WO2013173951A1 - 一种燃烧供热*** - Google Patents

一种燃烧供热*** Download PDF

Info

Publication number
WO2013173951A1
WO2013173951A1 PCT/CN2012/001279 CN2012001279W WO2013173951A1 WO 2013173951 A1 WO2013173951 A1 WO 2013173951A1 CN 2012001279 W CN2012001279 W CN 2012001279W WO 2013173951 A1 WO2013173951 A1 WO 2013173951A1
Authority
WO
WIPO (PCT)
Prior art keywords
dust collector
energy
saving
heating system
ceramic membrane
Prior art date
Application number
PCT/CN2012/001279
Other languages
English (en)
French (fr)
Inventor
赵世凯
李�杰
薛友祥
梁之会
焦光磊
任汝学
张晓丽
程之强
李宪景
巩玉贤
宋涛
Original Assignee
中材高新材料股份有限公司
山东工业陶瓷研究设计院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中材高新材料股份有限公司, 山东工业陶瓷研究设计院有限公司 filed Critical 中材高新材料股份有限公司
Publication of WO2013173951A1 publication Critical patent/WO2013173951A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/022Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow
    • F23J15/025Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow using filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/033Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment comminuting or crushing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/10Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/022Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow
    • F23J15/027Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow using cyclone separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2217/00Intercepting solids
    • F23J2217/10Intercepting solids by filters
    • F23J2217/104High temperature resistant (ceramic) type

