain temperature or higher is applied thereto, the elongation is restored and the strength is decreased.
  • Patent Document 2 a technique has been proposed in which the strength and elongation are compatible even with a low-concentration alloy by performing the heat treatment temperature below the softening temperature.
  • a technique has been proposed in which compressive stress is applied by applying surface processing to a ⁇ 2.6 mm annealed copper alloy wire having an electrical conductivity of 98% IACS or more to improve the bending fatigue resistance.
  • JP 2009-280860 A Japanese Patent No. 3944304 JP 05-86445 A
  • Patent Document 3 when an attempt is made to apply surface processing to the technique of Patent Document 3 for an annealed copper wire or copper alloy wire having a diameter of 0.1 mm or less, an annealed copper wire or copper alloy wire having a diameter of 0.1 mm or less is disclosed in Patent Document 3. Since the wire diameter is remarkably smaller than that of the described copper alloy wire, the strength of the copper alloy wire itself is low, and the wire itself is disconnected due to a load during processing, making the processing itself difficult. Recently, the shape of the magnet wire is not limited to a round wire, and the use of a square wire or a flat wire is also being studied. Also in the case of these square wires and flat wires, it is required that the wire be thin enough to correspond to the diameter of the round wire.
  • the present invention has been made in view of such problems in the prior art, and has an object to provide a copper alloy wire rod excellent in elongation and bending fatigue resistance, for example, suitably used for, for example, a magnet wire at a low cost.
  • the present inventors diligently studied various copper alloys, their heat treatments and processing conditions in order to develop copper alloy wires suitable for use in magnet wires having excellent elongation and bending fatigue resistance.
  • the wire material is subjected to cold working at a constant light working rate on the surface of the wire, thereby keeping the surface shallow from the surface of the wire.
  • a copper alloy wire excellent in elongation and bending fatigue resistance can be obtained by raising the hardness within a range.
  • the present invention has been completed based on this finding.
  • the following means are provided.
  • the copper alloy wire according to item (1) containing 0.5 to 4% by mass of Ag.
  • Item (1) comprising at least one selected from the group consisting of Sn, Mg, Zn, In, Ni, Co, Zr, and Cr as a content of 0.05 to 0.3% by mass.
  • the copper alloy wire described in 1. (4) 0.05 to 4 mass% of Ag, and 0.05 to 0 as the content of each of at least one selected from the group consisting of Sn, Mg, Zn, In, Ni, Co, Zr and Cr .
  • a method of producing a copper alloy wire comprising a cold working step of performing cold working at a working rate of 3 to 15% on the heat treated wire.
  • the obtained copper alloy wire has a nanoindentation hardness of 1.45 GPa or more in a depth region between the outermost surface of the wire and at least 5% inside with respect to the wire diameter or wire thickness, and A method for producing a copper alloy wire, wherein the nanoindentation hardness of the central portion of the wire is less than 1.45 GPa, the wire has a tensile strength of 350 MPa or more and an elongation of 7% or more.
  • an intermediate heat treatment is performed between a plurality of cold processing so that the wire after the intermediate heat treatment has a tensile strength of 330 MPa or more and an elongation of 10% or more. Manufacturing method of copper alloy wire.
  • the semi-softened state means a state in which the elongation of the copper alloy wire satisfies 10% or more, preferably 10% to 30%.
  • Semi-softening treatment refers to heat treatment that gives the semi-softening state.
  • the softened state means a state in which the elongation of the copper alloy wire has been recovered by exceeding 30%.
  • the softening treatment refers to a heat treatment at a high temperature that gives the softened state.
  • the wire means a square wire or a flat wire in addition to the round wire. Accordingly, the wire of the present invention refers to a round wire, a square wire, and a flat wire unless otherwise specified.
  • the size of the wire is a round wire (the cross section in the width direction (TD) is circular), the wire diameter ⁇ (the diameter of the circle in the cross section) of the round wire, and a square (the cross section in the width direction is a square).
  • Is the thickness t and width w of the square wire both are the same as the length of one side of the square of the cross section), and if it is a flat wire (the cross section in the width direction is rectangular), the thickness of the flat wire It refers to the length t (the length of the short side of the rectangle of the cross section) and the width w (the length of the long side of the rectangle of the cross section).
  • the copper alloy wire of the present invention is suitable as, for example, a copper alloy wire for a magnet wire because it has excellent bending fatigue resistance while having elongation required for coil forming. Furthermore, the method for producing a copper alloy wire of the present invention is suitable as a method for producing a copper alloy wire having excellent performance.
  • the nanoindentation hardness in the region is 1.45 GPa or more.
  • the nanoindentation hardness in the depth region between the outermost surface of the wire and the inside of the wire diameter or wire thickness up to 20% at the maximum can be 1.45 GPa or more.
  • the nanoindentation hardness in the depth region between the outermost surface of the wire and the inside of the wire diameter or the wire thickness by 15% is 1.45 GPa or more.
  • the region having the specific nanoindentation hardness is formed so as to have the hardness by work hardening in the final (finishing) processing performed after the final heat treatment that gives a semi-softened state.
  • a specific depth region on the surface of the wire formed by such processing is also referred to as “surface processed layer” or “wire surface portion”.
  • the nano-indentation hardness is less than 1.45 GPa at the center of the wire, and the entire wire is not hardened like the wire surface portion.
  • the reason why the region having a nanoindentation hardness of 1.45 GPa or more from the outermost surface of the wire to the inside of the wire diameter or the wire thickness is up to 20% is the deeper region beyond this ( This is because if the wire is cured to the more central side), sufficient elongation cannot be secured.
  • the wire is not cured in a semi-softened state as a result of the final heat treatment.
  • the nanoindentation hardness inside the surface processed layer (typically the central part of the wire) is usually less than 1.45 GPa, and preferably 1.3 GPa or less in order to ensure sufficient elongation.
  • the nanoindentation hardness is a method of measuring the hardness of a minute region called the nanoindentation method. A triangular pyramid diamond indenter is pushed from the surface of the (wire) sample, the load applied at that time, and the indenter And the hardness obtained from the contact projected area of the sample.
  • Non-Patent Document 1 Metal, Vol. 78 (2008) No. 9, p. 47
  • the wire material surface portion is formed as a work-hardened surface processed layer, and the nanoindentation hardness in the wire material surface portion is preferably 1.5 GPa or more. The bending fatigue resistance can be further improved.
  • a depth region in which the thickness of the surface processed layer having a predetermined nanoindentation hardness of 1.5 GPa or more is from the outermost surface of the wire to the inside of the wire diameter or wire thickness by at least 5%. (Maximum depth region up to 20% inside, preferably 15% inside depth region) If the elongation of the entire copper alloy wire can also exhibit good characteristics of 10% or more, A more excellent magnet wire can be obtained.
  • the nanoindentation hardness in the surface portion of the wire is 1.45 GPa or more, more preferably 1.6 GPa or more. Although there is no restriction
  • the copper alloy wire of the present invention has (i) 0.5 to 4% by mass of Ag and / or (ii) at least one selected from the group consisting of Sn, Mg, Zn, In, Ni, Co, Zr and Cr.
  • the content of each seed is 0.05 to 0.3% by mass, and the balance is made of Cu and inevitable impurities.
  • the content of the alloy additive element is simply “%”, it means “mass%”.
  • the total content of at least one alloy component selected from the group consisting of Sn, Mg, Zn, In, Ni, Co, Zr and Cr other than Ag is preferably 0.5% by mass or less. is there.
  • (i) Ag may be contained alone, or (ii) at least one selected from the group consisting of Sn, Mg, Zn, In, Ni, Co, Zr and Cr.
  • the seed may be contained alone, or both (i) Ag and (ii) at least one selected from the group consisting of Sn, Mg, Zn, In, Ni, Co, Zr and Cr. You may contain.
  • These elements are solid solution strengthening type or precipitation strengthening type elements, respectively, and by adding these elements to Cu, the strength can be increased without significantly lowering the conductivity.
  • This addition increases the strength of the copper alloy wire itself and improves the bending fatigue resistance, and after heat-treating (semi-softening treatment) after processing the wire diameter or wire thickness into an ultrafine wire of 0.1 mm or less. However, it can withstand the final (finish) cold working for curing the surface portion of the wire after the semi-softening treatment.
  • the bending fatigue resistance is proportional to the tensile strength, but if processing is performed in order to increase the tensile strength, the elongation decreases and it becomes impossible to form into an ultrafine copper alloy wire such as a magnet wire.
  • the bending strain applied to the copper alloy wire during bending fatigue is larger at the outer peripheral portion of the wire, and the bending strain is smaller as it is closer to the center portion. Therefore, according to the present invention, the bending fatigue resistance can be improved by work hardening so that only a predetermined depth region (the wire surface portion) on the surface of the wire has a predetermined hardness by finish cold working. it can. In addition, only the wire surface portion is work-hardened, but the entire remaining wire portion other than the wire surface portion (that is, the portion other than the wire surface portion to the center deeper than the predetermined depth) maintains a semi-softened state. is doing. For this reason, since the elongation as a whole wire can be secured sufficiently, it becomes possible to form an ultrafine copper alloy wire such as a magnet wire.
  • the Ag is an element that can increase the strength without lowering the electrical conductivity, among these elements, and is an example of an essential additive element in the copper alloy according to the present invention used for, for example, a magnet wire.
  • the Ag content is 0.5 to 4% by mass, preferably 0.5 to 2%. If the Ag content is too low, sufficient strength cannot be obtained. Moreover, when there is too much Ag content, while electroconductivity will fall, cost will become high too much.
  • At least one element selected from the group consisting of Sn, Mg, Zn, In, Ni, Co, Zr, and Cr is another example of the essential additive element in the copper alloy according to the present invention.
  • the content of these elements is 0.05 to 0.3%, preferably 0.05 to 0.2% as each content. When this content is too small as each content, the effect of the strength increase by addition of these elements is hardly expected. Further, if the content is too large, the decrease in conductivity is too large, so that it is not suitable as a copper alloy wire such as a magnet wire.
  • the manufacturing method of the copper alloy wire of the present invention will be described.
  • the shape of the copper alloy wire of the present invention is not limited to a round wire, and may be a square wire or a flat wire, which will be described below.
  • the copper alloy round wire manufacturing method according to the present invention includes, for example, casting, intermediate cold working, intermediate heat treatment (intermediate annealing), final heat treatment (final annealing), and finish cold working. It is given in order.
  • intermediate annealing may be omitted.
  • a graphite crucible is used for melting and casting.
  • the atmosphere inside the casting machine when melting is preferably a vacuum or an inert gas atmosphere such as nitrogen or argon in order to prevent the formation of oxides.
  • a horizontal type continuous casting machine, an Upcast method, etc. can be used.
  • the steps from casting to wire drawing are continuously performed to cast a rough drawn wire having a diameter of usually about ⁇ 8 to 23 mm.
  • a billet (ingot) obtained by casting is subjected to wire drawing to obtain a rough drawing wire having a diameter of usually about ⁇ 8 to 23 mm.
  • the first and second cold working Intermediate annealing may be performed during this period.
  • the heat treatment method for performing the intermediate annealing is roughly classified into a batch type and a continuous type. Batch-type heat treatment is inferior in productivity because it takes processing time and cost, but it is easy to control characteristics because temperature and holding time are easy to control.
  • continuous heat treatment is excellent in productivity because it can be performed continuously with the wire drawing process, but since heat treatment needs to be performed in an extremely short time, the heat treatment temperature and time are accurately controlled to stabilize the characteristics. It needs to be realized.
  • a heat treatment method suitable for the purpose may be selected.
  • the heat treatment it is preferable to perform the heat treatment at 300 to 600 ° C. for 30 minutes to 2 hours in a heat treatment furnace in an inert atmosphere such as nitrogen or argon.
  • the continuous heat treatment include an electric heating method and an in-atmosphere heat treatment method.
  • the electric heating method is a method in which an electrode ring is provided in the middle of the wire drawing process, a current is passed through the copper alloy wire passing between the electrode wheels, and heat treatment is performed by Joule heat generated in the copper alloy wire itself.
  • a heating container is provided in the middle of wire drawing, and the copper alloy wire is passed through the heating container atmosphere heated to a predetermined temperature (for example, 300 to 700 ° C.) to perform the heat treatment.
  • a predetermined temperature for example, 300 to 700 ° C.
  • the heat treatment is preferably performed in an inert gas atmosphere in order to prevent oxidation of the copper alloy wire.
  • the heat treatment conditions in these continuous heat treatments are preferably 300 to 700 ° C. and 0.5 to 5 seconds.
  • the tensile strength of the copper alloy wire after the intermediate heat treatment satisfies the characteristics of 330 MPa or more and elongation of 10% or more.
  • a heat treatment method for performing the finish annealing a batch method and a continuous method can be used as in the case of the intermediate annealing.
  • the finish annealing depending on the composition and processing rate of the copper alloy wire, the tensile strength and elongation of the wire after the final heat treatment may change slightly. Therefore, in the present invention, the heating temperature and heating holding time in finish annealing are appropriately adjusted so that the tensile strength of the copper alloy wire obtained by this final heat treatment (finish annealing) is 330 MPa or more and the elongation is 10% or more. To do.
  • the heat treatment is performed in a shorter time as the heat treatment temperature is higher, and the heat treatment is performed in a longer time as the heat treatment temperature is lower.
  • finish annealing when finish annealing is performed in a batch system, it is preferable to perform heat treatment at 300 to 450 ° C. for 30 minutes to 2 hours.
  • the properties of the copper alloy wire before final annealing are adjusted so that the final properties of the copper alloy wire obtained by finish cold working after this final annealing will be a tensile strength of 350 MPa or more and an elongation of 7% or more. And final annealing conditions are determined.
  • the bending strain applied to the line at the time of bending fatigue is larger toward the outer periphery of the line, and the amount of bending strain is smaller as it is closer to the center. Therefore, the bending fatigue resistance can be improved by performing finish cold working and hardening only the surface portion of the wire.
