WO2013187203A1 - 3次元計測装置と3次元計測方法 - Google Patents

3次元計測装置と3次元計測方法 Download PDF

Info

Publication number
WO2013187203A1
WO2013187203A1 PCT/JP2013/064277 JP2013064277W WO2013187203A1 WO 2013187203 A1 WO2013187203 A1 WO 2013187203A1 JP 2013064277 W JP2013064277 W JP 2013064277W WO 2013187203 A1 WO2013187203 A1 WO 2013187203A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
camera
projector
measured
dimensional
Prior art date
Application number
PCT/JP2013/064277
Other languages
English (en)
French (fr)
Inventor
一能 岩井
Original Assignee
株式会社島精機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島精機製作所 filed Critical 株式会社島精機製作所
Priority to CN201380031286.3A priority Critical patent/CN104380037A/zh
Priority to JP2014521235A priority patent/JP6016912B2/ja
Priority to US14/406,587 priority patent/US20150160005A1/en
Priority to EP13804287.4A priority patent/EP2860490A4/en
Publication of WO2013187203A1 publication Critical patent/WO2013187203A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • G01B11/2527Projection by scanning of the object with phase change by in-plane movement of the patern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2545Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with one projection direction and several detection directions, e.g. stereo
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/296Synchronisation thereof; Control thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20068Projection on vertical or horizontal image axis