Definitions

  • the invention relates to a combustion heating system, in particular to an energy-saving environment-friendly combustion heating system. Background technique
  • coal-fired heating systems which are the main heating methods used in the ceramics and chemical industries.
  • coal-water slurry method chain-row furnace method
  • dry coal powder method gas method for industrial application.
  • fuel utilization efficiency and hot gas cleanliness in various ways, such as water.
  • Coal slurry, chain furnace, dry coal powder, etc. provide heat by means of direct combustion of fuel, and energy utilization efficiency is high, but direct combustion of coal brings a large amount of dust, particles, etc., which seriously affects the quality of the heat source.
  • the gas method uses a gas generator to remove dust after coal gasification, which improves the cleanliness of the heat source, but the coal gasification process itself There is a certain conversion rate, and sometimes it is necessary to use the hot gas after cooling, which greatly reduces the energy utilization efficiency.
  • the technical problem to be solved by the present invention is to provide an energy-saving and environment-friendly combustion and heating system with high fuel utilization efficiency, hot gas cleaning and wide fuel application range, which can solve the energy utilization of the heating system.
  • the energy-saving and environment-friendly combustion and heating system is characterized in that it comprises: a fuel efficient treatment system, a combustion system, a cyclone, a high temperature dust collector and a high temperature fan which are sequentially connected and arranged.
  • the high-temperature dust remover is a ceramic membrane high-temperature dust remover, comprising a dust collector casing, a tube plate and a porous ceramic membrane filter element, a dust-containing high-temperature gas inlet is arranged at a lower portion of the dust collector casing, a cleaning gas outlet is arranged at the top, and a dust-cleaning device is installed inside the dust collector.
  • the plate and the tube plate are suspended and installed with a plurality of porous ceramic membrane filters, and the dust collector is divided by the tube plate into a lower dust-containing gas chamber and an upper cleaning gas chamber.
  • the dusty high-temperature gas coming out of the combustion system enters the lower dust-containing gas chamber below the tube plate, and the cleaning gas after the dust removal through the porous ceramic membrane filter enters the upper cleaning gas chamber above the tube plate, and the dust particles are trapped in the porous ceramic membrane filter.
  • the high temperature ceramic membrane filter has a maximum temperature of 750 ° C, a purification efficiency of 99.9%, and an outlet dust concentration of 5 mg per cubic meter.
  • the material of the porous ceramic membrane filter is preferably cordierite, silicon carbide or ceramic fiber, thereby having the advantages of high energy efficiency, low consumption and environmental protection.
  • the spray cleaning system includes an injector, a gas line and a cleaning port, and the gas line runs through the upper cleaning gas chamber of the ceramic membrane high temperature dust collector, and is installed on the gas pipeline
  • the ejector corresponding to the position of the porous ceramic membrane filter has a ash cleaning port at the bottom of the dust collector housing.
  • the ejector can generate a pressure in the cavity of the porous ceramic membrane filter element opposite to the direction in which the filter gas flows, thereby performing online backflushing, overcoming the pressure drop in the filtration direction and the adhesion strength of the dust filter cake.
  • the injector is a venturi injector.
  • a venturi injector is placed above each porous ceramic membrane filter.
  • Each venturi injector operates like a pump and draws additional cleaning gas for the cleaning of the porous ceramic membrane cartridge. Part of the kinetic energy of the reverse jet is converted to pressure energy.
  • the Venturi ejector allows a uniform flow of gas to pass through and has a uniform extension along the filter element, minimizing thermal shock through a favorable thermal plug flow to thermal stress.
  • the fuel efficient processing system includes, in order, a feeder, a material conveyor, a pulverizer, a blank storage tank, a screw feeder, a dust removing device, and a mill.
  • the fuel efficient system can quickly process fuels such as coal and palm shells into powders of around 300 mesh to achieve efficient fuel processing and transportation.
  • the material conveyor is a gooseneck conveyor.
  • the pulverizer is a mpsc-7575 type pulverizer.
  • the mpsc-7575 mill can be used for crushing various straws, weeds and palm shells.
  • the combustion system is a combustion furnace.
  • the fuel fuel supplied by the fuel treatment system is sprayed into the furnace through a spray gun, and the fuel can be efficiently burned.
  • the fuel for the burner includes various fuels such as coal, palm shell and coconut shell.
  • the working principle and process of the invention are: using agricultural by-products (such as palm shell, coconut shell), coal, etc. as fuel, first grinding the fuel to a l ⁇ 2mm by a pulverizer, and then feeding it to a mill for fine grinding, Grinding to about 300 mesh is sprayed into the furnace for combustion.
  • the combustion furnace can generate high-temperature flue gas of about 1200 °C. After the secondary air distribution, the high-temperature flue gas is reduced to about 650 ° C. After removing the coarse particles by the cyclone dust collector, the high temperature fan is introduced into the ceramic membrane to remove the dust by high temperature.
  • the filter removes fine dust from the flue gas, and the cleaned heat source is used for subsequent process needs, such as entering the spray drying tower for drying the material.
  • the automatic control system of the energy-saving and environment-friendly combustion heating system of the invention is controlled by computer PLC, and is divided into three modes of differential pressure control, time control and manual control, and the work is stable and the performance is reliable.
  • the differential pressure control mode the pulse valve is cycled open and the discharge valve is then actuated.
  • the time control mode the backflush program runs cyclically according to the set cycle time and running time.
  • the differential pressure setting value, the opening time and interval of the pulse valve, and the ash discharge interval can be adjusted at any time according to the process requirements.
  • the core of the control system controls the hot air temperature and pressure before entering the spray drying tower.
  • the temperature is controlled by the combustion furnace and the secondary air distribution, and the pressure is controlled by the high temperature fan.
  • the control system is controlled by PLC.
  • the system adopts a modular combination structure and a centralized control system with industrial computer. The interface is friendly and easy to operate, which can meet the specific requirements of users.
  • the fuel has a wide range of applications and can be applied to various coal types as well as biomass fuels such as palm shells and coconut shells;
