JP2007057762A - Color filter substrate for liquid crystal display, and method of manufacturing same - Google Patents

Color filter substrate for liquid crystal display, and method of manufacturing same Download PDF

Info

Publication number
JP2007057762A
JP2007057762A JP2005242311A JP2005242311A JP2007057762A JP 2007057762 A JP2007057762 A JP 2007057762A JP 2005242311 A JP2005242311 A JP 2005242311A JP 2005242311 A JP2005242311 A JP 2005242311A JP 2007057762 A JP2007057762 A JP 2007057762A
Authority
JP
Japan
Prior art keywords
layer
opening
colored layer
liquid crystal
shielding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005242311A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sasaki
浩行 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005242311A priority Critical patent/JP2007057762A/en
Publication of JP2007057762A publication Critical patent/JP2007057762A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a color filter substrate for a liquid crystal display which is constituted by performing pattern formation of a light shielding layer having an opening, forming a colored layer on the opening and on the light shielding layer at the peripheral part of the opening and providing a transparent flattened layer on the light shielding layer and the colored layer and which can stabilize liquid crystal alignment by reducing level difference in the opening caused by level difference of the colored layer present on the opening and the light shielding layer at the peripheral part of the opening and to provide a method of manufacturing the color filter substrate for the liquid crystal display. <P>SOLUTION: Pattern formation of the light shielding layer having the opening is performed on a transparent substrate, the colored layer is formed on the opening and on the light shielding layer at the peripheral part of the opening, the transparent flattened layer is provided on the light shielding layer and on the colored layer to constitute the color filter substrate for the liquid crystal display. In this color filter substrate for the liquid crystal display, film thickness of the light shielding layer is larger than that of the colored layer and difference between maximum height of an upper surface of the transparent flattened layer formed on the light shielding layer at the peripheral part of the opening and minimum height of the upper surface of the transparent flattened layer formed in the opening is ≤0.2μm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、広く情報端末の表示媒体として普及している液晶表示装置に使用されるカラーフィルター基板およびそれを用いた液晶表示装置に関するものであり、特に、カラーフィルター基板上に形成された着色層を有する開口部内の平坦性に起因する表示品質低下を抑制し、コスト面および品質面に優れた液晶表示装置用カラーフィルター基板およびそれを用いることで得られる高品質な液晶表示装置に関するものである。   The present invention relates to a color filter substrate used in a liquid crystal display device widely used as a display medium of an information terminal and a liquid crystal display device using the same, and in particular, a colored layer formed on the color filter substrate. The present invention relates to a color filter substrate for a liquid crystal display device that suppresses deterioration in display quality due to flatness in an opening having a low cost and is excellent in cost and quality, and a high-quality liquid crystal display device obtained by using the same. .

液晶表示装置は長年に渡り培われた画像表示能力の信頼性に基づき、テレビやパーソナルコンピューター用途の大型表示画面から携帯情報端末用途の小型表示画面まで市場の裾野を拡大してきた。液晶表示装置に求められる特性は多岐に渡るが、前述の幅広い用途に使用されるために、表示品質の向上は現在でも重要な開発要素である。   Based on the reliability of image display capabilities cultivated over many years, liquid crystal display devices have expanded the market base from large display screens for televisions and personal computers to small display screens for portable information terminals. Although the characteristics required for liquid crystal display devices are diverse, since they are used in the wide range of applications described above, improvement in display quality is still an important development factor.

液晶表示装置は、少なくとも透明基板上に開口部を有する遮光層と、前記開口部上に着色層を設けたカラーフィルター基板と、透明基板上に駆動電極等を形成した電極基板を所定間隙にて保持し、基板間に液晶を充填して得られる液晶パネル部と、液晶の駆動を制御する駆動回路等を含む周辺回路部と、バックライトや外光などの光源部により構成される。したがって、液晶表示装置は、カラーフィルター基板と電極基板間に印可する電圧に応じて配向が変化する液晶のスィッチング機能を利用し、開口部の透過率制御を行うことで任意の表示を行う。さらに、隣接する開口部に赤、緑、青の着色層を形成して一つの表示画素とすると、3色の透過率変化による加法混色の原理を用いて表示画素の色を決定できるため、カラー液晶表示装置では複数の表示画素を用いて表示領域を形成している。   A liquid crystal display device includes a light shielding layer having an opening on at least a transparent substrate, a color filter substrate having a colored layer on the opening, and an electrode substrate on which a driving electrode is formed on the transparent substrate at a predetermined gap. A liquid crystal panel unit obtained by holding and filling a liquid crystal between substrates, a peripheral circuit unit including a drive circuit for controlling driving of the liquid crystal, and a light source unit such as a backlight and external light. Therefore, the liquid crystal display device performs arbitrary display by controlling the transmittance of the opening by using the switching function of the liquid crystal whose orientation changes according to the voltage applied between the color filter substrate and the electrode substrate. Furthermore, when a red, green, and blue colored layer is formed in adjacent openings to form a single display pixel, the color of the display pixel can be determined using the principle of additive color mixing by changing the transmittance of the three colors. In a liquid crystal display device, a display region is formed using a plurality of display pixels.

開口部上にこれら着色層を形成する場合、着色層寸法が開口部寸法に比べて小さくなると、開口部内の着色層が形成されない部分から光源光が漏れ、着色層の有する所定の色度からずれが生じ表示品質の低下を引き起こす。したがって、着色層は図1、図2に示すように開口部周辺部の遮光層に積層することが一般的である。すなわち、図1、図2のカラーフィルター基板は、透明基板1上に開口部Aを有する樹脂遮光層2をパターン形成し、着色層3を開口部周辺部aの遮光層に積層しており、また、この遮光層は開口部以外の透過光を遮断する機能を有しているため、コントラストなど表示品質の向上に効果がある。   When these colored layers are formed on the opening, if the size of the colored layer is smaller than the size of the opening, light from the light source leaks from the portion where the colored layer in the opening is not formed, and deviates from the predetermined chromaticity of the colored layer. Causes display quality deterioration. Therefore, the colored layer is generally laminated on the light shielding layer around the opening as shown in FIGS. That is, the color filter substrate of FIGS. 1 and 2 is formed by patterning the resin light-shielding layer 2 having the opening A on the transparent substrate 1 and laminating the colored layer 3 on the light-shielding layer at the periphery of the opening a. Further, since this light shielding layer has a function of blocking transmitted light other than the opening, it is effective in improving display quality such as contrast.

液晶表示装置では液晶パネル内を透過した光を表示に使用するため、カラーフィルター基板と電極基板間の間隙の均一化は重要な課題である。この基板間隙が不均一であると、液晶パネル内の透過光の光路長差に伴い透過率が減衰し、表示品質が低下する。開口部上に形成された着色層について、開口部内の最も膜厚の低い部分を着色層膜厚と定義し、複数の開口部の着色層膜厚の差を開口部間段差と定義すると、開口部間段差が大きくなると開口部間の基板間隙が不均一になるため、表示領域内の全ての開口部にわたって着色層膜厚を概ね均一とし、表示品質向上を図ってきた。   In a liquid crystal display device, since light transmitted through the liquid crystal panel is used for display, it is an important issue to make the gap between the color filter substrate and the electrode substrate uniform. If the gap between the substrates is not uniform, the transmittance is attenuated due to the optical path length difference of the transmitted light in the liquid crystal panel, and the display quality is deteriorated. For the colored layer formed on the opening, the portion with the smallest film thickness in the opening is defined as the colored layer film thickness, and the difference in the colored layer film thickness of the plurality of openings is defined as the step between the openings. When the level difference between the portions becomes large, the substrate gap between the openings becomes non-uniform, so that the colored layer film thickness is made almost uniform over all the openings in the display region, thereby improving the display quality.

一方で、最近では開口部上に形成された着色層内で発生する膜厚差に起因する課題も増えてきている。従来の液晶表示装置では、特許文献1に示されるように、遮光層として膜厚0.1μm以下の金属薄膜材料を使用しており、開口部周辺部の遮光層上に積層された着色層表面と開口部上の着色層表面の高さは概ね同等であった。しかし、製造コストや環境負荷を考慮して樹脂遮光層が広く用いられるようになってくると、金属薄膜と同等の遮光性を発揮するために膜厚を厚くする必要があり、図2に示すように、開口部周辺部aの樹脂遮光層2上に積層された着色層3表面が開口部A上の着色層表面に比べて高くなってしまう。このとき、開口部周辺部の遮光層上に積層した着色層上面の最も高い部分を頂部、開口部上の着色層上面の最も低い部分を底部とすると、頂部と底部の差dが大きいほど頂部から底部に向かって着色層が傾斜し、開口部上の着色層も影響を受け、開口部周辺部近傍と開口部中央部の着色層に膜厚差が生じる。この開口部内の着色層に生じる膜厚差を開口部内段差ADと定義すると、段差が大きい場合には、開口部内で液晶のプレチルト角が変化し、駆動時の配向が不均一になり表示品質の低下につながる。中でも印可電圧に対する応答速度向上のために用いられる低電圧駆動が可能な液晶や、単純マトリックスで駆動されるSTN液晶などツイスト角が大きい液晶は開口部内段差の影響を受けやすいことが課題であった。   On the other hand, recently, problems due to the film thickness difference generated in the colored layer formed on the opening have also increased. In the conventional liquid crystal display device, as shown in Patent Document 1, a metal thin film material having a film thickness of 0.1 μm or less is used as the light shielding layer, and the surface of the colored layer laminated on the light shielding layer in the periphery of the opening The height of the colored layer surface above the opening was almost the same. However, when the resin light-shielding layer is widely used in consideration of manufacturing cost and environmental load, it is necessary to increase the film thickness in order to exhibit the light-shielding property equivalent to that of a metal thin film, as shown in FIG. Thus, the colored layer 3 surface laminated | stacked on the resin light-shielding layer 2 of the opening peripheral part a will become high compared with the colored layer surface on the opening A. At this time, when the highest part of the upper surface of the colored layer laminated on the light shielding layer in the periphery of the opening is the top and the lowest part of the upper surface of the colored layer on the opening is the bottom, the higher the difference d between the top and the bottom, the higher the top The colored layer is inclined from the bottom toward the bottom, and the colored layer on the opening is also affected, resulting in a difference in film thickness between the colored portion near the periphery of the opening and the central portion of the opening. When the film thickness difference generated in the colored layer in the opening is defined as the step in the opening AD, if the step is large, the pretilt angle of the liquid crystal changes in the opening, and the orientation during driving becomes non-uniform, resulting in poor display quality. Leading to a decline. Among them, liquid crystal with a large twist angle such as liquid crystal that can be driven at a low voltage used for improving the response speed against applied voltage and STN liquid crystal that is driven by a simple matrix has a problem that it is easily affected by a step in the opening. .

さらに、写真等の静止画やテレビ等の動画に対する表示品質向上のために要求される色再現範囲の向上に対しては、着色層中の着色剤の濃度を高くするよう膜厚の厚い着色層を形成するため、開口部周辺部の遮光層上に積層された着色層の頂部はさらに高くなり、開口部内段差も拡大することで表示品質低下が懸念されていた。すなわち、開口部内段差の改善は、多くの液晶表示装置やその用途において重要かつ急務な課題であった。   Furthermore, in order to improve the color reproduction range required for improving the display quality of still images such as photographs and moving images such as television, a thick colored layer is used to increase the concentration of the colorant in the colored layer. Therefore, the top of the colored layer laminated on the light-shielding layer in the periphery of the opening is further increased, and there is a concern that display quality may be deteriorated by expanding the step in the opening. That is, improvement of the step in the opening is an important and urgent problem in many liquid crystal display devices and their uses.

そのため、樹脂遮光層を用いるカラーフィルター基板の開口部内段差低減策は種々の検討がなされている。特許文献2には、最初に複数の着色層を開口部と同じパターンに形成した後、樹脂遮光層を着色層間に形成する方式が提案されている。この方式では、開口部周辺部の遮光層上に着色層が積層されることは無く、開口部内段差が生じないことが期待されるが、着色層間の樹脂遮光層寸法が小さくなり、光漏れによる表示品質低下が懸念される。これに対し本文献中では、樹脂遮光層を隣接する開口部上の着色層に積層した後、研磨を行い着色層上の遮光層を除去することでその懸念は解消できると提案している。しかし、着色層上に形成された不要な遮光層は層間の相互作用により一部が除去できずに残存し透過率の低下が懸念されること、さらには研磨工程の増加による歩留まり低下や着色層に影響を与えない研磨精度を得るために工程が煩雑になることが課題であった。   For this reason, various studies have been made on the steps for reducing the step in the color filter substrate using the resin light-shielding layer. Patent Document 2 proposes a method in which a plurality of colored layers are first formed in the same pattern as the opening and then a resin light-shielding layer is formed between the colored layers. In this method, it is expected that the colored layer is not laminated on the light shielding layer in the periphery of the opening and no step in the opening is generated. However, the resin light shielding layer size between the colored layers is reduced, and light leakage is caused. There is concern about display quality degradation. On the other hand, this document proposes that the concern can be eliminated by laminating the resin light-shielding layer on the colored layer on the adjacent opening and then polishing to remove the light-shielding layer on the colored layer. However, the unnecessary light-shielding layer formed on the colored layer cannot be partially removed due to the interaction between the layers, and there is a concern that the transmittance may be lowered. The problem is that the process becomes complicated in order to obtain polishing accuracy that does not affect the process.

特許文献3には、透明基板上に開口部を有する遮光層をパターン形成し、ネガ型感光性着色層材料を開口部上と開口部周辺部の遮光層上に積層するようパターン印刷し、基板の反印刷面より露光することで開口部内のみ硬化した後、開口部周辺部の着色層を除去する方式を提案している。しかし、このような方式では印刷直後から遮光層上に積層された着色層頂部と開口部上の着色層底部間に段差が生じており、結果として開口部内段差は改善されないこと、また、着色層膜厚や着色剤によっては反印刷面からの露光時に光線透過率が低下し、着色層表面まで十分に硬化することができず、未硬化部が現像時に除去されることで所望の着色層特性が得られないことを考慮しなければならなかった。   In Patent Document 3, a light-shielding layer having an opening is patterned on a transparent substrate, and pattern printing is performed so that a negative photosensitive colored layer material is laminated on the light-shielding layer on the opening and the periphery of the opening. A method is proposed in which the colored layer around the periphery of the opening is removed after the inside of the opening is cured by exposure from the opposite printing surface. However, in such a system, a step is generated between the top of the colored layer laminated on the light shielding layer immediately after printing and the bottom of the colored layer on the opening, and as a result, the step in the opening is not improved. Depending on the film thickness and the colorant, the light transmittance decreases during exposure from the opposite side of the print surface, the surface of the colored layer cannot be sufficiently cured, and the uncured part is removed during development to achieve the desired colored layer characteristics. Had to consider that I could not get.

さらに特許文献4および特許文献5には、開口部を有する遮光層をパターン形成し、前記開口部を受容部としてインクジェット法や電着法を用いて着色層を形成する方式が提案されている。これらの方式では、開口部周辺部の遮光層上に着色層は積層されず、開口部上のみに着色層を形成することができるため開口部内段差は発生しないが、一方で着色層材料の表面張力を最適化しなければ着色層表面が歪曲し色ムラが生じることが課題であり、また高濃度や高粘度の着色層材料の適用範囲が狭いことも改善の必要があった。   Further, Patent Document 4 and Patent Document 5 propose a method in which a light-shielding layer having an opening is formed in a pattern, and a colored layer is formed by using an inkjet method or an electrodeposition method with the opening as a receiving portion. In these methods, the colored layer is not laminated on the light-shielding layer around the opening, and the colored layer can be formed only on the opening so that no step in the opening occurs. If the tension is not optimized, the problem is that the colored layer surface is distorted and color unevenness occurs, and the application range of the colored layer material with high concentration and viscosity is narrow.