Definitions

  • the present invention relates to three-dimensional measurement, and more particularly to connection of phases obtained by the phase shift method.
  • a three-dimensional shape of a measurement target object (hereinafter simply referred to as “measurement object”) is obtained by projecting a grid onto the measurement target object from a projector and capturing an image with a camera (for example, Patent Document 1: Patent 3536097).
  • a grating whose translucency changes periodically in a sine wave shape is arranged on the front surface of the projector, and the position of the grating is shifted by, for example, 1 ⁇ 4 of the sine wave period, and images are taken four times, for example.
  • phase shift method Assuming that the luminance of the same pixel in four images is I0 to I3, (I1 ⁇ I3) / (I0 ⁇ I2) represents the phase of the pixel with respect to the lattice, and the phase represents the direction of the measurement object viewed from the projector. Yes. Since the direction of the pixel viewed from the camera is known, when the direction of the measurement object viewed from the projector is determined, the three-dimensional position of the measurement object surface is determined by the principle of stereo surveying. Since the phase of the grating is used, this method is called a phase shift method.
  • the phase shift method measures the phase from 0 to 2 ⁇ .
  • a grating that repeats periodically is used, and therefore it is necessary to determine the order of the phase relative to the grating.
  • the phase number connection is referred to as “n”, the phase of 0 to 2 ⁇ being ⁇ , and adding the number n to the phase ⁇ to convert it to a phase of 2n ⁇ + ⁇ .
  • n the phase number connection
  • the phase ⁇ continuously changes between adjacent pixels
  • the phase ⁇ greatly jumps between adjacent pixels, that is, when the phase ⁇ changes discontinuously, the phase connection is difficult.
  • Patent Document 1 Patent 3536097 discloses the use of a frequency modulation grating in which the spatial frequency of the grating (the reciprocal of the pitch of the grating) changes periodically.
  • a frequency modulation grating in which the spatial frequency of the grating (the reciprocal of the pitch of the grating) changes periodically.
  • Patent Document 2 Patent 3500430 proposes to use a monochromatic rectangular wave grating obtained by synthesizing two kinds of gratings with a pitch ratio of m: n.
  • m ⁇ n images are required and the photographing time is long.
  • the contrast of the grating is low, the measurement accuracy of the phase ⁇ is lowered.
  • Patent Document 3 Japanese Patent No. 4170875 proposes to obtain the same result as that obtained by projecting a plurality of gratings by moving the grating along the projection direction from the projector.
  • this method requires a mechanism for moving the grating in the vertical direction (projection direction) with respect to the projector.
  • An object of the present invention is to make it possible to easily connect the phase ⁇ without significantly increasing the measurement time.
  • a three-dimensional measurement apparatus includes a projector that projects a grid on an object to be measured in a shiftable manner, a camera that captures the object to be measured, and a plurality of images in which the position of the grid is shifted.
  • a three-dimensional measurement apparatus comprising: a computer that obtains a phase of an object and converts the object to a three-dimensional shape of an object to be measured; Two projectors are provided at a position relatively close to the camera and a position relatively distant from the camera, The computer The rough phase of the surface of the object to be measured is obtained from the image projected from the projector close to the camera, and the surface of the object to be measured is determined from the image projected from the projector far from the camera.
  • a phase connection unit that converts the precise phase into a phase that uniquely determines the position of the surface of the object to be measured along the line of sight from the camera by the coarse phase.
  • the phase analysis unit of the three-dimensional measurement device obtains a rough phase of the surface of the object to be measured from an image projected from a projector at a position close to the camera; Obtaining a precise phase of the surface of the object to be measured from an image projected from a projector at a position far from the camera by the phase analysis unit of the three-dimensional measurement apparatus; Converting the precise phase into a phase that uniquely represents the position of the surface of the object to be measured along the line-of-sight direction from the camera by the phase connection unit of the three-dimensional measurement apparatus; And executing. Note that either the step of obtaining a rough phase or the step of obtaining a precise phase may be performed first.
  • phase that uniquely represents the position along the line-of-sight direction of the camera is obtained, but this phase has low spatial resolution.
  • a phase in which the spatial resolution is high but the position along the viewing direction of the camera is not uniquely determined is obtained.
  • the approximate value of the three-dimensional coordinates on the surface of the measurement object is known, and from this, the approximate value of the precise phase is known.
  • the precise phase also changes continuously, so that the range in which the precise phase can be taken can be limited. Therefore, the rough phase can be converted into a precise phase that uniquely determines the position along the viewing direction of the camera.
  • the three-dimensional shape of the object is accurately determined by the precise phase.
  • the present invention unlike the prior art, it is not necessary to take m ⁇ n images, so that measurement can be performed in a short time. Further, there is no need to shift the grating along the line-of-sight direction, and there is no need to use a frequency modulation grating.
  • the description relating to the three-dimensional measuring device also applies to the three-dimensional measuring method as it is, and conversely, the description relating to the three-dimensional measuring method also applies to the three-dimensional measuring device.
  • the grating is a periodic grating
  • the precise phase is ⁇ that satisfies 0 ⁇ ⁇ ⁇ 2 ⁇ when one period of the grating is 0 or more and less than 2 ⁇
  • the phase connection portion is a reference point of the grating 2 is obtained as a uniquely determined phase by obtaining n from the rough phase, where n is the number of periods from.
  • Control means for controlling the two projectors is provided so that the grid is projected from a projector relatively close to the camera. It is the shift of the lattice that takes the most time to acquire an image (hereinafter sometimes simply referred to as an image) obtained by projecting the lattice. Then, while one projector is shifting the grid, projection is performed by the other projector and shooting is performed by the camera, so that the time required for image acquisition does not substantially increase and an image can be acquired in a short time. For this reason, even if it is difficult to fix the shape of a human body, an animal, a vibrating object, or the like, the three-dimensional shape can be easily measured.
  • a second camera is provided in the vicinity of the projector that is relatively far from the first camera, and the projector that is relatively close to the first camera also projects the relative
  • the control means is configured to cause both the first camera and the second camera to photograph the object to be measured even when the projector is projected far away. If it does in this way, the image from two cameras will be acquired and the blind spot in the measurement of a three-dimensional shape will decrease.
  • the second camera is a camera that is relatively close to the projector on the side far from the first camera and relatively far from the projector on the side close to the first camera.
  • Block diagram of the three-dimensional measuring apparatus of the embodiment The figure which shows the measurement object and unit in an Example Block diagram of personal computer for measurement in the embodiment Flow chart showing a three-dimensional measurement algorithm in the embodiment The figure which shows light emission and imaging
  • reference numeral 4 denotes a unit for projecting and photographing a grid, and for example, four units are arranged around an object to be measured (hereinafter, a measurement object) 1.
  • the measurement object 1 is, for example, a human body, furniture, machine, automobile, electronic device, building, and the like.
  • the four units 4 are provided for three-dimensional measurement of the entire circumference of the measurement object 1. In order to measure the entire circumference, for example, three to six units 4 are provided, and one unit may be used if only one surface is measured.
  • a controller 6 controls the shift of the lattice in the unit 4, the light emission of the projector, and the photographing by the camera, and sends commands related to these to the unit 4 via the LAN 7.
  • the unit 4 sends the captured image to the controller 6 via the LAN 7, and the controller 6 transfers the image to the measurement personal computer 8.
  • the personal computer 8 may be integrated with the controller 6 or the unit 4, and another type of computer may be used instead of the personal computer.
  • a monitor 10 is used for user input and display of measurement results.
  • the unit 4 includes two upper and lower cameras C1 and C2 and two upper and lower projectors P1 and P2.
  • the subscript 1 represents the upper side and 2 represents the lower side.
  • the projectors P1 and P2 have, for example, an LED panel as a light source, and a substrate on which light such as a rectangular wave and a sine wave is periodically printed on a glass plate is provided on the light projecting side.