  • the dust concentration is less than 5 mg/m3), which can be applied to the heating, drying and other requirements of ceramics and chemical industries;
  • Figure 1 is a schematic view of the structure of the present invention
  • 2 is a schematic structural view of a ceramic membrane high temperature dust remover.
  • the present invention comprises a fuel efficient processing system 1, a combustion furnace 2, a cyclone 3, a ceramic membrane high temperature dust collector 4, and a high temperature fan 5, which are sequentially connected.
  • Fuel efficient treatment system 1 Including the feeder, gooseneck conveyor, mpsc-7575 pulverizer, blanking storage tank, screw feeder, dust removal equipment and mill. Through the fuel efficient treatment system, coal, palm shell and other fuels can be quickly processed into powders of about 300 mesh suitable for combustion and heat, and the raw materials are transported in a predetermined manner.
  • the main structure of the combustion furnace 2 is composed of the main part of the combustion furnace and the auxiliary equipment such as the hot air duct, the ignition system, the electric appliance control, and the temperature measuring instrument system.
  • the combustion chamber is heated to 800 °C with fuel, and is sprayed into the furnace by atomization of the spray gun. The fire is rotated and burned. Under the action of centrifugal force, the dust is collected on the inner wall of the furnace, and the spiral descends to the slag outlet to enter the water seal pool.
  • the hot air in the center of the combustion chamber rises to the upper jet cyclone 3, and under the action of the air angular jet, the hot flue gas rotates at a high speed, and the fine dust spirals along the wall of the cyclone 3 to the gray guiding port, and the center cleans the heat.
  • the flue gas is directly exported through the heating duct.
  • the ceramic membrane high-temperature dust remover 4 is a high-efficiency, energy-saving high-temperature gas purifying device which is based on a high-temperature ceramic membrane filter core and integrates high-temperature soot purification, pulse back-blowing, automatic cleaning and control.
  • the high-temperature ceramic membrane filter is preferably made of cordierite, silicon carbide or ceramic fiber.
  • cordierite high-temperature ceramic membrane material is used.
  • the specific structure of the ceramic membrane high-temperature dust collector is as shown in FIG. 2, and includes a dust collector housing 7, a tube plate 11 and a porous ceramic membrane filter element 12.
  • the dust collector housing 7 is provided with a dust-containing high-temperature gas inlet 13 at the lower portion and a cleaning gas outlet at the top. 8.
  • the tube plate 11 is installed in the dust collector, and a plurality of porous ceramic membrane cartridges 12 are suspended from the tube plate 11.
  • the dust collector is divided by the tube plate 12 into a lower dust-containing gas chamber 15 and an upper cleaning gas chamber 16, above the tube plate 11.
  • a blow cleaning system which includes a venturi injector 10, a gas line 9 and a cleaning port 14, and a gas line 9 runs through the upper cleaning gas chamber 16 of the ceramic membrane high-temperature dust collector, the gas line
  • a venturi ejector 10 corresponding to the position of the porous ceramic membrane cartridge is mounted on the ejector, and a ash outlet 14 is provided at the bottom of the precipitator housing 7.
  • the dust-containing high-temperature gas from the combustion system enters the lower dust-containing gas chamber 15 below the tube sheet 11, and the cleaning gas removed by the porous ceramic membrane element 12 enters the upper cleaning gas chamber 16 above the tube sheet 11, so that the dust particles are It is trapped on the outer surface of the porous ceramic membrane filter element 12.
  • the dust particles on the outer surface of the porous ceramic membrane filter element 12 are continuously accumulated into a dust filter cake, causing an increase in gas flow resistance, once the set pressure drop is reached. Or after a certain preset filtration time, the dust filter cake is removed.
  • the backflushing method adopts group pulse backflushing. This backflushing method can effectively utilize the gas in the container, and a small amount of gas can complete the backflushing regeneration.
  • a venturi ejector 10 is disposed above each of the porous ceramic membrane cartridges 12, each venturi ejector operates like a pump, and draws additional cleaning gas for the cleaning of the porous ceramic membrane cartridge 12, and a portion of the kinetic energy of the reverse jet is converted into Pressure energy.
  • a pressure is generated in the cavity of the porous ceramic membrane cartridge 12 in a direction opposite to the flow of the filtered gas, thereby performing on-line backflushing, overcoming the pressure drop in the filtration direction and the adhesion strength of the dust filter cake.
  • the Venturi ejector allows a uniform flow of gas to pass through and has a uniform extension along the filter element, minimizing thermal shock through a favorable thermal plug flow to thermal stress.
  • the high temperature ceramic membrane filter can be used up to 750 ° C, the purification efficiency is 99.9%, and the outlet dust concentration can be controlled within 5 millimeters per cubic meter.
  • the working principle and process of the invention are as follows: using agricultural by-products (such as palm shell, coconut shell), coal, etc. as fuel, first grinding the fuel to a l ⁇ 2mm by a pulverizer, and then feeding it to a mill for fine grinding, grinding It is sprayed into the combustion furnace to burn about 300 mesh.
  • the combustion furnace 2 can generate high-temperature flue gas of about 1200 ,, and the high-temperature flue gas is reduced to about 650 ° C after the secondary air distribution, and the coarse particles are removed by the cyclone dust collector 3, and then the high temperature fan 5 is introduced into the ceramic membrane at a high temperature.
  • the dust remover 4 filters to remove fine dust from the flue gas, and the cleaned heat source enters the spray drying tower 6 for drying the material.
  • the control system core controls the hot air temperature and pressure before entering the spray drying tower 6, and the temperature is controlled by the combustion furnace 2, and the pressure is controlled by the high temperature fan 5.
  • the control system is controlled by PLC.
  • the system adopts a modular combination structure and a centralized control system with industrial computer. The interface is friendly and easy to operate, which can meet the specific requirements of users.
  • the combustion and heating purification system developed by the invention can greatly reduce the fuel cost of the spray drying tower 6 by using coal as a fuel.
  • the equipment investment is about 600-800 million, compared with the natural gas fuel furnace.
  • a 10000-type spray drying tower saves more than 3 million yuan in energy consumption per year; compared with coal-water slurry burning furnace, it can save fuel costs by about 2 million yuan per year.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chimneys And Flues (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