特許文献6および特許文献7では、遮光層を着色層の積層により形成するカラーフィルター基板を提案している。しかし、着色層の積層部を遮光層として用いることは、本出願に記載する開口部周辺部の遮光層上に着色層を重ね合わせる構成と同じである。すなわち、第1の着色層上に積層した第2の着色層膜厚が厚くなり、第2の着色層の開口部に開口部内段差が発生する。これに対し、特許文献6では積層部の膜厚を減じるために、着色層の積層部を露光する際に該当部のみ露光量を減じ半硬化状態でエッチングすることで膜厚が低減できるとしているが、煩雑な工程になると共に安定したエッチング精度が得られないことも予想される。加えて、第1の着色層上に第2の着色層を積層したことで生じる開口部内段差は、エッチングにより軽減されないことも課題であった。   Patent Document 6 and Patent Document 7 propose a color filter substrate in which a light shielding layer is formed by stacking colored layers. However, the use of the laminated portion of the colored layer as the light shielding layer is the same as the configuration in which the colored layer is overlaid on the light shielding layer around the opening described in the present application. That is, the thickness of the second colored layer laminated on the first colored layer is increased, and a step in the opening is generated in the opening of the second colored layer. On the other hand, in Patent Document 6, in order to reduce the thickness of the laminated portion, when exposing the laminated portion of the colored layer, the exposure amount is reduced only in the corresponding portion and the thickness can be reduced by etching in a semi-cured state. However, it becomes a complicated process and stable etching accuracy cannot be obtained. In addition, it is a problem that the step in the opening caused by laminating the second colored layer on the first colored layer is not reduced by etching.

開口部内段差を低減する手段として一般的に用いられるのが、特許文献8、9に示す遮光層上および着色層上に透明平坦化層を設ける構成である。図3を用いて説明すると、透明基板1上に開口部Aを有する樹脂遮光層2をパターン形成し、着色層3を前記開口部A上と開口部周辺部aの遮光層上に積層するように設け、樹脂遮光層2上および着色層3上に透明平坦化層4を形成する。透明平坦化層は、透明平坦化層用材料をカラーフィルター基板の概全面に塗布して形成するが、前記透明平坦化層材料は、開口部周辺部の遮光層上に積層された着色層頂部から開口部上の着色層底部に向かって流れ込み段差を緩和する。すなわち、開口部周辺部の遮光層に積層された着色層上の透明平坦化層上面について、最も高い部分を透明平坦化層の上面の最大高さ、開口部上に形成された着色層上の透明平坦化層上面について、最も低い部分を透明平坦化層の上面の最小高さと定義すると、その差Dが着色層の頂部と底部の差dに比べ小さくなることにより、透明平坦化層上の開口部内段差も大幅に緩和される。その結果、開口部上で液晶のプレチルト角が安定して表示品質も向上するが、遮光層や着色層の膜厚が厚くなるほど着色層の頂部と底部間の段差も拡大するため、透明平坦化層の膜厚も厚くしなければならない。しかし、透明平坦化層は光吸収係数が小さいものの、膜厚が厚くなると表示光強度の低下や色つきが生じ、一方で、透明平坦化層が厚くなるとカラーフィルター基板表面の硬度低下が生じるため、液晶パネル体の間隙を支持するために使用する支持体の保持が不安定になり、基板間隙の不均一となるなどの課題があった。
特開平10−288707号公報(公開日:平成10年10月27日) 特開2002−6130号公報(公開日:平成14年1月9日) 特開平6−174913号公報(公開日:平成6年6月24日) 特開2003−177232号公報(公開日:平成15年6月27日) 特開平10−3005号公報(公開日:平成10年1月6日) 特開2003−131020号公報(公開日:平成15年5月8日) 特開平10−268292号公報(公開日:平成10年10月9日) 特開2004−184664号公報(公開日:平成16年7月2日) 特開平11−38906号公報(公開日:平成11年2月12日)
Generally used as means for reducing the step in the opening is a configuration in which a transparent flattening layer is provided on the light-shielding layer and the colored layer described in Patent Documents 8 and 9. Referring to FIG. 3, the resin light-shielding layer 2 having the opening A is patterned on the transparent substrate 1, and the colored layer 3 is laminated on the light-shielding layer on the opening A and the peripheral portion a of the opening. The transparent flattening layer 4 is formed on the resin light-shielding layer 2 and the colored layer 3. The transparent flattening layer is formed by applying a transparent flattening layer material on almost the entire surface of the color filter substrate, and the transparent flattening layer material is formed on the top of the colored layer laminated on the light shielding layer around the opening. To flow toward the bottom of the colored layer on the opening to alleviate the step. That is, with respect to the upper surface of the transparent flattening layer on the colored layer laminated on the light shielding layer in the periphery of the opening, the highest portion is the maximum height of the upper surface of the transparent flattening layer, and on the colored layer formed on the opening. If the lowest part of the upper surface of the transparent flattening layer is defined as the minimum height of the upper surface of the transparent flattening layer, the difference D is smaller than the difference d between the top and bottom of the colored layer, thereby The step inside the opening is also greatly reduced. As a result, the pretilt angle of the liquid crystal is stabilized on the opening and the display quality is improved, but the step between the top and bottom of the colored layer increases as the thickness of the light-shielding layer or colored layer increases. The layer thickness must also be increased. However, although the transparent flattening layer has a small light absorption coefficient, when the film thickness increases, the display light intensity decreases and the coloration occurs. On the other hand, when the transparent flattening layer increases, the hardness of the color filter substrate surface decreases. However, there is a problem that the support used for supporting the gap between the liquid crystal panel bodies becomes unstable and the substrate gap becomes non-uniform.
JP 10-288707 A (publication date: October 27, 1998) JP 2002-6130 A (publication date: January 9, 2002) Japanese Patent Laid-Open No. 6-174913 (Publication date: June 24, 1994) JP 2003-177232 A (publication date: June 27, 2003) Japanese Patent Laid-Open No. 10-3005 (Publication date: January 6, 1998) JP 2003-131020 A (publication date: May 8, 2003) JP 10-268292 A (publication date: October 9, 1998) JP 2004-184664 A (publication date: July 2, 2004) Japanese Patent Laid-Open No. 11-38906 (Publication date: February 12, 1999)

本発明の目的は、以上のような従来技術の欠点を鑑み検討した結果、開口部を有する遮光層をパターン形成され、前記開口部と開口部周辺部の遮光層上に着色層を形成し、遮光層上および着色層上に透明平坦化層を積層したカラーフィルター基板において、開口部周辺部の遮光層上と開口部上の段差により生じた開口部内段差を簡便な方法で改善した液晶表示装置用カラーフィルター基板および液晶表示装置を提供することにある。   The object of the present invention is as a result of considering the disadvantages of the prior art as described above, as a result of patterning a light-shielding layer having an opening, forming a colored layer on the light-shielding layer around the opening and the opening, A liquid crystal display device in which a step inside the opening caused by a step on the light shielding layer around the opening and the step on the opening is improved by a simple method in a color filter substrate in which a transparent flattening layer is laminated on the light shielding layer and the colored layer Another object is to provide a color filter substrate and a liquid crystal display device.

本発明では、透明基板上に開口部を有する遮光層がパターン形成され、開口部と開口部周辺部の遮光層上に着色層が形成され、該遮光層上および該着色層上に透明平坦化層が設けられた液晶表示装置用カラーフィルター基板であって、遮光層の膜厚が着色層の膜厚よりも厚く、かつ開口部周辺部の遮光層上に形成された透明平坦化層の上面の最大高さと開口部内に形成された透明平坦化層の上面の最小高さとの差を0.2μm以下とすることで、開口部内での透明平坦化層上の開口部内段差を大幅に低減する効果を十分に発揮することができ、液晶配向に影響を与えず、かつ表示品質の劣化の少ない液晶表示装置に好適に用いられるカラーフィルター基板を得ることが可能である。   In the present invention, a light shielding layer having an opening is patterned on a transparent substrate, a colored layer is formed on the opening and the light shielding layer around the opening, and transparent flattening is performed on the light shielding layer and the colored layer. A color filter substrate for a liquid crystal display device provided with a layer, wherein the thickness of the light shielding layer is larger than that of the colored layer, and the upper surface of the transparent flattening layer formed on the light shielding layer around the opening By making the difference between the maximum height of the transparent flattening layer formed in the opening and the minimum height of the upper surface of the transparent flattening layer 0.2 μm or less, the step in the opening on the transparent flattening layer in the opening is greatly reduced. It is possible to obtain a color filter substrate that can exhibit the effect sufficiently, does not affect liquid crystal alignment, and is suitably used for a liquid crystal display device with little deterioration in display quality.

さらに本発明の液晶表示装置用カラーフィルター基板においては次の好ましい態様を含んでいる。
(1)遮光層の膜厚が着色層の膜厚の1.1倍以上であることを特徴とする液晶表示装置用カラーフィルター基板であって、
(2)開口部周辺部の遮光層上に形成された着色層と遮光層の積層部幅が5μm以下である液晶表示装置用カラーフィルター基板であって、
(3)透明平坦化層の膜厚が1.2μm以上である液晶表示装置用カラーフィルター基板である。
Furthermore, the color filter substrate for a liquid crystal display device of the present invention includes the following preferred embodiments.
(1) A color filter substrate for a liquid crystal display device, wherein the thickness of the light shielding layer is 1.1 times or more of the thickness of the colored layer,
(2) A color filter substrate for a liquid crystal display device, wherein the laminated portion width of the colored layer and the light shielding layer formed on the light shielding layer around the opening is 5 μm or less,
(3) A color filter substrate for a liquid crystal display device, wherein the film thickness of the transparent flattening layer is 1.2 μm or more.

本発明の液晶表示装置用カラーフィルター基板は、開口部を有する遮光層がパターン形成された透明基板上に着色層用材料を塗布、乾燥、パターン形成して開口部と開口部周辺部の遮光層上に着色層を形成し、さらに該遮光層上および該着色層上に透明平坦化層材料を塗布し、前記遮光層を着色層よりも厚く形成することにより簡便に得ることができる。   The color filter substrate for a liquid crystal display device of the present invention is formed by applying a coloring layer material on a transparent substrate on which a light shielding layer having an opening is patterned, drying, and patterning the light shielding layer at the opening and the periphery of the opening. It can be easily obtained by forming a colored layer thereon, applying a transparent flattening layer material on the light shielding layer and the colored layer, and forming the light shielding layer thicker than the colored layer.

また、着色層を形成するための着色層用材料が25℃において剪断速度38/秒での粘度が10mN/m・s以上、60mN/m・s未満であり、さらには透明平坦化層を形成するための材料が25℃において剪断速度38/秒での粘度が1mN/m・s以上、20mN/m・s未満である材料を用いることにより、本発明のカラーフィルター基板の効果を発揮できる。 Further, the coloring layer material for forming the coloring layer has a viscosity at 25 ° C. and a shear rate of 38 / sec of 10 mN / m 2 · s or more and less than 60 mN / m 2 · s, and further a transparent flattening layer By using a material for forming a film having a viscosity of 1 mN / m 2 · s or more and less than 20 mN / m 2 · s at a shear rate of 38 / s at 25 ° C, the effect of the color filter substrate of the present invention is achieved. Can be demonstrated.

さらに、このようにして得られた本発明のカラーフィルター基板を用いることで、表示品質の良好な液晶表示装置を得ることができる。   Furthermore, by using the color filter substrate of the present invention thus obtained, a liquid crystal display device with good display quality can be obtained.

本発明の液晶表示装置用カラーフィルター基板では、開口部上に形成される着色層膜厚と、着色層が積層される開口部周辺部の遮光層膜厚の関係、及び開口部周辺部の遮光層上の着色層の積層幅に着目し、遮光層と着色層上に透明平坦化層を形成した後のカラーフィルター表面において、開口部周辺部上の透明平坦化層の上面の最大高さと開口部内の透明平坦化層の上面の最小高さの差を小さくすることで、開口部内段差を低減し液晶配向を安定化できる。したがって、着色層膜厚を厚くすることにより色再現範囲を拡大することや、低電圧での配向特性を有する液晶を用いて応答速度を向上することなど、高品質な液晶表示装置用カラーフィルター基板を安価に提供することが可能である。   In the color filter substrate for a liquid crystal display device of the present invention, the relationship between the thickness of the colored layer formed on the opening, the thickness of the light shielding layer around the opening where the colored layer is laminated, and the light shielding around the opening. Paying attention to the lamination width of the colored layer on the layer, on the color filter surface after forming the transparent flattening layer on the light shielding layer and the colored layer, the maximum height and opening of the transparent flattened layer on the periphery of the opening By reducing the difference in the minimum height of the upper surface of the transparent flattening layer in the portion, the step in the opening can be reduced and the liquid crystal alignment can be stabilized. Therefore, high-quality color filter substrates for liquid crystal display devices such as increasing the color reproduction range by increasing the thickness of the colored layer and improving the response speed by using liquid crystals having alignment characteristics at low voltage. Can be provided at low cost.

以下に、図面を用いて本発明のカラーフィルター基板および液晶表示装置について例示詳述するが、本発明はこれらに限定されているものではない。   Hereinafter, the color filter substrate and the liquid crystal display device of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.

図4は、開口部を有する遮光層をパターン形成し、前記開口部上と開口部周辺部の遮光層上に形成された着色層と、遮光層と着色層上に透明平坦化層を設けた本発明の液晶表示装置用カラーフィルター基板の概略断面図である。   FIG. 4 shows a pattern of a light-shielding layer having an opening, a colored layer formed on the light-shielding layer on the opening and the periphery of the opening, and a transparent flattening layer on the light-shielding layer and the colored layer. It is a schematic sectional drawing of the color filter substrate for liquid crystal display devices of this invention.

図4に示す本発明の液晶表示装置用カラーフィルター基板では、まず透明基板1上に開口部Aを有する樹脂遮光層2をパターン形成し、次いで開口部A上と開口部周辺部aの遮光層上に着色層3を設け、遮光層および着色層上に透明平坦化層4を積層する。   In the color filter substrate for a liquid crystal display device of the present invention shown in FIG. 4, first, a resin light-shielding layer 2 having an opening A is formed on the transparent substrate 1, and then the light-shielding layer on the opening A and the peripheral part a of the opening. The colored layer 3 is provided thereon, and the transparent flattening layer 4 is laminated on the light shielding layer and the colored layer.

本発明で用いる透明基板1としては、例えば、石英ガラス、ホウケイ酸ガラス、アルミノケイ酸塩ガラスおよび表面をシリカコートしたソーダライムガラスなどの無機ガラス類、プラスチックフィルムまたはシートなどの透明樹脂等が好ましく用いられる。   As the transparent substrate 1 used in the present invention, for example, inorganic glass such as quartz glass, borosilicate glass, aluminosilicate glass and soda lime glass whose surface is coated with silica, transparent resin such as plastic film or sheet, and the like are preferably used. It is done.

透明基板上に形成される樹脂遮光層2は、遮光剤を分散した樹脂からなる樹脂遮光層を用いる。本発明の遮光層とは光の非透過領域であり、複数の開口部を分割するようにパターン形成し、それ自身は表示に寄与しない領域と定義する。液晶表示装置では明暗の画像をコントラストよく表示することが表示品質向上に欠かせない手段であり、開口部周囲の遮光部には十分な遮光性が必要である。すなわち、暗画像を表示する場合、開口部からの光透過が無いようにしても表示装置内で表示光が散乱することにより漏れ光が生じてしまうため、開口部周囲に遮光部を配置し漏れ光を遮断する。そのため遮光層に必要な光学濃度は3.5以上が好ましいが、樹脂遮光層に含まれる遮光剤は着色力が弱く、遮光剤の含有量を増やすために遮光層の膜厚を厚くする必要がある。光学濃度3.5以上を有する樹脂遮光層の膜厚は0.8μm以上が好ましく、さらに好ましくは1.0μm以上であると十分な遮光性を得ることができる。   As the resin light shielding layer 2 formed on the transparent substrate, a resin light shielding layer made of a resin in which a light shielding agent is dispersed is used. The light-shielding layer of the present invention is a non-light-transmitting region, and a pattern is formed so as to divide a plurality of openings, and itself is defined as a region that does not contribute to display. In a liquid crystal display device, displaying bright and dark images with good contrast is an indispensable means for improving display quality, and a light shielding part around the opening needs to have sufficient light shielding properties. That is, when displaying a dark image, even if there is no light transmission from the opening, leakage light is generated by scattering the display light in the display device. Block the light. Therefore, the optical density required for the light-shielding layer is preferably 3.5 or more, but the light-shielding agent contained in the resin light-shielding layer has a weak coloring power, and it is necessary to increase the thickness of the light-shielding layer in order to increase the content of the light-shielding agent. is there. The film thickness of the resin light-shielding layer having an optical density of 3.5 or more is preferably 0.8 μm or more, and more preferably 1.0 μm or more can provide sufficient light-shielding properties.