  • the phase shift method the same scene is photographed three times or more by shifting the position of the grating, and the projectors P1 and P2 are provided with a shift mechanism 9 for shifting the grating.
  • the same scene is photographed four times to facilitate the calculation of the phase, but it may be three times.
  • the grid is horizontal stripes and the shift direction is up and down.
  • Projector With reference to the camera C2, the projector P2 is a projector at a relatively close position, and the projector P1 is a projector at a relatively far position.
  • the grid is vertical stripes and the shift direction is horizontal.
  • Cameras C1 and C2 are digital cameras.
  • FIG. 3 shows the configuration of the personal computer 8, and the input / output 12 is connected to the unit 4 via the controller 6.
  • the user input 14 receives a user instruction, and the display control 16 controls the monitor 10.
  • the output unit 18 outputs three-dimensional measurement data.
  • the phase analysis unit 20 analyzes the phase by the phase shift method.
  • the camera C1, C2 is combined with the projectors P1, P2, a rough phase and a precise phase are obtained, and the camera is combined with a projector close to the phase.
  • a precise phase can be obtained.
  • four images are taken by shifting the grid by 1 ⁇ 4 pitch by light emission of the same projector, and the luminance is set to I0 to I3.
  • the pitch is the period of the grating.
  • (I1 ⁇ I3) / (I0 ⁇ I2) represents tan ⁇ 1 ⁇ , and the phase ⁇ can be obtained from this.
  • the phase connection unit 22 converts a precise phase ⁇ of 0 to 2 ⁇ into a complete phase of 2n ⁇ + ⁇ (n is an integer), where n is the number of pitches from the reference point of the lattice. Details of the phase connection are shown in FIGS.
  • the measuring object 1 has an area where one of the two cameras C1 and C2 can be measured more accurately than the other. For example, in an area that is shaded with respect to one camera, or in an area where only a dark image can be obtained with one camera, it is more accurate to measure the three-dimensional shape based on the image of the other camera.
  • the selection unit 24 selects the higher measurement accuracy side for each area of the measurement object with respect to the three-dimensional coordinates obtained from the two cameras C1 and C2.
  • the coordinate conversion unit 26 converts the three-dimensional coordinates in the coordinate system based on the cameras C1 and C2 into the three-dimensional coordinates in the reference coordinate system.
  • the synthesizing unit 28 synthesizes the three-dimensional coordinates of the measurement object surface obtained from the plurality of units 4 by, for example, addition averaging using the reliability as a weight.
  • the background removal unit 30 separates the measurement object and the background, and stores, for example, an amplitude image and a phase image created from an image without the measurement object.
  • the amplitude image is a contrast image of a sinusoidal lattice calculated from four images, and may be an image with a maximum luminance value or the like.
  • the phase image is, for example, a phase image extracted by the phase analysis unit 20 and has a value of 0 to 2 ⁇ , and may be a precise phase image or a coarse phase image.
  • the phase image is obtained while the phase analysis unit 20 analyzes the phase. Assuming that the phase at a certain pixel is ⁇ , data such as Asin ⁇ is obtained.
  • the amplitude A is obtained. Or since the data of Asin ⁇ and Acos ⁇ are obtained, the square of the amplitude A can be found from A 2 sin 2 ⁇ and A 2 cos 2 ⁇ .
  • an amplitude image and a phase image are obtained. In an image including a measurement object, a pixel whose phase and amplitude are not changed from the background image belongs to the background. A pixel in which at least one of the phase and the amplitude is changed may belong to a measurement object, and is therefore a target for three-dimensional measurement.
  • Fig. 4 shows the three-dimensional measurement algorithm in the embodiment.
  • the upper and lower cameras C1 and C2 of one unit are combined with the projectors P1 and P2, and it takes time to shift the lattice. Therefore, light is emitted from the projector P1 and photographed with the cameras C1 and C2. During this time, the grating of the projector P2 is shifted (steps 1 and 2). On the contrary, while shifting the grid of the projector P1, light is emitted from the projector P2 and photographed by the cameras C1 and C2 (steps 3 and 4).
  • the light emission pattern of the projector and the shooting pattern of the camera are as shown in FIG. 5, and the upper part represents the upper projector and the lower part represents the lower projector.
  • the upper part represents the upper projector and the lower part represents the lower projector.
  • eight projectors emit light four times in one second, and images are taken with a maximum of eight cameras for each light emission, so that a maximum of 256 images in which a grid is projected on a measurement object can be obtained.
  • the total time required for photographing is increased by, for example, about 1/3 to 1/6, compared with the case of using one projector.
  • phase connection is not necessary for the coarse phase. Then, the position of the surface of the measurement object can be uniquely determined from the rough phase although it is low accuracy. However, since the background or the measurement object cannot be determined from the rough phase, the background is removed. Then, a rough phase and a precise phase are obtained with respect to the surface of the measurement object (steps 6 and 7). Further, referring to the coarse phase, the precise phase in the range of 0 to 2 ⁇ is converted into a complete phase of 2n ⁇ + ⁇ (step 8). When the complete phase is obtained by the phase connection, the three-dimensional coordinates of the surface of the measurement object are accurately obtained.
  • step 9 it is determined for each area on the surface of the measurement object whether the coordinates obtained from the cameras C1 and C2 are to be used according to the brightness of the images of the cameras C1 and C2.
  • the coordinates are converted to the reference coordinate system, and in step 12, the coordinates from a plurality of units are synthesized and output.
  • the coordinates from each unit are added and averaged using the reliability as a weight.
  • the coordinates obtained from the cameras C1 and C2 may be added and averaged using the reliability as a weight after unifying the coordinate system.
  • FIG. 6 shows a rough phase and a precise phase as seen from the camera C1.
  • the line from the projectors P1, P2 represents one pitch of the grid.
  • the phase viewed from the camera C1 changes greatly along the line-of-sight direction with respect to the grating from the projector P2, and there are a plurality of points ⁇ 1 to ⁇ 4 that give the same phase on the same line of sight, and the position of the surface of the measurement object is It is not determined uniquely.
  • the phase of the grating from the projector P1 when viewed from the camera C1 changes only slowly. For example, there is no other point that gives the same phase within the measurement range, and the position of the surface of the measurement object can be uniquely determined although it is low accuracy. .
  • FIG. 7 This situation is shown in FIG. 7, where the horizontal axis is the position along the viewing direction.
  • a rough phase using light emission from the projector P1 is ⁇ P1
  • a precise phase using light emission from the projector P2 is ⁇ P2.
  • the coarse phase ⁇ P1 has a low accuracy but covers a wide depth range
  • the precise phase ⁇ P2 has a high accuracy but only a narrow range, and there are a plurality of points in the measurement range that give the same phase. Therefore, when the precise phase ⁇ P2 is connected using the coarse phase ⁇ P1, a complete phase ⁇ is obtained.
  • a complete phase ⁇ range is determined for each pixel by the rough phase ⁇ P1 (that is, a range of values that n can take), and the phase ⁇ P2 is converted into a complete phase ⁇ .
  • the complete phase ⁇ is obtained for some pixels as described above, and the range of the complete phase ⁇ change is determined from the coarse phase ⁇ P1 change between the pixels for the other pixels.
  • the precise phase ⁇ P2 is converted into a complete phase ⁇ .
  • FIG. 8 shows three-dimensional point cloud data obtained from a rough phase due to light emission from the upper projector P1, three-dimensional point cloud data obtained from a precise phase due to light emission from the lower projector P2, and the embodiment.
  • the obtained three-dimensional point cloud data is shown.
  • the upper camera C1 was used as the camera.
  • the lightness variation in FIG. 8 represents the measurement accuracy, and the data variation is significant in the measurement by the upper projector P1.
  • the data In the measurement with the lower projector P2, the data is discontinuous.
  • the embodiment there is little variation in data, and the data is basically continuous. This indicates that the shape of the measurement object can be obtained with high accuracy over a wide range.
  • the following effects can be obtained. 1) By using two or more projectors for one camera and obtaining a rough phase and a precise phase, a three-dimensional shape can be measured accurately. 2) If the light emission from one projector and the photographing by the camera are performed in parallel with the shift of the grating by another projector, the measurement time does not substantially increase. 3) When two or more projectors and two or more cameras are combined, the three-dimensional shape can be measured more accurately and the measurement time does not increase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

