WO2013176260A1 - 超音波診断装置、超音波診断方法、及び超音波診断プログラム - Google Patents

超音波診断装置、超音波診断方法、及び超音波診断プログラム Download PDF

Info

Publication number
WO2013176260A1
WO2013176260A1 PCT/JP2013/064496 JP2013064496W WO2013176260A1 WO 2013176260 A1 WO2013176260 A1 WO 2013176260A1 JP 2013064496 W JP2013064496 W JP 2013064496W WO 2013176260 A1 WO2013176260 A1 WO 2013176260A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
frequency
interest
reception
attenuation
Prior art date
Application number
PCT/JP2013/064496
Other languages
English (en)
French (fr)
Inventor
公人 勝山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013176260A1 publication Critical patent/WO2013176260A1/ja
Priority to US14/533,089 priority Critical patent/US10631822B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus, an ultrasonic diagnostic method, and an ultrasonic diagnostic program, and in particular, transmits / receives ultrasonic waves to / from a diagnostic part of a subject, and determines the subject's condition based on the relationship of received ultrasonic signals.
  • the present invention relates to an ultrasonic diagnostic apparatus, an ultrasonic diagnostic method, and an ultrasonic diagnostic program for diagnosing tissue properties.
  • an ultrasound diagnostic apparatus that captures and displays an ultrasound image by transmitting and receiving ultrasound to and from a diagnostic part of a subject using ultrasound, and based on the ultrasound image.
  • Various attempts have been made to make use of the diagnosis, such as diagnosing the internal structure and components of the subject tissue, and distinguishing the tissues and lesions.
  • Japanese Patent Laid-Open No. 2005-125081 discloses a B-mode image data generation unit that generates first image data based on the intensity of a detection signal obtained by transmitting and receiving ultrasonic waves having a plurality of frequency components, A frequency component extraction unit that extracts at least one frequency component from the detection signal; a frequency image data generation unit that generates second image data based on the intensity of the extracted at least one frequency component; and first image data And an image selection unit that selects at least one of image data and second image data is disclosed.
  • Japanese Patent Laid-Open No. 2001-23884 discloses means for setting an analysis region in a part of a tomographic image, and transmitting ultrasonic pulses to a subject region corresponding to the analysis region in accordance with transmission conditions for quantitative analysis, and
  • An ultrasonic diagnostic apparatus includes a means for receiving an echo signal generated from a subject site upon transmission thereof, and a means for quantitatively analyzing tissue properties based on the echo signal.
  • the present invention has been made in consideration of the above facts, and provides an ultrasonic diagnostic apparatus, an ultrasonic diagnostic method, and an ultrasonic diagnostic program that enable highly accurate diagnosis of tissue properties.
  • One aspect of the present invention is an ultrasonic diagnostic apparatus that transmits ultrasonic waves to a subject, receives ultrasonic waves reflected by the subject, and outputs ultrasonic detection signals. And an ultrasonic transmission frequency transmitted from the ultrasonic probe or an ultrasonic reception frequency received by the ultrasonic probe is output from the ultrasonic probe.
  • a calculation unit that calculates an index for diagnosing the tissue property; It is provided.
  • the ultrasonic waves are transmitted to the subject by the plural ultrasonic transducers of the ultrasonic probe, and the ultrasonic waves reflected by the subject are received.
  • the transmission frequency or reception frequency of the ultrasonic wave transmitted from the ultrasonic probe is displayed by converting the amplitude of the ultrasonic detection signal into the intensity of brightness, and in the so-called B mode. Change to a different frequency when diagnosing tissue properties.
  • the calculating means calculates an index for diagnosing the tissue property based on the relationship of the received signal when the frequency is changed to the frequency for diagnosing the tissue property by the changing means in two or more different ultrasonic transducers. .
  • the transmission frequency or reception frequency is changed to a frequency suitable for diagnosis of tissue characteristics, so that it is possible to measure the non-uniformity of the microstructure with high accuracy.
  • the changing means changes the transmission frequency of the ultrasonic wave transmitted from the ultrasonic probe to a predetermined transmission frequency according to the depth and size of the region of interest when diagnosing the tissue properties.
  • the reception frequency of the ultrasonic detection signal received by the ultrasonic diagnostic probe is changed to a predetermined frequency according to the depth and size of the region of interest. It may be.
  • the calculation means evaluates the non-uniformity of the acoustic characteristics based on the relationship between the reception signals of two or more ultrasonic transducers having different ultrasonic waves in a predetermined region of interest, and calculates the index as the index.
  • sound speed or attenuation at at least one or more points of interest within a predetermined region of interest may be obtained, and the index may be calculated based on the obtained sound speed or attenuation.
  • display means for displaying the index calculated by the calculation means may be further provided.
  • Another aspect of the present invention is an ultrasonic diagnostic method for transmitting a ultrasonic wave to a subject and receiving an ultrasonic wave reflected by the subject when diagnosing tissue properties.
  • An ultrasonic transmission frequency transmitted from an ultrasonic probe including a plurality of ultrasonic transducers that output or an ultrasonic reception frequency received by the ultrasonic probe is output from the ultrasonic probe.
  • the frequency of the ultrasonic detection signal to be converted into a brightness level is changed from a frequency for display to a different frequency for diagnosis of tissue characteristics, and two or more different in the ultrasonic probe are changed. Calculating an index for diagnosing the tissue property based on the relationship of the received signal when the frequency is changed to the frequency for diagnosing the tissue property in the ultrasonic transducer.
  • the transmission frequency or reception frequency of the ultrasonic wave transmitted from the ultrasonic probe is changed to the intensity of the ultrasonic detection signal.
  • the frequency in the so-called B mode which is converted and displayed, is changed to a different frequency in the diagnosis of tissue characteristics.
  • an index for diagnosing the tissue property is calculated based on the relationship of the received signal when the frequency is changed to the frequency when diagnosing the tissue property in two or more different ultrasonic transducers.
  • the transmission frequency of the ultrasonic wave transmitted from the ultrasonic probe may be changed to a predetermined transmission frequency according to the depth and size of the target region, or the ultrasonic wave
  • the reception frequency of the ultrasonic detection signal received by the diagnostic probe may be changed to a predetermined frequency according to the depth and size of the region of interest.
  • the non-uniformity of the acoustic characteristics may be evaluated based on the relationship between the reception signals of two or more ultrasonic transducers having different ultrasonic waves in a predetermined region of interest, and calculated as the index.
  • sound speed or attenuation at at least one or more points of interest within a predetermined region of interest may be obtained, and the index may be calculated based on the obtained sound speed or attenuation.
  • the calculated index may be displayed on the display means.
  • Still another aspect of the present invention is an ultrasonic diagnostic program for transmitting ultrasonic waves to a subject and receiving ultrasonic waves reflected by the subject when detecting tissue properties.
  • An ultrasonic transmission frequency transmitted from an ultrasonic probe including a plurality of ultrasonic transducers that output signals or an ultrasonic reception frequency received by the ultrasonic probe is output from the ultrasonic probe.
  • the frequency of the ultrasonic detection signal to be converted into a brightness level is changed to a different frequency for diagnosis of tissue characteristics, and two or more different in the ultrasonic probe are changed.
  • Processing for calculating an index for diagnosing tissue properties based on the relationship of the received signal when the frequency is changed to the frequency for diagnosing tissue properties in the ultrasonic transducer of To be executed by a computer.
  • the transmission frequency or reception frequency of the ultrasonic wave transmitted from the ultrasonic probe is set, and the amplitude of the ultrasonic detection signal is adjusted to the intensity of brightness.
  • the frequency in the so-called B mode, which is converted and displayed, is changed to a different frequency in the diagnosis of tissue characteristics.
  • an index for diagnosing the tissue property is calculated based on the relationship of the received signal when the frequency is changed to the frequency when diagnosing the tissue property in two or more different ultrasonic transducers.
  • the transmission frequency of the ultrasonic wave transmitted from the ultrasonic probe may be changed to a predetermined transmission frequency according to the depth and size of the target region, or the ultrasonic wave
  • the reception frequency of the ultrasonic detection signal received by the diagnostic probe may be changed to a predetermined frequency according to the depth and size of the region of interest.
  • the non-uniformity of the acoustic characteristics may be evaluated based on the relationship between the reception signals of two or more ultrasonic transducers having different ultrasonic waves in a predetermined region of interest, and calculated as the index.
  • sound speed or attenuation at at least one or more points of interest within a predetermined region of interest may be obtained, and the index may be calculated based on the obtained sound speed or attenuation.
  • the ultrasonic diagnostic program of this aspect may be provided by being stored in a persistent computer-readable storage medium.
  • the highly accurate tissue property is calculated. Can be diagnosed.
  • FIG. 1 is a block diagram illustrating a schematic configuration of an ultrasonic diagnostic apparatus according to an exemplary first embodiment.
  • (A)-(c) is explanatory drawing which shows typically the process which measures sonic variation and attenuation variation. It is a schematic diagram for demonstrating a mode that two types of media exist in the path
  • FIG. 1 is a block diagram showing a schematic configuration of an ultrasonic diagnostic apparatus according to the first exemplary embodiment.
  • the ultrasonic diagnostic apparatus 10 transmits an ultrasonic beam from an ultrasonic probe 300 to a subject, and an ultrasonic beam (ultrasonic echo) reflected by the subject. ), And an ultrasonic image is created and displayed from the detection signal of the ultrasonic echo.
  • the control unit 100 is configured by a computer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input / output port, and the like (not shown). Each block of the ultrasonic diagnostic apparatus 10 is controlled according to the input.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the operation input unit 200 is an input device that receives an operation input from an operator (user), and includes an operation console 202 and a pointing device 204.
  • the console 202 includes a keyboard for inputting character information (for example, patient information), various modes such as a mode for displaying an amplitude image (B mode image) alone and a mode for displaying a determination result of local sound velocity values.
  • Display mode switching button for switching display modes, freeze button for instructing switching between live mode and freeze mode, cine memory playback button for instructing cine memory playback, and instructing analysis / measurement of ultrasonic images Includes analysis and measurement buttons.
  • the pointing device 204 is a device for designating an area on the screen of the display unit 104, and for example, a trackball or a mouse can be applied. Note that a touch panel may be applied as the pointing device 204.
  • the storage unit 102 stores various control programs for the control unit 100 to control each block of the ultrasonic diagnostic apparatus 10.
  • a hard disk or a semiconductor memory can be applied to the storage unit 102.
  • the display unit 104 can employ various display devices such as a CRT (Cathode Ray Tube) display and a liquid crystal display, and displays an ultrasonic image (moving image and still image), various setting screens, and the like.
  • CTR Cathode Ray Tube
  • ultrasonic image moving image and still image
  • the ultrasonic probe 300 is a probe used in contact with a subject, and includes a plurality of ultrasonic transducers 302 constituting a one-dimensional or two-dimensional transducer array.
  • a transmission / reception unit 400 is connected to the ultrasonic transducer 302.
  • the transmission / reception unit 400 includes a transmission circuit 402, a reception circuit 404, and an A / D converter 406.
  • the ultrasonic transducer 302 is an ultrasonic beam based on a drive signal applied from the transmission circuit 402 of the transmission / reception unit 400. Is received by the receiving circuit 404, and the detection signal is converted into a digital signal by the A / D converter 406 and output.
  • the ultrasonic transducer 302 includes a vibrator configured by forming electrodes on both ends of a piezoelectric material (piezoelectric body).
  • a piezoelectric body constituting such a vibrator
  • Examples of the piezoelectric body constituting such a vibrator include a piezoelectric ceramic such as PZT (lead zirconate titanate) and a polymer such as PVDF (polyvinylidene difluoride).
  • a piezoelectric element can be used.
  • the piezoelectric body expands and contracts, and ultrasonic waves are generated in each vibrator by the expansion and contraction of the piezoelectric body.
  • a pulsed electric signal is sent to the electrode of the vibrator
  • a pulsed ultrasonic wave is generated
  • a continuous wave electric signal is sent to the electrode of the vibrator
  • a continuous wave ultrasonic wave is generated.
  • the ultrasonic waves generated in the respective vibrators are combined to form an ultrasonic beam.
  • the piezoelectric body of each vibrator expands and contracts to generate an electric signal.
  • the electrical signal generated in each transducer is output to the receiving circuit 404 as an ultrasonic detection signal.
  • an ultrasonic probe 300 whose transmission frequency can be changed is used.
  • an ultrasonic transducer having a wide frequency characteristic using a composite piezoelectric element is applied, and a single ultrasonic transducer that generates a plurality of types of ultrasonic waves having different frequency bands and center frequencies is applied.
  • a plurality of types of ultrasonic transducers having different frequency characteristics may be provided and used by switching.
  • the digital signal output from the A / D converter 406 of the transmission / reception circuit 400 is output to the reproduction unit 600 and the image signal generation unit 500.
  • the image signal generation unit 500 includes a signal processing unit 502, a DSC (Digital Scan Converter) 504, an image processing unit 506, an image memory 508, and a D / A converter 510. Details of each function will be described later.
  • DSC Digital Scan Converter
  • the live mode is a mode for displaying, analyzing, and measuring an ultrasonic image (moving image) obtained by transmitting and receiving ultrasonic waves by bringing the ultrasonic probe 300 into contact with a subject.
  • the control unit 100 causes the transmission / reception unit 400 to A control signal is output to start transmission of an ultrasonic beam to the subject and reception of an ultrasonic echo from the subject.
  • the control unit 100 sets the transmission direction of the ultrasonic beam and the reception direction of the ultrasonic echo for each ultrasonic transducer 302.
  • the control unit 100 selects a transmission delay pattern according to the transmission direction of the ultrasonic beam, and selects a reception delay pattern according to the reception direction of the ultrasonic echo.
  • the transmission delay pattern is pattern data of a delay time given to a drive signal in order to form an ultrasonic beam in a desired direction by ultrasonic waves transmitted from a plurality of ultrasonic transducers 302, and a reception delay pattern. Is pattern data of delay time received by the plurality of ultrasonic transducers 302.
  • the transmission delay pattern and the reception delay pattern are stored in the storage unit 102 in advance.
  • the control unit 100 selects a transmission delay pattern and a reception delay pattern from those stored in the storage unit 102, outputs a control signal to the transmission / reception unit 400 according to the selected transmission delay pattern and reception delay pattern, and outputs ultrasonic waves. Send / receive control.
  • the transmission circuit 402 generates a drive signal in accordance with a control signal from the control unit 100 and applies the drive signal to the ultrasonic transducer 302. At this time, the transmission circuit 402 delays the drive signal applied to each ultrasonic transducer 302 based on the transmission delay pattern selected by the control unit 100. Here, the transmission circuit 402 adjusts (delays) the timing at which the drive signal is applied to each ultrasonic transducer 302 so that the ultrasonic waves transmitted from the plurality of ultrasonic transducers 302 form an ultrasonic beam. Perform focus. Note that the timing for applying the drive signal may be adjusted so that the ultrasonic waves transmitted from the plurality of ultrasonic transducers 302 reach the entire imaging region of the subject.
  • the receiving circuit 404 receives and amplifies the ultrasonic detection signal output from each ultrasonic transducer 302. As described above, since the distances between the ultrasonic transducers 302 and the ultrasonic wave reflection sources in the subject are different, the time for the reflected waves to reach the ultrasonic transducers 302 is different.
  • the reception circuit 404 includes a delay circuit, and the difference (delay) in the arrival time of the reflected wave according to the sound speed (hereinafter referred to as assumed sound speed) or the distribution of sound speed set based on the reception delay pattern selected by the control unit 100. Each detection signal is delayed by an amount corresponding to (time). Next, the reception circuit 404 performs reception focus processing by matching and adding detection signals given delay times.
  • the addition circuit of the reception circuit 404 By adding together, the phases of the ultrasonic detection signals from other ultrasonic reflection sources cancel each other. As a result, the received signal from the ultrasonic reflection source XROI becomes the largest, and the focus is achieved.
  • a sound ray signal hereinafter referred to as an RF signal
  • the A / D converter 406 converts the analog RF signal output from the receiving circuit 404 into a digital RF signal (hereinafter referred to as RF data).
  • the RF data includes phase information of the received wave (carrier wave).
  • the RF data output from the A / D converter 406 is input to the signal processing unit 502 and the cine memory 602, respectively.
  • the cine memory 602 sequentially stores the RF data input from the A / D converter 406. Further, the cine memory 602 stores information related to the frame rate input from the control unit 100 (for example, parameters indicating the reflection position depth, scanning line density, and field width) in association with the RF data.
  • the signal processing unit 502 corrects the attenuation by the distance according to the depth of the reflection position of the ultrasonic wave by STC (Sensitivity Time gain Control) on the RF data, and then performs the envelope detection processing to obtain the B mode.
  • Image data image data representing the amplitude of ultrasonic echoes by the brightness (luminance) of a point
  • STC Sensitivity Time gain Control
  • the B-mode image data generated by the signal processing unit 502 is obtained by a scanning method different from a normal television signal scanning method. For this reason, the DSC (Digital Scan Converter) 504 converts (raster conversion) the B-mode image data into normal image data (for example, image data of a television signal scanning method (NTSC method)).
  • the image processing unit 506 performs various necessary image processing (for example, gradation processing) on the image data input from the DSC 504.
  • the image memory 508 stores the image data input from the image processing unit 506.
  • the D / A converter 510 converts the image data read from the image memory 508 into an analog image signal and outputs the analog image signal to the display unit 104. Thereby, an ultrasonic image (moving image) photographed by the ultrasonic probe 300 is displayed on the display unit 104.
  • the detection signal subjected to the reception focus process in the reception circuit 404 is an RF signal, but the detection signal not subjected to the reception focus process may be an RF signal.
  • a plurality of ultrasonic detection signals output from the plurality of ultrasonic transducers 302 are amplified by the reception circuit 404, and the amplified detection signals, that is, RF signals are A / D converted by the A / D converter 406.
  • the RF data is generated by the conversion.
  • the RF data is supplied to the signal processing unit 502 and stored in the cine memory 602.
  • the reception focus process is performed digitally in the signal processing unit 502.
  • the cine memory playback mode is a mode for displaying, analyzing, and measuring an ultrasonic diagnostic image based on RF data stored in the cine memory 602.
  • the control unit 100 switches the operation mode of the ultrasonic diagnostic apparatus 10 to the cine memory playback mode.
  • the control unit 100 instructs the cine memory reproduction unit 604 to reproduce the RF data designated by the operation input from the user.
  • the cine memory reproduction unit 604 reads RF data from the cine memory 602 based on a command from the control unit 100 and transmits the RF data to the signal processing unit 502 of the image signal generation unit 500.
  • the RF data transmitted from the cine memory 602 is subjected to predetermined processing (processing similar to that in the live mode) in the signal processing unit 502, DSC 504, and image processing unit 506, and converted into image data.
  • the data is output to the display unit 104 via the D / A converter 510. Accordingly, an ultrasonic image (moving image or still image) based on the RF data stored in the cine memory 602 is displayed on the display unit 104.
  • the freeze button on the console 202 When the freeze button on the console 202 is pressed while an ultrasonic image (moving image) is displayed in the live mode or the cine memory playback mode, the ultrasonic image displayed when the freeze button is pressed is displayed on the display unit 104. A still image is displayed. Thereby, the user can display and observe a still image of the region of interest (ROI: Region : of Interest).
  • ROI Region : of Interest
  • the data analysis measurement unit 106 acquires RF data before image processing is performed from the A / D converter 406 or the cine memory 602, and uses the RF data.
  • User-specified analysis / measurement eg, tissue strain analysis (hardness diagnosis), blood flow measurement, tissue motion measurement, or IMT (Intima-Media Thickness) value measurement )I do.
  • the data analysis measurement unit 106 performs a process of calculating an index representing variation in sound speed or attenuation.
  • the analysis / measurement result by the data analysis measurement unit 106 is output to the DSC 504 of the image signal generation unit 500.
  • the DSC 504 inserts the analysis / measurement result into the image data of the ultrasonic image by the data analysis measurement unit 106 and outputs the result to the display unit 104. Thereby, the ultrasonic image and the analysis / measurement result are displayed on the display unit 104.
  • the data analysis measurement unit 106 is shown as a separate configuration from the control unit 100 in FIG. 1, the data analysis / measurement unit 106 is configured integrally with the control unit 100 and functions as a part of the function of the control unit 100. In the following, description will be made assuming that this is a part of the function of the control unit 100.
  • a mode for displaying the B mode image alone When the display mode switching button is pressed, a mode for displaying the B mode image alone, a mode for displaying the determination result of the sound speed / attenuation variation on the B mode image (for example, depending on the sound speed / attenuation variation).
  • the display mode is switched between a mode in which color-coded or luminance is changed, or a display in which dots having the same sound speed / attenuation variation are connected by lines), and a mode in which the B-mode image and the sound speed / attenuation variation determination result are displayed side by side.
  • the user can discover a lesion, for example, by observing the determination result of the sound speed / attenuation variation.
  • FIGS. 12A to 12C show examples of scatterer arrangement.
  • FIG. 12 (a) shows a normal liver, and each hepatic lobule structure has a random size of about 1.0 to 1.5 mm, but as shown in FIG. 12 (b).
  • the ultrasonic diagnostic apparatus 10 sets a region of interest in consideration of the above problems, measures the sonic variation or attenuation variation of the region of interest, and diagnoses tissue characteristics.
  • a pseudo point reflection is formed by applying transmission focus, and a time difference from the reception time approximated at a constant sound speed is obtained from the reception data of each element, and the sound speed is calculated from the variation.
  • the variation is measured, and the attenuation (scattering and absorption) variation is measured from the variation in the amplitude approximated with constant attenuation and the variation in the frequency.
  • the measured variation is intended to be useful for diagnosis of tissue properties.
  • FIGS. 2 (a) to 2 (c) schematically show processing for measuring sonic variation and attenuation variation.
  • FIG. 2 (a) shows that the variation in sound velocity is measured by obtaining the variation from the reception time approximated at a constant sound velocity.
  • FIG. 2B shows the measurement of the attenuation variation from the amplitude variation approximated with a constant attenuation.
  • FIG. 2C shows the measurement of the attenuation variation from the variation of the center frequency approximated with a constant attenuation.
  • FIG. 2A shows a wavefront (reception time) actually measured in each element by a solid line, and a wavefront approximated assuming that the medium of the subject is constant in sound speed, by a broken line, and the sound speed at each azimuth position. This shows a variation in reception time caused by the variation.
  • FIG. 2B shows the amplitude after logarithmic compression actually measured in each element by a solid line, and the amplitude after logarithmically approximated on the assumption that the medium of the subject is constant in attenuation.
  • FIG. 6 shows the variation in amplitude after logarithmic compression caused by variation in attenuation (absorption and scattering) at the azimuth position.
  • FIG. 2C shows the center frequency actually measured in each element by a solid line, the center frequency approximated assuming that the medium of the subject is constant attenuation, by a broken line, and attenuation ( This shows the dispersion of the center frequency due to the dispersion of absorption and scattering.
  • the reception time, amplitude, and center frequency of the pseudo point reflection reception wave formed by setting the transmission focus have variations from the reception time, amplitude, and center frequency assuming constant sound velocity and constant attenuation. Yes.
  • the mixing ratios of media having different sound speeds and attenuations are different in the paths corresponding to the respective azimuth positions.
  • pseudo point reflection causes variations in the received signal time, amplitude, and frequency in the propagation process of each element, and forms pseudo point reflection. It also occurs due to ambient interference.
  • the transmission speed does not concentrate on one point because the sound speed and attenuation (including scattering) are different in each path, so that interference from ambient scattering occurs, resulting in variations in the time, amplitude, and frequency of the received signal. Will occur.
  • the larger the change in the mixing ratio by the route the larger the variation in the azimuth position of the reception time, amplitude and center frequency, and the larger the spatial frequency of the change in the mixing ratio by the route, the higher the reception time, amplitude and direction of the center frequency. It can be easily seen from FIGS. 2A to 2C that the spatial frequency of the position variation increases.
  • reception time, amplitude, and center frequency of the reflected wave from the lattice point X are assumed to be
  • FIG. 3 shows the medium 1 and the medium 2 gathered to one side so that the mixing ratio can be clearly seen.
  • the medium 1 exists as a length L * ( ⁇ 1 + ⁇ )
  • the medium 2 exists as a length L * ( ⁇ 2 ⁇ ).
  • the reception time t when the element receives the ultrasonic wave emitted from the sound source in FIG. 3 is given by the following equation.
  • the variation index according to the above formula (1) represents the degree of variation well. It becomes an indicator.
  • the degree of variation is an index that well represents the degree of disease change.
  • the reception time, the reception time that does not include the path variation, and the path length are unknown.
  • the reception time (element reception time) can be obtained using a known phase aberration analysis method (see, for example, Japanese Patent Laid-Open No. 6-105841).
  • a certain signal is used as a reference signal to detect these phase differences, the phase difference detection results of adjacent elements are compared, and the difference is defined as D.
  • a sound source is assumed at a depth L from the element surface in a target composed of a variety of different sound velocity media (mixed media).
  • the sound velocity (average sound velocity) and the depth obtained by assuming that the medium to the sound source is uniform are obtained from the ultrasonic element reception signals emitted from the sound source shown in FIG.
  • the reception time T (X) at the element located at a distance X from directly below the sound source can be given by the following equation.
  • ⁇ (A) represents the square root of A, .rho.n, v n represents the mixing ratio and the acoustic velocity of the medium n.
  • ⁇ of the mixing ratio is not included.
  • the average sound speed of the above formula (3) is the above-described average sound speed, and each path length can be obtained from the depth L and the element position X.
  • the average sound speed and each path length can be obtained by looking at each element reception time in total. Even if the change ⁇ of the mixing ratio by each path is included, it is considered that the influence is small if each element signal is viewed in total.
  • a known image analysis technique (see, for example, JP-A-2007-7045) can be used. This is a method in which an average sound speed (and depth) is assumed and a value that maximizes the sharpness and contrast of the image of the sound source is obtained.
  • the average reception time may be obtained by least squares fitting, and the average sound speed (and depth) corresponding thereto may be obtained.
  • a variation index is obtained when another medium different from the mixed medium exists in front of each element. Specifically, the change in each path length and reception time is obtained by removing the influence of another medium.
  • a local region is set so that the vicinity of the boundary between the mixed medium and another medium is the lower surface, and a plurality of grid points are set on the lower surface of the local region. Set. If the average sound velocity in this region is obtained, the sound source depth L 'in the local region is obtained, and from this, the respective path lengths to the respective lattices separated by the distance X' are obtained.
  • the ambient sound velocity at each lattice on the lower surface of the point of interest and the local region is obtained.
  • the environmental sound speed value is a sound speed value at which the contrast and sharpness of the image are the highest, and can be obtained by the above-described image analysis method.
  • the initial value of the assumed sound speed in the local area is set, the assumed sound speed is changed by one step, the received wave at each lattice point on the lower surface of the local area is calculated from the environmental sound speed, and the received wave is a delay determined by the assumed sound speed.
  • a virtually combined received virtual wave WSUM is calculated.
  • Error between the virtual receiving wave W X assumed resultant received wave W SUM is a method of cross-correlating with each other, a method of multiplying the delay resulting virtual synthesized receiving wave W SUM or found in the virtual receiving wave W X phase matching addition, or conversely, it is calculated by a method in which phase matching addition is multiplied by the delay obtained from a virtual receiving wave W X virtual synthesized receiving wave W SUM.
  • the time at which the ultrasonic wave propagated at the environmental sound velocity value at the point of interest arrives at each element may be set as the delay with the point of interest as the reflection point.
  • an equiphase line is extracted from the phase difference of the combined received wave between adjacent elements, and the equal phase line is used as a delay, or simply, The phase difference of the maximum (peak) position of the combined received wave may be used as the delay.
  • the cross-correlation peak position of the combined received wave from each element may be set as a delay.
  • the error at the time of phase matching addition is obtained by a method of setting the peak to peak of the waveform after the matching addition or a method of setting the maximum value of the amplitude after the envelope detection.
  • the local sound speed value in the local region is determined. That is, the assumed sound speed value at which the difference between the virtual received wave W X and the virtual synthesized received wave W SUM is minimized is determined as the local sound speed value in the local region.
  • reception time at the point of interest in the region of interest and each lattice point on the lower surface of the local region is obtained in advance, and each lattice reception wave is superimposed with a delay determined by the assumed sound velocity in the region of interest, and the combined reception wave is generated.
  • the reception time at the point of interest and each lattice point on the lower surface of the local region can be obtained using the above-described image analysis method and phase aberration analysis method.
  • the reception time (received wave) of each lattice point on the lower surface of the local region is obtained by the image analysis and phase aberration analysis methods, and then assumed in the region of interest.
  • the reception time (received wave) of each lattice point on the lower surface of the local region is obtained by the image analysis and phase aberration analysis methods, and then assumed in the region of interest.
  • superimposes each grid received wave with a delay determined by the speed of sound to synthesize a combined received wave generates an image based on the generated delay, analyzes the image, and determines local sound speed from the condition that maximizes sharpness, for example. You may make it do.
  • the minimum sum is set as the delay of the element, an image is generated based on the delay, and the image is analyzed, for example, the local sound speed is determined from the condition that the sharpness is maximum. good.
  • the reception time (received wave) of each lattice point on the lower surface of the local region is obtained by a method of image analysis and phase aberration analysis.
  • a signal that is matched and added with each delay is set as the received signal of each virtual element, and an image is generated from the received signal of each virtual element based on the assumed sound speed of the region of interest, and the image is analyzed.
  • the local sound speed may be determined from the condition that the sharpness is maximized.
  • the method of removing the lattice points and the lower surface of the local region is not particularly limited to a plane, and can be set as an arbitrary curved surface on the element side (near side) from the point of interest. For example, it may be set on a boundary surface of a tissue or a lesion.
  • the change from the reception time determined by the average sound speed is obtained from the reception time of the signal received by each element, and a low frequency cut process is performed on it.
  • a change due to another medium is removed, and each element position is converted into each lattice position on the lower surface of the local region.
  • the conversion from each element position to each lattice position on the lower surface of the local area is based on the propagation of ultrasonic waves from the point of interest to each element from the local point of interest in the local area and the ambient sound speed at each lattice point or each element reception time. Since the path is obtained, it is possible to propagate in the reverse direction from each element position along this propagation path.
  • the attenuation variation can be obtained as follows by the same method as the sound speed.
  • Attenuation There are three types of attenuation: diffusion attenuation due to the spread of sound waves, absorption attenuation due to sound waves being absorbed into the medium and converted to heat, and scattering attenuation due to scattering of living tissue.
  • the attenuation is given by exp ( ⁇ x).
  • represents an attenuation coefficient
  • x represents a propagation distance.
  • the attenuation coefficient ⁇ is approximately proportional to the frequency in the frequency range of the MHz band. Due to the attenuation proportional to the frequency, the center frequency of the Gaussian pulse is shifted in proportion to the propagation distance. Using this, attenuation can be obtained from the center frequency shift.
  • the attenuation variation index is considered in the same manner as in the case of sound velocity.
  • a (x) A (0) ⁇ L * ( ⁇ 1 * ⁇ 1 + ⁇ 2 * ⁇ 2) ⁇ L * ⁇ * ( ⁇ 1 ⁇ 2)
  • F (x) F (0) ⁇ L * ( ⁇ 1 * ⁇ 1 + ⁇ 2 * ⁇ 2) ⁇ L * ⁇ * ( ⁇ 1 ⁇ 2) (4)
  • is an attenuation coefficient including a term depending on frequency
  • is a constant determined by ⁇ and a band of a pulse wave (assuming a Gaussian pulse).
  • a (x) A (0) ⁇ L * ( ⁇ 1 * ⁇ 1 + ⁇ 2 * ⁇ 2)
  • F (x) F (0) ⁇ L * ( ⁇ 1 * ⁇ 1 + ⁇ 2 * ⁇ 2) (5)
  • the path length L is obtained from the average sound speed by the above formula (3), for example. Further, in order to obtain the change, an amplitude or center frequency that does not depend on the path is necessary, and it is obtained by fitting to the amplitude or center frequency of each element reception signal. At this time, the fitting may be performed assuming an average ⁇ or ⁇ based on the depth of the sound source obtained by Expression (3).
  • the method for obtaining the variation index when there is a non-uniform layer is the above equation (6) from each path length in the local region of FIG. 5 and the average attenuation of the amplitude or center frequency of each grating on the lower surface of the local region. What is necessary is just to obtain
  • each path length is derived. If the depth of the point of interest (sound source) can be derived, each path length connecting the point of interest and each element can be derived.
  • a method for deriving the depth of the point of interest there are, for example, a method of obtaining from the reception time, a method of obtaining from the amplitude, and a method of using the center frequency.
  • the average sound speed and depth to the point of interest can be obtained using a known image analysis technique. Specifically, it can be obtained as a value that maximizes the sharpness and contrast characteristics of the image of the point of interest.
  • the amplitude of each element reception signal is acquired, and the amplitude obtained by assuming the average attenuation and depth up to the point of interest in the above equation (5) is fitted to minimize the error.
  • a method of adopting a value that becomes can be considered.
  • the amplitude is affected not only by attenuation but also by diffusion, transmission focus, nonlinear characteristics, etc., it is difficult to apply the above formula (5).
  • the difference between the amplitudes after logarithmic compression of the two frequencies is proportional to the attenuation coefficient. Can do.
  • the center frequency of each element reception signal is obtained, and the center frequency obtained by assuming the average attenuation and depth to the point of interest is fitted to the equation (5).
  • a method of adopting a value that minimizes the error can be considered.
  • fitting can be performed with higher accuracy.
  • step S110 the reception time, amplitude, and center frequency of each element are derived.
  • the reception time can be obtained using a known phase aberration analysis method.
  • the phase aberration analysis may be performed starting from a “reception time not including path variation” obtained in advance together with the average sound speed by image analysis of the point of interest.
  • a method of obtaining the amplitude there is a method of obtaining the value at the reception time described above after performing envelope detection on each element reception signal and converting it to amplitude information.
  • a peak value in a predetermined range may be acquired based on the “reception time not including path variations”.
  • a predetermined range based on the reception time described above is obtained from each element reception signal, and after frequency conversion, ⁇ f * P (f) df / ⁇ P (f) df
  • ⁇ f * P (f) df / ⁇ P (f) df There is a method for obtaining the center of gravity by the following formula.
  • f is a frequency
  • P (f) is a spectral density at f.
  • the center frequency may be a frequency at which the spectral density reaches a peak, or may be the center of the full width at half maximum. Or you may make it obtain
  • the noise or interference when obtaining the amplitude or the center frequency, if the signal at the corresponding reception time is matched and added at the predetermined aperture around the reception signal of the element to be obtained, the noise or interference can be reduced.
  • step S120 the reception time / amplitude / center frequency not including the path variation of each path is derived.
  • the reception time can be obtained if the average sound speed is obtained in step S100 described above.
  • a curve that minimizes the error may be fitted to each element reception signal obtained in step S110.
  • the reception time since the path length connecting the point of interest and each element is obtained in step S100, the reception time may be calculated assuming the average sound speed, and the average sound speed (reception time) that minimizes the error may be obtained.
  • a curve that minimizes the error is fitted to the amplitude of each element reception signal obtained in step S110.
  • the amplitude is calculated assuming the average attenuation of Equation (5), and the average attenuation (amplitude) that minimizes the error is obtained. May be.
  • the center frequency if the average attenuation is obtained in step S100, the center frequency of each element is obtained at the same time.
  • a curve that minimizes the error may be fitted to the center frequency of each element reception signal obtained in step S110.
  • the center frequency since each path length is obtained in step S100, the center frequency may be calculated assuming average attenuation, and the average attenuation (center frequency) that minimizes the error may be obtained.
  • fitting can be performed with high accuracy.
  • step S130 changes in the reception time, amplitude, and center frequency of each path are derived. This can be obtained by subtracting the value obtained in step S120 from the reception time, amplitude, and center frequency obtained in step S110.
  • step S140 an index is derived by dividing the change by the path length, and then a variation index is derived.
  • the standard deviation or the maximum value of the index of each route may be used as the variation index.
  • the flowchart in FIG. 7 is substantially the same as the flowchart in FIG. 6 described above.
  • “each path” becomes “each path in the local region” and “each element reception time, amplitude, The difference is that the “center frequency” is a “value on the lower surface of the local region”.
  • each path length in the local region is derived (pseudo point reflection depth is derived).
  • a local region is set such that each point of interest (sound source) is on the upper surface and a boundary near another medium is on the lower surface, and each path length in the local region is obtained.
  • the depth of the point of interest in the local region is obtained.
  • a method of obtaining together with the average sound speed in the local region is preferably used. As described above, there are various methods for obtaining the average sound speed (local sound speed) in the local region.
  • step S210 values on the lower surface of the local area of each element reception time, amplitude, and center frequency are derived.
  • the reception time (or average sound speed) of each grating on the lower surface of the local region is obtained by using a known image analysis and phase aberration analysis method, and this is used as a delay.
  • the reception time (received wave) at the point of interest is obtained by image analysis and phase aberration analysis.
  • a signal obtained by matching and adding the reception wave at the point of interest with each delay is set as a reception signal of each virtual element.
  • the local reception time at the point of interest is obtained by performing the phase aberration analysis of the reception signal of each virtual element.
  • each lattice is regarded as a virtual element, and the latest time among the times obtained by subtracting the delay from each element reception time at the point of interest is adopted as the local reception time of each virtual element.
  • the received wave of each grating on the lower surface of the local area is considered to be the same, a representative received wave is determined, and the received wave at the point of interest is inverted by the received wave representing the lower grating of the local area.
  • the local reception time at the point of interest is obtained by performing deconvolution.
  • the deconvolution process can be performed on each element reception signal or on its frequency space.
  • the local reception time may be searched so that the error from the reception wave) is minimized.
  • search algorithms For example, a quasi-Newton method may be used.
  • the center frequency As a method for obtaining the center frequency, the local reception time or average sound speed of the local area and the reception time or average sound speed of each grid on the lower surface of the local area are obtained in advance. Then, the propagation path of the point of interest ⁇ each lattice ⁇ each element is obtained. The center frequency at the time of transmission is assumed to be known.
  • the value obtained by subtracting this value from represents the center frequency shift amount due to attenuation of the propagation path of each lattice ⁇ each element.
  • the attenuation of each lattice ⁇ each element is obtained in advance from the center frequency shift amount, and the propagation path of each lattice ⁇ each element is obtained.
  • the attenuation of each grating ⁇ each element is corrected from the amplitude of each element, and the amplitude of each grating is obtained.
  • step S220 the reception time / amplitude / center frequency not including the local region path variation is derived.
  • the reception time it is obtained from the average sound speed and the path length of the local area obtained in step S200. Alternatively, it may be obtained by fitting a curve that minimizes the error at the reception time of each grid obtained in step S210. At this time, since the path length connecting the point of interest and each grid is obtained in step S200, the reception time may be calculated assuming the average sound speed, and the average sound speed (reception time) that minimizes the error may be obtained.
  • the amplitude As a method for obtaining the amplitude, it is possible to obtain the amplitude by fitting a curve with a minimum error to the amplitude of each lattice obtained in step S210. At this time, since the path length connecting the point of interest and each grid is obtained in step S200, the amplitude is calculated assuming the average attenuation of equation (5), and the average sound speed (amplitude) that minimizes the error is obtained. Also good.
  • a curve having a minimum error is fitted to the center frequency of each lattice obtained in step S210.
  • each path length is obtained in step S200, it is possible to calculate the center frequency assuming the average attenuation and obtain the average attenuation (center frequency) that minimizes the error.
  • steps S230 and S240 is the same as the processing in steps S130 and S140 in FIG.
  • the lower surface of the local region set when there is another medium does not necessarily have to be near the boundary as shown in FIG. 5, or may be a curved surface instead of a flat surface.
  • the transmission focus is set not only on the local area but also on the lower surface of the local area.
  • the amount to be standardized includes the depth and the amount close to the depth in addition to the path length, and the reception time / frequency shift amount of the middle element (or lattice). Normalization by these is not necessary when evaluating the variation with the depth of the point of interest (region of interest) (the depth excluding the other medium if there is another medium) being constant.
  • the sound speed / attenuation is an amount dependent only on ⁇ separated from the depth, so the sound speed / attenuation may be used as an index (in this case, the ratio of the depth to the aperture is also determined). Seems to be unrelated).
  • the average sound velocity and average attenuation itself may vary depending on the position of the point of interest. Therefore, the standard deviation of the variation in the region of interest of the average sound speed / average attenuation at each point of interest may be used as the variation index.
  • the variation index described above is an index based on the variation in reception time, amplitude, and center frequency, but it is considered that the spatial frequency varies. Specifically, since it is considered that the frequency with respect to the azimuth position corresponding to the change in the reception time / amplitude and the center frequency shown in FIGS. 2A to 2C changes, a variation index based on this may be used.
  • the change in reception time / amplitude and center frequency can be obtained by the flowchart of FIG. 6 when there is no other medium, and by the flowchart of FIG. 7 when there is another medium.
  • the magnitude of the change in the reception time, amplitude, and center frequency increases with the depth of the point of interest. There is no need. However, since there is a slight difference in how to increase the amount of change for each route, the amount of change may be corrected by normalizing with the length of each route. That is, either the change obtained by the flowchart of FIG. 6 or FIG. 7 or the change normalized by the path length may be used as an index.
  • the center frequency or band of the frequency distribution with respect to the azimuth position of the index obtained from the above or a variable based on them is obtained as a variation index.
  • the uniform and small liver lobule is replaced with a non-uniform and large nodule, so that the center frequency moves to the low frequency side or the band is widened. Can be diagnosed.
  • the center frequency is obtained by ⁇ f * P (f) df / ⁇ P (f) df.
  • f represents the frequency
  • P (f) represents the amplitude of the frequency f.
  • the center frequency may be a frequency having a maximum amplitude, a center frequency in a band having a maximum amplitude, or a frequency at which the integral value of P (f) becomes a half value.
  • f 0 represents the center frequency. This may remain dispersed.
  • the band may be a band having a predetermined ratio of the amplitude of the center frequency and the maximum amplitude, or the integrated value of P (f) centered on the center frequency and the frequency of the maximum amplitude is a predetermined ratio of the total integrated value. It is good also as a zone
  • distortion of the frequency distribution may be obtained as a variation index. This is obtained from the third moment ⁇ (f ⁇ f) 3 * P (f) df / ⁇ P (f) df of the frequency distribution.
  • the method for obtaining the variation index using the received time / amplitude / center frequency change and the path length standardized change as an index has been described.
  • the received time / amplitude / center frequency may be directly used as an index instead of the change.
  • the component of “reception time / amplitude / center frequency not including path variation” is included in the extremely low frequency of the frequency distribution, the extremely low frequency component may be excluded when calculating the variation index.
  • the variation index may be obtained based on the spatial frequency of variation due to the position of the target point of average sound speed and average attenuation.
  • a two-dimensional frequency distribution of average sound speed and average attenuation in the region of interest is obtained, and obtained from the center frequency, band, and distortion.
  • the variation index can be obtained as described above.
  • the variation index is affected by the nonuniformity of the structure on the signal variation depending on the relationship between the scale of the microstructure and the wavelength (frequency). It will change. For example, if the wavelength is sufficiently long compared to the structure (if the frequency is sufficiently low), the non-uniformity of the structure has little effect on the signal variation, and conversely if the wavelength is comparable to the scale of the structure, the structure is not uniform. Uniformity is considered to have a great influence. Specifically, in the case of fatty liver, it is considered that nonuniformity due to fat deposition can be captured at a frequency of about 7 MHz because the size of the lipid droplet is about 100 ⁇ m.
  • ultrasonic waves having a predetermined transmission frequency suitable for the diagnosis of the tissue property are transmitted.
  • the B-mode transmission frequency and the tissue property diagnosis transmission frequency are changed to different frequencies.
  • the transmission frequency for the B mode is a predetermined frequency
  • the transmission frequency for the tissue property diagnosis is a predetermined frequency according to the depth and size of the site of interest (target organ or lesion).
  • FIG. 8 is a diagram illustrating an example of a transmission circuit that can change the transmission frequency of the ultrasonic diagnostic apparatus 10 according to the exemplary first embodiment.
  • the transmission circuit 402 includes a transmission frequency changing unit 401 and a timing controller 403.
  • the timing controller 403 outputs a signal for generating a drive pulse to the transmission frequency changing unit 401 under the control of the control unit 100.
  • the transmission frequency changing unit 401 generates a pulse having a frequency according to an instruction from the control unit 100 and outputs the pulse to the ultrasonic transducer 302, so that an ultrasonic wave having a frequency according to the instruction from the control unit 100 is transmitted from the ultrasonic transducer 302. Generated.
  • a method of changing the transmission frequency by the transmission frequency changing unit 401 for example, the technique described in JP-A-2006-255014 can be applied.
  • an ultrasonic transducer 302 having a wide frequency characteristic using a composite piezoelectric element is used, and a plurality of types of bandpass filters having different frequency bands to be passed are connected to the ultrasonic transducer 302 and selected. By switching the band pass filter and applying the drive pulse, it is possible to generate ultrasonic waves having different frequency bandwidths and center frequencies.
  • a plurality of types of frequency characteristic transducers 302 may be provided and selectively used.
  • FIG. 9 is a flowchart illustrating an example of the flow of the entire process for obtaining a variation index representing the sonic variation or attenuation variation performed by the control unit 100 of the ultrasonic diagnostic apparatus 10 according to the first embodiment.
  • step S300 a B-mode image is displayed. That is, the B mode image is displayed on the display unit 104 in accordance with the operation of the display mode switching button of the console 202 by the user.
  • the ultrasonic probe 300 receives the ultrasonic signal by controlling the transmission frequency changing unit 401 of the transmission circuit 402 so that the B-mode transmission frequency is obtained.
  • a region of interest is set.
  • the region of interest is set as a region of interest according to the user's operation of the console 202 or the pointing device 204.
  • the transmission frequency is set to the tissue property diagnosis transmission frequency.
  • the transmission frequency for tissue property diagnosis for example, a frequency suitable for diagnosing a tissue property different from that for B-mode images is determined in advance, and the control unit 100 controls the transmission frequency changing unit 401 to transmit the tissue property. Change the frequency.
  • step S306 the transmission circuit 402 controls the ultrasonic transducer in accordance with an instruction from the control unit 100, thereby setting a predetermined number of transmission focal points along each line in the region of interest and implementing the corresponding transmission focus. Then, the signal is received by the receiving circuit 404 via each element. The RF signal received by the receiving circuit 404 is converted into a digital RF signal by the A / D converter 406.
  • the effective range of each transmission focus may be determined in advance as follows.
  • a transmission focus number (n) is set, and a specified line width is added / subtracted from a predetermined specified line number to obtain a line number (m), and each element of the focus (n) and line (m) is received. Read the signal.
  • the set sound speed number (k) is set, the reception focus of the set sound speed (k) is performed on the received signal of the line No (m) of the transmission focus No (n), and the index or the image is stored. This process is repeated by changing the value of the set sound speed (k).
  • the line (m) is changed and set for the new line (m) as described above.
  • the transmission focus is performed by changing the speed of sound (k).
  • the ambient sound speed (average sound speed) at each depth is calculated from the indicators or images of all lines for each set sound speed, the standard deviation in the depth direction of the environmental sound speed is calculated, and the minimum point is determined as the actual depth of focus.
  • the effective range of the transmission focus (n) is obtained. Then, the transmission focus number is changed, and the effective area for the next transmission focus (n) is obtained in the same manner as above.
  • transmission focus may be performed corresponding to each point of interest.
  • step S308 the data analysis measurement unit 106 sets a predetermined number (i 0 ) of points of interest in the region of interest in the RF signal. There may be one point of interest, that is, the predetermined number i 0 may be 1. Then, by performing the following process, a variation index representing the sonic variation or attenuation variation at the point of interest is obtained for each of the i 0 points of interest.
  • step S312 each element reception data of the transmission focus corresponding to the i-th target point is selected, and a variation index representing the sound speed variation or attenuation variation of the i-th target point is calculated from the corresponding data.
  • a method of obtaining the variation index when there is no other medium, it is obtained by the method shown in the flowchart of FIG. When there is another medium, it is obtained by the method shown in the flowchart of FIG. At this time, a local region is set separately from the region of interest, and each element reception data of the transmission focus corresponding to each lattice point on the lower surface of the local region is also used.
  • step S314 the data analysis measurement unit 106 increments the point of interest number i by 1 (adds 1 to i), and in the next step S316, the number of points of interest for which i is set (predetermined number). It is determined whether i 0 ) has been exceeded. As a result, if i has not yet exceeded i 0 , the process returns to step S312 to repeat the process of obtaining a variation index representing the sonic variation or attenuation variation of the point of interest i. On the other hand, if it is determined that i exceeds i 0 , the process proceeds to the next step S318.
  • step S318 the data analysis measurement unit 106 calculates the sum of the variation indices at each point of interest i, and displays the sum on the display unit 104 as the variation index in the region of interest.
  • the variation index of the region of interest is the sum of the variation indexes of the respective points of interest.
  • the variation index may be used.
  • step S320 the transmission frequency is returned to the B-mode transmission frequency. That is, the control unit 100 controls the transmission frequency changing unit 401 to change the transmission frequency to a predetermined B-mode transmission frequency and finish the process for obtaining a variation index for diagnosing a series of tissue properties.
  • the histogram shape feature amount may be used as a variation index such as skewness or kurtosis.
  • the standard deviation of the distribution in the region of interest, the histogram shape feature amount, or the texture feature amount by the co-occurrence matrix such as uniformity, contrast, correlation, entropy, etc. may be used as the variation index.
  • the histogram feature amount, the texture feature amount, and the like can be similarly used as the variation index.
  • a variation index may be obtained from a plurality of feature amounts using, for example, a multiple regression equation.
  • a large amount of data on specific lesions and variations in sound velocity or attenuation corresponding thereto is accumulated, and based on this data, the correspondence between the value of the variation index and the state of tissue properties is obtained statistically to diagnose tissue properties
  • the threshold value of the variation index for this is set in advance.
  • a variation index is obtained by the method described above, and the tissue property is diagnosed by comparing it with a preset threshold value. This facilitates diagnosis of tissue properties.
  • the frequency is changed to a frequency suitable for diagnosing tissue properties, so that it is possible to measure the non-uniformity of the microstructure with high accuracy.
  • a frequency suitable for diagnosing tissue properties For example, in the case of fatty liver, since the lipid droplet size is about 100 ⁇ m as described above, by changing the transmission frequency to about 7 MHz, the nonuniformity due to fat deposition is compared with the case where the frequency is not changed. It can be captured with high accuracy.
  • the micro sound velocity / attenuation nonuniformity of the tissue is measured based on variations in time, amplitude, frequency, and the like of each element signal.
  • the second embodiment on the basis of each element signal. The sound velocity or attenuation is obtained and the micro sound velocity / attenuation nonuniformity of the tissue is measured based on the spatial change, and the configuration is the same as the ultrasonic diagnostic apparatus 10 of the first embodiment. Since the processing performed in the control unit 100 is different, the different processing will be described below.
  • FIG. 10 is a flowchart illustrating an example of a flow of processing for obtaining a variation index of sound speed or attenuation performed by the control unit of the ultrasonic diagnostic apparatus according to the second exemplary embodiment.
  • the same processes as those in the first embodiment are denoted by the same reference numerals and will be briefly described.
  • step S300 a B-mode image is displayed, and in step S302, a region of interest is set.
  • the ultrasonic probe 300 receives the ultrasonic signal by controlling the transmission frequency changing unit 401 of the transmission circuit 402 so that the B-mode transmission frequency is obtained.
  • the transmission frequency is set to the tissue property diagnosis transmission frequency.
  • the transmission frequency for diagnosing tissue properties is determined in advance as a frequency suitable for diagnosing tissue properties different from those for B-mode images, for example, and the control unit 100 controls the transmission frequency changing unit 401. Thus, the transmission frequency is changed.
  • step S306 the transmission circuit 402 controls the ultrasonic transducer in accordance with an instruction from the control unit 100, thereby setting a predetermined number of transmission focal points along each line in the region of interest and implementing the corresponding transmission focus. Then, the signal is received by the receiving circuit 404 via each element. The RF signal received by the receiving circuit 404 is converted into a digital RF signal by the A / D converter 406.
  • step S308 the data analysis measurement unit 106 sets a predetermined number (i 0 ) of points of interest in the region of interest in the RF signal. There may be one point of interest, that is, the predetermined number i 0 may be 1. Then, by performing the following process, a variation index representing the sonic variation or attenuation variation at the point of interest is obtained for each of the i 0 points of interest.
  • step S311 the element reception data of the transmission focus corresponding to the i-th focus point is selected, and the sound speed or attenuation of the i-th focus point is obtained from the data.
  • the method of obtaining the sound speed or attenuation is not particularly limited, and can be obtained by a known method as described below, for example.
  • an image analysis method for obtaining the sound speed as a value that maximizes the characteristics such as sharpness and contrast of the image of the region of interest See, for example, JP-A-2007-7045.
  • the sound speed assumed for setting the delay time is called the set sound speed
  • the intensity distribution in the azimuth direction of the ultrasonic intensity is called the beam profile.
  • a graph representing a change in the beam width depending on the set sound speed is generated, and a minimum value of an approximate curve obtained by approximating the change with a higher order curve is extracted, and the set sound speed corresponding to the minimum value is estimated as the environmental sound speed.
  • the sound velocity at the point of interest may be the local sound velocity at the point of interest.
  • the sound velocity at the point of interest may be the local sound velocity at the point of interest.
  • the method for obtaining the average sound velocity (local sound velocity) in the local region described in the method for obtaining the variation index of the first embodiment can be used.
  • a method of obtaining the attenuation of the point of interest for example, a method of obtaining the attenuation using each element reception signal before the matching addition is considered as follows.
  • the center frequency of the reception signal of each element is a value obtained by shifting the center frequency of the transmission wave to the low frequency side by an amount determined by the attenuation at the propagation distance determined by the pseudo point reflection depth and each element position. Therefore, when obtaining the center frequency of the transmission wave from the center frequency of each element reception signal, the three unknowns of the point reflection depth and the attenuation coefficient, or the pseudo point reflection sound velocity, the depth is also obtained simultaneously. Further, the attenuation coefficient may be obtained with the center frequency of the transmission wave also known.
  • a region of interest is set, a predetermined number of transmission focal points are set along each line in the region of interest, a corresponding transmission focus is performed, and reception is performed by each element. .
  • a predetermined number of points of interest are set with respect to the azimuth position and depth position in the region of interest, each element reception signal of the transmission focus for each point of interest is selected, and the depth of the point of interest of the middle element is selected therefrom.
  • the center frequency of the signal corresponding to is obtained, this is repeated in the depth position direction, the center frequency of each point of interest is subtracted in the depth direction, the result is stored as an attenuation coefficient, and this is stored in each azimuth position
  • each element reception signal of the transmission focus for each target point is selected, and among the center frequency of the transmission wave, the depth of the target point, and the attenuation coefficient, an unknown is used to best match the center frequency of each element reception signal.
  • the attenuation coefficient is stored as the attenuation coefficient at the point of interest, and this is repeated for each azimuth position to obtain the distribution of the attenuation coefficient.
  • a region of interest is set, a predetermined number of transmission focal points are set along each line in the region of interest, and the corresponding transmission is performed. Focus is performed and received by each element.
  • a predetermined number of points of interest are set for the azimuth position and depth position in the region of interest, a local region where the point of interest is located at the center of the upper surface is set, and a plurality of grid points are set on the lower surface of the local region.
  • a propagation path from the focus point to each element via each lattice is obtained.
  • each propagation path can be obtained when obtaining the local sound velocity in the local region.
  • the center frequency at each lattice point on the lower surface of the local region is obtained by reversely shifting the center frequency of each element reception signal of the transmission focus corresponding to the point of interest along the path from each lattice to each element.
  • the shift amount along the path from each grating to each element can be obtained from each element reception signal obtained by separately performing transmission focus corresponding to each grating.
  • the lattice immediately under the point of interest in the local region ⁇ the point of interest ⁇ Since the propagation path length of each lattice is obtained when calculating the local sound velocity, it is assumed that the attenuation coefficient in the local region is constant.
  • the center frequency at each lattice point after propagation can be obtained from the center frequency and attenuation coefficient at the lattice immediately below the point.
  • the center frequency in the grating immediately below the point of interest can be obtained separately from each element reception signal obtained by performing transmission focus corresponding to the grating immediately below the point of interest. Therefore, an error between the center frequency at each lattice point obtained by assuming the attenuation coefficient and the center frequency at each lattice point obtained by the center frequency reverse shift of each element reception signal at the target point is obtained, and this error is minimized. Can be obtained as a true value.
  • each element reception data corresponding to the point of interest i and a local region are set, each element reception data corresponding to each grid point set on the lower surface of the element reception data is used. Find the speed of sound or attenuation.
  • the method of setting the lower surface of the local region and each grid point is not particularly limited, and can be set on an arbitrary curved surface below the point of interest. For example, it may be set on the boundary of a tissue or a lesion.
  • step S314 the data analysis measurement unit 106 increments the point of interest number i by 1 (adds 1 to i), and in the next step S316, the number of points of interest for which i is set (predetermined number). It is determined whether i 0 ) has been exceeded. As a result, if i has not yet exceeded i 0 , the process returns to step S312 to repeat the process of obtaining a variation index representing the sonic variation or attenuation variation of the point of interest i. On the other hand, if it is determined that i exceeds i 0 , the process proceeds to the next step S317.
  • step S317 the data analysis measurement unit 106 obtains a variation index from the change in the sound speed or attenuation of the focus point i at each focus point and displays it on the display unit 104.
  • step S320 the transmission frequency is set for the B mode. Return to the transmission frequency. That is, the control unit 100 controls the transmission frequency changing unit 401 to change the transmission frequency to a predetermined B-mode transmission frequency and finish the process for obtaining a variation index for diagnosing a series of tissue properties.
  • variation index an index based on the speed of sound in the region of interest or the magnitude of variation in attenuation, for example, standard deviation can be used.
  • an index based on the spatial frequency of the change in the sound speed or attenuation of the attention point at each point of interest for example, a two-dimensional frequency distribution of sound speed / attenuation may be obtained and obtained from the center frequency / bandwidth / distortion.
  • various indexes that can evaluate non-uniformity can be considered as a variation index.
  • the skewness or kurtosis may be used as a variation index as the histogram shape feature amount of the sound velocity / attenuation distribution or the spatial frequency distribution in the region of interest, or a texture feature amount such as a co-occurrence matrix such as uniformity, contrast, Correlation, entropy, etc. may be used as the variation index.
  • a variation index may be obtained from a plurality of feature quantities using, for example, a multiple regression equation.
  • the frequency is changed to a frequency suitable for diagnosing tissue properties, so that the non-uniformity of the microstructure can be measured with high accuracy. Become.
  • the transmission frequency is different between the B mode and the tissue property diagnosis.
  • the present invention is not limited to this, and the reception frequency may be changed. .
  • the reception frequency may be changed.
  • an example of changing the reception frequency with respect to the first embodiment will be described below. In the following, a case where the reception frequency is changed with respect to the first embodiment will be described, but the reception frequency may be changed with respect to the second embodiment.
  • a broadband frequency ultrasonic wave is transmitted by the broadband frequency ultrasonic transducer 302, a reception frequency changing unit is provided in the reception circuit 404, and the reception frequency is changed by the reception frequency changing unit.
  • the reception frequency changing unit can change the reception frequency by using a filter such as a band pass filter, for example. That is, the reception circuit 404 has a plurality of types of band-pass filters (for example, a band-pass filter that passes a predetermined frequency for the B mode and the depth and size of a site of interest (target organ or lesion)) as a reception frequency changing unit.
  • a band-pass filter that passes a predetermined frequency in accordance with the frequency, and a band-pass filter that is used under the control of the control unit 100 is changed to obtain a signal having a desired frequency from an ultrasonic signal having a wide-band frequency. be able to.
  • FIG. 11 is a flowchart showing an example of the overall processing flow for obtaining a variation index representing a variation in sonic velocity or attenuation variation performed by the control unit 100 of the ultrasonic diagnostic apparatus in which the reception frequency can be changed.
  • the same processes as those in the first embodiment are denoted by the same reference numerals and will be briefly described.
  • step S300 a B-mode image is displayed, and then in step S302, a region of interest is set.
  • the ultrasonic probe 300 receives the ultrasonic signal by controlling the receiving circuit 404 so that the B-mode reception frequency is obtained.
  • step S306 the transmission circuit 402 controls the ultrasonic transducer in accordance with an instruction from the control unit 100, thereby setting a predetermined number of transmission focal points along each line in the region of interest and implementing the corresponding transmission focus. Then, the signal is received by the receiving circuit 404 via each element.
  • step S307 a band pass filter is applied to each element reception signal. That is, the control unit 100 controls the receiving circuit 404 to select a band-pass filter in order to obtain a reception signal having a tissue characteristic diagnosis frequency, and to set the reception signal to a tissue characteristic diagnosis frequency.
  • the RF signal received by the receiving circuit 404 is converted into a digital RF signal by the A / D converter 406.
  • step S308 the data analysis measurement unit 106 sets a predetermined number (i 0 ) of points of interest in the region of interest in the RF signal.
  • step S310 the data analysis measurement unit 106 selects the region of interest in the RF signal.
  • step S312 each element reception data of the transmission focus corresponding to the i-th target point is selected, and a variation index representing the sound speed variation or attenuation variation of the i-th target point is calculated from the corresponding data.
  • step S314 the data analysis measurement unit 106 increments the point of interest number i by 1 (adds 1 to i), and in the next step S316, the number of points of interest for which i is set (predetermined number). It is determined whether i 0 ) has been exceeded. As a result, if i has not yet exceeded i 0 , the process returns to step S312 to repeat the process of obtaining a variation index representing the sonic variation or attenuation variation of the point of interest i. On the other hand, if it is determined that i exceeds i 0 , the process proceeds to the next step S318.
  • step S318 the data analysis measurement unit 106 calculates the sum of the variation index of each point of interest i, displays it as a variation index in the region of interest, and displays it on the display unit 104, and a variation index for diagnosing a series of tissue characteristics. The process for obtaining is terminated.
  • the ultrasonic diagnostic apparatus and the ultrasonic diagnostic method according to the embodiments have been described in detail.
  • the embodiments are not limited to the above examples, and various improvements and modifications can be made without departing from the gist of the present invention. Of course, you may also do.
  • control unit 100 may be stored and distributed as a program in various persistent storage media.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Vascular Medicine (AREA)
  • Gynecology & Obstetrics (AREA)
  • Physiology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 超音波を被検体に送信すると共に、該被検体によって反射される超音波を受信して超音波検出信号を出力する複数の超音波トランスデューサを含む超音波探触子と、前記超音波探触子から送信する超音波の送信周波数、または前記超音波探触子によって受信する超音波の受信周波数を、前記超音波探触子から出力される前記超音波検出信号の振幅を明るさの強弱に変換して表示する場合と、組織性状の診断を行う場合とで異なる周波数に変更する変更手段と、前記超音波探触子における異なる2つ以上の超音波トランスデューサにおける、前記変更手段によって組織性状の診断を行う周波数に変更したときの受信信号の関係に基づいて、組織性状を診断するための指標を算出する算出手段と、を備えた超音波診断装置を提供する。

Description

超音波診断装置、超音波診断方法、及び超音波診断プログラム
 本願は2012年5月25日出願の日本出願第2012-120213号の優先権を主張すると共に、その全文を参照により本明細書に援用する。
 本発明は、超音波診断装置、超音波診断方法、超音波診断プログラムに関し、特に被検体の診断部位に対して超音波を送受信し、受信した超音波の受信信号の関係に基づいて被検体の組織性状の診断を行う超音波診断装置、超音波診断方法、及び超音波診断プログラムに関する。
 従来より、超音波を利用して被検体の診断部位に対して超音波を送受信することにより超音波画像を撮影して表示する超音波診断装置が知られており、超音波画像に基づいて、被検体組織の内部構造や構成成分などの性状診断や、組織、病変弁別など、診断に活用する様々な試みがなされてきた。
 例えば、特開2005-125081号公報には、複数の周波数成分を有する超音波を送受信することによって得られる検出信号の強度に基づいて第1の画像データを生成するBモード画像データ生成部と、検出信号から少なくとも1つの周波数成分を抽出する周波数成分抽出部と、抽出された少なくとも1つの周波数成分の強度に基づいて第2の画像データを生成する周波数画像データ生成部と、第1の画像データと第2の画像データとの内の少なくとも一方を選択する画像選択部とを備えた超音波診断装置が開示されている。
 また、特開2001-238884号公報には、断層像内の一部に解析領域を設定する手段と、解析領域に相当する被検体部位に超音波パルスを定量解析用の送信条件に従って送信し且つその送信に伴って被検体部位から発生するエコー信号を受信する手段と、エコー信号に基づき組織性状を定量解析する手段とを備える超音波診断装置が開示されている。
 しかしながら、特開2005-125081号公報に記載の技術では、組織の透過率の周波数特性に着目して、SN比の高い超音波画像を表示することができるものの、高精度な組織性状の診断を行うためには改善の余地がある。
 また、特開2001-238884号公報に記載の技術では、病変の散乱構造が大きく不均一になることに着目して、輝度値のレイリー分布からの逸脱度を解析することにより、組織の正常・異常を定量化して診断するようにしているが、更なる高精度な組織性状の診断を行うためには改善の余地がある。
 本発明は、上記事実を考慮して成されたもので、高精度な組織性状の診断を可能とする超音波診断装置、超音波診断方法、及び超音波診断プログラムを提供する。
 本発明の一態様は、超音波診断装置であって、超音波を被検体に送信すると共に、該被検体によって反射される超音波を受信して超音波検出信号を出力する複数の超音波トランスデューサを含む超音波探触子と、前記超音波探触子から送信する超音波の送信周波数、または前記超音波探触子によって受信する超音波の受信周波数を、前記超音波探触子から出力される前記超音波検出信号の振幅を明るさの強弱に変換して表示する場合と、組織性状の診断を行う場合とで異なる周波数に変更する変更手段と、前記超音波探触子における異なる2つ以上の超音波トランスデューサにおける、前記変更手段によって組織性状の診断を行う周波数に変更したときの受信信号の関係に基づいて、組織性状を診断するための指標を算出する算出手段と、を備えている。
 本態様の超音波診断装置によれば、超音波探触子の複数の超音波トランスデューサによって、超音波を被検体に送信し、被検体によって反射される超音波を受信する。
 また、変更手段では、超音波探触子から送信する超音波の送信周波数、または受信周波数を、超音波検出信号の振幅を明るさの強弱に変換して表示する、所謂Bモードの場合と、組織性状の診断を行う場合とで異なる周波数に変更する。
 そして、算出手段では、異なる2つ以上の超音波トランスデューサにおける、変更手段によって組織性状の診断を行う周波数に変更したときの受信信号の関係に基づいて、組織性状を診断するための指標を算出する。これにより、病変化によるミクロな音速・減衰の構造変化を捉えることができ、組織性状の診断を行うことが可能となる。そして、組織性状の診断を行う際に、組織性状の診断に適した周波数に送信周波数または受信周波数を変更するので、ミクロ構造の不均一さを高精度に計測することが可能となる。
 なお、変更手段は、組織性状を診断する際に、超音波探触子から送信する超音波の送信周波数を、注目部位の深さ及び大きさに応じて予め定めた送信周波数に変更するようにしてもよいし、組織性状を診断する際に、超音波診断探触子によって受信する超音波検出信号の受信周波数を、注目部位の深さ及び大きさに応じて予め定めた周波数に変更するようにしてもよい。
 また、算出手段は、予め定めた着目領域における超音波の異なる2つ以上の前記超音波トランスデューサの受信信号の関係に基づいて音響特性の不均一性を評価し、前記指標として算出するようにしてもよいし、予め定めた着目領域内の少なくとも1つ以上の着目点における音速または減衰を求め、求めた音速または減衰に基づいて前記指標を算出するようにしてもよい。
 さらに、算出手段によって算出された指標を表示する表示手段を更に備えるようにしてもよい。
 本発明の別の態様は超音波診断方法であって、組織性状を診断する場合に、超音波を被検体に送信すると共に、該被検体によって反射される超音波を受信して超音波検出信号を出力する複数の超音波トランスデューサを含む超音波探触子から送信する超音波の送信周波数、または前記超音波探触子によって受信する超音波の受信周波数を、前記超音波探触子から出力される前記超音波検出信号の振幅を明るさの強弱に変換して表示する場合の周波数から、組織性状の診断を行う場合の異なる周波数に変更し、前記超音波探触子における異なる2つ以上の超音波トランスデューサにおける、組織性状の診断を行う周波数に変更したときの受信信号の関係に基づいて、組織性状を診断するための指標を算出すること、を含んでいる。
 本態様の超音波診断方法によれば、組織性状を診断する場合に、超音波探触子から送信する超音波の送信周波数、または受信周波数を、超音波検出信号の振幅を明るさの強弱に変換して表示する所謂Bモードの場合の周波数から、組織性状の診断を行う場合の異なる周波数に変更する。
 そして、異なる2つ以上の超音波トランスデューサにおける、組織性状の診断を行う場合の周波数に変更したときの受信信号の関係に基づいて、組織性状を診断するための指標を算出する。これにより、病変化によるミクロな音速・減衰の構造変化を捉えることができ、組織性状の診断を行うことが可能となる。そして、組織性状の診断を行う際に、組織性状の診断に適した周波数に送信周波数または受信周波数を変更するので、ミクロ構造の不均一さを高精度に計測することが可能となる。
 なお、変更において、前記超音波探触子から送信する超音波の送信周波数を、注目部位の深さ及び大きさに応じて予め定めた送信周波数に変更するようにしてもよいし、前記超音波診断探触子によって受信する前記超音波検出信号の受信周波数を、注目部位の深さ及び大きさに応じて予め定めた周波数に変更するようにしてもよい。
 また、算出において、予め定めた着目領域における超音波の異なる2つ以上の前記超音波トランスデューサの受信信号の関係に基づいて音響特性の不均一性を評価し、前記指標として算出するようにしてもよいし、予め定めた着目領域内の少なくとも1つ以上の着目点における音速または減衰を求め、求めた音速または減衰に基づいて前記指標を算出するようにしてもよい。
 さらに、算出した指標を表示手段に表示してもよい。
 本発明の更に別の態様は超音波診断プログラムであって、組織性状を診断する場合に、超音波を被検体に送信すると共に、該被検体によって反射される超音波を受信して超音波検出信号を出力する複数の超音波トランスデューサを含む超音波探触子から送信する超音波の送信周波数、または前記超音波探触子によって受信する超音波の受信周波数を、前記超音波探触子から出力される前記超音波検出信号の振幅を明るさの強弱に変換して表示する場合の周波数から、組織性状の診断を行う場合の異なる周波数に変更し、前記超音波探触子における異なる2つ以上の超音波トランスデューサにおける、組織性状の診断を行う場合の周波数に変更したときの受信信号の関係に基づいて、組織性状を診断するための指標を算出こと、を含む処理をコンピュータに実行させる。
 本態様の超音波診断プログラムによれば、組織性状を診断する場合に、超音波探触子から送信する超音波の送信周波数、または受信周波数を、超音波検出信号の振幅を明るさの強弱に変換して表示する所謂Bモードの場合の周波数から、組織性状の診断を行う場合の異なる周波数に変更する。
 そして、異なる2つ以上の超音波トランスデューサにおける、組織性状の診断を行う場合の周波数に変更したときの受信信号の関係に基づいて、組織性状を診断するための指標を算出する。これにより、病変化によるミクロな音速・減衰の構造変化を捉えることができ、組織性状の診断を行うことが可能となる。そして、組織性状の診断を行う際に、組織性状の診断に適した周波数に送信周波数または受信周波数を変更するので、ミクロ構造の不均一さを高精度に計測することが可能となる。
 なお、変更において、前記超音波探触子から送信する超音波の送信周波数を、注目部位の深さ及び大きさに応じて予め定めた送信周波数に変更するようにしてもよいし、前記超音波診断探触子によって受信する前記超音波検出信号の受信周波数を、注目部位の深さ及び大きさに応じて予め定めた周波数に変更するようにしてもよい。
 また、算出において、予め定めた着目領域における超音波の異なる2つ以上の前記超音波トランスデューサの受信信号の関係に基づいて音響特性の不均一性を評価し、前記指標として算出するようにしてもよいし、予め定めた着目領域内の少なくとも1つ以上の着目点における音速または減衰を求め、求めた音速または減衰に基づいて前記指標を算出するようにしてもよい。
 さらに、算出した指標を表示手段に表示してもよい。
 本態様の超音波診断プログラムは、持続性のコンピュータ可読記憶媒体に記憶されて提供されてもよい。
 以上説明した如く本態様では、組織性状の診断を行う周波数に変更したときの超音波の受信信号の関係に基づいて、組織性状を診断するための指標を算出することにより、高精度な組織性状の診断を可能とすることができる。
例示的な第1実施形態に係わる超音波診断装置の概略構成を示すブロック図である。 (a)~(c)は音速バラツキ・減衰バラツキを計測する処理を模式的に示す説明図である。 音源からある素子への経路において2種類の媒質が存在する様子を説明するための模式図である。 混合媒質中において経路長と平均音速の求め方を説明するための図である。 混合媒質と別媒質が存在する場合に経路長と平均音速の求め方を説明するための図である。 別媒質がない場合の、音速バラツキ、減衰バラツキの求め方を示すフローチャートである。 別媒質がある場合の、音速バラツキ、減衰バラツキの求め方を示すフローチャートである。 例示的な第1実施形態に係わる超音波診断装置の送信周波数を変更可能とした送信回路の一例を示す図である。 例示的な第1実施形態に係わる超音波診断装置の制御部で行われる音速バラツキまたは減衰バラツキを表すバラツキ指標を求める全体の処理の流れの一例を表すフローチャートである。 例示的な第2実施形態に係わる超音波診断装置の制御部で行われる音速または減衰のバラツキ指標を求める処理の流れの一例を表すフローチャートである。 受信周波数を変更可能とした超音波診断装置の制御部で行われる音速バラツキまたは減衰バラツキを表すバラツキ指標を求める全体の処理の流れの一例を表すフローチャートである。 (a)~(c)は肝硬変における組織性状変化を説明するための図である。
 以下、図面を参照して、例示的な実施の形態に係わる超音波診断装置について詳細に説明する。
(第1実施形態)
 図1は、例示的な第1実施形態に係わる超音波診断装置の概略構成を示すブロック図である。
 図1に示すように、本実施形態に係わる超音波診断装置10は、超音波探触子300から被検体に超音波ビームを送信して、被検体によって反射された超音波ビーム(超音波エコー)を受信し、超音波エコーの検出信号から超音波画像を作成し表示する。
 制御部100は、図示しないCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及び入出力ポート等を備えたコンピュータで構成されており、操作入力部200からの操作入力に応じて超音波診断装置10の各ブロックの制御を行う。
 操作入力部200は、オペレータ(ユーザ)からの操作入力を受け付ける入力デバイスであり、操作卓202とポインティングデバイス204とを含んでいる。操作卓202は、文字情報(例えば、患者情報)等の入力を行うためのキーボードや、振幅画像(Bモード画像)を単独で表示するモードと局所音速値の判定結果を表示するモードなどの各種表示モードを切り替えるための表示モード切り替えボタン、ライブモードとフリーズモードとの切り替えを指示するためのフリーズボタン、シネメモリ再生を指示するためのシネメモリ再生ボタンと、超音波画像の解析・計測を指示するための解析・計測ボタン等を含んでいる。ポインティングデバイス204は、表示部104の画面上における領域を指定するためのデバイスであり、例えば、トラックボール又はマウス等を適用することができる。なお、ポインティングデバイス204としては、タッチパネルを適用するようにしてもよい。
 格納部102は、制御部100が超音波診断装置10の各ブロックを制御するための各種制御プログラムが格納される。格納部102は、例えば、ハードディスクや半導体メモリを適用することができる。
 表示部104は、例えば、CRT(Cathode Ray Tube)ディスプレイや液晶ディスプレイ等の各種表示デバイスを適用することができ、超音波画像(動画及び静止画)の表示や各種設定画面等を表示する。
 超音波探触子300は、被検体に当接させて用いるプローブであり、1次元又は2次元のトランスデューサアレイを構成する複数の超音波トランスデューサ302を備えている。超音波トランスデューサ302には送受信部400が接続されている。
 送受信部400は、送信回路402、受信回路404、及びA/D変換器406を備えており、超音波トランスデューサ302は、送受信部400の送信回路402から印加される駆動信号に基づいて超音波ビームを被検体に送信すると共に、被検体から反射される超音波エコーを受信回路404が受信して検出信号をA/D変換器406によってデジタル信号に変換して出力する。
 超音波トランスデューサ302は、圧電性を有する材料(圧電体)の両端に電極が形成されて構成された振動子を含んでいる。このような振動子を構成する圧電体としては、例えば、PZT(チタン酸ジルコン酸鉛:Pb(lead) zirconate titanate)のような圧電セラミック、PVDF(ポリフッ化ビニリデン:polyvinylidene difluoride)のような高分子圧電素子を用いることができる。上記振動子の電極に電気信号を送って電圧を印加すると圧電体が伸縮し、この圧電体の伸縮により各振動子において超音波が発生する。例えば、振動子の電極にパルス状の電気信号を送るとパルス状の超音波が発生し、また振動子の電極に連続波の電気信号を送ると連続波の超音波が発生する。そして、各振動子において発生した超音波が合成されて超音波ビームが形成される。また、各振動子により超音波が受信されると、各振動子の圧電体が伸縮して電気信号を発生する。各振動子において発生した電気信号は、超音波の検出信号として受信回路404に出力される。
 なお、本実施形態では、送信周波数が変更可能な超音波探触子300が用いられる。例えば、複合型圧電素子を使用した広帯域幅の周波数特性を持つ超音波トランスデューサを適用して、1つの超音波トランスデューサで周波数帯域及び中心周波数の異なる複数種類の超音波を発生させるものを適用するようにしてもよいし、周波数特性が異なる超音波トランスデューサを複数種類備えて、切り替えて使用するものを適用するようにしてもよい。
 送受信回路400のA/D変換器406から出力されたデジタル信号は、再生部600及び画像信号生成部500に出力される。
 画像信号生成部500は、信号処理部502、DSC(Digital Scan Converter)504、画像処理部506、画像メモリ508、及びD/A変換器510を備えている。なお、それぞれの機能の詳細は後述する。
 次に、ライブモード時における超音波診断処理について説明する。ライブモードは、被検体に超音波探触子300を当接させて超音波の送受信を行うことによって得られた超音波画像(動画)の表示や解析・計測を行うモードである。
 超音波探触子300が被検体に当接されて、ユーザが操作入力部200を操作して操作開始指示を行うことにより超音波診断が開始されると、制御部100は、送受信部400に制御信号を出力して、超音波ビームの被検体への送信、及び被検体からの超音波エコーの受信を開始させる。制御部100は、超音波トランスデューサ302毎に超音波ビームの送信方向と超音波エコーの受信方向とを設定する。
 さらに、制御部100は、超音波ビームの送信方向に応じて送信遅延パターンを選択すると共に、超音波エコーの受信方向に応じて受信遅延パターンを選択する。ここで、送信遅延パターンとは、複数の超音波トランスデューサ302から送信される超音波によって所望の方向に超音波ビームを形成するために駆動信号に与えられる遅延時間のパターンデータであり、受信遅延パターンとは、複数の超音波トランスデューサ302によって受信される遅延時間のパターンデータである。上記送信遅延パターン及び受信遅延パターンは予め格納部102に格納されている。制御部100は、格納部102に格納されているものの中から送信遅延パターン及び受信遅延パターンを選択し、選択した送信遅延パターン及び受信遅延パターンに従って、送受信部400に制御信号を出力して超音波の送受信制御を行う。
 送信回路402は、制御部100からの制御信号に応じて駆動信号を生成して、該駆動信号を超音波トランスデューサ302に印加する。このとき、送信回路402は、制御部100によって選択された送信遅延パターンに基づいて、各超音波トランスデューサ302に印加する駆動信号を遅延させる。ここで、送信回路402は、複数の超音波トランスデューサ302から送信される超音波が超音波ビームを形成するように、各超音波トランスデューサ302に駆動信号を印加するタイミングを調整する(遅延させる)送信フォーカスを実行する。なお、複数の超音波トランスデューサ302から一度に送信される超音波が被検体の撮像領域全体に届くように、駆動信号を印加するタイミングを調節するようにしてよい。
 受信回路404は、各超音波トランスデューサ302から出力される超音波検出信号を受信して増幅する。上記のように、各超音波トランスデューサ302と被検体内の超音波反射源との間の距離がそれぞれ異なるため、各超音波トランスデューサ302に反射波が到達する時間が異なる。受信回路404は遅延回路を備えており、制御部100によって選択された受信遅延パターンに基づいて設定される音速(以下、仮定音速という)又は音速の分布に従って、反射波の到達時刻の差(遅延時間)に相当する分、各検出信号を遅延させる。次に、受信回路404は、遅延時間を与えた検出信号を整合加算することにより受信フォーカス処理を行う。対象である超音波反射源XROIと異なる位置に別の超音波反射源がある場合には、別の超音波反射源からの超音波検出信号は到達時間が異なるので、上記受信回路404の加算回路で加算することにより、別の超音波反射源からの超音波検出信号の位相が打ち消し合う。これにより、超音波反射源XROIからの受信信号が最も大きくなり、フォーカスが合う。上記受信フォーカス処理によって、超音波エコーの焦点が絞り込まれた音線信号(以下、RF信号という)が形成される。
 A/D変換器406は、受信回路404から出力されるアナログのRF信号をデジタルRF信号(以下、RFデータという)に変換する。ここで、RFデータは、受信波(搬送波)の位相情報を含んでいる。A/D変換器406から出力されるRFデータは、信号処理部502とシネメモリ602にそれぞれ入力される。
 シネメモリ602は、A/D変換器406から入力されるRFデータを順次格納する。また、シネメモリ602は、制御部100から入力されるフレームレートに関する情報(例えば、超音波の反射位置の深度、走査線の密度、視野幅を示すパラメータ)を上記RFデータに関連付けて格納する。
 信号処理部502は、上記RFデータに対して、STC(Sensitivity Time gain Control)によって、超音波の反射位置の深度に応じて距離による減衰の補正をした後、包絡線検波処理を施し、Bモード画像データ(超音波エコーの振幅を点の明るさ(輝度)によって表した画像データ)を生成する。
 信号処理部502によって生成されたBモード画像データは、通常のテレビジョン信号の走査方式と異なる走査方式によって得られたものである。このため、DSC(Digital Scan Converter)504は、Bモード画像データを通常の画像データ(例えば、テレビジョン信号の走査方式(NTSC方式)の画像データ)に変換(ラスター変換)する。画像処理部506は、DSC504から入力される画像データに、各種の必要な画像処理(例えば、階調処理)を施す。
 画像メモリ508は、画像処理部506から入力された画像データを格納する。D/A変換器510は、画像メモリ508から読み出された画像データをアナログの画像信号に変換して表示部104に出力する。これにより、超音波探触子300によって撮影された超音波画像(動画)が表示部104に表示される。
 なお、本実施形態では、受信回路404において受信フォーカス処理が施された検出信号をRF信号としたが、受信フォーカス処理が施されていない検出信号をRF信号としてもよい。この場合、複数の超音波トランスデューサ302から出力される複数の超音波検出信号が、受信回路404において増幅され、増幅された検出信号、すなわち、RF信号が、A/D変換器406においてA/D変換されることによってRFデータが生成される。そして、上記RFデータは、信号処理部502に供給されるとともに、シネメモリ602に格納される。受信フォーカス処理は、信号処理部502においてデジタル的に行われる。
 次に、シネメモリ再生モードについて説明する。シネメモリ再生モードは、シネメモリ602に格納されているRFデータに基づいて超音波診断画像の表示や解析・計測を行うモードである。
 操作卓202のシネメモリ再生ボタンがユーザによって押下されると、制御部100は、超音波診断装置10の動作モードをシネメモリ再生モードに切り替える。シネメモリ再生モード時には、制御部100は、ユーザからの操作入力により指定されたRFデータの再生をシネメモリ再生部604に指示する。シネメモリ再生部604は、制御部100からの指令に基づいて、シネメモリ602からRFデータを読み出して、画像信号生成部500の信号処理部502に送信する。シネメモリ602から送信されたRFデータは、信号処理部502、DSC504及び画像処理部506において所定の処理(ライブモード時と同様の処理)が施されて画像データに変換された後、画像メモリ508及びD/A変換器510を経て表示部104に出力される。これにより、シネメモリ602に格納されたRFデータに基づく超音波画像(動画又は静止画)が表示部104に表示される。
 ライブモード又はシネメモリ再生モード時において、超音波画像(動画)が表示されているときに操作卓202のフリーズボタンが押下されると、フリーズボタン押下時に表示されている超音波画像が表示部104に静止画表示される。これにより、ユーザは、着目領域(ROI:Region of Interest)の静止画を表示させて観察することができる。
 操作卓202の計測ボタンが押下されると、ユーザからの操作入力により指定された解析・計測が行われる。データ解析計測部106は、各動作モード時に計測ボタンが押下された場合に、A/D変換器406又はシネメモリ602から、画像処理が施される前のRFデータを取得し、当該RFデータを用いてユーザ指定の解析・計測(例えば、組織部の歪み解析(硬さ診断)、血流の計測、組織部の動き計測、又はIMT(内膜中膜複合体厚:Intima-Media Thickness)値計測)を行う。また、データ解析計測部106は、音速あるいは減衰のバラツキを表す指標を算出する処理を行う。データ解析計測部106による解析・計測結果は、画像信号生成部500のDSC504に出力される。DSC504は、データ解析計測部106により解析・計測結果を超音波画像の画像データに挿入して表示部104に出力する。これにより、超音波画像と解析・計測結果とが表示部104に表示される。なお、データ解析計測部106は、図1では制御部100と別の構成として示されているが、制御部100と一体に構成されて制御部100の機能の一部としてデータ解析・計測の機能を提供してもよく、以下では、制御部100の機能の一部であるのものとして説明する。
 また、表示モード切り替えボタンが押下されると、Bモード画像を単独で表示するモード、Bモード画像に音速・減衰バラツキの判定結果を重畳して表示するモード(例えば、音速・減衰バラツキに応じて色分け又は輝度を変化させる表示、又は音速・減衰バラツキが等しい点を線で結ぶ表示)、Bモード画像と音速・減衰バラツキの判定結果の画像を並べて表示するモードの間で表示モードが切り替わる。これにより、ユーザは、音速・減衰バラツキの判定結果を観察することで、例えば、病変を発見することができる。
 ところで、蜂屋弘之「生体組織の音響特性と超音波断層画像の特徴」(Medical Imaging Technology vol.21 No.2 March 2003)によれば、肝臓が肝硬変になり、肝硬変が進行すると壊死した組織同士が結合し、修復するために周辺組織が線維化して結節を形成して、肝小葉が再生結節に置き換えられる。例えば、図12(a)~(c)に散乱体配置の例を示す。図12(a)は正常肝を示したものであり、各々の肝小葉構造は、1.0~1.5mm程度でランダムな大きさを持っているが、図12(b)に示すように中度の肝硬変になると複数の肝小葉構造が破壊され、線維組織が生じ、結節径が3~4mmに成長し、さらに病変が進行し図12(c)に示すように重度の肝硬変になると、結節径が最大で7mm程度まで成長する。そして、結節の内部の音速、減衰及び散乱は正常な肝臓より低く、線維部は逆に正常な肝臓より高くなるというミクロな音速構造変化があることが報告されている。しかし、これに対して、赤松興一「音速計測によるtissue characterization」(臨床医 vol.12 no.11 1986)によれば、正常肝と肝硬変のマクロ音速値に有意な差は無いことが報告されている。従って、従来より提案されてきたマクロ的な音速や減衰の計測方法では、上記のようなミクロな音速・減衰の構造変化を捉えられない可能性がある。
 そこで、本実施形態における超音波診断装置10は、上記問題を考慮して、着目領域を設定し、着目領域の音速バラツキまたは減衰バラツキを計測し、組織性状の診断を行う。詳しくは後述するが、本実施形態では、送信フォーカスを掛けて擬似的な点反射を形成し、その各素子受信データから、一定音速で近似した受信時刻からの時刻差を求め、そのバラツキから音速バラツキを計測し、また、一定減衰で近似した振幅のバラツキ、周波数のバラツキから減衰(散乱、吸収)バラツキを計測するものである。そして計測したバラツキを組織性状の診断に役立てようとするものである。
 図2(a)~(c)に、音速バラツキ・減衰バラツキを計測する処理を模式的に示す。
 図2(a)は、一定音速で近似した受信時刻からのバラツキを求めて音速バラツキを計測することを表している。また図2(b)は、一定の減衰で近似した振幅のバラツキから減衰バラツキを計測することを表している。さらに図2(c)は、一定の減衰で近似した中心周波数のバラツキから減衰バラツキを計測することを表したものである。
 ここで、何れの場合も、送信フォーカスを掛けて擬似的な点反射を形成し、各素子受信データから、音速バラツキ・減衰バラツキを計測するようにしている。
 すなわち、図2(a)に示すように、被検体内の着目領域ROIの格子点Xからの擬似的な点反射を考える。このとき図2(a)に示すように肝硬変が進み結節が形成されていると、超音波の進行方向により音速や減衰にバラツキが生じる。
 図2(a)は、各素子において実際に計測された波面(受信時刻)を実線で表し、また被検体の媒質を音速一定と仮定して近似した波面を破線で表し、各方位位置における音速バラツキに起因した受信時刻のバラツキを示したものである。
 また図2(b)は、各素子において実際に計測された対数圧縮後の振幅を実線で表し、被検体の媒質を減衰一定と仮定して近似した対数圧縮後の振幅を破線で表し、各方位位置における減衰(吸収及び散乱)バラツキに起因した対数圧縮後の振幅のバラツキを示したものである。
 さらに、図2(c)は、各素子において実際に計測された中心周波数を実線で表し、被検体の媒質を減衰一定と仮定して近似した中心周波数を破線で表し、各方位位置における減衰(吸収及び散乱)バラツキに起因した中心周波数のバラツキを示したものである。
 このように、送信フォーカスを掛けて形成した擬似的な点反射の受信波の受信時刻、振幅、中心周波数は、一定音速・一定減衰を仮定した受信時刻、振幅、中心周波数からバラツキを有している。これは、異なる音速や減衰を有する媒質の混合割合が各方位位置に対応する経路で異なるためである。異なる音速や減衰を有する媒質の混合割合が各経路で異なる場合、擬似的な点反射から各素子の伝播過程において受信信号の時刻・振幅・周波数のバラツキを生ずると共に、擬似的な点反射を形成する時の周囲干渉によっても生ずる。具体的には、音速・減衰(散乱を含む)が各経路で異なる事によって送信焦点が一点に集中しないため周囲散乱の干渉を受けてしまい、その結果として受信信号の時刻・振幅・周波数のバラツキを生ずる事となる。そして経路による混合割合の変化が大きい程、受信時刻、振幅及び中心周波数の方位位置バラツキが大きくなる事、また経路による混合割合の変化の空間周波数が大きい程、受信時刻、振幅及び中心周波数の方位位置バラツキの空間周波数も大きくなる事が図2(a)~(c)から容易に分かる。
 従って、格子点Xからの反射波受信時刻、振幅、中心周波数の一定音速・一定減衰を仮
定した受信時刻、振幅、中心周波数からのバラツキの大きさや空間周波数から、着目領域内における、異なる音速及び減衰を有する媒質の混合割合のバラツキの大きさや空間周波数に関する情報を取得することが可能となる。
 これにより、音速または減衰のバラツキを判定することにより、これを組織性状の診断に用いることが可能となる。なお、ここでは肝硬変の例を用いて説明したが、実施形態は、肝硬変に限定する事無く適用できることは明らかである。
 以下、音速バラツキ又は減衰バラツキを表す指標(バラツキ指標)を求める処理について説明する。
 まず音速バラツキの求め方について説明する。
 説明の簡略化のために、超音波がある音源からある素子に伝播するとき、ある経路において2種類の媒質が存在すると仮定する。この様子を模式的に図3に示す。
 実際には、媒質1と媒質2が図3に示すように、明確に分かれて存在しているのではなく、その経路上に複雑に混ざり合って存在している。図3は、媒質1と媒質2をそれぞれ一方に寄せ集めて、その混合割合がはっきりわかるように表示したものである。
 図3において、Lは、音源から素子までの経路の全長(経路長)、ρ1及びρ2は、伝播経路によらない媒質1及び媒質2の平均的な混合割合、Δρは、経路に依存する上記混合割合の変化分を表す。
 今、図3に示す経路において、媒質1と媒質2の混合割合が、平均的な混合割合ρ1:ρ2からΔρだけずれて、(ρ1+Δρ):(ρ2-Δρ)となっていたとすると、経路の全長Lのうち、媒質1が存在するのは長さにしてL*(ρ1+Δρ)、媒質2が存在するのは長さにしてL*(ρ2-Δρ)となる。
 媒質1における超音波の音速をv、媒質2における超音波の音速をvとすると、図3の音源から発した超音波を素子が受信する受信時刻tは、次の式で与えられる。
 t=L*(ρ1+Δρ)/v+L*(ρ2-Δρ)/v
 =L*(1/v)*ρ1+L*(1/v)*ρ2
   +L*Δρ*((1/v)-(1/v))
 このうち、経路に依存しない(経路バラツキを含まない)受信時刻
 L*(1/v)*ρ1+L*(1/v)*ρ2
を引けば、経路に依存した受信時刻の変化分が、
 L*Δρ*((1/v)-(1/v))
で与えられることがわかる。
 これを経路の全長(経路長)Lで割れば、経路長Lに依存しない指標として次の式(1)が得られる。
  Δρ*((1/v)-(1/v))  ・・・・・・(1)
 しかし、経路によって経路長Lにおける混合割合の変化分Δρは異なるため、上記式(1)で表される指標は、経路によって異なる。
 そこで、全ての経路についての式(1)の値の標準偏差をとれば経路にもよらないバラツキ指標を得ることができる。
 組織の病変化によって混合割合の変化分Δρがより大きくバラつくか、またはvとvの差がより大きくなるために、上記式(1)によるバラツキ指標は、バラツキの程度を良好に表す指標となる。
 なお、ここでは2種類の媒質のみで考えたが、2種類以上の媒質がある場合、2種類以上の指標(1)は、各異なる媒質間の混合割合の変化分Δρ1、Δρ2、・・・の和となり、そのバラツキ程度は、やはり病変化の程度を良好に表す指標となる。
 なお、上記の方法において、受信時刻、経路バラツキを含まない受信時刻及び経路長が未知である。
 このうち、受信時刻(素子の受信時刻)は公知の位相収差解析の手法(例えば、特開平6-105841号公報参照)を用いて求めることができる。超音波探触子の各素子の受信信号に対して、一定の信号を参照信号として、これらの位相差を検出し、隣接する各素子の位相差検出結果を比較しその差をDとする。また一方、横軸に超音波探触子の素子番号をとり、縦軸に各素子の受信信号と参照信号Sとの位相差をプロットしたグラフにおいて、正から負への不連続点(すなわち、上記差Dが-180°より小のとき)においては360°を加算し、負から正への不連続点(すなわち、上記差Dが180°より大のとき)においては360°を減算して、不連続曲線を連続曲線とする。これにより広範囲の位相収差を精度よく検出することができる。
 また、経路バラツキを含まない受信時刻は、経路長Lと1/ 平均音速 =((1/v)*ρ1+(1/v)*ρ2)に分離することができる。
 次に、経路長Lと平均音速の求め方を説明する。
 図4に示すように、多種類の異なる音速媒質(混合媒質)からなる対象中に、素子面から距離Lの深さに音源を想定する。
 まず図4に示す音源から発せられた超音波の各素子受信信号から、音源までの媒質が均一と仮定して求められる音速(平均音速)及び深さを求める。
 図4に示すように、音源の直下から距離Xの位置の素子における受信時刻T(X)は、以下の式で与えることができる。
T(X)=√(L+X)*((1/v)*ρ1+(1/v)*ρ2+(1/v
   *ρ3+・・・)   ・・・・・・(2)
 ここで、記号√(A)は、Aの平方根を表し、ρn、vは媒質nの混合割合及び音速を表す。またここでは混合割合の変化分Δρは含まないとする。
 ρnは、伝播経路によらず一定と見做せるので、上記式(2)から均一仮定の平均音速及び深さは以下の式(3)のように一意に求められることがわかる。
 1 / 平均音速=((1/v)*ρ1+(1/v)*ρ2+(1/v)*ρ3+・・・)
 深さ=L           ・・・・・・(3)
 上記式(3)の平均音速は、前述した平均音速であり、また各経路長は、深さLと素子位置Xから求めることができる。
 つまり、各素子受信時刻をトータルで見ることによって、平均音速及び各経路長を求めることができる。各経路による混合割合の変化分Δρが含まれているとしても、各素子信号をトータルで見れば影響が少ないと考えられる。
 平均音速及び深さを求めるために公知の画像解析の手法(例えば、特開2007-7045号公報参照)を用いることができる。これは、平均音速(及び深さ)を仮定し、音源の画像のシャープネスやコントラストが最大となる値を求めるという方法である。
 またこの他に、各素子受信時刻を位相収差解析で求めた後、最小二乗法フィッティングで平均の受信時刻を求め、それに相当する平均音速(及び深さ)を求めるという方法でもよい。
 なお、ここでは説明の簡略化のために、音源からの伝播のみを想定したが、実際には送信フォーカスによって擬似的な点反射を形成するプロセスになる。この場合、上記式(2)に送信伝播時間を加えるだけでよい。
 以下、不均一層がある場合のバラツキ指標の求め方について説明する。
 ここでは、図5に示すように、各素子の前に混合媒質とは異なる別媒質が存在する場合のバラツキ指標を求める。具体的には、各経路長と受信時刻の変化分を別媒質の影響を除いて求める。
 まず、各経路長の求め方としては、図5に示すように、混合媒質と別媒質との境界付近が下面となるように局所領域を設定し、この局所領域下面上に複数の格子点を設定する。この領域での平均音速を求めれば、局所領域における音源の深さL’が求まり、これよりここから距離X’だけ離れた各格子までの各経路長が求まる。
 ここで、局所領域における平均音速(局所音速)を求めるには、以下のように、特開2010-99452号公報に記載の技術など様々な方法がある。
 例えば、図5の音源を着目点として、まず着目点と局所領域下面上の各格子における環境音速を求める。ここで、環境音速値とは、画像のコントラスト、シャープネスが最も高くなる音速値であり、上述した画像解析手法により求める事ができる。次に着目点の環境音速値に基づいて着目点を反射点としたときの仮想的な受信波Wの波形を算出する。そして、局所領域における仮定音速の初期値を設定し、仮定音速を1ステップ変更し、局所領域下面上の各格子点における受信波を環境音速から算出し、その受信波を仮定音速によって決まる遅延で仮想的に合成した仮想合成受信波WSUMを算出する。
 次に、仮想受信波Wと仮想合成受信波WSUMの誤差を算出する。仮想受信波Wと仮想合成受信波WSUMの誤差は、互いの相互相関をとる方法、仮想受信波Wに仮想合成受信波WSUMから得られる遅延を掛けて位相整合加算する方法、または逆に、仮想合成受信波WSUMに仮想受信波Wから得られる遅延を掛けて位相整合加算する方法等によって算出される。
 ここで、仮想受信波Wから遅延を得るには、着目点を反射点として、着目点における環境音速値で伝播した超音波が各素子に到着する時刻を遅延とすればよい。また、仮想合成受信波WSUMから遅延を得るには、隣り合う素子間での合成受信波の位相差から等位相線を抽出し、その等位相線を遅延とするか、または単に各素子の合成受信波の最大(ピーク)位置の位相差を遅延としてもよい。また、各素子からの合成受信波の相互相関ピーク位置を遅延としてもよい。位相整合加算時の誤差は、整合加算後の波形のpeak to peakとする方法、又は包絡線検波した後の振幅の最大値とする方法などによって求められる。
 次に、全ての仮定音速の値での演算が終了したら、局所領域における局所音速値が判定される。すなわち、仮想受信波Wと仮想合成受信波WSUMとの差が最小になる仮定音速の値を局所領域における局所音速値と判定する。
 また、被検体の音速が不均一で、各格子の受信時刻(受信波)が環境音速で近似しきれない場合でも局所音速を計測可能とする方法として以下のようなものがある。
 例えば、予め着目領域内の着目点と、局所領域下面上の各格子点における受信時刻(受信波)を求め、着目領域における仮定音速によって決まる遅延で各格子受信波を重ね合わせて合成受信波を合成し、それと着目領域の受信波を比較することによって局所音速を判定する方法がある。
 あるいは、予め着目領域内の着目点と、局所領域下面上の各格子点における受信時刻(受信波)を求めた後、着目領域における仮定音速によって決まる、着目点から各格子点までの超音波の伝播時間と、各格子受信時刻との和をとったもののうち、ある素子について、最小となる和をその素子の合成受信時刻とし、各素子について、着目点受信波の受信時刻と合成受信時刻とを比較して局所音速を判定するようにしても良い。
 なお、ここで着目点及び局所領域下面上の各格子点における受信時刻は、上述した画像解析の手法及び位相収差解析の手法を用いて求めることができる。
 また局所音速を求める他の方法として、例えば、上と同様に、局所領域下面上の各格子点の受信時刻(受信波)を画像解析及び位相収差解析の手法によって求めた後、着目領域における仮定音速によって決まる遅延で各格子受信波を重ね合わせて合成受信波を合成し、それから生成した遅延に基づいて画像を生成し、その画像を解析し、例えばシャープネスが最大となる条件から局所音速を判定するようにしても良い。
 または、各格子点の受信時刻(受信波)を求めた後、着目領域における仮定音速によって着目点から各格子点までの超音波の伝播時間と、各格子受信時刻との和をとったもののうち、ある素子について、最小となる和をその素子の遅延とし、その遅延に基づいて画像を生成し、その画像を解析して、例えばシャープネスが最大となる条件から局所音速を判定するようにしても良い。
 またあるいは、上記と同様に、局所領域下面上の各格子点の受信時刻(受信波)を画像解析及び位相収差解析の手法によって求め、それを遅延として、上記局所領域下面上の各格子点を仮想素子と見做して各仮想素子の受信信号として、各遅延で整合加算した信号を設定し、各仮想素子の受信信号から着目領域の仮定音速に基づいて画像生成し、その画像を解析し、例えばシャープネスが最大となる条件から局所音速を判定するようにしても良い。
 なお、上記各格子点および局所領域下面の取りかたは、特に平面に限定されるものではなく、着目点より素子側(手前側)の任意の曲面として設定する事ができる。例えば、組織や病変の境界面上に設定してもよい。
 次に、各素子受信時刻の変化分の求め方としては、各素子で受信した信号の受信時刻の内、平均音速によって決まる受信時刻からの変化分を求め、それに低周波カット処理を施すことによって、別媒質による変化分を取り除き、各素子位置を局所領域下面上の各格子位置に変換する。各素子位置から局所領域下面上の各格子位置への変換は、局所領域における局所音速及び各格子点における環境音速又は各素子受信時刻から、着目点から各格子を経て各素子に至る超音波伝播経路が求まるため、この伝播経路に沿って各素子位置から逆方向に伝播する事により可能である。
 このようにして求めた変化分を、各経路長で割ることによって、上記式(1)で与えられる指標を得て、それの標準偏差をバラツキ指標とすることができる。
 次に、減衰バラツキの求め方について説明する。
 受信信号の受信時刻の代わりに振幅または中心周波数を利用することによって、音速と同様の手法によって以下のように減衰バラツキを求めることができる。
 減衰には、音波が広がることによる拡散減衰、音波が媒質に吸収されて熱に変換されることによる吸収減衰、及び生体組織の散乱による散乱減衰の3つがあるが、これのうち、吸収・散乱減衰は、exp(-αx)で与えられる。ここで、αは減衰係数、xは伝播距離を表す。
 そして、「超音波便覧」(丸善、1999)によれば、生体組織においては、MHz帯の周波数範囲では減衰係数αが近似的に周波数に比例すると仮定することができる。この周波数に比例する減衰によって、ガウシアンパルスの中心周波数は、伝播距離に比例してシフトすることとなる。これを利用して、中心周波数シフトから減衰を求めることができる。
 次に、減衰のバラツキ指標についても音速の場合と同様に考える。
 音源からの各経路の対数圧縮後の振幅A(x)及び中心周波数F(x)は、以下の式(4)で与えられる。
 A(x)=A(0)-L*(α1*ρ1+α2*ρ2)-L*Δρ*(α1-α2)
 F(x)=F(0)-L*(β1*ρ1+β2*ρ2)-L*Δρ*(β1-β2)
  ・・・・・・(4)
 ただし、振幅に関しては、拡散、送信フォーカス、非線形特性、指向性などの影響を無視している。ここで、αは、周波数に依存する項を含む減衰係数、βは、αとパルス波(ガウシアンパルスを仮定)の帯域によって決まる定数である。
 上記式(4)のうち、経路バラツキを含まない振幅及び中心周波数は次の式(5)で与えられる。
 A(x)=A(0)-L*(α1*ρ1+α2*ρ2)
 F(x)=F(0)-L*(β1*ρ1+β2*ρ2)   ・・・・・・(5)
 上記式(4)から式(5)を引き、求めた振幅の変化分L*Δρ*(α1-α2)または中心周波数の変化分L*Δρ*(β1-β2)を経路長Lで割れば、次の式(6)が得られる。
 Δρ*(α1-α2)、またはΔρ*(β1-β2)   ・・・・・・(6)
 これにより経路長に依存しない指標が得られる。
 なお、ここで経路長Lは、例えば上記式(3)によって平均音速から求める。また変化分を得るために経路によらない振幅または中心周波数が必要であるが、それは各素子受信信号の振幅または中心周波数に対してフィッティングして求める。またこのとき、式(3)で求めた音源の深さに基づいて平均αまたはβを仮定してフィッティングしてもよい。
 また、送信経路も考慮する場合は、式(4)に対して、次式
 -(送信経路長)*(α1*ρ1+α2*ρ2)
を加えればよいだけである。
 また一方、不均一層がある場合のバラツキ指標の求め方は、図5の局所領域における各経路長と、局所領域下面上の各格子の振幅または中心周波数の平均減衰からの上記式(6)で表される変化分を求めるようにすればよい。各経路長は、局所領域の平均音速を求めるとともに求めることができる。
 以上、音速バラツキ及び減衰バラツキの求め方の例を示したが、その求め方には様々なバリエーションがある。
 図6及び図7に、バラツキ指標(音速バラツキ、減衰バラツキ)の求め方を各ステップに分けてまとめて示す。図6は別媒質がない場合であり、図7は別媒質がある場合を示している。
 まず、別媒質がない場合のバラツキ指標の求め方について図6のフローチャートを参照して説明する。
 ステップS100において各経路長を導出する。これは、着目点(音源)の深さを導出できれば、着目点と各素子を結ぶ各経路長を導出することができる。
 着目点の深さの導出方法としては、例えば、受信時刻から求める方法、振幅から求める方法、及び中心周波数を利用する方法などの方法がある。
 受信時刻から求める方法としては、例えば、着目点までの平均音速及び深さを、公知の画像解析手法を用いて求めることができる。具体的には、着目点の画像のシャープネスやコントラストの特性が最大となる値として求めることができる。
 また、振幅から求める方法としては、例えば、各素子受信信号の振幅を取得し、それに上記式(5)に着目点までの平均減衰及び深さを仮定して求まる振幅をフィッティングして誤差が最小となる値を採用する方法が考えられる。しかし、振幅は減衰のみでなく、拡散や送信フォーカス、非線形特性などの影響を受けるため、上記式(5)の適用は困難である。これに対して、例えば特公平3-24868号公報に開示された2周波数の振幅比を利用する方法を用いて、2周波数の対数圧縮後の振幅の差が減衰係数に比例することから求めることができる。
 また、中心周波数を利用する方法としては、例えば、各素子受信信号の中心周波数を取得し、式(5)に対して、着目点までの平均減衰及び深さを仮定して求まる中心周波数をフィッティングして誤差が最小となる値を採用する方法が考えられる。このとき、送信時の中心周波数がわかった方が精度高くフィッティングすることができる。
 また、ステップS110において、各素子受信時刻・振幅・中心周波数を導出する。
 なお、受信時刻を求める方法としては、前述したように、公知の位相収差解析の手法を用いて求めることができる。または予め着目点の画像解析によって平均音速とともに求まる「経路バラツキを含まない受信時刻」を起点として位相収差解析を行ってもよい。
 また、振幅を求める方法としては、各素子受信信号に包絡線検波を実施して振幅情報に変換した後に、上に述べた受信時刻における値を取得する方法がある。ここで「経路バラツキを含まない受信時刻」を基点に所定範囲でのピーク値を取得するようにしてもよい。
 また、中心周波数を求める方法としては、各素子受信信号から上で述べた受信時刻を基点とした所定範囲を取得し、周波数変換後に、∫f*P(f)df/∫P(f)dfの式によって重心を求める方法がある。なお、上記式において、fは周波数であり、P(f)はfにおけるスペクトル密度である。また、中心周波数は、スペクトル密度のピークとなる周波数でもよいし、半値幅の中心でもよい。または、検波処理を実施して得られた位相の深さ方向の傾きから求めるようにしてもよい。
 なお、上記において、振幅または中心周波数を求める際に、求められる素子の受信信号を中心に所定開口で該当する受信時刻の信号を整合加算すればノイズや干渉を減らして求めることができる。
 続いて、ステップS120において、各経路の経路バラツキを含まない受信時刻・振幅・中心周波数を導出する。
 なお、受信時刻を求めるには、前述したステップS100で平均音速が求まっていれば求めることができる。または、ステップS110で求めた各素子受信信号に誤差が最小となる曲線をフィッティングしてもよい。このとき、ステップS100で着目点と各素子を結ぶ経路長が求まっているため、平均音速を仮定して受信時刻を計算し、誤差が最小となる平均音速(受信時刻)を求めてもよい。
 また、振幅を求めるには、ステップS110で求めた各素子受信信号の振幅に誤差最小となる曲線をフィッティングして求める。このとき、ステップS100で着目点と各素子を結ぶ経路長が求まっているため、式(5)の平均減衰を仮定して振幅計算し、誤差が最小となる平均減衰(振幅)を求めるようにしてもよい。
 さらに、中心周波数を求めるには、ステップS100で平均減衰が求まっているならば、同時に各素子中心周波数は求まっている。またはステップS110で求めた各素子受信信号の中心周波数に誤差最小となる曲線をフィッティングしてもよい。このとき、ステップS100で各経路長が求まっているため、平均減衰を仮定して中心周波数を計算し、誤差が最小となる平均減衰(中心周波数)を求めてもよい。このとき、送信時の中心周波数がわかっていれば精度良くフィッティングすることができる。
 次に、ステップS130において、各経路の受信時刻・振幅・中心周波数の変化分を導出する。これは、ステップS110で求めた受信時刻・振幅・中心周波数からステップS120で求めた値を引けば求めることができる。
 次に、ステップS140において、変化分を経路長で割って指標を導出し、それからバラツキ指標を導出する。ここで、各経路の指標の標準偏差や最大値をバラツキ指標としてよい。
 続いて、別媒質がある場合の着目領域におけるバラツキ指標の求め方について図7のフローチャートを参照して説明する。
 図7のフローチャートは前述した図6のフローチャートと略同じであり、各着目点のバラツキ指標計算方法において、「各経路」が「局所領域における各経路」となり、また「各素子受信時刻・振幅・中心周波数」が「局所領域下面上における値」となっている点が異なる。
 まず、ステップS200において、局所領域における各経路長を導出する(擬似的な点反射の深さを導出する)。これには、例えば図5に示すように、各着目点(音源)を上面上、別媒質との境界付近を下面となるように局所領域を設定し、局所領域内の各経路長を求める。そのためにまず局所領域内の着目点の深さを求める。その方法としては、局所領域内の平均音速とともに求める方法が好適に用いられる。局所領域内の平均音速(局所音速)を求める方法は前述したように様々な方法がある。
 また、ステップS210において、各素子受信時刻・振幅・中心周波数の局所領域下面上における値を導出する。
 局所領域の局所受信時刻を求める方法としては、まず局所領域下面上の各格子の受信時刻(または平均音速)を公知の画像解析及び位相収差解析の手法を用いて求め、それを遅延とする。また、着目点の受信時刻(受信波)を画像解析及び位相収差解析によって求める。そして、各格子を仮想素子と見做して各仮想素子の受信信号として、各遅延で着目点の受信波を整合加算した信号を設定する。そして、各仮想素子の受信信号の位相収差解析を実施することによって着目点の局所受信時刻を求める。または、各格子を仮想素子と見做して、各仮想素子の局所受信時刻として着目点の各素子受信時刻から遅延を引いた時刻のうち最も遅い時刻を採用する。
 または、局所領域下面上の各格子の受信波を皆同じと見做し、代表する受信波を定め、着目点の受信波に対して、局所領域下面上各格子を代表する受信波による逆畳込み(デコンボルーション)を施す事によって着目点の局所受信時刻を求める。逆畳込み処理は、各素子受信信号に対して、またはその周波数空間上で実施する事ができる。
 または、着目点の受信時刻(受信波)と、局所領域下面上の各格子の受信時刻(受信波)及び着目点から各格子への伝播時間(局所受信時刻)から求まる着目点の受信時刻(受信波)との誤差が最小となる様に、局所受信時刻を探索しても良い。最小値探索アルゴリズには種々のものがあるが、例えば準ニュートン法を用いても良い。
 中心周波数を求める方法としては、予め局所領域の局所受信時刻または平均音速、及び局所領域下面上の各格子の受信時刻または平均音速を求める。それから、着目点→各格子→各素子という伝播パスを求める。また、送信時の中心周波数を既知とする。
 局所領域下面上の各格子から(→)各素子の中心周波数シフト量を以下の手順で求める。
 まず、各格子の各素子受信信号から中心周波数を求める(このとき、求める素子の受信信号を中心に所定開口で、該当する受信時刻の信号を整合加算すれば、ノイズや干渉を減らして求めることができる)。ある格子に関して、以下の式で表される値が片道の中心周波数シフトである。
 (中心周波数[真中の素子の受信信号]-中心周波数[送信時])/2
 この値を、(中心周波数[各素子の受信信号]-中心周波数[送信時])から引いた値が、各格子→各素子の伝播パスの減衰による中心周波数シフト量を表している。
 送信時の中心周波数が未知だとしても、各格子→各素子の全パスで均一減衰を仮定すれば、減衰係数を求め、シフト量を求められる(しかし送信時の中心周波数既知の方が精度は良い)。
 着目点の各素子中心周波数から各格子→各素子の中心周波数シフト量を引き、各格子における中心周波数を求める。
 一方、振幅を求める方法としては、予め各格子→各素子の減衰を中心周波数シフト量から求めておき、また各格子→各素子の伝播パスを求めておく。各素子の振幅から各格子→各素子の減衰を補正し、各格子の振幅を求める。
 次に、ステップS220において、局所領域の経路バラツキを含まない受信時刻・振幅・中心周波数を導出する。
 受信時刻を求める方法としては、ステップS200で求めた局所領域の平均音速と経路長から求められる。または、ステップS210で求めた各格子の受信時刻に誤差が最小となる曲線をフィッティングして求めてもよい。このとき、ステップS200で着目点と各格子を結ぶ経路長が求まっているため、平均音速を仮定して受信時刻を計算し、誤差が最小となる平均音速(受信時刻)を求めてもよい。
 振幅を求める方法としては、ステップS210で求めた各格子の振幅に誤差最小となる曲線をフィッティングして求めることができる。このとき、ステップS200で着目点と各格子を結ぶ経路長が求まっているため、式(5)の平均減衰を仮定して振幅を計算し、誤差が最小となる平均音速(振幅)を求めてもよい。
 中心周波数を求める方法としては、ステップS210で求めた各格子の中心周波数に誤差最小となる曲線をフィッティングする。このとき、ステップS200で各経路長が求まっているため、平均減衰を仮定して中心周波数を計算し誤差最小となる平均減衰(中心周波数)を求めてもよい。
 以下、ステップS230、S240における処理は、前述した別媒質の無い場合の図6のステップS130、S140における処理と同様であるので説明を省略する。
 なお、別媒質がある場合に設定する局所領域の下面は、必ずしも図5のように境界付近になくともよいし、平面でなく曲面でも良い。また、局所領域下面上の各格子の受信時刻・振幅・中心周波数を求めるために、局所領域だけでなく、局所領域下面にも送信焦点を設定する。
 また、各素子で受信した信号の受信時刻・振幅・中心周波数に対して、低周波カット処理を施すことによって別媒質による変化分を取り除き、各格子→各素子の伝播パスに沿って各素子位置を各格子位置に変換することで、各格子の受信時刻・振幅・中心周波数の変化分を求める方法もある。
 また、別媒質の補正をすることや経路長で規格化することなどは必ずしも必要なことではない。なお、深さと素子の開口の比は一定であることが望ましい。
 規格化する場合、規格化する量としては経路長の他に深さ、また深さに近い量として、真中素子(または格子)の受信時刻・周波数シフト量などがある。これらによる規格化は、着目点(着目領域)の深さ(別媒質がある場合は、別媒質を除いた深さ)を一定にしてバラツキを評価する場合には必要ではない。
 また、前述した式(3)などから、音速・減衰は深さと分離したΔρのみに依存した量であることがわかるので、音速・減衰を指標としてもよい(この場合、深さと開口の比も関係ないと思われる)。
 そのバラツキ指標としては以下のようなものがある。すなわち、各音速・減衰の近似曲線との差分の絶対値・2乗の平均値が最小の所定比となる音速・減衰範囲がある。また、計測された受信時刻・振幅・中心周波数に接する両側の音速・減衰範囲がある。またその他、音速の場合、整合加算した画像のフォーカス指標が最大の所定比となる音速範囲や、開口を小開口に分割し、各小開口で求めた音速・減衰の標準偏差などもある。
 また、送信経路の超音波伝播時間・振幅変化・中心周波数シフトのバラツキも含めると平均音速と平均減衰自体が着目点の位置によってバラつくと考えられる。従って、各着目点の平均音速・平均減衰の着目領域でのバラツキの標準偏差をバラツキ指標としてもよい。
 次に、空間周波数に基づくバラツキ指標について説明する。
 以上説明したバラツキ指標は、受信時刻・振幅・中心周波数のバラツキの大きさに基づく指標であるが、バラつく空間周波数も変化すると考えられる。具体的には、図2(a)~(c)に示す受信時刻・振幅及び中心周波数の変化分の方位位置に対する周波数が変化すると考えられるため、これに基づくバラツキ指標としてもよい。
 受信時刻・振幅及び中心周波数の変化分は、別媒質のない場合は図6のフローチャートで、また別媒質のある場合は図7のフローチャートで得られる。
 このとき、受信時刻・振幅・中心周波数の変化分の大きさは着目点の深さとともに増すが、各方位位置に対する変化分の大きさが均一に増す分には、周波数に影響しないため補正の必要はない。ただし、各経路によって変化分の増し方に微妙に差があるため、変化分を各経路長で規格化することによって補正してもよい。つまり、図6または図7のフローチャートによって得られる変化分または経路長で規格化した変化分のどちらを指標として用いてもよい。
 ここで、着目点の深さが一定でなくとも、方位方向に対する変化分の周波数を深さや経路長などによって補正する必要はない。ただし、一定の開口での評価が望ましい。
 以上から得られた指標の方位位置に対する周波数分布の中心周波数または帯域またはそれらに基づく変数をバラツキ指標として求める。
 例えば、肝硬変の場合、均一で小さい肝小葉が不均一で大きな結節に置き換えられることによって、中心周波数が低周波側に移動し、または帯域が広がると考えられるため、本バラツキ指標によって硬変程度を診断することができると考えられる。
 中心周波数は、∫f*P(f)df/∫P(f)dfによって求められる。ここでfは周波数、P(f)は周波数fの振幅を表す。中心周波数として、他に振幅が最大の周波数としてもよいし、振幅が最大の所定比となる帯域の中心周波数としてもよいし、P(f)の積分値が半値となる周波数としてもよい。
 帯域は、∫(f-f*P(f)df/∫P(f)df=∫f*P(f)df/∫P(f)df-f の平方根をとることによって求められる。ここで、fは中心周波数を表す。これは分散のままでもよい。また、帯域として他に中心周波数の振幅や最大振幅の所定比となる帯域としてもよいし、中心周波数や振幅最大の周波数を中心としたP(f)の積分値が全積分値の所定比となる帯域としてもよい。
 中心周波数と帯域の他に、周波数分布の歪みをバラツキ指標として求めてもよい。これは周波数分布の3次モーメント∫(f-f)*P(f)df/∫P(f)dfから求められる。
 以上、バラツキ指標を受信時刻・振幅・中心周波数の変化分や経路長規格化変化分を指標として求める方法について説明したが、変化分でなく、受信時刻・振幅・中心周波数を直接指標としてもよい。この場合、周波数分布の極低周波に「経路バラツキを含まない受信時刻・振幅・中心周波数」の成分が含まれるため、バラツキ指標を算出する時に、極低周波成分を除けばよい。
 また、平均音速・平均減衰の着目点位置によるバラツキの空間周波数に基づいてバラツキ指標を求めてもよい。この場合、着目領域内の平均音速・平均減衰の2次元周波数分布を求め、その中心周波数・帯域・歪みから求められる。
 本実施形態では、上述のようにしてバラツキ指標を求めることができるが、バラツキ指標は、ミクロ構造のスケールと波長(周波数)との関係によって、構造の不均一さが信号のバラツキに及ぼす影響が変わると考えられる。例えば、構造と比べて波長が十分長ければ(周波数が十分低ければ)構造の不均一さが信号のバラツキに及ぼす影響は殆ど無く、逆に波長が構造のスケールと同程度であれば構造の不均一さが多大な影響を及ぼすと考えられる。具体的には、脂肪肝の場合には、脂肪滴サイズが100μm程度のため周波数7MHz程度で脂肪沈着による不均一さを捉えられると考えられる。
 そこで、本実施形態では、バラツキ指標を計測して組織性状の診断を行う際には、組織性状の診断に適した予め定めた送信周波数の超音波を送信する。具体的には、本実施形態では、Bモード用の送信周波数と、組織性状診断用の送信周波数とを異なる周波数に変更するようになっている。なお、Bモード用の送信周波数は、予め定めた周波数とし、組織性状診断用の送信周波数は、注目部位(注目臓器や病変)の深さ及び大きさに応じて予め定めた周波数とする。
 図8は、例示的第1実施形態に係わる超音波診断装置10の送信周波数を変更可能とした送信回路の一例を示す図である。
 本実施形態では、図8に示すように、送信回路402に送信周波数変更部401及びタイミングコントローラ403を有している。
 タイミングコントローラ403は、制御部100の制御によって駆動パルスを発生させるための信号を送信周波数変更部401へ出力する。
 送信周波数変更部401は、制御部100の指示に応じた周波数のパルスを発生して超音波トランスデューサ302へ出力することにより、制御部100の指示に従った周波数の超音波が超音波トランスデューサ302から発生される。なお、送信周波数変更部401による送信周波数の変更方法としては、例えば、特開2006-255014号に記載の技術などを適用することができる。具体的には、複合型圧電素子を使用した広帯域幅の周波数特性を持つ超音波トランスデューサ302を使用し、通過する周波数帯域が異なる複数種類のバンドパスフィルタを超音波トランスデューサ302に接続して、選択的にバンドパスフィルタを切り替えて駆動パルスを印加することにより、周波数帯域幅及び中心周波数の異なる超音波を発生することができる。或いは、複数種類の周波数特性のトランスデューサ302を設けて選択的に使用するようにしてもよい。
 続いて、上述のように構成された第1実施形態に係わる超音波診断装置10の作用について説明する。
 図9は、第1実施形態に係わる超音波診断装置10の制御部100で行われる音速バラツキまたは減衰バラツキを表すバラツキ指標を求める全体の処理の流れの一例を表すフローチャートである。
 まず、ステップS300において、Bモード画像を表示する。すなわち、ユーザによる操作卓202の表示モード切り替えボタンの操作に応じて、Bモード画像を表示部104に表示する。なお、Bモード画像を表示する際には、Bモード用の送信周波数となるように送信回路402の送信周波数変更部401を制御して超音波信号を超音波探触子300によって受信する。
 次にステップS302において、着目領域を設定する。着目領域の設定は、例えば、ユーザの操作卓202やポインティングデバイス204の操作に応じた領域を着目領域として設定する。
 続いて、ステップS304において、送信周波数を組織性状診断用送信周波数に設定する。組織性状診断用の送信周波数は、例えば、Bモード画像用とは異なる組織性状を診断するために適した周波数を予め定めておき、制御部100が送信周波数変更部401を制御することにより、送信周波数を変更する。
 次に、ステップS306において、制御部100の指示に従って送信回路402が超音波トランスデューサを制御することにより、着目領域内の各ラインに沿って所定数の送信焦点を設定し、該当する送信フォーカスを実施し、各素子を介して受信回路404によって受信する。受信回路404によって受信したRF信号はA/D変換器406によってデジタルRF信号に変換される。
 このとき、各着目点に対応する送信フォーカスを選択するために、事前に各送信フォーカスの有効域を以下のようにして判定するようにしても良い。
 すなわち、まず送信フォーカス番号(n)を設定し、所定の指定ライン番号に対して指定ライン幅を加算/減算してライン番号(m)とし、焦点(n)及びライン(m)の各素子受信信号を読み込む。次に設定音速番号(k)を設定して、送信フォーカスNo(n)のラインNo(m)の受信信号に設定音速(k)の受信フォーカスを実施し、指標または画像を保存しておく。この処理を、設定音速(k)の値を変えて繰り返し行い、所定の設定音速について処理が終了したら、ライン(m)を変更し、新たなライン(m)に対してまた上記のように設定音速(k)を変えて送信フォーカスを実施する。
 次に、各設定音速の全ラインの指標または画像から各深さの環境音速(平均音速)を求め、環境音速の深さ方向の標準偏差を算出し、最小点を実際の焦点深さと判定し、送信フォーカス(n)の有効域を求める。そして、送信フォーカス番号を変更して、次の送信フォーカス(n)に対する有効域を上と同様にして求める。
 なお、各着目点に対応して送信フォーカスを実施するようにしても良い。
 次に、ステップS308において、データ解析計測部106ではRF信号における着目領域内に、所定数(i)の着目点を設定する。着目点は一つ、すなわち所定数iは1でもよい。そして、以下の処理を行うことにより、i個の各着目点に対して、その着目点における音速バラツキまたは減衰バラツキを表すバラツキ指標を求める。
 まず、ステップS310において、データ解析計測部106ではRF信号における着目領域内の所定数(i)の着目点のうち、着目点の番号(No)を示すiを1(i=1)とする。
 そして、ステップS312において、i番目の着目点に対応する送信フォーカスの各素子受信データを選択し、該当データからi番目の着目点の音速バラツキまたは減衰バラツキを表すバラツキ指標を算出する。なお、バラツキ指標の求め方としては、別媒質の無い場合には、上述した図6のフローチャートに示す方法によって求められる。別媒質のある場合には、上述した図7のフローチャートに示す方法によって求められる。この時、着目領域とは別に、局所領域を設定し、また局所領域下面上の各格子点に対応する送信フォーカスの各素子受信データも使用する。
 次に、ステップS314において、データ解析計測部106では、着目点の番号iを1インクリメントして(iに1を加え)、次のステップS316で、iが設定された着目点の個数(所定数i)を超えたか否か判断する。その結果まだiがiを超えていない場合には、ステップS312に戻り、上記着目点iの音速バラツキまたは減衰バラツキを表すバラツキ指標を求める処理を繰り返す。一方、iがiを超えたと判断された場合には、次のステップS318に移行する。
 ステップS318では、データ解析計測部106が各着目点iのバラツキ指標の総和をとり、それを着目領域におけるバラツキ指標として表示部104に表示する。
 なお、本実施形態では、着目領域のバラツキ指標を各着目点のバラツキ指標の総和としているが、総和の代わりに、各着目点の指標を全て揃えた後に、その標準偏差をとって着目領域のバラツキ指標とするようにしてもよい。
 続いて、ステップS320では、送信周波数をBモード用送信周波数に戻す。すなわち、制御部100が送信周波数変更部401を制御することにより、送信周波数を予め定めたBモード用の送信周波数に変更して一連の組織性状診断するためのバラツキ指標を求める処理を終了する。
 以上、受信時刻・振幅・中心周波数の変化に基づく種々の音速・減衰バラツキ指標、また平均音速・平均減衰の着目点位置による変化に基づく種々のバラツキ指標を説明したが、実施形態は以上の例には限定されず、本発明の要旨を逸脱しない範囲において他の種々のバラツキ指標を用いてもよいのはもちろんである。例えば、着目領域における各着目点の受信時刻・振幅・中心周波数に基づく指標を全て揃えた後にそのヒストグラム形状特徴量として歪度や尖度などをバラツキ指標としても良いし、各着目点について指標を平均化した後に、その着目領域における分布の標準偏差やヒストグラム形状特徴量、または同時生起行列などによるテクスチャ特徴量、例えば一様性、コントラスト、相関、エントロピーなどをバラツキ指標としても良い。
 また、平均音速・平均減衰の着目領域における分布からも同様にヒストグラム特徴量やテクスチャ特徴量などをバラツキ指標とする事ができる。また、これらの特徴量を単独でバラツキ指標とするのではなく複数の特徴量から、例えば重回帰式を用いてバラツキ指標を求めても良い。
 このようにして音速あるいは減衰のバラツキを表す指標(バラツキ指標)を算出することにより、これを用いて組織性状の診断を行うことが可能となる。
 例えば、具体的な病変とこれに対する音速あるいは減衰のバラツキのデータを大量に蓄積し、これに基づいてバラツキ指標の値と組織性状の状態との対応を統計的に求め、組織性状の診断を行うためのバラツキ指標の閾値を予め設定しておく。そして、実際の診断においては、上で述べたような方法でバラツキ指標を求め、これを予め設定された閾値と比較することにより、組織性状の診断を行う。これにより、組織性状の診断が容易となる。
 さらに、組織性状の診断を行う際に、組織性状の診断に適した周波数に変更して行うので、ミクロ構造の不均一さを高精度に計測することが可能となる。例えば、脂肪肝の場合には、上述したように脂肪滴サイズが100μm程度であるため、送信周波数を7MHz程度に変更することにより、脂肪沈着による不均一さを、周波数を変更しない場合に比べて高精度に捉えることができる。
(第2実施形態)
 第1実施形態では、各素子信号の時間や、振幅、周波数等のバラツキに基づいて組織のミクロな音速・減衰不均一を計測するようにしたが、第2実施形態では、各素子信号に基づいて音速または減衰を求め、その空間的な変化に基づいて組織のミクロな音速・減衰不均一を計測するようにしたものであり、構成は第1実施形態の超音波診断装置10と同一であり、制御部100で行われる処理が相違するので、相違する処理について以下では説明する。
 図10は、例示的第2実施形態に係わる超音波診断装置の制御部で行われる音速または減衰のバラツキ指標を求める処理の流れの一例を表すフローチャートである。なお、図10では、第1実施形態と同一処理については同一符号を付して簡単に説明する。
 まず、ステップS300において、Bモード画像を表示し、次にステップS302において、着目領域を設定する。なお、Bモード画像を表示する際には、Bモード用の送信周波数となるように送信回路402の送信周波数変更部401を制御して超音波信号を超音波探触子300によって受信する。
 続いて、ステップS304において、送信周波数を組織性状診断用送信周波数に設定する。組織性状診断用の送信周波数は、上述したように、例えば、Bモード画像用とは異なる組織性状を診断するために適した周波数を予め定めておき、制御部100が送信周波数変更部401を制御することにより、送信周波数を変更する。
 次に、ステップS306において、制御部100の指示に従って送信回路402が超音波トランスデューサを制御することにより、着目領域内の各ラインに沿って所定数の送信焦点を設定し、該当する送信フォーカスを実施し、各素子を介して受信回路404によって受信する。受信回路404によって受信したRF信号はA/D変換器406によってデジタルRF信号に変換される。
 続いて、ステップS308において、データ解析計測部106ではRF信号における着目領域内に、所定数(i)の着目点を設定する。着目点は一つ、すなわち所定数iは1でもよい。そして、以下の処理を行うことにより、i個の各着目点に対して、その着目点における音速バラツキまたは減衰バラツキを表すバラツキ指標を求める。
 まず、ステップS310において、データ解析計測部106ではRF信号における着目領域内の所定数(i)の着目点のうち、着目点の番号を示すiを1(i=1)とする。
 そして、ステップS311において、i番目の着目点に対応する送信フォーカスの各素子受信データを選択し、該データからi番目の着目点の音速または減衰を求める。なお、音速または減衰の求め方は、特に限定されるものではなく、例えば、以下に説明するような公知の方法で求めることができる。
 例えば、着目点の音速として環境音速(平均音速)を用いた場合の音速の求め方として、音速を着目領域の画像のシャープネスやコントラストなどの特性が最大となるような値として求める画像解析の手法(例えば、特開2007-7045号公報等参照)が知られている。
 ここで、遅延時間設定のために想定される音速を設定音速と言い、超音波強度の方位方向に関する強度分布をビームプロファイルと言う。そして、受信回路で整相加算したエコー信号から設定音速が相違する複数のビームプロファイルを生成し、生成した複数のビームプロファイルを同一画面に重ねて表示し、設定音速が相違する複数のビームプロファイルの中の最小ビーム幅に対応するビームプロファイルの設定音速を生体音速として推定する。
 あるいは、設定音速によるビーム幅の変化を表すグラフを生成して、その変化を高次曲線で近似した近似曲線の極小値を抽出し、その極小値に対応する設定音速を環境音速として推定するようにしても良い。
 または、着目点の音速とは着目点の局所音速でも良い。この局所音速を求める方法にも様々なものがある。一例としては、第1実施形態のバラツキ指標の求め方で説明した局所領域における平均音速(局所音速)の求め方(例えば、特開2010-99452号公報等の技術)を用いることができる。
 また、着目点の減衰の求め方としては、例えば、次のように、整合加算前の各素子受信信号を用いて減衰を求める方法が考えられる。
 例えば、送信フォーカスを掛けて擬似的な点反射を形成し、その各素子受信データを用いて、真中素子又は真中素子を含む開口で整合加算した後の受信信号の中心周波数の深さ方向の変化から単位伝播時間当たりの減衰係数の分布を求めることができる。あるいは、各素子受信信号の中心周波数は、送信波の中心周波数が、上記擬似的な点反射の深さと各素子位置によって決まる伝播距離での減衰によって決まる量だけ、低周波側にシフトした値である事から、各素子受信信号の中心周波数から送信波の中心周波数、点反射の深さ及び減衰係数の3未知数、または、上記擬似的な点反射の音速を求める際に、同時に深さも求まり、また送信波の中心周波数も既知として、減衰係数を求めるようにしてもよい。
 上記減衰係数の分布を求めるには、まず着目領域を設定し、その着目領域内の各ラインに沿って所定数の送信焦点を設定し、該当する送信フォーカスを実施して、各素子で受信する。次に、着目領域内において方位位置及び深さ位置に関して所定数の着目点を設定し、各着目点に対する送信フォーカスの各素子受信信号を選択し、その内から、真中素子の着目点の深さに相当する信号の中心周波数を求め、これを深さ位置方向に関して繰り返し行い、その各着目点の中心周波数を深さ方向に差分をとり、その結果を減衰係数として格納し、これを各方位位置に関して繰り返し行うことによって単位伝播時間当たりの減衰係数の分布が求められる。または、各着目点に対する送信フォーカスの各素子受信信号を選択し、送信波の中心周波数、着目点の深さ及び減衰係数の内、未知数を振って各素子受信信号の中心周波数に最も良く整合する減衰係数を着目点における減衰係数として格納し、これを各方位位置に関して繰り返し行うことによって減衰係数の分布を求める事ができる。
 また、上記各素子受信信号の中心周波数から局所的な減衰係数を求めるには、まず着目領域を設定し、その着目領域内の各ラインに沿って所定数の送信焦点を設定し、該当する送信フォーカスを実施して、各素子で受信する。次に、着目領域内において方位位置及び深さ位置に関して所定数の着目点を設定し、着目点を上面の中心に設置した局所領域を設定し、また局所領域下面に複数の格子点を設定し着目点から各格子を経由して各素子に至る伝播経路を求める。ここで各伝播経路は局所領域の局所音速を求める際に求める事ができる。次に、着目点に対応する送信フォーカスの各素子受信信号の中心周波数を各格子から各素子への経路に沿って逆シフトすることによって、局所領域下面の各格子点における中心周波数を求める。ここで各格子から各素子への経路に沿うシフト量は、別途各格子に該当する送信フォーカスを実施して得られた各素子受信信号から求める事ができる。一方、既に局所領域における着目点直下の格子⇒着目点⇒各格子の伝播経路長が局所音速を求める際に求まっている事から、局所領域内での減衰係数が一定であると仮定すると、着目点直下の格子における中心周波数と減衰係数から、伝播した後の各格子点における中心周波数を求める事ができる。そして着目点直下の格子における中心周波数は、別途、着目点直下の格子に該当する送信フォーカスを実施して得られた各素子受信信号から求める事ができる。従って、減衰係数を仮定して求めた各格子点における中心周波数と、着目点の各素子受信信号の中心周波数逆シフトにより求めた各格子点における中心周波数との誤差を求め、この誤差が最小となる減衰係数を真値として求める事ができる。着目点直下の格子における中心周波数が未知の場合でも、着目点直下の格子における中心周波数と減衰係数の2未知数を振って得られる各格子点における中心周波数と、中心周波数逆シフトにより求めた各格子点における中心周波数とが最も良く整合する場合の減衰係数を採用すれば良い。
 以上のようにして、着目点iに対応する各素子受信データ、及び局所領域を設定する場合には、その下面上に設定する各格子点に対応する各素子受信データを用いて着目点iの音速あるいは減衰を求める。なお、局所領域下面及び各格子点の設定の仕方は、特に限定されるものではなく着目点の下側に任意の曲面上に設定することができる。例えば、組織や病変の境界上に設定してもよい。
 次に、ステップS314において、データ解析計測部106では、着目点の番号iを1インクリメントして(iに1を加え)、次のステップS316で、iが設定された着目点の個数(所定数i)を超えたか否か判断する。その結果まだiがiを超えていない場合には、ステップS312に戻り、上記着目点iの音速バラツキまたは減衰バラツキを表すバラツキ指標を求める処理を繰り返す。一方、iがiを超えたと判断された場合には、次のステップS317に移行する。
 ステップS317では、データ解析計測部106が各着目点iの音速または減衰の着目領域における変化からバラツキ指標を求めて表示部104に表示して、続いて、ステップS320では、送信周波数をBモード用送信周波数に戻す。すなわち、制御部100が送信周波数変更部401を制御することにより、送信周波数を予め定めたBモード用の送信周波数に変更して一連の組織性状診断するためのバラツキ指標を求める処理を終了する。
 なお、バラツキ指標としては、着目領域内の音速あるいは減衰のバラツキの大きさに基づく指標、例えば標準偏差を用いることができる。または、各着目点の音速または減衰の着目領域における変化の空間周波数に基づく指標、例えば音速・減衰の2次元周波数分布を求め、その中心周波数・帯域・歪みから求めてもよい。
 或いは、その他、バラツキ指標として不均一性を評価可能な種々の指標が考えられる。例えば、着目領域における音速・減衰分布またはその空間周波数分布のヒストグラム形状特徴量として歪度や尖度などをバラツキ指標としても良いし、同時生起行列などによるテクスチャ特徴量、例えば一様性、コントラスト、相関、エントロピーなどをバラツキ指標としても良い。また、これらの特徴量を単独でバラツキ指標とするのではなく複数の特徴量から、例えば重回帰式を用いてバラツキ指標を求めても良い。
 このようにして音速あるいは減衰のバラツキを表す指標(バラツキ指標)を算出することにより、これを用いて組織性状の診断を行うことが可能となる。
 さらに、組織性状の診断を行う際に、第1実施形態と同様に、組織性状の診断に適した周波数に変更して行うので、ミクロ構造の不均一さを高精度に計測することが可能となる。
 なお、上記の第1実施形態及び第2実施形態では、Bモードと組織性状診断とで異なる送信周波数とするようにしたが、これに限るものではなく、受信周波数を変更するようにしてもよい。例えば、以下に第1実施形態に対して受信周波数を変更する場合の例を説明する。なお、以下では、第1実施形態に対して受信周波数を変更する場合について説明するが、第2実施形態に対して受信周波数を変更するようにしてもよい。
 受信周波数の変更方法としては、広帯域周波数の超音波トランスデューサ302によって広帯域周波数の超音波を送信して、受信回路404に受信周波数変更部を設けて受信周波数変更部によって受信周波数を変更する。受信周波数変更部は、例えば、バンドパスフィルタ等のフィルタを用いることにより、受信周波数を変更することができる。すなわち、受信回路404に受信周波数変更部として複数種類のバンドパスフィルタ(例えば、Bモード用の予め定めた周波数を通過するバンドパスフィルタや、注目部位(注目臓器や病変)の深さ及び大きさに応じて予め定めた周波数を通過するバンドパスフィルタ等)を設けて、制御部100の制御によって使用するバンドパスフィルタを変更することにより、広帯域周波数の超音波信号から所望の周波数の信号を得ることができる。
 図11は、受信周波数を変更可能とした超音波診断装置の制御部100で行われる音速バラツキまたは減衰バラツキを表すバラツキ指標を求める全体の処理の流れの一例を表すフローチャートである。なお、図11では、第1実施形態と同一処理については同一符号を付して簡単に説明する。
 すなわち、まず、ステップS300において、Bモード画像を表示し、次にステップS302において、着目領域を設定する。なお、Bモード画像を表示する際には、Bモード用の受信周波数となるように受信回路404を制御して超音波信号を超音波探触子300によって受信する。
 次に、ステップS306において、制御部100の指示に従って送信回路402が超音波トランスデューサを制御することにより、着目領域内の各ラインに沿って所定数の送信焦点を設定し、該当する送信フォーカスを実施し、各素子を介して受信回路404によって受信する。
 続いて、ステップS307において、各素子受信信号にバンドパスフィルタを掛ける。すなわち、制御部100が受信回路404を制御して、組織性状診断用の周波数の受信信号とするためにバンドパスフィルタを選択して、受信信号を組織性状診断用の周波数にする。そして、受信回路404によって受信したRF信号はA/D変換器406によってデジタルRF信号に変換される。
 次に、ステップS308において、データ解析計測部106ではRF信号における着目領域内に、所定数(i)の着目点を設定して、ステップS310において、データ解析計測部106がRF信号における着目領域内の所定数(i)の着目点のうち、着目点の番号を示すiを1(i=1)とする。
 そして、ステップS312において、i番目の着目点に対応する送信フォーカスの各素子受信データを選択し、該当データからi番目の着目点の音速バラツキまたは減衰バラツキを表すバラツキ指標を算出する。
 次に、ステップS314において、データ解析計測部106では、着目点の番号iを1インクリメントして(iに1を加え)、次のステップS316で、iが設定された着目点の個数(所定数i)を超えたか否か判断する。その結果まだiがiを超えていない場合には、ステップS312に戻り、上記着目点iの音速バラツキまたは減衰バラツキを表すバラツキ指標を求める処理を繰り返す。一方、iがiを超えたと判断された場合には、次のステップS318に移行する。
 そして、ステップS318では、データ解析計測部106が各着目点iのバラツキ指標の総和をとり、それを着目領域におけるバラツキ指標として表示部104に表示して、一連の組織性状診断するためのバラツキ指標を求める処理を終了する。
 このように受信周波数を変更するようにしても第1実施形態と同様に、ミクロ構造の不均一さを高精度に計測することが可能となる。
 以上、実施形態に係る超音波診断装置及び超音波診断方法について詳細に説明したが、実施形態は、以上の例には限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはもちろんである。
 なお、上記の実施の形態における制御部100が行う処理は、プログラムとして各種の持続性の記憶媒体に記憶して流通するようにしてもよい。

Claims (18)

  1.  超音波を被検体に送信すると共に、該被検体によって反射される超音波を受信して超音波検出信号を出力する複数の超音波トランスデューサを含む超音波探触子と、
     前記超音波探触子から送信する超音波の送信周波数、または前記超音波探触子によって受信する超音波の受信周波数を、前記超音波探触子から出力される前記超音波検出信号の振幅を明るさの強弱に変換して表示する場合と、組織性状の診断を行う場合とで異なる周波数に変更する変更手段と、
     前記超音波探触子における異なる2つ以上の超音波トランスデューサにおける、前記変更手段によって組織性状の診断を行う周波数に変更したときの受信信号の関係に基づいて、組織性状を診断するための指標を算出する算出手段と、
     を備えた超音波診断装置。
  2.  前記変更手段は、組織性状を診断する際に、前記超音波探触子から送信する超音波の送信周波数を、注目部位の深さ及び大きさに応じて予め定めた送信周波数に変更する請求項1に記載の超音波診断装置。
  3.  前記変更手段は、組織性状を診断する際に、前記超音波診断探触子によって受信する前記超音波検出信号の受信周波数を、注目部位の深さ及び大きさに応じて予め定めた周波数に変更する請求項1に記載の超音波診断装置。
  4.  前記算出手段は、予め定めた着目領域における超音波の異なる2つ以上の前記超音波トランスデューサの受信信号の関係に基づいて音響特性の不均一性を評価し、前記指標として算出する請求項1~3の何れか1項に記載の超音波診断装置。
  5.  前記算出手段は、予め定めた着目領域内の少なくとも1つ以上の着目点における音速または減衰を求め、求めた音速または減衰に基づいて前記指標を算出する請求項1~3の何れか1項に記載の超音波診断装置。
  6.  前記算出手段によって算出された前記指標を表示する表示手段を更に備えた請求項1~5の何れか1項に記載の超音波診断装置。
  7.  組織性状を診断する場合に、超音波を被検体に送信すると共に、該被検体によって反射される超音波を受信して超音波検出信号を出力する複数の超音波トランスデューサを含む超音波探触子から送信する超音波の送信周波数、または前記超音波探触子によって受信する超音波の受信周波数を、前記超音波探触子から出力される前記超音波検出信号の振幅を明るさの強弱に変換して表示する場合の周波数から、組織性状の診断を行う場合の異なる周波数に変更し、
     前記超音波探触子における異なる2つ以上の超音波トランスデューサにおける、組織性状の診断を行う場合の周波数に変更したときの受信信号の関係に基づいて、組織性状を診断するための指標を算出すること、
     を含む超音波診断方法。
  8.  前記変更は、組織性状を診断する際に、前記超音波探触子から送信する超音波の送信周波数を、注目部位の深さ及び大きさに応じて予め定めた送信周波数に変更することを含む、請求項7に記載の超音波診断方法。
  9.  前記変更は、組織性状を診断する際に、前記超音波診断探触子によって受信する前記超音波検出信号の受信周波数を、注目部位の深さ及び大きさに応じて予め定めた周波数に変更することを含む、請求項7に記載の超音波診断方法。
  10.  前記算出は、予め定めた着目領域における超音波の異なる2つ以上の前記超音波トランスデューサの受信信号の関係に基づいて音響特性の不均一性を評価し、前記指標として算出することを含む、請求項7~9の何れか1項に記載の超音波診断方法。
  11.  前記算出は、予め定めた着目領域内の少なくとも1つ以上の着目点における音速または減衰を求め、求めた音速または減衰に基づいて前記指標を算出することを含む、請求項7~9の何れか1項に記載の超音波診断方法。
  12.  前記算出した前記指標を表示手段に表示することを更に含む、請求項7~11の何れか1項に記載の超音波診断方法。
  13.  組織性状を診断する場合に、超音波を被検体に送信すると共に、該被検体によって反射される超音波を受信して超音波検出信号を出力する複数の超音波トランスデューサを含む超音波探触子から送信する超音波の送信周波数、または前記超音波探触子によって受信する超音波の受信周波数を、前記超音波探触子から出力される前記超音波検出信号の振幅を明るさの強弱に変換して表示する場合の周波数から、組織性状の診断を行う場合で異なる周波数に変更し、
     前記超音波探触子における異なる2つ以上の超音波トランスデューサにおける、組織性状の診断を行う場合の周波数に変更したときの受信信号の関係に基づいて、組織性状を診断するための指標を算出すること、
     を有する処理をコンピュータに実行させるための超音波診断プログラム。
  14.  前記変更は、組織性状を診断する際に、前記超音波探触子から送信する超音波の送信周波数を、注目部位の深さ及び大きさに応じて予め定めた送信周波数に変更することを含む、請求項13に記載の超音波診断プログラム。
  15.  前記変更は、組織性状を診断する際に、前記超音波診断探触子によって受信する前記超音波検出信号の受信周波数を、注目部位の深さ及び大きさに応じて予め定めた周波数に変更することを含む、請求項13に記載の超音波診断プログラム。
  16.  前記算出は、予め定めた着目領域における超音波の異なる2つ以上の前記超音波トランスデューサの受信信号の関係に基づいて音響特性の不均一性を評価し、前記指標として算出することを含む、請求項13~15の何れか1項に記載の超音波診断プログラム。
  17.  前記算出は、予め定めた着目領域内の少なくとも1つ以上の着目点における音速または減衰を求め、求めた音速または減衰に基づいて前記指標を算出することを含む、請求項13~15の何れか1項に記載の超音波診断プログラム。
  18.  前記算出した前記指標を表示手段に表示することを更に含む、請求項13~17の何れか1項に記載の超音波診断プログラム。
PCT/JP2013/064496 2012-05-25 2013-05-24 超音波診断装置、超音波診断方法、及び超音波診断プログラム WO2013176260A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/533,089 US10631822B2 (en) 2012-05-25 2014-11-05 Ultrasound diagnostic device, ultrasound diagnostic method and ultrasound diagnostic program storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-120213 2012-05-25
JP2012120213A JP6008581B2 (ja) 2012-05-25 2012-05-25 超音波診断装置、超音波診断装置の制御方法、及び超音波診断プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/533,089 Continuation US10631822B2 (en) 2012-05-25 2014-11-05 Ultrasound diagnostic device, ultrasound diagnostic method and ultrasound diagnostic program storage medium

Publications (1)

Publication Number Publication Date
WO2013176260A1 true WO2013176260A1 (ja) 2013-11-28

Family

ID=49623940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064496 WO2013176260A1 (ja) 2012-05-25 2013-05-24 超音波診断装置、超音波診断方法、及び超音波診断プログラム

Country Status (3)

Country Link
US (1) US10631822B2 (ja)
JP (1) JP6008581B2 (ja)
WO (1) WO2013176260A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116328216A (zh) * 2023-05-10 2023-06-27 深圳半岛医疗有限公司 超声输出重复频率控制方法、设备和可读存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104034A1 (ja) * 2014-12-26 2016-06-30 古野電気株式会社 超音波体組織検出装置、超音波体組織検出方法、および、超音波体組織検出プログラム
DE102017107151A1 (de) * 2017-04-03 2018-10-04 Herrmann Ultraschalltechnik Gmbh & Co. Kg Ultraschallbearbeitungsmaschine mit zwei Sonotroden und Verfahren zum Betreiben einer solchen
CN110313937B (zh) * 2019-08-01 2023-03-24 无锡海斯凯尔医学技术有限公司 超声信号处理方法、装置、设备及存储介质
US11439308B2 (en) * 2020-07-13 2022-09-13 GE Precision Healthcare LLC Methods and systems for thermal monitoring of tissue with an ultrasound imaging system
CN116374230B (zh) * 2023-06-06 2023-08-25 四川高速公路建设开发集团有限公司 一种基于无人机的高速路面检测***及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154626A (ja) * 2006-12-20 2008-07-10 Hitachi Medical Corp 超音波診断装置
JP2010051553A (ja) * 2008-08-28 2010-03-11 Konica Minolta Medical & Graphic Inc 超音波診断装置および方法
WO2012002420A1 (ja) * 2010-06-30 2012-01-05 富士フイルム株式会社 超音波診断装置及び超音波診断方法
WO2012002421A1 (ja) * 2010-06-30 2012-01-05 富士フイルム株式会社 超音波診断装置及び超音波診断方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4872346A (en) * 1986-07-18 1989-10-10 Indianapolis Center For Advanced Research Multiple frequencies from single crystal
JPH0324868A (ja) 1989-06-22 1991-02-01 Nippon Chemicon Corp 垂直偏向回路
JPH06105841A (ja) 1991-06-04 1994-04-19 Yokogawa Medical Syst Ltd 超音波診断装置
US5997477A (en) * 1997-04-14 1999-12-07 The Trustees Of The University Of Pennsylvania Apparatus for imaging an element within a tissue and method therefor
AU5117699A (en) * 1998-07-21 2000-02-14 Acoustic Sciences Associates Synthetic structural imaging and volume estimation of biological tissue organs
US7500956B1 (en) * 1999-06-29 2009-03-10 Wilk Peter J Apparatus and method for resonant destruction of tumors
JP2001238884A (ja) 2000-02-29 2001-09-04 Toshiba Corp 超音波診断装置及び超音波による組織性状の定量解析方法
US20030013960A1 (en) * 2001-05-29 2003-01-16 Makin Inder Raj. S. Guiding ultrasound end effector for medical treatment
JP4713112B2 (ja) 2003-09-30 2011-06-29 富士フイルム株式会社 超音波診断装置
JP2006255014A (ja) 2005-03-15 2006-09-28 Fuji Photo Film Co Ltd 超音波診断装置
JP4817728B2 (ja) 2005-06-29 2011-11-16 株式会社東芝 超音波診断装置
JP5159041B2 (ja) * 2006-01-30 2013-03-06 株式会社東芝 超音波診断装置およびその画像処理プログラム
US20080242979A1 (en) * 2007-03-30 2008-10-02 Rayette Ann Fisher Combined X-ray detector and ultrasound imager
US8376947B2 (en) * 2008-03-26 2013-02-19 Bioquantetics, Inc. Application of image-based dynamic ultrasound spectrography (IDUS) in detection and localization of breast microcalcifcation
JP2010099452A (ja) 2008-09-25 2010-05-06 Fujifilm Corp 超音波診断装置及び超音波診断方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154626A (ja) * 2006-12-20 2008-07-10 Hitachi Medical Corp 超音波診断装置
JP2010051553A (ja) * 2008-08-28 2010-03-11 Konica Minolta Medical & Graphic Inc 超音波診断装置および方法
WO2012002420A1 (ja) * 2010-06-30 2012-01-05 富士フイルム株式会社 超音波診断装置及び超音波診断方法
WO2012002421A1 (ja) * 2010-06-30 2012-01-05 富士フイルム株式会社 超音波診断装置及び超音波診断方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116328216A (zh) * 2023-05-10 2023-06-27 深圳半岛医疗有限公司 超声输出重复频率控制方法、设备和可读存储介质
CN116328216B (zh) * 2023-05-10 2023-08-11 深圳半岛医疗有限公司 超声输出重复频率控制方法、设备和可读存储介质

Also Published As

Publication number Publication date
US10631822B2 (en) 2020-04-28
US20150057543A1 (en) 2015-02-26
JP6008581B2 (ja) 2016-10-19
JP2013244219A (ja) 2013-12-09

Similar Documents

Publication Publication Date Title
JP5798117B2 (ja) 超音波診断装置及び超音波診断装置の作動方法
JP5808325B2 (ja) 超音波診断装置及び超音波診断装置の作動方法
EP1974672B9 (en) Ultrasonic imaging apparatus and ultrasonic velocity optimization method
JP6462340B2 (ja) 超音波診断装置、画像処理装置及び画像処理方法
US10959704B2 (en) Ultrasonic diagnostic apparatus, medical image processing apparatus, and medical image processing method
JP5209025B2 (ja) 超音波診断装置
US20160183926A1 (en) Diagnostic ultrasound apparatus and elasticity evaluation method
JP6635766B2 (ja) 超音波診断装置、信号処理装置及び解析プログラム
JP6008581B2 (ja) 超音波診断装置、超音波診断装置の制御方法、及び超音波診断プログラム
CN106963419B (zh) 解析装置
JP6457107B2 (ja) 超音波診断装置、および、減衰特性計測方法
JP5235477B2 (ja) 超音波による画像形成方法及び超音波装置
JP6008580B2 (ja) 超音波診断装置、超音波診断装置の制御方法、及び超音波診断プログラム
JP4575737B2 (ja) 超音波撮像装置
US20120203111A1 (en) Ultrasonic diagnostic apparatus, ultrasonic image processing apparatus, and ultrasonic image acquisition method
US8708910B2 (en) Ultrasonic diagnosis apparatus and ultrasonic diagnosis method
JP5481261B2 (ja) 超音波診断装置及び多重検出プログラム
JP2013244162A (ja) 超音波診断装置
JP2013244137A (ja) 超音波診断装置および超音波診断画像生成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13794379

Country of ref document: EP

Kind code of ref document: A1