WO2014002982A1 - Color filter, and display device - Google Patents

Color filter, and display device Download PDF

Info

Publication number
WO2014002982A1
WO2014002982A1 PCT/JP2013/067334 JP2013067334W WO2014002982A1 WO 2014002982 A1 WO2014002982 A1 WO 2014002982A1 JP 2013067334 W JP2013067334 W JP 2013067334W WO 2014002982 A1 WO2014002982 A1 WO 2014002982A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
subpixel
sub
blue
pixel
Prior art date
Application number
PCT/JP2013/067334
Other languages
French (fr)
Japanese (ja)
Inventor
野中晴支
長瀬亮
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2013529492A priority Critical patent/JP6287209B2/en
Publication of WO2014002982A1 publication Critical patent/WO2014002982A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix

Definitions

  • the present invention relates to a color filter and a display device.
  • Liquid crystal display devices are used in various applications such as televisions, notebook computers, portable information terminals, smartphones, digital cameras, etc., taking advantage of characteristics such as light weight, thinness, and low power consumption.
  • a color filter is a member necessary for color display of a liquid crystal display device. Pixels composed of three sub-pixels, a red sub-pixel, a green sub-pixel, and a blue sub-pixel, are finely patterned. A three-color filter is generally used. In the three-color filter, white is obtained by additive color mixing of three sub-pixels of red, green, and blue.
  • Patent Document 1 In order to control the white balance of the white display of the four-color filter, a color filter in which any of the red, green, and blue columnar pixels is arranged in an island shape in the fourth color sub-pixel (Patent Document 2), A color filter (Patent Document 3) in which a plurality of through holes are formed in a sub-pixel has been proposed.
  • a four-color display device combining a white light emitting element and a color filter has also been proposed for a display device using organic EL as a backlight (Patent Document 4).
  • the present invention has an object to provide a color filter that is excellent in white balance control despite the downsizing of the sub-pixel due to the improvement in the resolution of the display device, and that can be stably and highly accurately produced. To do.
  • the present inventors have not unilaterally matched the chromaticity of the additive color mixture of the three sub-pixels of red, green, and blue with the chromaticity of the white sub-pixel at the same time. It has been found that the chromaticity of the white subpixel of the fourth color is matched with the chromaticity of the additive color mixture of the three subpixels of red, green, and blue.
  • any one or more of the red, green, and blue sub-pixels extend to the opening of the adjacent sub-pixel of the fourth color, and part of the opening is shielded, so that white balance can be achieved while maintaining dimensional accuracy. Found that it is possible to control.
  • the present invention provides the color filter and display device described in the following (1) to (4).
  • a pixel composed of a red subpixel, a green subpixel, a blue subpixel and a fourth color subpixel, and a black matrix formed between the subpixels is formed on a transparent substrate.
  • the red, green, and blue subpixels each contain a colorant and a resin, and the CIE1931 color system tristimulus value (Y) of the fourth color subpixel is 65 ⁇ Y ⁇ 99.
  • a sub-pixel selected from the group consisting of the red, green and blue sub-pixels extends to the adjacent black matrix and the opening of the fourth color sub-pixel, and the sub-pixel of the fourth color A color filter that covers 5 to 40% of the opening area.
  • the color filter according to (1), wherein the subpixel that shields the subpixel of the fourth color is a blue pixel.
  • the top surface shape of the subpixel that shields the subpixel of the fourth color is: The color filter according to (1) or (2), which is rectangular.
  • a display device comprising the color filter according to any one of (1) to (5) above.
  • the color filter of the present invention it is possible to control the white balance without being affected by the downsizing of the subpixel accompanying the improvement in the resolution of the display device. Furthermore, the color filter of the present invention can be stably produced with high dimensional accuracy.
  • the color filter (hereinafter referred to as “CF”) of the present invention is formed on a transparent substrate between a red subpixel, a green subpixel, a blue subpixel, and a fourth color subpixel, and each of the subpixels.
  • the red, green, and blue subpixels each contain a colorant and a resin, and the CIE1931 colorimetric tristimulus value of the fourth color subpixel.
  • (Y) is 65 ⁇ Y ⁇ 99, and a subpixel selected from the group consisting of the red, green, and blue subpixels extends to the opening of the adjacent black matrix and the subpixels of the fourth color. In other words, 5 to 40% of the opening area of the sub-pixel of the fourth color is shielded.
  • a black matrix 2 is formed on a transparent substrate 1, and red, green, and blue subpixel formation regions 3R, 3G, and 3B on the black matrix are red.
  • Sub-pixel 4R, green sub-pixel 4G, and blue sub-pixel 4B are formed, respectively, and a fourth color sub-pixel formation region 3W, that is, an opening of the fourth color sub-pixel 4W and the opening
  • the blue sub-pixel 4B which is another sub-pixel, extends to part of the black matrix that forms the pixel, and the opening of the sub-pixel 4W of the fourth color needs to be shielded. is there.
  • the sub-pixel extending to the fourth color sub-pixel is preferably a blue pixel.
  • the sub-pixel 4W of the fourth color is omitted.
  • the fourth color sub-pixel 4W is formed as shown in FIG. In FIG. 12, the fourth subpixel includes a portion extending from the blue subpixel 4B.
  • the size of the opening of each sub-pixel may be different.
  • the aperture of the fourth color sub-pixel may be larger than the aperture of the red, green, and blue sub-pixels.
  • the openings of the subpixels may be smaller than the openings of the red, green, and blue subpixels.
  • the CIE1931 color system tristimulus value (Y) (hereinafter, “(Y)”) of the subpixel of the fourth color needs to be in the range of 65 ⁇ Y ⁇ 99.
  • the ratio of the opening area of the subpixels of the fourth color to be shielded can be appropriately selected from desired white balance and transmittance.
  • the sub-pixel opening means, for example, each region surrounded by the black matrix 2 in FIG.
  • the opening area of the subpixel means the area of the region.
  • the opening area of the subpixel of the fourth color is obtained by the product of the width 5 and the width 6 shown in FIG.
  • the blue sub-pixel extends so as to be shielded across the center of the opening of the sub-pixel of the fourth color.
  • 4 is a cross-sectional view taken along line AA ′ and line BB ′ in FIG. 3.
  • FIG. 4C which is a cross-sectional view taken along line AA ′, the blue subpixel is Since it is integrally formed including the extending part, even if the extending part becomes small, the blue subpixel is not easily lost in the development process.
  • the area of the blue subpixel extending on the black matrix is larger, so even if the opening of the subpixel of the fourth color is reduced, the development process Blue subpixels are not easily lost.
  • the extension of the present invention is defined as follows.
  • a sub-pixel selected from the group consisting of red, green and blue sub-pixels is continuously connected to the fourth color sub-pixel and extends to the fourth color sub-pixel.
  • the formed pixels are formed at the same time as subpixels selected from the group consisting of red, green and blue subpixels. Since the sub-pixels formed at the same time have no joints, it can be determined from the presence or absence of joints by microscopic observation or SEM observation.
  • the green subpixel in addition to the blue subpixel, also extends to the opening of the fourth color subpixel.
  • the combination of the two sub-pixels to be extended may be blue and red, or may be green and red.
  • colorants used for pixels include pigments and dyes.
  • Examples of the pigment used for the red subpixel include PR254, PR149, PR166, PR177, PR209, PY138, PY150, and PYP139.
  • Examples of the pigment used for the green subpixel include PG7, PG36, and PG58. , PG37, PB16, PY129, PY138, PY139, PY150 or PY185, and examples of the pigment used for the blue subpixel include PB15: 6 or PV23.
  • blue dyes include C.I. I. Basic blue (BB) 5, BB7, BB9 or BB26 may be mentioned, and examples of red dye include C.I. I. Acid Red (AR) 51, AR87 or AR289.
  • BB Basic blue
  • AR Acid Red
  • resins used for red, green, and blue subpixels include acrylic resins, epoxy resins, and polyimide resins, but photosensitive acrylic resins are preferable because the manufacturing cost of CF can be reduced.
  • the photosensitive acrylic resin generally contains an alkali-soluble resin, a photopolymerizable monomer, and a photopolymerization initiator.
  • alkali-soluble resin examples include a copolymer of an unsaturated carboxylic acid and an ethylenically unsaturated compound.
  • unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetic acid or acid anhydrides.
  • photopolymerizable monomers examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, triacryl formal, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate or dipentaerythritol. Examples include penta (meth) acrylate.
  • photopolymerization initiators examples include benzophenone, N, N′-tetraethyl-4,4′-diaminobenzophenone, 4-methoxy-4′-dimethylaminobenzophenone, 2,2-diethoxyacetophenone, ⁇ -hydroxyisobutylphenone , Thioxanthone or 2-chlorothioxanthone.
  • Examples of the solvent for dissolving the photosensitive acrylic resin include propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethyl acetoacetate, methyl-3-methoxypropionate, ethyl-3-ethoxypropionate , Methoxybutyl acetate or 3-methyl-3-methoxybutyl acetate.
  • the resin component and colorant which consist of alkali-soluble resin, a photopolymerizable monomer, and a polymer dispersing agent are handled as total solid content.
  • the black matrix of CF is preferably a resin black matrix containing a light shielding agent and a resin.
  • the light shielding agent include carbon black, titanium oxide, titanium oxynitride, titanium nitride, or iron tetroxide.
  • the resin used for the resin black matrix is preferably a non-photosensitive polyimide resin because a thin pattern can be easily formed.
  • the non-photosensitive polyimide resin is preferably a polyimide resin obtained by thermosetting a polyamic acid resin synthesized from an acid anhydride and a diamine after patterning.
  • acid anhydrides include pyromellitic dianhydride, 3,3 ′, 4,4′-oxydiphthalcarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride Or 3,3 ′, 4,4′-biphenyltrifluoropropanetetracarboxylic dianhydride.
  • diamines examples include paraphenylene diamine, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, or 3,4'-diaminodiphenyl ether.
  • solvent that dissolves the polyamic acid resin examples include N-methyl-2-pyrrolidone or ⁇ -butyrolactone.
  • a subpixel using a colorant composition other than that in the extending subpixel may not be formed.
  • dents are generated on the surface of the CF, so that the surface of the CF is flattened on the CF as shown in FIG. It is preferable to form a film.
  • the planarizing film 7 the CF surface becomes flat.
  • the resin used for forming the planarizing film include an epoxy resin, an acrylic epoxy resin, an acrylic resin, a siloxane resin, or a polyimide resin.
  • the film thickness of the planarizing film is preferably a film thickness that makes the surface flat, more preferably 0.5 to 5.0 ⁇ m, and even more preferably 1.0 to 3.0 ⁇ m.
  • the transparent substrate examples include soda glass, non-alkali glass, and quartz glass. Moreover, you may use a transparent resin board or a resin film.
  • a resin black matrix is formed on a transparent substrate using a light-shielding agent composition, and then red, green, blue and fourth color subpixels are formed using a colorant composition.
  • the light-shielding agent composition is prepared by mixing a light-shielding agent with a polyamic acid resin and a solvent and performing a dispersion treatment, and then adding various additives.
  • the total solid content in this case is the total of the polyamic acid resin as the resin component and the light shielding agent.
  • the light-shielding agent composition is applied by a method such as a spin coater or a die coater, then vacuum-dried, and semi-cured in a hot air oven or hot plate at 90 to 130 ° C. to form a light-shielding agent coating film.
  • a method such as a spin coater or a die coater
  • After applying the positive resist it is vacuum-dried and prebaked in a hot air oven or hot plate at 80 to 110 ° C. to form a resist film.
  • alkali development such as 1.5 to 3% by mass of potassium hydroxide or tetramethylammonium hydroxide is performed.
  • a pattern is obtained by removing the exposed portion with a liquid.
  • imidation of the polyamic acid resin proceeds by heating in a hot air oven or hot plate at 250 to 300 ° C. for 10 to 60 minutes to form a resin black matrix.
  • the width of the resin black matrix can be changed by changing the design width or exposure amount of the photomask.
  • the colorant composition is prepared using a colorant and a resin.
  • a pigment is used as the colorant, the pigment is mixed with a polymer dispersant and a solvent and subjected to a dispersion treatment, and then added with an alkali-soluble resin, a monomer, a photopolymerization initiator, and the like.
  • the dye is prepared by adding a solvent, an alkali-soluble resin, a monomer, a photopolymerization initiator, and the like.
  • the total solid content in this case is the total of the polymer component, the alkali-soluble resin and monomer, which are resin components, and the colorant.
  • the obtained colorant composition is applied onto a transparent substrate on which a resin black matrix is formed by a method such as a spin coater or a die coater, and then vacuum-dried to form a colorant coating film.
  • a method such as a spin coater or a die coater
  • exposure is selectively performed with ultraviolet rays or the like through a photomask by a proximity exposure machine or a projection exposure machine.
  • development is performed with an alkaline developer such as 0.02 to 1% by mass of potassium hydroxide or tetramethylammonium hydroxide, and the pattern is obtained by removing unexposed portions.
  • the obtained coating film pattern is heat-treated in a hot air oven or hot plate at 180 to 250 ° C. for 5 to 40 minutes, so that the sub-pixel becomes a patterned CF.
  • the patterning process as described above is sequentially performed on the red sub-pixel, the green sub-pixel, and the blue sub-pixel. It is formed so that 5 to 40% of the opening area of the color sub-pixel is shielded.
  • an acrylic resin is applied as a planarizing film by a method such as a spin coater or a die coater, vacuum-dried, and prebaked in a hot air oven or hot plate at 80 to 110 ° C., and then heated in a hot air oven or hot at 150 to 250 ° C.
  • the CF pixel of the present invention can be manufactured by forming a planarizing film by heating on a plate for 5 to 40 minutes.
  • the order of subpixel patterning is not particularly limited.
  • the CF of the present invention is used in a transmissive display device that emits light from the back surface of the CF.
  • a transmissive display device is preferable because the manufacturing cost is low and the contrast ratio is high.
  • CCFL CCFL
  • LED organic EL
  • a light source hereinafter referred to as “backlight”
  • the LED backlight include a two-wavelength LED backlight or a three-wavelength LED backlight, but it is preferable to use a two-wavelength LED composed of a blue LED and a yellow YAG phosphor.
  • white balance can be controlled. Further, according to the present invention, white balance can be controlled even in combination with organic EL.
  • the chromaticity of the sub-pixels of red, green and blue and the fourth color is determined by measuring the transmittance spectrum of each sub-pixel using a microspectrophotometer (for example, MCPD-2000; manufactured by Otsuka Electronics Co., Ltd.)
  • the chromaticity (x, y) is calculated based on the CIE 1931 standard.
  • the white balance of CF is the absolute value ( ⁇ x, ⁇ y) of the difference ( ⁇ x, ⁇ y) between the chromaticity (x, y) of the fourth color sub-pixel and the additive color mixture chromaticity (x, y) of the red-green-blue sub-pixel (
  • the transmittance of the CF pixel can be evaluated from (Y) of the subpixels of the fourth color obtained as described above and (Y) of the additive color mixture of the red, green, and blue subpixels.
  • the CF color reproduction range includes a triangular area connecting the chromaticities (x, y) of red, green, and blue sub-pixels and a triangular area connecting NTSC standard chromaticities (x, y). It can be calculated from the area ratio.
  • the NTSC standard chromaticity (x, y) is red (0.67, 0.33), green (0.21, 0.71), and blue (0.14, 0.08).
  • the color reproduction range of CF is preferably 70 to 100%.
  • (Y) of the red, green, and blue subpixels decreases in principle as the color reproduction range becomes wider, but (Y) of the fourth color subpixel becomes a high value regardless of the color reproduction range. . Therefore, in the CF of the present invention, (Y) of CF can be increased even at 70 to 100%, which is considered to have a sufficiently wide color reproduction range.
  • the aperture area of the subpixel can be measured by observation with an optical microscope.
  • CF forms a plurality of screens of a display device on one transparent substrate.
  • For an image in one screen of a display device observed with an optical microscope measure the short side and the long side of the subpixel opening by 5 or more points using image processing or length measurement software. Determine the area.
  • the width of the sub-pixel, the area of the sub-pixel extending to the opening of the sub-pixel of the fourth color, and the like are also determined based on the average value measured at five or more points.
  • the film thickness of the black matrix, subpixels, and planarization film can be measured with a surface step meter (for example, Surfcom 1400D; manufactured by Tokyo Seimitsu Co., Ltd.).
  • a surface step meter for example, Surfcom 1400D; manufactured by Tokyo Seimitsu Co., Ltd.
  • the amount of indentation of the planarization film on the fourth color sub-pixel can also be measured.
  • the film thickness of the sub-pixel is preferably 1.2 to 2.5 ⁇ m. If the film thickness is thinner than 1.2 ⁇ m, the chromaticity of the red, green, and blue sub-pixels may be poor, or the film strength may be reduced by increasing the amount of the colorant relative to the pixel film thickness and decreasing the resin component. Film defect occurs. If the film thickness is greater than 2.5 ⁇ m, the flatness of the CF may decrease.
  • the film thickness of the black matrix is preferably 0.5 to 1.5 ⁇ m. When the film thickness is thinner than 0.5 ⁇ m, the light shielding property is not sufficient, and when the film thickness is thicker than 1.5 ⁇ m, the flatness of the CF may be lowered.
  • liquid crystal display device comprising the CF of the present invention
  • the CF and the array substrate are bonded to each other through a liquid crystal alignment film that has been subjected to a rubbing process for liquid crystal alignment provided on the substrate and a spacer for maintaining a cell gap.
  • a thin film transistor (hereinafter referred to as “TFT”) element a thin film diode (hereinafter referred to as “TFD”) element, a scanning line, a signal line, or the like is provided over the array substrate to manufacture a TFT liquid crystal display device or a TFD liquid crystal display device. be able to.
  • TFT thin film transistor
  • TFD thin film diode
  • a scanning line a signal line
  • liquid crystal is injected from an injection port provided in the seal portion to seal the injection port.
  • a backlight is attached and an IC driver or the like is mounted to complete the liquid crystal display device.
  • the chromaticity (x, y) of the backlight is preferably 0.250 ⁇ x ⁇ 0.350 and 0.300 ⁇ y ⁇ 0.400.
  • the liquid crystal display device comprising the backlight having the chromaticity (x, y) in the above range and the CF of the present invention has good white display chromaticity (x, y) and the screen of the liquid crystal display device. Variation in white display chromaticity (x, y) is reduced, and the white balance is excellent.
  • the film thickness of each subpixel can be measured with an SEM, a stylus film thickness meter, a laser microscope, or the like.
  • Determination A ⁇ t ⁇ 0.12 ⁇ m
  • Determination B 0.12 ⁇ m ⁇ ⁇ t ⁇ 0.20 ⁇ m
  • Determination C ⁇ t> 0.2 ⁇ m
  • As a colorant 50 g of PR177 (Chromofine (registered trademark) Red 6125EC; manufactured by Dainichi Seika) and 50 g of PR254 (Irgaphore (registered trademark) Red BK-CF; manufactured by Ciba Specialty Chemicals Co., Ltd.) were mixed.
  • the beaker containing the slurry was connected to a circulating bead mill disperser (Dynomill KDL-A; manufactured by Willy et Bacofen) with a tube, and using zirconia beads having a diameter of 0.3 mm as a medium, dispersion at 3200 rpm for 4 hours Processing was performed to obtain a colorant dispersion RA-1.
  • a circulating bead mill disperser (Dynomill KDL-A; manufactured by Willy et Bacofen) with a tube, and using zirconia beads having a diameter of 0.3 mm as a medium, dispersion at 3200 rpm for 4 hours Processing was performed to obtain a colorant dispersion RA-1.
  • a colored dispersant RA-2 was obtained in the same manner as the colorant dispersion RA-1 except that 50 g of propylene glycol monomethyl ether acetate was used.
  • a colored dispersant RA-3 was obtained in the same manner as the colorant dispersion RA-1, except that 50 g of BYK2000, 50 g of cyclomer ACA250, and 50 g of propylene glycol monomethyl ether acetate were used.
  • the concentration of the colorant in the total solid content in the colorant composition was 52% by mass.
  • a colored book organism R-3 was obtained in the same manner as the colorant composition R-1, except that 15.6 g of the cyclomer ACA250 was used.
  • the concentration of the colorant in the total solid content in the colorant composition was 24.8% by mass.
  • Colored Biology R- similar to Colorant Composition R-1, except that Colorant Dispersion RA-3 was used, Cyclomer ACA250 was not added, and Kayarad DPHA was 2.3 g. 4 was obtained.
  • the concentration of the colorant in the total solid content in the colorant composition was 62% by mass.
  • a colored book organism R-5 was obtained in the same manner as the colorant composition R-1, except that 23.7 g of the cyclomer ACA250 was used.
  • the concentration of the colorant in the total solid content in the colorant composition was 20.7% by mass.
  • Adjustment Example 2 Production of a green colorant composition for forming a green subpixel
  • PG7 Hosta Palm (registered trademark) Green GNX; manufactured by Clariant Japan
  • PY150 E4GNGT; manufactured by LANXESS
  • 100 g of BYK2000, 67 g of cyclomer ACA250, 83 g of propylene glycol monomethyl ether and 650 g of propylene glycol monomethyl ether acetate are mixed with this colorant, and zirconia beads having a diameter of 0.3 mm are used with DYNOMILL KDL-A.
  • a dispersion treatment was performed at 3200 rpm for 6 hours to obtain a colorant dispersion GA-1.
  • a color dispersant GA-2 was obtained in the same manner as the colorant dispersion GA-1, except that 83 g of propylene glycol monomethyl ether acetate was used.
  • a colored dispersant GA-3 was obtained in the same manner as the colorant dispersion GA-1, except that 50 g of BYK2000, 30 g of cyclomer ACA250, and 83 g of propylene glycol monomethyl ether acetate were used.
  • the coloring book organism G- 2 was obtained.
  • the concentration of the colorant in the total solid content in the colorant composition was 59% by mass.
  • a colored book organism G-3 was obtained in the same manner as the colorant composition G-1, except that the cyclomer ACA250 was changed to 15 g.
  • the concentration of the colorant in the total solid content in the colorant composition was 28% by mass.
  • the coloring book organism G-4 was the same as the coloring agent composition G-1, except that the coloring agent dispersion GA-3 was used, the cyclomer ACA250 was not added, and the Kayrad DPHA was 1.0 g. Got.
  • the concentration of the colorant in the total solid content in the colorant composition was 70% by mass.
  • a colored book organism G-5 was obtained in the same manner as the colorant composition G-1, except that the cyclomer ACA250 was changed to 19 g and the Kayarad DPHA was changed to 1.0 g.
  • the concentration of the colorant in the total solid content in the colorant composition was 23.3% by mass.
  • the slurry was subjected to a dispersion treatment at 3200 rpm for 3 hours using zirconia beads having a diameter of 0.3 mm using a disperser DYNOMILL KDL-A to obtain a colorant dispersion BA-1.
  • a color dispersant BA-2 was obtained in the same manner as the colorant dispersion BA-1, except that 100 g of propylene glycol monomethyl ether acetate was used.
  • a colored dispersant BA-3 was obtained in the same manner as the colorant dispersion BA-1, except that 50 g of BYK2000, 50 g of cyclomer ACA250, and 100 g of propylene glycol monomethyl ether acetate were used.
  • a colored dispersant BA-4 was obtained in the same manner as the colorant dispersion BA-1, except that PB15: 6 was changed to 78 g.
  • the coloring book organism B- was the same as the colorant composition B-1. 2 was obtained.
  • the concentration of the colorant in the total solid content in the colorant composition was 47% by mass.
  • a colored book organism B-3 was obtained in the same manner as the colorant composition B-1.
  • the concentration of the colorant in the total solid content in the colorant composition was 22.4% by mass.
  • Colored book organism B-4 was obtained in the same manner as Colorant Composition B-1, except that Colorant Dispersion BA-3 was used and Cyclomer ACA250 was not added.
  • the concentration of the colorant in the total solid content in the colorant composition was 56% by mass.
  • Colored book organism B-5 was obtained in the same manner as the colorant composition B-1, except that the colorant dispersion BA-4 was used and the cyclomer ACA250 was changed to 16.8 g.
  • the concentration of the colorant in the total solid content in the colorant composition was 18.7% by mass.
  • Example 1 Production of CF having Red, Green, Blue and Fourth Color Subpixels Apply the light-shielding agent composition obtained in Preparation Example 4 on a 300 ⁇ 350 mm alkali-free glass substrate (AN100; manufactured by Asahi Glass Co., Ltd.) using a spinner, and then heat-treat at 135 ° C. for 20 minutes in a hot air oven. Thus, a light shielding film was obtained. Subsequently, a positive resist (LC100; manufactured by Rohm and Haas Electronic Materials Co., Ltd.) was applied with a spinner and dried at 90 ° C. for 10 minutes. The film thickness of the positive resist was 1.5 ⁇ m.
  • Exposure was performed through a photomask using an exposure machine LE4000A (manufactured by Hitachi High-Technologies Corporation).
  • the photomask was designed to have a short side width of 26 ⁇ m, a long side width of 116 ⁇ m, and a black matrix width of 4.0 ⁇ m.
  • the widths of red, green and blue and the sub-pixels of the fourth color are all the same.
  • the proximity gap between the lower surface of the photomask and the upper surface of the glass substrate was 100 ⁇ m. Next, a 23 ° C.
  • aqueous solution containing 2% by mass of tetramethylammonium hydroxide was used as a developer, and the substrate was immersed in the developer, and at the same time, the substrate was swung so that the 10 cm width reciprocated once every 5 seconds.
  • the development of the positive resist and the etching of the polyimide precursor were simultaneously performed. Thereafter, the positive resist was peeled off by dipping in methyl cellosolve acetate. Thereafter, the polyimide acid resin was cured by being held at 290 ° C. for 30 minutes in a hot air oven to obtain a resin black matrix.
  • the short side width of the openings of the subpixels of the obtained black matrix was 26 ⁇ m
  • the long side width was 116 ⁇ m
  • the width of the black matrix was 4.0 ⁇ m.
  • the spinner rotation speed was adjusted so that the film thickness of the resin black matrix was 1.0 ⁇ m.
  • the red colorant composition R-1 obtained in Preparation Example 1 was applied onto a glass substrate on which a resin black matrix was formed using a spinner, and then heat-treated in a hot air oven at 90 ° C. for 10 minutes to give a red color.
  • a membrane was obtained.
  • exposure was performed through a photomask using an exposure machine LE4000A.
  • the photomask was designed such that the exposed portion (red subpixel portion) was formed in a stripe shape.
  • an alkali obtained by adding 0.1% by mass of a nonionic surfactant (Emulgen (registered trademark) A-60; manufactured by Kao Corporation) to a 0.04% by mass aqueous potassium hydroxide solution with respect to the total amount of the developer.
  • a nonionic surfactant Emulgen (registered trademark) A-60; manufactured by Kao Corporation
  • the substrate was immersed in a developing solution for 90 seconds and then washed with pure water to remove unexposed portions and obtain a patterned substrate. Thereafter, the acrylic resin was cured by holding at 220 ° C. for 30 minutes in a hot air oven, and a stripe-shaped red subpixel having a width of 30 ⁇ m was obtained.
  • the chromaticity (x, y) of the obtained red subpixel was (0.630, 0.311), (Y) was 19.6, and the film thickness of the red subpixel was 2.0 ⁇ m. .
  • a green subpixel was formed in the same manner as the red subpixel.
  • the chromaticity (x, y) of the obtained green subpixel was (0.223, 0.601), (Y) was 43.6, and the film thickness of the green subpixel was 2.0 ⁇ m. .
  • the blue colorant composition B-1 obtained in Preparation Example 3 was applied by a spinner onto a glass substrate on which a resin black matrix, red and green subpixels were formed, and then heated in a hot air oven at 90 ° C. for 10 minutes. By processing, a blue colored film was obtained. Next, exposure was performed through a photomask using an exposure machine LE4000A. As shown in FIG. 1, the photomask has a blue subpixel in a stripe shape, that is, a rectangular top surface, in the direction of the black matrix formed between the subpixels of the fourth color and the subpixel of the fourth color. Designed to extend.
  • an alkali obtained by adding 0.1% by mass of a nonionic surfactant (Emulgen (registered trademark) A-60; manufactured by Kao Corporation) to a 0.04% by mass aqueous potassium hydroxide solution with respect to the total amount of the developer.
  • a nonionic surfactant Emulgen (registered trademark) A-60; manufactured by Kao Corporation
  • the substrate was immersed in a developing solution for 90 seconds and then washed with pure water to remove unexposed portions and obtain a patterned substrate.
  • the acrylic resin is cured by holding at 220 ° C. for 30 minutes in a hot air oven, and the openings of the sub-pixels of the fourth color are shielded over a width of 5.2 ⁇ m, and the total width is 37.2 ⁇ m.
  • the blue subpixel was obtained.
  • the ratio of the opening area of the fourth color sub-pixel shielded by the extended blue sub-pixel was 20%.
  • the chromaticity (x, y) of the obtained blue subpixel was (0.134, 0.120), (Y) was 14.7, and the film thickness of the blue subpixel was 2.0 ⁇ m. .
  • the resin composition obtained in Preparation Example 5 was applied by a spinner so that the film thickness after curing was 1.5 ⁇ m, and then prebaked at 130 ° C. for 5 minutes in a hot air oven. Next, heat treatment was performed in a hot air oven at 210 ° C. for 30 minutes to cure the resin, and CF was produced.
  • Example 2 Production of CF having Red, Green, Blue and Fourth Color Subpixels A CF was fabricated in the same manner as in Example 1 except that the ratio of the opening area of the fourth color sub-pixel shielded by the extended blue sub-pixel was changed to 5%.
  • Example 3 Production of CF having Red, Green, Blue and Fourth Color Subpixels A CF was manufactured in the same manner as in Example 1 except that the ratio of the opening area of the fourth color sub-pixel shielded by the extended blue sub-pixel was changed to 10%.
  • Example 4 Production of CF having Red, Green, Blue and Fourth Color Subpixels A CF was fabricated in the same manner as in Example 1 except that the ratio of the opening area of the fourth color sub-pixel shielded by the extended blue sub-pixel was changed to 40%.
  • Example 2 Production of CF having red, green, blue and fourth color sub-pixels
  • a CF was fabricated in the same manner as in Example 1 except that the ratio of the opening area of the fourth color sub-pixel shielded by the extended blue sub-pixel was changed to 50%.
  • Example 5 Production of CF having red, green, blue and fourth color sub-pixels
  • the green colorant composition G-1 obtained in Preparation Example 2 was applied by a spinner onto a glass substrate on which a resin black matrix and red subpixels were formed, and then heated in a hot air oven A green colored film was obtained by heat treatment at 90 ° C. for 10 minutes.
  • exposure was performed through a photomask using an exposure machine LE4000A.
  • the photomask has a stripe shape, ie, a rectangular sub-surface with green subpixels in the direction of the black matrix formed between the fourth color subpixels and the fourth color subpixels. Designed to extend.
  • an alkali obtained by adding 0.1% by mass of a nonionic surfactant (Emulgen (registered trademark) A-60; manufactured by Kao Corporation) to a 0.04% by mass aqueous potassium hydroxide solution with respect to the total amount of the developer.
  • a nonionic surfactant Emulgen (registered trademark) A-60; manufactured by Kao Corporation
  • the substrate was immersed in a developing solution for 90 seconds and then washed with pure water to remove unexposed portions and obtain a patterned substrate.
  • the acrylic resin is cured by holding at 220 ° C. for 30 minutes in a hot air oven, and the openings of the subpixels of the fourth color are shielded over a width of 2.0 ⁇ m.
  • the subpixel was obtained.
  • the ratio of the opening area of the fourth color sub-pixel shielded by the extended green sub-pixel was 7.5%.
  • the blue colorant composition B-1 obtained in Preparation Example 3 was applied with a spinner, and then heat-treated in a hot air oven at 90 ° C. for 10 minutes to obtain a blue colored film.
  • exposure was performed through a photomask using an exposure machine LE4000A.
  • the photomask has a stripe shape, ie, a blue subpixel whose top surface is rectangular in the direction of the black matrix formed between the subpixels of the fourth color and the subpixels of the fourth color. Designed to extend.
  • an alkali obtained by adding 0.1% by mass of a nonionic surfactant (Emulgen (registered trademark) A-60; manufactured by Kao Corporation) to a 0.04% by mass aqueous potassium hydroxide solution with respect to the total amount of the developer.
  • a nonionic surfactant Emulgen (registered trademark) A-60; manufactured by Kao Corporation
  • the substrate was immersed in a developing solution for 90 seconds and then washed with pure water to remove unexposed portions and obtain a patterned substrate.
  • the acrylic resin is cured by holding at 220 ° C. for 30 minutes in a hot air oven, and the openings of the sub-pixels of the fourth color are shielded over a width of 5.9 ⁇ m, and the total width is 37.9 ⁇ m.
  • the blue subpixel was obtained.
  • the ratio of the opening area of the fourth color sub-pixel shielded by the extended blue sub-pixel was 22.5%.
  • the resin composition obtained in Preparation Example 5 was applied by a spinner so that the film thickness after curing was 1.5 ⁇ m, and then prebaked at 130 ° C. for 5 minutes in a hot air oven. Next, heat treatment was performed in a hot air oven at 210 ° C. for 30 minutes to cure the resin, and CF was produced.
  • Table 1 shows white chromaticities (x, y), (Y), and fourth colors of additive CFs of red, green, and blue sub-pixels for the CFs produced in Examples 1 to 5 and Comparative Examples 1 to 3.
  • the chromaticity (x, y) and (Y) values of the sub-pixels, the white balance, and the determination result of (Y) are shown.
  • of the white and fourth subpixels of additive colors of red, green, and blue are both 0.03.
  • the (Y) of the subpixels of the fourth color were all 65 or more and were good. Further, in Example 5, by extending the green and blue subpixels in the openings of the fourth color subpixels, a good CF with better white balance and high (Y) was obtained. In Comparative Example 1, since the other subpixels were not extended to the openings of the fourth color subpixels, the white balance was poor. In Comparative Example 2, since 50% of the opening area of the sub-pixel of the fourth color was shielded, (Y) was lowered and white display became dark CF.
  • Example 6 Production of CF having Red, Green, Blue and Fourth Color Subpixels As shown in FIG. 3, a CF was manufactured in the same manner as in Example 1 except that the blue subpixel was extended so as to be shielded across the center of the opening of the fourth color subpixel.
  • Example 7 Production of CF having sub-pixels of red, green, and blue
  • a CF was manufactured in the same manner as in Example 1 except that the blue subpixel was extended so as to be shielded across the upper end of the opening of the fourth color subpixel. .
  • Example 8 Production of CF having Red, Green, Blue and Fourth Color Subpixels As shown in FIG. 6, a CF was manufactured in the same manner as in Example 1 except that the blue subpixel was extended so as to shield the vicinity of the center of the opening of the fourth color subpixel.
  • Example 9 Production of CF having Red, Green, Blue and Fourth Color Subpixels As shown in FIG. 7, a CF was manufactured in the same manner as in Example 1 except that a blue subpixel extending to the opening of the fourth color subpixel was formed for each subpixel.
  • Example 10 Production of CF having Red, Green, Blue and Fourth Color Subpixels As shown in FIG. 8, except that the blue subpixel is extended in such a manner as to shield the lower end portion and the upper end portion of the openings of the second fourth color subpixels positioned in the column, respectively.
  • a CF was produced in the same manner as in Example 1.
  • Example 11 Production of CF having Red, Green, Blue and Fourth Color Subpixels
  • a CF was produced in the same manner as in Example 7 except that the red, green, blue and fourth color subpixels of the CF were arranged in a mosaic pattern.
  • an alkali obtained by adding 0.1% by mass of a nonionic surfactant (Emulgen (registered trademark) A-60; manufactured by Kao Corporation) to a 0.04% by mass aqueous potassium hydroxide solution with respect to the total amount of the developer.
  • a nonionic surfactant Emulgen (registered trademark) A-60; manufactured by Kao Corporation
  • acrylic resin was hardened by hold
  • the white balance could not be controlled because a cylindrical pixel having a diameter of 12 ⁇ m which was to be formed in the fourth color sub-pixel was missing.
  • an alkali obtained by adding 0.1% by mass of a nonionic surfactant (Emulgen (registered trademark) A-60; manufactured by Kao Corporation) to a 0.04% by mass aqueous potassium hydroxide solution with respect to the total amount of the developer.
  • a nonionic surfactant Emulgen (registered trademark) A-60; manufactured by Kao Corporation
  • acrylic resin was hardened by hold
  • the through hole to be formed in the subpixel of the fourth color had a diameter smaller than 12 ⁇ m and the surface of the subpixel was slightly concave, so that the through hole could not be formed. Since a predetermined through-hole could not be formed, neither white balance control nor (Y) improvement of the fourth color sub-pixel could be achieved.
  • Example 12 The design is such that the short side width of the subpixel opening is 12 ⁇ m, the long side width is 60 ⁇ m, and the width of the black matrix is 4.0 ⁇ m. The width of the striped red and green subpixels is 16 ⁇ m. Example 2 except that the total width of the striped blue sub-pixel is 20.4 ⁇ m and that the opening area of the sub-pixel of the fourth color is shielded by 20%. A CF was prepared in the same manner as in 1.
  • Example 13 The design is such that the short side width of the subpixel opening is 48 ⁇ m, the long side width is 204 ⁇ m, and the width of the black matrix is 4.0 ⁇ m. The width of the striped red and green subpixels is 52 ⁇ m. Example 1 except that the total width of the striped blue sub-pixel is 63.6 ⁇ m, and that 20% of the opening area of the sub-pixel of the fourth color is shielded. Similarly, CF was produced.
  • Example 14 Fabrication of CF having thinned red, green, blue and fourth color sub-pixels
  • the CF colorant composition was changed to R-2, the green colorant composition was changed to G-2, and the blue colorant composition was changed to B-2.
  • the chromaticity (x, y) of the obtained red subpixel was (0.630, 0.311), (Y) was 19.6, and the film thickness of the red subpixel was 1.2 ⁇ m.
  • the chromaticity (x, y) of the obtained green subpixel was (0.223, 0.601), (Y) was 43.6, and the film thickness of the green subpixel was 1.2 ⁇ m.
  • the chromaticity (x, y) of the obtained blue subpixel was (0.134, 0.120), (Y) was 14.7, and the film thickness of the blue subpixel was 1.2 ⁇ m. .
  • Example 15 Production of CF having thickened red, green, blue and fourth color sub-pixels
  • the CF colorant composition was changed to R-3, the green colorant composition was changed to G-3, and the blue colorant composition was changed to B-3.
  • the chromaticity (x, y) of the obtained red subpixel was (0.630, 0.311), (Y) was 19.6, and the film thickness of the red subpixel was 2.5 ⁇ m.
  • the chromaticity (x, y) of the obtained green subpixel was (0.223, 0.601), (Y) was 43.6, and the film thickness of the green subpixel was 2.5 ⁇ m.
  • the chromaticity (x, y) of the obtained blue subpixel was (0.134, 0.120), (Y) was 14.7, and the film thickness of the blue subpixel was 2.5 ⁇ m. .
  • Example 16 The CF colorant composition was changed to R-5, the green colorant composition was changed to G-5, and the blue colorant composition was changed to B-5.
  • the chromaticity (x, y) of the obtained red subpixel was (0.630, 0.311), (Y) was 19.6, and the film thickness of the red subpixel was 3.0 ⁇ m.
  • the chromaticity (x, y) of the obtained green subpixel was (0.223, 0.601), (Y) was 43.6, and the film thickness of the green subpixel was 3.0 ⁇ m.
  • the chromaticity (x, y) of the obtained blue subpixel was (0.134, 0.120), (Y) was 14.7, and the film thickness of the blue subpixel was 3.0 ⁇ m. .
  • Table 2 shows the dents on the surface of the sub-pixel of the fourth color in each of the CFs produced in Example 1, Example 12, Example 13, Example 14, Example 15, and Comparative Example 7.
  • a dent may occur on the surface even after the planarization film is formed.
  • Example 1 and Example 12 in which the size of the opening was relatively small, the surface flatness was good, but Example 13 in which the short side width of the opening was 48 ⁇ m and Example 15 in which the thickness of the subpixel was thick. Then, the surface flatness tended to be slightly deteriorated.
  • Example 14 where the subpixel film thickness was small, the surface flatness was good.
  • Example 16 since the sub-pixel film thickness was as thick as 3.0 ⁇ m, the surface flatness was deteriorated, but it could be used.
  • the CF of the present invention can be suitably used for a display device such as a liquid crystal display or an organic EL.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Abstract

The purpose of the present invention is to provide a color filter which can be stably produced with high precision and which exhibits excellent white balance control regardless of the size of the subpixels becoming smaller as the resolution of display devices improves. The present invention provides a color filter wherein: pixels are formed on a transparent substrate, the pixels comprising a red subpixel, a green subpixel, a blue subpixel, a subpixel of a fourth color, and a black matrix formed between the subpixels; the red, green, and blue subpixels contain a coloring agent and a resin; the CIE 1931 color system three stimulation value (Y) of the subpixel of a forth color is 65≤Y≤99; and a subpixel selected from the group consisting of red, blue and green subpixels extends towards the opening of the subpixel of a fourth color and the adjacent black matrix, and shields 5 to 40% of the opening area of the subpixel of a fourth color.