  • the center side of the wire is maintained in a semi-softened state, so that the entire wire can be sufficiently stretched and formed into an ultrafine wire such as a magnet wire. Is also possible.
  • the risk of disconnection is effectively obtained by performing a semi-softening heat treatment that gives a strength of 350 MPa or more and an elongation of 7% or more in the final product copper alloy wire. Can be lowered.
  • the processing rate of this wire drawing is usually 3 to 15%, preferably 5 to 15%, and more preferably 7 to 12%.
  • the finish cold working rate is too small, surface processing and strength may be insufficient, and the effect of improving the bending fatigue resistance may be insufficient.
  • the work rate of this finish cold work is too large, the work may extend over the entire surface of the wire beyond the surface of the wire, which may impair the elongation and increase the risk of disconnection in the work.
  • the method for producing a copper alloy rectangular wire of the present invention is the same as the method for producing a round wire, except that it has a rectangular wire processing step and finish cold working suitable for a rectangular shape.
  • the method for producing a flat wire rod according to the present invention includes, for example, each step of casting, intermediate cold working (cold drawing), flat wire processing, final heat treatment (final annealing), and finish cold working. It is given in order. If necessary, intermediate annealing (intermediate heat treatment) may be inserted between the intermediate cold working and the flat wire processing, similarly to the method for producing the round wire.
  • the conditions of processing and heat treatment in each step of casting, cold working, intermediate annealing, and final annealing, and preferred conditions thereof are the same as in the method of manufacturing the round wire.
  • the rolling reduction and the total rolling reduction in each pass during rolling or the like are not particularly limited, and may be set as appropriate so that a desired rectangular wire size can be obtained.
  • the rolling reduction is the rate of change in the thickness in the rolling direction when flattening is performed, and the rolling reduction when the thickness before rolling is t 1 and the thickness of the line after rolling is t 2. (%) Is represented by ⁇ 1- (t 2 / t 1 ) ⁇ ⁇ 100.
  • the total rolling reduction can be 10 to 90%, and the rolling reduction in each pass can be 10 to 50%.
  • the cross-sectional shape of the rectangular wire is not particularly limited, but the aspect ratio is usually 1 to 50, preferably 1 to 20, and more preferably 2 to 10.
  • the aspect ratio (expressed as w / t below) is the ratio of the short side to the long side of the rectangle forming the cross-section (TD) cross section of the flat wire.
  • the thickness t of the flat wire is equal to the short side of the rectangle forming the width direction (TD) cross section
  • the width w of the flat wire is the length of the rectangle forming the cross section of the width direction (TD). Equal to edge.
  • the thickness of the flat wire is usually 0.1 mm or less, preferably 0.08 mm or less, more preferably 0.06 mm or less.
  • the width of the flat wire is usually 1 mm or less, preferably 0.7 mm or less, more preferably 0.5 mm or less.
  • the finish cold work is performed in the same manner as the flat wire processing. By this finish cold working, it is hardened so that the nanoindentation hardness of the surface portion of the wire becomes 1.45 GPa or more. The same as in the case of a round wire.
  • the finish cold working for the rectangular wire is cold rolling with a rolling mill and cold rolling with a cassette roller die. This processing rate is usually 3 to 15%, preferably 5 to 15%, more preferably 7 to 12%. When the finish cold working rate is too small, surface processing and strength may be insufficient, and the effect of improving the bending fatigue resistance may be insufficient.
  • a flat wire manufactured by such processing and heat treatment is a region of at least 5% depth from the surface of the wire on the upper and lower surface layers in the thickness direction by finish cold working (up to 20% depth from the wire surface).
  • a hardened layer having a nanoindentation hardness of 1.45 GPa or more is provided as a surface processed layer in a region (preferably a region from the surface of the wire to a depth of 15%).
  • the hardened layer exists as a surface-treated layer on the entire surface in the circumferential direction of the wire, whereas in the case of a flat wire, the both sides of the surface of the wire in the thickness direction are respectively The difference is that the hardened layer exists as a surface processed layer.
  • the point which has the said hardened layer as a surface processing layer in the surface part of a wire within the predetermined shallow range it is the same with a round wire and a flat wire (and also a square wire).
  • winding a flat wire in the thickness direction means winding the flat wire in a coil shape with the width w of the flat wire being the width of the coil.
  • Each of the processing rates in the first and second cold wire drawing processes varies depending on the target wire diameter or wire thickness and copper alloy composition, as well as two heat treatment conditions of intermediate annealing and finish annealing.
  • the processing rate in the first cold working (drawing) is usually set to 70.0 to 99.9%, and the processing rate in the second cold working (drawing). Is 70.0 to 99.9%.
  • a plate material or strip material having a predetermined alloy composition can be manufactured, and these plates or strips can be slit to obtain a rectangular wire material or a rectangular wire material having a desired line width.
  • this manufacturing process for example, there is a method comprising casting, hot rolling, cold rolling, finish annealing, finish cold working, and slitting. If necessary, intermediate annealing may be performed during the cold rolling. In some cases, the slitting may be performed before finish annealing or before finish cold working.
  • the wire diameter or the wire thickness of the copper alloy wire of the present invention is 0.1 mm or less, preferably 0.08 mm or less, more preferably 0.06 mm or less.
  • the lower limit of the wire diameter or the wire thickness is not particularly limited, but is usually 0.01 mm or more in the current technology.
  • the use of the copper alloy wire of the present invention is not particularly limited, and examples thereof include a magnet wire that is an extra fine wire used for a speaker coil used in a mobile phone, a smartphone, and the like.
  • the reason why the tensile strength of the copper alloy wire of the present invention is set to 350 MPa or more is that when it is less than 350 MPa, the strength when the diameter is reduced by wire drawing is insufficient, and the bending fatigue resistance is inferior. Further, the reason why the elongation of the copper alloy wire of the present invention is set to 7% or more is that if it is less than 7%, the workability is inferior and problems such as breakage occur when the coil is formed.
  • the copper alloy wire of the present invention obtained by the above method exhibits high bending fatigue resistance while having elongation that can be formed as an ultrafine copper alloy wire such as an ultrafine wire magnet wire.
  • the cast material is composed of 0.5 to 4% by mass of Ag and / or 0.05 to 0.3% by mass of Sn, Mg, Zn, In, Ni, Co, Zr, and Cr as respective contents.
  • Copper alloys of the present invention having various alloy compositions shown in Tables 1 to 3 containing at least one selected from the group, with the balance being Cu and inevitable impurities, and various alloys shown in Tables 1 to 3 A comparative copper alloy having a composition was cast into a rough drawn wire having a diameter of 10 mm by a horizontal continuous casting method.
  • This rough drawn wire is subjected to cold working (drawing), intermediate annealing, finish annealing, finish cold working (drawing) (total working rate of the following first and second cold workings: 99.984%
  • total working rate of the following first and second cold workings 99.984%
  • round wire samples having a final wire diameter of 40 ⁇ m and in the test examples of Table 2 having various wire diameters shown in the table were prepared.
  • the heat treatment of intermediate annealing and finish annealing was performed in any of three patterns selected from batch annealing, current annealing, and running annealing, and each was performed in a nitrogen atmosphere.
  • the intermediate annealing was performed only once between the first cold working (drawing) and the second cold working (drawing).
  • Examples of rectangular wires, comparative examples In the same manner as the round wire, except that after roughing the wire (drawn), or after intermediate annealing in the case of carrying out, after performing the rectangular wire processing, after finishing annealing, Finished cold working was performed to prepare a rectangular wire sample. As shown in Table 4, there are those that have been subjected to intermediate annealing and those that have not. As shown in Table 4, the flat wire processing is performed by cold rolling the wire diameter ⁇ (mm) of the unprocessed round wire into a flat wire having a size of width w (mm) ⁇ thickness t (mm). processed. The finish cold working was performed by cold rolling in the same manner as the flat wire processing except that the processing rates shown in Table 4 were used. Table 4 shows the production conditions of the copper alloy rectangular wire according to the present invention and the copper alloy rectangular wire of the comparative example and the characteristics of the obtained copper alloy rectangular wire.
  • the upper end of the sample was fixed with a connector.
  • the sample was bent 90 degrees to the left and right, repeatedly bent at a rate of 100 times per minute, and the number of bending until breaking was measured for each sample.
  • the number of bendings was counted as one round trip of 1 ⁇ 2 ⁇ 3 in the figure, and the interval between the two dies was set to 1 mm so as not to press the copper alloy wire sample during the test.
  • the determination of breakage was made when the weight suspended at the lower end of the sample dropped.
  • the bending radius (R) was set to 2 mm depending on the curvature of the die.
  • the coil life was evaluated by the number of bending fatigue fractures measured by the above test method as follows.
  • the hardness of the surface of the wire and the center of the wire was measured using a nanoindenter (ENT-2100 manufactured by Elionix).
  • the thickness ( ⁇ m) of the processed layer on the surface side of the wire is obtained from the structure observation of the wire cross section (TD cross section) and the hardness change in the nanoindenter test, and the “surface processed layer thickness ( ⁇ m)” It was. Further, from the obtained thickness ( ⁇ m) of the processed layer, the ratio (%) of the thickness from the outermost surface of the wire to the most central side of the processed layer with respect to the wire diameter ⁇ of the wire or the thickness t of the wire is calculated. It was determined as “surface processed layer thickness (%)”.
  • the coil formability was determined by testing the frequency of occurrence of disconnection when a copper alloy wire 100 km was wound into a coil having a diameter of 5 mm, and “ ⁇ (good)” that was not disconnected once. Was evaluated as “C (slightly inferior)” and “ ⁇ (defect)” when the wire was broken twice or more.
  • Table 1 shows a sample of the round wire rods of Examples of the present invention (Examples 1 to 6) and a sample of the round wire rod of the comparative example in which a Cu-2% Ag alloy wire was processed and heat-treated so as to have a final wire diameter of 0.04 mm ( ⁇ 40 ⁇ m).
  • the results of measuring and evaluating the characteristics of (Comparative Examples 1 to 7) are shown.
  • the final heat treatment (finish annealing) conditions were changed as shown in Table 1, and the strength and elongation before finish cold working were variously changed.
  • finish cold working at a processing rate of 3 to 15% is applied to the copper alloy wire that has been subjected to final heat treatment (finish annealing) so that the tensile strength is 330 MPa or more and the elongation is 10% or more.
  • finish annealing finish annealing
  • a processed layer having a nanoindentation hardness of 1.45 GPa or more was formed on the surface portion of the wire, and it was found that the bending fatigue resistance could be improved.
  • the finish cold working rate is 7 to 12% because the effect of improving the bending fatigue resistance is more excellent.
  • the processing rate in the finish cold work is less than 3%. If it is too small, there is no processed layer at all or the thickness of the processed layer is too thin to improve the bending fatigue resistance.
  • the processing rate in the finish cold working is larger than 15% as in Comparative Examples 4 and 5, not only the surface portion of the wire but also the processing to the entire copper alloy wire including the center side and Therefore, the surface processed layer that improves the bending fatigue resistance is not satisfactorily formed, the elongation of the copper alloy wire after the finish cold working is inferior, and the bending fatigue resistance cannot be improved.
  • Comparative Example 6 when the final heat treatment before the finish cold working is insufficient and the elongation is less than 10%, the elongation of the copper alloy wire after the finish cold working becomes less than 7% and the coil formability is insufficient. End up. Further, as shown in Comparative Example 7, when the final heat treatment before finish cold working is excessively softened and the tensile strength of the copper alloy wire is less than 330 MPa, the hardness of the wire surface portion is insufficient, and the strength after finish annealing Is also lacking. Furthermore, disconnection at the time of finish cold working will be invited. In the case of a rectangular wire, the same result as in the case of the round wire is obtained.
  • Example 7 to 12 and Comparative Examples 8 to 9 the final heat treatment (finish annealing) conditions were changed as shown in Table 2, and various diameters of Cu— were obtained with various changes in strength before finish cold working.
  • the result of having evaluated the wire drawing property when a 1% Ag alloy round wire rod is finish cold worked at a working rate of 10% is shown.
  • Comparative Examples 10 to 11 tests were performed in the same manner as described above except that a Cu-0.3% Ag alloy round wire was used instead of the Cu-1% Ag alloy wire.
  • a test of finishing a 100 km length of a soft or semi-softened copper alloy wire was performed five times, and “ ⁇ (good)” that was able to be drawn without being disconnected once was disconnected once.
  • the copper alloy wire rod preferably has a tensile strength of 330 MPa or more. Therefore, it can be seen that the bending fatigue resistance can be improved by subjecting a fine wire having a diameter of 0.1 mm or less to surface processing according to the manufacturing conditions specified by the manufacturing method of the present invention. In the case of a rectangular wire, the same result as in the case of the round wire is obtained.
  • Table 3 shows examples of the present invention and comparative examples of round wires prepared with copper alloys having various other alloy compositions.
  • the nanoindentation hardness in the depth region between the outermost surface of the wire and the inside of the wire diameter at least 5% is 1.45 GPa or more, And it turns out that a desired physical property can be achieved when the tensile strength of the final wire is 350 MPa or more and the elongation is 7% or more.
  • Table 4 shows examples of the present invention and comparative examples of rectangular wires prepared with copper alloys having various alloy compositions. From Table 4, it can be seen that the same results as in the case of the round wire were obtained in the case of the flat wire.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Extraction Processes (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Agを0.5~4質量%、並びに、Sn、Mg、Zn、In、Ni、Co、Zr及びCrからなる群から選ばれる少なくとも1種を各々の含有量として0.05~0.3質量%含有し、残部がCuと不可避不純物からなる合金組成を有してなり、線径または線材の厚さが0.1mm以下である銅合金線材であって、線材の最表面から線径または線材の厚さに対して少なくとも5%内側までの間の深さ領域におけるナノインデンテーション硬さが1.45GPa以上であり、かつ線材の中心部のナノインデンテーション硬さが1.45GPa未満であって、線材の引張強さが350MPa以上、伸びが7%以上である銅合金線材、とその銅合金線材の製造方法によって、伸び、耐屈曲疲労特性に優れた、例えば、マグネットワイヤ等に用いられる銅合金線材を安価で提供する。