また本発明の遮光層は、着色層の積層により光の非透過領域を形成してもよく、この場合、下層となる第1の着色層が本発明の遮光層に相当し、第1の着色層上に形成される第2色の着色層が本発明の着色層に相当する。   The light shielding layer of the present invention may form a light non-transmission region by stacking colored layers. In this case, the first colored layer as the lower layer corresponds to the light shielding layer of the present invention, and the first colored layer The colored layer of the second color formed on the layer corresponds to the colored layer of the present invention.

本発明のカラーフィルター基板では開口部内段差を低減することを目的としており、開口部上で生じる液晶の配向不良に伴う暗画像の光漏れに対しても効果がある。開口部内段差が発生すると液晶配向が乱れるために光漏れ等の原因となることから開口部内段差を低減する本発明はコントラスト向上にも有効である。   The color filter substrate of the present invention aims to reduce the step in the opening, and is also effective for light leakage of a dark image accompanying liquid crystal alignment failure occurring on the opening. Since the liquid crystal alignment is disturbed when the step in the opening is generated, it causes light leakage and the like, and the present invention for reducing the step in the opening is also effective for improving the contrast.

樹脂遮光層に用いられる遮光剤の分散体である樹脂としては、例えば、エポキシ系樹脂、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂およびゼラチンなどの感光性樹脂または非感光性樹脂等の材料が好ましく用いられる。なお、感光性樹脂に遮光剤を分散した場合、露光時に光線透過率が低下し樹脂の硬化不良等が発生することがある。したがって、好ましくは感度の高いエチレン性不飽和二重結合などの構造を化合物中に含有するか、熱反応により硬化する構造を含む樹脂を使用するか、または両者の混合物を使用すると樹脂遮光層を十分に硬化することができる。さらに好ましくはアルカリ可溶な成分を含むポリイミド骨格やその前駆体、アクリル骨格、エポキシ骨格により熱反応性のみを付与した非感光性樹脂を使用し、フォトレジスト等の感光性樹脂を積層形成した後、フォトリソグラフィー法にて不要部の除去、感光性樹脂の剥離、熱硬化を順に行うと露光時の感度に影響されず良好な加工性が得られ表示品質も向上する。   Examples of the resin that is a dispersion of the light-shielding agent used in the resin light-shielding layer include photosensitive resins such as epoxy resins, acrylic resins, urethane resins, polyester resins, polyimide resins, polyolefin resins, and gelatin; A material such as a non-photosensitive resin is preferably used. When a light shielding agent is dispersed in the photosensitive resin, the light transmittance may be reduced during exposure to cause poor curing of the resin. Therefore, it is preferable to use a resin containing a highly sensitive structure such as an ethylenically unsaturated double bond in the compound, a resin containing a structure that is cured by a thermal reaction, or a mixture of both. It can be cured sufficiently. More preferably, after using a non-photosensitive resin imparted only with thermal reactivity by a polyimide skeleton containing an alkali-soluble component or a precursor thereof, an acrylic skeleton, or an epoxy skeleton, and laminating a photosensitive resin such as a photoresist. When the unnecessary portion is removed, the photosensitive resin is peeled off, and the heat curing is sequentially performed by the photolithography method, good workability is obtained without being influenced by the sensitivity at the time of exposure, and the display quality is improved.

樹脂遮光層に用いられる遮光剤としては、例えば、カーボンブラック、酸化チタン、酸化窒化チタン、四酸化鉄などの金属酸化物粉、金属硫化物粉、顔料やこれらの混合物などが好ましい。本発明においては遮光性や導電性等の所望の特性を考慮した上でいずれの遮光剤を使用してもよく、さらには樹脂遮光層の色調を調整するために補色顔料を混合してもよい。特に遮光剤のみでは樹脂遮光層が使用する遮光剤特有の色を呈することから、表示特性の面においても無彩色にすることが好ましい。   As a light-shielding agent used for the resin light-shielding layer, for example, metal oxide powders such as carbon black, titanium oxide, titanium oxynitride, and iron tetroxide, metal sulfide powders, pigments, and mixtures thereof are preferable. In the present invention, any light-shielding agent may be used in consideration of desired properties such as light-shielding property and conductivity, and further, a complementary color pigment may be mixed in order to adjust the color tone of the resin light-shielding layer. . In particular, since only the light-shielding agent exhibits a color specific to the light-shielding agent used by the resin light-shielding layer, it is preferable that the display characteristics be achromatic.

本発明においては、透明基板上への遮光層材料の塗膜形成方法は特に限定されない。スピンコーティング法、ロールコーティング法、バーコーティング法、ダイコーティング法等のウェットコーティング方式により基板全面に塗布後、フォトリソグラフィー法により遮光部を形成しない開口部を除去して所定の遮光部パターンを形成してもよいし、フィルム転写法、印刷法、電着法、インクジェット法により遮光部を形成し、未形成部を開口部としてもよい。また、開口部の配列方法は特に限定されず、少なくとも3色の着色層が形成される開口部がストライプ状に交互に並ぶストライプ状配列や開口部を3角形状の繰り返し配置するデルタ状配列が代表的である。本発明ではストライプ状配列を基に説明する。   In the present invention, the method for forming a coating film of the light shielding layer material on the transparent substrate is not particularly limited. After applying to the entire surface of the substrate by a wet coating method such as spin coating, roll coating, bar coating, or die coating, the openings that do not form the light shielding part are removed by photolithography to form a predetermined light shielding part pattern. Alternatively, the light shielding portion may be formed by a film transfer method, a printing method, an electrodeposition method, or an ink jet method, and the unformed portion may be used as the opening portion. Further, the arrangement method of the openings is not particularly limited, and there are a stripe arrangement in which the openings where the colored layers of at least three colors are formed are alternately arranged in a stripe pattern, and a delta arrangement in which the openings are repeatedly arranged in a triangular shape. Representative. The present invention will be described based on the stripe arrangement.

本発明で用いられる着色層3は、カラー表示に必要な構成であれば特に限定されず、加法混色であれば赤、青および緑の3色、減法混色であればシアン、マゼンタおよびイエローの3色が使用可能である。なお、本発明では赤、青、緑の3色を基に説明する。   The colored layer 3 used in the present invention is not particularly limited as long as it is a configuration necessary for color display. If additive color mixture, three colors of red, blue, and green, and if subtractive color mixture, cyan, magenta, and yellow 3 are used. Color is available. In the present invention, description will be made based on the three colors of red, blue, and green.

着色層は少なくとも着色剤、着色剤の分散体となる樹脂、溶剤からなる着色層用材料を用いてフォトリソグラフィー法により形成する。前記着色剤としては、液晶表示装置において所望の表示特性を得るために赤、橙、黄、緑、青または紫などの有機顔料、無機顔料や染料の着色剤が好適に用いられる。なお、前記顔料は、必要に応じて、ロジン処理、酸性基処理、塩基性処理または顔料誘導体処理などの表面処理がされていてもよい。一般に、顔料および染料の色を特定する記号として、PR(ピグメントレッド)、PG(ピグメントグリーン)あるいはPB(ピグメントブルー)等のカラーインデックス(C.I.;The Society of Dyers and Colourrists社発行)が用いられる。正式表記としては、C.I.の後に特定の色記号(例えば、C.I.PR254など)で表示されているが、本発明の説明においては、前記C.I.の表記は省略(例えば、C.I.PR254ならば、PR254)する。   The colored layer is formed by a photolithography method using at least a colorant, a resin that becomes a dispersion of the colorant, and a material for the color layer that is a solvent. As the colorant, organic pigments such as red, orange, yellow, green, blue or violet, inorganic pigments and dyes are preferably used in order to obtain desired display characteristics in a liquid crystal display device. The pigment may be subjected to a surface treatment such as rosin treatment, acidic group treatment, basic treatment, or pigment derivative treatment, if necessary. In general, as a symbol for specifying the color of pigments and dyes, color indexes such as PR (Pigment Red), PG (Pigment Green) or PB (Pigment Blue) (CI; issued by The Society of Dyers and Colorours) Used. For formal notation, C.I. I. Is displayed with a specific color symbol (for example, CI PR254 etc.), but in the description of the present invention, the C.I. I. Is omitted (for example, PR254 for CI PR254).

また着色剤の分散体に使用されている樹脂成分としては、例えば、アクリル系樹脂、ポリイミド系樹脂およびエポキシ系樹脂などの感光性樹脂または非感光性樹脂やこれらの混合材料が好適に用いられる。さらに着色層材料中には、紫外線吸収剤や分散剤などの種々の添加剤を添加してもよく、分散剤としては界面活性剤、顔料の中間体、染料の中間体および高分子分散剤などの広範囲のものが使用されている。なお、ここに説明したカラー表示以外に本発明の液晶表示装置用カラーフィルター基板では、着色領域として透過率85%以上の透明樹脂を用いた無彩色領域を形成してもよい。   As the resin component used in the colorant dispersion, for example, photosensitive resins such as acrylic resins, polyimide resins, and epoxy resins, non-photosensitive resins, and mixed materials thereof are preferably used. Furthermore, various additives such as ultraviolet absorbers and dispersants may be added to the coloring layer material. Examples of the dispersant include surfactants, pigment intermediates, dye intermediates, and polymer dispersants. A wide range of is used. In addition to the color display described here, in the color filter substrate for a liquid crystal display device of the present invention, an achromatic region using a transparent resin having a transmittance of 85% or more may be formed as a colored region.

本発明で用いる開口部に着色層を形成するためのフォトリソグラフィー法は、前記着色層用材料を、開口部を有する遮光層パターン上に概ね全面塗布し、乾燥工程において溶媒除去し着色層塗膜を形成する。着色層塗膜に感光機能が付与されている場合には塗膜上から、また、着色層塗膜に感光機能が付与されていない場合には、感光性樹脂を用いて着色層塗膜上に積層膜を形成した上から、所定の着色層形状にパターンが形成されたフォトマスクを介して露光、現像を行い、開口部上、および開口部周辺部の遮光層上に着色層を得ることができる。   A photolithography method for forming a colored layer in an opening used in the present invention is a method in which the colored layer material is applied almost entirely on a light shielding layer pattern having an opening, and the solvent is removed in a drying step. Form. When the photosensitive function is imparted to the colored layer coating film, and on the colored layer coating film using a photosensitive resin when the photosensitive function is not imparted to the colored layer coating film. After forming the laminated film, exposure and development are performed through a photomask having a pattern formed in a predetermined colored layer shape, and a colored layer is obtained on the opening and on the light shielding layer around the opening. it can.

着色層の形状は特に限定されず、着色層を隣接する開口部上に渡ってストライプ状に配列する方法や、各開口部上に概ね矩形状に配置する方法が代表的である。本発明では、着色層が開口部周辺部の遮光層上に積層する構成に用いられるものであり、少なくとも着色層の一部が開口部周辺部の遮光層に積層されている構成であれば適用することが可能である。   The shape of the colored layer is not particularly limited, and a method of arranging the colored layer in a stripe shape over adjacent openings and a method of arranging the colored layers in a substantially rectangular shape on each opening are representative. In the present invention, the colored layer is used in a configuration in which the colored layer is laminated on the light shielding layer in the periphery of the opening, and is applicable as long as at least a part of the colored layer is laminated in the light shielding layer in the periphery of the opening. Is possible.

本発明では、図4に示す通り、遮光層膜厚2を着色層膜厚3より厚くし、所望の関係を満たすようにすることで、開口部周辺部の遮光層上に積層した着色層の頂部が低くなり、着色層の頂部と底部間で生じる段差dが低減できること、さらにこの状態で遮光層上および着色層上に透明平坦化層を形成すると、開口部周辺部の透明平坦化層の上面の最大高さと、開口部上の透明平坦化層の上面の最小高さの差Dも緩和されるため、開口部内段差が大幅に改善されることを見出した。なお、遮光層膜厚は開口部に隣接する遮光層の最も膜厚の低い部分と定義する。着色層膜厚は前述の通り、開口部上に形成された着色層について、開口部内の最も膜厚の低い部分を着色層膜厚と定義する。所望の色度を呈する着色層膜厚を決定し、相対的に遮光層膜厚を設計すれば簡便に本発明のカラーフィルター基板を得ることができる。   In the present invention, as shown in FIG. 4, the thickness of the light-shielding layer 2 is larger than the thickness 3 of the colored layer so as to satisfy the desired relationship. When the top portion is lowered and the level difference d generated between the top portion and the bottom portion of the colored layer can be reduced, and the transparent flattening layer is formed on the light shielding layer and the colored layer in this state, the transparent flattening layer around the opening portion Since the difference D between the maximum height of the upper surface and the minimum height of the upper surface of the transparent flattening layer on the opening is alleviated, it was found that the step in the opening is greatly improved. The light shielding layer film thickness is defined as the thinnest part of the light shielding layer adjacent to the opening. As described above, the color layer thickness is defined as the color layer thickness of the color layer formed on the opening with the lowest thickness in the opening. The color filter substrate of the present invention can be easily obtained by determining the thickness of the colored layer exhibiting a desired chromaticity and relatively designing the thickness of the light shielding layer.

発明者はこのような開口部内段差が低減できる理由について次の通り類推した。着色層用材料は、塗布直後に開口部周辺部の遮光層上から開口部上へと高低差にしたがい流れ込むが、遮光層の膜厚を着色層よりも厚くすると、より多くの着色用材料が流れ込み、開口部周辺部の遮光層上に積層される着色層膜厚が薄くなることで、着色層の頂部、底部間の段差が軽減される。さらに透明平坦化層も同様に、塗布直後から開口部周辺部の着色層頂部から、開口部上の着色層底部に向かって流れ込みが生じ段差が軽減されるが、加えて開口部周辺部上の着色層頂部が低くなることで、透明平坦化層用材料の流動性が向上し、容易に開口部上へと流れ込みやすくなる。したがって、透明平坦化層の形成後に上面の最大高さと最小高さの差も小さくなり、開口部周辺部から開口部に渡って平坦化されるため開口部内段差を大幅に低減できると考えた。   The inventor made an analogy as to why such a step in the opening can be reduced. The colored layer material flows from the light shielding layer in the periphery of the opening immediately after application to the opening according to the height difference, but if the thickness of the light shielding layer is made thicker than the colored layer, more coloring material is produced. The thickness difference between the top and bottom of the colored layer is reduced by reducing the thickness of the colored layer deposited on the light shielding layer around the opening. Further, the transparent flattening layer also flows from the top of the colored layer at the periphery of the opening immediately after application to the bottom of the colored layer on the opening, and the level difference is reduced. By lowering the top of the colored layer, the fluidity of the transparent flattening layer material is improved, and it easily flows into the opening. Therefore, the difference between the maximum height and the minimum height of the upper surface after the formation of the transparent flattening layer is reduced, and it is thought that the step in the opening can be greatly reduced because the flattening is performed from the periphery of the opening to the opening.

このように開口部内段差を低減するためには、開口部周辺部の透明平坦化層の上面の最大高さと開口部上の透明平坦化層の上面の最小高さの差を低減することが必要であり、本発明において検討した結果、0.2μm以下の段差とすることで液晶のプレチルト角や配向性が安定する開口部内段差が得られることを見出した。   Thus, in order to reduce the step in the opening, it is necessary to reduce the difference between the maximum height of the upper surface of the transparent flattening layer around the opening and the minimum height of the upper surface of the transparent flattening layer on the opening. As a result of investigation in the present invention, it was found that a step in the opening where the pretilt angle and orientation of the liquid crystal are stable can be obtained by setting the step to 0.2 μm or less.

本発明では、遮光層膜厚を着色層膜厚の1.1倍以上とすることにより、開口部周辺部上の着色層頂部と開口部上の着色層底部間の段差低減効果に好ましく、さらに好ましくは遮光層の膜厚を着色層の膜厚の1.3倍以上とすることにより、開口部周辺部上からの着色層用材料の流れ込みが促進され、その結果、開口部周辺部上の着色層頂部が低くなり、透明平坦化層による段差低減効果も向上する。   In the present invention, the light-shielding layer film thickness is 1.1 times or more of the colored layer film thickness, which is preferable for the step reduction effect between the colored layer top on the periphery of the opening and the colored layer bottom on the opening. Preferably, by setting the thickness of the light shielding layer to 1.3 times or more of the thickness of the colored layer, the flow of the colored layer material from the periphery of the opening is promoted, and as a result, on the periphery of the opening. The top of the colored layer is lowered, and the step reduction effect by the transparent flattening layer is also improved.