Description

カラーフィルターおよび表示装置Color filter and display device
 本発明は、カラーフィルターおよび表示装置に関する。 The present invention relates to a color filter and a display device.
 液晶表示装置は、軽量、薄型又は低消費電力等の特性を活かし、テレビ、ノートパソコン、携帯情報端末、スマートフォン又はデジタルカメラ等、様々な用途で使用されている。 Liquid crystal display devices are used in various applications such as televisions, notebook computers, portable information terminals, smartphones, digital cameras, etc., taking advantage of characteristics such as light weight, thinness, and low power consumption.
 カラーフィルターは液晶表示装置をカラー表示にするために必要な部材であり、赤の副画素、緑の副画素および青の副画素の、3色の副画素からなる画素が微細にパターンニングされている3色カラーフィルターが一般的である。3色カラーフィルターにおいて白色は、赤緑青の3色の副画素の加法混色により得られる。 A color filter is a member necessary for color display of a liquid crystal display device. Pixels composed of three sub-pixels, a red sub-pixel, a green sub-pixel, and a blue sub-pixel, are finely patterned. A three-color filter is generally used. In the three-color filter, white is obtained by additive color mixing of three sub-pixels of red, green, and blue.
 ここで近年、液晶表示装置の透過率を向上する方法として、赤緑青の3色の副画素に加えて、第4色の副画素である、白の副画素を有する4色カラーフィルターが提案されている(特許文献1)。4色カラーフィルターの白色表示のホワイトバランスを制御するために、第4色の副画素に赤緑青のいずれかの柱状画素を島状に配置するカラーフィルターや(特許文献2)、第4色の副画素に複数の貫通孔を形成したカラーフィルター(特許文献3)が提案されている。 In recent years, as a method for improving the transmittance of a liquid crystal display device, a four-color filter having a white sub-pixel, which is a fourth color sub-pixel, in addition to three sub-pixels of red, green and blue has been proposed. (Patent Document 1). In order to control the white balance of the white display of the four-color filter, a color filter in which any of the red, green, and blue columnar pixels is arranged in an island shape in the fourth color sub-pixel (Patent Document 2), A color filter (Patent Document 3) in which a plurality of through holes are formed in a sub-pixel has been proposed.
 有機ELをバックライトに利用した表示装置にも、白色発光素子とカラーフィルターとを組み合わせた、4色表示装置が提案されている(特許文献4)。 A four-color display device combining a white light emitting element and a color filter has also been proposed for a display device using organic EL as a backlight (Patent Document 4).
特開平11-295717号公報Japanese Patent Laid-Open No. 11-295717 特開2007-33744号公報JP 2007-33744 A 特開2011-100025号公報JP 2011-100025 A 特開2006-309118号公報JP 2006-309118 A
 しかしながら、従来の4色カラーフィルターにおいてより明るい白色を得るためには、光源色度と同一の、第4色の副画素の色度のみならず、赤緑青の3色の副画素の加法混色による白色の色度も利用する必要があるが、両色度を同一にすることすなわちマッチングには非常な困難が伴い、ホワイトバランスが不良となることが問題視されていた。 However, in order to obtain a brighter white color in the conventional four-color filter, not only the chromaticity of the sub-pixel of the fourth color, which is the same as the light source chromaticity, but also the additive color mixture of the three sub-pixels of red, green and blue Although it is necessary to use white chromaticity, it has been regarded as a problem that both chromaticities are equal, that is, matching is extremely difficult and white balance is poor.
 また、第4色の副画素に、赤緑青のいずれかの柱状画素を島状に配置し、又は、複数の貫通孔を形成しようとしても、生産工程では柱状画素や貫通孔の大きさが容易に変動してしまい、ホワイトバランスの制御は極めて困難であった。さらに、表示装置の解像度向上に伴い副画素幅が小さくなっていることから、柱状画素が現像工程で欠落する、又は、貫通孔が形成できない、という問題が存在するのが現状であった。 In addition, even if one of the red, green, and blue columnar pixels is arranged in an island shape in the fourth color subpixel or a plurality of through holes are formed, the size of the columnar pixels and the through holes is easy in the production process. The white balance was extremely difficult to control. Furthermore, since the sub-pixel width is reduced as the resolution of the display device is improved, there has been a problem that the columnar pixels are lost in the development process or the through holes cannot be formed.
 そこで本発明は、表示装置の解像度向上に伴う副画素の小型化にも関わらずホワイトバランスの制御に優れ、さらに、安定的かつ高精度な生産が可能な、カラーフィルターを提供することを目的とする。 Therefore, the present invention has an object to provide a color filter that is excellent in white balance control despite the downsizing of the sub-pixel due to the improvement in the resolution of the display device, and that can be stably and highly accurately produced. To do.
 本発明者らは鋭意検討した結果、カラーフィルターのホワイトバランスについて、赤緑青の3色の副画素の加法混色の色度を白の副画素の色度に一方的にマッチングさせるのではなく、同時に第4色の白の副画素の色度を赤緑青の3色の副画素の加法混色の色度にマッチングさせることを見出した。 As a result of intensive studies, the present inventors have not unilaterally matched the chromaticity of the additive color mixture of the three sub-pixels of red, green, and blue with the chromaticity of the white sub-pixel at the same time. It has been found that the chromaticity of the white subpixel of the fourth color is matched with the chromaticity of the additive color mixture of the three subpixels of red, green, and blue.
 また、赤緑青の副画素のいずれか一以上が、近接する第4色の副画素の開口部に延出して、その開口部の一部を遮蔽することで、寸法精度を安定しながらホワイトバランスを制御することが可能であることを見いだした。 In addition, any one or more of the red, green, and blue sub-pixels extend to the opening of the adjacent sub-pixel of the fourth color, and part of the opening is shielded, so that white balance can be achieved while maintaining dimensional accuracy. Found that it is possible to control.
 すなわち、本発明は、以下の(1)~(4)に記載したカラーフィルターおよび表示装置を提供する。
(1)透明基板上に、赤の副画素、緑の副画素、青の副画素および第4色の副画素と、各上記副画素の間に形成されたブラックマトリックスと、からなる画素が形成されており、上記赤、緑および青の副画素は、それぞれ着色剤および樹脂を含有し、上記第4色の副画素のCIE1931表色系三刺激値(Y)は、65≦Y≦99であり、上記赤、緑および青の副画素からなる群から選ばれる副画素が、近接する上記ブラックマトリックスおよび上記第4色の副画素の開口部に延出して、上記第4色の副画素の開口部面積の5~40%が遮蔽されている、カラーフィルター。
(2)上記第4色の副画素を遮蔽する副画素が青画素である、上記(1)に記載のカラーフィルター
(3)上記第4色の副画素を遮蔽する副画素の上面形状が、長方形である、上記(1)又は(2)に記載のカラーフィルター。
(4)各上記副画素の開口部の短辺が、30μm以下である、上記(1)~(3)のいずれかに記載のカラーフィルター。
(5)赤、緑および青の副画素の膜厚が、1.2~2.5μmである上記(1)~(4)のいずれかに記載のカラーフィルター。
(6)上記(1)~(5)のいずれかに記載のカラーフィルターを具備してなる、表示装置。
That is, the present invention provides the color filter and display device described in the following (1) to (4).
(1) A pixel composed of a red subpixel, a green subpixel, a blue subpixel and a fourth color subpixel, and a black matrix formed between the subpixels is formed on a transparent substrate. The red, green, and blue subpixels each contain a colorant and a resin, and the CIE1931 color system tristimulus value (Y) of the fourth color subpixel is 65 ≦ Y ≦ 99. And a sub-pixel selected from the group consisting of the red, green and blue sub-pixels extends to the adjacent black matrix and the opening of the fourth color sub-pixel, and the sub-pixel of the fourth color A color filter that covers 5 to 40% of the opening area.
(2) The color filter according to (1), wherein the subpixel that shields the subpixel of the fourth color is a blue pixel. (3) The top surface shape of the subpixel that shields the subpixel of the fourth color is: The color filter according to (1) or (2), which is rectangular.
(4) The color filter according to any one of (1) to (3), wherein a short side of the opening of each sub-pixel is 30 μm or less.
(5) The color filter according to any one of (1) to (4) above, wherein the red, green, and blue subpixels have a thickness of 1.2 to 2.5 μm.
(6) A display device comprising the color filter according to any one of (1) to (5) above.
 本発明のカラーフィルターによれば、表示装置の解像度向上に伴う副画素の小型化の影響を受けることなく、ホワイトバランスの制御をすることが可能である。さらに本発明のカラーフィルターは、安定的かつ寸法精度の高い生産が可能なものである。 According to the color filter of the present invention, it is possible to control the white balance without being affected by the downsizing of the subpixel accompanying the improvement in the resolution of the display device. Furthermore, the color filter of the present invention can be stably produced with high dimensional accuracy.
本発明の第一実施形態に係るカラーフィルターを、上面から見た場合の模式図およびその断面の模式図である。It is the schematic diagram at the time of seeing the color filter which concerns on 1st embodiment of this invention from the upper surface, and the schematic diagram of the cross section. 本発明の第一実施形態に係るカラーフィルターの開口部の模式図である。It is a schematic diagram of the opening part of the color filter which concerns on 1st embodiment of this invention. 本発明の第二実施形態に係るカラーフィルターを、上面から見た場合の模式図である。It is a schematic diagram at the time of seeing the color filter which concerns on 2nd embodiment of this invention from the upper surface. 本発明の第二実施形態に係るカラーフィルターの、断面の模式図である。It is a cross-sectional schematic diagram of the color filter which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係るカラーフィルターを、上面から見た場合の模式図である。It is a schematic diagram at the time of seeing the color filter which concerns on 3rd embodiment of this invention from the upper surface. 本発明の第四実施形態に係るカラーフィルターを、上面から見た場合の模式図である。It is a schematic diagram at the time of seeing the color filter which concerns on 4th embodiment of this invention from the upper surface. 本発明の第五実施形態に係るカラーフィルターを、上面から見た場合の模式図である。It is a schematic diagram at the time of seeing the color filter which concerns on 5th embodiment of this invention from the upper surface. 本発明の第六実施形態に係るカラーフィルターを、上面から見た場合の模式図である。It is a schematic diagram at the time of seeing the color filter which concerns on 6th embodiment of this invention from the upper surface. 本発明の第七実施形態に係るカラーフィルターの、開口部の模式図である。It is a schematic diagram of the opening part of the color filter which concerns on 7th embodiment of this invention. 本発明の第七実施形態に係るカラーフィルターを、上面から見た場合の模式図である。It is a schematic diagram at the time of seeing the color filter which concerns on 7th embodiment of this invention from the upper surface. 本発明の第八実施形態に係るカラーフィルターを、上面から見た場合の模式図およびその断面の模式図である。It is the schematic diagram at the time of seeing the color filter which concerns on 8th embodiment of this invention from the upper surface, and the schematic diagram of the cross section. 本発明のカラーフィルター上に平坦化膜を形成した場合の、断面の模式図である。It is a schematic diagram of a cross section when a planarizing film is formed on the color filter of the present invention. 副画素の開口部の幅が広いカラーフィルター上に平坦化膜を形成した場合の、断面の模式図である。It is a schematic diagram of a cross section in the case where a planarizing film is formed on a color filter having a wide opening of a subpixel. 本発明以外の実施形態に係るカラーフィルターを、上面から見た場合の模式図およびその断面の模式図である。It is the schematic diagram at the time of seeing the color filter which concerns on embodiment other than this invention from the upper surface, and the schematic diagram of the cross section. 本発明以外の実施形態に係るカラーフィルターを、上面から見た場合の模式図およびその断面の模式図である。It is the schematic diagram at the time of seeing the color filter which concerns on embodiment other than this invention from the upper surface, and the schematic diagram of the cross section. 本発明以外の実施形態に係るカラーフィルターを、上面から見た場合の模式図およびその断面の模式図である。It is the schematic diagram at the time of seeing the color filter which concerns on embodiment other than this invention from the upper surface, and the schematic diagram of the cross section.
 本発明のカラーフィルター(以下、「CF」)は、透明基板上に、赤の副画素、緑の副画素、青の副画素および第4色の副画素と、各上記副画素の間に形成されたブラックマトリックスと、からなる画素が形成されており、上記赤、緑および青の副画素は、それぞれ着色剤および樹脂を含有し、上記第4色の副画素のCIE1931表色系三刺激値(Y)は、65≦Y≦99であり、上記赤、緑および青の副画素からなる群から選ばれる副画素が、近接する上記ブラックマトリックスおよび上記第4色の副画素の開口部に延出して、上記第4色の副画素の開口部面積の5~40%が遮蔽されていることを特徴とする。 The color filter (hereinafter referred to as “CF”) of the present invention is formed on a transparent substrate between a red subpixel, a green subpixel, a blue subpixel, and a fourth color subpixel, and each of the subpixels. And the red, green, and blue subpixels each contain a colorant and a resin, and the CIE1931 colorimetric tristimulus value of the fourth color subpixel. (Y) is 65 ≦ Y ≦ 99, and a subpixel selected from the group consisting of the red, green, and blue subpixels extends to the opening of the adjacent black matrix and the subpixels of the fourth color. In other words, 5 to 40% of the opening area of the sub-pixel of the fourth color is shielded.
 具体的には、例えば図1に示すように、透明基板1の上にブラックマトリックス2が形成され、前記ブラックマトリックス上の赤緑青それぞれの副画素の形成領域である3R、3G及び3Bに、赤の副画素4R、緑の副画素4G、青の副画素4Bがそれぞれ形成されており、第4色の副画素の形成領域3W、すなわち、第4色の副画素4Wの開口部及び該開口部を形成するブラックマトリックスの一部には、他の副画素である、この例では青の副画素4Bが延出して、第4色の副画素4Wの開口部が遮蔽されていることが必要である。ホワイトバランスを制御するためには、第4色の副画素に延出する副画素は、青画素であることが好ましい。 Specifically, for example, as shown in FIG. 1, a black matrix 2 is formed on a transparent substrate 1, and red, green, and blue subpixel formation regions 3R, 3G, and 3B on the black matrix are red. Sub-pixel 4R, green sub-pixel 4G, and blue sub-pixel 4B are formed, respectively, and a fourth color sub-pixel formation region 3W, that is, an opening of the fourth color sub-pixel 4W and the opening In this example, the blue sub-pixel 4B, which is another sub-pixel, extends to part of the black matrix that forms the pixel, and the opening of the sub-pixel 4W of the fourth color needs to be shielded. is there. In order to control the white balance, the sub-pixel extending to the fourth color sub-pixel is preferably a blue pixel.
 ここで図1では第4色の副画素4Wは省略されている。以下の図面においても同様である。第4色の副画素4Wは図12のように形成されている。図12では第4の副画素は青の副画素4Bから延出した部分を含んでいる。 Here, in FIG. 1, the sub-pixel 4W of the fourth color is omitted. The same applies to the following drawings. The fourth color sub-pixel 4W is formed as shown in FIG. In FIG. 12, the fourth subpixel includes a portion extending from the blue subpixel 4B.
 各副画素の開口部の大きさは、それぞれ異なっていても構わない。ホワイト表示の明るさを重視する設計では、第4色の副画素の開口部が赤緑青の副画素の開口部より大きくても構わず、ホワイトの明るさを重視しない設計では、第4色の副画素の開口部が、赤緑青の副画素の開口部より小さくても構わない。 The size of the opening of each sub-pixel may be different. In a design that emphasizes the brightness of white display, the aperture of the fourth color sub-pixel may be larger than the aperture of the red, green, and blue sub-pixels. In a design that does not focus on the brightness of white, The openings of the subpixels may be smaller than the openings of the red, green, and blue subpixels.
 第4色の副画素の開口部に延出する他の画素は、第4色の副画素の開口部面積の5~40%を遮蔽することが必要である。第4色の副画素の開口部が他の画素により5%未満しか遮蔽されていない場合には、透過率は向上するが、ホワイトバランスが制御できない。一方で、第4色の副画素の開口部が、40%を超えて他の画素により遮蔽されている場合には、ホワイトバランスを制御することは可能であっても、透過率が不十分となる。 Other pixels extending to the opening of the sub-pixel of the fourth color need to shield 5 to 40% of the opening area of the sub-pixel of the fourth color. When the opening of the subpixel of the fourth color is shielded by less than 5% by other pixels, the transmittance is improved, but the white balance cannot be controlled. On the other hand, if the opening of the sub-pixel of the fourth color exceeds 40% and is blocked by other pixels, the white balance can be controlled, but the transmittance is insufficient. Become.
 第4色の副画素のCIE1931表色系三刺激値(Y)(以下、「(Y)」)は、65≦Y≦99の範囲にあることが必要である。遮蔽される第4色の副画素の開口部面積の割合は、所望のホワイトバランスと透過率とから適宜選択することができる。 The CIE1931 color system tristimulus value (Y) (hereinafter, “(Y)”) of the subpixel of the fourth color needs to be in the range of 65 ≦ Y ≦ 99. The ratio of the opening area of the subpixels of the fourth color to be shielded can be appropriately selected from desired white balance and transmittance.
 副画素の開口部とは、例えば図2においてブラックマトリクス2に囲まれた、実質的に光が通過するそれぞれの領域をいう。副画素の開口部面積とは当該領域の面積をいうが、例えば第4色の副画素の開口部面積は、図2に示す幅5と幅6との積により求まる。 The sub-pixel opening means, for example, each region surrounded by the black matrix 2 in FIG. The opening area of the subpixel means the area of the region. For example, the opening area of the subpixel of the fourth color is obtained by the product of the width 5 and the width 6 shown in FIG.
 図3に示す形態のCFでは、第4色の副画素の開口部の中央を横切って遮蔽する形で、青の副画素が延出している。図4は、図3における直線A-A’および直線B-B’における断面図であるが、直線A-A’における断面図である図4(c)に示されるように青の副画素は延出する部分を含めて一体形成されているので、延出する部分が小さくなったとしても、現像工程で青の副画素が欠落しにくい。 In the CF of the form shown in FIG. 3, the blue sub-pixel extends so as to be shielded across the center of the opening of the sub-pixel of the fourth color. 4 is a cross-sectional view taken along line AA ′ and line BB ′ in FIG. 3. As shown in FIG. 4C, which is a cross-sectional view taken along line AA ′, the blue subpixel is Since it is integrally formed including the extending part, even if the extending part becomes small, the blue subpixel is not easily lost in the development process.
 図5および図8に示す形態のCFでは、ブラックマトリックス上に延出した青の副画素の面積がより大きいことから、第4色の副画素の開口部が小さくなったとしても、現像工程で青の副画素が欠落しにくい。 In the CF of the form shown in FIGS. 5 and 8, the area of the blue subpixel extending on the black matrix is larger, so even if the opening of the subpixel of the fourth color is reduced, the development process Blue subpixels are not easily lost.