 計測対象の物体にプロジェクタから格子をシフトさせて複数回投影すると共に、格子が投影された計測対象の物体をカメラで撮影し、計測対象の物体の3次元形状へ変換する。カメラから近い位置と遠い位置とにプロジェクタを2台設け、カメラから近い位置のプロジェクタから投影した際の画像から求めた位相により、カメラから遠い位置のプロジェクタから投影した際の画像から求めた位相を、カメラからの視線方向に沿った位置を一意に表す位相へ変換する。短時間で物体の3次元形状を正確に測定できる。

Description

3次元計測装置と3次元計測方法
 この発明は3次元計測に関し、特に位相シフト法で得られる位相の接続に関する。
 プロジェクタから格子を計測対象物体に投影し、カメラで画像を撮影することにより、計測対象物体(以下単に「計測物体」という)の3次元形状を求めることが行われている(例えば特許文献1:特許3536097)。プロジェクタの前面に透光度が正弦波状に周期的に変化する格子を配置し、格子の位置を正弦波の周期の例えば1/4ずつシフトさせて、例えば4回撮影する。4枚の画像での同じ画素の輝度をI0~I3とすると、(I1-I3)/(I0-I2)は格子に対する画素の位相を表し、位相はプロジェクタから見た計測物体の方向を表している。カメラから見た画素の方向は既知なので、プロジェクタから見た計測物体の方向が定まると、ステレオ測量の原理により、計測物体表面の3次元位置が定まる。格子の位相を用いるので、この方法は位相シフト法と呼ばれる。
 位相シフト法で測定するのは0~2πの位相である。高精度に3次元形状を測定するため、周期的に繰り返す格子を用いるので、何番目の格子に対する位相であるかを判別する必要がある。なお以下、格子の番号をn、0~2πの位相をθとし、位相θに番号nを加えて2nπ+θの位相に変換することを位相接続と呼ぶ。位相θが隣接した画素間で連続的に変化する場合、位相が連続的に変化するとの条件を加えて、2nπ+θの位相に変換することが知られている。しかし隣接した画素間で位相θが大きくジャンプする場合、即ち位相θが不連続に変化する場合、位相接続は困難である。
 この点について、特許文献1:特許3536097は、格子の空間周波数(格子のピッチの逆数)が周期的に変化する周波数変調格子を用いることを開示している。しかしながらこのような格子は作製が難しく、空間周波数が低い部分では位相の分解能が低下し、3次元計測の分解能も低下する。特許文献2:特許3500430は、ピッチの比がm:nの2種類の格子を合成した単色矩形波格子を用いることを提案しているが、m×n枚の画像が必要で撮影時間が長く、また格子のコントラストが低いため、位相θの測定精度が低下する。特許文献3:特許4170875は、格子をプロジェクタからの投影方向に沿って移動させることにより、複数の格子を投影したのと同じ結果を得ることを提案している。しかしこの方法では、格子をプロジェクタに対し垂直方向(投影方向)に移動させる機構が必要になる。
特許3536097 特許3500430 特許4170875
 この発明の課題は、計測時間を著しく増さずに、かつ簡単に位相θを接続できるようにすることにある。
 この発明の3次元計測装置は、計測対象の物体に格子をシフト自在に投影するプロジェクタと、計測対象の物体を撮影するカメラと、格子の位置をシフトさせた複数の画像から格子に対する計測対象の物体の位相を求めて、計測対象の物体の3次元形状へ変換するコンピュータ、とを備えている3次元計測装置において、
 カメラから相対的に近い位置と相対的に遠い位置とに、前記プロジェクタが2台設けられ、
 前記コンピュータは、
  カメラから近い位置のプロジェクタから投影した際の画像から、計測対象の物体の表面の粗な位相を求めると共に、カメラから遠い位置のプロジェクタから投影した際の画像から、計測対象の物体の表面の精密な位相を求める位相解析部と、
  前記精密な位相を、前記粗な位相により、カメラからの視線方向に沿っての、計測対象の物体の表面の位置を一意に定める位相へ変換する位相接続部、とを備えていることを特徴とする。
 この発明の3次元計測方法は、3次元計測装置の位相解析部により、カメラから近い位置のプロジェクタから投影した際の画像から、計測対象の物体の表面の粗な位相を求めるステップと、
 3次元計測装置の位相解析部により、カメラから遠い位置のプロジェクタから投影した際の画像から、計測対象の物体の表面の精密な位相を求めるステップと、
 3次元計測装置の位相接続部により、前記精密な位相を、前記粗な位相により、カメラからの視線方向に沿っての、計測対象の物体の表面の位置を一意に表す位相へ変換するステップ、とを実行することを特徴とする。なお粗な位相を求めるステップと、精密な位相を求めるステップは、いずれを先に実行しても良い。
 図6に示すように、カメラから近い側のプロジェクタで投影すると、カメラの視線方向に沿った位置を一意に表す位相(粗な位相)が得られるが、この位相は空間分解能が低い。一方カメラから遠い側のプロジェクタで投影すると、空間分解能が高いが、カメラの視線方向に沿った位置が一意に定まらない位相(精密な位相)が得られる。粗な位相から計測物体表面の3次元座標の概略値が分かり、これから精密な位相の概略値が分かる。また粗な位相が連続的に変化する場合、精密な位相も連続的に変化するので、精密な位相が取りうる範囲を制限できる。従って粗な位相を、カメラの視線方向に沿った位置を一意に定める精密な位相へ変換できる。そして精密な位相により、物体の3次元形状が正確に定まる。
 この発明では、従来技術のようにm×n枚の画像を撮影する必要がないので、短時間で計測を行える。また視線方向に沿って格子をシフトさせる必要が無く、さらに周波数変調格子を用いる必要もない。プロジェクタの台数は少なくとも2台で、カメラは少なくとも1台、好ましくは複数台設ける。この明細書において、3次元計測装置に関する記載は3次元計測方法にもそのまま当てはまり、逆に3次元計測方法に関する記載は3次元計測装置にもそのまま当てはまる。