発明者はこの現象をさらに詳細に分析した結果、開口部周辺部上の遮光層と着色層の積層幅が着色層の頂部と底部の段差に影響することを見出した。ここで、積層幅とは、開口部と遮光層の境界部から、遮光層上に積層された着色層端部までの距離と定義する。すなわち、図4におけるaの距離が相当する。積層幅は、隣接する異なる色方向の開口部周辺部に積層された着色層に用いてもよいし、隣接する同じ色方向の開口部周辺部に積層された着色層に用いてもよい。好ましくは、この遮光層と着色層の積層幅が5μm以下であれば、着色層用材料の流れ込み後の頂部と底部間段差が大幅に低減でき、これはフォトリソグラフィー法により着色層の積層幅を狭くすることで、着色層膜厚の厚い領域を除去し、かつ塗布時に流動性を阻害する領域が減少できるためと推定した。そのため、透明平坦化層形成時にも段差低減効果が向上することが期待できた。さらに好ましくは積層幅が3μm以下であり、ばらつきを考慮した上で1〜3μmであることが最も好ましい。   As a result of further detailed analysis of this phenomenon, the inventor has found that the lamination width of the light shielding layer and the colored layer on the periphery of the opening affects the step between the top and bottom of the colored layer. Here, the lamination width is defined as the distance from the boundary between the opening and the light shielding layer to the end of the colored layer laminated on the light shielding layer. That is, the distance a in FIG. The stacking width may be used for a colored layer that is stacked around adjacent openings in different color directions, or may be used for a colored layer that is stacked around adjacent openings in the same color direction. Preferably, if the stacking width of the light-shielding layer and the colored layer is 5 μm or less, the step between the top and the bottom after the coloring layer material flows in can be significantly reduced, and this can be achieved by photolithography. It was estimated that by narrowing, the region where the colored layer thickness was thick could be removed, and the region that hindered fluidity during coating could be reduced. Therefore, it can be expected that the step reduction effect is improved even when the transparent flattening layer is formed. More preferably, the lamination width is 3 μm or less, and most preferably 1 to 3 μm in consideration of variation.

一方、開口部周辺部の遮光層上から開口部上へ着色層用材料が円滑に流れ込むためには、流動特性が重要である。着色剤等の粒子が分散された着色層用材料では、粒子間の相互作用による構造粘性が生じ流動性が低下することが懸念される。したがって、粒子の分散安定性を向上させる必要があり、このような着色層用材料は固形分濃度が20wt%以下であることが好ましく、さらに好ましくは15wt%以下である。また、25℃において剪断速度1〜200/秒の範囲の異なる剪断速度で測定された少なくとも3点の粘度からCasson式により求めた降伏値が0.01N/m未満であるニュートニアン流体であり、かつ25℃において剪断速度38/秒での粘度が10mN/m・s以上、60mN/m・s未満であることが好ましい。さらに好ましく前記ニュートニアン流体であって、25℃において剪断速度38/秒での粘度が10mPa・s以上、30mPa・s未満であると、遮光部から開口部への流れ込みが容易になる。 On the other hand, in order for the coloring layer material to smoothly flow from the light shielding layer around the opening to the opening, the flow characteristics are important. In a colored layer material in which particles such as a colorant are dispersed, there is a concern that structural viscosity is generated due to the interaction between particles and fluidity is lowered. Therefore, it is necessary to improve the dispersion stability of the particles, and such a colored layer material preferably has a solid content concentration of 20 wt% or less, more preferably 15 wt% or less. And a Newtonian fluid having a yield value of less than 0.01 N / m 2 determined by the Casson equation from at least three viscosities measured at 25 ° C. at different shear rates ranging from 1 to 200 / sec. In addition, the viscosity at 25 ° C. at a shear rate of 38 / sec is preferably 10 mN / m 2 · s or more and less than 60 mN / m 2 · s. More preferably, when the viscosity is 10 mPa · s or more and less than 30 mPa · s at 25 ° C. and a shear rate of 38 / sec, the flow from the light shielding portion to the opening portion is facilitated.

液晶表示装置によりカラー画像を表示する用途が広がるにしたがい、CIE色度系におけるC光源を用いた色再現範囲がNTSC比40%以上を示す着色層が好適に用いられてきている。しかし、色再現範囲が広いほど着色層中の着色剤濃度を増やす必要がある一方で、樹脂中に含まれる着色剤の量が多くなると硬化不良、パターン加工性や信頼性低下の原因となるため、着色層の膜厚を厚くする必要が生じる。しかし、着色層膜厚が厚くなるにしがい、開口部周辺部の遮光層上に積層された着色層の頂部が高くなり、開口部内段差が悪化し表示品質低下の大きな原因であったが、前述の構成を採用することで表示品質の劣化の低減したカラーフィルター基板を得ることができる。   As the use of displaying color images by liquid crystal display devices spreads, a colored layer in which the color reproduction range using a C light source in the CIE chromaticity system exhibits an NTSC ratio of 40% or more has been suitably used. However, the wider the color reproduction range, the more it is necessary to increase the concentration of the colorant in the colored layer. On the other hand, if the amount of the colorant contained in the resin is increased, it will cause poor curing, pattern workability and reduced reliability. Therefore, it is necessary to increase the thickness of the colored layer. However, as the color layer thickness increases, the top of the color layer laminated on the light shielding layer in the periphery of the opening becomes high, the step in the opening deteriorates, and this is a major cause of deterioration in display quality. By adopting this configuration, it is possible to obtain a color filter substrate with reduced display quality degradation.

本発明で用いられる透明平坦化層4は、着色層による頂部と底部間の段差を緩和し、開口部内段差を改善するために用いる。透明平坦化層膜厚は、着色層膜厚として定義された部分に積層された透明平坦化層の膜厚と定義する。十分な段差改善効果を得るためには、透明平坦化層膜厚を1.2μm以上とすることが好ましい。さらに好ましくは透明平坦化層の膜厚が1.5μm以上とすることで着色層の頂部と底部の差を大幅に低減でき、開口部内段差の小さいカラーフィルター基板を作製できる。   The transparent flattening layer 4 used in the present invention is used to alleviate the step between the top and bottom due to the colored layer and improve the step inside the opening. The transparent flattening layer film thickness is defined as the film thickness of the transparent flattening layer laminated on the portion defined as the colored layer film thickness. In order to obtain a sufficient level difference improving effect, the thickness of the transparent planarization layer is preferably 1.2 μm or more. More preferably, when the film thickness of the transparent flattening layer is 1.5 μm or more, the difference between the top and bottom of the colored layer can be greatly reduced, and a color filter substrate having a small step in the opening can be produced.

本発明で用いる透明平坦化層材料には、例えば、エポキシ系樹脂、アクリル系樹脂およびポリイミド系樹脂などにより代表される熱硬化性樹脂、アクリル樹脂などを使用する感光性樹脂、およびそれらの混合物のいずれも適宜用いることができる。また、透明平坦化層に特定の機能を付与するために添加剤を使用してもよい。例えば、透明平坦化層の硬度を向上させる目的のシリカなどが挙げられる。   The transparent flattening layer material used in the present invention includes, for example, thermosetting resins represented by epoxy resins, acrylic resins and polyimide resins, photosensitive resins using acrylic resins, and mixtures thereof. Either can be used as appropriate. Moreover, you may use an additive in order to provide a specific function to a transparent planarization layer. For example, silica for the purpose of improving the hardness of the transparent planarizing layer can be used.

透明平坦化層用材料には、熱硬化性樹脂やその前駆体、感光性樹脂材料を溶剤に溶解したものを用いるが、着色層用材料同様に、容易に開口部へ十分な流れ込みを生じるために流動特性が重要である。好ましくは固形分濃度が30wt%以下であり、さらに好ましくは20wt%以下である。また、25℃において剪断速度1〜200/秒の範囲の異なる剪断速度で測定された少なくとも3点の粘度からCasson式により求めた降伏値が0.01N/m未満であるニュートニアン流体であり、かつ25℃において剪断速度38/秒での粘度が1mN/m・s以上、20mN/m・s未満であることが好ましい。さらに好ましくは前記ニュートニアン流体であって、25℃において剪断速度38/秒での粘度が0.5mN/m・s以上、10mN/m・s未満であると段差緩和に優れた透明平坦化層用材料が得られる。 As the material for the transparent flattening layer, a thermosetting resin, its precursor, or a photosensitive resin material dissolved in a solvent is used. However, like the colored layer material, it easily flows into the opening. The flow characteristics are important. The solid content concentration is preferably 30 wt% or less, and more preferably 20 wt% or less. And a Newtonian fluid having a yield value of less than 0.01 N / m 2 determined by the Casson equation from at least three viscosities measured at 25 ° C. at different shear rates ranging from 1 to 200 / sec. In addition, the viscosity at 25 ° C. at a shear rate of 38 / sec is preferably 1 mN / m 2 · s or more and less than 20 mN / m 2 · s. More preferably a the Newtonian fluid, 25 viscosity at a shear rate of 38 / sec at ℃ is 0.5 mN / m 2 · s or more, excellent transparency flat step reduction is less than 10 mN / m 2 · s A layered layer material is obtained.

さらに、基板上に塗布された透明平坦化層用材料が着色層の段差を十分に緩和するためには、乾燥時間を長くとることで材料の流れ込みが促進される。この場合、溶媒に沸点170℃以上の高沸点溶媒を添加するのが好ましい。例えば溶媒としてジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテルなどのグリコールジエーテル系溶媒、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ−n−ブチルエーテルなどのグリコールエーテル系溶媒、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテートなどのグリコールエステル系溶媒、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N、N−ジメチルホルムアミドなどのアミド系溶媒、γ―ブチルラクトンなどのラクトン系溶媒などを使用する樹脂の溶解性に応じて適宜用いることができる。   Furthermore, in order for the transparent flattening layer material applied on the substrate to sufficiently relax the level difference of the colored layer, the flow of the material is promoted by taking a long drying time. In this case, it is preferable to add a high boiling point solvent having a boiling point of 170 ° C. or higher to the solvent. For example, as a solvent, glycol diether solvents such as diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol diethyl ether, glycol ether solvents such as ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, ethylene glycol monoethyl ether Glycol ester solvents such as acetate and diethylene glycol monoethyl ether acetate, amide solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide and N, N-dimethylformamide, and lactone solvents such as γ-butyllactone Can be used as appropriate depending on the solubility of the resin used.

本発明の液晶表示装置用カラーフィルター基板には、透明平坦化層上に透明電極層を形成してもよい。透明電極層には、インジウム・錫酸化物(ITO)、酸化亜鉛、酸化スズなど、またはその合金等が好ましく使用できる。透明電極層の形成方法としては、表示領域の所定部を開放したマスク材と基板を重ね合わせ、ディッピング法、化学気相成長、真空蒸着法、スパッタリング法およびイオンプレーティング法などを用いて所望の領域に形成することができる。特にスパッタリング法では、均一性の高い電極を得ることができ、DCマグネトロンスパッタを用いることで高い成膜レートを得ることができるが、本発明はこれらに限定されているものではない。   In the color filter substrate for a liquid crystal display device of the present invention, a transparent electrode layer may be formed on the transparent planarization layer. For the transparent electrode layer, indium / tin oxide (ITO), zinc oxide, tin oxide, or an alloy thereof can be preferably used. As a method for forming the transparent electrode layer, a mask material with a predetermined portion of the display area being opened and a substrate are overlapped, and a desired method using a dipping method, chemical vapor deposition, vacuum deposition method, sputtering method, ion plating method, or the like is used. Can be formed in the region. In particular, in the sputtering method, an electrode with high uniformity can be obtained, and a high film formation rate can be obtained by using DC magnetron sputtering, but the present invention is not limited to these.

また、透明電極層はマスク材を使用せずに概全面に形成してもよく、概全面に形成された透明電極上層に感光性フォトレジストを塗布し、フォトリソグラフィー法を用いたエッチング加工やレーザー加工により、所定領域のみに透明電極層を形成することも可能である。この場合、カラーフィルター基板の耐エッチング性を向上するために、透明平坦化層と透明電極層間にSiOの保護層を形成してもよい。 The transparent electrode layer may be formed on almost the entire surface without using a mask material, and a photosensitive photoresist is applied to the transparent electrode upper layer formed on the almost entire surface, and etching processing or laser using a photolithography method is applied. It is also possible to form a transparent electrode layer only in a predetermined region by processing. In this case, a SiO 2 protective layer may be formed between the transparent planarization layer and the transparent electrode layer in order to improve the etching resistance of the color filter substrate.

カラーフィルター基板と対向する電極基板との基板間隙を保持するためには、概均一径を有するスペーサービースやロッドスペーサーを使用してもよいし、カラーフィルター基板や電極基板のいずれか一方の所定の位置に、あるいは両基板上に柱状スペーサーを設けて基板間隙を保持してもよい。柱状スペーサーの形成位置は特に限定されないが、開口部に影響を与えないように遮光部上に配置してもよいし、遮光部と着色層を積層した部分に形成してもよい。   In order to maintain the substrate gap between the color filter substrate and the opposing electrode substrate, spacer beads or rod spacers having a substantially uniform diameter may be used, or a predetermined one of the color filter substrate and the electrode substrate may be used. A column spacer may be provided at the position or on both substrates to hold the substrate gap. The formation position of the columnar spacer is not particularly limited, but may be arranged on the light shielding portion so as not to affect the opening, or may be formed on a portion where the light shielding portion and the colored layer are laminated.

柱状スペーサーに使用される樹脂としては種々の樹脂材料が使用可能であるが、その加工性や機械強度を考慮し、好ましくはポジ型やネガ型の感光性樹脂のいずれかを用いるのがよい。例えば、ポジ型感光性樹脂としては、ノボラック樹脂とナフトキノンジアジスルホン酸エステルとの混合物が好ましく用いられる。また、ネガ型感光性樹脂としては、環化ゴムービスアジド系、フェノール樹脂−アジド系、アクリル系樹脂および化学増感系などの樹脂が挙げられる。さらに、柱状スペーサーの機械強度改善のために、樹脂の中に各種の添加剤を入れて調整しても良い。添加剤としては、例えば、無機粒子などが用いられる。また、柱状スペーサーの形成方法は特に限定されないが、微細加工の観点によりフォトリソグラフィー法が好ましい。   Although various resin materials can be used as the resin used for the columnar spacer, it is preferable to use either a positive type or a negative type photosensitive resin in consideration of its workability and mechanical strength. For example, as the positive photosensitive resin, a mixture of a novolak resin and a naphthoquinonediadisulfonic acid ester is preferably used. In addition, examples of the negative photosensitive resin include resins such as cyclized rubber-bisazide, phenol resin-azide, acrylic resin, and chemical sensitization. Furthermore, in order to improve the mechanical strength of the columnar spacer, various additives may be added to the resin for adjustment. As the additive, for example, inorganic particles are used. The method for forming the columnar spacer is not particularly limited, but a photolithography method is preferable from the viewpoint of fine processing.