 本発明の延出とは以下のように定義される。赤、緑および青の副画素からなる群から選ばれる副画素が連続して繋がったまま第4色の副画素の開口部に延び出ている状態であり、第4色の副画素に延出した画素は赤、緑および青の副画素からなる群から選ばれる副画素と同時に形成される。同時に形成された副画素は繋ぎ目がないので、顕微鏡観察やSEM観察により、繋ぎ目の有無から同時に形成されたか否かを判断することができる。 The extension of the present invention is defined as follows. A sub-pixel selected from the group consisting of red, green and blue sub-pixels is continuously connected to the fourth color sub-pixel and extends to the fourth color sub-pixel. The formed pixels are formed at the same time as subpixels selected from the group consisting of red, green and blue subpixels. Since the sub-pixels formed at the same time have no joints, it can be determined from the presence or absence of joints by microscopic observation or SEM observation.
 図6に示す形態のCFでは、第4色の副画素の開口部に延出した青の副画素の形状が正方形に近くなることから、現像工程で青の副画素がさらに欠落しにくい。 In the CF of the form shown in FIG. 6, since the shape of the blue subpixel extending to the opening of the subpixel of the fourth color is close to a square, the blue subpixel is less likely to be lost in the development process.
 図11に示す形態のCFでは、青の副画素に加えて、緑の副画素も第4色の副画素の開口部に延出している。延出させる二の副画素の組み合わせは、青と赤であっても構わないし、緑と赤であっても構わない。 In the CF shown in FIG. 11, in addition to the blue subpixel, the green subpixel also extends to the opening of the fourth color subpixel. The combination of the two sub-pixels to be extended may be blue and red, or may be green and red.
 画素に使用する着色剤の例としては、顔料又は染料が挙げられる。 Examples of colorants used for pixels include pigments and dyes.
 赤の副画素に使用する顔料の例としては、PR254、PR149、PR166、PR177、PR209、PY138、PY150又はPYP139が挙げられ、緑の副画素に使用する顔料の例としては、PG7、PG36、PG58、PG37、PB16、PY129、PY138、PY139、PY150又はPY185が挙げられ、青の副画素に使用する顔料の例としては、PB15:6又はPV23が挙げられる。 Examples of the pigment used for the red subpixel include PR254, PR149, PR166, PR177, PR209, PY138, PY150, and PYP139. Examples of the pigment used for the green subpixel include PG7, PG36, and PG58. , PG37, PB16, PY129, PY138, PY139, PY150 or PY185, and examples of the pigment used for the blue subpixel include PB15: 6 or PV23.
 青色染料の例としては、C.I.ベイシックブルー(BB)5、BB7、BB9又はBB26が挙げられ、赤色染料の例としては、C.I.アシッドレッド(AR)51、AR87又はAR289が挙げられる。 Examples of blue dyes include C.I. I. Basic blue (BB) 5, BB7, BB9 or BB26 may be mentioned, and examples of red dye include C.I. I. Acid Red (AR) 51, AR87 or AR289.
 赤緑青の副画素に使用する樹脂の例としては、アクリル系樹脂、エポキシ系樹脂又はポリイミド系樹脂が挙げられるが、CFの製造コストを安くできるため、感光性アクリル系樹脂が好ましい。感光性アクリル系樹脂は、アルカリ可溶性樹脂、光重合性モノマーおよび光重合開始剤を含有することが一般的である。 Examples of resins used for red, green, and blue subpixels include acrylic resins, epoxy resins, and polyimide resins, but photosensitive acrylic resins are preferable because the manufacturing cost of CF can be reduced. The photosensitive acrylic resin generally contains an alkali-soluble resin, a photopolymerizable monomer, and a photopolymerization initiator.
 アルカリ可溶性樹脂の例としては、不飽和カルボン酸とエチレン性不飽和化合物との共重合体が挙げられる。不飽和カルボン酸の例としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、ビニル酢酸又は酸無水物が挙げられる。 Examples of the alkali-soluble resin include a copolymer of an unsaturated carboxylic acid and an ethylenically unsaturated compound. Examples of unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetic acid or acid anhydrides.
 光重合性モノマーの例としては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリアクリルホルマール、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート又はジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。 Examples of photopolymerizable monomers include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, triacryl formal, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate or dipentaerythritol. Examples include penta (meth) acrylate.
 光重合開始剤の例としては、ベンゾフェノン、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、2,2-ジエトキシアセトフェノン、α-ヒドロキシイソブチルフェノン、チオキサントン又は2-クロロチオキサントンが挙げられる。 Examples of photopolymerization initiators include benzophenone, N, N′-tetraethyl-4,4′-diaminobenzophenone, 4-methoxy-4′-dimethylaminobenzophenone, 2,2-diethoxyacetophenone, α-hydroxyisobutylphenone , Thioxanthone or 2-chlorothioxanthone.
 感光性アクリル系樹脂を溶解するための溶媒の例としては、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、アセト酢酸エチル、メチル-3-メトキシプロピオネート、エチル-3-エトキシプロピオネート、メトキシブチルアセテート又は3-メチル-3-メトキシブチルアセテートが挙げられる。 Examples of the solvent for dissolving the photosensitive acrylic resin include propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethyl acetoacetate, methyl-3-methoxypropionate, ethyl-3-ethoxypropionate , Methoxybutyl acetate or 3-methyl-3-methoxybutyl acetate.
 なお、樹脂として感光性アクリル系樹脂を用いる場合には、アルカリ可溶性樹脂、光重合性モノマーおよび高分子分散剤からなる樹脂成分並びに着色剤とを、全固形分として扱う。 In addition, when using photosensitive acrylic resin as resin, the resin component and colorant which consist of alkali-soluble resin, a photopolymerizable monomer, and a polymer dispersing agent are handled as total solid content.
 CFのブラックマトリックスは、遮光剤および樹脂を含有する樹脂ブラックマトリックスであることが好ましい。遮光剤の例としては、カーボンブラック、酸化チタン、酸化窒化チタン、窒化チタン又は四酸化鉄が挙げられる。 The black matrix of CF is preferably a resin black matrix containing a light shielding agent and a resin. Examples of the light shielding agent include carbon black, titanium oxide, titanium oxynitride, titanium nitride, or iron tetroxide.
 樹脂ブラックマトリックスに使用する樹脂としては、細いパターンが形成し易いため、非感光ポリイミド樹脂が好ましい。非感光ポリイミド樹脂は、酸無水物とジアミンとから合成されたポリアミック酸樹脂を、パターン加工後に熱硬化してポリイミド樹脂とすることが好ましい。酸無水物の例としては、ピロメリット酸二無水物、3,3’,4,4’-オキシジフタルカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物又は3,3’,4,4’-ビフェニルトリフルオロプロパンテトラカルボン酸二無水物が挙げられる。ジアミンの例としては、パラフェニレンジアミン、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル又は3,4’-ジアミノジフェニルエーテルが挙げられる。ポリアミック酸樹脂を溶解する溶媒の例としては、N-メチル-2-ピロリドン又はγ-ブチロラクトンが挙げられる。 The resin used for the resin black matrix is preferably a non-photosensitive polyimide resin because a thin pattern can be easily formed. The non-photosensitive polyimide resin is preferably a polyimide resin obtained by thermosetting a polyamic acid resin synthesized from an acid anhydride and a diamine after patterning. Examples of acid anhydrides include pyromellitic dianhydride, 3,3 ′, 4,4′-oxydiphthalcarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride Or 3,3 ′, 4,4′-biphenyltrifluoropropanetetracarboxylic dianhydride. Examples of diamines include paraphenylene diamine, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, or 3,4'-diaminodiphenyl ether. Examples of the solvent that dissolves the polyamic acid resin include N-methyl-2-pyrrolidone or γ-butyrolactone.
 第4色の副画素の開口部には、他の副画素が延出する必要があることから、当該延出する副画素におけるもの以外の着色剤組成物を用いた副画素を形成しないことが好ましい。一方で、着色剤組成物を用いて副画素を形成しない場合、CFの表面にへこみが発生することから、CFの表面を平坦化するために、図12に示すように、CF上に平坦化膜を形成することが好ましい。平坦化膜7を形成することで、CF表面が平坦になる。平坦化膜の形成に使用する樹脂の例としては、エポキシ樹脂、アクリルエポキシ樹脂、アクリル樹脂、シロキサン樹脂又はポリイミド樹脂が挙げられる。平坦化膜の膜厚としては、表面が平坦になる膜厚が好ましく、0.5~5.0μmがより好ましく、1.0~3.0μmがさらに好ましい。 Since it is necessary for another subpixel to extend to the opening of the fourth color subpixel, a subpixel using a colorant composition other than that in the extending subpixel may not be formed. preferable. On the other hand, when the sub-pixel is not formed using the colorant composition, dents are generated on the surface of the CF, so that the surface of the CF is flattened on the CF as shown in FIG. It is preferable to form a film. By forming the planarizing film 7, the CF surface becomes flat. Examples of the resin used for forming the planarizing film include an epoxy resin, an acrylic epoxy resin, an acrylic resin, a siloxane resin, or a polyimide resin. The film thickness of the planarizing film is preferably a film thickness that makes the surface flat, more preferably 0.5 to 5.0 μm, and even more preferably 1.0 to 3.0 μm.
 CF上に平坦化膜を形成したとしても、副画素の開口部の幅が広い場合には、図13に示すように第4色の副画素の上方にへこみすなわち凹状部8ができてしまう。これを解消するためには、平坦化膜をさらに厚く形成する必要がある。 Even when the planarizing film is formed on the CF, when the width of the opening of the subpixel is wide, a dent, that is, a concave portion 8 is formed above the subpixel of the fourth color as shown in FIG. In order to solve this problem, it is necessary to form a thicker planarizing film.
 次に、本発明のCFの製造方法の例を説明する。 Next, an example of a method for producing the CF of the present invention will be described.
 透明基板の例としては、ソーダガラス、無アルカリガラス又は石英ガラスが挙げられる。また、透明な樹脂板又は樹脂フイルムを使用しても構わない。 Examples of the transparent substrate include soda glass, non-alkali glass, and quartz glass. Moreover, you may use a transparent resin board or a resin film.
 透明基板上に遮光剤組成物を用いて樹脂ブラックマトリックスを形成させた後、着色剤組成物を用いて、赤緑青および第4色の副画素を形成する。 A resin black matrix is formed on a transparent substrate using a light-shielding agent composition, and then red, green, blue and fourth color subpixels are formed using a colorant composition.
 遮光剤組成物は、遮光剤にポリアミック酸樹脂および溶媒を混合して分散処理を行った後、各種添加剤を添加して作製する。この場合の全固形分は、樹脂成分であるポリアミック酸樹脂と遮光剤との合計である。 The light-shielding agent composition is prepared by mixing a light-shielding agent with a polyamic acid resin and a solvent and performing a dispersion treatment, and then adding various additives. The total solid content in this case is the total of the polyamic acid resin as the resin component and the light shielding agent.
 次に、遮光剤組成物を、スピンコーター又はダイコーター等の方法で塗布後、真空乾燥し、90~130℃の熱風オーブン又はホットプレートでセミキュアを行い、遮光剤の塗膜を形成する。ポジ型レジストを塗布後、真空乾燥を行い、80~110℃の熱風オーブン又はホットプレートでプリベイクを行い、レジスト膜を形成する。その後、プロキシミティ露光機又はプロジェクション露光機等により、フォトマスクを介して紫外線により選択的に露光を行った後、1.5~3質量%の水酸化カリウム又はテトラメチルアンモニウムヒドロキシド等のアルカリ現像液により露光部を除去することで、パターンが得られる。剥離液を用いてポジレジストを剥離後、250~300℃の熱風オーブン又はホットプレートで10~60分加熱することで、ポリアミック酸樹脂のイミド化が進行し樹脂ブラックマトリックスとなる。なお、フォトマスクの設計幅又は露光量を変えることによって、樹脂ブラックマトリックスの幅を変化させることが可能である。 Next, the light-shielding agent composition is applied by a method such as a spin coater or a die coater, then vacuum-dried, and semi-cured in a hot air oven or hot plate at 90 to 130 ° C. to form a light-shielding agent coating film. After applying the positive resist, it is vacuum-dried and prebaked in a hot air oven or hot plate at 80 to 110 ° C. to form a resist film. Then, after selective exposure with ultraviolet rays through a photomask by a proximity exposure machine or a projection exposure machine, alkali development such as 1.5 to 3% by mass of potassium hydroxide or tetramethylammonium hydroxide is performed. A pattern is obtained by removing the exposed portion with a liquid. After stripping the positive resist using a stripping solution, imidation of the polyamic acid resin proceeds by heating in a hot air oven or hot plate at 250 to 300 ° C. for 10 to 60 minutes to form a resin black matrix. The width of the resin black matrix can be changed by changing the design width or exposure amount of the photomask.
 着色剤組成物は、着色剤と樹脂とを用いて作製する。着色剤として顔料を使用する場合には、顔料に高分子分散剤および溶媒を混合して分散処理を行った後、アルカリ可溶性樹脂、モノマーおよび光重合開始剤等を添加して作製する。一方、着色剤として染料を使用する場合には、染料に溶媒、アルカリ可溶性樹脂、モノマーおよび光重合性開始剤等を添加して作製する。この場合の全固形分は、樹脂成分である高分子分散剤、アルカリ可溶性樹脂およびモノマーと、着色剤との合計である。 The colorant composition is prepared using a colorant and a resin. When a pigment is used as the colorant, the pigment is mixed with a polymer dispersant and a solvent and subjected to a dispersion treatment, and then added with an alkali-soluble resin, a monomer, a photopolymerization initiator, and the like. On the other hand, when a dye is used as the colorant, the dye is prepared by adding a solvent, an alkali-soluble resin, a monomer, a photopolymerization initiator, and the like. The total solid content in this case is the total of the polymer component, the alkali-soluble resin and monomer, which are resin components, and the colorant.
 得られた着色剤組成物を、樹脂ブラックマトリックスが形成された透明基板上に、スピンコーター又はダイコーター等の方法で塗布後、真空乾燥し、着色剤の塗膜を形成する。次に、プロキシミティ露光機又はプロジェクション露光機等によりフォトマスクを介して、紫外線等により選択的に露光を行う。その後、0.02~1質量%の水酸化カリウム又はテトラメチルアンモニウムヒドロキシド等のアルカリ現像液により現像を行い、未露光部を除去することでパターンが得られる。得られた塗膜パターンを180~250℃の熱風オーブン又はホットプレートで5~40分加熱処理することで、副画素がパターンニングされたCFとなる。副画素の色毎に作製した着色剤組成物を使用して、上記のようなパターンニング工程を赤の副画素、緑の副画素および青の副画素について順次行い、青の副画素は第4色の副画素の開口部面積の5~40%が遮蔽されるように形成する。 The obtained colorant composition is applied onto a transparent substrate on which a resin black matrix is formed by a method such as a spin coater or a die coater, and then vacuum-dried to form a colorant coating film. Next, exposure is selectively performed with ultraviolet rays or the like through a photomask by a proximity exposure machine or a projection exposure machine. Thereafter, development is performed with an alkaline developer such as 0.02 to 1% by mass of potassium hydroxide or tetramethylammonium hydroxide, and the pattern is obtained by removing unexposed portions. The obtained coating film pattern is heat-treated in a hot air oven or hot plate at 180 to 250 ° C. for 5 to 40 minutes, so that the sub-pixel becomes a patterned CF. Using the colorant composition prepared for each color of the sub-pixel, the patterning process as described above is sequentially performed on the red sub-pixel, the green sub-pixel, and the blue sub-pixel. It is formed so that 5 to 40% of the opening area of the color sub-pixel is shielded.
 その後、平坦化膜として、アクリル樹脂をスピンコーター又はダイコーター等の方法で塗布後、真空乾燥し、80~110℃の熱風オーブン又はホットプレートでプリベイクを行い、150~250℃の熱風オーブン又はホットプレートで5~40分加熱することで平坦化膜を形成することで、本発明のCFの画素が作製できる。なお、副画素のパターンニングの順序は特に限定されない。 After that, an acrylic resin is applied as a planarizing film by a method such as a spin coater or a die coater, vacuum-dried, and prebaked in a hot air oven or hot plate at 80 to 110 ° C., and then heated in a hot air oven or hot at 150 to 250 ° C. The CF pixel of the present invention can be manufactured by forming a planarizing film by heating on a plate for 5 to 40 minutes. The order of subpixel patterning is not particularly limited.
 本発明のCFは、CFの背面から光を照射する、透過型の表示装置に用いられる。透過型の表示装置は、製造コストが安く、コントラスト比が高くなるため好ましい。 The CF of the present invention is used in a transmissive display device that emits light from the back surface of the CF. A transmissive display device is preferable because the manufacturing cost is low and the contrast ratio is high.
 CFの背面から照射する光の光源(以下、「バックライト」)としては、CCFL、LED又は有機EL等を用いることができる。LEDバックライトの例としては、2波長LEDバックライト又は3波長LEDバックライトが挙げられるが、青色LEDと黄色YAG蛍光体とからなる2波長LEDを用いることが好ましい。バックライトの種類によっても色度は異なるが、本発明によればホワイトバランスの制御が可能である。また、本発明によれば、有機ELと組み合わせても、ホワイトバランスの制御が可能である。 CCFL, LED, organic EL, etc. can be used as a light source (hereinafter referred to as “backlight”) of light irradiated from the back surface of the CF. Examples of the LED backlight include a two-wavelength LED backlight or a three-wavelength LED backlight, but it is preferable to use a two-wavelength LED composed of a blue LED and a yellow YAG phosphor. Although the chromaticity varies depending on the type of backlight, according to the present invention, white balance can be controlled. Further, according to the present invention, white balance can be controlled even in combination with organic EL.
 次に、本発明のCFの評価方法について説明する。 Next, the CF evaluation method of the present invention will be described.
 赤緑青および第4色の副画素の色度は、顕微分光光度計(例えば、MCPD-2000;大塚電子(株)製)を用いて各副画素の透過率スペクトルを測定後、(Y)および色度(x、y)がCIE1931規格に基づいて算出される。 The chromaticity of the sub-pixels of red, green and blue and the fourth color is determined by measuring the transmittance spectrum of each sub-pixel using a microspectrophotometer (for example, MCPD-2000; manufactured by Otsuka Electronics Co., Ltd.) The chromaticity (x, y) is calculated based on the CIE 1931 standard.
 CFのホワイトバランスは、第4色の副画素の色度(x、y)と、赤緑青の副画素の加法混色の色度(x、y)との差(Δx、Δy)の絶対値(|Δx|、|Δy|)から評価することができる。|Δx|および|Δy|が小さいほど、CFのホワイトバランスが良好となるため好ましい。 The white balance of CF is the absolute value (Δx, Δy) of the difference (Δx, Δy) between the chromaticity (x, y) of the fourth color sub-pixel and the additive color mixture chromaticity (x, y) of the red-green-blue sub-pixel ( | Δx |, | Δy |). Smaller | Δx | and | Δy | are preferable because white balance of CF becomes better.
 CFの画素の透過率は、上記のようにして求めた第4色の副画素の(Y)と、赤緑青の副画素の加法混色の(Y)から評価することができる。 The transmittance of the CF pixel can be evaluated from (Y) of the subpixels of the fourth color obtained as described above and (Y) of the additive color mixture of the red, green, and blue subpixels.
 CFの色再現範囲は、赤緑青の副画素のそれぞれの色度(x、y)を結んでなる3角形の面積と、NTSC規格色度(x、y)を結んでなる3角形の面積を計算し、その面積比から算出することができる。なお、NTSC規格色度(x、y)は、赤(0.67、0.33)、緑(0.21、0.71)、青(0.14、0.08)である。CFの色再現範囲は、70~100%であることが好ましい。本発明のCFでは、赤緑青の副画素の(Y)は色再現範囲が広くなるほど原理的に低下するものの、第4色の副画素の(Y)は色再現範囲によらず高い値となる。したがって、本発明のCFでは、色再現範囲が充分に広いと考えられている70~100%においても、CFの(Y)を高くすることができる。 The CF color reproduction range includes a triangular area connecting the chromaticities (x, y) of red, green, and blue sub-pixels and a triangular area connecting NTSC standard chromaticities (x, y). It can be calculated from the area ratio. The NTSC standard chromaticity (x, y) is red (0.67, 0.33), green (0.21, 0.71), and blue (0.14, 0.08). The color reproduction range of CF is preferably 70 to 100%. In the CF of the present invention, (Y) of the red, green, and blue subpixels decreases in principle as the color reproduction range becomes wider, but (Y) of the fourth color subpixel becomes a high value regardless of the color reproduction range. . Therefore, in the CF of the present invention, (Y) of CF can be increased even at 70 to 100%, which is considered to have a sufficiently wide color reproduction range.