 好ましくは、格子は周期的な格子で、精密な位相は、格子の1周期を0以上2π未満とする際に、 0≦θ<2π であるθであり、位相接続部は、格子の基準点からの周期の数を n として、粗な位相からnを求めることにより、一意に定める位相として 2nπ+θ を求める。
 好ましくは、カメラから相対的に近いプロジェクタが格子をシフトさせている間に、カメラから相対的に遠いプロジェクタから格子を投影し、カメラから相対的に遠いプロジェクタが格子をシフトさせている間に、カメラから相対的に近いプロジェクタから格子を投影するように、2台のプロジェクタを制御する制御手段を設ける。格子を投影した画像(以下単に画像ということがある)の取得に最も時間を要するのは、格子のシフトである。そして一方のプロジェクタが格子をシフトしている間に、他方のプロジェクタで投影しカメラで撮影するので、画像の取得に要する時間が実質的に増加せず、短時間で画像を取得できる。このため人体、動物、振動している物体等の形状を固定するのが難しい物体でも、3次元形状を容易に測定できる。
 特に好ましくは、前記カメラを第1のカメラとして、第1のカメラから相対的に遠いプロジェクタの付近に第2のカメラを設け、第1のカメラから相対的に近いプロジェクタが投影するときも、相対的に遠いプロジェクタが投影するときも、第1のカメラと第2のカメラに共に計測対象の物体を撮影させるように、前記制御手段が構成されている。このようにすると、2台のカメラからの画像が得られ、3次元形状の測定での死角が減少する。第2のカメラは、第1のカメラから遠い側のプロジェクタに相対的に近く、第1のカメラから近い側のプロジェクタに相対的に遠いカメラである。
実施例の3次元計測装置のブロック図 実施例での計測物体とユニットとを示す図 実施例での計測用パーソナルコンピュータのブロック図 実施例での3次元計測アルゴリズムを示すフローチャート 実施例での、発光及び撮影と、格子のシフトとを示す図 実施例での粗な位相と精密な位相とを説明する図 実施例での位相接続を示す図 実施例での計測結果を示す図
 以下に、発明を実施するための最適実施例を示す。
 図1~図8に、実施例の3次元計測装置2と3次元計測方法とを示す。図1において、4は格子の投影と撮影用のユニットで、例えば計測対象の物体(以下計測物体)1の周囲に4台配置する。なお計測物体1は例えば人体、家具、機械、自動車、電子機器、建物等で、4台のユニット4を設けるのは計測物体1の全周を3次元計測するためである。全周を計測するには例えば3台以上6台以下のユニット4を設け、1面のみを計測するのであれば1ユニットでも良い。6はコントローラで、ユニット4での格子のシフト及びプロジェクタの発光とカメラによる撮影を制御し、LAN7を介してこれらに関する指令をユニット4へ送出する。またユニット4は撮影した画像をLAN7を介してコントローラ6へ送出し、コントローラ6は画像を計測用パーソナルコンピュータ8へ転送する。パーソナルコンピュータ8はコントローラ6と一体、あるいはユニット4と一体でも良く、パーソナルコンピュータではなく他の種類のコンピュータを用いても良い。10はモニタで、ユーザの入力と計測結果の表示等に用いる。
 図2に示すように、ユニット4は上下2台のカメラC1,C2と上下2台のプロジェクタP1,P2を備え、添字1は上側を、2は下側を表す。プロジェクタP1,P2は例えばLEDパネルを光源とし、矩形波、正弦波等の格子がガラス板等に周期的にプリントされているサブストレートを、光を投光する側に備えている。位相シフト法では同じ場面を、格子の位置をシフトさせて3回以上撮影し、プロジェクタP1,P2は格子をシフトさせるシフト機構9を備えている。実施例では、位相の算出を容易にするため、同じ場面を4回撮影するが、3回でも良い。実施例では、上下のプロジェクタP1,P2を組み合わせるので、格子は横縞でシフト方向は上下で、カメラC1を基準とすると、プロジェクタP1が相対的に近い位置のプロジェクタ,プロジェクタP2が相対的に遠い位置のプロジェクタである。カメラC2を基準とすると、プロジェクタP2が相対的に近い位置のプロジェクタ,プロジェクタP1が相対的に遠い位置のプロジェクタである。また他のユニットの同じ高さのプロジェクタを組み合わせる場合、格子は縦縞で、シフト方向は水平とする。またカメラC1,C2はデジタルカメラである。
 図3にパーソナルコンピュータ8の構成を示し、入出力12はコントローラ6を介してユニット4と接続されている。ユーザ入力14はユーザの指示を受け付け、表示制御16はモニタ10を制御する。出力部18は3次元計測データを出力する。位相解析部20は位相シフト法により位相を解析し、実施例では、カメラC1,C2とプロジェクタP1,P2との組み合わせにより粗な位相と精密な位相とを求め、カメラを近接したプロジェクタと組み合わせると粗な位相が、離れたプロジェクタと組み合わせると精密な位相が得られる。例えば同じプロジェクタの発光により、格子を1/4ピッチずつシフトさせて4枚の画像を撮影し、その輝度をI0~I3とする。なおピッチは格子の周期である。すると(I1-I3)/(I0-I2)はtan-1θを表し、これから位相θが求まる。
 位相接続部22では、0~2πの精密な位相θを2nπ+θ(nは整数)の完全な位相に変換し、nは格子の基準点からのピッチの数である。位相接続の詳細は図4~図8に示す。計測物体1には、2台のカメラC1,C2の一方が他方よりも正確に計測できるエリアがある。例えば一方のカメラに対して影になっているエリア、一方のカメラでは暗い画像しか得られないエリアでは、他方のカメラの画像に基づいて3次元形状を測定した方が精度が高い。選択部24は、2台のカメラC1,C2から求めた3次元座標に対して、計測物体のエリア毎に、計測精度の高い側を選択する。座標変換部26はカメラC1,C2を基準とする座標系での3次元座標を、基準座標系での3次元座標に変換する。合成部28は、複数のユニット4から得られた計測物体表面の3次元座標を、例えば信頼度を重みとする加算平均により合成する。