一种燃烧供热***,包括依次连接的燃料处理***(1)、燃烧***、旋风除尘器(3)、陶瓷膜高温除尘器(4)和高温风机(5)。燃烧***排出的高温烟气净化后得到的清洁热气体作为热源可用于陶瓷、化工等行业。

Description

说 明 书
一种燃烧供热*** 技术领域
本发明涉及一种燃烧供热***, 具体涉及一种节能环保型燃烧供热***。 背景技术
在陶瓷、化工、食品等行业使用的燃烧供热***, 普遍采用天燃气、柴油、 重油、 煤等作为燃料, 通过各式燃烧炉 (发生炉) 产生高温气体, 以供干燥、 烧结工艺使用。 专利 1216814A、 2540597Y. 201129853Y 2191971Y等对其实 施结果进行了具体描述。
随着社会的发展、 能源的紧缺以及国家环保政策的限制, 现有各式燃烧供 热***也逐渐遇到了很多突出的问题。 如柴油、 重油、 天燃气等燃料, 上世纪 九十年代普遍用于建筑陶瓷、 化工等行业加热、 干燥工艺, 具有热效率高, 易 于实现自动化等优点, 但是由于油价的不断上涨, 使得燃料成本逐渐超出了企 业能够承受的范围, 目前仅有食品、 特种陶瓷等对能源清洁度要求苛刻的行业 继续使用天燃气等作为燃料。
以煤炭为燃料的供热***种类繁多, 是建陶、 化工等行业主要采用的供热 方式。 目前工业化应用的有水煤浆方式、 链排炉方式、 干煤粉方式以及煤气方 式等, 但在实际使用过程中, 各种方式均存在燃料利用效率与热气体清洁度之 间的矛盾, 如水煤浆、 链排炉、 干煤粉等方式, 以燃料直接燃烧的方式提供热 量, 能源利用效率高, 但煤的直接燃烧带来大量的粉尘、 颗粒等, 严重影响了 热源的品质。 而现在普遍采用的旋风除尘根本无法达到企业的要求。 煤气方式 采用煤气发生炉将煤气化后除尘, 提高了热源的清洁度, 但是煤气化过程本身 就有一定的转化率, 加之有时需要将热煤气冷却后使用, 大幅降低了能源的利 用效率。
如何解决燃料利用效率与热气体清洁度之间的矛盾是各种供热***迫切 需要解决的问题。
发明内容
根据以上现有技术中的不足, 本发明要解决的技术问题是: 提供一种燃料 利用效率高、 热气体清洁且燃料适用范围广的节能环保型燃烧供热***, 能够 解决供热***能源利用效率与热气体清洁度之间的矛盾且拓展供热***燃料 的使用范围。
本发明所述的节能环保型燃烧供热***, 其特征在于: 包括依次连接设置 的燃料高效处理***、 燃烧***、 旋风除尘器、 高温除尘器和高温风机。
所述的高温除尘器为陶瓷膜高温除尘器, 包括除尘器外壳、 管板和多孔陶 瓷膜滤芯, 除尘器外壳下部设有含尘高温气体入口, 顶部设有清洁气体出口, 除尘器内安装管板, 管板上悬吊安装数支多孔陶瓷膜滤芯, 除尘器由管板分隔 成下部含尘气体腔和上部清洁气体腔。 从燃烧***出来的含尘高温气体进入管 板下方的下部含尘气体腔, 经过多孔陶瓷膜滤芯除尘后的清洁气体进入管板上 方的上部清洁气体腔, 粉尘颗粒被截留在多孔陶瓷膜滤芯的外表面。 该高温陶 瓷膜过滤器最高使用温度可达 750°C, 净化效率达到 99.9%, 出***尘浓度可 控制在 5毫克每立方米以内。
所述的多孔陶瓷膜滤芯的材质优选堇青石、 碳化硅或者陶瓷纤维, 从而具 有高效节能、 低耗环保等优点。
长时间使用后, 多孔陶瓷膜滤芯外表面上的粉尘颗粒会不断堆积成粉尘滤 饼, 造成气体的流动阻力增大, 因此需要对粉尘滤饼进行清除, 采用如下优选 方案:
所述的管板上方设有喷吹清灰***, 喷吹清灰***包括喷射器、 气体管路 和清灰口, 气体管路贯穿陶瓷膜高温除尘器的上部清洁气体腔, 气体管路上安 装与多孔陶瓷膜滤芯位置对应的喷射器, 除尘器外壳的底部设有清灰口。 通过 喷射器能够在多孔陶瓷膜滤芯的空腔内产生压力反向于过滤气体流动的方向, 从而进行在线反吹, 克服过滤方向上的压降和粉尘滤饼的黏着强度。
所述的喷射器是文丘里喷射器。 每支多孔陶瓷膜滤芯上方设置有文丘里喷 射器, 每个文丘里喷射器像泵一样工作, 并为多孔陶瓷膜滤芯的清洁吸入额外 的清洁气体, 反向喷射的部分动能转化为压能。 文丘里喷射器使得有一个均匀 流动气体分布穿过, 并沿过滤元件有一个均勾的延伸, 通过对热应力的有利的 热活塞流使得热冲击最小化。
所述的燃料高效处理***依次包括喂料机、 物料输送机、 粉碎机、 下料储 存桶、 螺旋送料机、 除尘设备和磨粉机。 通过燃料高效处理***能够快速将煤 炭、 棕榈壳等燃料处理成 300目左右的粉体, 实现燃料的高效处理、 输送。
所述的物料输送机是鹅颈式输送机。
所述的粉碎机为 mpsc-7575型粉碎机。 mpsc-7575型粉碎机能够适用于各 种秸秆、 杂草、 棕榈壳的粉碎。
所述的燃烧***为燃烧炉。 由燃料处理***提供的粉状燃料经喷枪喷入炉 膛, 可迅速实现燃料的高效燃烧, 该燃烧炉适用的燃料包括煤、 棕榈壳、 椰壳 等各种燃料。
本发明的工作原理及过程为: 其利用农业副产品 (如棕榈壳、 椰壳)、 煤 炭等作为燃料, 先由粉碎机将燃料磨至 l〜2mm, 然后送入磨粉机进行细磨, 磨至 300目左右喷入燃烧炉进行燃烧。 燃烧炉可产生 1200°C左右的高温烟气, 该高温烟气经二次配风后降至 650°C左右, 先通过旋风除尘器除去粗颗粒后, 经高温风机负压引入陶瓷膜高温除尘器过滤去除烟气中的微细粉尘, 清洁的热 源用于后续的工艺需要, 如进入喷雾干燥塔用于物料的干燥。
本发明所述的节能环保型燃烧供热***的自动控制***通过计算机 PLC 控制, 分为差压控制、 时间控制和手动控制三种模式, 工作稳定、 性能可靠。 差压控制模式时, 脉冲阀循环打开, 随后卸料阀动作。 时间控制模式时, 根据 设定的循环周期和运行时间, 反吹程序周期性循环运行。 差压设定值、 脉冲阀 的打开时间及间隔、 卸灰间隔时间可根据工艺要求随时调整。
控制***核心控制进入喷雾干燥塔前热风温度和压力, 温度通过燃烧炉及 二次配风进行控制,压力通过高温风机进行控制。控制***全部采用 PLC进行 控制, ***选用模块式的组合结构, 并与工业计算机组成集中控制***, 界面 友好, 操作方便, 可以满足用户的特定要求。
本发明所具有的有益效果是-
( 1 ) 燃料适用范围广, 可适用于各煤种以及棕榈壳、 椰壳等生物质燃料;
(2 ) 解决了供热***能源利用效率与热气体清洁度之间的矛盾, 节能环 保, 高温下的热气体直接净化, 可实现劣质燃料的直接使用, 相对于天燃气热 源可降低 50%的燃料成本, ***燃烧效率高, 净化效果好, 得到的热气体清洁
(含尘浓度低于 5 毫克每立方米), 能够适用于陶瓷、 化工等行业对加热、 干 燥等的需求;
(3 ) 采用自动控制***, 界面友好, 操作方便, 可满足客户的特定要求。 附图说明
图 1是本发明的结构示意图; 图 2是陶瓷膜高温除尘器的结构示意图。
图中: 1、 燃料高效处理***; 2、 燃烧炉; 3、 旋风除尘器; 4、 陶瓷膜高 温除尘器; 5、 高温风机; 6、 喷雾干燥塔; 7、 除尘器外壳; 8、 清洁气体出口; 9、 气体管路; 10、 文丘里喷射器; 11、 管板; 12、 多孔陶瓷膜滤芯; 13、 含 尘高温气体入口; 14、 清灰口; 15、 下部含尘气体腔; 16、 上部清洁气体腔。 具体实施方式
下面结合附图对本发明的实施例做进一步描述:
如图 1所示, 本发明包括依次连接设置的燃料高效处理*** 1、 燃烧炉 2、 旋风除尘器 3、 陶瓷膜高温除尘器 4和高温风机 5。
其中: 燃料高效处理*** 1 依次包括喂料机、 鹅颈式输送机、 mpsc-7575 型粉碎机、 下料储存桶、 螺旋送料机、 除尘设备和磨粉机。 通过燃料高效处理 ***能够快速将煤炭、棕榈壳等燃料处理成适合燃烧供热的 300目左右的粉体, 定量定比的为后续装置输送原料。
燃烧炉 2主要结构由燃烧炉主体部分及热风管道、 点火***、 电器控制、 测温仪表***等辅助设备组成。 启动时用燃油将燃烧室升温至 800°C, 由喷枪 雾化切向喷入炉膛, 着火旋转燃烧, 在离心力作用下, 灰尘附集于炉膛内壁, 螺旋下降至出渣口进入水封池内, 燃烧室中心的热空气上升至上部射流旋风除 尘器 3, 在空气角向喷射作用下, 热烟气高速旋转, 较细的灰尘沿旋风除尘器 3壁螺旋滑至导灰口, 中心洁净的热烟气通过供热风管直接导出。
陶瓷膜高温除尘器 4为一种以高温陶瓷膜滤芯为核心, 集高温烟尘净化、 脉冲反吹、 自动清灰与控制为一体的高效、 节能高温气体净化装置。 其中, 高 温陶瓷膜滤芯优先选用堇青石、 碳化硅或者陶瓷纤维材质, 本实施例中选用堇 青石高温陶瓷膜材料。 陶瓷膜高温除尘器的具体结构如图 2所示, 包括除尘器外壳 7、管板 11和 多孔陶瓷膜滤芯 12, 除尘器外壳 7下部设有含尘高温气体入口 13, 顶部设有 清洁气体出口 8, 除尘器内安装管板 11, 管板 11上悬吊安装数支多孔陶瓷膜 滤芯 12, 除尘器由管板 12分隔成下部含尘气体腔 15和上部清洁气体腔 16, 管板 11上方设有喷吹清灰***, 喷吹清灰***包括文丘里喷射器 10、 气体管 路 9和清灰口 14, 气体管路 9贯穿陶瓷膜高温除尘器的上部清洁气体腔 16, 气体管路 9上安装与多孔陶瓷膜滤芯位置对应的文丘里喷射器 10,除尘器外壳 7的底部设有清灰口 14。
从燃烧***出来的含尘高温气体进入管板 11下方的下部含尘气体腔 15, 经过多孔陶瓷膜滤芯 12除尘后的清洁气体进入管板 11上方的上部清洁气体腔 16, 这样, 粉尘颗粒被截留在多孔陶瓷膜滤芯 12 的外表面, 长时间使用后, 多孔陶瓷膜滤芯 12外表面上的粉尘颗粒会不断堆积成粉尘滤饼, 造成气体的 流动阻力增大, 一旦达到设定的压降或是经过一定的预设过滤时间, 就开始清 除粉尘滤饼。 反吹方式采用分组脉冲反吹, 这种反吹方式, 可以有效的利用容 器内的气体, 少量的气体就可以完成反吹再生。 每支多孔陶瓷膜滤芯 12上方 设置有文丘里喷射器 10, 每个文丘里喷射器像泵一样工作, 并为多孔陶瓷膜滤 芯 12 的清洁吸入额外的清洁气体, 反向喷射的部分动能转化为压能。 这样, 在多孔陶瓷膜滤芯 12 的空腔内产生压力反向于过滤气体流动的方向, 从而进 行在线反吹, 克服过滤方向上的压降和粉尘滤饼的黏着强度。 文丘里喷射器使 得有一个均匀流动气体分布穿过, 并沿过滤元件有一个均匀的延伸, 通过对热 应力的有利的热活塞流使得热冲击最小化。 该高温陶瓷膜过滤器最高使用温度 可达 750°C, 净化效率达到 99.9%, 出***尘浓度可控制在 5毫克每立方米以 内。 本发明的工作原理及过程为: 其利用农业副产品 (如棕榈壳、 椰壳)、 煤 炭等作为燃料, 先由粉碎机将燃料磨至 l〜2mm, 然后送入磨粉机进行细磨, 磨至 300目左右喷入燃烧炉进行燃烧。燃烧炉 2可产生 1200Ό左右的高温烟气, 该高温烟气经二次配风后降至 650°C左右,先通过旋风除尘器 3除去粗颗粒后, 经高温风机 5负压引入陶瓷膜高温除尘器 4过滤去除烟气中的微细粉尘, 清洁 的热源进入喷雾干燥塔 6用于物料的干燥。
控制***核心控制进入喷雾干燥塔 6前热风温度和压力, 温度通过燃烧炉 2进行控制,压力通过高温风机 5进行控制。控制***全部采用 PLC进行控制, ***选用模块式的组合结构, 并与工业计算机组成集中控制***, 界面友好, 操作方便, 可以满足用户的特定要求。
本发明开发的燃烧供热净化***, 利用煤炭为燃料, 可大大降低喷雾干燥 塔 6的燃料费用, 以 10000型喷雾干燥塔为例, 设备投资在 600-800万左右, 相对于天然气燃料炉, 一台 10000型喷雾干燥塔每年综合能耗节约 300万元以 上; 相对于水煤浆燃烧炉每年可节省燃料费用 200万元左右。

Claims

权 利 要 求 书
1、 一种节能环保型燃烧供热***, 其特征在于: 包括依次连接设置的燃 料高效处理***(1 )、燃烧***、旋风除尘器(3 )、高温除尘器和高温风机(5 )。
2、 根据权利要求 1 所述的节能环保型燃烧供热***, 其特征在于: 所述 的高温除尘器为陶瓷膜高温除尘器 (4), 包括除尘器外壳 (7)、 管板 (11 ) 和 多孔陶瓷膜滤芯 (12), 除尘器外壳 (7) 下部设有含尘高温气体入口 (13 ), 顶部设有清洁气体出口 (8 ), 除尘器内安装管板 (11 ), 管板 (11 ) 上悬吊安 装数支多孔陶瓷膜滤芯(12), 除尘器由管板(11 )分隔成下部含尘气体腔(15 ) 和上部清洁气体腔 (16)。
3、 根据权利要求 1 所述的节能环保型燃烧供热***, 其特征在于: 所述 的多孔陶瓷膜滤芯 (12 ) 的材质优选堇青石、 碳化硅或者陶瓷纤维。
4、 根据权利要求 2所述的节能环保型燃烧供热***, 其特征在于: 所述 的管板(11 )上方设有喷吹清灰***,喷吹清灰***包括喷射器、气体管路(9) 和清灰口(14),气体管路(9)贯穿陶瓷膜高温除尘器的上部清洁气体腔(16), 气体管路 (9 ) 上安装与多孔陶瓷膜滤芯 (12 ) 位置对应的喷射器, 除尘器外 壳 (7 ) 的底部设有清灰口 (14)。
5、 根据权利要求 4所述的节能环保型燃烧供热***, 其特征在于: 所述 的喷射器是文丘里喷射器 (10)。
6、 根据权利要求 1 所述的节能环保型燃烧供热***, 其特征在于: 所述 的燃料高效处理***依次包括喂料机、 物料输送机、 粉碎机、 下料储存桶、 螺 旋送料机、 除尘设备和磨粉机。
7、 根据权利要求 6所述的节能环保型燃烧供热***, 其特征在于: 所述 的物料输送机是鹅颈式输送机。
8、 根据权利要求 6所述的节能环保型燃烧供热***, 其特征在于: 所述 的粉碎机为 mpsc-7575型粉碎机。
9、 根据权利要求 1 所述的节能环保型燃烧供热***, 其特征在于: 所述 的燃烧***为燃烧炉 (2)
PCT/CN2012/001279 2012-05-23 2012-09-18 一种燃烧供热*** WO2013173951A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012101621679A CN102705854A (zh) 2012-05-23 2012-05-23 节能环保型燃烧供热***
CN201210162167.9 2012-05-23

Publications (1)

Publication Number Publication Date
WO2013173951A1 true WO2013173951A1 (zh) 2013-11-28

Family

ID=46898824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001279 WO2013173951A1 (zh) 2012-05-23 2012-09-18 一种燃烧供热***

Country Status (2)

Country Link
CN (1) CN102705854A (zh)
WO (1) WO2013173951A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3324116A4 (en) * 2015-07-15 2019-03-13 Sec Elevator Co., Ltd. SMOKE COMBUSTION PLANT AND SYSTEM THEREFORE
US20220145760A1 (en) * 2020-11-10 2022-05-12 Guoke Yongji (beijing) Engineering Installation Co., Ltd. High-temperature high-efficiency explosion-proof integrated modular dust removal equipment for pyrolysis raw coal gas

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105135671B (zh) * 2015-09-10 2017-10-13 河南陆德筑机股份有限公司 一种多级配风煤粉燃烧热风炉
CN106017053A (zh) * 2016-07-28 2016-10-12 合肥三伍机械有限公司 一种采用生物燃料的干燥机供热***
CN107726346A (zh) * 2017-11-14 2018-02-23 广东焕能科技有限公司 一种高效节能煤粉燃烧***
CN110090462A (zh) * 2019-06-05 2019-08-06 佛山市南海智信工业窑炉有限公司 一种生产陶瓷砖专用的喷雾塔装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229183A (en) * 1978-04-04 1980-10-21 Ab Svenska Flaktfabriken Method of refining solid fuel of organic vegetable material
US5378443A (en) * 1992-01-03 1995-01-03 A. Ahlstrom Corporation Method for reducing emissions when burning nitrogen containing fuels
CN201735287U (zh) * 2010-07-13 2011-02-09 科林环保装备股份有限公司 一种陶瓷滤筒高温除尘器
CN102417831A (zh) * 2011-09-28 2012-04-18 合肥德博生物能源科技有限公司 一种生物质气化发电***
CN202660731U (zh) * 2012-05-23 2013-01-09 中材高新材料股份有限公司 节能环保型燃烧供热***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838714A (zh) * 2009-06-15 2010-09-22 李怡然 一种高炉煤气高温除尘的工艺方法及装置
KR101144274B1 (ko) * 2010-02-26 2012-05-14 한국전력공사 석탄건조장치 및 이를 포함하는 석탄 고품위화 시스템
CN201666719U (zh) * 2010-07-30 2010-12-08 霍丰源 喷雾干燥器煤粉热风炉***
CN201791584U (zh) * 2010-09-07 2011-04-13 浙江湖磨抛光磨具制造有限公司 一种磨粉装置
CN102358705B (zh) * 2011-08-17 2013-04-24 范峪铭 利用固体废弃物生产烧结陶粒的工艺及***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229183A (en) * 1978-04-04 1980-10-21 Ab Svenska Flaktfabriken Method of refining solid fuel of organic vegetable material
US5378443A (en) * 1992-01-03 1995-01-03 A. Ahlstrom Corporation Method for reducing emissions when burning nitrogen containing fuels
CN201735287U (zh) * 2010-07-13 2011-02-09 科林环保装备股份有限公司 一种陶瓷滤筒高温除尘器
CN102417831A (zh) * 2011-09-28 2012-04-18 合肥德博生物能源科技有限公司 一种生物质气化发电***
CN202660731U (zh) * 2012-05-23 2013-01-09 中材高新材料股份有限公司 节能环保型燃烧供热***

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3324116A4 (en) * 2015-07-15 2019-03-13 Sec Elevator Co., Ltd. SMOKE COMBUSTION PLANT AND SYSTEM THEREFORE
US20220145760A1 (en) * 2020-11-10 2022-05-12 Guoke Yongji (beijing) Engineering Installation Co., Ltd. High-temperature high-efficiency explosion-proof integrated modular dust removal equipment for pyrolysis raw coal gas
US11781431B2 (en) * 2020-11-10 2023-10-10 Guoke Yongji (beijing) Engineering Installation Co., Ltd. High-temperature high-efficiency explosion-proof integrated modular dust removal equipment for pyrolysis raw coal gas

Also Published As

Publication number Publication date
CN102705854A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
WO2013173951A1 (zh) 一种燃烧供热***
CN100560182C (zh) 陶瓷滤芯除尘器
CN206950845U (zh) 一种可连续运行的高温气体除尘装置
CN203533565U (zh) 一种生活垃圾焚烧及其附属烟气的处理***
CN103961954A (zh) 一种用于过滤高温可燃尘的除尘器滤芯的在线再生方法
CN205079246U (zh) 一种稻壳炭化尾气综合利用装置
RU137552U1 (ru) Газогенераторная установка
CN205235629U (zh) 一种管列式陶瓷过滤器
CN104107602A (zh) 一种用于高温可燃尘环境的除尘器滤芯在线再生方法
CN202660731U (zh) 节能环保型燃烧供热***
CN211400293U (zh) 一种plc控制节能环保的锅炉
CN209237704U (zh) 一种加工用炉气余热回收利用装置
CN108731015B (zh) 一种环保型蒸汽锅炉
CN211399845U (zh) 一种环保节能型锅炉
CN204787874U (zh) 一种高温烟气除尘吸热装置
CN214781679U (zh) 一种恩德炉粉煤气化装置的煤气净化***
CN205481074U (zh) 一种燃煤蒸汽锅炉节能净化***
CN212929973U (zh) 一种木屑烘干燃烧设备
CN219518127U (zh) 一种用于玻璃窑炉烟尘治理的高效除尘器
CN213395292U (zh) 一种具有环保功能的三通道煤粉燃烧器
CN209605169U (zh) 一种环保型医疗化工用废物焚烧炉
CN203874605U (zh) 一种除尘器加热***
CN220524680U (zh) 一种辊道窑余热回收装置
CN204787212U (zh) 一种节能减排锅炉***
CN215491139U (zh) 工业玻璃纤维窑炉余热回收利用装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12877553

Country of ref document: EP

Kind code of ref document: A1