 副画素の開口部面積は、光学顕微鏡観察により測定することができる。CFは透明基板1枚に表示装置の1画面を複数形成することが一般的である。光学顕微鏡で観察した表示装置の1画面内の画像について、画像処理又は測長ソフトにより副画素の開口部の短辺および長辺を5点以上測定し、それぞれ求めた平均値の積から、開口面積を決定する。副画素の幅や、第4色の副画素の開口部に延出した副画素の面積等についても、5点以上測定した平均値に基づいて決定する。 The aperture area of the subpixel can be measured by observation with an optical microscope. In general, CF forms a plurality of screens of a display device on one transparent substrate. For an image in one screen of a display device observed with an optical microscope, measure the short side and the long side of the subpixel opening by 5 or more points using image processing or length measurement software. Determine the area. The width of the sub-pixel, the area of the sub-pixel extending to the opening of the sub-pixel of the fourth color, and the like are also determined based on the average value measured at five or more points.
 ブラックマトリックス、副画素および平坦化膜の膜厚は、表面段差計(例えば、サーフコム1400D;東京精密(株)製)により測定することができる。また、第4色の副画素の上の、平坦化膜のへこみ量も測定することができる。 The film thickness of the black matrix, subpixels, and planarization film can be measured with a surface step meter (for example, Surfcom 1400D; manufactured by Tokyo Seimitsu Co., Ltd.). In addition, the amount of indentation of the planarization film on the fourth color sub-pixel can also be measured.
 副画素の膜厚は、1.2~2.5μmであることが好ましい。膜厚が1.2μmより薄いと、赤緑青の副画素の色度が不良となる場合や、画素膜厚に対する着色剤の量が増大して樹脂成分が減少することで膜強度が低下して膜欠け不良となる。膜厚が2.5μmより厚いと、CFの平坦性が低下する場合がある。ブラックマトリックスの膜厚は、0.5~1.5μmであることが好ましい。膜厚が0.5μmより薄いと、遮光性が充分ではなく、膜厚が1.5μmより厚いと、CFの平坦性が低下する場合がある。 The film thickness of the sub-pixel is preferably 1.2 to 2.5 μm. If the film thickness is thinner than 1.2 μm, the chromaticity of the red, green, and blue sub-pixels may be poor, or the film strength may be reduced by increasing the amount of the colorant relative to the pixel film thickness and decreasing the resin component. Film defect occurs. If the film thickness is greater than 2.5 μm, the flatness of the CF may decrease. The film thickness of the black matrix is preferably 0.5 to 1.5 μm. When the film thickness is thinner than 0.5 μm, the light shielding property is not sufficient, and when the film thickness is thicker than 1.5 μm, the flatness of the CF may be lowered.
 次に、本発明のCFを具備してなる液晶表示装置の一例について述べる。CFとアレイ基板とを、さらにそれらの基板上に設けられた液晶配向のためのラビング処理を施した液晶配向膜およびセルギャップ保持のためのスペーサーを介して、対向させて貼り合わせる。なお、アレイ基板上には、薄膜トランジスタ(以下、「TFT」)素子若しくは薄膜ダイオード(以下、「TFD」)素子又は走査線若しくは信号線等を設け、TFT液晶表示装置又はTFD液晶表示装置を作製することができる。次に、シール部に設けられた注入口から液晶を注入して、注入口を封止する。最後にバックライトを取り付け、ICドライバー等を実装することにより、液晶表示装置が完成する。 Next, an example of a liquid crystal display device comprising the CF of the present invention will be described. The CF and the array substrate are bonded to each other through a liquid crystal alignment film that has been subjected to a rubbing process for liquid crystal alignment provided on the substrate and a spacer for maintaining a cell gap. Note that a thin film transistor (hereinafter referred to as “TFT”) element, a thin film diode (hereinafter referred to as “TFD”) element, a scanning line, a signal line, or the like is provided over the array substrate to manufacture a TFT liquid crystal display device or a TFD liquid crystal display device. be able to. Next, liquid crystal is injected from an injection port provided in the seal portion to seal the injection port. Finally, a backlight is attached and an IC driver or the like is mounted to complete the liquid crystal display device.
 バックライトの色度(x、y)は、0.250≦x≦0.350、かつ、0.300≦y≦0.400であることが好ましい。上記範囲の色度(x、y)のバックライトと、本発明のCFとを具備してなる液晶表示装置は、白色表示色度(x、y)が良好となり、かつ、液晶表示装置の画面内における白色表示色度(x、y)のバラツキが小さくなり、ホワイトバランスに優れる。 The chromaticity (x, y) of the backlight is preferably 0.250 ≦ x ≦ 0.350 and 0.300 ≦ y ≦ 0.400. The liquid crystal display device comprising the backlight having the chromaticity (x, y) in the above range and the CF of the present invention has good white display chromaticity (x, y) and the screen of the liquid crystal display device. Variation in white display chromaticity (x, y) is reduced, and the white balance is excellent.
 以下、実施例および比較例を挙げて、本発明をさらに詳しく説明する。なお、CFの評価基準は下記のとおりとした。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. The evaluation criteria for CF were as follows.
 (CFのホワイトバランス)
判定A:|Δx|、|Δy|の大きい方が、
(|Δx|or|Δy|)≦0.020の場合
判定B:|Δx|、|Δy|の大きい方が、
0.020<(|Δx|or|Δy|)≦0.030の場合
判定C:|Δx|、|Δy|の大きい方が、
0.030<(|Δx|or|Δy|)の場合
 (CFのCIE1931表色系三刺激値(Y))
判定A:(Y)≧75
判定B:65≦(Y)<75
判定C:(Y)<65
 (CFの平坦性△t)
 CFの平坦性は、赤、緑または青の副画素のうちの最も厚い副画素の中心の膜厚を基準にして、第4色の副画素の中心の膜厚との差の絶対値を示したものである。各副画素の膜厚は、SEMや触針式膜厚計、レーザー顕微鏡などで測定することが可能である。
判定A:△t<0.12μm 
判定B:0.12μm≦△t≦0.20μm
判定C:△t>0.2μm
 (調整例1;赤の副画素を形成するための赤色着色剤組成物の作製)
 着色剤として、50gのPR177(クロモファイン(登録商標)レッド6125EC;大日精化製)および50gのPR254(イルガフォア(登録商標)レッドBK-CF;チバ・スペシャルティケミカルズ(株)製)を混合した。この着色剤中に、100gの高分子分散剤(BYK2000;樹脂濃度40質量%;ビックミージャパン(株)製)、67gのアルカリ可溶性樹脂(サイクロマー(登録商標)ACA250;樹脂濃度45質量%;ダイセル化学製)、83gのプロピレングリコールモノメチルエーテルおよび650gのプロピレングリコールモノメチルエーテルアセテートを混合して、スラリーを作製した。スラリーを入れたビーカーを循環式ビーズミル分散機(ダイノーミルKDL-A;ウイリー・エ・バッコーフェン社製)とチューブでつなぎ、メディアとして直径0.3mmのジルコニアビーズを使用して、3200rpm、4時間の分散処理を行い、着色剤分散液RA-1を得た。
(CF white balance)
Determination A: The larger of | Δx | and | Δy |
(| Δx | or | Δy |) ≦ 0.020 Determination B: The larger of | Δx | and | Δy |
In the case of 0.020 <(| Δx | or | Δy |) ≦ 0.030, determination C: The larger of | Δx | and | Δy |
When 0.030 <(| Δx | or | Δy |) (CF CIE1931 color system tristimulus value (Y))
Determination A: (Y) ≧ 75
Determination B: 65 ≦ (Y) <75
Determination C: (Y) <65
(CF flatness Δt)
The flatness of CF indicates the absolute value of the difference from the film thickness at the center of the subpixel of the fourth color on the basis of the film thickness at the center of the thickest subpixel among the red, green, and blue subpixels. It is a thing. The film thickness of each subpixel can be measured with an SEM, a stylus film thickness meter, a laser microscope, or the like.
Determination A: Δt <0.12 μm
Determination B: 0.12 μm ≦ Δt ≦ 0.20 μm
Determination C: Δt> 0.2 μm
(Adjustment Example 1: Production of a red colorant composition for forming a red subpixel)
As a colorant, 50 g of PR177 (Chromofine (registered trademark) Red 6125EC; manufactured by Dainichi Seika) and 50 g of PR254 (Irgaphore (registered trademark) Red BK-CF; manufactured by Ciba Specialty Chemicals Co., Ltd.) were mixed. In this colorant, 100 g of a polymer dispersant (BYK2000; resin concentration 40% by mass; manufactured by Big Me Japan Co., Ltd.), 67 g of an alkali-soluble resin (Cyclomer (registered trademark) ACA250; resin concentration 45% by mass); Daicel Chemical Co., Ltd.), 83 g of propylene glycol monomethyl ether and 650 g of propylene glycol monomethyl ether acetate were mixed to prepare a slurry. The beaker containing the slurry was connected to a circulating bead mill disperser (Dynomill KDL-A; manufactured by Willy et Bacofen) with a tube, and using zirconia beads having a diameter of 0.3 mm as a medium, dispersion at 3200 rpm for 4 hours Processing was performed to obtain a colorant dispersion RA-1.
 プロピレングリコールモノメチルエーテルアセテートを50gとしたこと以外は、着色剤分散液RA-1と同様にして着色分散剤RA-2を得た。 A colored dispersant RA-2 was obtained in the same manner as the colorant dispersion RA-1 except that 50 g of propylene glycol monomethyl ether acetate was used.
 BYK2000を50g、サイクロマーACA250を50g、プロピレングリコールモノメチルエーテルアセテートを50gとしたこと以外は、着色剤分散液RA-1と同様にして着色分散剤RA-3を得た。 A colored dispersant RA-3 was obtained in the same manner as the colorant dispersion RA-1, except that 50 g of BYK2000, 50 g of cyclomer ACA250, and 50 g of propylene glycol monomethyl ether acetate were used.
 着色剤分散液RA-1を45.7gに、7.8gのサイクロマーACA250、3.3gの光重合性モノマー(カヤラッド(登録商標)DPHA;日本化薬製)、0.2gの光重合開始剤(イルガキュア(登録商標)907;チバ・スペシャルティケミカルズ製)、0.1gの光重合開始剤(カヤキュアー(登録商標)DETX-S;日本化薬製)、0.03gの界面活性剤(BYK333;ビックケミージャパン(株)製)および42.9gのプロピレングリコールモノメチルエーテルアセテートを添加し、着色剤組成物R-1を得た。着色剤組成物における全固形分中の着色剤の濃度は、31質量%であり、各着色剤の質量混合比は、PR177:PR254=50:50であった。 To 45.7 g of the colorant dispersion RA-1, 7.8 g of cyclomer ACA250, 3.3 g of photopolymerizable monomer (Kayarad (registered trademark) DPHA; manufactured by Nippon Kayaku Co., Ltd.), 0.2 g of photopolymerization was started. Agent (Irgacure (registered trademark) 907; manufactured by Ciba Specialty Chemicals), 0.1 g of photopolymerization initiator (Kayacure (registered trademark) DETX-S; manufactured by Nippon Kayaku), 0.03 g of surfactant (BYK333; Big Chemie Japan Co., Ltd.) and 42.9 g of propylene glycol monomethyl ether acetate were added to obtain a colorant composition R-1. The concentration of the colorant in the total solid content in the colorant composition was 31% by mass, and the mass mixing ratio of each colorant was PR177: PR254 = 50: 50.
 着色剤分散液RA-2を使用したこと、サイクロマーACA250を添加しなかったこと、カヤラッドDPHAを2.3gとしたこと以外は、着色剤組成物R-1と同様に着色書生物R-2を得た。着色剤組成物における全固形分中の着色剤の濃度は、52質量%であった。 Colored Biology R-2 as in Colorant Composition R-1, except that Colorant Dispersion RA-2 was used, Cyclomer ACA250 was not added, and Kayarad DPHA was 2.3 g. Got. The concentration of the colorant in the total solid content in the colorant composition was 52% by mass.
 サイクロマーACA250を15.6gとしたこと以外は、着色剤組成物R-1と同様に着色書生物R-3を得た。着色剤組成物における全固形分中の着色剤の濃度は、24.8質量%であった。 A colored book organism R-3 was obtained in the same manner as the colorant composition R-1, except that 15.6 g of the cyclomer ACA250 was used. The concentration of the colorant in the total solid content in the colorant composition was 24.8% by mass.
 着色剤分散液RA-3を使用したこと、サイクロマーACA250を添加しなかったこと、カヤラッドDPHAを2.3gとしたこと、以外は、着色剤組成物R-1と同様に着色書生物R-4を得た。着色剤組成物における全固形分中の着色剤の濃度は、62質量%であった。 Colored Biology R-, similar to Colorant Composition R-1, except that Colorant Dispersion RA-3 was used, Cyclomer ACA250 was not added, and Kayarad DPHA was 2.3 g. 4 was obtained. The concentration of the colorant in the total solid content in the colorant composition was 62% by mass.
 サイクロマーACA250を23.7gとしたこと以外は、着色剤組成物R-1と同様に着色書生物R-5を得た。着色剤組成物における全固形分中の着色剤の濃度は、20.7質量%であった。 A colored book organism R-5 was obtained in the same manner as the colorant composition R-1, except that 23.7 g of the cyclomer ACA250 was used. The concentration of the colorant in the total solid content in the colorant composition was 20.7% by mass.
 (調整例2;緑の副画素を形成するための緑色着色剤組成物の作製)
 着色剤として、65gのPG7(ホスタパーム(登録商標)グリーンGNX;クラリアントジャパン社製)および35gのPY150(E4GNGT;ランクセス(株)製)を混合した。この着色剤に、100gのBYK2000、67gのサイクロマーACA250、83gのプロピレングリコールモノメチルエーテルおよび650gのプロピレングリコールモノメチルエーテルアセテートを混合し、ダイノーミルKDL-Aを用いて、直径0.3mmのジルコニアビーズを使用して、3200rpm、6時間の分散処理を行い、着色剤分散液GA-1を得た。
(Adjustment Example 2: Production of a green colorant composition for forming a green subpixel)
As a colorant, 65 g of PG7 (Hosta Palm (registered trademark) Green GNX; manufactured by Clariant Japan) and 35 g of PY150 (E4GNGT; manufactured by LANXESS) were mixed. 100 g of BYK2000, 67 g of cyclomer ACA250, 83 g of propylene glycol monomethyl ether and 650 g of propylene glycol monomethyl ether acetate are mixed with this colorant, and zirconia beads having a diameter of 0.3 mm are used with DYNOMILL KDL-A. Then, a dispersion treatment was performed at 3200 rpm for 6 hours to obtain a colorant dispersion GA-1.
 プロピレングリコールモノメチルエーテルアセテートを83gとしたこと以外は、着色剤分散液GA-1と同様にして着色分散剤GA-2を得た。 A color dispersant GA-2 was obtained in the same manner as the colorant dispersion GA-1, except that 83 g of propylene glycol monomethyl ether acetate was used.
 BYK2000を50g、サイクロマーACA250を30g、プロピレングリコールモノメチルエーテルアセテートを83gとしたこと以外は、着色剤分散液GA-1と同様にして着色分散剤GA-3を得た。 A colored dispersant GA-3 was obtained in the same manner as the colorant dispersion GA-1, except that 50 g of BYK2000, 30 g of cyclomer ACA250, and 83 g of propylene glycol monomethyl ether acetate were used.
 着色剤分散液GA-1を51.7gに、6.3gのサイクロマーACA250、2.9gのカヤラッドDPHA、0.2gのイルガキュア907、0.1gのカヤキュアーDETX-S、0.03gのBYK333および38.8gのプロピレングリコールモノメチルエーテルアセテートを添加し、着色剤組成物を得た。着色剤組成物における全固形分中の着色剤の濃度は35質量%であり、PG7:PY150=65:35であった。 51.7 g of Colorant Dispersion GA-1 to 6.3 g of Cyclomer ACA250, 2.9 g of Kayala DPHA, 0.2 g of Irgacure 907, 0.1 g of Kayacure DETX-S, 0.03 g of BYK333 and 38.8 g of propylene glycol monomethyl ether acetate was added to obtain a colorant composition. The concentration of the colorant in the total solid content in the colorant composition was 35% by mass, and PG7: PY150 = 65: 35.
 着色剤分散液GA-2を使用したこと、サイクロマーACA250を1.4gとしたこと、カヤラッドDPHAを1.5gとしたこと以外は、着色剤組成物G-1と同様に着色書生物G-2を得た。着色剤組成物における全固形分中の着色剤の濃度は、59質量%であった。 Except for using the colorant dispersion GA-2, 1.4 g of the cyclomer ACA250, and 1.5 g of Kayarad DPHA, the coloring book organism G- 2 was obtained. The concentration of the colorant in the total solid content in the colorant composition was 59% by mass.
 サイクロマーACA250を15gとしたこと以外は、着色剤組成物G-1と同様に着色書生物G-3を得た。着色剤組成物における全固形分中の着色剤の濃度は、28質量%であった。 A colored book organism G-3 was obtained in the same manner as the colorant composition G-1, except that the cyclomer ACA250 was changed to 15 g. The concentration of the colorant in the total solid content in the colorant composition was 28% by mass.
 着色剤分散液GA-3を使用したこと、サイクロマーACA250を添加しなかったこと、カヤラッドDPHAを1.0gとしたこと以外は、着色剤組成物G-1と同様に着色書生物G-4を得た。着色剤組成物における全固形分中の着色剤の濃度は、70質量%であった。 The coloring book organism G-4 was the same as the coloring agent composition G-1, except that the coloring agent dispersion GA-3 was used, the cyclomer ACA250 was not added, and the Kayrad DPHA was 1.0 g. Got. The concentration of the colorant in the total solid content in the colorant composition was 70% by mass.
 サイクロマーACA250を19gとしたこと、カヤラッドDPHAを1.0gとしたこと以外は、着色剤組成物G-1と同様に着色書生物G-5を得た。着色剤組成物における全固形分中の着色剤の濃度は、23.3質量%であった。 A colored book organism G-5 was obtained in the same manner as the colorant composition G-1, except that the cyclomer ACA250 was changed to 19 g and the Kayarad DPHA was changed to 1.0 g. The concentration of the colorant in the total solid content in the colorant composition was 23.3% by mass.
 (調整例3;青の副画素を形成するための青色着色剤組成物の作製)
 着色剤として、100gのPB15:6(リオノール(登録商標)ブルー7602;東洋インキ社製)を使用し、この着色剤中に100gのBYK2000、67gのサイクロマーACA250、83gのプロピレングリコールモノメチルエーテルおよび650gのプロピレングリコールモノメチルエーテルアセテートを混合して、スラリーを作製した。スラリーを分散機ダイノーミルKDL-Aを用いて、直径0.3mmのジルコニアビーズを使用して、3200rpm、3時間の分散処理を行い、着色剤分散液BA-1を得た。
(Adjustment Example 3: Production of a blue colorant composition for forming a blue subpixel)
As a colorant, 100 g of PB15: 6 (Lionol® Blue 7602; manufactured by Toyo Ink Co., Ltd.) was used. In this colorant, 100 g of BYK2000, 67 g of cyclomer ACA250, 83 g of propylene glycol monomethyl ether and 650 g The propylene glycol monomethyl ether acetate was mixed to prepare a slurry. The slurry was subjected to a dispersion treatment at 3200 rpm for 3 hours using zirconia beads having a diameter of 0.3 mm using a disperser DYNOMILL KDL-A to obtain a colorant dispersion BA-1.
 プロピレングリコールモノメチルエーテルアセテートを100gとしたこと以外は、着色剤分散液BA-1と同様にして着色分散剤BA-2を得た。 A color dispersant BA-2 was obtained in the same manner as the colorant dispersion BA-1, except that 100 g of propylene glycol monomethyl ether acetate was used.
 BYK2000を50g、サイクロマーACA250を50g、プロピレングリコールモノメチルエーテルアセテートを100gとしたこと以外は、着色剤分散液BA-1と同様にして着色分散剤BA-3を得た。 A colored dispersant BA-3 was obtained in the same manner as the colorant dispersion BA-1, except that 50 g of BYK2000, 50 g of cyclomer ACA250, and 100 g of propylene glycol monomethyl ether acetate were used.
 PB15:6を78gとしたこと以外は着色剤分散液BA-1と同様にして着色分散剤BA-4得た。 A colored dispersant BA-4 was obtained in the same manner as the colorant dispersion BA-1, except that PB15: 6 was changed to 78 g.
 着色剤分散液BA-1を41.3gに、8.9gのサイクロマーACA250、3.5gのカヤラッドDPHA、0.2gのイルガキュア907、0.1gのカヤキュアーDETX-S、0.03gのBYK333および46gのプロピレングリコールモノメチルエーテルアセテートを添加し、着色剤組成物を得た。着色剤組成物における全固形分中の着色剤の濃度は28質量%であり、PB15:6単独であった。 41.3 g of Colorant Dispersion BA-1 to 8.9 g Cyclomer ACA250, 3.5 g Kayala DPHA, 0.2 g Irgacure 907, 0.1 g Kayacure DETX-S, 0.03 g BYK333 and 46 g of propylene glycol monomethyl ether acetate was added to obtain a colorant composition. The concentration of the colorant in the total solid content in the colorant composition was 28% by mass, and was PB15: 6 alone.