 背景除去部30は計測物体と背景とを分離し、例えば計測物体がない状態での画像から作成した振幅画像と位相画像とを記憶している。振幅画像は4枚の画像から算出される正弦波状の格子のコントラストの画像で、輝度の最大値の画像等でも良い。また位相画像は例えば位相解析部20で抽出した位相の画像で、値は0~2πで、精密な位相の画像でも粗な位相の画像でも良い。位相画像は位相解析部20で位相を解析する間に得られる。ある画素での位相をαとすると、Asinα等のデータが得られているので、例えば位相解析部20により位相αが求まると、振幅Aが得られる。あるいはAsinαとAcosαのデータが得られているので、AsinαとAcosαから振幅Aの2乗が分かる。計測物体を撮影した際に、同様に振幅画像と位相画像とを求める。計測物体を含む画像中で、位相も振幅も背景画像から変化していない画素は背景に属する。位相と振幅の少なくとも一方が変化している画素は計測物体に属する可能性があるので、3次元計測の対象とする。  
 図4に実施例での3次元計測アルゴリズムを示す。ここでは1台のユニットの上下のカメラC1,C2とプロジェクタP1,P2を組み合わせる場合を想定し、格子をシフトさせるのに時間が必要なため、プロジェクタP1から発光してカメラC1,C2で撮影している間に、プロジェクタP2の格子をシフトさせる(ステップ1,2)。逆にプロジェクタP1の格子をシフトさせている間に、プロジェクタP2から発光してカメラC1,C2で撮影する(ステップ3,4)。一方のプロジェクタでの格子のシフトと、他のプロジェクタでの発光と撮影とを並行して行うことにより、合計の撮影時間を延ばさずに、複数のプロジェクタを用いて撮影することができる。以上の処理を、格子のシフトを完了するまで繰り返す(ステップ5)。
 実施例では4台のユニットを用いるので、プロジェクタの発光とカメラの撮影のパターンを図5のようにし、上は上側のプロジェクタ、下は下側のプロジェクタを表す。このようにすると、例えば1秒間で8台のプロジェクタを各4回発光させ、各発光毎に最大8台のカメラで撮影するので、計測物体に格子を投影した画像が最大で256枚得られる。しかし撮影に必要な合計の時間は、1台のプロジェクタを用いる場合に比べ、例えば1/3~1/6程度しか増加しない。
 粗な位相が計測物体が存在する範囲で最大2π程度変化するようにすると、粗な位相に対しては位相接続が不要になる。そして粗な位相から計測物体表面の位置を低精度ではあるが一意に決定できる。しかし背景か計測物体かは粗な位相からは判別できないので、背景を除去する。そして計測物体の表面に対して粗な位相と精密な位相とを求める(ステップ6,7)。さらに粗な位相を参照して、0~2πの範囲の精密な位相を、2nπ+θの完全な位相に変換する(ステップ8)。位相接続により完全な位相が求まると、計測物体表面の3次元座標が正確に求まる。またステップ9で、カメラC1、C2の画像の明るさ等に応じて、カメラC1,C2のいずれから求めた座標を用いるかを、計測物体表面のエリア毎に決定する。ステップ11で基準座標系へ座標を変換し、ステップ12で複数のユニットからの座標を合成して出力する。合成では例えば各ユニットからの座標を、信頼度を重みとして、加算平均する。また前記の選択の代わりに、座標系を統一した後に、カメラC1,C2から求めた座標を信頼度を重みとして加算平均しても良い。
 図6に、カメラC1から見た粗な位相と精密な位相とを示す。プロジェクタP1,P2からの線は格子の1ピッチを表す。カメラC1から見た位相は、プロジェクタP2からの格子に対し、視線方向に沿って大きく変化し、同じ視線上に同じ位相を与える複数の点θ1~θ4等が存在し、計測物体表面の位置は一意には定まらない。プロジェクタP1からの格子をカメラC1から見た位相は緩やかにしか変化せず、例えば計測範囲内では同じ位相を与える点が他になく、計測物体表面の位置を低精度ではあるが一意に決定できる。
 この状況を図7に示し、横軸は視線方向に沿った位置である。プロジェクタP1からの発光を利用する粗な位相をθP1、プロジェクタP2からの発光を利用する精密な位相をθP2とする。粗な位相θP1は低精度であるが広い奥行きの範囲をカバーし、精密な位相θP2は高精度であるが狭い範囲しかカバーせず、同じ位相を与える点が計測範囲内に複数ある。そこで粗な位相θP1を用いて精密な位相θP2を接続すると、完全な位相φが得られる。具体的な手法としては、例えば粗な位相θP1により完全な位相φの範囲を画素毎に定め(即ち、nが取りうる値の範囲を定め)、位相θP2を完全な位相φに変換する。あるいは一部の画素に対して上記のようにして完全な位相φを求め、他の画素に対して、画素間での粗な位相θP1の変化分から、完全な位相φの変化分の範囲を定めることにより、精密な位相θP2を完全な位相φに変換する。
 図8は、上側のプロジェクタP1の発光による粗な位相から求めた3次元の点群データと、下側のプロジェクタP2の発光により精密な位相から求めた3次元の点群データ、及び実施例に従って求めた3次元の点群データを示す。いずれもカメラは上側のカメラC1を用いた。図8での明度のバラツキは計測の精度を表し、上側のプロジェクタP1での計測ではデータのバラツキが著しい。また下側のプロジェクタP2での計測では、データが不連続である。これに対して実施例では、データのバラツキがすくなく、かつデータは基本的に連続している。これは、広い範囲に対し高精度に計測物体の形状を求めることができることを示している。
 実施例では以下の効果が得られる。
1) 1台のカメラに対し、2台以上のプロジェクタを用いて、粗な位相と精密な位相とを求めることにより、3次元形状を正確に測定できる。
2) 1台のプロジェクタからの発光及びカメラによる撮影と、他のプロジェクタでの格子のシフトを並行して行うと、測定時間が実質的に延びない。
3) 2台以上のプロジェクタと2台以上のカメラとを組み合わせると、より正確に3次元形状を測定でき、しかも測定時間が延びない。
1 計測物体  2 3次元計測装置  4 ユニット
6 コントローラ  7 LAN  8 計測用パーソナルコンピュータ
9 シフト機構  10 モニタ  12 入出力  14 ユーザ入力
16 表示制御  18 出力部  20 位相解析部  
22 位相接続部  24 選択部  26 座標変換部  
28 合成部  30 背景除去部
P1,P2 プロジェクタ  C1,C2 カメラ 

Claims (5)

  1.  計測対象の物体に格子をシフト自在に投影するプロジェクタと、計測対象の物体を撮影するカメラと、格子の位置をシフトさせた複数の画像から格子に対する計測対象の物体の位相を求めて、計測対象の物体の3次元形状へ変換するコンピュータ、とを備えている3次元計測装置において、
     カメラから相対的に近い位置と相対的に遠い位置とに、前記プロジェクタが2台設けられ、
     前記コンピュータは、
      カメラから近い位置のプロジェクタから投影した際の画像から、計測対象の物体の表面の粗な位相を求めると共に、カメラから遠い位置のプロジェクタから投影した際の画像から、計測対象の物体の表面の精密な位相を求める位相解析部と、
      前記精密な位相を、前記粗な位相により、カメラからの視線方向に沿っての、計測対象の物体の表面の位置を一意に定める位相へ変換する位相接続部、とを備えていることを特徴とする3次元計測装置。
  2.  前記格子は周期的な格子で、
     前記精密な位相は、格子の1周期を0以上2π未満とする際に、 0≦θ<2π であるθであり、
     前記位相接続部は、格子の基準点からの周期の数を n として、前記粗な位相からnを求めることにより、前記一意に定める位相として 2nπ+θ を求めるように構成されていることを特徴とする、請求項1の3次元計測装置。
  3.  カメラから相対的に近いプロジェクタが格子をシフトさせている間に、カメラから相対的に遠いプロジェクタから格子を投影し、カメラから相対的に遠いプロジェクタが格子をシフトさせている間に、カメラから相対的に近いプロジェクタから格子を投影するように、2台のプロジェクタを制御する制御手段を備えていることを特徴とする、請求項2の3次元計測装置。
  4.  前記カメラを第1のカメラとして、第1のカメラから相対的に遠いプロジェクタの付近に第2のカメラを設け、
     第1のカメラから相対的に近いプロジェクタが投影するときも、相対的に遠いプロジェクタが投影するときも、第1のカメラと第2のカメラに共に計測対象の物体を撮影させるように、前記制御手段が構成されていることを特徴とする、請求項3の3次元計測装置。
  5.  計測対象の物体にプロジェクタから格子をシフトさせて複数回投影すると共に、格子が投影された計測対象の物体をカメラで撮影し、コンピュータにより、格子の位置がシフトした複数の画像から格子に対する計測対象の物体の位相を求めて、計測対象の物体の3次元形状へ変換する3次元計測方法において、
     カメラから相対的に近い位置と相対的に遠い位置とに、前記プロジェクタを2台設けるステップと、
     3次元計測装置の位相解析部により、カメラから近い位置のプロジェクタから投影した際の画像から、計測対象の物体の表面の粗な位相を求めるステップと、
     3次元計測装置の位相解析部により、カメラから遠い位置のプロジェクタから投影した際の画像から、計測対象の物体の表面の精密な位相を求めるステップと、
     3次元計測装置の位相接続部により、前記精密な位相を、前記粗な位相により、カメラからの視線方向に沿っての、計測対象の物体の表面の位置を一意に表す位相へ変換するステップ、とを実行することを特徴とする3次元計測方法。
PCT/JP2013/064277 2012-06-12 2013-05-22 3次元計測装置と3次元計測方法 WO2013187203A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380031286.3A CN104380037A (zh) 2012-06-12 2013-05-22 三维测量装置和三维测量方法
JP2014521235A JP6016912B2 (ja) 2012-06-12 2013-05-22 3次元計測装置と3次元計測方法
US14/406,587 US20150160005A1 (en) 2012-06-12 2013-05-22 Three-dimensional measurement apparatus, and three-dimensional measurement method
EP13804287.4A EP2860490A4 (en) 2012-06-12 2013-05-22 THREE-DIMENSIONAL MEASURING APPARATUS AND THREE-DIMENSIONAL MEASURING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012132960 2012-06-12
JP2012-132960 2012-06-12

Publications (1)

Publication Number Publication Date
WO2013187203A1 true WO2013187203A1 (ja) 2013-12-19

Family

ID=49758033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064277 WO2013187203A1 (ja) 2012-06-12 2013-05-22 3次元計測装置と3次元計測方法

Country Status (5)

Country Link
US (1) US20150160005A1 (ja)
EP (1) EP2860490A4 (ja)
JP (1) JP6016912B2 (ja)
CN (1) CN104380037A (ja)
WO (1) WO2013187203A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10306212B2 (en) * 2017-03-31 2019-05-28 Verizon Patent And Licensing Inc. Methods and systems for capturing a plurality of three-dimensional sub-frames for use in forming a volumetric frame of a real-world scene
JP2019215181A (ja) * 2018-06-11 2019-12-19 オムロン株式会社 計測システムおよび計測方法
JP2020008434A (ja) * 2018-07-09 2020-01-16 オムロン株式会社 3次元測定装置及び方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9569859B2 (en) 2014-12-29 2017-02-14 Dell Products, Lp System and method for redefining depth-based edge snapping for three-dimensional point selection
US9792487B2 (en) * 2014-12-29 2017-10-17 Dell Products, Lp System and method for determining dimensions of an object in an image
CN105157615B (zh) * 2015-06-30 2018-08-31 上海航天动力科技工程有限公司 一种用于真空的三维形貌测量***
US10455216B2 (en) * 2015-08-19 2019-10-22 Faro Technologies, Inc. Three-dimensional imager
US10444006B2 (en) 2015-08-19 2019-10-15 Faro Technologies, Inc. Three-dimensional imager
JP2017110991A (ja) * 2015-12-16 2017-06-22 セイコーエプソン株式会社 計測システム、計測方法、ロボット制御方法、ロボット、ロボットシステムおよびピッキング装置
JP6308637B1 (ja) * 2017-05-08 2018-04-11 国立大学法人福井大学 特徴量を用いた3次元計測方法およびその装置
CN112146564B (zh) * 2019-06-28 2022-04-15 先临三维科技股份有限公司 三维扫描方法、装置、计算机设备和计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175511A (ja) * 1985-01-31 1986-08-07 Goro Matsumoto 立体形状測定装置
JP3500430B2 (ja) 2001-10-12 2004-02-23 和歌山大学長 単色矩形波格子を用いる形状計測方法及び形状計測装置
JP3536097B2 (ja) 2002-03-04 2004-06-07 和歌山大学長 周波数変調格子による格子投影形状計測方法及び装置
JP4170875B2 (ja) 2003-10-14 2008-10-22 株式会社山武 3次元計測装置、3次元計測方法及び3次元計測プログラム
JP2010276607A (ja) * 2009-05-27 2010-12-09 Koh Young Technology Inc 3次元形状測定装置および測定方法
WO2011145285A1 (ja) * 2010-05-17 2011-11-24 有限会社テクノドリーム二十一 画像処理装置、画像処理方法およびプログラム