本発明のカラーフィルター基板を用いる液晶表示装置の駆動方式は特に限定されないが、例えば、単純マトリックス方式であるSTN液晶を使用した液晶表示装置では、液晶の旋回角が大きいため、カラーフィルター基板表面の凹凸がプレチルト角に影響し、駆動時の液晶旋回角が変化することで表示品質が低下する。したがって、特に開口部内段差の影響を受けやすいため、本発明のカラーフィルター基板は好適に用いられる。また、例えば各表示領域に駆動用のTFTを有するアクティブマトリックス方式の液晶表示装置では、広視野角を得ることができる水平駆動液晶や垂直配向液晶等など、特異な配向性を示す液晶を用いるIPS方式やVA方式等に開口部内段差が小さい本発明のカラーフィルター基板を好適に用いることができる。さらに、高速応答を得るためにカラーフィルター基板と電極基板間の基板間隙を狭くした液晶表示装置では、低い駆動電圧で配向可能な液晶を用いて応答速度を向上する。しかし、開口部内段差の大きいカラーフィルター基板では、表面の凹凸が液晶配向時の障壁となり応答速度低下の原因となるため、本発明のカラーフィルター基板は好適に用いることができる。これらの液晶表示装置以外にもカラーフィルター基板表面の平坦性が要求されるような液晶表示装置には特に好適に用いることができる。   The driving method of the liquid crystal display device using the color filter substrate of the present invention is not particularly limited. For example, in a liquid crystal display device using STN liquid crystal that is a simple matrix method, the liquid crystal swivel angle is large. The unevenness affects the pretilt angle, and the display quality is deteriorated by changing the liquid crystal turning angle during driving. Therefore, the color filter substrate of the present invention is preferably used because it is particularly susceptible to the step in the opening. Further, for example, in an active matrix type liquid crystal display device having a driving TFT in each display region, an IPS using a liquid crystal exhibiting a specific orientation such as a horizontal driving liquid crystal or a vertical alignment liquid crystal capable of obtaining a wide viewing angle. The color filter substrate of the present invention having a small step in the opening can be suitably used for the method, the VA method, and the like. Furthermore, in a liquid crystal display device in which the substrate gap between the color filter substrate and the electrode substrate is narrowed in order to obtain a high-speed response, the response speed is improved by using a liquid crystal that can be aligned with a low driving voltage. However, in the color filter substrate having a large step in the opening, the unevenness on the surface becomes a barrier at the time of liquid crystal alignment and causes a decrease in response speed. Therefore, the color filter substrate of the present invention can be suitably used. In addition to these liquid crystal display devices, it can be used particularly suitably for liquid crystal display devices that require flatness of the color filter substrate surface.

以下に単純マトリックス方式のSTN液晶を使用した実施例を用いて本発明を具体的に説明するが、本発明の構成を満たすカラーフィルター基板や前記カラーフィルター基板を使用する液晶表示装置に関してはこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to an embodiment using a simple matrix type STN liquid crystal. However, a color filter substrate satisfying the configuration of the present invention and a liquid crystal display device using the color filter substrate will be described. It is not limited.

実施例1
[液晶表示装置の作製]
本実施例で用いた単純マトリックス方式液晶表示装置の作製方法は公知技術を用いて実施しており、ここでは概略のみ記載する。液晶表示装置は2枚の無アルカリガラス基板(日本電気ガラス社製OA−10)を透明基板として用い、一方の基板にはITO電極を形成した電極基板とし、他方の基板をカラーフィルター基板として所定の方法で2枚の基板を貼り合わせ、基板間に液晶を封入して液晶パネル体を作製した。
Example 1
[Production of liquid crystal display devices]
The manufacturing method of the simple matrix type liquid crystal display device used in this embodiment is performed using a known technique, and only an outline is described here. The liquid crystal display device uses two non-alkali glass substrates (OA-10 manufactured by Nippon Electric Glass Co., Ltd.) as transparent substrates, one substrate is an electrode substrate on which ITO electrodes are formed, and the other substrate is a color filter substrate. The two substrates were bonded together by the method described above, and liquid crystal was sealed between the substrates to produce a liquid crystal panel body.

(カラーフィルター基板の作製)
カラーフィルター基板は以下のように作製した。
(Production of color filter substrate)
The color filter substrate was produced as follows.

透明基板上に樹脂遮光層を用いてストライプパターン状に開口部を形成し、前記開口部上と開口部周辺部の遮光層上に矩形状の赤、青および緑の着色層を同一ストライプ方向に配置した。さらにカラーフィルター基板の概ね全面に透明平坦化層を積層した後、無機保護膜層としてSiOをスパッタリング法により積層し、最後に透明電極層としてITO膜を成膜してカラーフィルター基板を得た。 An opening is formed in a stripe pattern using a resin light-shielding layer on a transparent substrate, and rectangular red, blue and green colored layers are formed in the same stripe direction on the opening and on the light-shielding layer around the opening. Arranged. Further, a transparent flattening layer was laminated on almost the entire surface of the color filter substrate, and then SiO 2 was laminated as the inorganic protective film layer by sputtering, and finally an ITO film was formed as the transparent electrode layer to obtain a color filter substrate. .

以下に作製方法を詳述する。   The production method will be described in detail below.

(1)遮光層の作成
温度計、乾燥窒素導入口、温水・冷却水による加熱・冷却装置、および、攪拌装置を付した20Lの反応釜に、γ−ブチロラクトン 14324.1g、N−メチル−2−ピロリドン 2320g、4,4’−ジアミノジフェニルエーテル 600.7g、3,3’−ジアミノジフェニルスルホン 670.2g、ビス−3−(アミノプロピル)テトラメチルシロキサン 74.6gを投入し、釜を30℃に加熱した。30分後、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物 644.4g、ピロメリット酸二無水物 641.3g、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物 294.2gを投入し、釜を58℃に加熱した。3時間後、無水マレイン酸 11.8gを添加し、58℃でさらに1時間加熱することにより、ポリイミド前駆体(ポリアミック酸)材料(P1)を得た。
(1) Preparation of light-shielding layer A 20 L reaction kettle equipped with a thermometer, a dry nitrogen inlet, a heating / cooling device using hot water / cooling water, and a stirrer was charged with 143244.1 g of γ-butyrolactone, N-methyl-2 -2320 g of pyrrolidone, 600.7 g of 4,4′-diaminodiphenyl ether, 670.2 g of 3,3′-diaminodiphenyl sulfone, 74.6 g of bis-3- (aminopropyl) tetramethylsiloxane were charged, and the kettle was heated to 30 ° C. Heated. After 30 minutes, 644.4 g of 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 641.3 g of pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride 294.2 g of anhydride was charged and the kettle was heated to 58 ° C. After 3 hours, 11.8 g of maleic anhydride was added, and the mixture was further heated at 58 ° C. for 1 hour to obtain a polyimide precursor (polyamic acid) material (P1).

カーボンブラック 4.6g、ポリアミック酸材料(P1) 24.0g、N−メチル−2−ピロリドン 61.4gをガラスビーズ 90gとともにホモジナイザーを用い、7000rpmで30分間分散処理後、ガラスビーズを濾過により除去し、カーボンブラック分散液(CB1)を得た。   4.6 g of carbon black, 24.0 g of polyamic acid material (P1), 61.4 g of N-methyl-2-pyrrolidone were dispersed together with 90 g of glass beads using a homogenizer at 7000 rpm for 30 minutes, and then the glass beads were removed by filtration. A carbon black dispersion (CB1) was obtained.

また、青顔料PB15:6 2.2g、ポリアミック酸溶液(P1) 24.0g、N−メチル−2−ピロリドン 63.8gをガラスビーズ 90gとともにホモジナイザーを用い、7000rpmで30分間分散処理後、ガラスビーズを濾過により除去し、青顔料分散液(B1)を得た。得られた両分散液CB1、B1を全量混合し、遮光層用材料を得た。   Further, 2.2 g of blue pigment PB15: 6, 24.0 g of polyamic acid solution (P1), 63.8 g of N-methyl-2-pyrrolidone and 90 g of glass beads were dispersed with 7000 rpm for 30 minutes using a homogenizer, and then glass beads. Was removed by filtration to obtain a blue pigment dispersion (B1). All the obtained dispersions CB1 and B1 were mixed to obtain a light shielding layer material.

この遮光層用材料を目標膜厚1.1μmにてガラス基板上にスピンコートし、50℃で10分間、90℃で10分間、110℃で20分間オーブンを用いて空気中で加熱乾燥後、ポリアミック酸樹脂遮光層塗布膜を得た。この膜上にポジ型フォトレジスト(東京応化社製OFPR−800)を膜厚1μmで塗布後、80℃で20分間加熱乾燥してレジスト膜を形成した。この遮光層塗布膜とレジスト膜の積層膜を形成した基板に、キャノン社製紫外線露光機PLA−501Fを用いて、クロム製のフォトマスクを介し波長365nm、強度50mJ/cm2の紫外線を照射、所定のパターンとなるよう露光を行った。露光後基板をテトラメチルアンモニウムハイドロオキサイドの2.38wt%の水溶液からなる現像液に浸漬し、フォトレジストおよび樹脂遮光層塗布膜の現像を同時に行った後、不要となったフォトレジスト層をメチルセロソルブアセテートで剥離した。さらにこのようにして得られたポリアミック酸樹脂遮光層パターン基板を窒素雰囲気中において300℃で30分間熱処理し、ポリイミド樹脂遮光層を形成した。   This light shielding layer material was spin-coated on a glass substrate with a target film thickness of 1.1 μm, dried by heating in air using an oven at 50 ° C. for 10 minutes, 90 ° C. for 10 minutes, and 110 ° C. for 20 minutes, A polyamic acid resin light-shielding layer coating film was obtained. A positive photoresist (OFPR-800 manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied on the film in a thickness of 1 μm, and then dried by heating at 80 ° C. for 20 minutes to form a resist film. The substrate on which the light-shielding layer coating film and the resist film are formed is irradiated with ultraviolet rays having a wavelength of 365 nm and an intensity of 50 mJ / cm2 through a chromium photomask using a Canon UV exposure apparatus PLA-501F. The exposure was performed so as to obtain the pattern. After exposure, the substrate was dipped in a developer composed of a 2.38 wt% aqueous solution of tetramethylammonium hydroxide, and the photoresist and the resin light-shielding layer coating film were simultaneously developed. Peeled with acetate. Furthermore, the polyamic acid resin light shielding layer pattern substrate thus obtained was heat-treated at 300 ° C. for 30 minutes in a nitrogen atmosphere to form a polyimide resin light shielding layer.

(2)着色層の形成
赤、青、緑の着色層を形成するために着色剤として次の顔料を使用した。赤色着色層用としてPR177、PR254、PY138、PY139、青色着色層用としてPB15:6、PV23、緑色着色層用としてPG36、PY138、PY139である。これら着色層を目標膜厚1.0μmにおいて、CIE色度系C光源による色純度を顕微分光光度計(大塚電子製 MCPD−2000)を用いた測定により赤色着色層はx=0.571、y=0.343、青色着色層はx=0.151、y=0.173、緑色着色層はx=0.314、y=0.509、色再現範囲をNTSC比46.5%となるように顔料比率を調整し、ポリアミック酸材料(P1)中に樹脂遮光層の場合と同様な方法で分散し、着色層用材料を得た。ここで、赤、青、緑の着色層用材料の25℃における剪断速度38/秒における粘度が各々14.2mN/m・s、16.0mN/m・s、16.2mN/m・sとなるようポリアミック酸と顔料の濃度を調整した。得られた赤色着色層用材料を遮光部と開口部が形成された透明基板の概ね全面にダイコーターを用いて塗布し、50℃で10分間、90℃で10分間、110℃で20分間オーブンを用いて空気中で加熱乾燥し溶媒除去を行いた。この塗膜上に膜厚約1μmでポジ型フォトレジスト(東京応化社製OFPR−800)を塗布し、80℃で20分間加熱乾燥しレジスト膜を得た。この着色層用材料の塗膜とレジスト膜の積層した透明基板に対し、キャノン社製紫外線露光機PLA−501Fを用い、所定の着色層パターン部が遮蔽されたクロム製のフォトマスクを介して、波長365nmでの強度が50mJ/cm2の紫外線を照射、露光した。このときフォトマスク上で遮蔽された着色層パターンは開口部寸法に比べて開口部周辺部上に+5μm広げたものを使用し、開口部周辺部の遮光層上に着色層の積層部を形成した。露光後にテトラメチルアンモニウムハイドロオキサイドの2.38wt%の水溶液からなる現像液に浸漬しフォトレジストおよびポリアミック酸樹脂による着色層の現像を同時に行い、このとき開口部周辺部の遮光層と着色層の積層幅が4.5μmとなるよう現像時間を調整した。現像後に不要となったフォトレジスト層をメチルセロソルブアセテートで剥離し、基板を窒素雰囲気中において300℃で30分間熱処理して赤色のポリイミド樹脂着色層パターンを得た。同様にして、緑色、青色の着色層用材料を用いて着色層を形成し、赤、緑および青の3原色を有するカラーフィルター基板を得た。
(2) Formation of colored layer The following pigments were used as colorants to form red, blue, and green colored layers. PR177, PR254, PY138, PY139 for the red colored layer, PB15: 6, PV23 for the blue colored layer, and PG36, PY138, PY139 for the green colored layer. When these colored layers have a target film thickness of 1.0 μm, the color purity with a CIE chromaticity system C light source is measured using a microspectrophotometer (MCPD-2000, manufactured by Otsuka Electronics Co., Ltd.). = 0.343, blue colored layer x = 0.151, y = 0.173, green colored layer x = 0.314, y = 0.509, color reproduction range is 46.5% NTSC ratio The pigment ratio was adjusted and dispersed in the polyamic acid material (P1) in the same manner as in the case of the resin light-shielding layer to obtain a colored layer material. Here, the viscosities of the red, blue and green colored layer materials at a shear rate of 38 / sec at 25 ° C. are 14.2 mN / m 2 · s, 16.0 mN / m 2 · s and 16.2 mN / m 2, respectively. The concentration of polyamic acid and pigment was adjusted so as to be s. The obtained material for the red colored layer was applied to almost the entire surface of the transparent substrate on which the light-shielding portion and the opening were formed, using a die coater, and the oven was kept at 50 ° C. for 10 minutes, 90 ° C. for 10 minutes, and 110 ° C. for 20 minutes. The solvent was removed by heating and drying in air. A positive photoresist (OFPR-800 manufactured by Tokyo Ohka Kogyo Co., Ltd.) having a thickness of about 1 μm was applied on the coating film, and dried by heating at 80 ° C. for 20 minutes to obtain a resist film. For the transparent substrate on which the coating film of the colored layer material and the resist film are laminated, using a UV exposure machine PLA-501F manufactured by Canon Inc., through a chromium photomask in which a predetermined colored layer pattern portion is shielded, Irradiation was performed by irradiating with ultraviolet rays having a wavelength of 365 nm and an intensity of 50 mJ / cm 2. At this time, the colored layer pattern shielded on the photomask was widened by +5 μm on the periphery of the opening compared to the size of the opening, and a colored layer stack was formed on the light shielding layer on the periphery of the opening. . After exposure, the film is immersed in a developer composed of a 2.38 wt% aqueous solution of tetramethylammonium hydroxide, and the colored layer is developed simultaneously with the photoresist and polyamic acid resin. At this time, the light shielding layer and the colored layer around the opening are laminated. The development time was adjusted so that the width was 4.5 μm. The photoresist layer which became unnecessary after development was peeled off with methyl cellosolve acetate, and the substrate was heat-treated at 300 ° C. for 30 minutes in a nitrogen atmosphere to obtain a red polyimide resin colored layer pattern. Similarly, a colored layer was formed using green and blue colored layer materials to obtain a color filter substrate having three primary colors of red, green and blue.

(3)透明平坦化層の形成
遮光層と着色層を形成したカラーフィルター基板へ透明平坦化層を形成するにあたっては、熱硬化型アクリル材料(JSR社オプトマーSS6917)を剪断速度38/秒における粘度が3.5mN/m・sとなるようにジエチレングリコールジメチルエーテル中に希釈した透明平坦化用材料を使用した。透明平坦化層は目標膜厚1.2μmとして、カラーフィルター基板の概ね全面にダイコーターを用いて塗布後、100℃で5分、260℃で30分加熱した。
(3) Formation of transparent flattened layer In forming a transparent flattened layer on a color filter substrate on which a light-shielding layer and a colored layer are formed, a thermosetting acrylic material (Optomer SS6917 manufactured by JSR) is used with a viscosity at a shear rate of 38 / sec. A transparent flattening material diluted in diethylene glycol dimethyl ether was used so as to be 3.5 mN / m 2 · s. The transparent flattening layer had a target film thickness of 1.2 μm, and was applied to almost the entire surface of the color filter substrate using a die coater, and then heated at 100 ° C. for 5 minutes and 260 ° C. for 30 minutes.

(4)透明電極層の形成
透明電極層は、真空中においてRFスパッタリング法により目標膜厚0.02μmとなるようカラーフィルター基板の概ね全面にSiO2膜を成膜し、次に、DCマグネトロンスパッタ法により目標膜厚0.15μmとなるようITO膜を成膜した。その後、ITO膜上にポジ型フォトレジストを積層し、フォトリソグラフィー法によりフォトレジストとITOのストライプパターンを形成し、上層のポジレジスト(AZエレクトロニックマテリアルズ社製RFP−230K2)をメチルセロソルブアセテートにより除去した。ITO電極のストライプパターンは、異なる着色層が形成された隣接開口部方向に沿ったストライプとし、ストライプ幅はストライプ方向の開口部幅と概ね同一寸法とした。
(4) Formation of transparent electrode layer The transparent electrode layer is formed by depositing a SiO2 film on almost the entire surface of the color filter substrate so as to have a target film thickness of 0.02 [mu] m by RF sputtering in vacuum, and then by DC magnetron sputtering. As a result, an ITO film was formed to a target film thickness of 0.15 μm. Then, a positive photoresist is stacked on the ITO film, a photoresist and ITO stripe pattern is formed by photolithography, and the upper positive resist (RFP-230K2 manufactured by AZ Electronic Materials) is removed with methyl cellosolve acetate. did. The stripe pattern of the ITO electrode was a stripe along the direction of the adjacent opening in which different colored layers were formed, and the stripe width was approximately the same as the opening width in the stripe direction.

(電極基板の作製)
電極基板は以下の構成のものを使用した。
(Production of electrode substrate)
The electrode substrate having the following configuration was used.

透明基板上の概ね全面にITO電極を膜厚1500Åで形成した後、ポジ型フォトレジスト(AZエレクトロニックマテリアルズ社製RFP−230K2)を積層し、フォトリソグラフィー法によりストライプパターンを作製した後、上層のポジレジストをメチルセロソルブアセテートにより除去した。電極基板上のITO電極のストライプパターンは、カラーフィルター基板上において同色の着色層が形成された隣接開口部方向に沿ったストライプとし、カラーフィルター基板上のストライプ方向と直交するように形成した。ストライプ幅はストライプ方向の開口部幅と概ね同一寸法となるようにした。以下の実施例、比較例については本電極基板を使用する。   After forming an ITO electrode with a film thickness of 1500 mm on almost the entire surface of the transparent substrate, a positive photoresist (RFP-230K2 manufactured by AZ Electronic Materials) is laminated, and a stripe pattern is formed by a photolithography method. The positive resist was removed with methyl cellosolve acetate. The stripe pattern of the ITO electrode on the electrode substrate was a stripe along the direction of the adjacent opening where the colored layer of the same color was formed on the color filter substrate, and was formed so as to be orthogonal to the stripe direction on the color filter substrate. The stripe width was set to be approximately the same as the opening width in the stripe direction. This electrode substrate is used for the following examples and comparative examples.

(液晶表示装置の作製)
液晶表示装置の作製について、まず液晶パネル部の構成を以下に述べる。
(Production of liquid crystal display device)
Regarding the manufacture of the liquid crystal display device, the configuration of the liquid crystal panel portion will be described first.

電極基板上とカラーフィルター基板上の各々に、ポリイミド系配向膜を塗布し加熱硬化した後にラビング処理を行う。その後、遮光層と着色層からなる表示領域周囲にシール剤を印刷して貼り合わせた後、加熱しながら2枚の基板の外側から圧力を印可し密着させて液晶パネル部を作製した。単純マトリックス方式液晶表示装置の液晶駆動は、所望の開口部上で交差するカラーフィルター基板上のITO電極ストライプと電極基板上のITO電極ストライプ間で電圧を印加するため、両基板上のITOストライプ端部は表示領域周囲のシール部領域まで延伸され、シール剤中に含まれる金属被覆等が施された導電性ボールスペーサー剤により導通を保持した。さらに、延伸されたITO電極ストライプ端部は、その先端を1辺に集約して駆動回路との接続配線とした。   A rubbing treatment is performed after applying a polyimide alignment film on each of the electrode substrate and the color filter substrate, followed by heat curing. Thereafter, a sealant was printed and bonded around the display area composed of the light shielding layer and the colored layer, and then a pressure was applied from the outside of the two substrates to be in close contact with each other while heating to produce a liquid crystal panel portion. The liquid crystal driving of the simple matrix type liquid crystal display device applies the voltage between the ITO electrode stripe on the color filter substrate and the ITO electrode stripe on the electrode substrate intersecting each other on the desired opening. The portion was extended to the seal portion region around the display region, and was kept conductive by a conductive ball spacer agent provided with a metal coating or the like contained in the sealant. Furthermore, the extended ITO electrode stripe end part was integrated into one side to form a connection wiring with the drive circuit.

貼り合わせを行った両基板間には、予めシール部の一部の領域を切り欠いた注入口を設けておき、その注入口から液晶を注入充填した後、感光性樹脂を用いて注入口を封止する。最後に偏光板を電極基板とカラーフィルター基板の外側から所定の偏光軸を有するように接着し液晶パネル体を得た。   Between the bonded substrates, an injection port in which a part of the seal portion is cut out is provided in advance. After filling and filling the liquid crystal from the injection port, the injection port is opened using a photosensitive resin. Seal. Finally, a polarizing plate was bonded from the outside of the electrode substrate and the color filter substrate so as to have a predetermined polarization axis to obtain a liquid crystal panel body.

次に液晶表示装置の作製方法について述べる。銅箔積層基板上に白色LEDを配置し、電源回路への接続配線を設ける。この銅箔積層基板を液晶パネル体の電極基板側から白色LEDの表示光が液晶パネル体に透過するように配置した。前記の電源回路への接続配線と、液晶パネルの一辺に集約されたカラーフィルター基板上および電極基板上のITO電極端部の接続配線を、あらかじめ駆動用回路、論理回路や電源部品等を配置した回路用基板と、銅泊積層ポリイミドフィルムを介して電気的に接続し液晶表示装置を得た。   Next, a method for manufacturing a liquid crystal display device is described. A white LED is arranged on a copper foil laminated substrate, and connection wiring to a power supply circuit is provided. This copper foil laminated substrate was disposed so that the display light of the white LED was transmitted from the electrode substrate side of the liquid crystal panel body to the liquid crystal panel body. The connection wiring to the power supply circuit and the connection wiring of the end of the ITO electrode on the color filter substrate and the electrode substrate that are gathered on one side of the liquid crystal panel are pre-arranged with driving circuits, logic circuits, power supply components, etc. A circuit board and a copper-clad laminated polyimide film were electrically connected to obtain a liquid crystal display device.

(液晶表示装置用カラーフィルター基板の評価)
本実施例に基づき作製した液晶表示装置用カラーフィルター基板20個の内10個について、断面SEMを用いて遮光層膜厚、着色層膜厚を測定した結果、遮光層膜厚は平均1.12μm、着色層膜厚は平均0.95μmであり、このとき遮光層の膜厚は着色層の膜厚対比1.18倍となった。さらに、開口部と遮光層の境界部から、開口部周辺部の遮光層上に積層された着色層端部までの積層幅を測定した結果、平均4.2μmであった。透明平坦化層の膜厚は、膜厚を測定した着色層上に積層された部分が平均1.21μmであった。これらカラーフィルター基板について、開口部周辺部上の透明平坦化層の上面の最大高さと開口部上の透明平坦化層の上面の最小高さの差を測定した結果、平均0.15μmであった。残りの10個のカラーフィルター基板を使用し、液晶表示装置を作製して表示特性を観察した結果、画素内において配向不良が認められず、良好な結果を得た。
(Evaluation of color filter substrates for liquid crystal display devices)
As a result of measuring the thickness of the light-shielding layer and the thickness of the colored layer using a cross-sectional SEM for 10 out of 20 color filter substrates for a liquid crystal display device manufactured according to this example, the thickness of the light-shielding layer was 1.12 μm on average. The thickness of the colored layer was 0.95 μm on average, and at this time, the thickness of the light shielding layer was 1.18 times the thickness of the colored layer. Furthermore, as a result of measuring the lamination width from the boundary between the opening and the light shielding layer to the edge of the colored layer laminated on the light shielding layer around the opening, the average width was 4.2 μm. As for the film thickness of the transparent flattened layer, the portion laminated on the colored layer whose film thickness was measured averaged 1.21 μm. As a result of measuring the difference between the maximum height of the upper surface of the transparent flattening layer on the periphery of the opening and the minimum height of the upper surface of the transparent flattening layer on the opening of these color filter substrates, the average was 0.15 μm. . Using the remaining 10 color filter substrates, a liquid crystal display device was fabricated and the display characteristics were observed. As a result, no alignment failure was observed in the pixels, and good results were obtained.

実施例2
実施例1と同様の遮光層用材料を用い、目標膜厚1.85μmの遮光層を形成したカラーフィルター基板を40個作製した。着色層は実施例1と同様の顔料を用い、目標膜厚1.6μmにおいて、CIE色度系におけるC光源による色度座標は顕微分光光度計(大塚電子製 MCPD−2000)を用いた測定により赤色着色層はx=0.638、y=0.327、青色着色層はx=0.139、y=0.102、緑色着色層はx=0.282、y=0.582、色再現範囲をNTSC比65.1%となるように顔料比率を調整し、ポリアミック酸溶液(P1)中に分散して着色層材料を得た。赤、青、緑の各々の着色層用材料は25℃における剪断速度38/秒の粘度は各々17.5mN/m・s、20.4mN/m・s、25.1mN/m・sとなるよう濃度を調整した。得られた着色層用材料を用いて、開口部上及び開口部周辺部の遮光層上に目標積層幅4.5μmとなるように着色層を形成した。さらに、20個のカラーフィルター基板を用いて、透明平坦化層を目標膜厚1.5μmで積層した後、SiO層、ITO電極層を形成したカラーフィルター基板を作製した。
Example 2
Using the same light shielding layer material as in Example 1, 40 color filter substrates on which a light shielding layer having a target film thickness of 1.85 μm was formed were produced. The colored layer uses the same pigment as in Example 1, and the chromaticity coordinates by the C light source in the CIE chromaticity system are measured by using a microspectrophotometer (MCPD-2000 manufactured by Otsuka Electronics Co., Ltd.) at a target film thickness of 1.6 μm. Red colored layer x = 0.638, y = 0.327, blue colored layer x = 0.139, y = 0.102, green colored layer x = 0.282, y = 0.582, color reproduction The pigment ratio was adjusted so that the range was 65.1% NTSC ratio, and dispersed in the polyamic acid solution (P1) to obtain a colored layer material. Red, blue, each viscosity of the shear rate 38 / s color layer material for green respectively at 25 ℃ 17.5mN / m 2 · s , 20.4mN / m 2 · s, 25.1mN / m 2 · The density was adjusted to be s. Using the obtained colored layer material, a colored layer was formed on the light shielding layer on the opening and on the periphery of the opening so as to have a target lamination width of 4.5 μm. Further, using 20 color filter substrates, a transparent flattening layer was laminated with a target film thickness of 1.5 μm, and then a color filter substrate on which an SiO 2 layer and an ITO electrode layer were formed was produced.

実施例1と同様に、10個のカラーフィルター基板について膜厚、段差の測定を行った結果、遮光層膜厚は平均1.81μm、着色層膜厚は平均1.61μmであり、遮光層膜厚は着色層膜厚の1.14倍であった。また、透明平坦化層膜厚は平均1.50μmであり、開口部周辺部の遮光層と着色層の積層幅は平均4.7μmであった。さらに、透明平坦化層の上面の最大高さと開口部上の透明平坦化層の上面の最小高さの差は平均0.18μmであり、本発明の構成を満足することを確認した。残り10個のカラーフィルター基板を用いた液晶表示装置の表示状態を観察した結果、画素内で液晶の配向が起因した表示欠点は皆無であり、遮光層、着色層の膜厚が厚く、色再現範囲が広いカラーフィルター基板を用いても効果が得られることを確認した。   As in Example 1, as a result of measuring the film thickness and level difference for 10 color filter substrates, the light shielding layer film thickness averaged 1.81 μm and the colored layer film thickness averaged 1.61 μm. The thickness was 1.14 times the colored layer thickness. The average thickness of the transparent planarizing layer was 1.50 μm, and the average width of the light-shielding layer and the colored layer around the opening was 4.7 μm. Furthermore, the difference between the maximum height of the upper surface of the transparent planarizing layer and the minimum height of the upper surface of the transparent planarizing layer on the opening was 0.18 μm on average, confirming that the configuration of the present invention was satisfied. As a result of observing the display state of the liquid crystal display device using the remaining 10 color filter substrates, there is no display defect due to the orientation of the liquid crystal in the pixel, the light shielding layer and the colored layer are thick, and color reproduction It was confirmed that the effect was obtained even when a color filter substrate having a wide range was used.

実施例3
実施例2において作製した遮光層と着色層の残り20個を用い、透明平坦化層材料を実施例1と同じものを使用し、目標膜厚1.85μmで形成した。実施例1と同様の方法でカラーフィルター基板上にSiO層、ITO電極層を成膜した後に、そのうち10個のカラーフィルター基板について、膜厚、段差を測定した結果、遮光層膜厚は平均1.83μm、着色層膜厚は平均1.61μmとなり、遮光層膜厚は着色層膜厚の1.14倍であった。さらに、透明明平坦化層膜厚は平均1.88μmであり、開口部周辺部の遮光層と着色層の重なり部の幅を測定した結果、平均4.5μmであり、透明平坦化層の上面の最大高さと開口部上の透明平坦化層の上面の最小高さの差は平均0.12μmと本発明の構成を満足することを確認した。さらに残りの10個の液晶表示装置の表示状態を観察した結果、液層の配向性に起因する表示欠点は発生していなかった。
Example 3
Using the remaining 20 light-shielding layers and colored layers prepared in Example 2, the same transparent planarizing layer material as in Example 1 was used, and a target film thickness of 1.85 μm was formed. After the SiO 2 layer and the ITO electrode layer were formed on the color filter substrate in the same manner as in Example 1, the film thickness and the level difference were measured for 10 color filter substrates, and the light shielding layer thickness was average. The thickness of the colored layer was 1.83 μm and the average thickness was 1.61 μm, and the thickness of the light shielding layer was 1.14 times the colored layer thickness. Further, the average thickness of the transparent bright planarizing layer is 1.88 μm, and as a result of measuring the width of the overlapping portion between the light shielding layer and the colored layer around the opening, the average thickness is 4.5 μm. The difference between the maximum height and the minimum height of the upper surface of the transparent planarizing layer on the opening was 0.12 μm on average, confirming that the configuration of the present invention was satisfied. Furthermore, as a result of observing the display state of the remaining ten liquid crystal display devices, no display defect due to the orientation of the liquid layer occurred.

実施例4
実施例1と同じ遮光層用材料を用い、目標膜厚2.1μmの遮光層形成したカラーフィルター基板を40個準備した。そのうち20個の基板は着色層は実施例2と同様の着色層用材料を使用し、同一の色再現範囲、開口部周辺部の遮光層と着色層の目標積層幅を4.5μmとなるよう形成した。さらに、透明平坦化層は目標膜厚1.85μmとして形成した後、SiO層、ITO電極層を成膜し、実施例1と同様の方法で10個のカラーフィルター基板を測定した。その結果、遮光層層膜厚は平均2.12μm、着色層膜厚は平均1.60μm、透明平坦化層膜厚は平均1.84μmであり、遮光層膜厚と着色層膜厚の1.33倍であった。さらに開口部周辺部の遮光層と着色層の積層幅は平均4.2μmとなった。透明平坦化層の上面の最大高さと開口部上の透明平坦化層の上面の最小高さの差は平均0.15μmであり、本発明の構成を満足することを確認した。残り10個のカラーフィルター基板を使用した液晶表示装置の表示状態を観察した結果、液晶配向に起因するような表示欠点は発生しておらず、遮光層の膜厚をさらに厚くしたカラーフィルター基板を用いても効果が得られることを確認した。
Example 4
Using the same light shielding layer material as in Example 1, 40 color filter substrates having a light shielding layer with a target film thickness of 2.1 μm were prepared. Of the 20 substrates, the same color layer material as in Example 2 is used for the color layer, so that the same color reproduction range and the target lamination width of the light-shielding layer and the color layer in the periphery of the opening are 4.5 μm. Formed. Further, after forming the transparent flattening layer with a target film thickness of 1.85 μm, an SiO 2 layer and an ITO electrode layer were formed, and 10 color filter substrates were measured in the same manner as in Example 1. As a result, the average thickness of the light shielding layer was 2.12 μm, the average thickness of the colored layer was 1.60 μm, and the average thickness of the transparent planarization layer was 1.84 μm. It was 33 times. Furthermore, the lamination width of the light shielding layer and the colored layer around the opening was an average of 4.2 μm. The difference between the maximum height of the upper surface of the transparent planarizing layer and the minimum height of the upper surface of the transparent planarizing layer on the opening was 0.15 μm on average, confirming that the configuration of the present invention was satisfied. As a result of observing the display state of the liquid crystal display device using the remaining 10 color filter substrates, there was no display defect caused by the liquid crystal alignment, and a color filter substrate with a further increased light-shielding layer thickness was obtained. It was confirmed that the effect could be obtained even if it was used.

実施例5
実施例4で作製した遮光層パターンを有するカラーフィルター基板残り20個を使用し、着色層材料は実施例2と同一のものを用いて開口部周辺部との積層幅を3.0μmとなるように着色層を形成した。透明平坦化層は実施例3と同一構成とし、目標膜厚1.85μmで形成した。SiO層、ITO電極層を成膜した後に、これらカラーフィルター基板の10個を実施例1と同様の方法で評価した結果、遮光層膜厚は平均2.11μm、着色層膜厚は平均1.62μmであり、その結果、遮光層膜厚と着色層膜厚の1.30倍であった。透明平坦化層膜厚は平均1.85μmであり、開口部周辺部の遮光層と着色層の積層幅は平均2.8μm、透明平坦化層の上面の最大高さと開口部上の透明平坦化層の上面の最小高さの差は平均0.08μmとなったことから本発明の構成を満足することを確認した。その結果、残り10個のカラーフィルター基板を用いた液晶表示装置では、液晶の配向性に起因する表示欠点は発生しておらず、遮光層と着色層の重なり部の幅を狭くしたカラーフィルター基板を用いた場合にも改善が得られることを確認した。
Example 5
The remaining 20 color filter substrates having the light shielding layer pattern produced in Example 4 are used, and the same color layer material as that in Example 2 is used so that the lamination width with the periphery of the opening becomes 3.0 μm. A colored layer was formed. The transparent flattening layer had the same configuration as in Example 3 and was formed with a target film thickness of 1.85 μm. After forming the SiO 2 layer and the ITO electrode layer, 10 color filter substrates were evaluated in the same manner as in Example 1. As a result, the average thickness of the light-shielding layer was 2.11 μm, and the average thickness of the colored layer was 1. The result was 1.30 times the film thickness of the light-shielding layer and the film thickness of the colored layer. The average thickness of the transparent flattening layer is 1.85 μm, the average width of the light-shielding layer and the colored layer around the opening is 2.8 μm, the maximum height of the upper surface of the transparent flattening layer and the transparent flattening on the opening Since the difference in the minimum height of the upper surface of the layer was 0.08 μm on average, it was confirmed that the configuration of the present invention was satisfied. As a result, in the liquid crystal display device using the remaining 10 color filter substrates, the display defect due to the orientation of the liquid crystal does not occur, and the color filter substrate in which the width of the overlapping portion of the light shielding layer and the colored layer is narrowed It was confirmed that improvement was also obtained when using.

比較例1
遮光層を実施例1に基づき作製した20個のカラーフィルター基板上に、実施例1と同様に目標膜厚1.0μmで着色層を開口部周辺部の着色層上に目標積層幅を4.5μmとなるように形成した。透明平坦化層は実施例2と同一構成とし、目標膜厚1.5μmで形成した。実施例1と同様の方法でカラーフィルター基板上にSiO層、ITO電極層を成膜し、10個のカラーフィルター基板について、膜厚、段差の評価を行った結果、遮光層膜厚は平均1.00μm、着色層膜厚は平均0.97μmとなった。その結果、遮光層膜厚は着色層膜厚に対し1.03倍であった。透明平坦化層膜厚は平均1.51μmであり、透明平坦化層の上面の最大高さと開口部上の透明平坦化層の上面の最小高さの差をは平均0.27μmとなり、本発明の構成よりも大きかった。これは遮光層膜厚が着色層膜厚とほぼ同等のため、着色層材料の流れ込みが不十分であり、透明平坦化層を積層しても段差が緩和できなかったためと推定された。残り10個のカラーフィルター基板を使用して作製した液晶表示装置の表示状態を観察したところ、開口部内において、開口部周辺部の遮光層近傍の着色層が暗く表示されるものが3個発生していた。これは開口部内段差により開口部周辺部近傍の液晶配向が乱れているためと判断できた。
Comparative Example 1
On the 20 color filter substrates prepared based on Example 1, the light-shielding layer was coated with a target layer width of 4. μm on the colored layer at the periphery of the opening with a target film thickness of 1.0 μm, as in Example 1. It formed so that it might become 5 micrometers. The transparent flattening layer had the same configuration as in Example 2 and was formed with a target film thickness of 1.5 μm. The SiO 2 layer and the ITO electrode layer were formed on the color filter substrate by the same method as in Example 1, and the film thickness and level difference were evaluated for 10 color filter substrates. The average thickness of the colored layer was 0.97 μm. As a result, the light shielding layer thickness was 1.03 times the colored layer thickness. The average thickness of the transparent flattening layer is 1.51 μm, and the difference between the maximum height of the upper surface of the transparent flattening layer and the minimum height of the upper surface of the transparent flattening layer above the opening is 0.27 μm on average. It was bigger than the configuration. It was estimated that this was because the light shielding layer thickness was almost the same as the colored layer thickness, so the flow of the colored layer material was insufficient, and the step could not be relaxed even when the transparent flattening layer was laminated. When the display state of the liquid crystal display device fabricated using the remaining 10 color filter substrates was observed, three colored layers near the light shielding layer near the opening were displayed darkly in the opening. It was. This can be judged because the liquid crystal alignment in the vicinity of the periphery of the opening is disturbed by the step in the opening.

比較例2
実施例2と同様に目標膜厚1.60μmの遮光層と1.60μmの着色層を、開口部周辺部の遮光層と着色層の目標積層幅4.5μmとなるように形成した。透明平坦化層は実施例3と同一材料として目標膜厚1.85μmとして形成し、その上層にSiO層、ITO電極層を成膜したカラーフィルター基板を20個作製し、その内10個について膜厚等を測定した。その結果、遮光層膜厚は平均1.63μm、着色層膜厚は平均1.62μmであり、遮光層膜厚は着色層膜厚と比較し1.02倍であった。開口部周辺部の遮光層と着色層の積層幅は平均4.6μmであり本発明の構成を満足していたが、透明平坦化層の上面の最大高さと開口部上の透明平坦化層の上面の最小高さの差をは平均0.38μmであり、本発明の構成より大きくなった。残り10個のカラーフィルター基板を用いて液晶表示装置を作成し評価したところ、開口部内において、開口部周辺部の遮光層近傍の着色層が暗く表示される不良が認められるものが4個発生しており、比較例1と同様に、遮光層膜厚と着色層膜厚がほぼ同等のため着色層材料の流れ込みが不十分となり、透明平坦化層を厚くしても段差緩和効果が得られないと推定された。
Comparative Example 2
As in Example 2, a light shielding layer having a target film thickness of 1.60 μm and a colored layer having a thickness of 1.60 μm were formed so as to have a target lamination width of 4.5 μm of the light shielding layer and the colored layer in the periphery of the opening. The transparent flattening layer is formed of the same material as in Example 3 with a target film thickness of 1.85 μm, and 20 color filter substrates having a SiO 2 layer and an ITO electrode layer formed thereon are produced, of which about 10 The film thickness and the like were measured. As a result, the average thickness of the light shielding layer was 1.63 μm, the average thickness of the colored layer was 1.62 μm, and the thickness of the light shielding layer was 1.02 times that of the colored layer. The laminated width of the light shielding layer and the colored layer around the opening was 4.6 μm on average, which satisfied the configuration of the present invention, but the maximum height of the upper surface of the transparent flattening layer and the transparent flattening layer on the opening The difference in the minimum height of the upper surface was an average of 0.38 μm, which was larger than the configuration of the present invention. A liquid crystal display device was created and evaluated using the remaining 10 color filter substrates. As a result, four defects were observed in the opening, in which the colored layer near the light shielding layer near the opening was darkly displayed. As in Comparative Example 1, the thickness of the light-shielding layer is almost equal to the thickness of the colored layer, so that the flow of the colored layer material becomes insufficient. Even if the transparent flattening layer is thickened, the effect of reducing the step cannot be obtained. It was estimated.

比較例3
開口部周辺部の遮光層と着色層の目標積層幅を7μmとする以外は、実施例2と同じ構成のカラーフィルター基板を20個作製した内10個を測定した結果、遮光層膜厚は平均1.85μm、着色層膜厚は平均1.62μmであり、遮光層膜厚は着色層膜厚に比べ1.14倍であった。開口部周辺部の遮光層と着色層の積層幅は、平均7.4μmであり、本発明の構成より大きくなった。透明平坦化層の膜厚は平均1.84μmであったが、透明平坦化層の上面の最大高さと開口部上の透明平坦化層の上面の最小高さの差は0.41μmとなり、その結果、残りの10個のカラーフィルター基板を用いた液晶表示装置には、開口部の遮光層近傍の着色層が暗いものが7個存在していた。これは遮光層と着色層の膜厚の関係を本発明の構成と同様としても、開口部周辺部の遮光層と着色層の積層幅が広いため、着色層材料の流れ込みが進んでも開口部周辺部上の着色層領域が広く十分膜厚が薄くならないこと、また透明平坦化層材料の流動性を阻害し、着色層段差が緩和されず、開口部内段差が大きいことが原因と推定される。
Comparative Example 3
As a result of measuring 10 out of 20 color filter substrates having the same structure as in Example 2 except that the target lamination width of the light shielding layer and the colored layer in the periphery of the opening was set to 7 μm, the thickness of the light shielding layer was an average. The thickness of the colored layer was 1.85 μm, the average thickness was 1.62 μm, and the thickness of the light shielding layer was 1.14 times that of the colored layer. The lamination width of the light shielding layer and the colored layer around the opening was 7.4 μm on average, which was larger than the configuration of the present invention. The average thickness of the transparent planarizing layer was 1.84 μm, but the difference between the maximum height of the upper surface of the transparent planarizing layer and the minimum height of the upper surface of the transparent planarizing layer above the opening was 0.41 μm, As a result, in the liquid crystal display device using the remaining 10 color filter substrates, there were seven dark colored layers near the light shielding layer in the opening. Even if the relationship between the thickness of the light-shielding layer and the colored layer is the same as that of the configuration of the present invention, the width of the light-shielding layer and the colored layer around the opening is wide. It is presumed that the colored layer region on the part is wide and the film thickness is not sufficiently reduced, the fluidity of the transparent flattening layer material is hindered, the colored layer step is not relaxed, and the step in the opening is large.

比較例4
透明平坦化層の目標膜厚を1.0μmとした以外は、実施例2と同様の構成のカラーフィルター基板を20個作製し、その内10個の基板について、実施例1と同様の評価を行った結果、遮光層膜厚は平均1.85μm、着色層膜厚は平均1.60μm、遮光層膜厚は着色層膜厚に対し1.14倍であった。また、着色層と開口部周辺部の遮光層の積層幅は平均4.1μmであり、本発明の構成を満足していた。一方で、透明平坦化層の膜厚は、平均で1.03μmであり、本発明の構成よりも薄く、透明平坦化層の上面の最大高さと開口部上の透明平坦化層の上面の最小高さの差も0.64μmと大きくなった。これは透明平坦化層が薄いため、開口部に流れ込み、着色層段差を緩和するためには十分な量をではないためと推定された。残り10個のカラーフィルター基板を使用した液晶表示装置の評価では、開口部の開口部周辺部遮光層の近傍部のみ色が暗いものが9個発生しており、開口部内段差が液晶の配向性に影響しているものと判断した。
Comparative Example 4
Except for setting the target film thickness of the transparent flattening layer to 1.0 μm, 20 color filter substrates having the same configuration as in Example 2 were produced, and 10 of those substrates were evaluated in the same manner as in Example 1. As a result, the average thickness of the light shielding layer was 1.85 μm, the thickness of the colored layer was 1.60 μm on the average, and the thickness of the light shielding layer was 1.14 times the thickness of the colored layer. The laminated width of the colored layer and the light shielding layer in the periphery of the opening was 4.1 μm on average, which satisfied the configuration of the present invention. On the other hand, the film thickness of the transparent flattening layer is 1.03 μm on average, which is thinner than the configuration of the present invention, and is the maximum height of the upper surface of the transparent flattening layer and the minimum of the upper surface of the transparent flattening layer above the opening. The difference in height was as large as 0.64 μm. This is presumably because the transparent flattening layer was thin, so that it was not sufficient to flow into the opening and relieve the colored layer step. In the evaluation of the liquid crystal display device using the remaining 10 color filter substrates, nine darker colors were generated only in the vicinity of the light-shielding layer at the periphery of the opening of the opening, and the step in the opening was the alignment of the liquid crystal It was judged that it affected.

比較例5
実施例1と同様の遮光層用材料を用い、目標膜厚1.85μmの遮光層を形成したカラーフィルター基板を40個作製した。着色層として、目標膜厚1.6μmにおいて、CIE色度系におけるC光源による色度座標が顕微分光光度計(大塚電子製 MCPD−2000)を用いた測定により赤色着色層はx=0.638、y=0.327、青色着色層はx=0.139、y=0.102、緑色着色層はx=0.282、y=0.582、色再現範囲をNTSC比65.1%となるように顔料比率を調整し、ポリアミック酸溶液(P1)中に分散した赤、青、緑用の着色層材料を準備した。ここで赤、青の着色層用材料については、実施例2と同様に、25℃における剪断速度38/秒の粘度は各々17.5mN/m・s、20.4mN/m・sとなるように濃度調整を行ったが、緑用の着色層用材料のみ、粘度が68.1mN/m・sとなるよう濃度を上昇した。得られた着色層用材料を用い、事前に準備した遮光層付きのカラーフィルター基板を20個使用し、開口部上及び開口部周辺部の遮光層上に目標積層幅4.5μmとなるように着色層を形成した。さらに、透明平坦化層を目標膜厚1.85μmで積層した後、SiO層、ITO電極層を形成したカラーフィルター基板を作製した。
Comparative Example 5
Using the same light shielding layer material as in Example 1, 40 color filter substrates on which a light shielding layer having a target film thickness of 1.85 μm was formed were produced. As the colored layer, the red colored layer has x = 0.638 when the target film thickness is 1.6 μm and the chromaticity coordinates by the C light source in the CIE chromaticity system are measured using a microspectrophotometer (MCPD-2000 manufactured by Otsuka Electronics). , Y = 0.327, blue colored layer x = 0.139, y = 0.102, green colored layer x = 0.282, y = 0.582, color reproduction range of NTSC ratio 65.1% The pigment ratio was adjusted so that a colored layer material for red, blue, and green dispersed in the polyamic acid solution (P1) was prepared. Here red, the color layer material for blue, as in Example 2, 25 viscosity shear rate 38 / s at ℃ is with each 17.5mN / m 2 · s, 20.4mN / m 2 · s The concentration was adjusted so that the viscosity of only the green colored layer material was increased so that the viscosity was 68.1 mN / m 2 · s. Using the obtained colored layer material, 20 color filter substrates with a light-shielding layer prepared in advance are used so that the target stacking width is 4.5 μm on the light-shielding layer on the opening and the periphery of the opening. A colored layer was formed. Furthermore, after laminating a transparent flattening layer with a target film thickness of 1.85 μm, a color filter substrate on which an SiO 2 layer and an ITO electrode layer were formed was produced.

これまでの実施例、比較例と同様に、10個のカラーフィルター基板について膜厚、段差の測定を行った結果、遮光層膜厚は平均1.83μm、着色層膜厚は平均1.63μmとなり、遮光層膜厚は着色層膜厚の1.12倍であった。また、透明平坦化層膜厚は平均1.82μmであり、開口部周辺部の遮光層と着色層の積層幅は平均4.7μmであった。ここで、透明平坦化層の上面の最大高さと開口部上の透明平坦化層の上面の最小高さの差を測定したところ、赤、青の着色層に比べ、緑の着色層部分で段差が大きくなっていることが判明した。この段差の平均は0.28μmであり、残り10個のカラーフィルター基板を用いた液晶表示装置の表示状態を観察したところ、緑が形成された開口部周囲の色が暗いものが4個発生しており、さらには、黒表示時に緑色がかる現象が見られた。これは、材料濃度が高く、粘度の高い材料で形成された、緑の着色層では開口部内段差が大きくなるため、開口部周囲で液晶配向が乱れ、黒表示においても配向の乱れによる光漏れが影響しているものと判断した。   As in the previous examples and comparative examples, the thickness and level difference of 10 color filter substrates were measured. As a result, the light shielding layer thickness was 1.83 μm on average and the color layer thickness was 1.63 μm on average. The film thickness of the light shielding layer was 1.12 times the film thickness of the colored layer. The average thickness of the transparent planarizing layer was 1.82 μm, and the average width of the light-shielding layer and the colored layer around the opening was 4.7 μm. Here, when the difference between the maximum height of the upper surface of the transparent flattening layer and the minimum height of the upper surface of the transparent flattening layer on the opening was measured, a step was found in the green colored layer portion compared to the red and blue colored layers. Turned out to be larger. The average of the steps is 0.28 μm, and when the display state of the liquid crystal display device using the remaining 10 color filter substrates is observed, four dark green colors appear around the opening where the green is formed. Furthermore, a phenomenon of greenishness was observed during black display. This is because a green colored layer made of a material having a high material concentration and a high viscosity has a large step in the opening, so that the liquid crystal alignment is disturbed around the opening, and light leakage due to the disorder of alignment is also observed in black display. It was judged that it had an influence.

比較例6
比較例5で作製した遮光層付き基板20個を用いて、着色層は実施例2と同材料を使用して目標膜厚1.60μmでカラーフィルター基板を作製した。ここで透明平坦化層材料には、実施例1の熱硬化型アクリル樹脂を25℃における剪断速度38/秒の粘度が、17.5mN/m・sとなるよう調整した材料を使用し、目標膜厚を1.85μmで透明平坦化層を形成した。これまでと同様に10個のカラーフィルター基板について、実施例1と同様の評価を行った結果、遮光層膜厚は平均1.83μm、着色層膜厚は平均1.61μmであり、遮光層膜厚は着色層膜厚に対し1.15倍であった。また、着色層と開口部周辺部の遮光層の積層幅は平均4.6μmであり、本発明の構成を満足していた。しかし、透明平坦化層の膜厚は平均1.83μmと本発明の構成を満足していたにも関わらず、透明平坦化層の上面の最大高さと開口部上の透明平坦化層の上面の最小高さの差が0.31μmと大きくなった。これは透明平坦化層の粘度が本発明の範囲よりも高く、開口部周辺部から開口部内への流れ込みが十分では無いためと推定された。残り10個のカラーフィルター基板を使用した液晶表示装置の評価では、開口部の開口部周辺部遮光層の近傍部のみ色が暗いものが6個発生しており、開口部内段差が液晶の配向性に影響しているものと判断した。
Comparative Example 6
Using the 20 substrates with light-shielding layers prepared in Comparative Example 5, the color layer used the same material as in Example 2 to prepare a color filter substrate with a target film thickness of 1.60 μm. Here, as the transparent planarizing layer material, a material prepared by adjusting the thermosetting acrylic resin of Example 1 so that the viscosity at a shear rate of 38 / sec at 25 ° C. is 17.5 mN / m 2 · s, A transparent flattening layer was formed with a target film thickness of 1.85 μm. 10 color filter substrates were evaluated in the same manner as in Example 1, and as a result, the average thickness of the light shielding layer was 1.83 μm and the average thickness of the colored layer was 1.61 μm. The thickness was 1.15 times the colored layer thickness. The laminated width of the colored layer and the light shielding layer around the opening was 4.6 μm on average, which satisfied the configuration of the present invention. However, although the average thickness of the transparent planarization layer is 1.83 μm, which satisfies the configuration of the present invention, the maximum height of the upper surface of the transparent planarization layer and the upper surface of the transparent planarization layer above the opening are The difference in the minimum height was as large as 0.31 μm. This was presumed to be because the viscosity of the transparent flattening layer was higher than the range of the present invention, and the flow from the periphery of the opening into the opening was not sufficient. In the evaluation of the liquid crystal display device using the remaining 10 color filter substrates, six darker colors are generated only in the vicinity of the light shielding layer in the vicinity of the light shielding layer in the periphery of the opening, and the step in the opening is aligned with the orientation of the liquid crystal. It was judged that it affected.

Figure 2007057762
Figure 2007057762

本発明の液晶表示装置用カラーフィルター基板およびそれを用いた液晶表示装置は、ノートPC、モニター、TV、小型のビューファインダーや携帯情報端末に好適に用いられ、特に、広い色再現範囲を必要とする静止画像表示、加えて優れた応答速度が必要な動画表示を行う場合においても、カラーフィルター基板上に樹脂遮光層を用いて設けられた開口部に生じる開口部内段差を低減し、表示品質の劣化が少ない液晶表示装置に好適に用いることができる。   The color filter substrate for a liquid crystal display device of the present invention and the liquid crystal display device using the same are suitably used for notebook PCs, monitors, TVs, small viewfinders and portable information terminals, and particularly require a wide color reproduction range. Even when performing still image display and moving image display that requires excellent response speed, the step in the opening formed in the opening provided using the resin light-shielding layer on the color filter substrate is reduced, and the display quality is improved. It can be suitably used for a liquid crystal display device with little deterioration.

透明基板上に遮光層を用いてパターン形成された開口部上に着色層を開口部周辺部に重ねて形成してなる液晶表示装置用カラーフィルター基板の概略平面図である。FIG. 3 is a schematic plan view of a color filter substrate for a liquid crystal display device, which is formed by overlapping a colored layer on the periphery of an opening on an opening that is patterned using a light shielding layer on a transparent substrate. 透明基板上に遮光層を用いてパターン形成された開口部上に着色層を開口部周辺部に重ねて形成してなる液晶表示装置用カラーフィルター基板の概略断面図である。It is a schematic sectional drawing of the color filter substrate for liquid crystal display devices formed by overlapping a colored layer on the opening peripheral part on the opening part patterned using the light shielding layer on the transparent substrate. 透明基板上に遮光層を用いてパターン形成された開口部上に着色層を開口部周辺部に重ねて形成し、遮光層上と着色層上に透明平坦化層を積層してなる液晶表示装置用カラーフィルター基板の概略断面図である。A liquid crystal display device in which a colored layer is formed on an opening portion patterned using a light shielding layer on a transparent substrate so as to overlap the periphery of the opening portion, and a transparent flattening layer is laminated on the light shielding layer and the colored layer. FIG. 本発明の透明基板上に着色層より厚い遮光層を用いてパターン形成された開口部上に着色層を開口部周辺部に重ねて形成し、遮光部と着色層上に透明平坦化層を積層してなる液晶表示装置用カラーフィルター基板の概略断面図である。On the transparent substrate of the present invention, a colored layer is formed on an opening formed by patterning a light-shielding layer thicker than the colored layer, and the transparent flattening layer is laminated on the light-shielding portion and the colored layer. It is a schematic sectional drawing of the color filter substrate for liquid crystal display devices formed.

符号の説明Explanation of symbols

A:開口部
a:開口部周辺部(遮光層)
D:透明平坦化層の上面の最大高さと透明平坦化層の上面の最小高さの差
d:着色層の頂部と底部の差
AD:開口部内段差
1:透明基板
2:樹脂遮光層
3、3R、3G、3B:着色層
4:透明平坦化層
A: Opening part a: Opening part peripheral part (light shielding layer)
D: Difference between the maximum height of the upper surface of the transparent planarizing layer and the minimum height of the upper surface of the transparent planarizing layer d: Difference between the top and bottom of the colored layer AD: Step difference in the opening 1: Transparent substrate 2: Resin light shielding layer 3 3R, 3G, 3B: Colored layer 4: Transparent flattened layer

Claims (8)

透明基板上に開口部を有する遮光層がパターン形成され、開口部と開口部周辺部の遮光層上に着色層が形成され、該遮光層上および該着色層上に透明平坦化層が設けられた液晶表示装置用カラーフィルター基板であって、遮光層の膜厚が着色層の膜厚よりも厚く、かつ開口部周辺部の遮光層上に形成された透明平坦化層の上面の最大高さと開口部内に形成された透明平坦化層の上面の最小高さとの差が0.2μm以下であることを特徴とする液晶表示装置用カラーフィルター基板。 A light shielding layer having an opening is patterned on the transparent substrate, a colored layer is formed on the opening and the light shielding layer around the opening, and a transparent flattening layer is provided on the light shielding layer and on the colored layer. A color filter substrate for a liquid crystal display device, wherein the thickness of the light-shielding layer is larger than the thickness of the colored layer, and the maximum height of the upper surface of the transparent flattening layer formed on the light-shielding layer around the opening. A color filter substrate for a liquid crystal display device, characterized in that a difference from the minimum height of the upper surface of the transparent flattening layer formed in the opening is 0.2 μm or less. 遮光層の膜厚が着色層の膜厚の1.1倍以上であることを特徴とする請求項1に記載の液晶表示装置用カラーフィルター基板。 The color filter substrate for a liquid crystal display device according to claim 1, wherein the thickness of the light shielding layer is 1.1 times or more of the thickness of the colored layer. 開口部周辺部の遮光層上に形成された着色層と遮光層の積層幅が5μm以下であることを特徴とする請求項1、2いずれかに記載の液晶表示装置用カラーフィルター基板。 The color filter substrate for a liquid crystal display device according to any one of claims 1 and 2, wherein a lamination width of the colored layer and the light shielding layer formed on the light shielding layer around the opening is 5 µm or less. 透明平坦化層の膜厚が1.2μm以上であることを特徴とする請求項1〜3いずれかに記載の液晶表示装置用カラーフィルター基板。 The color filter substrate for a liquid crystal display device according to any one of claims 1 to 3, wherein the thickness of the transparent flattening layer is 1.2 µm or more. 請求項1〜4のいずれかに記載の液晶表示装置用カラーフィルター基板を用いた液晶表示装置。 A liquid crystal display device using the color filter substrate for a liquid crystal display device according to claim 1. 開口部を有する遮光層がパターン形成された透明基板上に着色層用材料を塗布、乾燥、パターン形成して開口部と開口部周辺部の遮光層上に着色層を形成し、さらに該遮光層上および該着色層上に透明平坦化層材料を塗布するカラーフィルター基板の製造方法であって、遮光層を着色層よりも厚く形成することを特徴とする液晶表示装置用カラーフィルター基板の製造方法。 A colored layer material is applied to a transparent substrate on which a light-shielding layer having an opening is patterned, dried, and patterned to form a colored layer on the light-shielding layer in the opening and the periphery of the opening, and the light-shielding layer A method for manufacturing a color filter substrate for applying a transparent flattening layer material on the colored layer, wherein the light shielding layer is formed thicker than the colored layer. . 着色層用材料の粘度が、25℃において剪断速度38/秒での粘度が10mN/m・s以上、60mN/m・s未満であることを特徴とする液晶表示装置用カラーフィルター基板の製造方法。 A color filter substrate for a liquid crystal display device, wherein the viscosity of the coloring layer material is 10 mN / m 2 · s or more and less than 60 mN / m 2 · s at a shear rate of 38 / sec at 25 ° C. Production method. 透明平坦化層用材料の粘度が、25℃において剪断速度38/秒での粘度が1mN/m・s以上、10mN/m・s未満であることを特徴とする液晶表示装置用カラーフィルター基板の製造方法。 A color filter for a liquid crystal display device, wherein the viscosity of the material for the transparent flattening layer is 1 mN / m 2 · s or more and less than 10 mN / m 2 · s at a shear rate of 38 / s at 25 ° C A method for manufacturing a substrate.
JP2005242311A 2005-08-24 2005-08-24 Color filter substrate for liquid crystal display, and method of manufacturing same Pending JP2007057762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005242311A JP2007057762A (en) 2005-08-24 2005-08-24 Color filter substrate for liquid crystal display, and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005242311A JP2007057762A (en) 2005-08-24 2005-08-24 Color filter substrate for liquid crystal display, and method of manufacturing same

Publications (1)

Publication Number Publication Date
JP2007057762A true JP2007057762A (en) 2007-03-08

Family

ID=37921337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005242311A Pending JP2007057762A (en) 2005-08-24 2005-08-24 Color filter substrate for liquid crystal display, and method of manufacturing same

Country Status (1)

Country Link
JP (1) JP2007057762A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031625A (en) * 2007-07-30 2009-02-12 Toppan Printing Co Ltd Method for manufacturing color filter for liquid crystal display device
JP2010008861A (en) * 2008-06-30 2010-01-14 Fujifilm Corp Color filter and liquid crystal display device
WO2010007819A1 (en) 2008-07-15 2010-01-21 シャープ株式会社 Color filter substrate and liquid crystal display device
JP2010528337A (en) * 2007-11-20 2010-08-19 エルジー・ケム・リミテッド Color filter substrate
KR101113467B1 (en) * 2010-04-01 2012-02-29 삼성모바일디스플레이주식회사 Touch Screen Panel
JP2015011140A (en) * 2013-06-28 2015-01-19 大日本印刷株式会社 Color filter formation substrate and organic el display device
KR20180056602A (en) * 2018-05-15 2018-05-29 엘지이노텍 주식회사 Touch panel
KR101862876B1 (en) * 2012-03-27 2018-05-31 엘지이노텍 주식회사 Touch panel

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031625A (en) * 2007-07-30 2009-02-12 Toppan Printing Co Ltd Method for manufacturing color filter for liquid crystal display device
JP2010528337A (en) * 2007-11-20 2010-08-19 エルジー・ケム・リミテッド Color filter substrate
JP2010008861A (en) * 2008-06-30 2010-01-14 Fujifilm Corp Color filter and liquid crystal display device
WO2010007819A1 (en) 2008-07-15 2010-01-21 シャープ株式会社 Color filter substrate and liquid crystal display device
KR101113467B1 (en) * 2010-04-01 2012-02-29 삼성모바일디스플레이주식회사 Touch Screen Panel
US9471161B2 (en) 2010-04-01 2016-10-18 Samsung Display Co., Ltd. Touch screen panel
TWI570475B (en) * 2010-04-01 2017-02-11 三星顯示器有限公司 Touch screen panel
KR101862876B1 (en) * 2012-03-27 2018-05-31 엘지이노텍 주식회사 Touch panel
JP2015011140A (en) * 2013-06-28 2015-01-19 大日本印刷株式会社 Color filter formation substrate and organic el display device
KR20180056602A (en) * 2018-05-15 2018-05-29 엘지이노텍 주식회사 Touch panel
KR101956204B1 (en) * 2018-05-15 2019-03-08 엘지이노텍 주식회사 Touch panel

Similar Documents

Publication Publication Date Title
US8329068B2 (en) Black resin composition, resin black matrix, color filter and liquid crystal display
JP2002258267A (en) Color filter and liquid crystal display using the same
JP2007057762A (en) Color filter substrate for liquid crystal display, and method of manufacturing same
JP2010097214A (en) Color filter substrate for liquid crystal display apparatus and liquid crystal display apparatus
JP2001051266A (en) Color filter and liquid crystal display device
JP2003014917A (en) Color filter and liquid crystal display device
JP3282156B2 (en) Color filter and color liquid crystal display
WO2013191082A1 (en) Colour filter and display device
JP2003005187A (en) Liquid crystal display device
JP3358400B2 (en) Color liquid crystal display device
JP2000089026A (en) Color filter and color liquid crystal display device using the same
JP4506231B2 (en) Color filter substrate for IPS liquid crystal display device and IPS liquid crystal display device using the same
JP4378783B2 (en) Substrate for liquid crystal display device, liquid crystal display device, and method of manufacturing liquid crystal display device
JP2001305328A (en) Method for manufacturing color filter and color filter
JP4465650B2 (en) Color filter for liquid crystal display and liquid crystal display device using the same
JP2006052397A (en) Method for producing black coating composition, method for producing resin black matrix, method for producing color filter and method for producing liquid crystal display
JPH11218607A (en) Color filter and production of color filter
JPH116913A (en) Color filter and its production
JP4026415B2 (en) Color filter and manufacturing method thereof, and liquid crystal display element and manufacturing method thereof
JP2009258696A (en) Color filter substrate and liquid crystal display device
JP2000066018A (en) Color filter consisting of high-resistance resin black matrix and liquid crystal display device using the same
JP2001235755A (en) Liquid crystal panel body
JP2008191201A (en) Color filter for liquid crystal display, and liquid crystal display using it
JPH11344614A (en) Color filter and its production as well as color liquid crystal display device
JPH116914A (en) Color filter and color liquid crystal display device using the same