 着色剤分散液BA-2を使用したこと、サイクロマーACA250を2.5gとしたこと、カヤラッドDPHAを2.5gとしたこと以外は、着色剤組成物B-1と同様に着色書生物B-2を得た。着色剤組成物における全固形分中の着色剤の濃度は、47質量%であった。 Except for the use of the colorant dispersion BA-2, 2.5 g of the cyclomer ACA250, and 2.5 g of Kayarad DPHA, the coloring book organism B- was the same as the colorant composition B-1. 2 was obtained. The concentration of the colorant in the total solid content in the colorant composition was 47% by mass.
 サイクロマーACA250を16.8gとしたこと以外は、着色剤組成物B-1と同様に着色書生物B-3を得た。着色剤組成物における全固形分中の着色剤の濃度は、22.4質量%であった。 Except that the amount of cyclomer ACA250 was changed to 16.8 g, a colored book organism B-3 was obtained in the same manner as the colorant composition B-1. The concentration of the colorant in the total solid content in the colorant composition was 22.4% by mass.
 着色剤分散液BA-3を使用したこと、サイクロマーACA250を添加しなかったこと以外は、着色剤組成物B-1と同様に着色書生物B-4を得た。着色剤組成物における全固形分中の着色剤の濃度は、56質量%であった。 Colored book organism B-4 was obtained in the same manner as Colorant Composition B-1, except that Colorant Dispersion BA-3 was used and Cyclomer ACA250 was not added. The concentration of the colorant in the total solid content in the colorant composition was 56% by mass.
 着色剤分散液BA-4を使用したこと、サイクロマーACA250を16.8gとしたこと以外は、着色剤組成物B-1と同様に着色書生物B-5を得た。着色剤組成物における全固形分中の着色剤の濃度は18.7質量%であった。 Colored book organism B-5 was obtained in the same manner as the colorant composition B-1, except that the colorant dispersion BA-4 was used and the cyclomer ACA250 was changed to 16.8 g. The concentration of the colorant in the total solid content in the colorant composition was 18.7% by mass.
 (調整例4;ブラックマトリックスを形成するための黒色遮光剤組成物の作製)
 4,4’-ジアミノフェニルエーテル(0.30モル当量)、パラフェニレンジアミン(0.65モル当量)およびビス(3-アミノプロピル)テトラメチルジシロキサン(0.05モル当量)を、850gのγ-ブチロラクトンおよび850gのN-メチル-2-ピロリドンと共に仕込み、3,3’,4,4’-オキシジフタルカルボン酸二無水物(0.9975モル当量)を添加し、80℃で3時間反応させた。無水マレイン酸(0.02モル当量)を添加し、更に80℃で1時間反応させ、ポリアミック酸樹脂(樹脂の濃度20質量%)溶液を得た。
(Adjustment Example 4: Production of black light-shielding agent composition for forming a black matrix)
4,4′-diaminophenyl ether (0.30 molar equivalent), paraphenylenediamine (0.65 molar equivalent) and bis (3-aminopropyl) tetramethyldisiloxane (0.05 molar equivalent) were added to 850 g of γ -Charged with butyrolactone and 850 g of N-methyl-2-pyrrolidone, added 3,3 ', 4,4'-oxydiphthalcarboxylic dianhydride (0.9975 molar equivalent) and reacted at 80 ° C for 3 hours I let you. Maleic anhydride (0.02 molar equivalent) was added and further reacted at 80 ° C. for 1 hour to obtain a polyamic acid resin (resin concentration 20 mass%) solution.
 このポリアミック酸樹脂溶液250gに、50gのカーボンブラック(MA100;三菱化学(株)製)および200gのN-メチルピロリドンを混合し、ダイノーミルKDL-Aを用いて、直径0.3mmのジルコニアビーズを使用して、3200rpmで3時間の分散処理を行い、遮光剤分散液を得た。 To 250 g of this polyamic acid resin solution, 50 g of carbon black (MA100; manufactured by Mitsubishi Chemical Corporation) and 200 g of N-methylpyrrolidone are mixed, and zirconia beads having a diameter of 0.3 mm are used using Dinomill KDL-A. Then, a dispersion treatment was performed at 3200 rpm for 3 hours to obtain a light shielding agent dispersion.
 この遮光剤分散液50gに、49.9gのN-メチルピロリドンおよび0.1gの界面活性剤(LC951;楠本化学(株)製)を添加して、非感光性の遮光剤組成物を得た。遮光剤組成物における全固形分中の着色剤の濃度は50質量%であり、カーボンブラック単独であった。 To 50 g of this light-shielding agent dispersion, 49.9 g of N-methylpyrrolidone and 0.1 g of a surfactant (LC951; manufactured by Enomoto Chemical Co., Ltd.) were added to obtain a non-photosensitive light-shielding agent composition. . The density | concentration of the coloring agent in the total solid in a light-shielding agent composition was 50 mass%, and was carbon black alone.
 (調整例5;透明保護膜を形成するための樹脂組成物の作製)
 65.05gのトリメリット酸に、280gのγ-ブチロラクトンおよび74.95gのγ-アミノプロピルトリエトキシシランを添加し、120℃で2時間加熱した。得られた溶液20gに、7gのビスフェノキシエタノールフルオレンジグリシジルエーテルおよび15gのジエチレングリコールジメチルエーテルを添加し、樹脂組成物を得た。
(Adjustment Example 5: Production of resin composition for forming transparent protective film)
To 65.05 g of trimellitic acid, 280 g of γ-butyrolactone and 74.95 g of γ-aminopropyltriethoxysilane were added and heated at 120 ° C. for 2 hours. To 20 g of the obtained solution, 7 g of bisphenoxyethanol fluorange glycidyl ether and 15 g of diethylene glycol dimethyl ether were added to obtain a resin composition.
 (実施例1;赤緑青および第4色の副画素を有するCFの作製)
 300×350mmの無アルカリガラス基板上(AN100;旭硝子(株)製)に、調整例4で得られた遮光剤組成物をスピナーにより塗布し、その後熱風オーブン中135℃で20分加熱処理することにより、遮光膜を得た。続いて、ポシ型レジスト(LC100;ローム・アンド・ハース電子材料(株)製)をスピナーで塗布し、90℃で10分間乾燥した。ポジ型レジストの膜厚は1.5μmとした。露光機LE4000A((株)日立ハイテクノロジーズ製)を用い、フォトマスクを介して、露光を行った。フォトマスクは、副画素の開口部の短辺幅が26μm、長辺幅が116μmになり、かつ、ブラックマトリックスの幅が4.0μmになる設計とした。なお、赤緑青および第4色の副画素の幅は、すべて同一とした。フォトマスク下面とガラス基板上面とのプロキシミティギャップは、100μmとした。次に、テトラメチルアンモニウムヒドロキシドを2質量%含んだ23℃の水溶液を現像液に用い、基板を現像液に浸漬させ、同時に10cm幅を5秒で1往復するように基板を揺動させて、ポジ型レジストの現像とポリイミド前駆体のエッチングとを同時に行った。その後、メチルセルソルブアセテートに浸漬してポジ型レジストを剥離した。その後、熱風オーブン中290℃で30分間保持することにより、ポリイミド酸樹脂を硬化させ、樹脂ブラックマトリックスを得た。得られたブラックマトリックスの副画素の開口部の短辺幅が26μm、長辺幅が116μmであり、ブラックマトリックスの幅が4.0μmであった。なお、樹脂ブラックマトリックスの膜厚が1.0μmになるようにスピナー回転数を調整した。
Example 1 Production of CF having Red, Green, Blue and Fourth Color Subpixels
Apply the light-shielding agent composition obtained in Preparation Example 4 on a 300 × 350 mm alkali-free glass substrate (AN100; manufactured by Asahi Glass Co., Ltd.) using a spinner, and then heat-treat at 135 ° C. for 20 minutes in a hot air oven. Thus, a light shielding film was obtained. Subsequently, a positive resist (LC100; manufactured by Rohm and Haas Electronic Materials Co., Ltd.) was applied with a spinner and dried at 90 ° C. for 10 minutes. The film thickness of the positive resist was 1.5 μm. Exposure was performed through a photomask using an exposure machine LE4000A (manufactured by Hitachi High-Technologies Corporation). The photomask was designed to have a short side width of 26 μm, a long side width of 116 μm, and a black matrix width of 4.0 μm. The widths of red, green and blue and the sub-pixels of the fourth color are all the same. The proximity gap between the lower surface of the photomask and the upper surface of the glass substrate was 100 μm. Next, a 23 ° C. aqueous solution containing 2% by mass of tetramethylammonium hydroxide was used as a developer, and the substrate was immersed in the developer, and at the same time, the substrate was swung so that the 10 cm width reciprocated once every 5 seconds. The development of the positive resist and the etching of the polyimide precursor were simultaneously performed. Thereafter, the positive resist was peeled off by dipping in methyl cellosolve acetate. Thereafter, the polyimide acid resin was cured by being held at 290 ° C. for 30 minutes in a hot air oven to obtain a resin black matrix. The short side width of the openings of the subpixels of the obtained black matrix was 26 μm, the long side width was 116 μm, and the width of the black matrix was 4.0 μm. The spinner rotation speed was adjusted so that the film thickness of the resin black matrix was 1.0 μm.
 樹脂ブラックマトリックスが形成されたガラス基板上に、調整例1で得られた赤色着色剤組成物R-1をスピナーにより塗布し、その後熱風オーブン中90℃で10分加熱処理することにより、赤色着色膜を得た。次に、露光機LE4000Aを用い、フォトマスクを介して、露光を行った。フォトマスクは、露光部(赤の副画素部)がストライプ状に形成される設計とした。その後、0.04質量%の水酸化カリウム水溶液に、非イオン界面活性剤(エマルゲン(登録商標)A-60;花王(株)製)を現像液総量に対して0.1質量%添加したアルカリ現像液で90秒間揺動しながら浸漬を行い、続いて純水洗浄することにより、未露光部を除去し、パターンニング基板を得た。その後、熱風オーブン中220℃で30分保持することで、アクリル系樹脂を硬化させ、幅30μmのストライプ状の赤の副画素を得た。得られた赤の副画素の色度(x,y)は(0.630,0.311)、(Y)は19.6であり、赤の副画素の膜厚は2.0μmであった。 The red colorant composition R-1 obtained in Preparation Example 1 was applied onto a glass substrate on which a resin black matrix was formed using a spinner, and then heat-treated in a hot air oven at 90 ° C. for 10 minutes to give a red color. A membrane was obtained. Next, exposure was performed through a photomask using an exposure machine LE4000A. The photomask was designed such that the exposed portion (red subpixel portion) was formed in a stripe shape. Thereafter, an alkali obtained by adding 0.1% by mass of a nonionic surfactant (Emulgen (registered trademark) A-60; manufactured by Kao Corporation) to a 0.04% by mass aqueous potassium hydroxide solution with respect to the total amount of the developer. The substrate was immersed in a developing solution for 90 seconds and then washed with pure water to remove unexposed portions and obtain a patterned substrate. Thereafter, the acrylic resin was cured by holding at 220 ° C. for 30 minutes in a hot air oven, and a stripe-shaped red subpixel having a width of 30 μm was obtained. The chromaticity (x, y) of the obtained red subpixel was (0.630, 0.311), (Y) was 19.6, and the film thickness of the red subpixel was 2.0 μm. .
 調整例2で得られた緑色着色剤組成物G-1を使用し、赤の副画素と同様にして、緑の副画素を形成した。得られた緑の副画素の色度(x,y)は(0.223,0.601)、(Y)は43.6であり、緑の副画素の膜厚は2.0μmであった。 Using the green colorant composition G-1 obtained in Preparation Example 2, a green subpixel was formed in the same manner as the red subpixel. The chromaticity (x, y) of the obtained green subpixel was (0.223, 0.601), (Y) was 43.6, and the film thickness of the green subpixel was 2.0 μm. .
 樹脂ブラックマトリックス、赤および緑の副画素が形成されたガラス基板上に、調整例3で得られた青色着色剤組成物B-1をスピナーにより塗布し、その後熱風オーブン中90℃で10分加熱処理することにより、青色着色膜を得た。次に、露光機LE4000Aを用い、フォトマスクを介して、露光を行った。フォトマスクは、図1に示すように、ストライプ状すなわち上面形状が長方形の青の副画素が、第4色の副画素との間に形成されたブラックマトリックスおよび第4色の副画素の方向に延出する設計とした。その後、0.04質量%の水酸化カリウム水溶液に、非イオン界面活性剤(エマルゲン(登録商標)A-60;花王(株)製)を現像液総量に対して0.1質量%添加したアルカリ現像液で90秒間揺動しながら浸漬を行い、続いて純水洗浄することにより、未露光部を除去し、パターンニング基板を得た。その後、熱風オーブン中220℃で30分保持することで、アクリル系樹脂を硬化させ、第4色の副画素の開口部を幅5.2μmに渡って遮蔽する、総幅37.2μmのストライプ状の青の副画素を得た。延出した青の副画素により遮蔽された、第4色の副画素の開口部面積の割合は、20%であった。得られた青の副画素の色度(x,y)は(0.134,0.120)、(Y)は14.7であり、青の副画素の膜厚は2.0μmであった。 The blue colorant composition B-1 obtained in Preparation Example 3 was applied by a spinner onto a glass substrate on which a resin black matrix, red and green subpixels were formed, and then heated in a hot air oven at 90 ° C. for 10 minutes. By processing, a blue colored film was obtained. Next, exposure was performed through a photomask using an exposure machine LE4000A. As shown in FIG. 1, the photomask has a blue subpixel in a stripe shape, that is, a rectangular top surface, in the direction of the black matrix formed between the subpixels of the fourth color and the subpixel of the fourth color. Designed to extend. Thereafter, an alkali obtained by adding 0.1% by mass of a nonionic surfactant (Emulgen (registered trademark) A-60; manufactured by Kao Corporation) to a 0.04% by mass aqueous potassium hydroxide solution with respect to the total amount of the developer. The substrate was immersed in a developing solution for 90 seconds and then washed with pure water to remove unexposed portions and obtain a patterned substrate. Thereafter, the acrylic resin is cured by holding at 220 ° C. for 30 minutes in a hot air oven, and the openings of the sub-pixels of the fourth color are shielded over a width of 5.2 μm, and the total width is 37.2 μm. The blue subpixel was obtained. The ratio of the opening area of the fourth color sub-pixel shielded by the extended blue sub-pixel was 20%. The chromaticity (x, y) of the obtained blue subpixel was (0.134, 0.120), (Y) was 14.7, and the film thickness of the blue subpixel was 2.0 μm. .
 次に、調整例5で得られた樹脂組成物をスピナーにより硬化後の膜厚が1.5μmとなるように塗布し、その後熱風オーブン中130℃で5分のプリベイクを行った。次に、熱風オーブン中210℃で30分の加熱処理を行い、樹脂を硬化させて、CFを作製した。 Next, the resin composition obtained in Preparation Example 5 was applied by a spinner so that the film thickness after curing was 1.5 μm, and then prebaked at 130 ° C. for 5 minutes in a hot air oven. Next, heat treatment was performed in a hot air oven at 210 ° C. for 30 minutes to cure the resin, and CF was produced.
 (実施例2;赤緑青および第4色の副画素を有するCFの作製)
 延出した青の副画素により遮蔽された、第4色の副画素の開口部面積の割合を、5%に変更したこと以外は、実施例1と同様の方法でCFを作製した。
Example 2 Production of CF having Red, Green, Blue and Fourth Color Subpixels
A CF was fabricated in the same manner as in Example 1 except that the ratio of the opening area of the fourth color sub-pixel shielded by the extended blue sub-pixel was changed to 5%.
 (実施例3;赤緑青および第4色の副画素を有するCFの作製)
 延出した青の副画素により遮蔽された、第4色の副画素の開口部面積の割合を、10%に変更したこと以外は、実施例1と同様の方法でCFを作製した。
Example 3 Production of CF having Red, Green, Blue and Fourth Color Subpixels
A CF was manufactured in the same manner as in Example 1 except that the ratio of the opening area of the fourth color sub-pixel shielded by the extended blue sub-pixel was changed to 10%.
 (実施例4;赤緑青および第4色の副画素を有するCFの作製)
 延出した青の副画素により遮蔽された、第4色の副画素の開口部面積の割合を、40%に変更したこと以外は、実施例1と同様の方法でCFを作製した。
Example 4 Production of CF having Red, Green, Blue and Fourth Color Subpixels
A CF was fabricated in the same manner as in Example 1 except that the ratio of the opening area of the fourth color sub-pixel shielded by the extended blue sub-pixel was changed to 40%.
 (比較例1;赤緑青および第4色の副画素を有するCFの作製)
 延出した青の副画素により遮蔽された、第4色の副画素の開口部面積の割合を0%に変更、すなわち、図14に示すように青の副画素を第4色の副画素の開口部に一切延出させなかったこと以外は、実施例1と同様の方法でCFを作製した。
(Comparative Example 1: Production of CF having red, green, blue and fourth color sub-pixels)
The ratio of the opening area of the fourth color sub-pixel shielded by the extended blue sub-pixel is changed to 0%, that is, the blue sub-pixel is changed to the fourth color sub-pixel as shown in FIG. A CF was produced in the same manner as in Example 1 except that no extension was made to the opening.
 (比較例2;赤緑青および第4色の副画素を有するCFの作製)
 延出した青の副画素により遮蔽された、第4色の副画素の開口部面積の割合を、50%に変更したこと以外は、実施例1と同様の方法でCFを作製した。
(Comparative Example 2: Production of CF having red, green, blue and fourth color sub-pixels)
A CF was fabricated in the same manner as in Example 1 except that the ratio of the opening area of the fourth color sub-pixel shielded by the extended blue sub-pixel was changed to 50%.
 (実施例5;赤緑青および第4色の副画素を有するCFの作製)
 実施例1と同様の方法で、樹脂ブラックマトリックスおよび赤の副画素が形成されたガラス基板上に、調整例2で得られた緑色着色剤組成物G-1をスピナーにより塗布し、その後熱風オーブン中90℃で10分加熱処理することにより、緑色着色膜を得た。次に、露光機LE4000Aを用いフォトマスクを介して、露光を行った。フォトマスクは、図11に示すように、ストライプ状すなわち上面形状が長方形の緑の副画素が、第4色の副画素との間に形成されたブラックマトリックスおよび第4色の副画素の方向に延出する設計とした。その後、0.04質量%の水酸化カリウム水溶液に、非イオン界面活性剤(エマルゲン(登録商標)A-60;花王(株)製)を現像液総量に対して0.1質量%添加したアルカリ現像液で90秒間揺動しながら浸漬を行い、続いて純水洗浄することにより、未露光部を除去し、パターンニング基板を得た。その後、熱風オーブン中220℃で30分保持することで、アクリル系樹脂を硬化させ、第4色の副画素の開口部を幅2.0μmに渡って遮蔽する、総幅34μmのストライプ状の緑の副画素を得た。延出した緑の副画素により遮蔽された、第4色の副画素の開口部面積の割合は、7.5%であった。
(Example 5: Production of CF having red, green, blue and fourth color sub-pixels)
In the same manner as in Example 1, the green colorant composition G-1 obtained in Preparation Example 2 was applied by a spinner onto a glass substrate on which a resin black matrix and red subpixels were formed, and then heated in a hot air oven A green colored film was obtained by heat treatment at 90 ° C. for 10 minutes. Next, exposure was performed through a photomask using an exposure machine LE4000A. As shown in FIG. 11, the photomask has a stripe shape, ie, a rectangular sub-surface with green subpixels in the direction of the black matrix formed between the fourth color subpixels and the fourth color subpixels. Designed to extend. Thereafter, an alkali obtained by adding 0.1% by mass of a nonionic surfactant (Emulgen (registered trademark) A-60; manufactured by Kao Corporation) to a 0.04% by mass aqueous potassium hydroxide solution with respect to the total amount of the developer. The substrate was immersed in a developing solution for 90 seconds and then washed with pure water to remove unexposed portions and obtain a patterned substrate. After that, the acrylic resin is cured by holding at 220 ° C. for 30 minutes in a hot air oven, and the openings of the subpixels of the fourth color are shielded over a width of 2.0 μm. The subpixel was obtained. The ratio of the opening area of the fourth color sub-pixel shielded by the extended green sub-pixel was 7.5%.
 次に、調整例3で得られた青色着色剤組成物B-1をスピナーにより塗布し、その後熱風オーブン中90℃で10分加熱処理することにより、青色着色膜を得た。次に、露光機LE4000Aを用いフォトマスクを介して、露光を行った。フォトマスクは、図11に示すように、ストライプ状すなわち上面形状が長方形の青の副画素が、第4色の副画素との間に形成されたブラックマトリックスおよび第4色の副画素の方向に延出する設計とした。その後、0.04質量%の水酸化カリウム水溶液に、非イオン界面活性剤(エマルゲン(登録商標)A-60;花王(株)製)を現像液総量に対して0.1質量%添加したアルカリ現像液で90秒間揺動しながら浸漬を行い、続いて純水洗浄することにより、未露光部を除去し、パターンニング基板を得た。その後、熱風オーブン中220℃で30分保持することで、アクリル系樹脂を硬化させ、第4色の副画素の開口部を幅5.9μmに渡って遮蔽する、総幅37.9μmのストライプ状の青の副画素を得た。延出した青の副画素により遮蔽された、第4色の副画素の開口部面積の割合は、22.5%であった。 Next, the blue colorant composition B-1 obtained in Preparation Example 3 was applied with a spinner, and then heat-treated in a hot air oven at 90 ° C. for 10 minutes to obtain a blue colored film. Next, exposure was performed through a photomask using an exposure machine LE4000A. As shown in FIG. 11, the photomask has a stripe shape, ie, a blue subpixel whose top surface is rectangular in the direction of the black matrix formed between the subpixels of the fourth color and the subpixels of the fourth color. Designed to extend. Thereafter, an alkali obtained by adding 0.1% by mass of a nonionic surfactant (Emulgen (registered trademark) A-60; manufactured by Kao Corporation) to a 0.04% by mass aqueous potassium hydroxide solution with respect to the total amount of the developer. The substrate was immersed in a developing solution for 90 seconds and then washed with pure water to remove unexposed portions and obtain a patterned substrate. After that, the acrylic resin is cured by holding at 220 ° C. for 30 minutes in a hot air oven, and the openings of the sub-pixels of the fourth color are shielded over a width of 5.9 μm, and the total width is 37.9 μm. The blue subpixel was obtained. The ratio of the opening area of the fourth color sub-pixel shielded by the extended blue sub-pixel was 22.5%.
 次に、調整例5で得られた樹脂組成物をスピナーにより硬化後の膜厚が1.5μmとなるように塗布し、その後熱風オーブン中130℃で5分のプリベイクを行った。次に、熱風オーブン中210℃で30分の加熱処理を行い、樹脂を硬化させて、CFを作製した。 Next, the resin composition obtained in Preparation Example 5 was applied by a spinner so that the film thickness after curing was 1.5 μm, and then prebaked at 130 ° C. for 5 minutes in a hot air oven. Next, heat treatment was performed in a hot air oven at 210 ° C. for 30 minutes to cure the resin, and CF was produced.
 表1に、実施例1~5及び比較例1~3で作製したそれぞれのCFについての、赤緑青の副画素の加法混色による白色の色度(x,y)と(Y)および第4色の副画素の色度(x,y)と(Y)の値、並びに、ホワイトバランス及び(Y)の判定結果を示す。 Table 1 shows white chromaticities (x, y), (Y), and fourth colors of additive CFs of red, green, and blue sub-pixels for the CFs produced in Examples 1 to 5 and Comparative Examples 1 to 3. The chromaticity (x, y) and (Y) values of the sub-pixels, the white balance, and the determination result of (Y) are shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示したとおり、実施例1~4のCFでは、赤緑青の加法混色による白色と第4色の副画素のホワイトバランス|Δx|、|Δy|の大きい方が、いずれも0.03以下であり、第4色の副画素の(Y)はいずれも65以上であり良好であった。また実施例5では、第4色の副画素の開口部に緑と青の副画素を延出させることで、さらにホワイトバランスが良好で、(Y)が高い良好なCFが得られた。比較例1では、第4色の副画素の開口部に他の副画素を延出させなかったので、ホワイトバランスが不良となった。比較例2では、第4色の副画素の開口部面積の50%が遮蔽されたため、(Y)が低下しており、ホワイト表示が暗いCFとなった。 As shown in Table 1, in the CFs of Examples 1 to 4, the larger white balances | Δx | and | Δy | of the white and fourth subpixels of additive colors of red, green, and blue are both 0.03. The (Y) of the subpixels of the fourth color were all 65 or more and were good. Further, in Example 5, by extending the green and blue subpixels in the openings of the fourth color subpixels, a good CF with better white balance and high (Y) was obtained. In Comparative Example 1, since the other subpixels were not extended to the openings of the fourth color subpixels, the white balance was poor. In Comparative Example 2, since 50% of the opening area of the sub-pixel of the fourth color was shielded, (Y) was lowered and white display became dark CF.
 (実施例6;赤緑青および第4色の副画素を有するCFの作製)
 図3に示すように、第4色の副画素の開口部の中央を横切って遮蔽する形で青の副画素を延出させた以外は、実施例1と同様の方法でCFを作製した。
Example 6 Production of CF having Red, Green, Blue and Fourth Color Subpixels
As shown in FIG. 3, a CF was manufactured in the same manner as in Example 1 except that the blue subpixel was extended so as to be shielded across the center of the opening of the fourth color subpixel.
 (実施例7;赤緑青および第4色の副画素を有するCFの作製)
 図5に示すように、第4色の副画素の開口部の上端部を横切って遮蔽する形で青の副画素を延出させた以外は、実施例1と同様の方法でCFを作製した。
(Example 7: Production of CF having sub-pixels of red, green, and blue)
As shown in FIG. 5, a CF was manufactured in the same manner as in Example 1 except that the blue subpixel was extended so as to be shielded across the upper end of the opening of the fourth color subpixel. .
 (実施例8;赤緑青および第4色の副画素を有するCFの作製)
 図6に示すように、第4色の副画素の開口部の中央付近を遮蔽する形で青の副画素を延出させた以外は、実施例1と同様の方法でCFを作製した。
Example 8 Production of CF having Red, Green, Blue and Fourth Color Subpixels
As shown in FIG. 6, a CF was manufactured in the same manner as in Example 1 except that the blue subpixel was extended so as to shield the vicinity of the center of the opening of the fourth color subpixel.
 (実施例9;赤緑青および第4色の副画素を有するCFの作製)
 図7に示すように、第4色の副画素の開口部に延出する青の副画素を一の副画素ごとに形成した以外は、実施例1と同様の方法でCFを作製した。
Example 9 Production of CF having Red, Green, Blue and Fourth Color Subpixels
As shown in FIG. 7, a CF was manufactured in the same manner as in Example 1 except that a blue subpixel extending to the opening of the fourth color subpixel was formed for each subpixel.
 (実施例10;赤緑青および第4色の副画素を有するCFの作製)
 図8に示すように、縦列に位置する二の第4色の副画素の開口部の、下端部及び上端部をそれぞれ横切って遮蔽する形で、青の副画素を延出させた以外は、実施例1と同様の方法でCFを作製した。
Example 10 Production of CF having Red, Green, Blue and Fourth Color Subpixels
As shown in FIG. 8, except that the blue subpixel is extended in such a manner as to shield the lower end portion and the upper end portion of the openings of the second fourth color subpixels positioned in the column, respectively. A CF was produced in the same manner as in Example 1.
 (実施例11;赤緑青および第4色の副画素を有するCFの作製)
 CFの赤緑青及び第4色の副画素をモザイク状に配置した以外は、実施例7と同様の方法でCFを作製した。
Example 11 Production of CF having Red, Green, Blue and Fourth Color Subpixels
A CF was produced in the same manner as in Example 7 except that the red, green, blue and fourth color subpixels of the CF were arranged in a mosaic pattern.
 第4色の副画素に形成する画素の形状を変更した、実施例6~11のそれぞれのCFのホワイトバランスおよび(Y)の判定結果は、いずれも実施例1と同じく良好であった。 The white balance of each CF and the determination result of (Y) in Examples 6 to 11 in which the shape of the pixel formed in the sub-pixel of the fourth color was changed were all as good as in Example 1.
 (比較例3)
 実施例1と同様の方法で、樹脂ブラックマトリックス、赤および緑の副画素が形成されたガラス基板上に、調整例3で得られた青色着色剤組成物をスピナーにより塗布し、その後熱風オーブン中90℃で10分加熱処理することにより、青色着色膜を得た。次に、露光機LE4000Aを用いフォトマスクを介して、露光を行った。フォトマスクは、図15に示すように、ストライプ状の青の副画素と、第4色の副画素に直径12μmの円柱状の画素が3個入る設計とした。その後、0.04質量%の水酸化カリウム水溶液に、非イオン界面活性剤(エマルゲン(登録商標)A-60;花王(株)製)を現像液総量に対して0.1質量%添加したアルカリ現像液で90秒間揺動しながら浸漬を行い、続いて純水洗浄することにより、未露光部を除去し、パターンニング基板を得た。その後、熱風オーブン中220℃で30分保持することで、アクリル系樹脂を硬化させた。しかしながら、作製したCFは、第4色の副画素に形成しようとした直径12μmの円柱状の画素が欠落していたため、ホワイトバランスを制御することができなかった。
(Comparative Example 3)
In the same manner as in Example 1, the blue colorant composition obtained in Preparation Example 3 was applied by a spinner onto a glass substrate on which resin black matrix, red and green subpixels were formed, and then in a hot air oven A blue colored film was obtained by heat treatment at 90 ° C. for 10 minutes. Next, exposure was performed through a photomask using an exposure machine LE4000A. As shown in FIG. 15, the photomask was designed such that three striped pixels each having a diameter of 12 μm were included in the striped blue subpixel and the fourth color subpixel. Thereafter, an alkali obtained by adding 0.1% by mass of a nonionic surfactant (Emulgen (registered trademark) A-60; manufactured by Kao Corporation) to a 0.04% by mass aqueous potassium hydroxide solution with respect to the total amount of the developer. The substrate was immersed in a developing solution for 90 seconds and then washed with pure water to remove unexposed portions and obtain a patterned substrate. Then, acrylic resin was hardened by hold | maintaining at 220 degreeC for 30 minutes in a hot-air oven. However, in the produced CF, the white balance could not be controlled because a cylindrical pixel having a diameter of 12 μm which was to be formed in the fourth color sub-pixel was missing.
 (比較例4)
 実施例1と同様の方法で、樹脂ブラックマトリックス、赤および緑の副画素が形成されたガラス基板上に、調整例3で得られた青色着色剤組成物をスピナーにより塗布し、その後熱風オーブン中90℃で10分加熱処理することにより、青色着色膜を得た。次に、露光機LE4000Aを用いフォトマスクを介して、露光を行った。フォトマスクは、図16に示すように、ストライプ状の青の副画素が隣接する第4色の副画素の開口部のすべてを遮蔽する設計とした。また、第4色の副画素の開口部には、直径12μmの貫通孔を12個形成することを試みた。その後、0.04質量%の水酸化カリウム水溶液に、非イオン界面活性剤(エマルゲン(登録商標)A-60;花王(株)製)を現像液総量に対して0.1質量%添加したアルカリ現像液で90秒間揺動しながら浸漬を行い、続いて純水洗浄することにより、未露光部を除去し、パターンニング基板を得た。その後、熱風オーブン中220℃で30分保持することで、アクリル系樹脂を硬化させた。作製したCFは第4色の副画素に形成しようとした貫通孔は、直径が12μmよりも小さく、副画素の表面がわずかに凹状になっているだけで、貫通孔が形成できなかった。所定の貫通孔が形成できなかったため、ホワイトバランスの制御および第4色の副画素の(Y)の向上のいずれも達成できなかった。
(Comparative Example 4)
In the same manner as in Example 1, the blue colorant composition obtained in Preparation Example 3 was applied by a spinner onto a glass substrate on which resin black matrix, red and green subpixels were formed, and then in a hot air oven A blue colored film was obtained by heat treatment at 90 ° C. for 10 minutes. Next, exposure was performed through a photomask using an exposure machine LE4000A. As shown in FIG. 16, the photomask was designed to shield all the openings of the subpixels of the fourth color adjacent to the striped blue subpixel. In addition, an attempt was made to form 12 through-holes having a diameter of 12 μm in the openings of the sub-pixels of the fourth color. Thereafter, an alkali obtained by adding 0.1% by mass of a nonionic surfactant (Emulgen (registered trademark) A-60; manufactured by Kao Corporation) to a 0.04% by mass aqueous potassium hydroxide solution with respect to the total amount of the developer. The substrate was immersed in a developing solution for 90 seconds and then washed with pure water to remove unexposed portions and obtain a patterned substrate. Then, acrylic resin was hardened by hold | maintaining at 220 degreeC for 30 minutes in a hot-air oven. In the manufactured CF, the through hole to be formed in the subpixel of the fourth color had a diameter smaller than 12 μm and the surface of the subpixel was slightly concave, so that the through hole could not be formed. Since a predetermined through-hole could not be formed, neither white balance control nor (Y) improvement of the fourth color sub-pixel could be achieved.
 (実施例12)
 副画素の開口部の短辺幅が12μm、長辺幅が60μmになり、かつ、ブラックマトリックスの幅が4.0μmになる設計としたこと、ストライプ状の赤と緑の副画素の幅を16μmとしたこと、ストライプ状の青の副画素の総幅を20.4μmとしたこと、及び、第4色の副画素の開口部面積の20%が遮蔽されるようにしたこと以外は、実施例1と同様にCFを作製した。
Example 12
The design is such that the short side width of the subpixel opening is 12 μm, the long side width is 60 μm, and the width of the black matrix is 4.0 μm. The width of the striped red and green subpixels is 16 μm. Example 2 except that the total width of the striped blue sub-pixel is 20.4 μm and that the opening area of the sub-pixel of the fourth color is shielded by 20%. A CF was prepared in the same manner as in 1.
 (実施例13)
 副画素の開口部の短辺幅が48μm、長辺幅が204μmになり、かつ、ブラックマトリックスの幅が4.0μmになる設計としたこと、ストライプ状の赤と緑の副画素の幅を52μmとしたこと、ストライプ状の青の副画素の総幅を63.6μmとしたこと、第4色の副画素の開口部面積の20%が遮蔽されるようにしたこと以外は、実施例1と同様にCFを作製した。
(Example 13)
The design is such that the short side width of the subpixel opening is 48 μm, the long side width is 204 μm, and the width of the black matrix is 4.0 μm. The width of the striped red and green subpixels is 52 μm. Example 1 except that the total width of the striped blue sub-pixel is 63.6 μm, and that 20% of the opening area of the sub-pixel of the fourth color is shielded. Similarly, CF was produced.
 (実施例14;薄膜化した赤緑青および第4色の副画素を有するCFの作製)
 赤色着色剤組成物をR-2としたこと、緑色着色剤組成物をG-2としたこと、青色着色剤組成物をB-2としたこと以外は、実施例1と同様の方法でCFを作製した。得られた赤の副画素の色度(x,y)は(0.630,0.311)、(Y)は19.6であり、赤の副画素の膜厚は1.2μmであった。得られた緑の副画素の色度(x,y)は(0.223,0.601)、(Y)は43.6であり、緑の副画素の膜厚は1.2μmであった。得られた青の副画素の色度(x,y)は(0.134,0.120)、(Y)は14.7であり、青の副画素の膜厚は1.2μmであった。
(Example 14: Fabrication of CF having thinned red, green, blue and fourth color sub-pixels)
The CF colorant composition was changed to R-2, the green colorant composition was changed to G-2, and the blue colorant composition was changed to B-2. Was made. The chromaticity (x, y) of the obtained red subpixel was (0.630, 0.311), (Y) was 19.6, and the film thickness of the red subpixel was 1.2 μm. . The chromaticity (x, y) of the obtained green subpixel was (0.223, 0.601), (Y) was 43.6, and the film thickness of the green subpixel was 1.2 μm. . The chromaticity (x, y) of the obtained blue subpixel was (0.134, 0.120), (Y) was 14.7, and the film thickness of the blue subpixel was 1.2 μm. .
 (実施例15;厚膜化した赤緑青および第4色の副画素を有するCFの作製)
 赤色着色剤組成物をR-3としたこと、緑色着色剤組成物をG-3としたこと、青色着色剤組成物をB-3としたこと以外は、実施例1と同様の方法でCFを作製した。得られた赤の副画素の色度(x,y)は(0.630,0.311)、(Y)は19.6であり、赤の副画素の膜厚は2.5μmであった。得られた緑の副画素の色度(x,y)は(0.223,0.601)、(Y)は43.6であり、緑の副画素の膜厚は2.5μmであった。得られた青の副画素の色度(x,y)は(0.134,0.120)、(Y)は14.7であり、青の副画素の膜厚は2.5μmであった。
(Example 15: Production of CF having thickened red, green, blue and fourth color sub-pixels)
The CF colorant composition was changed to R-3, the green colorant composition was changed to G-3, and the blue colorant composition was changed to B-3. Was made. The chromaticity (x, y) of the obtained red subpixel was (0.630, 0.311), (Y) was 19.6, and the film thickness of the red subpixel was 2.5 μm. . The chromaticity (x, y) of the obtained green subpixel was (0.223, 0.601), (Y) was 43.6, and the film thickness of the green subpixel was 2.5 μm. . The chromaticity (x, y) of the obtained blue subpixel was (0.134, 0.120), (Y) was 14.7, and the film thickness of the blue subpixel was 2.5 μm. .
 (実施例16)
 赤色着色剤組成物をR-5としたこと、緑色着色剤組成物をG-5としたこと、青色着色剤組成物をB-5としたこと以外は、実施例1と同様の方法でCFを作製した。得られた赤の副画素の色度(x,y)は(0.630,0.311)、(Y)は19.6であり、赤の副画素の膜厚は3.0μmであった。得られた緑の副画素の色度(x,y)は(0.223,0.601)、(Y)は43.6であり、緑の副画素の膜厚は3.0μmであった。得られた青の副画素の色度(x,y)は(0.134,0.120)、(Y)は14.7であり、青の副画素の膜厚は3.0μmであった。
(Example 16)
The CF colorant composition was changed to R-5, the green colorant composition was changed to G-5, and the blue colorant composition was changed to B-5. Was made. The chromaticity (x, y) of the obtained red subpixel was (0.630, 0.311), (Y) was 19.6, and the film thickness of the red subpixel was 3.0 μm. . The chromaticity (x, y) of the obtained green subpixel was (0.223, 0.601), (Y) was 43.6, and the film thickness of the green subpixel was 3.0 μm. . The chromaticity (x, y) of the obtained blue subpixel was (0.134, 0.120), (Y) was 14.7, and the film thickness of the blue subpixel was 3.0 μm. .
 表2に実施例1、実施例12、実施例13、実施例14、実施例15、比較例7で作製したそれぞれのCFにおける、第4色の副画素の表面のへこみを示す。第4色の副画素の開口部には、平坦化膜形成後でも表面にへこみが発生する場合がある。開口部の寸法が比較的小さい実施例1および実施例12では表面平坦性は良好であったが、開口部の短辺幅が48μmの実施例13や、副画素の膜厚が厚い実施例15では、表面平坦性がやや悪化する傾向があった。副画素膜厚の薄い実施例14では表面平坦性が良好であった。実施例16では副画素膜厚が3.0μmと厚いので、表面平坦性が悪化したが使用には耐えうるものであった。 Table 2 shows the dents on the surface of the sub-pixel of the fourth color in each of the CFs produced in Example 1, Example 12, Example 13, Example 14, Example 15, and Comparative Example 7. In the opening of the sub-pixel of the fourth color, a dent may occur on the surface even after the planarization film is formed. In Example 1 and Example 12 in which the size of the opening was relatively small, the surface flatness was good, but Example 13 in which the short side width of the opening was 48 μm and Example 15 in which the thickness of the subpixel was thick. Then, the surface flatness tended to be slightly deteriorated. In Example 14 where the subpixel film thickness was small, the surface flatness was good. In Example 16, since the sub-pixel film thickness was as thick as 3.0 μm, the surface flatness was deteriorated, but it could be used.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
1  :透明基板
2  :ブラックマトリックス
3  :副画素の形成領域
3R :赤の副画素の形成領域
3G :緑の副画素の形成領域
3B :青の副画素の形成領域
3W :第4色の副画素の形成領域
4  :副画素
4R :赤の副画素
4G :緑の副画素
4B :青の副画素
4W :第4色の副画素
5  :開口部の短辺
6  :開口部の長辺
7  :平坦化膜
8  :第4色の副画素の上方の凹状部
9  :第4色の副画素に形成された円柱状の画素
10 :第4色の副画素から欠落した円柱状の画素
11 :第4色の副画素に形成された孔
(a):上面図
(b):断面図
(c):A-A’断面図
(d):B-B’断面図
1: Transparent substrate 2: Black matrix 3: Subpixel formation area 3R: Red subpixel formation area 3G: Green subpixel formation area 3B: Blue subpixel formation area 3W: Fourth color subpixel Formation region 4: sub-pixel 4R: red sub-pixel 4G: green sub-pixel 4B: blue sub-pixel 4W: fourth color sub-pixel 5: short side 6 of the opening 6: long side 7 of the opening: flat Chemical film 8: concave portion 9 above the subpixel of the fourth color 9: cylindrical pixel 10 formed in the subpixel of the fourth color 10: cylindrical pixel 11 missing from the subpixel of the fourth color 11: fourth Holes formed in color sub-pixels (a): top view (b): sectional view (c): AA ′ sectional view (d): BB ′ sectional view
 本発明のCFは、液晶ディスプレイや有機EL等の表示装置に好適に使用できる。 The CF of the present invention can be suitably used for a display device such as a liquid crystal display or an organic EL.

Claims (5)

  1.  透明基板上に、赤の副画素、緑の副画素、青の副画素および第4色の副画素と、各前記副画素の間に形成されたブラックマトリックスと、からなる画素が形成されており、
     前記赤、緑および青の副画素は、それぞれ着色剤および樹脂を含有し、
     前記第4色の副画素のCIE1931表色系三刺激値(Y)は、65≦Y≦99であり、
     前記赤、緑および青の副画素からなる群から選ばれる副画素が、近接する前記ブラックマトリックスおよび前記第4色の副画素の開口部に延出して、前記第4色の副画素の開口部面積の5~40%が遮蔽されている、カラーフィルター。
    A pixel composed of a red subpixel, a green subpixel, a blue subpixel and a fourth color subpixel, and a black matrix formed between the subpixels is formed on the transparent substrate. ,
    The red, green and blue subpixels each contain a colorant and a resin,
    The CIE1931 color system tristimulus value (Y) of the subpixel of the fourth color is 65 ≦ Y ≦ 99,
    Sub-pixels selected from the group consisting of the red, green, and blue sub-pixels extend to the adjacent black matrix and the opening of the fourth color sub-pixel to form the opening of the fourth color sub-pixel A color filter with 5-40% of the area shielded.
  2.  記第4色の副画素を遮蔽する副画素が青画素である、請求項1に記載のカラーフィルター。 The color filter according to claim 1, wherein the sub-pixel that blocks the sub-pixel of the fourth color is a blue pixel.
  3.  前記第4色の副画素を遮蔽する副画素の上面形状が、長方形である、請求項1または請求項2に記載のカラーフィルター。 The color filter according to claim 1 or 2, wherein a top surface shape of the sub-pixel shielding the sub-pixel of the fourth color is a rectangle.
  4.  各前記副画素の開口部の短辺が、30μm以下である、請求項1~3のいずれかに記載のカラーフィルター。 The color filter according to any one of claims 1 to 3, wherein a short side of the opening of each sub-pixel is 30 μm or less.
  5.  前記赤、緑および青の副画素の膜厚が、1.2~2.5μmである請求項1~4のいずれかに記載のカラーフィルター。 5. The color filter according to claim 1, wherein the red, green, and blue sub-pixels have a thickness of 1.2 to 2.5 μm.
PCT/JP2013/067334 2012-06-28 2013-06-25 Color filter, and display device WO2014002982A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013529492A JP6287209B2 (en) 2012-06-28 2013-06-25 Color filter and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-145162 2012-06-28
JP2012145162 2012-06-28

Publications (1)

Publication Number Publication Date
WO2014002982A1 true WO2014002982A1 (en) 2014-01-03

Family

ID=49783128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067334 WO2014002982A1 (en) 2012-06-28 2013-06-25 Color filter, and display device

Country Status (3)

Country Link
JP (1) JP6287209B2 (en)
TW (1) TWI587009B (en)
WO (1) WO2014002982A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098780A (en) * 2012-11-14 2014-05-29 Toppan Printing Co Ltd Color filter and flat color display device
WO2015122284A1 (en) * 2014-02-14 2015-08-20 富士フイルム株式会社 Colored resin composition, cured film using same, color filter and production method therefor, solid-state imaging element, and image display device
EP2980638A1 (en) * 2014-07-31 2016-02-03 Samsung Display Co., Ltd. Colour liquid crystal display having additional white pixels
KR20160017187A (en) * 2014-07-31 2016-02-16 삼성디스플레이 주식회사 Liquid crystal display device
WO2016052152A1 (en) * 2014-10-01 2016-04-07 ソニー株式会社 Display device and electronic apparatus
KR20160062814A (en) * 2014-11-25 2016-06-03 삼성디스플레이 주식회사 Liquid crystal display device
US9939674B2 (en) 2014-07-31 2018-04-10 Samsung Display Co., Ltd. Liquid crystal display device
WO2018120646A1 (en) * 2016-12-30 2018-07-05 惠科股份有限公司 Display panel, and liquid crystal display panel and liquid crystal display device using same
JP2021131403A (en) * 2020-02-18 2021-09-09 三菱電機株式会社 Display device, image dat conversion device, and white balance adjustment method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835830B (en) * 2015-03-25 2018-08-21 青岛海信电器股份有限公司 A kind of OLED substrate for display and display device
KR102508727B1 (en) * 2015-11-19 2023-03-14 삼성디스플레이 주식회사 Display device
TWI619991B (en) * 2016-01-19 2018-04-01 友達光電股份有限公司 Display device
TW201738586A (en) * 2016-04-18 2017-11-01 友達光電股份有限公司 Matrix and driving method thereof
CN111679490B (en) * 2020-07-30 2023-07-21 厦门天马微电子有限公司 Color film substrate, preparation method thereof, display panel and display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033744A (en) * 2005-07-26 2007-02-08 Hitachi Displays Ltd Liquid crystal display device
JP2007279719A (en) * 2006-04-11 2007-10-25 Toppoly Optoelectronics Corp Image display system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6072272A (en) * 1998-05-04 2000-06-06 Motorola, Inc. Color flat panel display device
TW200702850A (en) * 2005-03-11 2007-01-16 Fuji Photo Film Co Ltd Protrusion for controlling liquid crystal alignment, substrate for liquid crystal device, method for producing thereof, photosensitive resin composition, liquid crystal element, liquid crystal display device
CN103197462B (en) * 2013-03-26 2016-05-25 京东方科技集团股份有限公司 A kind of color membrane substrates, display floater and display unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033744A (en) * 2005-07-26 2007-02-08 Hitachi Displays Ltd Liquid crystal display device
JP2007279719A (en) * 2006-04-11 2007-10-25 Toppoly Optoelectronics Corp Image display system

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098780A (en) * 2012-11-14 2014-05-29 Toppan Printing Co Ltd Color filter and flat color display device
WO2015122284A1 (en) * 2014-02-14 2015-08-20 富士フイルム株式会社 Colored resin composition, cured film using same, color filter and production method therefor, solid-state imaging element, and image display device
JP2015151465A (en) * 2014-02-14 2015-08-24 富士フイルム株式会社 Coloring resin composition, cured film and color filter using the same and manufacturing method thereof, solid-state image sensor, and image display unit
US10698250B2 (en) 2014-07-31 2020-06-30 Samsung Display Co., Ltd. Liquid crystal display
KR102190429B1 (en) * 2014-07-31 2020-12-14 삼성디스플레이 주식회사 Liquid crystal display device
JP2016035571A (en) * 2014-07-31 2016-03-17 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Liquid crystal display device
US11221509B2 (en) 2014-07-31 2022-01-11 Samsung Display Co., Ltd. Liquid crystal display
KR20160017187A (en) * 2014-07-31 2016-02-16 삼성디스플레이 주식회사 Liquid crystal display device
EP2980638A1 (en) * 2014-07-31 2016-02-03 Samsung Display Co., Ltd. Colour liquid crystal display having additional white pixels
US9939674B2 (en) 2014-07-31 2018-04-10 Samsung Display Co., Ltd. Liquid crystal display device
US10067374B2 (en) 2014-07-31 2018-09-04 Samsung Display Co., Ltd. Liquid crystal display device
US10042199B2 (en) 2014-07-31 2018-08-07 Samsung Display Co., Ltd. Liquid crystal display
US10444559B2 (en) 2014-10-01 2019-10-15 Sony Corporation Display unit and electronic apparatus
JPWO2016052152A1 (en) * 2014-10-01 2017-07-13 ソニー株式会社 Display device and electronic device
WO2016052152A1 (en) * 2014-10-01 2016-04-07 ソニー株式会社 Display device and electronic apparatus
KR20160062814A (en) * 2014-11-25 2016-06-03 삼성디스플레이 주식회사 Liquid crystal display device
KR102189522B1 (en) 2014-11-25 2020-12-14 삼성디스플레이 주식회사 Liquid crystal display device
WO2018120646A1 (en) * 2016-12-30 2018-07-05 惠科股份有限公司 Display panel, and liquid crystal display panel and liquid crystal display device using same
US10429701B2 (en) 2016-12-30 2019-10-01 HKC Corporation Limited Display panel and LCD panel and LCD apparatus using the same
JP2021131403A (en) * 2020-02-18 2021-09-09 三菱電機株式会社 Display device, image dat conversion device, and white balance adjustment method
JP7191057B2 (en) 2020-02-18 2022-12-16 三菱電機株式会社 Display device, image data conversion device and white balance adjustment method

Also Published As

Publication number Publication date
JPWO2014002982A1 (en) 2016-06-02
TWI587009B (en) 2017-06-11
JP6287209B2 (en) 2018-03-07
TW201407206A (en) 2014-02-16

Similar Documents

Publication Publication Date Title
JP6287209B2 (en) Color filter and display device
JP5853673B2 (en) Color filter substrate and liquid crystal display device
JP5604968B2 (en) Green colorant composition for color filter, color filter substrate and liquid crystal display device
JP2002258267A (en) Color filter and liquid crystal display using the same
JP4258180B2 (en) Color filter and liquid crystal display device
KR20100014292A (en) Black resin composition, resin black matrix, color filter and liquid crystal display
JP6260276B2 (en) Color filter and display device
JP5262691B2 (en) Color filter substrate for liquid crystal display device and liquid crystal display device using the same
JP2007057762A (en) Color filter substrate for liquid crystal display, and method of manufacturing same
US6856364B2 (en) Color filter and liquid crystal display device
JP4821316B2 (en) Red colorant composition and color filter
JP2001228322A (en) Color filter and liquid crystal display device
JP2007122042A (en) Inkjet ink for color filter, color filter, method for manufacturing color filter, and liquid crystal display device
JP2009058946A (en) Black resin composition, resin black matrix, color filter, and liquid crystal display
JP2003177410A (en) Color filter for liquid crystal display device and semitransmissive liquid crystal display device
JP2001042115A (en) Color filter and liquid crystal display device
JP2009258696A (en) Color filter substrate and liquid crystal display device
JP2008249947A (en) Color filter, and lateral electric field drive type liquid crystal display device using the same
JP2008191201A (en) Color filter for liquid crystal display, and liquid crystal display using it
JP2013088691A (en) Color filter substrate and method of manufacturing the same
JP2003075821A (en) Color filter for liquid crystal display device and liquid crystal display device
JP2003107239A (en) Color filter for liquid crystal display device and the liquid crystal display device using the same
JP2001330722A (en) Color filter and liquid crystal display device
JP2002296579A (en) Substrate for liquid crystal device and liquid crystal display element
JP2002296575A (en) Substrate for liquid crystal device and liquid crystal display element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013529492

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13809461

Country of ref document: EP

Kind code of ref document: A1