Description

銅合金線材及びその製造方法
 本発明は、銅合金線材及びその製造方法に関し、特にマグネットワイヤ用極細銅合金線材及びその製造方法に関するものである。
 電子機器の発達に伴い電子部品の小型化が進み、線径が0.1mm以下の極細銅合金線(丸線)に対する需要が増えてきている。例えば、携帯電話、スマートフォンなどに使用されているマイクロスピーカ用コイルは線径が0.1mm以下の極細線(マグネットワイヤ)をコイル状に巻きつけ加工して製造されている。
 この巻線加工にはターン形成が可能なだけの加工性として靭性(伸び)が必要であり、従来靭性に優れる純銅が用いられてきた。しかし、純銅は導電性に優れるが強度が低いため、コイル振動に伴う耐疲労耐性が低いという問題がある。
 この問題を解決するため、導電率を殆ど下げずに引張強さを上げることのできるAg 2~15質量%を含有する高濃度のCu-Ag合金を使用する技術が提案されている(特許文献1)。また、一般的に加工を加えた金属や合金は引張強さが上昇して伸びが低下するが、これに一定温度以上の熱処理を加えることで再び伸びが回復して強度が低下する。そこで、この熱処理の温度を軟化温度以下で行うことにより低濃度の合金でも強度と伸びを両立させる技術が提案されている(特許文献2)。また、導電率98%IACS以上のφ2.6mmの軟銅合金線に表面加工を加えることで圧縮応力を付与し、耐屈曲疲労特性を向上させる技術が提案されている(特許文献3)。
特開2009-280860号公報 特許3941304号公報 特開平05-86445号公報
 しかし、マグネットワイヤの長寿命化の要求や更なる電子部品の小型化によるマグネットワイヤの極細化(線径0.08mm以下)の要求にともない、さらなる銅合金線材の耐屈曲疲労特性の向上、高強度化が求められてきている。特許文献1に記載されているように、より強度を上げるためAg含有量を増やすと、その反面、導電性が低下してしまう。さらに、Agは非常に高価であるためコストの著しい上昇を招いてしまう。また、特許文献2に記載されているような従来一般の固溶型の高導電性銅合金線材で、導電性、伸びを確保したまま更なる高強度化、耐屈曲疲労性向上を達成することは困難である。さらにまた、φ0.1mm以下の軟銅線や銅合金線材に対して特許文献3の技術を適用すべく表面加工を施そうとすると、φ0.1mm以下の軟銅線や銅合金線材は特許文献3に記載されている銅合金線材より著しく線径が小さいために、銅合金線材自体の強度が低く、加工時の荷重により断線してしまい加工そのものが困難である。
 また、近時、マグネットワイヤの形状としては、丸線に限らず、角線や平角線の採用も検討されている。これらの角線や平角線の場合にも、前記丸線の線径に相当する程度に厚さが薄い線材とすることが要求されている。
 本発明はかかる従来の技術における問題点に鑑みてなされたものであり、伸び、耐屈曲疲労特性に優れた、例えばマグネットワイヤ等に好適に用いられる、銅合金線材を安価で提供することを目的とする。
 本発明者らは、伸び、耐屈曲疲労特性に優れたマグネットワイヤ等に好適に用いられる銅合金線材を開発すべく種々の銅合金、その熱処理及び加工条件について鋭意検討を行った。その結果、所定の合金組成を有してなる銅合金線材に半軟化処理を施した後に、一定の軽加工率での冷間加工を線材表面部に施し、これにより線材の表面から一定の浅い範囲で所定の硬度に上げることによって、伸びと耐屈曲疲労特性に優れる銅合金線材を得ることができることを見出した。本発明は、この知見に基づいて完成されるに至ったものである。
 すなわち、本発明によれば以下の手段が提供される。
(1)Agを0.5~4質量%、並びに、Sn、Mg、Zn、In、Ni、Co、Zr及びCrからなる群から選ばれる少なくとも1種を各々の含有量として0.05~0.3質量%からなる群から選ばれる少なくとも1種を含有し、残部がCuと不可避不純物からなる合金組成を有してなり、線径(丸線材の場合)または線材の厚さ(角線材や平角線材の場合)が0.1mm以下である銅合金線材であって、前記線材の最表面から線径または線材の厚さに対して少なくとも5%内側までの間の深さ領域におけるナノインデンテーション硬さが1.45GPa以上であり、かつ前記線材の中心部のナノインデンテーション硬さが1.45GPa未満であって、前記線材の引張強さが350MPa以上、伸びが7%以上である銅合金線材。
(2)Agを0.5~4質量%含有してなる(1)項に記載の銅合金線材。
(3)Sn、Mg、Zn、In、Ni、Co、Zr及びCrからなる群から選ばれる少なくとも1種を各々の含有量として0.05~0.3質量%含有してなる(1)項に記載の銅合金線材。
(4)Agを0.5~4質量%、並びに、Sn、Mg、Zn、In、Ni、Co、Zr及びCrからなる群から選ばれる少なくとも1種を各々の含有量として0.05~0.3質量%からなる群から選ばれる少なくとも1種を含有し、残部がCuと不可避不純物からなる合金組成を有してなる銅合金の荒引線に冷間加工を施して、線径または線材の厚さが0.1mm以下の線材を形成する線材加工工程と、
 前記線材に熱処理を施して、この熱処理後の線材が引張強さ330MPa以上、伸び10%以上を有するようにする最終熱処理工程と、
 前記熱処理が施された線材に加工率3~15%の冷間加工を施す冷間加工工程と
を有してなる銅合金線材の製造方法であって、
 前記得られる銅合金線材が、線材の最表面から線径または線材の厚さに対して少なくとも5%内側までの間の深さ領域におけるナノインデンテーション硬さが1.45GPa以上であり、かつ前記線材の中心部のナノインデンテーション硬さが1.45GPa未満であって、前記線材の引張強さが350MPa以上、伸びが7%以上である、銅合金線材の製造方法。
(5)前記線材加工工程において、複数の冷間加工の間に中間熱処理を行って、この中間熱処理後の線材が引張強さ330MPa以上、伸び10%以上を有するようにする(4)に記載の銅合金線材の製造方法。
 ここで、本明細書において、半軟化状態とは銅合金線材の伸びが10%以上、好ましくは10%~30%を満たす状態をいう。また、半軟化処理とは、前記半軟化状態を与える熱処理をいう。一方、軟化状態とは銅合金線材の伸びが30%を超えて回復された状態をいう。また、軟化処理とは、前記軟化状態を与える高温での熱処理をいう。
 本発明において、線材とは、丸線の他に、角線や平角線を含む意味である。従って、本発明の線材とは、特に断らない限り、丸線、角線、平角線を合わせていう。ここで、線材のサイズとは、丸線(幅方向(TD)の断面が円形)であれば丸線材の線径φ(前記断面の円の直径)を、角線(幅方向の断面が正方形)であれば角線材の厚さt及び幅w(いずれも、前記断面の正方形の一辺の長さで同一である)を、平角線(幅方向の断面が長方形)であれば平角線材の厚さt(前記断面の長方形の短辺の長さ)及び幅w(前記断面の長方形の長辺の長さ)をいう。
 本発明の銅合金線材は、コイル成形に必要な伸びを有しながら耐屈曲疲労特性に優れているので、例えばマグネットワイヤ用の銅合金線材として好適である。さらに、本発明の銅合金線材の製造方法は、前記性能に優れる銅合金線材を製造する方法として好適なものである。
実施例で行った屈曲疲労破断回数(繰返破断回数)を測定する試験に用いた装置を模式的に示す正面図である。
 以下、本発明をより詳細に説明する。
[線材表面部の硬さ]
 本発明の銅合金線材においては、丸線材の場合には線径または角線材や平角線材の場合には線材の厚さに対して、線材の最表面から少なくとも5%内側までの間の深さ領域におけるナノインデンテーション硬さが1.45GPa以上である。本発明においては、線材の最表面から線径または線材の厚さに対して最大で20%内側までの間の深さ領域におけるナノインデンテーション硬さを、1.45GPa以上とすることができる。好ましくは、線材の最表面から線径または線材の厚さに対して15%内側までの間の深さ領域におけるナノインデンテーション硬さを1.45GPa以上とすることである。ここで、前記特定のナノインデンテーション硬さを有する領域は、半軟化状態を与える最終の熱処理後に施される最終の(仕上げ)加工処理での加工硬化によって、その硬さとなるように形成される。本書においては、このような加工によって形成される線材表面の特定の深さ領域を「表面加工層」あるいは「線材表面部」ともいう。また、線材の中心部はナノインデンテーション硬さが1.45GPa未満となっており、線材全体は線材表面部のようには硬化していない。本発明において、ナノインデンテーション硬さが1.45GPa以上の領域を線材の最表面から線径または線材の厚さに対して最大20%内側までとする理由は、これを超えてより深い領域(線材のより中心側)まで硬化させると、伸びを十分に確保できなくなるためである。
 また、この表面加工層より中心側では、線材は前記最終の熱処理の結果としての半軟化状態のまま硬化していない。表面加工層より内側(代表的には、線材の中心部)のナノインデンテーション硬さは通常1.45GPa未満であり、伸びを十分に確保するためには1.3GPa以下であることが好ましい。
 ここで、ナノインデンテーション硬さとは、ナノインデンテーション法という微小領域の硬さを測定する方法で、三角錐のダイヤモンド圧子を(線材)サンプルの表面から押し込み、その時に負荷される荷重と、圧子と試料の接触投影面積とから求められる硬さをいう。ナノインデンテーション硬さと硬さの一般的な指標であるビッカース硬さの間には、例えば、ビッカース硬さ=(76.2×ナノインデンテーション硬さ)+6.3の関係が知られている(非特許文献1)。
 非特許文献1:金属、Vol.78(2008)No.9、p.47
 本発明の銅合金線材においては、前記線材表面部を加工硬化された表面加工層として形成し、かつ、この線材表面部におけるナノインデンテーション硬さを好ましくは1.5GPa以上とすることによって、線材の耐屈曲疲労特性をさらに向上させることができる。さらに、この所定のナノインデンテーション硬さ1.5GPa以上である表面加工層の厚さが、線材の最表面から線径または線材の厚さに対して少なくとも5%内側までの間の深さ領域(最大で20%内側までの間の深さ領域、好ましくは15%内側までの間の深さ領域)であれば、銅合金線材全体の伸びも10%以上と良好な特性を発揮できるため、より優れたマグネットワイヤとすることができる。
 本発明の銅合金線材においては、前記線材表面部におけるナノインデンテーション硬さを1.45GPa以上とするが、1.6GPa以上とすることがさらに好ましい。上限値には特に制限はないが、通常、1.7GPa以下とする。
[合金組成]
 本発明の銅合金線材は、(i)Agを0.5~4質量%、並びに/又は(ii)Sn、Mg、Zn、In、Ni、Co、Zr及びCrからなる群から選ばれる少なくとも1種を各々の含有量として0.05~0.3質量%含有し、残部はCuと不可避不純物からなる。ここで、合金添加元素の含有量について単に「%」という場合は、「質量%」の意味である。また、Sn、Mg、Zn、In、Ni、Co、Zr及びCrからなる群から選ばれる少なくとも1種の合金成分の合計含有量には特に制限はないが、銅合金線材の導電率の著しい低下を防ぐためには、Ag以外のSn、Mg、Zn、In、Ni、Co、Zr及びCrからなる群から選ばれる少なくとも1種の合金成分の含有量は合計で好ましくは0.5質量%以下である。
 本発明の銅合金線材においては、(i)Agを単独で含有してもよく、あるいは、(ii)Sn、Mg、Zn、In、Ni、Co、Zr及びCrからなる群から選ばれる少なくとも1種を単独で含有してもよく、あるいは、これらの(i)Agと(ii)Sn、Mg、Zn、In、Ni、Co、Zr及びCrからなる群から選ばれる少なくとも1種とを両方とも含有してもよい。
 これらの元素は、それぞれ固溶強化型あるいは析出強化型の元素であり、Cuにこれらの元素を添加することで導電率を大幅に低下させることなく強度を上げることができる。この添加によって、銅合金線材自体の強度が上がり、耐屈曲疲労特性が向上すると共に、線径または線材の厚さが0.1mm以下の極細線に加工した後に加熱処理(半軟化処理)を施しても、前記半軟化処理後に行って前記線材表面部を硬化する為の最終(仕上)冷間加工に耐え得るようになる。一般に耐屈曲疲労特性は引張強さに比例するが、引張強さを大きくするために加工を加えると伸びが低下しマグネットワイヤ等の極細銅合金線材へ成形することができなくなる。ここで、屈曲疲労時に銅合金線材にかかる曲げ歪は線材の外周部ほど大きく、中心部に近いほど曲げ歪量は小さくなる。そのため、本発明によれば、仕上冷間加工によって線材表面の所定の深さ領域(前記線材表面部)のみ所定の硬度を有するように加工硬化することで、耐屈曲疲労特性を向上させることができる。また、線材表面部のみ加工硬化されている一方で、前記線材表面部以外の線材残部全体(つまり、線材表面部以外の、前記所定の深さよりも深い中心までの部分)は半軟化状態を維持している。この為、線材全体としての伸びを十分確保することができるので、マグネットワイヤ等の極細銅合金線材への成形が可能となる。
 Agは、これらの元素の中でも特に導電率を下げずに強度を上げることができる元素であって、例えばマグネットワイヤ等に用いられる本発明に係る銅合金における必須添加元素の一例である。本発明において、Ag含有量は0.5~4質量%とし、好ましくは0.5~2%である。Ag含有量が少なすぎる場合、十分な強度を得ることができない。また、Ag含有量が多すぎると導電性が低下するとともにコストが高くなりすぎる。
 Sn、Mg、Zn、In、Ni、Co、Zr及びCrからなる群から選ばれる少なくとも1種の元素は、本発明に係る銅合金における必須添加元素の別の一例である。本発明において、これらの元素の含有量は各々の含有量として0.05~0.3%とし、好ましくは0.05~0.2%である。この含有量が各々の含有量として少なすぎる場合、これらの元素添加による強度上昇の効果が殆ど見込めない。また、この含有量が多すぎると導電率の低下が大きすぎるため、マグネットワイヤ等の銅合金線材として不適である。
[製造方法]
 本発明の銅合金線材の製造方法について説明する。
 前記のとおり、本発明の銅合金線材の形状は、丸線に限定されず、角線や平角線としても良いので、これらについて以下に説明する。
[丸線材の製造方法]
 まず、本発明の銅合金丸線材の製造方法は、例えば、鋳造、中間の冷間加工、中間の熱処理(中間焼鈍)、最終の熱処理(最終焼鈍)、仕上の冷間加工の各工程をこの順に施してなる。ここで、中間焼鈍に付さなくても所望の物性を有する銅合金線材が得られる場合には、中間焼鈍は省略してもよい。
[鋳造]
 Cuに、Agと及び/又はSn、Mg、Zn、In、Ni、Co、Zr及びCrからなる群から選ばれる少なくとも1種の添加元素とを添加し、鋳造機内部(内壁)が好ましくは炭素製の、例えば黒鉛坩堝にて、溶解し鋳造する。溶解するときの鋳造機内部の雰囲気は、酸化物の生成を防止するために真空もしくは窒素やアルゴンなどの不活性ガス雰囲気とすることが好ましい。鋳造方法には特に制限はなく、例えば横型連続鋳造機やUpcast法などを用いることができる。これらの連続鋳造伸線法によって、鋳造から伸線の工程を連続して行って、直径が通常φ8~23mm程度の荒引線を鋳造する。
 連続鋳造伸線法によらない場合には、鋳造によって得たビレット(鋳塊)を伸線加工に付すことによって、同様に直径が通常φ8~23mm程度の荒引線を得る。
[冷間加工、中間焼鈍](線材加工工程)
 この荒引線に冷間加工を施すことによって、直径がφ0.1mm以下の細径線に加工する。この冷間加工としては、冷間伸線することが好ましい。
 この冷間加工(伸線)での加工率は、目標線径と銅合金組成、さらにはその後の熱処理や冷間加工での条件に応じて変わり、特に制限するものではないが、通常この加工率を70.0~99.9%とする。
 この冷間加工が、第一の冷間加工(伸線)と第二の冷間加工(伸線)の複数の冷間加工工程を有している場合、第一と第二の冷間加工の間に中間焼鈍(中間熱処理)を行っても良い。
 中間焼鈍を行う熱処理方法としては大きく分けてバッチ式と連続式が挙げられる。バッチ式の熱処理は処理時間、コストがかかるため生産性に劣るが、温度や保持時間の制御が行い易いため特性の制御を行い易い。これに対し連続式の熱処理は伸線加工工程と連続で熱処理が行えるため生産性に優れるが、極短時間で熱処理を行う必要があるため熱処理温度と時間を正確に制御し特性を安定して実現させることが必要となる。それぞれの熱処理方法は以上のように長所と短所があるため、目的に沿った熱処理方法を選択すればよい。
 バッチ式の場合は、例えば窒素やアルゴンなどの不活性雰囲気の熱処理炉で、300~600℃で30分~2時間熱処理を行うことが好ましい。
 連続式の熱処理としては、通電加熱式と雰囲気内走間熱処理式が挙げられる。通電加熱式は、伸線工程の途中に電極輪を設け、電極輪間を通過する銅合金線材に電流を流し、銅合金線材自身に発生するジュール熱によって熱処理を行う方法である。雰囲気内走間熱処理式は、伸線の途中に加熱用容器を設け、所定の温度(例えば、300~700℃)に加熱された加熱用容器雰囲気の中に銅合金線材を通過させ熱処理を行う方法である。いずれの熱処理方法も銅合金線材の酸化を防止するために不活性ガス雰囲気下で熱処理を行うことが好ましい。これらの連続式熱処理における熱処理条件は300~700℃で0.5~5秒とすることが好ましい。
 複数の冷間加工の間で中間焼鈍を行うことで、得られる線材の伸びを回復させることによって加工性を向上させることができる。また、中間焼鈍によりAg析出が促進され、得られる線材の強度、導電性をより高くすることができる。例えば、この中間熱処理後の銅合金線材の引張強さが330MPa以上、伸び10%以上の特性を満たすようになるような条件で行うことが好ましい。
[仕上焼鈍(最終焼鈍ともいう)](最終熱処理工程)
 上記工程により所望のサイズ(線径)まで加工した銅合金線材に最終熱処理として仕上焼鈍を施す。
 仕上焼鈍としてのこの熱処理は、熱処理後の銅合金線材の引張強さが330MPa以上、伸び10%以上の特性を満たすようになるような条件で行う。仕上焼鈍をこのような半軟化処理とすることで、銅合金線材自体の強度を上げて耐屈曲疲労特性を向上させると共に、熱処理後の表面への仕上冷間加工を行い易くすることができる。
 仕上焼鈍を行う熱処理方法としては前記中間焼鈍と同様に、バッチ式と連続式が挙げられる。
 この仕上焼鈍の際に、銅合金線材の組成や加工率によっては、最終熱処理後の線材における引張強さ、伸びが若干変化することがある。そこで、本発明においては、この最終熱処理(仕上焼鈍)によって得られる銅合金線材の引張強さが330MPa以上、伸びが10%以上となるように、仕上焼鈍における加熱温度、加熱保持時間を適宜調整する。
 一般に熱処理温度が高いほど短時間で、熱処理温度が低いほど長時間で熱処理を行う。本発明においては、仕上焼鈍をバッチ式で行う場合は、300~450℃で30分~2時間の熱処理とすることが好ましい。一方、連続式で行う場合は、300~700℃で0.5~5秒の熱処理とすることが好ましい。
 この最終焼鈍後に仕上げ加工を行うことで、銅合金線材の線材表面部のみでなくより中心側の銅合金線材全体の特性も若干変化させてしまう。この最終焼鈍後の仕上冷間加工によって得られる銅合金線材の最終特性が引張強さ350MPa以上、伸び7%以上となるように、上記の通り、最終焼鈍前の銅合金線材の特性を調整し、かつ、最終焼鈍条件を決定する。
[仕上冷間加工](冷間加工工程)
 以上の最終熱処理した銅合金線に最終(仕上)冷間加工を施して、線材表面部のナノインデンテーション硬さが1.45GPa以上となるように硬化する。本発明の銅合金線材は強度が高いため線径φまたは線材の厚さtが0.1mm以下の極細線に対しても仕上冷間加工を行うことができる。一般に耐屈曲疲労特性は引張強さに比例するが、引張強さを大きくするために加工を加えると伸びが低下しマグネットワイヤ等へ成形することができなくなる。屈曲疲労時に線にかかる曲げ歪は線の外周部ほど大きく、中心部に近いほど曲げ歪量は小さくなる。そのため仕上冷間加工を行い線材表面部のみ硬くすることで耐屈曲疲労特性を向上させることができる。また、線材の線材表面部のみ硬くなっている一方で線材の中心側は半軟化状態を維持しているため、線材全体の伸びは十分確保することができ、マグネットワイヤ等の極細線材への成形も可能となる。本発明においては、仕上冷間加工に付す前に、最終製品の銅合金線材における強度350MPa以上、伸び7%以上の特性を与えるような半軟化熱処理を施しておくことによって、断線のリスクを効果的に下げることができる。この仕上冷間加工としては、伸線加工を行うが、この伸線加工の加工率は通常3~15%、好ましくは5~15%、さらに好ましくは7~12%である。この仕上冷間加工の加工率が小さすぎる場合には、表面加工、強度が不十分で耐屈曲疲労特性向上の効果が不十分である場合がある。また、この仕上冷間加工の加工率が大きすぎる場合には、当該加工が線材表面部を超えて線材全体に及んでしまい、伸びを損なうとともに加工での断線のリスクが高くなる場合がある。
[平角線材の製造方法]
 次に、本発明の銅合金平角線材の製造方法は、平角線加工工程を有することと、平角形状に適した仕上冷間加工とすること以外は、前記丸線材の製造方法と同様である。具体的には、本発明の平角線材の製造方法は、例えば、鋳造、中間冷間加工(冷間伸線)、平角線加工、最終熱処理(最終焼鈍)、仕上冷間加工の各工程をこの順に施してなる。必要に応じて、中間冷間加工と平角線加工の間に中間焼鈍(中間熱処理)を入れても良いことも、前記丸線材の製造方法と同様である。鋳造、冷間加工、中間焼鈍、最終焼鈍の各工程の加工・熱処理の各条件とそれらの好ましい条件も丸線材の製造方法と同様である。
[平角線加工]
 平角線加工の前までは、丸線材の製造と同様にして、鋳造で得た鋳塊に冷間加工(伸線加工)を施して丸線形状の荒引線を得て、必要により中間焼鈍を施す。平角線加工としては、こうして得た丸線(荒引線)に、圧延機による冷間圧延、カセットローラーダイスによる冷間圧延、プレス、引抜加工等を施す。この平角線加工により、幅方向(TD)断面形状を長方形に加工して、平角線の形状とする。この圧延等は、通常1~5回のパスによって行う。圧延等の際の各パスでの圧下率と合計圧下率は、特に制限されるものではなく、所望の平角線サイズが得られるように適宜設定すればよい。ここで、圧下率とは平角加工を行った時の圧延方向の厚さの変化率であり、圧延前の厚さをt、圧延後の線の厚さをtとした時、圧下率(%)は{1-(t/t)}×100で表される。例えば、この合計圧下率は、10~90%とし、各パスでの圧下率は、10~50%とすることができる。ここで、本発明において、平角線の断面形状には特に制限はないが、アスペクト比は通常1~50、好ましくは1~20、さらに好ましくは2~10である。アスペクト比(下記のw/tとして表わされる)とは、平角線の幅方向(TD)断面を形成する長方形の長辺に対する短辺の比である。平角線のサイズとしては、平角線材の厚さtは前記幅方向(TD)断面を形成する長方形の短辺に等しく、平角線材の幅wは前記幅方向(TD)断面を形成する長方形の長辺に等しい。平角線材の厚さは、通常0.1mm以下、好ましくは0.08mm以下、より好ましくは0.06mm以下である。平角線材の幅は、通常1mm以下、好ましくは0.7mm以下、さらに好ましくは0.5mm以下である。
[仕上冷間加工]
 仕上冷間加工は、平角線材の場合、前記平角線加工と同様に行う。この仕上冷間加工によって、線材表面部のナノインデンテーション硬さが1.45GPa以上となるように硬化することは。丸線材の場合と同様である。具体的には、平角線材に対する仕上冷間加工は、圧延機による冷間圧延、カセットローラーダイスによる冷間圧延とする。この加工率は通常3~15%、好ましくは5~15%、さらに好ましくは7~12%である。この仕上冷間加工の加工率が小さすぎる場合には、表面加工、強度が不十分で耐屈曲疲労特性向上の効果が不十分である場合がある。また、この仕上冷間加工の加工率が大きすぎる場合には、当該加工が線材表面部を超えて線材全体に及んでしまい、伸びを損なうとともに加工での断線のリスクが高くなる場合がある。
 このような加工、熱処理によって製造された平角線材は、仕上冷間加工によって厚さ方向の上下面表層で線材表面から少なくとも深さ5%までの領域(最大で線材表面から深さ20%までの領域。好ましくは線材表面から深さ15%までの領域)に、ナノインデンテーション硬さ1.45GPa以上の硬化層を表面加工層として設けられてなる。前記丸線材の場合には、線材の円周方向の表面全面に前記硬化層が表面加工層として存するのに対して、平角線材の場合には、線材の表面の厚さ方向の上下両面にそれぞれ前記硬化層が表面加工層として存する点が異なる。しかしながら、所定の浅い範囲内の線材表面部に前記硬化層を表面加工層として有する点では、丸線材と平角線材(さらには角線材)で同様である。
 この平角線材を厚さ方向に巻線加工する場合、本発明による丸線材と同様に、高い伸び、屈曲疲労特性を発現することができる。ここで、平角線材を厚さ方向に巻線加工するとは、平角線材の幅wをコイルの幅として、平角線をコイル状に巻きつけることをいう。
[角線材の製造方法]
 さらに、角線材を製造する場合には、前記平角線材の製造方法において、幅方向(TD)断面が正方形(w=t)となるように設定すればよい。
[線材の製造方法の別の実施形態]
 本発明の銅合金線材の製造方法の別の一実施形態としては、まず鋳造によって得た荒引き線を第一の冷間加工(伸線)に付した後に、中間焼鈍によって伸びを回復して、さらに第二の冷間加工(伸線)を行って所望の線径または線材の厚さとし、最終(仕上)焼鈍によって所定の機械強度と伸びに回復しておき、その後、最終(仕上)冷間加工によって線材表面部のナノインデンテーション硬さを調整するとともに銅合金線材全体を所定の機械強度と伸びを有するように最終的に調整する、という全製造工程を挙げることができる。但し、エネルギー消費、効率の観点からは、冷間加工工程の数を少なくする方が好ましい。
 これらの第一及び第二の冷間伸線加工工程での各加工率は、目標線径または線材の厚さと銅合金組成、さらには中間焼鈍及び仕上焼鈍の2回の熱処理条件に応じて変わり、特に制限するものではないが、通常、第一の冷間加工(伸線)での加工率を70.0~99.9%とし、第二の冷間加工(伸線)での加工率を70.0~99.9%とする。
[平角線材及び角線材の製造方法の別の実施形態]
 前記の製造方法に代えて、所定の合金組成の板材または条材を製造し、これらの板または条をスリットして、所望の線幅の平角線材または角線材を得ることができる。
 この製造工程として、例えば、鋳造、熱間圧延、冷間圧延、仕上焼鈍、仕上冷間加工、スリット加工からなる方法がある。必要に応じて冷間圧延の途中に中間焼鈍を入れても良い。スリット加工は場合によっては仕上焼鈍の前、若しくは仕上冷間加工の前に行っても良い。
 以上の製造方法によって引張強さ350MPa以上、伸び7%以上の銅合金線材とする。
[線径または線材の厚さ、用途]
 本発明の銅合金線材の線径または線材の厚さは0.1mm以下であり、好ましくは0.08mm以下、より好ましくは0.06mm以下である。線径または線材の厚さの下限値には特に制限はないが、現在の技術では通常0.01mm以上である。
 本発明の銅合金線材の用途は、特に制限されないが、例えば、携帯電話、スマートフォンなどに使用されているスピーカコイルに用いられる極細線であるマグネットワイヤ等が挙げられる。
[他の物性]
 本発明の銅合金線材の引張強さを350MPa以上としたのは、350MPa未満では伸線加工により細径化したときの強度が足りず、耐屈曲疲労特性に劣るためである。
 また、本発明の銅合金線材の伸びを7%以上としたのは、7%未満では加工性に劣り、コイルを成形する際に破断等の不具合が生じてしまうためである。
 以上の方法で得られた本発明の銅合金線は極細線マグネットワイヤ等の極細銅合金線材として成形可能な伸びを有しながら高い耐屈曲疲労性を示す。
 以下に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこの実施例に限定されるものではない。
[丸線材の実施例、比較例]
 鋳造材は、0.5~4質量%のAg、及び/又は、各々の含有量として0.05~0.3質量%のSn、Mg、Zn、In、Ni、Co、Zr及びCrからなる群から選ばれる少なくとも1種を含有し、残部がCuと不可避不純物からなる表1~3に示した種々の合金組成を有する本発明例の銅合金と、表1~3に示した種々の合金組成を有する比較例の銅合金とを、それぞれ横型連続鋳造方法で直径φ10mmの荒引線に鋳造した。
 この荒引線を冷間加工(伸線)、中間焼鈍、仕上焼鈍、仕上冷間加工(伸線)(以下の第1と第2の2回の冷間加工の合計加工率:99.984%)して、表1、表3の試験例では最終線径φ40μm、表2の試験例では表中に示した各種線径の、各丸線材サンプルを作製した。
 中間焼鈍、仕上焼鈍の熱処理は、バッチ焼鈍、電流焼鈍、走間焼鈍の3パターンから選ばれるいずれかで実施し、いずれも窒素雰囲気下で行った。なお、中間焼鈍は、第1の冷間加工(伸線)と第2の冷間加工(伸線)の間に1度だけ行った。表1及び表2に示した試験例では中間焼鈍は行わなかった。また、表3に示した試験例では、中間焼鈍を行ったものと行わなかったものとがある。中間焼鈍を行った試験例における第1の冷間加工(伸線)後で中間焼鈍前の線径を、表3中の「中間焼鈍」の「線径(mm)」欄に示した。この場合の加工率は、第1の冷間加工(伸線)の加工率を70.0~99.9%、第2の冷間加工(伸線)の加工率を70.0~99.9%とした。
 表1~3に、本発明による銅合金丸線材と比較例の銅合金丸線材の製造条件と得られた銅合金丸線材の特性とを示す。
[平角線材の実施例、比較例]
 前記丸線材と同様にして、但し、荒引線を冷間加工(伸線)後、または行った場合には中間焼鈍後、のいずれかに、平角線加工を施してから、仕上焼鈍した後に、仕上冷間加工して、平角線材サンプルを作製した。表4に示したように、中間焼鈍は行ったものと行わなかったものとがある。
 平角線加工は、表4に示したように、この加工前の丸線の線径φ(mm)を、幅w(mm)×厚さt(mm)のサイズの平角線に冷間圧延によって加工した。仕上冷間加工は、表4に示した加工率とした以外は前記平角線加工と同様にして、冷間圧延によって加工した。
 表4に、本発明による銅合金平角線材と比較例の銅合金平角線材の製造条件と得られた銅合金平角線材の特性とを示す。
[特性]
 以上のようにして得た丸線材と平角線材のサンプルについて、各種特性を試験、評価した。
 引張強さ(TS)、伸び(El)は、JIS Z2201、Z2241に従い測定した。
 屈曲疲労破断回数は、屈曲疲労試験として、図1に示す装置を用いて線材の供試材が破断するまでの回数を測定した。図1に示すように、試料として線径φまたは線材の厚さtが0.04mm(40μm)の銅合金線材の試料をダイスで挟み、線材のたわみを抑えるため下端部に10gの錘(W)をつるして荷重を掛けた。平角線の場合には、線材の厚さ方向(ND)でサンプルをダイスで挟むようにセットした。試料の上端部は接続具で固定した。この状態で試料を左右に90度ずつ折り曲げて、毎分100回の速さで繰り返しの曲げを行い、破断するまでの曲げ回数をそれぞれの試料について測定した。なお、曲げ回数は図中1→2→3の一往復を一回と数え、また、2つのダイス間の間隔は、試験中に銅合金線材の試料を圧迫しないように1mmとした。破断の判定は、試料の下端部に吊るした錘が落下したときに、破断したものとした。なおダイスの曲率によって、曲げ半径(R)は2mmとした。
 コイル寿命は、前記試験方法で測定した屈曲疲労破断回数で、次のように評価した。屈曲疲労試験の結果から破断回数が7000回以上のものを「◎(優)」、5000回以上で7000回未満のものを「○(良)」、3000回以上で5000回未満のものを「△(やや劣)」、3000回未満のものを「×(不良)」と評価した。
 伸線性として、伸線中の断線の有無で評価した。この試験は、軟化乃至半軟化処理した銅合金線材を長さ100km仕上げ加工する試験を5回行い、1回も断線せずに伸線できたものを「○(良)」、1回断線したものを「△(やや劣)」、2回以上断線したものを「×(不良)」とした。
 線材表面部及び線材中心部の硬さはナノインデンター(エリオニクス社製ENT-2100)を使用して測定した。
 線材の表面側に在る加工層の厚さ(μm)は、線材横断面(TD断面)の組織観察とナノインデンター試験での硬さ変化から求め、「表面加工層厚さ(μm)」とした。また、この求めた加工層の厚さ(μm)から、線材最表面から加工層の最も中心側までの厚さの線材の線径φまたは線材の厚さtに対する割合(%)を計算して求め、「表面加工層厚さ(%)」とした。
 コイル成形性は、銅合金線材100kmを直径φ5mmのコイルに巻き線加工したときの断線発生頻度を試験して、1回も断線しなかったものを「○(良)」、1回断線したものを「△(やや劣)」、2回以上断線したものを「×(不良)」として評価した。
 表1にCu-2%Ag合金線を最終線径0.04mm(φ40μm)となるよう加工、熱処理した本発明例の丸線材のサンプル(実施例1~6)と比較例の丸線材のサンプル(比較例1~7)の特性を測定、評価した結果を示す。最終熱処理(仕上焼鈍)条件を表1に示したように変更して、仕上冷間加工前の強度と伸びを種々変化させた。
Figure JPOXMLDOC01-appb-T000001
 実施例1~6に示すように、引張強さ330MPa以上、伸び10%以上となるように最終熱処理(仕上焼鈍)を施した銅合金線材に3~15%の加工率の仕上冷間加工を加えることによって、線材表面部にナノインデンテーション硬さが1.45GPa以上の加工層が形成され、耐屈曲疲労特性を向上させることができたことが分かる。また、実施例3~5に示すように仕上冷間加工の加工率が7~12%の場合が、より耐屈曲疲労特性向上効果が優れるため好ましい。
 これに対して、比較例1のようにこの線材表面部を設ける仕上冷間加工を施していない場合や、比較例2や3に示すように仕上冷間加工での加工率が3%未満と小さすぎる場合には、加工層が全く存在しないかあるいは加工層の層厚が薄すぎるため耐屈曲疲労特性を向上させることができない。また、比較例4や5のように仕上冷間加工での加工率が15%より大と大きすぎる場合、線材表面部のみではなく、より中心側までを含めた銅合金線材全体への加工となってしまうために、耐屈曲疲労特性を向上させる表面加工層が満足に形成されず、仕上冷間加工後の銅合金線材の伸びが劣り、また、耐屈曲疲労特性を向上させることができない。
 さらに、比較例6のように仕上冷間加工前の最終熱処理が不十分で伸びが10%未満の場合は仕上冷間加工後の銅合金線材の伸びが7%未満となりコイル成形性が不十分となってしまう。また、比較例7に示すように仕上冷間加工前の最終熱処理で軟化させすぎて銅合金線材の引張強さが330MPa未満であると、線材表面部の硬度が不足し、仕上焼鈍後の強度も不足する。さらには、仕上冷間加工時の断線を招いてしまう。
 なお、平角線材の場合にも、前記丸線材の場合と同様の結果が得られる。
 実施例7~12、比較例8~9では、最終熱処理(仕上焼鈍)条件を表2に示したように変更して、仕上冷間加工前の強度を種々変化させた様々な径のCu-1%Ag合金丸線材を10%の加工率で仕上冷間加工したときの伸線性について評価した結果を示す。なお、比較例10~11では、前記Cu-1%Ag合金線に代えてCu-0.3%Ag合金丸線材とした以外は前記と同様に試験した。
 伸線性については軟化乃至半軟化処理した銅合金線材を長さ100km仕上げ加工する試験を5回行い、1回も断線せずに伸線できたものを「○(良)」、1回断線したものを「△(やや劣)」、2回以上断線したものを「×(不良)」とした。
 線径φ0.5mm以上の比較的太い線を伸線加工する場合は断線することなく伸線することができるが、φ0.1mm以下の線を伸線する場合、伸線加工前で仕上焼鈍後の銅合金線材の引張強さが330MPa以上であることが好ましいことが分かる。よって、本発明の製造方法で規定する製造条件によって、φ0.1mm以下の細線に対し表面加工を施して耐屈曲疲労特性を向上させることができることが分かる。
 なお、平角線材の場合にも、前記丸線材の場合と同様の結果が得られる。
Figure JPOXMLDOC01-appb-T000002
 表3にその他様々な合金組成の銅合金で調製した丸線材の本発明の実施例と比較例を示す。仕上冷間加工前の最終熱処理(仕上焼鈍)によって引張強さ330MPa以上、伸び10%以上の銅合金線材とすることでφ0.1mm以下で加工率3~15%、好ましくは5~15%、さらに好ましくは7~12%の仕上冷間加工を施すことが可能となることが分かる。
 また、この加工率3~15%、好ましくは5~15%、さらに好ましくは7~12%の仕上冷間加工によって線材に所定の表面加工を施すことで、銅合金線材の耐屈曲疲労特性を向上させることができ、仕上冷間加工後の伸びが7%以上、好ましくは10%以上で十分なコイル成形性を有し、かつコイル寿命の長いマグネットワイヤ等を得ることができることが分かった。
 特に、比較例と本発明の実施例との対比から、線材の最表面から線径に対して少なくとも5%内側までの間の深さ領域におけるナノインデンテーション硬さが1.45GPa以上であり、かつ、最終線材の引張強さが350MPa以上で伸びが7%以上である場合に、所望の物性が達成できることが分かる。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表4に、様々な合金組成の銅合金で調製した平角線材の本発明の実施例と比較例を示す。表4から、平角線材の場合にも、丸線材の場合と同様の結果が得られたことがわかる。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012

Claims (5)

  1.  Agを0.5~4質量%、並びに、Sn、Mg、Zn、In、Ni、Co、Zr及びCrからなる群から選ばれる少なくとも1種を各々の含有量として0.05~0.3質量%からなる群から選ばれる少なくとも1種を含有し、残部がCuと不可避不純物からなる合金組成を有してなり、線径または線材の厚さが0.1mm以下である銅合金線材であって、前記線材の最表面から線径または線材の厚さに対して少なくとも5%内側までの間の深さ領域におけるナノインデンテーション硬さが1.45GPa以上であり、かつ前記線材の中心部のナノインデンテーション硬さが1.45GPa未満であって、前記線材の引張強さが350MPa以上、伸びが7%以上である銅合金線材。
  2.  Agを0.5~4質量%含有してなる請求項1に記載の銅合金線材。
  3.  Sn、Mg、Zn、In、Ni、Co、Zr及びCrからなる群から選ばれる少なくとも1種を各々の含有量として0.05~0.3質量%含有してなる請求項1に記載の銅合金線材。
  4.  Agを0.5~4質量%、並びに、Sn、Mg、Zn、In、Ni、Co、Zr及びCrからなる群から選ばれる少なくとも1種を各々の含有量として0.05~0.3質量%からなる群から選ばれる少なくとも1種を含有し、残部がCuと不可避不純物からなる合金組成を有してなる銅合金の荒引線に冷間加工を施して、線径または線材の厚さが0.1mm以下の線材を形成する線材加工工程と、
     前記線材に熱処理を施して、この熱処理後の線材が引張強さ330MPa以上、伸び10%以上を有するようにする最終熱処理工程と、
     前記熱処理が施された線材に加工率3~15%の冷間加工を施す冷間加工工程と
    を有してなる銅合金線材の製造方法であって、
     前記得られる銅合金線材が、線材の最表面から線径または線材の厚さに対して少なくとも5%内側までの間の深さ領域におけるナノインデンテーション硬さが1.45GPa以上であり、かつ前記線材の中心部のナノインデンテーション硬さが1.45GPa未満であって、前記線材の引張強さが350MPa以上、伸びが7%以上である、銅合金線材の製造方法。
  5.  前記線材加工工程において、複数の冷間加工の間に中間熱処理を行って、この中間熱処理後の線材が引張強さ330MPa以上、伸び10%以上を有するようにする請求項4に記載の銅合金線材の製造方法。
PCT/JP2013/068160 2012-07-02 2013-07-02 銅合金線材及びその製造方法 WO2014007259A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013554707A JP5840235B2 (ja) 2012-07-02 2013-07-02 銅合金線材及びその製造方法
KR1020147026828A KR101719889B1 (ko) 2012-07-02 2013-07-02 구리합금 선재 및 그의 제조방법
CN201380015337.3A CN104169447B (zh) 2012-07-02 2013-07-02 铜合金线材及其制造方法
EP13813342.6A EP2868758B1 (en) 2012-07-02 2013-07-02 Copper-alloy wire rod and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012148920 2012-07-02
JP2012-148920 2012-07-02

Publications (1)

Publication Number Publication Date
WO2014007259A1 true WO2014007259A1 (ja) 2014-01-09

Family

ID=49882013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068160 WO2014007259A1 (ja) 2012-07-02 2013-07-02 銅合金線材及びその製造方法

Country Status (5)

Country Link
EP (1) EP2868758B1 (ja)
JP (1) JP5840235B2 (ja)
KR (1) KR101719889B1 (ja)
CN (1) CN104169447B (ja)
WO (1) WO2014007259A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152166A1 (ja) * 2014-03-31 2015-10-08 古河電気工業株式会社 銅合金線材及びその製造方法
CN106029930A (zh) * 2014-02-28 2016-10-12 株式会社自动网络技术研究所 铜合金绞线及其制造方法、汽车用电线
JP2019500494A (ja) * 2015-12-02 2019-01-10 ヘレウス マテリアルズ シンガポール ピーティーイー. リミテッド 銀合金化銅ワイヤ
CN114406228A (zh) * 2022-01-10 2022-04-29 营口理工学院 一种凝固过程中形成纳米铬相的铜合金铸件及铸造方法
US11404181B2 (en) 2020-02-06 2022-08-02 Hitachi Metals, Ltd. Copper alloy wire, plated wire, electrical wire and cable

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105420534A (zh) * 2015-11-06 2016-03-23 广西南宁智翠科技咨询有限公司 一种超高导电率的合金导线
CN105274389A (zh) * 2015-11-06 2016-01-27 广西南宁智翠科技咨询有限公司 一种低电阻的铜合金导线
CN105624460B (zh) * 2015-12-29 2017-10-31 陕西通达电缆制造有限公司 一种高导电率高韧性的铜合金电缆导线及其制备方法
EP3460080B1 (en) 2016-05-16 2021-01-06 Furukawa Electric Co., Ltd. Copper alloy wire material
CN108359837B (zh) * 2018-03-16 2019-08-02 重庆鸽牌电工材料有限公司 一种高纯无氧高含银铜杆的制备方法
KR20200129027A (ko) * 2018-03-20 2020-11-17 후루카와 덴키 고교 가부시키가이샤 구리 합금 선재 및 구리 합금 선재의 제조 방법
CN108777180A (zh) * 2018-05-10 2018-11-09 保定维特瑞光电能源科技有限公司 一种基于动态交通流量监测的地磁感应线圈及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586445A (ja) 1991-09-27 1993-04-06 Hitachi Cable Ltd 銅 線
JP2003237428A (ja) * 2002-02-21 2003-08-27 Mitsubishi Cable Ind Ltd 析出強化型銅合金トロリ線およびその製造方法
WO2007046378A1 (ja) * 2005-10-17 2007-04-26 National Institute For Materials Science 高強度・高導電率Cu-Ag合金細線とその製造方法
JP3941304B2 (ja) 1999-11-19 2007-07-04 日立電線株式会社 超極細銅合金線材及びその製造方法並びにこれを用いた電線
JP2008095202A (ja) * 2003-05-27 2008-04-24 Fisk Alloy Wire Inc 銅合金線材およびその製造方法
JP2009280860A (ja) 2008-05-21 2009-12-03 Sumitomo Electric Ind Ltd Cu−Ag合金線及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199042A (ja) * 1998-11-04 2000-07-18 Showa Electric Wire & Cable Co Ltd Cu―Ag合金線材の製造方法およびCu―Ag合金線材
JP2001234309A (ja) 2000-02-16 2001-08-31 Hitachi Cable Ltd 極細銅合金撚線の製造方法
US6749699B2 (en) * 2000-08-09 2004-06-15 Olin Corporation Silver containing copper alloy
JP3948203B2 (ja) * 2000-10-13 2007-07-25 日立電線株式会社 銅合金線、銅合金撚線導体、同軸ケーブル、および銅合金線の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586445A (ja) 1991-09-27 1993-04-06 Hitachi Cable Ltd 銅 線
JP3941304B2 (ja) 1999-11-19 2007-07-04 日立電線株式会社 超極細銅合金線材及びその製造方法並びにこれを用いた電線
JP2003237428A (ja) * 2002-02-21 2003-08-27 Mitsubishi Cable Ind Ltd 析出強化型銅合金トロリ線およびその製造方法
JP2008095202A (ja) * 2003-05-27 2008-04-24 Fisk Alloy Wire Inc 銅合金線材およびその製造方法
WO2007046378A1 (ja) * 2005-10-17 2007-04-26 National Institute For Materials Science 高強度・高導電率Cu-Ag合金細線とその製造方法
JP2009280860A (ja) 2008-05-21 2009-12-03 Sumitomo Electric Ind Ltd Cu−Ag合金線及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KINZOKU, METAL, vol. 78, no. 9, 2008, pages 47

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106029930A (zh) * 2014-02-28 2016-10-12 株式会社自动网络技术研究所 铜合金绞线及其制造方法、汽车用电线
WO2015152166A1 (ja) * 2014-03-31 2015-10-08 古河電気工業株式会社 銅合金線材及びその製造方法
CN106164306A (zh) * 2014-03-31 2016-11-23 古河电气工业株式会社 铜合金线材及其制造方法
JPWO2015152166A1 (ja) * 2014-03-31 2017-04-13 古河電気工業株式会社 銅合金線材及びその製造方法
EP3128019A4 (en) * 2014-03-31 2018-06-27 Furukawa Electric Co. Ltd. Copper alloy wire material and manufacturing method thereof
JP2019500494A (ja) * 2015-12-02 2019-01-10 ヘレウス マテリアルズ シンガポール ピーティーイー. リミテッド 銀合金化銅ワイヤ
US11404181B2 (en) 2020-02-06 2022-08-02 Hitachi Metals, Ltd. Copper alloy wire, plated wire, electrical wire and cable
CN114406228A (zh) * 2022-01-10 2022-04-29 营口理工学院 一种凝固过程中形成纳米铬相的铜合金铸件及铸造方法

Also Published As

Publication number Publication date
CN104169447A (zh) 2014-11-26
JPWO2014007259A1 (ja) 2016-06-02
JP5840235B2 (ja) 2016-01-06
KR101719889B1 (ko) 2017-03-24
EP2868758B1 (en) 2018-04-18
EP2868758A4 (en) 2016-05-25
EP2868758A1 (en) 2015-05-06
KR20150034678A (ko) 2015-04-03
CN104169447B (zh) 2017-03-01

Similar Documents

Publication Publication Date Title
JP5840235B2 (ja) 銅合金線材及びその製造方法
JP6943940B2 (ja) 銅合金線材及びその製造方法
JP6499159B2 (ja) 銅合金線材及びその製造方法
JP5840234B2 (ja) 銅合金線材及びその製造方法
JP5117604B1 (ja) Cu−Ni−Si系合金及びその製造方法
TWI425101B (zh) Cu-Ni-Si alloy excellent in bending workability
JP4857395B1 (ja) Cu−Ni−Si系合金及びその製造方法
KR20140002001A (ko) 굽힘 가공성이 우수한 Cu-Ni-Si 계 합금조
JP6228725B2 (ja) Cu−Co−Si系合金及びその製造方法
JP2013032564A (ja) 曲げ加工性に優れたCu−Co−Si系合金
JP2016199808A (ja) Cu−Co−Si系合金及びその製造方法
WO2013058083A1 (ja) コルソン合金及びその製造方法
JP2009108392A (ja) 曲げ加工性に優れる高強度洋白およびその製造方法
JP2013095977A (ja) Cu−Ni−Si系合金及びその製造方法
JP2013221163A (ja) 軟質希薄銅合金を用いた配線材及びその製造方法
JP2014051704A (ja) 銅合金材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013554707

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813342

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147026828

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013813342

Country of ref document: EP