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4130237A1 (de) * 1991-09-11 1993-03-18 Zeiss Carl Fa Verfahren und vorrichtung zur dreidimensionalen optischen vermessung von objektoberflaechen
US5636025A (en) * 1992-04-23 1997-06-03 Medar, Inc. System for optically measuring the surface contour of a part using more fringe techniques
JPH0852638A (ja) * 1994-08-15 1996-02-27 Toshiba Mach Co Ltd 干渉チェック方法および加工プログラムチェック方法および加工適否チェック方法
US6028672A (en) * 1996-09-30 2000-02-22 Zheng J. Geng High speed three dimensional imaging method
US6147760A (en) * 1994-08-30 2000-11-14 Geng; Zheng Jason High speed three dimensional imaging method
US5635025A (en) * 1994-12-05 1997-06-03 Ahlstrom Machinery Inc. Digester system containing a single vessel serving as all of a chip bin, steaming vessel, and chip chute
CA2253085A1 (en) * 1998-11-06 2000-05-06 Industrial Metrics Inc. Methods and system for measuring three dimensional spatial coordinates and for external camera calibration necessary for that measurement
US7068836B1 (en) * 2000-04-28 2006-06-27 Orametrix, Inc. System and method for mapping a surface
US6744932B1 (en) * 2000-04-28 2004-06-01 Orametrix, Inc. System and method for mapping a surface
US6728423B1 (en) * 2000-04-28 2004-04-27 Orametrix, Inc. System and method for mapping a surface
JP2003269928A (ja) * 2002-03-12 2003-09-25 Nec Corp 3次元形状計測方法および装置ならびにプログラム
US7589729B2 (en) * 2002-05-15 2009-09-15 Mental Images Gmbh Image synthesis by rank-1 lattices
US20050185711A1 (en) * 2004-02-20 2005-08-25 Hanspeter Pfister 3D television system and method
JP4645068B2 (ja) * 2004-06-04 2011-03-09 旭硝子株式会社 表面形状の検査方法および検査装置
JP4429135B2 (ja) * 2004-10-05 2010-03-10 Necエンジニアリング株式会社 三次元形状計測システム及び計測方法
CA2528791A1 (en) * 2005-12-01 2007-06-01 Peirong Jia Full-field three-dimensional measurement method
JP5208737B2 (ja) * 2006-07-03 2013-06-12 パナソニック株式会社 プロジェクタシステム及び映像投射方法
EP2183544B1 (en) * 2007-08-17 2015-07-15 Renishaw PLC Non-contact measurement apparatus and method
KR100947463B1 (ko) * 2007-08-31 2010-03-17 에스엔유 프리시젼 주식회사 엘시디를 이용한 삼차원 형상 측정장치
JP2011064482A (ja) * 2009-09-15 2011-03-31 Kurabo Ind Ltd 高速三次元計測装置及び高速三次元計測方法
WO2013187204A1 (ja) * 2012-06-13 2013-12-19 株式会社島精機製作所 3次元計測装置のための合成パラメータの生成装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175511A (ja) * 1985-01-31 1986-08-07 Goro Matsumoto 立体形状測定装置
JP3500430B2 (ja) 2001-10-12 2004-02-23 和歌山大学長 単色矩形波格子を用いる形状計測方法及び形状計測装置
JP3536097B2 (ja) 2002-03-04 2004-06-07 和歌山大学長 周波数変調格子による格子投影形状計測方法及び装置
JP4170875B2 (ja) 2003-10-14 2008-10-22 株式会社山武 3次元計測装置、3次元計測方法及び3次元計測プログラム
JP2010276607A (ja) * 2009-05-27 2010-12-09 Koh Young Technology Inc 3次元形状測定装置および測定方法
WO2011145285A1 (ja) * 2010-05-17 2011-11-24 有限会社テクノドリーム二十一 画像処理装置、画像処理方法およびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2860490A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10306212B2 (en) * 2017-03-31 2019-05-28 Verizon Patent And Licensing Inc. Methods and systems for capturing a plurality of three-dimensional sub-frames for use in forming a volumetric frame of a real-world scene
JP2019215181A (ja) * 2018-06-11 2019-12-19 オムロン株式会社 計測システムおよび計測方法
WO2019239847A1 (ja) * 2018-06-11 2019-12-19 オムロン株式会社 計測システムおよび計測方法
JP7212240B2 (ja) 2018-06-11 2023-01-25 オムロン株式会社 計測システムおよび計測方法
JP2020008434A (ja) * 2018-07-09 2020-01-16 オムロン株式会社 3次元測定装置及び方法
WO2020012707A1 (ja) * 2018-07-09 2020-01-16 オムロン株式会社 3次元測定装置及び方法

Also Published As

Publication number Publication date
JP6016912B2 (ja) 2016-10-26
US20150160005A1 (en) 2015-06-11
CN104380037A (zh) 2015-02-25
EP2860490A1 (en) 2015-04-15
JPWO2013187203A1 (ja) 2016-02-04
EP2860490A4 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
JP6016912B2 (ja) 3次元計測装置と3次元計測方法
JP6691838B2 (ja) 測定装置
WO2013187204A1 (ja) 3次元計測装置のための合成パラメータの生成装置
KR20110052993A (ko) 영상 보정 장치 및 영상 보정 방법
KR101173668B1 (ko) 다중 공간 주파수를 이용한 3차원 물체의 깊이 측정 방법 및 그 장치
JP2003269928A (ja) 3次元形状計測方法および装置ならびにプログラム
TWI687660B (zh) 配光特性測定裝置以及配光特性測定方法
CN110692084B (zh) 用于导出场景的拓扑信息的装置和机器可读存储介质
JP2008185370A (ja) 3次元形状計測装置及び3次元形状計測方法
WO2013150830A1 (ja) グレア測定システム
JP6736383B2 (ja) 測定装置
JP5956911B2 (ja) 形状測定装置、形状測定方法および形状測定プログラム
JP2011075336A (ja) 3次元形状計測装置、3次元形状計測方法
JP6713622B2 (ja) 3次元計測装置、3次元計測システム、3次元計測方法及びプログラム
JP2018004282A (ja) 測定装置
JP2009210509A (ja) 3次元形状測定装置および3次元形状測定コンピュータプログラム
JP5743433B2 (ja) 三次元形状計測装置
JP2015142157A (ja) 映像投影システム、投影制御装置、投影制御用プログラム
JP4985213B2 (ja) 3次元形状計測方法および装置ならびにプログラム
JP2018146348A (ja) 三次元形状計測装置、三次元形状計測方法、及びコンピュータプログラム
JP2013257206A (ja) 3次元計測装置でのプロジェクタの調整方法と調整装置
JP2017227609A (ja) 三次元測定装置及びその制御方法
JP2021050973A (ja) 三次元計測装置および輝度値比テーブル生成方法
JP2008170282A (ja) 形状測定装置
JP2010032448A (ja) 3次元形状測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804287

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521235

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14406587

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013804287

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE