JP6736383B2 - 測定装置 - Google Patents

測定装置 Download PDF

Info

Publication number
JP6736383B2
JP6736383B2 JP2016127056A JP2016127056A JP6736383B2 JP 6736383 B2 JP6736383 B2 JP 6736383B2 JP 2016127056 A JP2016127056 A JP 2016127056A JP 2016127056 A JP2016127056 A JP 2016127056A JP 6736383 B2 JP6736383 B2 JP 6736383B2
Authority
JP
Japan
Prior art keywords
light
measurement
stage
light receiving
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016127056A
Other languages
English (en)
Other versions
JP2018004281A (ja
Inventor
政記 藤原
政記 藤原
中務 貴司
貴司 中務
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keyence Corp
Original Assignee
Keyence Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keyence Corp filed Critical Keyence Corp
Priority to JP2016127056A priority Critical patent/JP6736383B2/ja
Publication of JP2018004281A publication Critical patent/JP2018004281A/ja
Application granted granted Critical
Publication of JP6736383B2 publication Critical patent/JP6736383B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、測定対象物の測定を行う測定装置に関する。
三角測距方式の測定装置では、測定対象物の表面に光が照射され、その反射光が1次元または2次元に配列された画素を有する受光素子により受光される。受光素子により得られる受光量分布のピーク位置に基づいて、測定対象物の表面の高さを計測することができる。
非特許文献1においては、符号化された光と位相シフト法とを組み合わせた三角測距方式の形状測定が提案されている。また、非特許文献2においては、符号化された光とストライプ状の光とを組み合わせた三角測距方式の形状測定が提案されている。これらの方式においては、測定対象物の形状測定の精度を向上させることができる。
Toni F. Schenk, "Remote Sensing and Reconstruction for Three-Dimensional Objects and Scenes", Proceedings of SPIE, Volume 2572, pp. 1-9 (1995) Sabry F. El-Hakim and Armin Gruen, "Videometrics and Optical Methods for 3D Shape Measurement", Proceedings of SPIE, Volume 4309, pp. 219-231 (2001)
上記のような形状測定によって取得されるデータ(以下、測定データと呼ぶ。)に基づいて、測定対象物の所望の箇所の寸法等を算出することができる。例えば、測定データに基づいて、測定対象物の立体形状を表す画像が表示される。使用者が、表示された画像上で計測箇所を指定し、指定された箇所の計測値が測定データから算出される。
計測箇所によっては、測定対象物の全体の測定データは必要でなく、特定の箇所の測定データのみ必要である場合がある。特定の箇所の測定データのみを生成する場合、受光素子に対する測定対象物の向き等を適切に調整する必要がある。しかしながら、そのような調整を行うことは容易でなく、手間および時間が必要になる。
本発明の目的は、不慣れな使用者であっても計測箇所の計測値を容易に取得することが可能な測定装置を提供することである。
(1)本発明に係る測定装置は、ステージ保持部と、上下方向の回転軸を中心に回転可能にステージ保持部により保持され、回転軸に対して非垂直でかつ測定対象物が載置される傾斜載置面を有するステージと、ステージに載置される測定対象物にパターンを有する測定光を照射する投光部と、測定対象物により反射された測定光を受光して受光量を表す受光信号を出力する受光部とを含むヘッド部と、ヘッド部とステージ保持部とを連結することにより、投光部から測定対象物に対して測定光が斜め下方に導かれ、かつ受光部の光軸が測定対象物に向かって斜め下方に延びるとともに、投光部と受光部とステージとの位置関係が定まるように、ヘッド部とステージ保持部とを固定的に連結する連結部と、ステージの回転を制御する回転制御手段と、受光部により出力される受光信号に基づいて、測定対象物の立体形状を表す点群データを生成する点群データ生成手段と、点群データ生成手段により生成された点群データに基づいて、計測の基準となる基準面を設定する基準面設定手段と、測定対象物の計測すべき箇所の指定を受け付け、点群データ生成手段により生成された点群データに基づいて、指定された箇所の計測値を基準面設定手段により設定された基準面を基準として算出する計測手段とを備え、受光部は、光軸に対して垂直な撮像面を有し、回転制御手段は、指示に基づいて傾斜載置面が受光部の撮像面と正対するように、ステージを予め記憶された第1の回転位置に位置させ、投光部は、ステージが第1の回転位置に位置する状態で、ステージに載置された測定対象物に二次元状に測定光を照射し、点群データ生成手段は、ステージが第1の回転位置に位置する状態で、受光部から出力される受光信号に基づいて二次元状の点群データを生成する。
この測定装置においては、投光部および受光部を含むヘッド部がステージ保持部と固定的に連結される。ステージ保持部により保持されたステージの傾斜載置面上に測定対象物が載置され、パターンを有する測定光が投光部から測定対象物に照射される。測定対象物により反射された測定光が受光部により受光され、受光量を表す受光信号が出力される。受光信号に基づいて測定対象物の立体形状を表す点群データが生成される。
この場合、投光部、受光部およびステージが一体的に設けられているので、使用者は、これらの配置を調整する必要がなく、ステージ上に測定対象物を載置することで、測定対象物の点群データを得ることができる。また、ステージの回転軸が受光部の光軸と平行でないので、ステージが回転されることにより、受光部に向けられる測定対象物の箇所が変わる。そのため、ステージの回転位置が異なる状態で測定対象物に測定光が照射されることにより、測定対象物の異なる箇所での反射光が受光部によって受光される。したがって、受光部から出力される受光信号に基づいて、測定対象物の広い範囲の点群データを容易に生成することができる。
また、生成された点群データに基づいて計測の基準となる基準面が設定され、点群データに基づいて、指定された箇所の計測値が基準面を基準として算出される。この場合、基準面が設定されることによって、点群データから計測値を算出することが容易となる。
さらに、ステージが第1の回転位置に位置されることにより、傾斜載置面が受光部の撮像面と正対する。そのため、水平面上では上方に向けられる測定対象物の箇所が、傾斜載置面上では受光部の撮像面に向けられる。それにより、受光信号に基づいて、水平面上では上方に向けられる測定対象物の箇所の点群データを生成することができる。したがって、必要な箇所の点群データを効率良く生成することができる。また、生成された点群データに基づいて、測定対象物を平面図的に表すことが可能となる。そのため、操作に不慣れな使用者であっても、平面図的に表される測定対象物の箇所において基準面を容易に設定することができ、かつ計測箇所の指定を容易に行うことが可能となる。したがって、計測箇所の計測値を容易に取得することができる。
(2)受光部は、単眼カメラであってもよい。この場合、ステレオカメラのように視点が複数にならないので、測定対象物に対して撮像面の向きを容易にかつ正確に設定することができる。それにより、測定対象物の所望の箇所の点群データを容易に生成することができる。
(3)測定装置は、点群データ生成手段により生成された点群データに基づいて、基準面設定手段により設定された基準面に対して垂直に測定対象物を見た画像を表す画像データを生成する画像データ生成手段をさらに備えてもよい。この場合、生成された画像データに基づいて、基準面に対して垂直に測定対象物を見た画像が表示されることにより、使用者は平面図を用いる場合と同様に計測箇所を指定することができ、計測箇所の指定が容易となる。
(4)ステージは、回転軸と直交する非傾斜載置面をさらに有してもよい。この場合、投光部から測定対象物に斜め下方に測定光が導かれ、かつ測定対象物に向かって斜め下方に延びる光軸を有する受光部によってその反射光が受光されるので、非傾斜載置面上に測定対象物が載置されることにより、測定対象物の広い範囲の点群データを効率良く生成することができる。また、ステージを回転させることにより、測定対象物のより広い範囲の点群データを容易に生成することができる。
(5)ステージは、非傾斜載置面を有し、ステージ保持部により保持されるステージプレートと、傾斜載置面を有し、ステージプレートに対して着脱可能な傾斜部とを含んでもよい。この場合、ステージプレートに対する傾斜部の着脱によって非傾斜載置面および傾斜載置面を選択的に使用することができ、かつその切替を容易に行うことができる。
(6)ステージは、非傾斜載置面および傾斜載置面を選択的に形成するように、回転軸に垂直な面に対する傾斜角度を調整可能に設けられたステージプレートを含んでもよい。この場合、ステージプレートの傾斜角度の調整によって非傾斜載置面および傾斜載置面を選択的に使用することができ、かつその切替を容易に行うことができる。
(7)ステージが第1の回転位置にある状態で、受光部の光軸が傾斜載置面に直交してもよい。この場合、水平面上では鉛直上方に向けられる測定対象物の箇所の点群データを生成することができる。そのため、生成された点群データに基づいて、測定対象物をより平面図的に表すことができる。
(8)回転制御手段は、指示に基づいてステージを予め記憶された第1の回転位置に位置させる第1の制御と、設定に基づいてステージを第2の回転位置、および第2の回転位置とは異なる第3の回転位置に位置させる第2の制御とを実行可能であり、点群データ生成手段は、指示に基づき回転制御手段が第1の制御を実行する場合、ステージが第1の回転位置に位置する状態で受光部により出力される受光信号に基づいて点群データとして第1の立体形状データを生成し、設定に基づき回転制御手段が第2の制御を実行する場合、ステージが第2の回転位置に位置する状態で受光部により出力される受光信号に基づいて点群データとして第2の立体形状データを生成し、ステージが第3の回転位置に位置する状態で受光部により出力される受光信号に基づいて点群データとして第3の立体形状データを生成し、第2および第3の立体形状データを合成してもよい。
(9)回転制御手段は、ステージを第1の回転位置と異なる準正対位置に位置させ、点群データ生成手段は、ステージが第1の回転位置に位置する状態で受光部により出力される受光信号に基づいて点群データとして第1の立体形状データを生成し、ステージが準正対位置に位置する状態で受光部により出力される受光信号に基づいて点群データとして第2の立体形状データを生成し、第1および第2の立体形状データを合成してもよい。
(10)投光部は、ステージが第1の回転位置に位置する状態で、ステージに載置される測定対象物に測定光を複数回照射することにより二次元状に測定光を照射してもよい。
この場合、ステージの回転位置が異なることによって、測定対象物の異なる箇所での反射光が受光部によって受光される。したがって、受光部により出力される受光信号に基づいて、測定対象物の広い範囲の点群データを生成することができる。なお、ステージの回転位置が変化されつつ3つ以上の点群データが生成され、それらの3つ以上の点群データが合成されてもよい。生成される点群データの数が多いほど、測定対象物の各部の立体形状が明確になり、正確な計測値を取得することができる。
本発明によれば、測定対象物の所望の箇所の計測値を容易に取得することができる。
本発明の一実施の形態に係る測定装置の構成を示すブロック図である。 図1の測定装置の測定部の構成を示す模式図である。 図1のCPUにより実現される機能を示す機能ブロック図である。 測定部の模式的な外観斜視図である。 受光部とステージとの位置関係について説明するための図である。 ステージの具体的な構成例について説明するための図である。 三角測距方式の原理を説明するための図である。 測定光の第1のパターンを説明するための図である。 測定光の第2のパターンを説明するための図である。 測定光の第3のパターンを説明するための図である。 測定対象物の特定の部分における画像が撮影されたタイミングと受光された光の強度との関係を示す図である。 測定光の第4のパターンを説明するための図である。 複数の方向から測定対象物を撮像することにより複数の立体形状データを生成する例を説明するための図である。 形状測定の準備の手順を示すフローチャートである。 形状測定の準備の手順における第1の調整の詳細を示すフローチャートである。 形状測定の準備の手順における第1の調整の詳細を示すフローチャートである。 形状測定の準備の手順における第2の調整の詳細を示すフローチャートである。 形状測定処理の概要を示すフローチャートである。 通常状態での形状測定処理と傾斜正対状態での形状測定処理との違いについて説明するための図である。 測定対象物の一例を示す図である。 受光部により撮像される測定対象物を示す図である。 基準面の設定時におけるCPUの動作例を示すフローチャートである。 基準面画像の例を示す図である。 計測条件の設定例について説明するための図である。 基準面画像の他の例を示す図である。 プロファイルを取得すべき箇所の指定について説明するための図である。 プロファイル画像の例を示す図である。 ステージの回転位置の変化による測定対象物の向きの変化について説明するための図である。 ステージの回転位置の変化による測定対象物の向きの変化について説明するための図である。 比較例における測定対象物の向きの変化について説明するための図である。 比較例における測定対象物の向きの変化について説明するための図である。 測定対象物の載置時におけるステージの回転位置について説明するための図である。 ステージの他の構成例について説明するための図である。
以下、本発明の実施の形態に係る測定装置について図面を参照しながら説明する。
[1]測定装置の構成
図1は、本発明の一実施の形態に係る測定装置の構成を示すブロック図である。図2は、図1の測定装置500の測定部の構成を示す模式図である。以下、本実施の形態に係る測定装置500について、図1および図2を参照しながら説明する。図1に示すように、測定装置500は、測定部100、PC(パーソナルコンピュータ)200、制御部300および表示部400を備える。
図1に示すように、測定部100は、例えば投受光一体の撮像デバイスであり、投光部110、受光部120、照明光出力部130、ステージ140および制御基板150を含む。図2に示すように、投光部110は、測定光源111、パターン生成部112および複数のレンズ113,114を含む。受光部120は、撮像素子121aを有するカメラ121、およびレンズ122を含む。本例において、カメラ121は単眼カメラである。ステージ140上には、測定対象物Sが載置される。
図2の例においては、測定部100は2つの投光部110を含む。以下、2つの投光部110を区別する場合は、一方の投光部110を投光部110Aと呼び、他方の投光部110を投光部110Bと呼ぶ。投光部110A,110Bは受光部120の光軸A1を挟んで対称に配置される。受光部120の光軸A1は、カメラ121の撮像素子121aの中心およびレンズ122の中心を通る。
各投光部110A,110Bの測定光源111は、例えば青色LED(発光ダイオード)である。測定光源111は、ハロゲンランプ等の他の光源であってもよい。測定光源111から出射された光(以下、測定光と呼ぶ)は、レンズ113により適切に集光された後、パターン生成部112に入射する。
パターン生成部112は、例えばDMD(デジタルマイクロミラーデバイス)である。パターン生成部112は、LCD(液晶ディスプレイ)、LCOS(Liquid Crystal on Silicon:反射型液晶素子)またはマスクであってもよい。パターン生成部112に入射した測定光は、予め設定されたパターンおよび予め設定された強度(明るさ)に変換されて出射される。パターン生成部112により出射された測定光は、レンズ114により測定対象物Sの寸法よりも大きい径を有する光に変換された後、ステージ140上の測定対象物Sに照射される。
投光部110Aの測定光源111、レンズ113およびパターン生成部112は、受光部120の光軸A1と略平行に並ぶように配置される。同様に、投光部110Bの測定光源111、レンズ113およびパターン生成部112は、受光部120の光軸A1と略平行に並ぶように配置される。一方、投光部110A,110Bのレンズ114は、測定光源111、レンズ113およびパターン生成部112に対してオフセットするように配置される。これにより、投光部110A,110Bの光軸A2が受光部120の光軸A1に対して傾斜し、受光部120の両側方から測定対象物Sに向けて測定光が出射される。測定対象物Sによりステージ140の上方に反射された測定光は、受光部120のレンズ122により集光および結像され、カメラ121の撮像素子121aにより受光される。
本例においては、測定光の照射範囲を広くするため、一定の画角を有するように投光部110A,110Bが構成される。投光部110A,110Bの画角は、例えば、パターン生成部112の寸法およびレンズ114の焦点距離により定まる。また、受光部120の視野(撮像範囲)を広くするため、一定の画角を有するように受光部120が構成される。受光部120の画角は、例えば、撮像素子121aの寸法およびレンズ122の焦点距離により定まる。測定光の照射範囲および撮像範囲を広くする必要がない場合には、投光部110A,110Bおよび受光部120として、画角が略0度となるテレセントリック光学系が用いられてもよい。
測定部100は、倍率が異なる複数の受光部120を有してもよい。この場合、複数の受光部120を選択的に用いることにより、測定対象物Sを異なる倍率で撮像することができる。複数の受光部120の光軸は、互いに平行であることが好ましい。
カメラ121は、例えばCCD(電荷結合素子)カメラである。撮像素子121aは、例えばモノクロCCD(電荷結合素子)である。撮像素子121aは、CMOS(相補性金属酸化膜半導体)イメージセンサ等の他の撮像素子であってもよい。撮像素子121aの各画素からは、受光量に対応するアナログの電気信号(以下、受光信号と呼ぶ)が制御基板150に出力される。
モノクロCCDには、カラーCCDとは異なり、赤色波長の光を受光する画素、緑色波長の光を受光する画素および青色波長の光を受光する画素を設ける必要がない。ここで、測定光に青色波長等の特定波長を採用した場合、カラーCCDは特定波長の光を受光する画素しか計測に利用できないが、モノクロCCDにはそのような制約がない。そのため、モノクロCCDの計測の分解能はカラーCCDの分解能よりも高くなる。また、モノクロCCDには、カラーCCDとは異なり、各画素にカラーフィルタを設ける必要がない。そのため、モノクロCCDの感度はカラーCCDの感度よりも高くなる。これらの理由により、本例におけるカメラ121にはモノクロCCDが設けられる。
本例においては、照明光出力部130は、測定対象物Sに赤色波長の光、緑色波長の光および青色波長の光を時分割で出射する。この構成によれば、モノクロCCDを用いた受光部120により測定対象物Sのカラー画像を撮像することができる。
一方、カラーCCDが十分な分解能および感度を有する場合には、撮像素子121aは、カラーCCDであってもよい。この場合、照明光出力部130は、測定対象物Sに赤色波長の光、緑色波長の光および青色波長の光を時分割で照射する必要はなく、白色光を測定対象物Sに照射する。そのため、照明光源320の構成を単純にすることができる。
制御基板150には、図示しないA/D変換器(アナログ/デジタル変換器)およびFIFO(First In First Out)メモリが実装される。カメラ121から出力される受光信号は、制御部300による制御に基づいて、制御基板150のA/D変換器により一定のサンプリング周期でサンプリングされるとともにデジタル信号に変換される。A/D変換器から出力されるデジタル信号は、FIFOメモリに順次蓄積される。FIFOメモリに蓄積されたデジタル信号は画素データとして順次PC200に転送される。ここで、カメラ121が、例えば、モノクロCMOSカメラであって、撮像素子121aの各画素から受光量に対応するデジタルの電気信号が制御基板150へ出力される場合、A/D変換器は必ずしも必要ではない。
図1に示すように、PC200は、CPU(中央演算処理装置)210、ROM(リードオンリメモリ)220、作業用メモリ230、記憶装置240および操作部250を含む。また、操作部250は、キーボードおよびポインティングデバイスを含む。ポインティングデバイスとしては、マウスまたはジョイスティック等が用いられる。
ROM220には、システムプログラムが記憶される。作業用メモリ230は、RAM(ランダムアクセスメモリ)からなり、種々のデータの処理のために用いられる。記憶装置240は、ハードディスク等からなる。記憶装置240には、形状測定プログラムが記憶される。また、記憶装置240は、制御基板150から与えられる画素データ等の種々のデータを保存するために用いられる。
CPU210は、制御基板150から与えられる画素データに基づいて画像データを生成する。また、CPU210は、生成した画像データに作業用メモリ230を用いて各種処理を行うとともに、画像データに基づく画像を表示部400に表示させる。さらに、CPU210は、後述するステージ駆動部146に制御基板150を通して駆動信号を与える。表示部400は、例えばLCDパネルまたは有機EL(エレクトロルミネッセンス)パネルにより構成される。表示部400には、受光部120のカメラ121によりリアルタイムで取得される画像データ(以下、ライブ画像データと呼ぶ。)に基づいて、リアルタイムでの測定対象物Sの画像(以下、ライブ画像と呼ぶ)を表示させることができる。
一方の投光部110Aから測定光が照射された測定対象物Sの画像と他方の投光部110Bから測定光が照射された測定対象物Sの画像とが並ぶように表示部400に表示(2画面表示)されてもよい。また、一方の投光部110Aから測定光が照射された測定対象物Sの画像と他方の投光部110Bから測定光が照射された測定対象物Sの画像とが重なるように表示部400に表示する等の合成表示がされてもよい。
2画面表示がされる場合には、例えば、一定の周期(数Hz)で投光部110A,110Bから測定対象物Sに交互に測定光が照射され、投光部110Aから測定対象物Sに測定光が照射されているときに取得される画像および投光部110Bから測定対象物Sに測定光が照射されているときに取得される画像が表示部400に別個に表示される。使用者は、表示される画像を見ながら、投光部110Aから測定光が出射されるときの受光部120の受光量および投光部110Bから測定光が出射されるときの受光部120の受光量をそれぞれ調整することができる。受光部120の受光量は、投光部110A,110Bから出射される測定光の明るさまたは受光部120の露光時間を変化させることにより調整可能である。
合成表示がされる場合も、2画面表示がされる場合と同様に、使用者は、表示される画像を見ながら、投光部110Aから測定光が出射されるときの受光部120の受光量および投光部110Bから測定光が出射されるときの受光部120の受光量をそれぞれ調整することができる。この場合、表示部400においては、合成表示の画像に加えて、一方の投光部110Aから測定光が照射された測定対象物Sの画像と、他方の投光部110Bから測定光が照射された測定対象物Sの画像とが並ぶように表示されてもよい。または、表示部400においては、2画面表示の画像と合成表示の画像とが切り替えて表示されてもよい。あるいは、表示部400においては、合成表示の画像と、一方の投光部110Aから測定光が照射された測定対象物Sの画像と、他方の投光部110Bから測定光が照射された測定対象物Sの画像とが、切り替えて表示されてもよい。
図2に示すように、ステージ140は、ステージベース141およびステージプレート142を含む。ステージベース141上にステージプレート142が配置される。ステージプレート142は、測定対象物Sが載置される載置面を有する。ここで、ステージプレート142の載置面内で互いに直交する2方向をX方向およびY方向と定義し、それぞれ矢印X,Yで示す。また、載置面に対して直交する方向をZ方向と定義し、矢印Zで示す。また、Z方向に平行な軸を中心に回転する方向をθ方向と定義し、矢印θで示す。ステージプレート142には、クランプまたは治具等を取り付けるための取付部(例えばねじ孔)が設けられてもよい。
ステージプレート142の載置面の上方には、略円柱状の測定可能領域MRが設定される。測定可能領域MRは、投光部110A,110Bにより測定光を照射可能でかつ受光部120により撮像可能な領域である。測定可能領域MRの大きさおよび位置は、カメラ121のレンズ122の倍率および焦点位置等によって異なる。倍率が異なる複数の受光部120が設けられる場合には、使用される受光部120によって測定可能領域MRが異なる。
ステージ140は回転機構143に取り付けられる。回転機構143は、例えばステッピングモータを含む。回転機構143は、図1のステージ操作部145またはステージ駆動部146により駆動され、ステージ140を回転軸Axを中心にθ方向に回転させる。本例において、回転軸Axは鉛直方向に延びる。回転軸Axの方向は鉛直方向に限らず、鉛直方向に対して僅かに傾斜していてもよい。使用者は、ステージ操作部145を手動で操作することにより、ステージ140をθ方向に回転させることができる。また、ステージ駆動部146は、PC200より制御基板150を通して与えられる駆動信号に基づいて、回転機構143に電流を供給することにより、ステージ140を受光部120に相対的にθ方向に回転させることができる。
なお、本実施の形態では、ステージ140はステッピングモータにより駆動することが可能であるとともに手動により操作することが可能であるが、これに限定されない。ステージ140はステッピングモータでのみ駆動することが可能であってもよいし、手動でのみ操作することが可能であってもよい。また、ステッピングモータに代えて、サーボモータ等の他の駆動装置が用いられてもよい。
制御部300は、制御基板310および照明光源320を含む。制御基板310には、図示しないCPUが実装される。制御基板310のCPUは、PC200のCPU210からの指令に基づいて、投光部110、受光部120および制御基板150を制御する。制御基板310および照明光源320は、測定部100に搭載されてもよい。ただし、制御基板310および照明光源320は熱を生じやすく、その熱の影響によって測定部100の精度が低下する可能性がある。したがって、測定部100の精度を確保するために、制御基板310および照明光源320が測定部100の外部に設けられることが好ましい。
照明光源320は、例えば赤色光、緑色光および青色光を出射する3つのLEDを含む。各LEDから出射される光の輝度を制御することにより、照明光源320から任意の色の光を発生することができる。照明光源320から発生される光(以下、照明光と呼ぶ)は、導光部材(ライトガイド)を通して測定部100の照明光出力部130から出力される。図2の照明光出力部130は、円環形状を有し、受光部120を取り囲むようにステージ140の上方に配置される。これにより、影が発生しないように照明光出力部130から測定対象物Sに照明光が照射される。なお、照明光出力部130および照明光源320は、外部装置として設けられてもよい。
図3は、図1のCPU210により実現される機能を示す機能ブロック図である。図3に示すように、CPU210は、回転制御部501、点群データ生成部502、基準面設定部503、計測部504および画像データ生成部505を含む。
回転制御部501は、ステージ駆動部146を制御することにより、ステージ140の回転を制御する。点群データ生成部502は、受光部120により出力される受光信号に基づいて、測定対象物Sの立体形状を表す点群データを生成する。基準面設定部503は、点群データ生成部502により生成された点群データに基づいて、計測の基準となる基準面を設定する。計測部504は、測定対象物Sの計測すべき箇所の指定を受け付け、点群データ生成部502により生成された点群データに基づいて、指定された箇所の計測値を基準面設定部503により設定された基準面を基準として算出する。画像データ生成部505は、点群データ生成部502により生成された点群データに基づいて、基準面設定部503により設定された基準面に対して垂直に測定対象物Sを見た画像を表す画像データを生成する。これらの機能の詳細については後述する。
回転制御部501、点群データ生成部502、基準面設定部503、計測部504および画像データ生成部505は、CPU210がROM220または記憶装置240に記憶された形状測定プログラムを実行することにより実現される。これらの機能部は、電子回路等のハードウエアにより実現されてもよい。
図4は、測定部100の模式的な外観斜視図である。図4では、測定部100の外観が太い実線で示されるとともに、測定部100の内部に設けられる一部の構成要素が点線で示される。図4に示すように、測定部100は台座170を含む。台座170には、2つの投光部110、受光部120、照明光出力部130および制御基板150が取り付けられる。この状態で、2つの投光部110、受光部120および照明光出力部130の位置関係が台座170により固定される。また、照明光出力部130は、略円筒形状を有し、受光部120を取り囲むように配置されている。照明光出力部130の一端部には、楕円形状を有する照明光の出射口131が形成されている。さらに、2つの投光部110は、受光部120および照明光出力部130を挟んで並ぶように配置される。
台座170には、2つの投光部110、受光部120、照明光出力部130および制御基板150の一部を収容するヘッドケーシング180が取り付けられる。2つの投光部110、受光部120、照明光出力部130、制御基板150、台座170およびヘッドケーシング180によりヘッド部190が構成される。
測定部100は、設置部161およびスタンド部162を含む。設置部161は、平坦な底面を有するとともに略一定幅で一方向に延びるように形成されている。スタンド部162は、設置部161の一端部に接続され、設置部161の一端部から上方に延びるように形成される。設置部161上にステージ140が回転可能に保持される。ヘッド部190の台座170は、スタンド部162の上端に着脱可能に構成されている。スタンド部162によりヘッド部190と設置部161とが固定的に連結される。これにより、ステージ140、2つの投光部110および受光部120の位置関係が一定に保持される。
各投光部110は、測定光の照射される照射領域IRがステージ140およびその上方の空間を含むように位置決めされる。測定光は、各投光部110から測定対象物Sに対して斜め下方に導かれる。各受光部120は、図2のカメラ121による撮像領域TRがステージ140およびその上方の空間を含むように位置決めされる。図4では、各投光部110の照射領域IRが二点鎖線で示されるとともに、受光部120の撮像領域TRが一点鎖線で示される。
図5は、受光部120とステージ140との位置関係について説明するための図である。図5には、側方から見た受光部120およびステージ140が示される。図5に示すように、受光部120の光軸A1は、ステージ140の回転軸Axに対して傾斜しており、ステージ140上の測定対象物Sに向かって斜め下方に延びる。
受光部120は、光軸A1に垂直な仮想的な撮像面120aを有する。撮像面120aが向けられる領域が、受光部120によって撮像される領域となる。本例では、測定可能領域MRに対して撮像面120aが斜め下方に向けられる。水平面に対する撮像面120aの傾斜角度D1は、例えば45度に設定される。
図6は、ステージ140の具体的な構成例について説明するための図である。図6(a)に示すように、ステージプレート142は、固定部401および傾斜部402を含む。固定部401は平坦な固定載置面401aを有し、傾斜部402は平坦な傾斜載置面402aを有する。固定載置面401aおよび傾斜載置面402aにより載置面142aが構成される。
固定部401はステージベース141に固定されており、固定載置面401aは水平に維持される。一方、傾斜部402は、傾斜載置面402aが水平に維持される水平姿勢と、固定載置面401aに対して傾斜載置面402aが傾斜される傾斜姿勢とに切替可能に設けられる。図6(a)においては、傾斜部402が水平姿勢にあり、図6(b)においては、傾斜部402が傾斜姿勢にある。また、図6(c)に示すように、傾斜部402を傾斜姿勢に支持するための支持部403が設けられてもよい。また、傾斜部402を駆動部する傾斜駆動部が設けられ、CPU210の指示によって傾斜部402が自動的に傾斜されてもよい。
傾斜部402が傾斜姿勢にある場合の固定載置面401aに対する傾斜載置面402aの傾斜角度(水平面に対する傾斜載置面402aの傾斜角度)D2は、予め定められた値にのみ調整可能であってもよく、複数段階に切替可能であってもよい。本例において、傾斜載置面402aの傾斜角度D2は、撮像面120aの傾斜角度D1(図5)と等しく調整される。なお、傾斜角度D1,D2が、45度以外の互いに等しい値に調整されてもよい。傾斜載置面402aには、測定対象物Sを係止するための係止部(例えば突起部)が設けられてもよい。
[2]測定対象物の形状測定
(1)三角測距方式による形状測定
測定部100においては、三角測距方式により測定対象物Sの形状が測定される。図7は、三角測距方式の原理を説明するための図である。図7に示すように、測定光の光軸A2と受光部120の光軸A1との間の角度αが予め設定される。角度αは、0度よりも大きく90度よりも小さい。
ステージ140上に測定対象物Sが載置されない場合、投光部110から出射される測定光は、ステージ140の載置面の点Oにより反射され、受光部120に入射する。一方、ステージ140上に測定対象物Sが載置される場合、投光部110から出射される測定光は、測定対象物Sの表面の点Aにより反射され、受光部120に入射する。
点Oと点Aとの間のX方向における距離をdとすると、ステージ140の載置面に対する測定対象物Sの点Aの高さhは、h=d÷tan(α)により与えられる。図1のPC200のCPU210は、制御基板150により与えられる測定対象物Sの画素データに基づいて、X方向における点Oと点Aとの間の距離dを測定する。また、CPU210は、測定された距離dに基づいて、測定対象物Sの表面の点Aの高さhを算出する。測定対象物Sの表面の複数の点の高さを算出することにより、測定対象物Sの三次元的な形状が測定される。
測定対象物Sの表面の複数の点に測定光を照射するために、図1の投光部110からは種々のパターンを有する測定光が出射される。測定光のパターンは、図2のパターン生成部112により制御される。以下、測定光のパターンについて説明する。
(2)測定光の第1のパターン
図8は、測定光の第1のパターンを説明するための図である。図8(a)は、ステージ140上の測定対象物Sに投光部110から測定光を照射した状態を示す。図8(b)は、測定光が照射された測定対象物Sの平面図を示す。図8(a)に示すように、第1のパターンとして、Y方向に平行な直線状の断面を有する測定光(以下、ライン状測定光と呼ぶ)が投光部110から出射される。この場合、図8(b)に示すように、ステージ140に照射されたライン状測定光の部分と測定対象物Sの表面に照射されたライン状測定光の部分とは、測定対象物Sの表面の高さhに対応する距離dだけX方向に互いにずれる。したがって、距離dを測定することにより、測定対象物Sの高さhを算出することができる。
測定対象物Sの表面のY方向に沿った複数の部分が異なる高さを有する場合には、各部分について上記の距離dを測定することにより、Y方向に沿った複数の部分の高さhを算出することができる。
また、図1のCPU210は、X方向の一の位置でY方向に沿った複数の部分について距離dを測定した後、Y方向に平行なライン状測定光をX方向に走査することにより、X方向の他の位置でY方向に沿った複数の部分について距離dを測定する。これにより、X方向の複数の位置におけるY方向に沿った測定対象物Sの複数の部分の高さhが算出される。測定対象物SのX方向の寸法よりも広い範囲でライン状測定光をX方向に走査することにより、測定対象物Sの表面の各点の高さhを算出することができる。これにより、測定対象物Sの三次元的な形状を測定することができる。
(3)測定光の第2のパターン
図9は、測定光の第2のパターンを説明するための図である。図9に示すように、第2のパターンとして、Y方向に平行な直線状の断面を有しかつX方向に強度が正弦波状に変化するパターンを有する測定光(以下、正弦波状測定光と呼ぶ)が投光部110から複数回(本例においては4回)出射される。
図9(a)は、1回目に出射される正弦波状測定光を示す。1回目に出射される正弦波状測定光の強度は、測定対象物Sの表面上の任意の部分P0において初期位相φを有する。この正弦波状測定光が出射されることにより、測定対象物Sの表面で反射された光が受光部120により受光される。受光された光の強度が測定対象物Sの画素データに基づいて測定される。測定対象物Sの表面上の部分P0により反射された光の強度をI1とする。
図9(b)は、2回目に出射される正弦波状測定光を示す。2回目に出射される正弦波状測定光の強度は、測定対象物Sの表面上の部分P0において位相(φ+π/2)を有する。この正弦波状測定光が出射されることにより、測定対象物Sの表面で反射された光が受光部120により受光される。受光された光の強度が測定対象物Sの画素データに基づいて測定される。測定対象物Sの表面上の部分P0により反射された光の強度をI2とする。
図9(c)は、3回目に出射される正弦波状測定光を示す。3回目に出射される正弦波状測定光の強度は、測定対象物Sの表面上の部分P0において位相(φ+π)を有する。この正弦波状測定光が出射されることにより、測定対象物Sの表面で反射された光が受光部120により受光される。受光された光の強度が測定対象物Sの画素データに基づいて測定される。測定対象物Sの表面上の部分P0により反射された光の強度をI3とする。
図9(d)は、4回目に出射される正弦波状測定光を示す。4回目の正弦波状測定光の強度は、測定対象物Sの表面上の部分P0において位相(φ+3π/2)を有する。この正弦波状測定光が出射されることにより、測定対象物Sの表面で反射された光が受光部120により受光される。受光された光の強度が測定対象物Sの画素データに基づいて測定される。測定対象物Sの表面上の部分P0により反射された光の強度をI4とする。
初期位相φは、φ=tan−1[(I1−I3)/(I2−I4)]で与えられる。初期位相φから測定対象物Sの任意の部分の高さhが算出される。この方式によれば、4回の光の強度の測定により、測定対象物Sの各部分の初期位相φを高速かつ容易に算出することができる。なお、初期位相φは、異なる位相を有する測定光を少なくとも3回出射し、受光される光の強度を測定することにより算出することができる。測定対象物Sの表面上の各部分の高さhを算出することにより、測定対象物Sの三次元的な形状を測定することができる。
(4)測定光の第3のパターン
図10は、測定光の第3のパターンを説明するための図である。図10に示すように、第3のパターンとして、Y方向に平行でかつX方向に並ぶような直線状の断面を有する測定光(以下、縞状測定光と呼ぶ)が投光部110から複数回(本例においては16回)出射される。すなわち、縞状測定光においては、Y方向に平行な直線状の明部分およびY方向に平行な直線状の暗部分がX方向に周期的に配列される。
1回目の縞状測定光が出射されることにより、測定対象物Sの表面で反射された光が受光部120により受光される。受光された光の強度が、測定対象物Sの1番目の撮影画像の画素データに基づいて測定される。図10(a)は、1回目の縞状測定光に対応する測定対象物Sの1番目の撮影画像である。
2回目の縞状測定光は、1回目の縞状測定光から明部分および暗部分をX方向に1単位だけ移動させたパターンを有する。2回目の縞状測定光が出射されることにより、測定対象物Sの表面で反射された光が、受光部120により受光される。受光された光の強度が測定対象物Sの2番目の撮影画像の画素データに基づいて測定される。
3回目の縞状測定光は、2回目の縞状測定光から明部分および暗部分をX方向に1単位だけ移動させたパターンを有する。3回目の縞状測定光が出射されることにより、測定対象物Sの表面で反射された光が受光部120により受光される。受光された光の強度が、測定対象物Sの3番目の撮影画像の画素データに基づいて測定される。
同様の動作が繰り返されることにより、4〜16回目の縞状測定光に対応する光の強度が、測定対象物Sの4〜16番目の撮影画像の画素データに基づいてそれぞれ測定される。X方向の周期が16単位である縞状測定光が16回出射されることにより、測定対象物Sの表面の各部分に縞状測定光が照射される。なお、図10(b)は、7回目の縞状測定光に対応する測定対象物Sの7番目の撮影画像である。図10(c)は、13回目の縞状測定光に対応する測定対象物Sの13番目の撮影画像である。
図11は、測定対象物Sの特定の部分における画像が撮影されたタイミング(番数)と受光された光の強度との関係を示す図である。図11の横軸は画像の順番を示し、縦軸は受光された光の強度を示す。上述のように、測定対象物Sの各部分について、1〜16番目の撮影画像が生成される。また、生成された1〜16番目の撮影画像の各画素に対応する光の強度が測定される。
図11に示すように、撮影画像の番号に対応する撮影画像の各画素の光の強度を図示することにより散布図が得られる。得られた散布図に例えばガウシアン曲線、スプライン曲線または放物線をフィッティングさせることにより、光の強度が最大になるときの撮影画像の番号(番数)を1未満の精度で推定することができる。図11の例においては、フィッティングされた点線で示す曲線により、9番目と10番目との間である仮想的な9.38番目の撮影画像において、光の強度が最大になることが推定される。
また、フィッティングされた曲線により、光の強度の最大値を推定することができる。測定対象物Sの各部分において推定された光の強度が最大となる撮影画像の番号に基づいて、測定対象物Sの各部分の高さhを算出することができる。この方法によれば、S/N(信号/ノイズ)比が十分に大きい光の強度に基づいて、測定対象物Sの三次元的な形状が測定される。これにより、測定対象物Sの形状測定の精度を向上させることができる。
なお、正弦波状測定光または縞状測定光等の周期的なパターン形状を有する測定光を用いた測定対象物Sの形状測定においては、測定対象物Sの表面の各部分の相対的な高さ(高さの相対値)が測定される。これは、パターンを形成するY方向に平行な複数の直線(縞)の各々を識別することができず、複数の直線の1周期(2π)の整数倍に相当する不確かさが存在することにより、絶対位相が求まらないからである。そのため、測定対象物Sの一の部分の高さとその部分に隣接する部分の高さが連続的に変化しているという仮定に基づいて、測定された高さのデータに公知のアンラッピング処理が行われてもよい。
(5)測定光の第4のパターン
図12は、測定光の第4のパターンを説明するための図である。図12に示すように、第4のパターンとして、Y方向に平行な直線状の断面を有しかつ明部分と暗部分とがX方向に並ぶ測定光(以下、コード状測定光と呼ぶ)が投光部110から複数回(本例においては4回)出射される。コード状測定光の明部分および暗部分の割合は、それぞれ50%である。
本例においては、測定対象物Sの表面がX方向において複数(図12の例では16)の領域に分割される。以下、複数に分割されたX方向における測定対象物Sの領域をそれぞれ第1〜第16の領域と呼ぶ。
図12(a)は、1回目に出射されるコード状測定光を示す。1回目に出射されるコード状測定光は、測定対象物Sの第1〜第8の領域に照射される明部分を有する。また、1回目に出射されるコード状測定光は、測定対象物Sの第9〜第16の領域に照射される暗部分を有する。これにより、1回目に出射されるコード状測定光においては、明部分と暗部分とがY方向に平行でかつX方向に並ぶ。また、1回目に出射されるコード状測定光の明部分および暗部分の割合は、それぞれ50%である。
図12(b)は、2回目に出射されるコード状測定光を示す。2回目に出射されるコード状測定光は、測定対象物Sの第5〜第12の領域に照射される明部分を有する。また、2回目に出射されるコード状測定光は、測定対象物Sの第1〜第4および第13〜第16の領域に照射される暗部分を有する。これにより、2回目に出射されるコード状測定光においては、明部分と暗部分とがY方向に平行でかつX方向に並ぶ。また、2回目に出射されるコード状測定光の明部分および暗部分の割合は、それぞれ50%である。
図12(c)は、3回目に出射されるコード状測定光を示す。3回目に出射されるコード状測定光は、測定対象物Sの第1、第2、第7〜第10、第15および第16の領域に照射される明部分を有する。また、3回目に出射されるコード状測定光は、測定対象物Sの第3〜第6および第11〜第14の領域に照射される暗部分を有する。これにより、3回目に出射されるコード状測定光においては、明部分と暗部分とがY方向に平行でかつX方向に並ぶ。また、3回目に出射されるコード状測定光の明部分および暗部分の割合は、それぞれ50%である。
図12(d)は、4回目に出射されるコード状測定光を示す。4回目に出射されるコード状測定光は、測定対象物Sの第1、第4、第5、第8、第9、第12、第13および第16の領域に照射される明部分を有する。また、4回目に出射されるコード状測定光は、測定対象物Sの第2、第3、第6、第7、第10、第11、第14および第15の領域に照射される暗部分を有する。これにより、4回目に出射されるコード状測定光においては、明部分と暗部分とがY方向に平行でかつX方向に並ぶ。また、4回目に出射されるコード状測定光の明部分および暗部分の割合は、それぞれ50%である。
コード状測定光の明部分に論理“1”が割り当てられ、コード状測定光の暗部分に論理“0”が割り当てられる。また、測定対象物Sの各領域に照射される1回目〜4回目のコード状測定光の論理の並びを符号と呼ぶ。この場合、測定対象物Sの第1の領域には、符号“1011”のコード状測定光が照射される。これにより、測定対象物Sの第1の領域は、符号“1011”に符号化される。
測定対象物Sの第2の領域には、符号“1010”のコード状測定光が照射される。これにより、測定対象物Sの第2の領域は、符号“1010”に符号化される。測定対象物Sの第3の領域には、符号“1000”のコード状測定光が照射される。これにより、測定対象物Sの第3の領域は、符号“1000”に符号化される。同様に、測定対象物Sの第16の領域には、符号“0011”のコード状測定光が照射される。これにより、測定対象物Sの第16の領域は、符号“0011”に符号化される。
このように、測定対象物Sの隣り合う領域の間では、符号のいずれかの桁が“1”のみ異なるようにコード状測定光が測定対象物Sに複数回照射される。すなわち、コード状測定光は、明部分および暗部分がグレイコード状に変化するように、複数回測定対象物Sに照射される。
測定対象物Sの表面の各領域で反射された光が受光部120により受光される。受光された光の符号を測定することにより、測定対象物Sの領域ごとに、測定対象物Sが存在することにより変化した符号が得られる。得られた符号と領域ごとに測定対象物Sが存在しない場合の符号との差分を求めることにより、図7の距離dに相当する距離を算出することができる。ここで、画像におけるX軸方向には、上記の符号は1回のみ出現するというコード状測定光を用いた測定方法の特徴から、距離dの絶対的な値が算出される。これにより、測定対象物Sのその領域の絶対的な高さ(高さの絶対値)が算出される。測定対象物Sの表面上の全ての領域の高さを算出することにより、測定対象物Sの三次元的な形状を測定することができる。
上記の説明においては、測定対象物Sの表面がX方向において16の領域に分割され、コード状測定光が投光部110から4回出射されたが、これに限定されない。測定対象物Sの表面がX方向において2の領域(Nは自然数)に分割され、コード状測定光が投光部110からN回出射されてもよい。上記の説明においては、理解を容易にするためにNは4に設定されている。後述の形状測定処理においては、Nは例えば8に設定される。したがって、測定対象物Sの表面はX方向において256の領域に分割される。
コード状測定光を用いた測定対象物Sの形状測定においては、コード状測定光を分離して識別可能な距離、すなわち1画素分に相当する距離が最小の分解能となる。したがって、受光部120のX方向における視野の画素数が1024画素である場合、高さが例えば10mmの測定対象物Sを10mm÷1024≒10μmの分解能で計測することができる。分解能は低いが絶対値を算出可能なコード状測定光を用いた形状測定と絶対値を算出できないが分解能が高い正弦波状測定光または縞状測定光を用いた形状測定とを組み合わせることにより、測定対象物Sの高さの絶対値をより高い分解能で算出することができる。
特に、図10の縞状測定光を用いた測定対象物Sの形状測定においては、分解能を1/100画素にすることができる。なお、1/100画素の分解能は、受光部120のX方向における視野の画素数が1024画素である場合、測定対象物Sの表面をX方向において約100000の領域に分割すること(すなわちN≒17)に相当する。そのため、コード状測定光を用いた形状測定と縞状測定光を用いた形状測定と組み合わせることにより、測定対象物Sの高さの絶対値をさらに高い分解能で算出することができる。
上述のライン状測定光を測定対象物S上で走査する方法は一般に光切断法と呼ばれる。一方、正弦波状測定光、縞状測定光またはコード状測定光を測定対象物Sに照射する方法は、パターン投影法に分類される。また、パターン投影法の中でも、正弦波状測定光または縞状測定光を測定対象物Sに照射する方法は位相シフト法に分類され、コード状測定光を測定対象物Sに照射する方法は空間コード法に分類される。
位相シフト法においては、周期的な投影パターンである正弦波状測定光または縞状測定光を出射した際に、測定対象物Sが存在しない場合の基準高さ位置から反射した受光量に基づいて計算された位相と、測定対象物Sが存在する場合の測定対象物S表面から反射した受光量に基づいて計算された位相との位相差から測定対象物Sの高さを求める。位相シフト法においては、個々の周期的な縞が区別できず、縞1周期分(2π)の整数倍に相当する不確かさが存在するため、絶対位相が求まらないという欠点がある。しかしながら、光切断法に比べて取得する画像の枚数が少ないため測定時間が比較的短く、測定分解能が高いという長所がある。
一方、空間コード法おいては、測定対象物Sの領域ごとに、測定対象物Sが存在することによって変化した符号が得られる。得られた符号と測定対象物Sが存在しない場合の符号との差分を領域ごとに求めることにより、測定対象物Sの絶対的な高さを求めることができる。空間コード法においても、比較的少数の画像により測定が可能であり、絶対的な高さを求めることができるという長所がある。しかしながら、位相シフト法に比べると測定分解能に限界がある。
これらの投影法は、各々短所および長所を有しているが、いずれも三角測距の原理を用いている点は共通である。上記のような複数のパターンのうち1または複数のパターンの測定光が投影された測定対象物Sの画像データ(以下、パターン画像データと呼ぶ)に基づいて、測定対象物Sの立体形状を表す点群(ポイントクラウド)データが生成される。
以下の説明では、測定対象物Sの立体形状を表す点群データを立体形状データと呼ぶ。立体形状データは、測定対象物Sの表面上の複数の点の位置データを含む。位置データは、例えば、X方向、Y方向およびZ方向における座標を表す。この場合、立体形状データのうち任意の点のデータをPn(nは自然数)とすると、Pnは、例えば装置座標系の座標値を用いて(Xn,Yn,Zn)で表すことができる。なお、立体形状データは、点群データに基づいて生成される面情報データにより構成されてもよく、ポリゴンメッシュ等の他の形式のデータを含んでもよい。立体形状データに基づいて、測定対象物Sの立体形状を表す画像(以下、立体形状画像と呼ぶ)を表示することができる。
本実施の形態においては、立体形状画像は、二次元座標系が定義された任意の平面上に立体形状データが投影された状態を示す画像であり、使用者による計測箇所の指定を受け付けるための画像である。使用者は、測定対象物Sを見る方向(測定対象物Sに対する受光部120の位置)として立体形状データが投影される平面を指定することができる。それにより、立体形状画像により表される測定対象物Sの向きが変化する。
投光部110および受光部120に対する測定対象物Sの位置および姿勢が一定であると、測定対象物Sの一部にしか測定光が照射されない。また、測定対象物Sの一部で反射される光しか受光部120に入射しない。そのため、測定対象物Sの表面の広範囲に渡る立体形状データを求めることができない。そこで、測定対象物Sの位置または姿勢を変化させることにより、互いに異なる複数の視点で測定対象物Sを撮像し、複数の視点にそれぞれ対応する複数の立体形状データを取得し、取得された複数の立体形状データを合成してもよい。
図13は、複数の視点から測定対象物Sを撮像することにより複数の立体形状データを生成する例を説明するための図である。例えば、図13(a)に示すように、使用者により測定対象物Sの位置および姿勢がステージ140上で調整された後、測定光を用いて測定対象物Sが撮像されることにより最初の立体形状データが生成される。最初の立体形状データに基づく立体形状画像の一例が図13(d)に示される。立体形状データは、測定対象物Sの表面で反射して受光部120に入射する測定光に基づいて生成される。そのため、測定対象物Sの表面のうち受光部120に向けられている部分については立体形状データが生成されるが、受光部120に向けられていない部分については立体形状データを生成することができない。
そこで、図13(b)に示すように、図2の回転機構143によりステージ140が一定角度回転された後、測定光を用いて測定対象物Sが撮像されることにより2番目の立体形状データが生成される。図13(b)の例では、ステージ140が図13(a)の状態から反時計回りに所定角度回転されている。2番目の立体形状データに基づく立体形状画像の一例が図13(e)に示される。上記のように、ステージ140が回転すると、その回転に伴って測定対象物Sの表面のうち受光部120に向けられる部分が変化する。その結果、最初の撮像時には取得されなかった部分を含む立体形状データが生成される。
さらに、図13(c)に示すように、図2の回転機構143によりステージ140が一定角度回転された後、測定光を用いて測定対象物Sが撮像されることにより3番目の立体形状データが生成される。図13(c)の例では、ステージ140が図13(b)の状態から反時計回りに所定角度回転されている。3番目の立体形状データに基づく立体形状画像の一例が図13(f)に示される。
このようにして、ステージ140の回転および測定対象物Sの撮像が繰り返されることにより、複数の視点に対応する複数の立体形状データが生成される。ステージ140の1回の回転角度およびその回転の回数は、予め定められていてもよく、使用者が任意に指定可能であってもよい。これらの立体形状データが合成されることにより、測定対象物Sの広範囲の立体形状データが生成される。
本実施の形態では、受光部120、投光部110およびステージ140の相対位置が一定であり、これらの相対位置を表すパラメータ(以下、機器パラメータ)が、例えば図1の記憶装置240に予め記憶される。また、図1のステージ駆動部146が回転機構143を駆動する場合、例えばステージ140の回転角度が使用者により予め指定され、記憶された角度に基づいてステージ駆動部146が制御される。この場合、ステージ140の回転角度は、例えば図1のROM220または作業用メモリ230に記憶される。図1のCPU210は、複数の立体形状データを合成する際に、記憶された回転角度および機器パラメータに基づいて、複数の立体形状データの位置合わせを容易にかつ正確に行うことができる。また、位置合わせの詳細設定および補正等を使用者が行ってもよい。
ステージ140の回転角度を検出するセンサ等が設けられてもよい。この場合、使用者がステージ操作部145を操作してステージ140を回転させる場合であっても、センサによって検出された角度および上記の機器パラメータに基づいて、複数の立体形状データの位置合わせを容易にかつ正確に行うことができる。
[3]テクスチャ画像
測定部100においては、照明光出力部130から測定対象物Sに照明光が照射された状態または投光部110A,110Bから測定対象物Sに均一な測定光が照射された状態で、測定対象物Sの外観(表面状態)を表す画像データ(以下、テクスチャ画像データと呼ぶ。)が生成される。均一な測定光とは、パターンを有さない測定光であり、照明光の代わりに用いることができる。測定対象物Sの表面状態は、例えば模様または色彩を含む。以下、テクスチャ画像データにより表される画像をテクスチャ画像と呼ぶ。
テクスチャ画像データの種々の例について説明する。例えば、測定対象物Sに対して受光部120の焦点位置が相対的に変化されつつ複数のテクスチャ画像データが取得される。その複数のテクスチャ画像データが合成されることにより、測定対象物Sの表面の全体に焦点が合ったテクスチャ画像データ(以下、全焦点テクスチャ画像データと呼ぶ)が生成される。
また、異なる複数の撮像条件で複数のテクスチャ画像データが取得されてもよい。撮像条件は、例えば、受光部120の露光時間、照明光出力部130からの照明光の強度(明るさ)または投光部110からの均一な測定光の強度(明るさ)等を含む。取得された複数のテクスチャ画像データを用いて公知のハイダイナミック(HDR)合成が行われる。これにより、明るさの差異による黒つぶれおよび白とび等が抑制されたテクスチャ画像データ(以下、HDRテクスチャ画像データと呼ぶ)が生成される。
また、焦点位置が変化されるとともに撮像条件が変化されてもよい。具体的には、測定対象物Sに対して受光部120の焦点位置が相対的に変化されるとともに、各焦点位置において異なる複数の撮像条件でテクスチャ画像データが取得される。取得された複数のテクスチャ画像データを合成することにより、測定対象物Sの表面の全体に焦点が合い、かつ黒つぶれおよび白とび等が抑制されたテクスチャ画像データを生成することができる。
各テクスチャ画像データは、測定対象物Sの各点の色または輝度を表すテクスチャ情報(光学的表面状態を表す情報)を含む。一方、上記の立体形状データは、測定対処物Sのテクスチャ情報を含まない。そこで、立体形状データといずれかのテクスチャ画像データとが合成されることにより、立体形状データにテクスチャ情報が付与されたテクスチャ付き立体形状データが生成される。
テクスチャ付き立体形状データは、測定対象物Sの表面上の複数の点の位置データを含むとともに各点の位置データに対応付けられた当該点の色または輝度を示すデータを含む。この場合、テクスチャ付き立体形状データのうち任意の点のデータをTPn(nは自然数)とすると、TPnは、例えば装置座標系の座標値と、赤色、緑色および青色の三原色の成分(R,G,B)とを用いて(Xn,Yn,Zn,Rn,Gn,Bn)で表すことができる。または、TPnは、例えば装置座標系の座標値と、輝度値(I)とを用いて(Xn,Yn,Zn,In)で表すことができる。テクスチャ付き立体形状データは、点群データに基づいて生成される面情報データにより構成されてもよい。
以下の説明では、一定の焦点位置および撮像条件で取得されたテクスチャ画像データにより表されるテクスチャ画像を通常テクスチャ画像と呼び、全焦点テクスチャ画像データにより表される画像を全焦点テクスチャ画像と呼び、HDRテクスチャ画像データにより表される画像をHDRテクスチャ画像と呼ぶ。また、テクスチャ付き立体形状データにより表される画像をテクスチャ付き立体形状画像と呼ぶ。
なお、上記のように測定対象物Sの位置または姿勢が異なる複数の立体形状データが生成される場合には、各立体形状データの生成時に、テクスチャ画像データが取得されてもよい。この場合、複数の立体形状データおよび複数のテクスチャ画像データを合成することにより、測定対象物Sの広い範囲の立体形状および表面状態を表すテクスチャ付き立体形状データを生成することができる。
[4]形状測定処理
(1)形状測定の準備
測定対象物Sの形状測定処理を実行する前に、使用者は、形状測定の準備を行う。図14は、形状測定の準備の手順を示すフローチャートである。以下、図1、図2および図14を参照しながら形状測定の準備の手順を説明する。まず、使用者は、測定対象物Sをステージ140上に載置する(ステップS1)。次に、使用者は、投光部110から測定対象物Sに測定光を照射する(ステップS2)。続いて、使用者は、表示部400に表示されたライブ画像を見ながら、取得されるライブ画像の明るさ、ならびに測定対象物Sの位置および姿勢の調整(以下、第1の調整と呼ぶ)を行う(ステップS3)。ステップS3において取得されるライブ画像の明るさは、測定光の光量および受光部120の露光時間のうち少なくとも一方を変化させることにより調整することができる。本実施の形態では、測定光を用いて取得されるライブ画像の明るさを観察に適した明るさにするために、測定光の光量または受光部120の露光時間のうち一方が調整される。なお、取得されるライブ画像の明るさは、測定光の光量を一定にし、受光部120の露光時間により調整されることが好ましい。それにより、測定光の光量の変化に伴って測定光源111の温度が変化することによる計測精度の低下が抑制される。
ステップS2では、上記の第1〜第4のパターンの測定光のいずれかが測定対象物Sに照射されてもよく、均一な測定光が測定対象物Sに照射されてもよい。ステップS3において、測定対象物Sの計測すべき箇所(以下、計測箇所と呼ぶ)に影が発生していない場合には、使用者は、測定対象物Sの位置および姿勢の調整を行う必要はなく、測定光の光量または受光部120の露光時間の調整を行えばよい。
次に、使用者は、測定光の照射を停止するとともに、照明光出力部130から測定対象物Sに照明光を照射する(ステップS4)。続いて、使用者は、表示部400に表示されたライブ画像を見ながら、照明光の光量または受光部120の露光時間の調整(以下、第2の調整と呼ぶ)を行う(ステップS5)。ステップS5において取得されるライブ画像の明るさは、基本的にステップS3の例と同様に、照明光の光量および受光部120の露光時間のうち少なくとも一方を変化させることにより調整することができる。本実施の形態では、照明光を用いて取得されるライブ画像の明るさを観察に適した明るさにするために、照明光の光量または受光部120の露光時間のうち一方が調整される。
次に、使用者は、表示部400に表示されたライブ画像を確認し、光量、受光部120の露光時間、測定対象物Sの位置および姿勢(以下、観察状態と呼ぶ)が適切であるか否かを判定する(ステップS6)。ステップS6においては、測定対象物Sに測定光が照射されてもよく、照明光が照射されてもよく、または測定光および照明光が順に照射されてもよい。
ステップS6において、観察状態が適切でないと判定した場合、使用者は、ステップS2の処理に戻る。一方、ステップS6において、観察状態が適切であると判定した場合、使用者は、形状測定の準備を終了する。
なお、上記の説明においては、第1の調整の後に第2の調整が行われるが、これに限定されない。第2の調整の後に第1の調整が行われてもよい。この場合、使用者は、第2の調整において測定対象物Sの位置および姿勢を調整し、第1の調整時に測定対象物Sの所望の部分に測定光が照射されていることを確認してもよい。測定対象物Sの所望の部分に測定光が照射されていない場合には、測定対象物Sの位置および姿勢を再調整し、再度第2の調整として照明光の光量または受光部120の露光時間の調整等を行ってもよい。
(2)第1の調整
図15および図16は、形状測定の準備の手順における第1の調整の詳細を示すフローチャートである。以下、図1、図2、図15および図16を参照しながら形状測定の準備の手順における第1の調整の詳細を説明する。以下、投光部110A,110Bのうち一方から出射される測定光を一方の測定光と呼び、他方から出射される測定光を他方の測定光と呼ぶ。ここで、本実施の形態に係る測定部100においては、一方および他方の測定光の光量をそれぞれ独立して設定することができる。また、一方の測定光を用いて測定対象物Sを撮像する際の受光部120の露光時間と、他方の測定光を用いて測定対象物Sを撮像する際の受光部120の露光時間とをそれぞれ独立して設定することができる。
まず、使用者は、取得されるライブ画像の明るさを観察に適した明るさにするために、一方の測定光の光量または受光部120の露光時間を仮調整する(ステップS11)。次に、使用者は、表示部400に表示される測定対象物Sのライブ画像の倍率(以下、視野サイズと呼ぶ)を調整する(ステップS12)。具体的には、倍率が異なる複数の受光部120が用いられる場合、使用者は、いずれかの受光部120を選択する。それにより、選択された受光部120により取得されるライブ画像が表示部400に表示される。低倍率の受光部120が選択されるときの視野サイズは、高倍率の受光部120が選択されるときの視野サイズよりも大きくなる。なお、測定部100は、デジタルズーム機能を有してもよい。この場合、使用者は、受光部120により取得されるライブ画像の表示倍率を調整することができる。
続いて、使用者は、表示部400に表示されるライブ画像に基づいて、測定対象物Sの位置および姿勢が適切であるか否かを判定する(ステップS13)。ここで、測定対象物Sの計測箇所に影が発生していない場合、使用者は、測定対象物Sの位置および姿勢が適切であると判断する。一方、測定対象物Sの計測箇所に影が発生している場合、使用者は、測定対象物Sの位置および姿勢が適切でないと判断する。
ステップS13において、測定対象物Sの位置および姿勢が適切でないと判定した場合、使用者は、測定対象物Sの位置および姿勢を調整する(ステップS14)。具体的には、使用者は、回転機構143によってステージ140を回転させる、または手で測定対象物Sを動かすことにより、測定対象物Sの位置および姿勢を調整する。その後、使用者は、ステップS13の処理に戻る。
一方、ステップS13において、測定対象物Sの位置および姿勢が適切であると判定した場合、使用者は、表示部400に表示されるライブ画像に基づいて、取得されるライブ画像の明るさが観察に適した明るさであるか否か、すなわち測定対象物Sに照射される一方の測定光の光量または受光部120の露光時間が適切であるか否かを判定する(ステップS15)。
ステップS15において、一方の測定光の光量または受光部120の露光時間が適切でないと判定した場合、使用者は、一方の測定光の光量または受光部120の露光時間を調整する(ステップS16)。その後、使用者は、ステップS15の処理に戻る。
一方、ステップS15において、一方の測定光の光量または受光部120の露光時間が適切であると判定した場合、使用者は、表示部400に表示されたライブ画像から、観察状態が適切であるか否かを判定する(ステップS17)。ステップS17において、観察状態が適切でないと判定した場合、使用者は、ステップS14またはステップS16の処理に戻る。具体的には、観察状態のうち測定対象物Sの位置および姿勢が適切でないと判定した場合、使用者は、ステップS14の処理に戻る。観察状態のうち光(一方の測定光)の光量または受光部120の露光時間が適切でないと判定した場合、使用者は、ステップS16の処理に戻る。
一方、ステップS17において、観察状態が適切であると判定した場合、使用者は、一方の測定光の照射を停止するとともに、他方の投光部110Bから測定対象物Sに測定光を照射する(図16のステップS18)。続いて、使用者は、表示部400に表示されたライブ画像を見ながら、取得されるライブ画像の明るさを観察に適した明るさにするために、他方の測定光の光量または受光部120の露光時間の調整を行う(ステップS19)。
その後、使用者は、表示部400に表示されるライブ画像に基づいて、取得されるライブ画像の明るさが観察に適した明るさであるか否か、すなわち他方の測定光の光量または受光部120の露光時間が適切であるか否かを判定する(ステップS20)。ステップS20において、他方の測定光の光量または受光部120の露光時間が適切でないと判定した場合、使用者は、ステップS19の処理に戻る。一方、ステップS20において、他方の測定光の光量または受光部120の露光時間が適切であると判定した場合、使用者は、第1の調整を終了する。第1の調整が行われることにより、立体形状データを生成するために最適な一方および他方の測定光の光量条件、または一方および他方の測定光にそれぞれ対応する受光部120の露光時間の条件が設定される。なお、他方の投光部110Bを使用しない場合には、使用者は、ステップS17の処理の後、ステップS18〜S20の手順を省略して第1の調整を終了してもよい。
(3)第2の調整
図17は、形状測定の準備の手順における第2の調整の詳細を示すフローチャートである。以下、図1、図2および図17を参照しながら形状測定の準備の手順における第2の調整の詳細を説明する。ここで、本実施の形態に係る測定部100においては、照明光の光量を一方および他方の測定光の光量から独立して設定することができる。また、照明光を用いて測定対象物Sを撮像する際の受光部120の露光時間を、一方および他方の測定光を用いて測定対象物Sを撮像する際の受光部120の露光時間から独立して設定することができる。
まず、使用者は、取得されるライブ画像の明るさを観察に適した明るさにするために、照明光の光量または受光部120の露光時間を調整する(ステップS31)。次に、使用者は、表示部400に表示されるライブ画像に基づいて、取得されるライブ画像の明るさが観察に適した明るさであるか否か、すなわち測定対象物Sに照射される照明光の光量または受光部120の露光時間が適切であるか否かを判定する(ステップS32)。
ステップS32において、照明光の光量または受光部120の露光時間が適切でないと判定した場合、使用者は、ステップS31の処理に戻る。一方、ステップS32において、照明光の光量または受光部120の露光時間が適切であると判定した場合、使用者は、表示すべきテクスチャ画像の種類を選択し(ステップS33)、第2の調整を終了する。テクスチャ画像の種類は、例えば、通常テクスチャ画像、全焦点テクスチャ画像、HDRテクスチャ画像を含む。第2の調整が行われることにより、テクスチャ画像データを生成するために最適な照明光の光量条件、または照明光に対応する受光部120の露光時間の条件が設定される。
また、ステップS33において、全焦点テクスチャ画像またはHDRテクスチャ画像が選択された場合には、全焦点テクスチャ画像データまたはHDRテクスチャ画像データを適切に取得するための設定が別途行われてもよい。例えば、全焦点テクスチャ画像が選択された場合には、焦点位置の変化範囲等が設定されてもよい。また、HDRテクスチャ画像データが選択された場合には、撮像条件の詳細等が設定されてもよい。また、これらの設定に基づいて、プレビュー用の全焦点テクスチャ画像またはHDRテクスチャ画像が表示部400に表示されてもよい。
(4)形状測定処理
図14〜図17の形状測定の準備の後、測定対象物Sの形状測定処理が実行される。図18は、形状測定処理の概要を示すフローチャートである。使用者が、CPU210に形状測定処理の開始を指示すると、CPU210は、第1の調整において設定された光量条件または露光時間の条件に従って、投光部110から測定対象物Sに測定光を照射し、測定光のパターンが投影された測定対象物Sの画像データ(パターン画像データ)を取得する(ステップS41)。取得されたパターン画像データは、作業用メモリ230に記憶される。
次に、CPU210は、取得したパターン画像データを所定の計測アルゴリズムで処理することにより、測定対象物Sの立体形状を示す立体形状データを生成する(ステップS42)。生成された立体形状データは、作業用メモリ230に記憶される。ステップS41,S42においては、上記のように、複数の視点に対応するパターン画像データが取得され、それらのパターン画像データから生成される複数の立体形状データが合成されてもよい。それにより、測定対象物Sの広い範囲の立体形状データを生成することができる。
次に、CPU210は、図17のステップS33で選択されたテクスチャ画像の種類に対応するテクスチャ画像データを取得する(ステップS43)。取得されたテクスチャ画像データは、作業用メモリ230に記憶される。次に、CPU210は、ステップS42で生成された立体形状データとステップS43で取得されたテクスチャ画像データとを合成することにより、テクスチャ付き立体形状データを生成する(ステップS44)。次に、CPU210は、生成された立体形状データまたはテクスチャ付き立体形状データに基づいて、測定対象物Sの立体形状画像またはテクスチャ付き立体形状画像を表示部400に表示させる(ステップS45)。この場合、使用者は、表示すべき画像を適宜選択することができる。ステップS45において、測定対象物Sの計測箇所が適切に表示されていない場合、使用者は、図15〜図17の第1および第2の調整を再度行ってもよい。その後、CPU210は、使用者により設定された計測条件に基づいて、計測箇所の計測を実行する(ステップS46)。計測条件の設定については後述する。これにより、形状測定処理を終了する。
[5]標準状態および傾斜正対状態
形状測定処理は、ステージ140の傾斜部402(図6)が水平姿勢にある状態で行われてもよく、傾斜部402が傾斜姿勢にある状態で行われてもよい。測定対象物Sの計測箇所が予め定まっており、その計測箇所が測定対象物Sの限られた範囲にある場合には、測定対象物Sの広い範囲の立体形状データを生成する必要はない。本実施の形態では、傾斜部402が傾斜姿勢にありかつ傾斜部402の傾斜載置面402a(図6)と受光部120の撮像面120a(図5)とが互いに正対する状態で形状測定処理を行うことにより、測定対象物Sの必要な立体形状データを効率良く取得することができ、計測箇所の計測値を容易に取得することができる。傾斜載置面402aと撮像面120aとが正対するとは、傾斜載置面402aと撮像面120aとが互いに平行である場合に限らず、傾斜載置面402aと撮像面120aとが一定範囲内の角度(例えば、10度以下)をなす場合も含む。
以下の説明では、傾斜部402が水平姿勢にある状態を標準状態と呼び、傾斜部402が傾斜姿勢にありかつ傾斜載置面402aが撮像面120aと正対する状態を傾斜正対状態と呼ぶ。なお、標準状態で形状測定処理が行われる場合には、上記の第1および第2の調整は標準状態で行われることが好ましく、傾斜正対状態で形状測定処理が行われる場合には、上記の第1および第2の調整は傾斜正対状態で行われることが好ましい。
通常状態での形状測定処理と傾斜正対状態での形状測定処理との違いについて説明する。図19(a)は、標準状態における受光部120と測定対象物Sとの位置関係を示し、図19(b)は、傾斜正対状態における受光部120と測定対象物Sとの位置関係を示す。図19(a)に示すように、標準状態では、水平な載置面142a上に測定対象物Sが載置される。上記のように、受光部120の撮像面120aは、測定対象領域MRに対して斜め下方に向けられる。
図19(b)に示すように、傾斜正対状態では、水平面に対して傾斜する傾斜載置面402a上に測定対象物Sが載置される。また、受光部120の撮像面aと傾斜載置面402aとが互いに正対するように、ステージ140の回転位置が調整される。以下、受光部120の撮像面aと傾斜載置面402aとが互いに正対するときのステージ140の回転位置を正対位置と呼ぶ。上記のように、本例では、傾斜載置面402aの傾斜角度D1と撮像面120aの傾斜角度D2とが互いに等しい(図5および図6)。そのため、ステージ140が正対位置にあるときに、受光部120の撮像面120aと傾斜載置面402aとが互いに平行になる。
本例では、傾斜部402がステージベース141と一体的に設けられているので、傾斜正対状態となるステージ140の回転位置(正対位置)は一定である。正対位置は、例えば図1の記憶装置240に予め記憶される。CPU210は、使用者の指示に基づいて、ステージ140の回転位置を予め記憶された正対位置に調整することができる。
図20は、測定対象物Sの一例を示す図である。図21(a)は、標準状態で受光部120により撮像される測定対象物Sを示す図である。図21(b)は、傾斜正対状態で受光部120により撮像される測定対象物Sを示す図である。図20の測定対象物Sは、基板B1と、その基板B1上に実装される素子B2,B3とを含む。
標準状態では、基板B1および素子B2,B3の上面は、載置面142aと略平行であり、受光部120の撮像面120aとは平行でない。そのため、図21(a)に示すように、基板B1および素子B2,B3の上面が受光部120に対して斜めに向けられた状態で測定対象物Sが撮像される。一方、傾斜正対状態では、基板B1および素子B2,B3の上面は、傾斜載置面402aと略平行であり、受光部120の撮像面120aと略平行である。そのため、図21(b)に示すように、基板B1および素子B2,B3の上面が受光部120に対してほぼ正対する状態で測定対象物Sが撮像される。このように、標準状態では鉛直上方に向けられる測定対象物Sの箇所(以下、上面領域と呼ぶ。)が、傾斜正対状態では受光部120に向けられる。そのため、傾斜正対状態では、上面領域の立体形状データが生成される。
標準状態で立体形状データを生成する場合、1つの立体形状データでは上面領域が適切に表されない場合がある。図21(a)の例では、基板B1の上面の一部が素子B2,B3によって隠れている。そのため、基板B1の上面の一部の立体形状データは得られない。上面領域の立体形状データを適切に得るために、複数の視点に対応する立体形状データを生成し、その複数の立体形状データを合成する必要が生じる。一方、傾斜正対状態では、複数の立体形状データを合成することなく、上面領域の立体形状データを容易に取得することができる。
図18のステップS46において、使用者は、表示部400に表示された立体形状画像またはテクスチャ付き立体形状画像を見ながら、計測条件を設定する。計測条件は、計測項目および計測箇所を含む。計測項目は、計測すべきパラメータの種類であり、距離、高さ、直径および面積等を含む。また、計測項目として、計測箇所を特定するための幾何形状(例えば、点、直線、円、面、球、円筒および円錐等)が指定されてもよい。
計測条件の設定について説明する。以下の説明では、立体形状画像およびテクスチャ付き立体形状画像を対象物画像と総称する。ここでは、計測の基準となる基準面が設定される例を説明する。図22は、基準面の設定時におけるCPU210の動作例を示すフローチャートである。
使用者は、表示された対象物画像上で基準面とすべき測定対象物Sの面を指定する。例えば、表示部400に対象物画像とともにポインタが表示される。使用者は、操作部250を操作してポインタを移動させ、対象の面をポインタにより指定する。CPU210は、基準面とすべき面が指定されたか否かを判定する(ステップS61)。面が指定されていない場合、CPU210は、ステップS61の処理を繰り返す。
次に、CPU210は、立体形状データに基づいて、指定された面に最も近い平面を抽出し(ステップS62)、抽出された平面を基準面に設定する(ステップS63)。通常、測定対象物Sの各面は、僅かに凹凸を含む、または僅かに湾曲している等、完全な平面ではない。そこで、指定された面と最も一致度が高い仮想的な平面が抽出され、基準面に設定される。次に、CPU210は、設定された基準面に基づいて基準面画像データを生成し、生成された基準面画像データを用いて表示部400に基準面画像を表示する(ステップS64)。基準面画像は、基準面に対して測定対象物Sを垂直に見た2次元的(平面図的)な画像である。すなわち、基準面画像においては、設定された基準面が表示部400の画面と平行になっている。
図23は、基準面画像の例を示す図である。図23の基準面画像GSにおいては、素子B2の上面が指定され、基準面に設定されている。そのため、素子B2の上面が表示部400の画面と略平行である。図24は、計測条件の設定例について説明するための図である。図24の例では、計測項目として、2線間の距離が指定され、計測箇所として、素子B2の互いに平行な2つの辺L1,L2がそれぞれ指定される。この場合、基準面画像データに基づいて辺L1,L2に対応するエッジが抽出され、計測箇所が設定される。計測項目および計測箇所が指定されると、立体形状データに基づいて、指定された計測項目および計測箇所に対応する計測値が算出され、対象物画像または基準面画像GS上に表示される。詳細には、立体形状データに基づいて生成される基準面画像データに基づいて、計測値が算出される。図24(b)の例では、基準面画像GS上に、辺L1,L2の間の距離として“xx(mm)”が表示される。
本実施の形態では、傾斜正対状態で形状測定処理を行うことにより、位置データの欠落が抑制された上面領域の立体形状データを生成することができる。そのため、複数の立体形状データを合成することなく、傾斜正対状態で生成された上面領域の立体形状データのみを用いて、測定対象物Sを平面図的に適切に表すことができる。それにより、立体形状データの生成に要する時間を短縮することができ、かつ計測箇所の計測を正確に行うことができる。
また、最初に表示される対象物画像における測定対象物Sの向きによっては、基準面を指定するために対象物画像における測定対象物Sの向きを調整する必要がある。例えば、基準面として指定すべき面が対象物画像に現れていない場合には、その面が対象物画像に現れるように対象物画像における測定対象物Sの向きを調整する必要がある。しかしながら、そのような作業を行うために、作業の効率が低下する可能性がある。また、最初に表示されている対象物画像における測定対象物Sの向きによっては、基準面に指定すべき面を直感的に認識することができない可能性がある。
そこで、本実施の形態では、形状測定処理によって立体形状データが生成された後、最初に表示される対象物画像における測定対象物Sの向きは、受光部120により撮像される測定対象物Sの向き(受光部120に対する測定対象物Sの相対的な向き)と一致される。例えば、傾斜正対状態で図20の測定対象物Sに対して形状測定処理を行った場合、最初に表示される対象物画像における測定対象物Sの向きが、図21(b)の測定対象物Sの向きと一致される。そのため、上面領域に含まれる測定対象物Sの面(例えば、素子B2の上面)を基準面に指定する場合、使用者は、対象物画像における測定対象物Sの向きをほとんど変化させることなく、基準面を容易に指定することができる。また、表示される対象物画像は測定対象物Sを平面図的に表すので、操作に不慣れな使用者にとっても基準面とすべき面および計測箇所を直感的に認識することができる。したがって、使用者は、基準面の設定および計測条件の設定を効率良く迅速に行うことができる。
図25は、基準面画像GSの他の例を示す図である。図25の基準面画像GSにおいては、測定対象物Sの部分に、基準面に対する高さの差分に応じた色が付される。ここで、高さとは、基準面に対して垂直な方向における基準面からの距離を意味する。図25においては、色の違いがドットパターンの違いで表される。この場合、使用者は、基準面と他の部分との高さの差を容易に認識することができる。基準面画像は、立体形状データまたはテクスチャ付き立体形状データを所定の基準面からの高さで表した高さ画像として機能する。
立体形状データに基づいて、測定対象物Sのプロファイル(断面形状)を表す画像(以下、プロファイル画像と呼ぶ。)が表示されてもよい。図26は、プロファイルを取得すべき箇所の指定について説明するための図であり、図27は、プロファイル画像の例を示す図である。
図26の例では、基準面画像GS上において、線分LSによりプロファイルを取得すべき測定対象物Sの箇所が指定される。この場合、立体形状データに基づいて、線分LSを通りかつ基準面に垂直な面上における測定対象物Sのプロファイルを表すプロファイルデータが生成される。生成されたプロファイルデータに基づいて、図27のプロファイル画像GPが表示される。プロファイル画像GPは、測定対象物Sのプロファイルを表すプロファイル線PLを含む。
プロファイル画像GPを用いて計測条件が設定されてもよい。図27の例では、計測項目として、2面間の距離が指定され、計測箇所として、プロファイル線PL上の線分L11および線分L12が指定される。線分L11,L12は、測定対象物Sの基板B1の上面および素子B3の上面にそれぞれ対応する。この場合、立体形状データまたはプロファイルデータに基づいて、線分L11と線分L12との間の距離(基板B1の上面と素子B3の上面との間の距離)が計測値として算出される。算出された計測値“yy”は、プロファイル画像GP上に表示される。
[6]準正対位置
傾斜正対状態での形状測定処理において、ステージ140の回転位置が正対位置から一定の角度範囲内で変化されてもよい。図28および図29は、ステージ140の回転位置の変化による測定対象物Sの向きの変化について説明するための図である。図28および図29の例において、測定対象物Sは立方体である。
図28に示すように、ステージ140の傾斜部402が傾斜姿勢にある状態で、ステージ140の回転位置が正対位置から一方および他方の回転方向に一定角度変化される。ステージ140が正対位置にあるときには、図29(a)に示すように、測定対象物Sの上面C1のみが受光部120により撮像される。そのため、この状態で取得されるパターン画像データから、測定対象物Sの上面C1のみを表す立体形状データが生成される。
ステージ140の回転位置が正対位置から一方の回転方向に一定角度(例えば15度)だけ変化されると、図29(b)に示すように、測定対象物Sの上面C1に加えて、測定対象物Sの側面C2が撮像される。そのため、この状態で取得されるパターン画像データから、測定対象物Sの上面C1および側面C2を表す立体形状データが生成される。以下、正対位置から一方の回転方向に一定角度だけ回転されたときのステージ140の回転位置を第1の準正対位置と呼ぶ。
また、ステージ140の回転位置が正対位置から他方の回転方向に一定角度(例えば15度)だけ変化されると、図29(c)に示すように、測定対象物Sの上面C1に加えて、測定対象物Sの側面C3が撮像される。そのため、この状態で取得されるパターン画像データから、測定対象物Sの上面C1および側面C3を表す立体形状データが生成される。以下、正対位置から他方の回転方向に一定角度だけ回転されたときのステージ140の回転位置を第2の準正対位置と呼ぶ。
実際の動作としては、例えば、ステージ140が正対位置にある状態で最初の立体形状データが生成され、続いてステージ140が一方向にわずかに回転されてステージ140の回転位置が第1の準正対位置に調整され、次の立体形状データが生成される。続いてステージ140が逆方向に僅かに回転されてステージ140の回転位置が第2の準正対位置に調整され、最後の立体形状データが生成される。その後、ステージ140が正対位置に戻される。
上記のように、本実施の形態では、受光部120の光軸A1がステージ140の回転軸Axに対して傾斜している。そのため、ステージ140が回転されると、受光部120の撮像視野において測定対象物Sの向きが3次元的に変化する。そのため、図29の例のように、ステージ140が回転されることによって測定対象物Sの異なる面を撮像することができる。
比較例として、ステージ140の回転軸Axと受光部120の光軸A1とが平行である場合について説明する。図30および図31は、比較例における測定対象物Sの向きの変化について説明するための図である。図30および図31の例について、図28および図29の例と異なる点を説明する。
図30の例では、ステージ140の回転軸Axと受光部120の光軸A1とが平行であり、かつステージ140が標準状態にある。この場合、図31(a)に示すように、測定対象物Sの上面C1が受光部120により撮像される。すなわち、本実施の形態における傾斜正対状態と同様に測定対象物Sを撮像することができる。しかしながら、比較例では、ステージ140が回転されても、測定対象物Sが受光部120の光軸A1に垂直な面内で回転する。そのため、受光部120の撮像視野において測定対象物Sの向きが2次元的に変化する。それにより、図31(b)および図31(c)に示すように、測定対象物Sが回転されても、上面C1以外の面が受光部120によって撮像されることはない。
このように、本実施の形態では、ステージ140の回転位置が正対位置と準正対位置との間で僅かに変化されることにより、傾斜正対状態では撮像されない測定対象物Sの上面領域の周囲の部分が撮像される。それにより、上面領域の周囲部分の立体形状データを生成することができる。特に、傾斜正対位置において受光部120の光軸Axと平行な測定対象物Sの面(例えば、図29(b)および図29(c)の側面C2,C3)を表す立体形状データも生成することができる。このような面を表す立体形状データの生成は、比較例のようにステージ140の回転軸Axと受光部120の光軸A1とが平行である場合には不可能である。
傾斜正対状態で生成される立体形状データと、ステージ140が第1および第2の準正対位置にある状態でそれぞれ生成される立体形状データとが合成されることにより、測定対象物Sのより広い範囲の立体形状データが生成される。したがって、計測可能な測定対象物Sの範囲がより広くなる。
正対位置と第1の準正対位置との間の角度、および正対位置と第2の準正対位置との間の角度は、使用者が指定してもよく、予め定められていてもよい。これらの角度は、ステージ140が正対位置にあるときに受光部120の光軸A1に平行となる測定対象物Sの面(例えば、図29(b)および図29(c)の側面C2,C3)が、ステージ140が第1および第2の準正対位置にあるときに受光部120により撮像されるように、受光部120の光学特性(例えば画角)に応じて決定されることが好ましい。
また、指定すべき計測箇所によって、必要となる対象物画像データの範囲が異なる。そのため、第1および第2の準正対位置のうち一方が選択され、ステージ140が正対位置にある状態(傾斜正対状態)、および選択された準正対位置にある状態でのみ立体形状データが生成されてもよい。また、傾斜正対状態でパターン画像データが取得されず、ステージ140が第1および第2の準正対位置の少なくとも一方にある状態でのみ立体形状データが生成されてもよい。ただし、傾斜正対状態でパターン画像データが取得されない場合でも、立体形状データの生成後にステージ140が正対位置に戻され、表示される対象物画像における測定対象物Sの向きは、傾斜正対状態に対応する測定対象物Sの向きと同じであることが好ましい。
[7]測定対象物の載置
使用者が測定対象物Sをステージ140上に載置する際に、ステージ140の回転位置が正対位置から変化されてもよい。図32は、測定対象物Sの載置時におけるステージ140の回転位置について説明するための図である。図32の例では、傾斜部402が傾斜姿勢にあり、ステージ140が正対位置と180度異なる回転位置にある。この場合、使用者は、傾斜載置面402aと略正対する位置から傾斜載置面402a上の測定対象物Sを視認することができる。
ステージ140が正対位置にある状態で使用者がステージ140上に測定対象物Sを載置する場合、使用者は、表示部400に表示されるライブ画像を見て、測定対象物Sが受光部120によってどのように撮像されているかを確認する。この場合、使用者は、表示部400の画面上における方向を現実の3次元空間での方向に変換する必要がある。そのため、このような作業に不慣れな使用者にとっては、表示部400に表示されるライブ画像を見ながら測定対象物Sの位置および姿勢を調整することは容易ではない。そこで、図32の例のように、使用者の視点が傾斜載置面402aと略正対するように、ステージ140の回転位置が調整される。この状態で使用者が見る測定対象物Sの位置および姿勢は、傾斜正対状態で受光部120により撮像される測定対象物Sの位置および姿勢と略等しい。そのため、使用者は、直接的に測定対象物Sを見ながら測定対象物Sの位置および姿勢を調整することができる。したがって、不慣れな使用者であっても、測定対象物Sの位置および姿勢を容易にかつ適切に調整することができる。
[8]効果
本実施の形態に係る測定装置500においては、投光部110、受光部120およびステージ140が一体的に設けられているので、使用者は、これらの配置を調整する必要がなく、ステージ140上に測定対象物Sを載置することで、測定対象物Sの立体形状データを得ることができる。また、ステージ140の回転軸Axが受光部120の光軸A1と平行でないので、ステージ140を回転させることにより、受光部120に向けられる測定対象物Sの箇所が変わる。そのため、測定対象物Sの異なる箇所が受光部120により撮像される。したがって、測定対象物Sの広い範囲の立体形状データを容易に生成することができる。
また、生成された立体形状データに基づいて、計測の基準となる基準面が設定され、立体形状データおよび基準面に基づいて、指定された計測箇所の計測値が算出される。この場合、基準面が設定されることによって、点群データを用いた処理を2次元的に行うことができる。それにより、点群データからの計測値の算出が容易になる。
さらに、ステージ140が正対位置に位置されることにより、ステージ140の傾斜載置面402aが受光部120の撮像面120aと正対する。そのため、水平面上では上方に向けられる測定対象物Sの箇所(上面領域)が、傾斜載置面402aでは受光部120の撮像面120aに向けられる。それにより、受光部120からの受光信号に基づいて、上面領域の立体形状データを生成することができる。したがって、位置データの欠落を抑制しつつ必要な箇所の立体形状データを効率良く生成することができる。また、生成された立体形状データに基づいて、測定対象物Sを平面図的に表すことが可能となる。したがって、不慣れな使用者であっても、基準面の設定および計測箇所の指定を容易にかつ適切に行うことが可能となる。
また、本実施の形態では、ステージ140の傾斜部402が水平姿勢と傾斜姿勢とに切替可能であるので、回転軸Axに対して垂直な載置面142aと、回転軸Axに対して傾斜する傾斜載置面402aとを選択的に使用することができる。それにより、目的に応じて、異なる態様で立体形状データを生成することができる。
また、本実施の形態では、ステージ140の傾斜部402が傾斜姿勢にありかつステージ140が正対位置にある状態(傾斜正対状態)で、受光部120の光軸A1が傾斜載置面402aに直交する。それにより、水平面上では鉛直上方に向けられる測定対象物Sの箇所が、傾斜載置面402aでは受光部120の撮像面120aに向けられる。したがって、生成される立体形状データに基づいて、測定対象物を高い精度で平面図的に表すことができる。
[9]他の実施の形態
(1)図33は、ステージ140の他の構成例について説明するための図である。図33の例では、ステージプレート142が固定部401と傾斜部402とに分割されていない。ステージプレート142の載置面142a上に、傾斜部材410が取り付けられる。傾斜部材410は、ステージプレート142に対して着脱可能である。傾斜部材410は、傾斜載置面410aを有するとともに、傾斜載置面410a上に載置された測定対象物Sを係止するための係止部411を有する。傾斜載置面410aの傾斜角度は、例えば、上記実施の形態における傾斜載置面402aの傾斜角度と同じである。
ステージ140の回転位置と傾斜載置面402aの向きとを対応付けるため、載置面142a上における傾斜部材410の取付位置は一定であることが好ましい。本例では、ステージプレート142に複数の孔部142hが設けられ、傾斜部材410の底面に複数の孔部142hにそれぞれ対応する複数の突起部410bが設けられる。傾斜部材410の突起部410bがステージプレート142の複数の孔部142hに挿入されることにより、載置面142a上の予め定められた位置にステージプレート142が取り付けられる。孔部142hおよび突起部410bが設けられる代わりに、ステージプレート142に傾斜部材410の取付位置を表す印等が付されてもよい。
本例においても、傾斜載置面402aを受光部120の撮像面120aと正対させることができる。そのため、水平面上では上方に向けられる測定対象物Sの箇所の立体形状データを生成することができる。また、生成された立体形状データに基づいて、測定対象物Sを平面的に表す対象物画像を容易に表示することができる。したがって、不慣れな使用者であっても、基準面の設定および計測箇所の指定を容易に行うことができる。
また、傾斜部材410の着脱によって回転軸Axに対して垂直な載置面142aと回転軸Axに対して傾斜する傾斜載置面410aとを選択的に使用することができる。それにより、目的に応じて異なる態様で立体形状データを生成することができる。
なお、傾斜載置面410aの傾斜角度が異なる複数種類の傾斜部材410が用いられてもよい。また、一の傾斜部材410において、傾斜載置面410aの傾斜角度が可変であってもよい。
(2)上記実施の形態では、使用者が対象物画像上で測定対象物Sのいずれかの面を指定することにより基準面が設定されるが、基準面が自動的に設定されてもよい。例えば、上記のように、傾斜正対状態で立体形状データが生成されることにより、測定対象物Sを平面図的に表す対象物画像を表示することができる。そこで、その対象物画像において、奥行き方向の傾きが最も小さい測定対象物Sの面(受光部120の撮像面120aに対する角度が最も小さい測定対象物Sの面)が特定され、特定された面との一致度が最も高い平面が抽出され、その平面が基準面に設定されてもよい。
(3)上記実施の形態では、受光部120に単眼カメラが用いられるが、単眼カメラに代えてまたは単眼カメラに加えて、複眼カメラが用いられてもよい。また、複数の受光部120が用いられ、ステレオ法によって立体形状データが生成されてもよい。また、上記実施の形態では、2つの投光部110が用いられるが、立体形状データの生成が可能であれば、1つの投光部110のみが用いられてもよく、または3つ以上の投光部110が用いられてもよい。
また、投光部110からの均一な測定光を用いてライブ画像データおよびテクスチャ画像データを取得する場合には、照明光出力部130および照明光源320が設けられなくてもよい。また、パターン画像データを合成してテクスチャ画像データを生成することも可能であり、その場合にも照明光出力部130および照明光源320が設けられなくてもよい。
また、上記実施の形態では、パターン画像データ、ライブ画像データおよびテクスチャ画像データが共通の受光部120によって取得されるが、立体形状データを取得するための受光部と、ライブ画像データおよびテクスチャ画像データを取得するための受光部とが別個に設けられてもよい。
また、上記実施の形態では、三角測距法により点群データが生成されるが、TOF(Time Of Flight)法等の他の方法により点群データが生成されてもよい。
(4)上記実施の形態では、ステージ駆動部146によりステージ140が回転軸Axの周りで回転可能に構成され、他の方向には移動しないが、本発明はこれに限定されない。
ステージ140は、例えば回転軸Axの周りで回転可能であるとともに、X方向、Y方向およびZ方向のうち少なくとも一方向に移動可能に構成されてもよい。この場合、ステージ140に対して一定姿勢で測定対象物Sが載置された状態で、ステージ140の回転角度および位置を自在に変更することができる。したがって、より多様な視点で測定対象物Sを撮像することができる。その結果、測定対象物Sのより広い範囲の立体形状データを求めることが可能になる。
[10]請求項の各構成要素と実施の形態の各部との対応関係
以下、請求項の各構成要素と実施の形態の各部との対応の例について説明するが、本発明は下記の例に限定されない。
上記実施の形態においては、設置部161がステージ保持部の例であり、ステージ140がステージの例であり、傾斜載置面402a,410aが傾斜載置面の例であり、ヘッド部190がヘッド部の例であり、投光部110が投光部の例であり、受光部120が受光部の例であり、スタンド部162が連結部の例であり、回転制御部501が回転制御手段の例であり、点群データ生成部502が点群データ生成手段の例であり、基準面設定部503が基準面設定手段の例であり、計測部504が計測手段の例であり、画像データ生成部505が画像データ生成手段の例であり、載置面142aが非傾斜載置面の例であり、ステージプレート142がステージプレートの例であり、傾斜部材410が傾斜部の例であり、正対位置が第1の回転位置の例であり、第1および第2の準正対位置が第2の回転位置の例である。
請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。
本発明は、測定対象物の測定を行う種々の測定装置に利用可能である。
100 測定部
110 投光部
111 測定光源
112 パターン生成部
113,114 レンズ
120 受光部
130 照明光出力部
140 ステージ
150 制御基板
200 PC
210 CPU
220 ROM
230 作業用メモリ
240 記憶装置
250 操作部
300 制御部
320 照明光源
400 表示部
500 測定装置
S 測定対象物

Claims (10)

  1. ステージ保持部と、
    上下方向の回転軸を中心に回転可能に前記ステージ保持部により保持され、前記回転軸に対して非垂直でかつ測定対象物が載置される傾斜載置面を有するステージと、
    前記ステージに載置される測定対象物にパターンを有する測定光を照射する投光部と、前記測定対象物により反射された測定光を受光して受光量を表す受光信号を出力する受光部とを含むヘッド部と、
    前記ヘッド部と前記ステージ保持部とを連結することにより、前記投光部から前記測定対象物に対して測定光が斜め下方に導かれ、かつ前記受光部の光軸が前記測定対象物に向かって斜め下方に延びるとともに、前記投光部と前記受光部と前記ステージとの位置関係が定まるように、前記ヘッド部と前記ステージ保持部とを固定的に連結する連結部と、
    前記ステージの回転を制御する回転制御手段と、
    前記受光部により出力される受光信号に基づいて、前記測定対象物の立体形状を表す点群データを生成する点群データ生成手段と、
    前記点群データ生成手段により生成された点群データに基づいて、計測の基準となる基準面を設定する基準面設定手段と、
    前記測定対象物の計測すべき箇所の指定を受け付け、前記点群データ生成手段により生成された点群データに基づいて、指定された箇所の計測値を前記基準面設定手段により設定された基準面を基準として算出する計測手段とを備え、
    前記受光部は、前記光軸に対して垂直な撮像面を有し、
    前記回転制御手段は、指示に基づいて前記傾斜載置面が前記受光部の前記撮像面と正対するように、前記ステージを予め記憶された第1の回転位置に位置させ、
    前記投光部は、前記ステージが前記第1の回転位置に位置する状態で、前記ステージに載置された測定対象物に二次元状に測定光を照射し、
    前記点群データ生成手段は、前記ステージが前記第1の回転位置に位置する状態で、前記受光部から出力される受光信号に基づいて二次元状の点群データを生成する、測定装置。
  2. 前記受光部は、単眼カメラである、請求項1記載の測定装置。
  3. 前記点群データ生成手段により生成された点群データに基づいて、前記基準面設定手段により設定された基準面に対して垂直に前記測定対象物を見た画像を表す画像データを生成する画像データ生成手段をさらに備える、請求項1または2記載の測定装置。
  4. 前記ステージは、前記回転軸と直交する非傾斜載置面をさらに有する、請求項1〜3のいずれか一項に記載の測定装置。
  5. 前記ステージは、
    前記非傾斜載置面を有し、前記ステージ保持部により保持されるステージプレートと、
    前記傾斜載置面を有し、前記ステージプレートに対して着脱可能な傾斜部とを含む、請求項4記載の測定装置。
  6. 前記ステージは、前記非傾斜載置面および前記傾斜載置面を選択的に形成するように、前記回転軸に垂直な面に対する傾斜角度を調整可能に設けられたステージプレートを含む、請求項記載の測定装置。
  7. 前記ステージが前記第1の回転位置に位置する状態で、前記受光部の光軸が前記傾斜載置面に直交する、請求項1〜6のいずれか一項に記載の測定装置。
  8. 前記回転制御手段は、指示に基づいて前記ステージを予め記憶された前記第1の回転位置に位置させる第1の制御と、設定に基づいて前記ステージを第2の回転位置、および前記第2の回転位置とは異なる第3の回転位置に位置させる第2の制御を実行可能であり、
    前記点群データ生成手段は、前記指示に基づき前記回転制御手段が前記第1の制御を実行する場合、前記ステージが前記第1の回転位置に位置する状態で前記受光部により出力される受光信号に基づいて前記点群データとして第1の立体形状データを生成し、前記設定に基づき前記回転制御手段が前記第2の制御を実行する場合、前記ステージが前記第2の回転位置に位置する状態で前記受光部により出力される受光信号に基づいて前記点群データとして第2の立体形状データを生成し、前記ステージが前記第3の回転位置に位置する状態で前記受光部により出力される受光信号に基づいて前記点群データとして第3の立体形状データを生成し、前記第2および第3の立体形状データを合成する、請求項1〜7のいずれか一項に記載の測定装置。
  9. 前記回転制御手段は、前記ステージを前記第1の回転位置と異なる準正対位置に位置させ、
    前記点群データ生成手段は、前記ステージが前記第1の回転位置に位置する状態で前記受光部により出力される受光信号に基づいて前記点群データとして第1の立体形状データを生成し、前記ステージが前記準正対位置に位置する状態で前記受光部により出力される受光信号に基づいて前記点群データとして第2の立体形状データを生成し、前記第1および第2の立体形状データを合成する、請求項1〜8のいずれか一項に記載の測定装置。
  10. 前記投光部は、前記ステージが前記第1の回転位置に位置する状態で、前記ステージに載置される測定対象物に測定光を複数回照射することにより二次元状に測定光を照射する、請求項1〜9のいずれか一項に記載の測定装置。
JP2016127056A 2016-06-27 2016-06-27 測定装置 Expired - Fee Related JP6736383B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016127056A JP6736383B2 (ja) 2016-06-27 2016-06-27 測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016127056A JP6736383B2 (ja) 2016-06-27 2016-06-27 測定装置

Publications (2)

Publication Number Publication Date
JP2018004281A JP2018004281A (ja) 2018-01-11
JP6736383B2 true JP6736383B2 (ja) 2020-08-05

Family

ID=60948881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016127056A Expired - Fee Related JP6736383B2 (ja) 2016-06-27 2016-06-27 測定装置

Country Status (1)

Country Link
JP (1) JP6736383B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106705890A (zh) * 2016-12-23 2017-05-24 上海电机学院 一种三维扫描魔盒
CN110375674A (zh) * 2019-07-02 2019-10-25 东莞理工学院 一种精密制造设备的视觉检测***
JP7344708B2 (ja) * 2019-08-06 2023-09-14 株式会社キーエンス 三次元形状測定装置
JP7332386B2 (ja) * 2019-08-06 2023-08-23 株式会社キーエンス 三次元形状測定装置及び三次元形状測定方法
WO2021193236A1 (ja) * 2020-03-23 2021-09-30 ファナック株式会社 画像処理装置及び画像処理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3530972B2 (ja) * 1995-11-28 2004-05-24 独立行政法人産業技術総合研究所 形状測定装置
JP2001101410A (ja) * 1999-09-28 2001-04-13 Suzuki Motor Corp 変換行列データ生成方法及び較正治具並びに三次元計測システム
JP5050994B2 (ja) * 2008-05-15 2012-10-17 トヨタ自動車株式会社 ステータコイルの形状検査方法および形状検査装置
US9875574B2 (en) * 2013-12-17 2018-01-23 General Electric Company Method and device for automatically identifying the deepest point on the surface of an anomaly
JP2014106094A (ja) * 2012-11-27 2014-06-09 Keyence Corp 形状測定装置

Also Published As

Publication number Publication date
JP2018004281A (ja) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6029394B2 (ja) 形状測定装置
JP6736383B2 (ja) 測定装置
JP6691837B2 (ja) 測定装置
US9151600B2 (en) Shape measuring device, shape measuring method, and shape measuring program
US8885176B2 (en) Shape measuring device, shape measuring method, and shape measuring program
US8743374B2 (en) Shape measuring device, shape measuring method, and shape measuring program
JP6695746B2 (ja) 測定装置
US10262431B2 (en) Three-dimensional measurement device
JP6691838B2 (ja) 測定装置
JP6004851B2 (ja) 形状測定装置、形状測定方法および形状測定プログラム
JP6161775B2 (ja) 形状測定装置、形状測定方法および形状測定プログラム
JP6279048B2 (ja) 形状測定装置
JP5956911B2 (ja) 形状測定装置、形状測定方法および形状測定プログラム
JP6161253B2 (ja) 形状測定装置、形状測定方法および形状測定プログラム
JP6695748B2 (ja) 測定装置
JP6476252B2 (ja) 形状測定装置、形状測定方法および形状測定プログラム
JP2014055814A (ja) 形状測定装置、形状測定方法および形状測定プログラム
JP6695747B2 (ja) 測定装置
JP6077287B2 (ja) 光学顕微鏡及びパターン投影計測方法
JP5956932B2 (ja) 形状測定装置、形状測定方法および形状測定プログラム
JP6025466B2 (ja) 形状測定装置、形状測定方法および形状測定プログラム
JP2020046394A (ja) 三次元形状測定装置および三次元形状測定プログラム
JP6722522B2 (ja) 三次元測定装置及びその制御方法
JP6046997B2 (ja) 光学顕微鏡

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200715

R150 Certificate of patent or registration of utility model

Ref document number: 6736383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees