WO2013157320A1 - 湿潤性表面を有するシリコーンハイドロゲルソフトコンタクトレンズ - Google Patents

湿潤性表面を有するシリコーンハイドロゲルソフトコンタクトレンズ Download PDF

Info

Publication number
WO2013157320A1
WO2013157320A1 PCT/JP2013/056613 JP2013056613W WO2013157320A1 WO 2013157320 A1 WO2013157320 A1 WO 2013157320A1 JP 2013056613 W JP2013056613 W JP 2013056613W WO 2013157320 A1 WO2013157320 A1 WO 2013157320A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact lens
monomer
soft contact
silicone
silicone hydrogel
Prior art date
Application number
PCT/JP2013/056613
Other languages
English (en)
French (fr)
Inventor
元 今福
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN201380004103.9A priority Critical patent/CN103959140B/zh
Priority to SG11201402563RA priority patent/SG11201402563RA/en
Priority to EP13778371.8A priority patent/EP2840431B1/en
Priority to US14/361,195 priority patent/US10241234B2/en
Priority to KR1020147014644A priority patent/KR101918645B1/ko
Publication of WO2013157320A1 publication Critical patent/WO2013157320A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/003Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor characterised by the choice of material
    • B29C39/006Monomers or prepolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/282Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing two or more oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • B29L2011/0041Contact lenses

Definitions

  • the present invention relates to a hydrous soft contact lens having a wettable surface. More specifically, it is obtained by curing a polymerization solution containing at least one silicone monomer having at least one hydroxyl group or polyethylene glycol group in the molecular structure and glycerol mono (meth) acrylate in a double-sided cast mold. Even if the container used for polymerization is a hydrophobic resin material such as polypropylene, it is a post-treatment for improving the surface wettability of the lens-shaped material after polymerization, The present invention relates to a silicone hydrogel having a transparent and wettable surface without containing a high molecular weight hydrophilic polymer for enhancing water wettability.
  • the hydrous soft contact lens is generally known to have good wearing feeling due to its soft material, but its oxygen permeability is lower than that of the hard contact lens because of its moisture content. Therefore, recently, a silicone hydrogel containing a silicone monomer or a siloxane macromonomer as one of the lens material components has been developed and commercialized. Moreover, as a manufacturing method of a soft contact lens, since a uniform product can be manufactured in large quantities, the manufacturing method by a cast mold manufacturing method is common.
  • Polypropylene is often used as the material of the mold by the cast mold manufacturing method because it is inexpensive and easy to mold.
  • the material of polypropylene itself is hydrophobic, and when such a material is used as a mold-type container and a silicone hydrogel is produced, the hydrophobic monomer will be oriented at the part in contact with the polymerization container.
  • the lens surface after polymerization becomes highly hydrophobic. If the lens surface is hydrophobic, the lipid component in the tears tends to adhere, causing subjective symptoms such as the lens becoming cloudy or difficult to see while wearing contact lenses, or on the adhered lipid component. Furthermore, there is a possibility that eye diseases may be induced by the attachment of proteins or the like.
  • Patent Document 1 a copolymer in which hydroperoxide is formed on the surface of a lens material by exposure to an oxygen atmosphere after low-temperature plasma treatment using an active gas and / or an inert gas is made hydrophilic at a temperature of 100 ° C. or higher.
  • a treatment method for improving water wettability and wear resistance by immersing in an aqueous monomer solution and graft polymerizing a hydrophilic monomer on the surface involves many steps up to the production of the copolymer, low-temperature plasma treatment, immersion in a hydrophilic monomer aqueous solution, high-temperature treatment at 100 ° C. or higher, and imparting hydrophilicity to the surface. It is not preferable as a method of conversion.
  • Patent Document 2 discloses a silicone hydrogel containing a high molecular weight hydrophilic polymer as an internal wetting agent in a lens material component.
  • This method is a method in which a high molecular weight hydrophilic polymer such as polyvinylpyrrolidone is dissolved in a polymerization solution to be a lens component, and then the solution is polymerized to include the high molecular weight hydrophilic polymer in the lens component.
  • a hydrophilic surface can be imparted without plasma treatment or graft polymerization of the surface.
  • Patent Document 3 discloses a method of manufacturing a contact lens using a mold molded using a resin having a water absorption rate of 0.01 to 0.15% by weight.
  • This method is not a polypropylene that has been used as a container material for the conventional cast mold manufacturing method, but a resin having higher water absorption and superior surface water wettability is used as a mold for contact lens production.
  • This is a method for producing a contact lens having excellent surface wettability by orienting a hydrophilic monomer in a region close to the mold surface.
  • this method is not preferred because the water absorption rate of the resin is high, which causes a problem in shape stability after molding of the mold material, and it is difficult to obtain molding conditions and resin accuracy.
  • Patent Document 4 discloses a silicone hydrogel containing 20 to 60% by weight of N-vinyl pyrrolidone in a monomer mixed solution serving as a lens component. This method forms a homopolymer region of polyvinylpyrrolidone in the lens due to the difference in reactivity between N-vinylpyrrolidone having a vinyl group and other lens components having an acryloyl group or a methacryloyl group. As in the invention, a hydrophilic surface is imparted without using a high molecular weight hydrophilic polymer.
  • N-vinylpyrrolidone having a different reactivity from the acryloyl group and methacryloyl group becomes a part of the lens in a form close to a homopolymer, and imparts hydrophilicity to the lens surface.
  • 20 to 60% by weight of N-vinylpyrrolidone must be used, and the resulting silicone hydrogel has a water content of 50% or more.
  • the water content of the lens increases, the amount of water that evaporates from the lens during lens wearing increases, and as a result, the frequency at which the wearer feels dryness increases. Therefore, a lens having a high water content is not preferable because it tends to be uncomfortable due to drying.
  • Polyvinyl pyrrolidone exposed on the lens surface is not preferable because it has a slimy feeling and a sticky feeling as a tactile sensation and is difficult to rub after wearing and may be difficult to handle.
  • Patent Document 5 discloses a polymer used for contact lens production, obtained from 5 to 95% by weight of at least one silicone-containing monomer and 5 to 80% of at least one hydrophilic monomer.
  • glycerol methacrylate is exemplified as the hydrophilic monomer.
  • the silicone monomers disclosed in this invention are monomers and macromonomers that do not contain at least one hydroxyl group or polyethylene glycol group in the molecular structure.
  • glycerol methacrylate is disclosed as a hydrophilic monomer, this is merely illustrated as a monomer copolymerizable with a silicone monomer and a macromonomer, and materials using glycerol methacrylate are not disclosed in the examples. .
  • paragraph [0029] in the specification describes three types of monomers, N, N-dimethylacrylamide, 2-hydroxyethyl methacrylate and N-vinyl-2-pyrrolidone as the most preferable hydrophilic monomers.
  • the contact lens obtained from the mixture of the hydrophilic monomer and the silicone monomer is cloudy and is not suitable as a contact lens, or the lens surface exhibits water repellency and is a wettable surface. (Comparative Examples 1 to 5 of the present application).
  • Patent Document 6 discloses a soft contact lens obtained from 2,3-dihydroxypropyl methacrylate and organosiloxanyl methacrylate. However, a two-component system of 2,3-dihydroxypropyl methacrylate and a silicone monomer that does not contain a hydroxyl group or a polyethylene glycol group in the molecular structure was unable to obtain a homogeneous monomer mixture (Comparative Examples 8-10). ). In all Examples of Patent Document 6, since glycidyl methacrylate is added, glycidyl methacrylate is considered to be one of essential components. However, this glycidyl methacrylate has strong eye irritation and is a component of contact lenses.
  • the present invention has good surface wettability for the lens-shaped material after polymerization, even if it is polypropylene generally used as a mold material for the cast mold manufacturing method without using a special mold resin material. It is an object of the present invention to provide a silicone hydrogel having a wet surface without the need for post-treatment to make it into the surface and without containing a high molecular weight hydrophilic polymer for enhancing the water wettability of the surface.
  • the inventor has polymerized a polymerization solution containing at least one silicone monomer having at least one hydroxyl group or polyethylene glycol group in the molecular structure and glycerol mono (meth) acrylate. It was found that the obtained silicone hydrogel can achieve the above object, and the present invention has been completed. According to the method of the present invention, a wettable surface can be easily obtained without using any special post-treatment or a high molecular weight hydrophilic polymer, and even when using a conventionally used polypropylene as a mold material. Can be obtained.
  • the present invention is as follows.
  • a hydrogel soft contact lens, a silicone hydrogel soft contact lens having a wettable surface without post-treatment to improve the surface water wettability of the lens-shaped material after polymerization is represented by the following general formula (I).
  • R 1 , R 2 , R 3 and R 4 are methyl groups, a represents an integer of 1 to 3, n represents 0 or 1, and m represents 0 or 4 to 10. However, when n is 1, m is 0, and when n is 0, m is 4 to 10.
  • X in the formula is one selected from substituents represented by the following formulas (Y1) to (Y3). ] (3) It is obtained by polymerizing a polymerization solution containing 30 to 70% by weight of a silicone monomer having at least one hydroxyl group or polyethylene glycol group in the molecular structure and 15 to 60% by weight of glycerol mono (meth) acrylate.
  • the silicone hydrogel soft contact lens according to (1) or (2).
  • the silicone monomer (c) containing no hydroxyl group or polyethylene glycol group in the molecular structure is tris (trimethylsiloxy) - ⁇ -methacryloxypropylsilane, methacryloyloxyethyl succinate 3- [tris (trimethylsiloxy) silyl]
  • Soft contact lens is one or more monomers selected from 2-hydroxyethyl methacrylate, N-vinyl-2-pyrrolidone, and methacrylic acid.
  • a method for producing a silicone hydrogel soft contact lens comprising: casting the mixed solution into a double-sided cast mold; and curing the mixed solution in the double-sided cast mold.
  • a silicone hydrogel obtained by curing using a double-sided cast mold of a hydrophobic material such as polypropylene has good surface wettability on the lens-shaped material after polymerization. It is possible to provide a silicone hydrogel having a transparent and wettable surface without including a post-treatment for forming a high-molecular weight hydrophilic polymer for enhancing the water wettability of the surface.
  • FIG. 1 is a 1 H-NMR spectrum of the compound obtained in Synthesis Example 1.
  • FIG. 2 is a MALDI-TOF MS spectrum of the compound obtained in Synthesis Example 1.
  • FIG. 3 is an IR spectrum of the compound obtained in Synthesis Example 2.
  • the silicone monomer used in the present invention is not particularly limited as long as it has at least one hydroxyl group or polyethylene glycol group in the molecular structure, but those represented by the following general formula (I) are preferable.
  • R 1 , R 2 , R 3 and R 4 are methyl groups, a represents an integer of 1 to 3, n represents 0 or 1, and m represents 0 or 4 to 10. However, when n is 1, m is 0, and when n is 0, m is 4 to 10 (value as a repeated average value).
  • X in the formula is one selected from substituents represented by the following formulas (Y1) to (Y3). ]
  • a silicone monomer having at least one hydroxyl group or polyethylene glycol group in the molecular structure and glycerol mono (meth) acrylate are essential components.
  • Glycerol mono (meth) acrylate is a highly hydrophilic monomer having two hydroxyl groups in the molecular structure. Accordingly, in order to obtain a homogeneous monomer mixture, the molecular structure of the silicone monomer as the partner must have a hydrophilic unit such as a hydroxyl group or a polyethylene glycol group.
  • Silicone monomers having such a structure are known compounds, such as Japanese Patent Laid-Open Nos. 55-15110, 63-16381, 4-332760, and 2000-191667.
  • Japanese Unexamined Patent Publication No. 2001-323024 and US Pat. No. 4,395,496 disclose a contact lens material.
  • the materials disclosed in JP-A-55-15110, JP-A-63-163811, JP-A-4-332760, US Pat. No. 4,395,496 and the like are hard contact lenses. Not a silicone hydrogel.
  • 2000-191667 and 2001-32024 is a silicone hydrogel, and glycerol mono (meth) acrylate or glycerol mono (meth) acrylate is used as a copolymerizable monomer.
  • Other names such as 2,3-dihydroxypropyl (meth) acrylate are exemplified (for example, paragraph number [0029] in JP-A No. 2000-191667 and paragraph number [0034] in JP-A No. 2001-32024).
  • these descriptions are merely exemplified as monomers copolymerizable with silicone monomers, and glycerol mono (meth) acrylate and 2,3-dihydroxypropyl (meth) acrylate are not used in the examples.
  • the silicone monomer used in the present invention is particularly preferably a monomer having the following A1 to A8 structure.
  • polyethylene glycol group refers to a group having an ethylene glycol repeating number (average value) in the range of 4 to 10.
  • m is 4 to 10.
  • An example of a method for introducing a polyethylene glycol group into the molecular structure of the silicone monomer is as follows.
  • tris (trimethylsiloxy) is obtained by hydrosilylation reaction.
  • a method of obtaining a desired silicone monomer by reacting a compound having a methacryloyl group at one terminal hydroxyl group (for example, methacryl chloride, 2-isocyanatoethyl methacrylate, 2-methacryloyloxyethoxyethyl isocyanate, etc.).
  • a compound having a methacryloyl group at one terminal hydroxyl group for example, methacryl chloride, 2-isocyanatoethyl methacrylate, 2-methacryloyloxyethoxyethyl isocyanate, etc.
  • the value of m may have a distribution, and the average value thereof may be about 4 to about 10, or a precursor when the silicone monomer is synthesized.
  • the number of glycol repeats is determined by using the number of glycols to be a single repeat number (for example, excluding other numbers (for example, 5 or 7) when n is 6) by column fractionation, etc. It may be made without the distribution of. In order to reduce variations in various physical properties such as mechanical strength and water wettability of the obtained lens, it is preferable that the number of polyethylene glycol repeats has no distribution and has a single unit structure.
  • the silicone monomer content is preferably 30 to 70% by weight.
  • the lens can be provided with a higher degree of flexibility and flexibility.
  • the content of the silicone monomer is more preferably 40 to 70% by weight, and further preferably 40 to 65% by weight.
  • silicone monomer refers to gel permeation when the number of silicon atoms in the molecular structure is 4 or less and the molecular weight is less than 1000, or when the number of repeating polyethylene glycol groups is distributed. It means that the number average molecular weight in terms of polystyrene is less than 1000 when measured by chromatography.
  • the molecular weight is large, and when a fluorine-containing monomer is used, a fluorine atom exhibits strong water repellency. Tends to be oriented on the mold surface of polypropylene, that is, the lens surface, and the lens surface may exhibit strong water repellency. Therefore, in the present invention, it is preferable that the siloxane macromonomer, the fluorine-containing siloxane macromonomer and the fluorine-containing monomer are not used as raw material components.
  • the macromonomer refers to a polymer having a number average molecular weight of 1000 or more when measured by gel permeation chromatography and calculated in terms of polystyrene. Specific examples include JP-A-2001-311917, Examples thereof include macromonomers described in JP-A Nos. 2001-183502 and 11-502949.
  • the fluorine-containing monomer means a monomer having a molecular structure having 1 or more fluorine atoms and a molecular weight of less than 1000.
  • Specific examples include 2,2,2-trifluoroethyl methacrylate, 1, Examples thereof include 1,1,3,3,3-hexafluoroisopropyl methacrylate and perfluorooctylethyloxypropylene methacrylate.
  • glycerol mono (meth) acrylate is used as the second essential component.
  • polypropylene is generally used as a mold material for contact lenses without using any special post-treatment or high molecular weight hydrophilic polymer. Even when used as, a silicone hydrogel having a wettable surface can be easily obtained. It is inferred that having such a specific effect is due to having two hydroxyl groups in the molecular structure of glycerol mono (meth) acrylate.
  • the soft contact lens of the present invention exhibits high water repellency (high contact angle) in a dry state, but once the surface is wetted with water, the surface is uniformly covered with a film of water. The state is maintained for a long time.
  • the lens surface is uniformly covered with a water film, and the contact angle is measured by the bubble method in water. Shows a low contact angle.
  • N- [tris (hydroxymethyl) methyl] acrylamide when used, it does not dissolve with other monomers, and a homogeneous monomer mixture cannot be obtained (see Comparative Example 7 of the present application). Therefore, the use of glycerol mono (meth) acrylate is important in the present invention.
  • glycerol mono (meth) acrylate which is an essential component
  • structural isomers such as the following formulas (C1) and (C2).
  • a mixture of structural isomers may be used, or a mixture consisting of only one of the structures may be used.
  • (meth) acrylate means both acrylate and methacrylate.
  • the content of glycerol mono (meth) acrylate is preferably 15 to 60% by weight.
  • the content of glycerol mono (meth) acrylate 15% by weight or more, there is no need for any special post-treatment or high molecular weight hydrophilic polymer, and the conventionally used polypropylene is used as a template material. Even when it is used, it is possible to easily obtain a silicone hydrogel having a wettable surface, and by making it 60% by weight or less, it is possible to prevent the mechanical strength of the lens from being lowered.
  • the content of glycerol mono (meth) acrylate is more preferably 20 to 50% by weight.
  • specialty post-treatment refers to a method for improving the wettability of the contact lens surface, such as plasma treatment, graft treatment, base treatment, and acid treatment.
  • a wet surface is a surface of the contact lens that is evenly covered with a film of water even after rinsing both surfaces of the contact lens with a cleaning solution for soft contact lenses and rinsing with distilled water or a rinse solution for soft contact lenses. It means that
  • the hydrous soft contact lens of the present invention includes a silicone monomer that does not contain a hydroxyl group or polyethylene glycol group in the molecular structure in order to improve oxygen permeability, and a hydrophilic property for adjusting the moisture content.
  • a crosslinking monomer for imparting mechanical strength and mechanical strength and durability can be included.
  • silicone monomers having no hydroxyl group or polyethylene glycol group in the molecular structure include tris (trimethylsiloxy) - ⁇ -methacryloxypropylsilane, methacryloyloxyethyl succinate 3- [tris (trimethylsiloxy) silyl] propyl, methacryl Amidopropylbis (trimethylsiloxy) methylsilane, O-methacryloxyethoxy-N- [bis (trimethylsiloxy) methylsilyl] propylcarbamate, methacryloxymethylbis (trimethylsiloxy) methylsilane, 3-methacryloxypropylbis (trimethylsiloxy) methylsilane, One kind such as methacryloxymethyltris (trimethylsiloxy) silane, methacryloxypropylbis (trimethylsiloxy) silanol Monomer above mentioned, it can be used in the range of 0 to 20 wt%. By setting the content of these silicone monomers to 20% by weight or less
  • hydrophilic monomer for adjusting the water content examples include one or more monomers selected from 2-hydroxyethyl methacrylate, N-vinyl-2-pyrrolidone, methacrylic acid and the like, and in the range of 0 to 50% by weight. Can be used. By setting the content of these hydrophilic monomers to 50% or less, an appropriate water content can be imparted to the lens.
  • the content of the hydrophilic monomer is more preferably 0 to 45% by weight, still more preferably 0 to 40% by weight.
  • crosslinkable monomer for imparting mechanical strength and durability examples include ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, allyl methacrylate, and vinyl methacrylate. , One or more monomers selected from diallyl maleate, triallyl isocyanurate, and the like.
  • the content of these crosslinkable monomer components is preferably 0.1 to 1% by weight based on the total amount of the copolymer components.
  • the content of the crosslinkable monomer is more preferably 0.2 to 0.8% by weight.
  • the water-containing soft contact lens of the present invention has, as a copolymerization component, for example, a polymerizable ultraviolet absorber or the like in order to impart ultraviolet absorbing ability to the obtained soft contact lens or to color it for the purpose of improving visibility.
  • a polymerizable dye or the like can be contained.
  • the polymerizable ultraviolet absorber examples include 5-chloro-2- [2-hydroxy-5- ( ⁇ -methacryloyloxyethylcarbamoyloxyethyl)] phenyl-2H-benzotriazole, 2- [2-hydroxy -5- ( ⁇ -Methacryloyloxyethylcarbamoyloxyethyl)] phenyl-2H-benzotriazole, 5-chloro-2- [2-hydroxy-4- (p-vinylbenzyloxy-2-hydroxypropyloxy)] phenyl -2H-benzotriazole, 4-methacryloxy-2-hydroxybenzophenone, 2- (2'-hydroxy-5'-methacryloxyethylphenyl) -2H-benzotriazole, and the like.
  • polymerizable dye examples include 1,4-bis (4-vinylbenzylamino) anthraquinone, 1-p-hydroxybenzylamino-4-p-vinylbenzylaminoanthraquinone, 1-anilino-4-methacryloylaminoanthraquinone. 1,4-bis [4- (2-methacryloxyethyl) phenylamino] -9,10-anthraquinone and the like.
  • the contents of the polymerizable ultraviolet absorber and the polymerizable dye are influenced by the thickness of a lens produced from this material, it is 5% by weight or less, particularly preferably 0.02 to 3% by weight of the copolymer component. It is appropriate that By making the amount used 5% by weight or less, it is possible to prevent the mechanical strength of the obtained contact lens from being lowered, and it is also preferable from the viewpoint of the safety of the contact lens that is in direct contact with the living body.
  • a polymerization initiator is added to the mixed solution containing the above monomers and sufficiently stirred to obtain a homogeneous mixed solution of monomers.
  • the polymerization initiator used here include peroxides such as lauroyl peroxide, cumene hydroperoxide, and benzoyl peroxide, 2,2′-azobis (2,4-dimethylvaleronitrile), and 2,2′-azobis.
  • benzoin methyl ether 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-dimethoxy-1- Phenylpropan-1-one, phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, and the like can be used.
  • the amount of the polymerization initiator is variously selected depending on the polymerization temperature, the light irradiation wavelength and the irradiation intensity, but is preferably 0.1 to 1% by weight.
  • the polymerization can be carried out in the presence or absence of a suitable diluent.
  • a suitable diluent may be any that dissolves the monomer components used homogeneously, such as alcohol (eg, ethanol, n-hexanol, octanol, 1,3-propanediol, 1,4-butane). Diol), dipolar aprotic solvents such as dimethyl sulfoxide, and the like.
  • a diluent When a diluent is used, the viscosity of the monomer mixture decreases, making it easy to inject into the mold, and effectively removing the heat of polymerization during polymerization. The effect of improving the mechanical strength and reducing the elastic modulus of the lens can be expected.
  • the monomer mixture is polymerized after being poured into a contact lens manufacturing mold having a contact lens shape.
  • This mold is a mating mold having convex and concave curvatures, and is made of a material such as metal or resin. However, it is preferable that the material has good releasability during polymerization and is excellent in solvent resistance and heat resistance.
  • a resin mold is preferable because a mold having a shape necessary for a desired lens design can be easily manufactured. These resin materials are preferably selected from those having low molding shrinkage, good surface transfer from metal, and excellent dimensional accuracy and solvent resistance. Polypropylene is preferred because of its price and availability.
  • polypropylene it is not limited only to polypropylene, and for example, polyethylene, polyethylene terephthalate, polymethylpentene, polysulfone, polyphenylene sulfide, cyclic olefin copolymer, ethylene vinyl alcohol copolymer and the like may be used.
  • a mold immediately after molding may be used, or a stock that has been stocked for about 10 to 40 hours may be used in order to stabilize the curvature of the mold.
  • the pressure on the mold Prior to using the mold, the pressure on the mold is sufficiently reduced to remove substances that affect the reaction such as moisture and oxygen on the mold surface, and after purging with an inert gas such as nitrogen or argon, the monomer mixture is poured into the mold. May be injected.
  • an inert gas such as nitrogen or argon
  • it may be used after removing oxygen dissolved in the monomer mixture by bubbling the monomer mixture with an inert gas such as nitrogen or argon in advance. You may use without removing dissolved oxygen.
  • Examples of the polymerization method include a photopolymerization method in which the photopolymerization initiator is blended and ultraviolet rays or visible rays are irradiated.
  • the wavelength of light to be irradiated is appropriately selected depending on the characteristics of the blended photopolymerization initiator. It is possible to use a lamp that emphasizes the 400 to 425 nm region around the 420 nm region, a lamp that emphasizes the 400 to 450 nm region, and the like.
  • the value of the light irradiation intensity varies depending on the area of the light receiving portion of the device for measuring the irradiation intensity.
  • about 10 to Polymerization is preferably performed in the range of about 1 to 30 minutes with an irradiation intensity of 60 mW / cm 2 .
  • the atmosphere at this time may be in the air, but it is also possible to polymerize in an inert gas atmosphere such as nitrogen or argon for the purpose of improving the polymerization rate of the obtained contact lens.
  • an inert gas atmosphere such as nitrogen or argon
  • a method by thermal polymerization in which the temperature is raised stepwise or continuously in a temperature range of 20 to 120 ° C. and the polymerization is completed in 30 minutes to 24 hours can be applied.
  • the environment in the polymerization furnace may be atmospheric pressure conditions, or an atmosphere of an inert gas such as nitrogen or argon, and polymerization may be performed under pressurized conditions.
  • the pressure in the furnace is preferably within a pressure range of 0.5 to 3 kgf / cm 2 .
  • the mold is subsequently transferred to a polymerization furnace used for thermal polymerization, and then the temperature is raised stepwise or continuously in a temperature range of 20 to 120 ° C.
  • the lens-shaped polymer taken out from the mold after polymerization can be removed by extracting unpolymerized monomers and oligomers with a solvent (for example, methanol, ethanol, isopropanol, methanol aqueous solution, ethanol aqueous solution, etc.). Subsequently, the target water-containing soft contact lens can be obtained by immersing it in physiological saline or a storage solution for soft contact lenses.
  • a solvent for example, methanol, ethanol, isopropanol, methanol aqueous solution, ethanol aqueous solution, etc.
  • the water content of the hydrous soft contact lens of the present invention is preferably 20% or more and less than 50%. If the water content is less than 20%, the lens cannot be provided with an appropriate flexibility, and if it is 50% or more, the moisture evaporation rate from the lens increases, and as a result, it tends to feel a dry feeling during wearing. This is not preferable.
  • the water content of the lens is more preferably 20 to 45%.
  • Silicone monomer 4Si-6PEG having at least one hydroxyl group or polyethylene glycol group in the molecular structure Silicone monomer 3Si-9PEG obtained in Synthesis Example 1: Silicone monomer 3Si-GMA obtained in Synthesis Example 2: Methacryl Oxy-2-hydroxypropoxypropylbis (trimethylsiloxy) methylsilane
  • HEMA 2-hydroxyethyl methacrylate
  • NVP N-vinyl-2-pyrrolidone
  • MAA Methacrylic acid
  • DMAA N, N-dimethylacrylamide
  • Synthesis example 1 Synthesis of silicone monomer having only 6 PEG repeats Purchasing commercially available hexaethylene glycol was made to have only 6 repeat PEG moieties by column purification. Next, only one end of hexaethylene glycol was protected with trityl chloride (Scheme 1). The other end of the other end was allylated with allyl chloride (reaction formula 2), and then tris (trimethylsiloxy) silane was added by a hydrosilylation reaction using a platinum catalyst (reaction formula 3). Finally, the trityl group was deprotected to obtain a siloxane compound having only 6 ethylene oxide repeats (formula D1 below).
  • the 1 H-NMR spectrum of this compound is shown in FIG. 1, and the MALDI-TOF MS spectrum is shown in FIG. From the 1 H-NMR spectrum, peaks derived from ethylene oxide units (3.6 ppm) and tris (trimethylsiloxy) propylsilane structures (3.4 ppm, 1.6 ppm, 0.4 ppm, 0.1 ppm) were detected. Further, from the MALDI-TOF MS spectrum, an ion [M + Na] + derived from the structure at m / z 641 was detected, and no other unit number (for example, 5 or 7) ions were detected. It was confirmed that the compound had only 6 ethylene oxide repeats.
  • the measurement conditions of MALDI-TOF MS are as follows.
  • Laser light source N2 laser (wavelength: 337 nm)
  • Measurement mode reflector mode, positive ion mode
  • Measurement mass range m / z: 20 to 3000 Integration count: 500 times
  • Ionizing reagent Sodium trifluoroacetate (THF solution)
  • the siloxane compound represented by D1 was reacted with methacryloyl chloride using 1,8-diazabicyclo [5.4.0] -7-undecene as a catalyst in an n-hexane solvent.
  • the solution after the reaction was filtered through a glass fiber filter paper, washed with methanol and then with a saturated aqueous sodium chloride solution, purified by column purification, and further distilled off the solvent to obtain a silicone monomer of the following formula D2 (hereinafter, 4Si-6PEG) was obtained.
  • Synthesis example 2 Synthesis of silicone monomer having an average number of PEG moiety repeats of 9 [3- (hydroxy (polyethyleneoxy) propyl] having an ethylene oxide repeat number of 1 to 17 and an average of PEG moiety repeat numbers of 9 Heptamethyltrisiloxane was used as the starting material. This compound was reacted with 2-isocyanatoethyl methacrylate in a methylene chloride solvent in the presence of a catalyst (dibutyltin dilaurate).
  • a catalyst dibutyltin dilaurate
  • Example 1 10 g (50 wt%) of 4Si-6PEG obtained in Synthesis Example 1, 10 g (50 wt%) of GlyMA, and 0.06 g of EDMA (4Si-6PEG and GlyMA as a crosslinkable monomer) in a brown glass bottle with a capacity of 20 mL 0.12 g of BAPO as a polymerization initiator (0.6% by weight with respect to the total amount of 4Si-6PEG and GlyMA) was weighed and stirred at room temperature for about 16 hours. .
  • This monomer mixture was poured into a double-sided cast mold for making contact lenses made of polypropylene, and a cell made by sandwiching polyethylene terephthalate sheets of different thicknesses with a polypropylene plate as a spacer, and a UV curing device (Fusion UV Systems Japan, Inc.) was irradiated for 10 minutes with light having an irradiation intensity of 30 mW / cm 2 in the wavelength region of 395 to 445 nm. Then, it put into the hot-air circulation type dryer previously set to 110 degreeC, and superposition
  • a UV curing device Fusion UV Systems Japan, Inc.
  • the polymer in the shape of a lens and a flat plate after polymerization is taken out of the mold, immersed in a 50 vol% ethanol aqueous solution for 4 hours, and then rinsed with distilled water and further soft contact lens (trade name: Pure Soak S, manufactured by HOYA Corporation). )
  • a soft contact lens and a plate-shaped polymer were obtained using the obtained soft contact lens and the plate-shaped polymer. The results are shown in Table 1.
  • the resulting soft contact lens had a high transparency and a wettable surface.
  • [Oxygen permeability coefficient] A plate-shaped polymer having a different thickness is punched with a trepan punch ( ⁇ 11 mm) for corneal epithelium, and is measured in an physiological saline solution at 35 ° C. by an electrode method film oxygen permeability measuring instrument manufactured by Tsukubarika Seiki Co., Ltd. The oxygen transmission coefficient was measured. The unit of the oxygen transmission coefficient is (cm 2 / sec) ⁇ (mLO 2 / mL ⁇ mmHg), and the oxygen transmission coefficient in the table is a value obtained by multiplying the original oxygen transmission coefficient by 10 11 .
  • the soft contact lens was produced in the same manner as in Example 1 except that the monomer composition was changed to the composition shown in Table 1.
  • the resulting soft contact lens had a high transparency and a wettable surface.
  • Examples 11-12 The monomer composition of the soft contact lens was changed to the composition shown in Table 1 to obtain a monomer mixture.
  • This monomer mixture was injected into a double-sided cast mold for making contact lenses made of polypropylene, and a cell made by sandwiching polyethylene terephthalate sheets of different thicknesses with a polypropylene plate as a spacer, and hot air circulation set at 110 ° C. in advance Polymerization was completed by putting in a dryer and heating for 60 minutes. After the polymerization, the polymer having a lens shape and a flat plate shape is immersed in a 50 vol% ethanol aqueous solution for 4 hours, and then replaced with distilled water or a rinse solution for soft contact lenses (trade name: Pure Soak S manufactured by HOYA). A soft contact lens and a plate-shaped polymer were obtained. Evaluation and measurement were performed using the obtained soft contact lens and the plate-shaped polymer. The results are shown in Table 1. The resulting soft contact lens had a high transparency and a wettable surface.
  • Examples 13 to 16 The monomer composition of the soft contact lens was changed to the composition shown in Table 1 to obtain a monomer mixture.
  • This monomer mixture was poured into a double-sided cast mold for making contact lenses made of polypropylene, and a cell made by sandwiching polyethylene terephthalate sheets of different thicknesses with a polypropylene plate as a spacer, and a UV curing device (Fusion UV Systems Using a V bulb of Japan Co., Ltd., light having an irradiation intensity of 30 mW / cm 2 in a wavelength region of 395 to 445 nm was irradiated for 5 minutes. Subsequently, the polymerization was completed by placing in a hot-air circulating drier previously set at 110 ° C.
  • the polymer having a lens shape and a flat plate shape is immersed in a 50 vol% ethanol aqueous solution for 4 hours, and then replaced with distilled water or a rinse solution for soft contact lenses (trade name: Pure Soak S manufactured by HOYA).
  • a soft contact lens and a plate-shaped polymer were obtained. Evaluation and measurement were performed using the obtained soft contact lens and the plate-shaped polymer. The results are shown in Table 1.
  • the resulting soft contact lens had a high transparency and a wettable surface.
  • Comparative Examples 1 to 5 (system not containing GlyMA as a constituent)
  • the monomer composition of the soft contact lens was prepared with the composition shown in Table 2 to obtain a monomer mixture.
  • This monomer mixture was injected into a double-sided cast mold for making contact lenses made of polypropylene, and a cell made by sandwiching polyethylene terephthalate sheets of different thicknesses with a polypropylene plate as a spacer, and hot air circulation set at 110 ° C. in advance Polymerization was completed by putting in a dryer and heating for 60 minutes.
  • the polymer having a lens shape and a flat plate shape is immersed in a 50 vol% ethanol aqueous solution for 4 hours, and then replaced with distilled water or a rinse solution for soft contact lenses (trade name: Pure Soak S manufactured by HOYA).
  • a soft contact lens and a plate-shaped polymer were obtained. Evaluation and measurement were performed using the obtained soft contact lens and the plate-shaped polymer. The results are shown in Table 2.
  • the contact lenses of Comparative Examples 1 to 3 showed water repellency after scrubbing and washed, and the contact lens surface was hardly covered with a water film.
  • the contact lenses of Comparative Examples 4 and 5 were immersed in a 50 vol% ethanol solution and then replaced with a soft contact lens rinse, the lenses became cloudy and could not be used as contact lenses.
  • Comparative Example 6 system using 2-methacryloyloxyethyl acid phosphate as a monomer having two or more hydroxyl groups in the molecular structure
  • 2-methacryloyloxyethyl acid phosphate (formula E1 below) as a contact lens component
  • a monomer mixture shown in Table 2 was prepared. The monomer mixture was poured into a double-sided cast mold for making a contact lens made of polypropylene, placed in a hot air circulation dryer set at 110 ° C. in advance, and heated for 60 minutes to complete the polymerization.
  • the polymer having a lens shape and a flat plate shape is immersed in a 50 vol% ethanol aqueous solution for 4 hours, and then replaced with distilled water or a rinse solution for soft contact lenses (trade name: Pure Soak S manufactured by HOYA).
  • a soft contact lens and a plate-shaped polymer were obtained. The results are shown in Table 2.
  • the obtained soft contact lens was colored yellow, showed water repellency after scrubbing and washed, and the contact lens surface was hardly covered with a water film.
  • Comparative Example 7 (system using N- [tris (hydroxymethyl) methyl] acrylamide as a monomer having two or more hydroxyl groups in the molecular structure)
  • the monomer mixture shown in Table 2 was prepared using N- [tris (hydroxymethyl) methyl] acrylamide (formula E2 below) as a contact lens component, but N- [tris (hydroxymethyl) methyl] acrylamide was completely It did not dissolve.
  • Comparative Example 8 (when a silicone monomer containing no hydroxyl group or polyethylene glycol group in the molecular structure is used)
  • a monomer mixture shown in Table 2 was prepared using 3- [tris (trimethylsiloxy) silyl] propyl methacryloyloxyethyl succinate (formula E3 below) as a component of the contact lens.
  • the solution was separated into two layers, A homogeneous monomer mixture with glycerol methacrylate could not be obtained.
  • Comparative Example 9 (when a silicone monomer containing no hydroxyl group or polyethylene glycol group in the molecular structure is used)
  • the monomer mixture shown in Table 2 was prepared using tris (trimethylsiloxy- ⁇ -methacryloxypropylsilane (formula E4 below) as a contact lens component, but the solution was separated into two layers and homogeneous with glycerol methacrylate. It was not possible to obtain a simple monomer mixture.
  • Comparative Example 10 (when a silicone monomer containing no hydroxyl group or polyethylene glycol group in the molecular structure is used)
  • the monomer mixture shown in Table 2 was prepared using tris (trimethylsiloxy) silylpropylvinylcarbamate (formula E5 below) as a component of the contact lens, but the solution was separated into two layers, and a homogeneous monomer with glycerol methacrylate. A liquid mixture could not be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Eyeglasses (AREA)
  • Materials For Medical Uses (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Dispersion Chemistry (AREA)

Abstract

 分子構造中に少なくとも1つの水酸基またはポリエチレングリコール基を有するシリコーンモノマーの少なくとも1種以上とグリセロールモノ(メタ)アクリレートとを含む混合液を両面キャストモールドの中で硬化させることによって得られるシリコーンハイドロゲルソフトコンタクトレンズであって、重合後のレンズ形状材料に表面の水濡れ性を良化させるための後処理をしなくても湿潤性表面を有するシリコーンハイドロゲルソフトコンタクトレンズを提供する。

Description

湿潤性表面を有するシリコーンハイドロゲルソフトコンタクトレンズ
 本発明は湿潤性表面を有する含水性ソフトコンタクトレンズに関する。さらに詳しくは、分子構造中に少なくとも1つの水酸基またはポリエチレングリコール基を有するシリコーンモノマーの少なくとも1種以上とグリセロールモノ(メタ)アクリレートとを含む重合溶液を両面キャストモールドの中で硬化させることによって得られるシリコーンハイドロゲルであって、重合に用いる容器がポリプロピレンのように疎水性の樹脂材料であっても、重合後のレンズ形状材料に表面の水濡れ性を良化させるための後処理や、表面の水濡れ性を高めるための高分子量親水性ポリマーを含むことなく、透明性および湿潤性表面を有するシリコーンハイドロゲルに関する。
 コンタクトレンズを装用した場合には、大気からの酸素の供給量が低下し、その結果として角膜上皮細胞の***抑制や角膜肥厚につながることが臨床結果より指摘されている。そこで、より安全性の高いコンタクトレンズを供給するために、素材の酸素透過性の改良が試みられている。
 含水性ソフトコンタクトレンズは、材料が柔らかいことから一般的に装用感の良いことが知られているが、その酸素透過性はレンズの含水率に起因するため、ハードコンタクトレンズよりも低い。そこで最近では、レンズ材料成分の一つとしてシリコーンモノマーやシロキサンマクロモノマーを含むシリコーンハイドロゲルが開発、製品化されている。またソフトコンタクトレンズの製造方法としては、均一な製品を大量に製造できることから、キャストモールド製法による製造方法が一般的である。
 キャストモールド製法によるモールド型の材質としては、安価でかつ成形が容易であることからポリプロピレンがよく用いられている。しかしながら、ポリプロピレンは素材自体が疎水性であり、そのような材質をモールド型の容器として採用しシリコーンハイドロゲルを製造した場合には、重合容器と接する部分に疎水性のモノマーが配向してしまうため、重合後のレンズ表面は高い疎水性を示すようになる。
 レンズ表面が疎水性を示すと、涙液中の脂質成分が付着しやすくなり、コンタクトレンズ装用中にレンズがくもる、または見えにくくなるなどの自覚症状が発生したり、付着した脂質成分の上にさらにタンパク質などが付着することにより眼疾患を誘発したりする可能性が生じる。
 このようなことから、シリコーンハイドロゲルを用いるソフトコンタクトレンズの表面の疎水性を改善することを目的として、下記のように種々の方法が提案されている。
 特許文献1には、活性ガスおよび/または不活性ガスを用いて低温プラズマ処理後に酸素雰囲気下に曝すことでレンズ材料表面にヒドロペルオキシドを形成させた共重合体を、100℃以上の温度で親水性モノマー水溶液中に浸漬処理し、表面に親水性モノマーをグラフト重合することで、水濡れ性および耐摩耗性を改善する処理方法が開示されている。しかしながらこの方法では、共重合体の作製、低温プラズマ処理、親水性モノマー水溶液への浸漬、さらには100℃以上の高温処理と、表面に親水性を付与するまでの工程が多く煩雑であり、量産化の方法としては好ましくない。
 特許文献2には、レンズ材料成分中に内部湿潤剤として高分子量親水性ポリマーを含むシリコーンハイドロゲルが開示されている。この方法は、レンズ成分となる重合溶液中にポリビニルピロリドンのような高分子量親水性ポリマーを溶解させた後、その溶液を重合することでレンズ成分中に高分子量親水性ポリマーを含ませる方法である。この方法では表面をプラズマ処理やグラフト重合することなく親水性表面を付与することができる。ところで、一般的にコンタクトレンズ成分を重合した場合、重合後のレンズには未重合のモノマーやオリゴマーが残留する。このようなモノマーやオリゴマーが装用中にレンズから溶出した場合には眼への刺激を誘発する可能性があることから、重合後にアルコールやアルコール水溶液を用いてモノマーやオリゴマーの抽出を行うことが一般的である。このときの抽出に用いるアルコールの濃度は高いほど抽出効率が良く、短時間で多くの未重合モノマーやオリゴマーを除去することが出来る。しかしながら特許文献2の方法では、親水性を付与するための高分子量親水性ポリマーは、ポリマーの網目構造中に物理的に結合あるいは絡み合っているだけであり、アルコールや高濃度のアルコール水溶液を用いて長時間の抽出を行った場合には、未重合のモノマーやオリゴマーと共に高分子量親水性ポリマーもレンズから抽出されるため、抽出後に良好な親水性を維持することは困難となる。
 特許文献3には、吸水率が0.01~0.15重量%の範囲の樹脂を用いて成形した鋳型を用いてコンタクトレンズを製造する方法が開示されている。この方法は、従来キャストモールド製法の容器材料として使用されているポリプロピレンではなく、それよりも吸水性があり、かつ表面の水濡れ性に優れた樹脂をコンタクトレンズ製造用の鋳型として用い、重合中に鋳型表面に近い領域に親水性モノマーが配向することで、表面水濡れ性に優れたコンタクトレンズを製造する方法である。しかしながらこの方法では、樹脂の吸水率が高いことから鋳型材料の成形後の形状安定性に問題が発生したり、成形条件や樹脂の精度を得ることが難しく好ましくない。
 特許文献4には、レンズ成分となるモノマー混合液中にN-ビニルピロリドンを20~60重量%含むシリコーンハイドロゲルが開示されている。この方法はビニル基を有するN-ビニルピロリドンとアクリロイル基やメタアクリロイル基を有するその他レンズ成分との反応性の違いにより、レンズ中にポリビニルピロリドンのホモポリマー領域を形成し、特許文献2に記載の発明のように高分子量親水性ポリマーを用いることなく親水性表面を付与するものである。すなわち、アクリロイル基やメタアクリロイル基とは反応性の異なるN-ビニルピロリドンがホモポリマーに近い形でレンズの一部分となり、レンズ表面に親水性を付与する。しかしながらこの方法では、親水性を付与するためには20~60重量%のN-ビニルピロリドンを用いなければならず、そのため得られるシリコーンハイドロゲルは50%以上の含水率を有するものとなる。一般的にレンズの含水率が高くなるに従い、レンズ装用中にレンズ中から蒸発する水分の量は多くなり、その結果、装用者が乾燥感を感じる頻度は高くなる。従って、含水率の高いレンズほど乾燥による不快感を受けやすくなるので好ましくない。また、レンズ表面に露出するポリビニルピロリドンは触感としてヌルヌル感やベタツキ感があり、装用後のこすり洗いがしにくく、取り扱いが困難になる場合もあり好ましくない。
 特許文献5には、5~95重量%の少なくとも1つのシリコーン含有モノマーと、5~80%の少なくとも1つの親水性モノマーから得られる、コンタクトレンズ製造に用いられる重合体が開示されている。ここで親水性モノマーとしてはグリセロールメタクリレートが例示されている。しかしながら、この発明で開示されているシリコーンモノマーは、分子構造中に少なくとも1つの水酸基またはポリエチレングリコール基を含まないモノマーおよびマクロモノマーである。また、親水性モノマーとしてグリセロールメタクリレートが開示されているものの、これは単にシリコーンモノマーおよびマクロモノマーと共重合可能なモノマーとして例示したに過ぎず、実施例でグリセロールメタクリレートを使用した材料は開示されていない。さらに明細書中には、グリセロールモノ(メタ)アクリレートを含む重合溶液をポリプロピレン製の鋳型に注入・重合することにより、何ら特別な後処理や高分子量親水性ポリマーを用いることなく、容易に表面水濡れ性に優れたシリコーンハイドロゲルを得ることが出来ることについては開示も示唆もされていない。しかも、分子構造中に少なくとも1つの水酸基またはポリエチレングリコール基を含まないモノマーとグリセロールメタクリレートの成分系では、グリセロールメタクリレートの高い親水性により均質なモノマー混合液を調製することができなかった(本願比較例8~10)。さらに明細書中段落[0029]には、最も好ましい親水性モノマーとしてN,N-ジメチルアクリルアミド、2-ヒドロキシエチルメタクリレートおよびN-ビニル-2-ピロリドンの3種類のモノマーが記載されているが、親水性モノマーをこの3種類の中から選択し、その親水性モノマーとシリコーンモノマーとの混合液から得られるコンタクトレンズは白濁しコンタクトレンズとしてふさわしくないか、あるいはレンズ表面は撥水性を示し、湿潤性表面を有するものではなかった(本願比較例1~5)。
 特許文献6には、2,3-ジヒドロキプロピルメタクリレートとオルガノシロキサニルメタクリレートから得られるソフトコンタクトレンズが開示されている。しかしながら、2,3-ジヒドロキシプロピルメタクリレートと、分子構造中に水酸基あるいはポリエチレングリコール基を含まないシリコーンモノマーとの2成分系では均質なモノマー混合液を得ることは出来なかった(本願比較例8~10)。また特許文献6のすべての実施例で,グリシジルメタクリレートが添加されていることから、グリシジルメタクリレートも必須成分の一つであると思われるが、このグリシジルメタクリレートは眼刺激性が強く、コンタクトレンズの成分として用いるには生体安全性の面からも好ましくない。したがって、グリシジルメタクリレートをコンタクトレンズの成分として用いた場合には、重合後のポリマーを100℃程度の温水で処理しグリシジル基を開環させる必要があるが、長時間の加熱によりポリマーが加水分解する可能性もあり好ましくない。さらに、特許文献6の実施例で採用されている製造方法はいずれもレースカット製法であり、キャストモールド法は開示されていないことから、キャストモールド法の問題点、すなわち、モールド型と接する部分に疎水性のモノマーが配向することで、重合後のレンズ表面は高い疎水性を示すという問題点も開示されていない。
特開2003-215509号公報 特開2005-513173号公報 特開2007-160706号公報 特表2010-510550号公報 特開平11-228644号公報 特開平3-196117号公報
 本発明は、特別な鋳型樹脂材料を用いることなく、キャストモールド製法のモールド型の材料として一般的に用いられているポリプロピレンであっても、重合後のレンズ形状材料に表面の水濡れ性を良化させるための後処理を必要とせず、また表面の水濡れ性を高めるための高分子量親水性ポリマーを含むことなく、湿潤な表面を有するシリコーンハイドロゲルを提供することを目的とする。
 本発明者は鋭意検討を重ねた結果、分子構造中に少なくとも1つの水酸基またはポリエチレングリコール基を有するシリコーンモノマーの少なくとも1種類のシリコーンモノマーとグリセロールモノ(メタ)アクリレートを含む重合溶液を重合することにより得られるシリコーンハイドロゲルが、上記の目的を達成できることを見いだし、本発明を完成するに至った。本発明の方法によれば、何ら特別な後処理や高分子量親水性ポリマーを用いることなく、しかも、従来一般的に用いられているポリプロピレンを鋳型材料として用いた場合においても、容易に湿潤性表面を有するシリコーンハイドロゲルを得ることが出来る。
 すなわち、本発明は下記の通りである。
(1)分子構造中に少なくとも1つの水酸基またはポリエチレングリコール基を有するシリコーンモノマーの少なくとも1種以上とグリセロールモノ(メタ)アクリレートとを含む混合液を両面キャストモールドの中で硬化させることによって得られるシリコーンハイドロゲルソフトコンタクトレンズであって、重合後のレンズ形状材料に表面の水濡れ性を良化させるための後処理をしなくても湿潤性表面を有するシリコーンハイドロゲルソフトコンタクトレンズ。
(2)分子構造中に少なくとも1つの水酸基またはポリエチレングリコール基を有するシリコーンモノマーが、下記一般式(I)で示される、(1)に記載のシリコーンハイドロゲルソフトコンタクトレンズ。
Figure JPOXMLDOC01-appb-C000003

[式中、R、R、RおよびRはメチル基であって、aは1~3の整数を表し、nは0又は1を表し、mは0又は4~10を表わす。ただし、nが1であるときにはmは0であって、nが0であるときにはmは4~10である。式中のxは下記式(Y1)~(Y3)で表される置換基から選ばれた1つである。]
Figure JPOXMLDOC01-appb-C000004

(3)分子構造中に少なくとも1つの水酸基またはポリエチレングリコール基を有するシリコーンモノマーが30~70重量%であり、グリセロールモノ(メタ)アクリレートが15~60重量%を含む重合溶液を重合することにより得られる(1)又は(2)に記載のシリコーンハイドロゲルソフトコンタクトレンズ。
(4)(a)分子構造中に少なくとも1つの水酸基またはポリエチレングリコール基を有するシリコーンモノマーが30~70重量%、
 (b)グリセロールモノ(メタ)アクリレートが15~60重量%、
 (c)分子構造中に水酸基またはポリエチレングリコール基を含まないシリコーンモノマーが0~20重量%、
 (d)親水性モノマーが0~50重量%、
 (e)架橋性モノマーが0.1~1重量%
を含む混合液を重合することにより得られる(1)~(3)のいずれか1つに記載のシリコーンハイドロゲルソフトコンタクトレンズ。
(5)分子構造中に水酸基またはポリエチレングリコール基を含まないシリコーンモノマー(c)が、トリス(トリメチルシロキシ)-γ-メタクリロキシプロピルシラン、メタクリロイルオキシエチルコハク酸3-[トリス(トリメチルシロキシ)シリル]プロピルから選ばれる1種以上のモノマーである、(4)に記載のシリコーンハイドロゲルソフトコンタクトレンズ。
(6)親水性モノマー(d)が2-ヒドロキシエチルメタクリレート、N-ビニル-2-ピロリドン、メタクリル酸から選らばれる1種以上のモノマーである、(4)又は(5)に記載のシリコーンハイドロゲルソフトコンタクトレンズ。
(7)両面キャストモールドの材質がポリプロピレンである(1)~(6)のいずれか1つに記載のシリコーンハイドロゲルソフトコンタクトレンズ。
(8)該ソフトコンタクトレンズの含水率が20%以上、50%未満である、(1)~(7)のいずれか1つに記載のシリコーンハイドロゲルソフトコンタクトレンズ。
(9)分子構造中に少なくとも1つの水酸基またはポリエチレングリコール基を有するシリコーンモノマーの少なくとも1種以上とグリセロールモノ(メタ)アクリレートとを混合することによって、混合液を調製する工程;
 該混合液を両面キャストモールド型にキャストする工程;及び
 該混合液を該両面キャストモールド型中で硬化させる工程
を含む、シリコーンハイドロゲルソフトコンタクトレンズの製造方法。
(10)重合後のレンズ形状材料に表面の水濡れ性を良化させるための後処理をしない、(9)に記載の製造方法。
 本発明によれば、ポリプロピレンのような疎水性材料の両面キャストモールド型を使用して硬化させることによって得られるシリコーンハイドロゲルであっても、重合後のレンズ形状材料に表面の水濡れ性を良化させるための後処理や、表面の水濡れ性を高めるための高分子量親水性ポリマーを含むことなく、透明性および湿潤性表面を有するシリコーンハイドロゲルを提供することができる。
図1は合成例1で得られた化合物のH-NMRスペクトルである。 図2は合成例1で得られた化合物のMALDI-TOF MSスペクトルである。 図3は合成例2で得られた化合物のIRスペクトルである。
 本発明で使用するシリコーンモノマーは、分子構造中に少なくとも1つの水酸基又はポリエチレングリコール基を有していれば、特に限定されないが、下記一般式(I)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000005

[式中、R、R、RおよびRはメチル基であって、aは1~3の整数を表し、nは0又は1を表し、mは0又は4~10を表わす。ただし、nが1であるときにはmは0であって、nが0であるときにはmは4~10(繰り返し平均値としての値)である。式中のxは下記式(Y1)~(Y3)で表される置換基から選ばれた1つである。]
Figure JPOXMLDOC01-appb-C000006
 本発明の含水性ソフトコンタクトレンズを得るためには、分子構造中に少なくとも1つの水酸基又はポリエチレングリコール基を有するシリコーンモノマーとグリセロールモノ(メタ)アクリレートが必須成分となる。グリセロールモノ(メタ)アクリレートは分子構造中に2個の水酸基を有し、極めて親水性の高いモノマーである。従って、均質なモノマー混合液を得るためには、相手となるシリコーンモノマーの分子構造としては、水酸基やポリエチレングリコール基などの親水性ユニットを有するものであることが必要である。
 このような構造のシリコーンモノマーは公知化合物であり、例えば、特開昭55-15110号公報、特開昭63-163811号公報、特開平4-332760号公報、特開2000-191667号公報、特開2001-323024号公報および米国特許4,395,496号公報などでコンタクトレンズの材料の一つとして開示されている。しかしながら、特開昭55-15110号公報、特開昭63-163811号公報、特開平4-332760号公報、米国特許4,395,496号公報などに開示されている材料はハードコンタクトレンズであり、シリコーンハイドロゲルではない。また、特開2000-191667号公報および特開2001-323024号公報に記載されている材料はシリコーンハイドロゲルであり、共重合可能なモノマーとしてグリセロールモノ(メタ)アクリレートあるいはグリセロールモノ(メタ)アクリレートの別名称である2,3-ジヒドロキシプロピル(メタ)アクリレートが例示されている(例えば、特開2000-191667号公報の段落番号[0029]、特開2001-323024号公報の段落番号[0034])が、これらの記述は単にシリコーンモノマーと共重合可能なモノマーとして例示しただけであり、実施例ではグリセロールモノ(メタ)アクリレートおよび2,3-ジヒドロキシプロピル(メタ)アクリレートは用いられていない。
 本願発明で使用されるシリコーンモノマーは、下記A1~A8構造のモノマーであることが特に好ましい。なお、本願明細書においてポリエチレングリコール基とは、エチレングリコールの繰り返し数(平均値)が4~10の範囲にあるものをいう。
Figure JPOXMLDOC01-appb-C000007

Figure JPOXMLDOC01-appb-C000008

 式A3~A8においては、mは4~10である。シリコーンモノマーの分子構造中にポリエチレングリコール基を導入する方法の一例としては以下が挙げられる。すなわち、テトラエチレングリコール、ペンタエチレングリコール、ヘキサエチレングリコール、ヘプタエチレングリコール、オクタエチレングリコール、ノナエチレングリコール、デカエチレングリコールなどのエチレングリコールの片末端をアリル化した後、ヒドロシリル化反応によりトリス(トリメチルシロキシ)シリル基、やメチルビス(トリメチルシロキシ)シリル基と反応させる。次に、片末端の水酸基にメタクリロイル基を有する化合物(例えば、メタクリルクロライド、2-イソシアナトエチルメタクリレート、2-メタクリロイルオキシエトキシエチルイソシアネートなど)を反応させて目的のシリコーンモノマーを得る方法である。このとき、ポリエチレングリコールの繰り返し単位が4以上のグリコールを単品で入手することは困難であるので、複数の繰り返し数を有するグリコールが混在しているのが一般的である。本発明に用いるA3~A8のモノマーについては、mの値が分布を有しその平均値が約4~約10であるものであっても良いし、シリコーンモノマーの合成を行う際に、前駆体となるグリコール類をカラム分取などにより単一繰り返し数(例えば、nが6のときにその他の数(例えば5や7)は含まない)にした上で合成に用いることで、グリコールの繰り返し数の分布がないものにしても良い。得られるレンズの機械的強度や水濡れ性をはじめとする種々の物性値のばらつきを少なくするためには、ポリエチレングリコールの繰り返し数は分布がなく、単一ユニット構造である方が好ましい。
 mの繰り返し数が4以上の場合は、グリセロールモノ(メタ)アクリレートとの相溶性に優れ、均質なモノマー混合液を得ることができ、mが10以下であれば、分子構造が長くなりすぎずレンズの機械的強度が低下を防ぎ、表面の水濡れ性を維持できるので好ましい。
 本明細書において「平均値」とは、シリコーンモノマー構造中のポリエチレングリコール基の繰り返し数が分布を有している場合に適用され、出発原料となる前駆体あるいは最終構造物を1H-NMR分析し、エチレンオキサイドユニットのピーク積分強度比を用いて算出した繰り返し数のことをいう。
 本発明のコンタクトレンズにおいて、シリコーンモノマーの含有量は、30~70重量%であることが好ましい。シリコーンモノマーの含有量を30重量%以上とすることで、この材料から調製されるコンタクトレンズに十分な酸素透過性を付与することが可能となり、70重量%以下とすることで素材に適度な含水率を付与することが出来、さらに柔軟性に富んだレンズを得ることが出来る。シリコーンモノマーの含有量は、より好ましくは40~70重量%であり、40~65重量%であることがさらに好ましい。本発明においてシリコーンモノマーとは、分子構造中のケイ素原子の数が4以下であって分子量が1000未満のものであるか、ポリエチレングリコール基の繰り返し数に分布がある場合には、ゲルパーミエーションションクロマトグラフィーによる測定で、ポリスチレン換算で数平均分子量を算出したときに1000未満であるもののことをいう。
 本発明では、シロキサンマクロモノマー、フッ素含有シロキサンマクロモノマーを用いた場合には分子量が大きいことから、またフッ素含有モノマーを用いた場合には、フッ素原子が強い撥水性を示すことから、疎水性部分がポリプロピレン製のモールド型表面、すなわちレンズ表面に配向しやすくなり、レンズ表面は強い撥水性を示す場合がある。したがって、本発明では、シロキサンマクロモノマー、フッ素含有シロキサンマクロモノマーおよびフッ素含有モノマーは原材料の成分として用いない方が好ましい。なお、本発明においてマクロモノマーとは、ゲルパーミエーションションクロマトグラフィーによる測定で、ポリスチレン換算で数平均分子量を算出したときに1000以上ものをいい、具体例としては、特開2001-311917号公報、特開2001-183502号公報、特表平11-502949号公報記載のマクロモノマーが挙げられる。またフッ素含有モノマーとは分子構造中のフッ素原子の数が1以上であって、分子量が1000未満であるもののことをいい、具体例としては、2,2,2-トリフルオロエチルメタクリレート、1,1,1,3,3,3-ヘキサフルオロイソプロピルメタクリレート、パーフルオロオクチルエチルオキシプロピレンメタクリレートなどが挙げられる。
 本発明のソフトコンタクトレンズにおいて、第2の必須成分としてグリセロールモノ(メタ)アクリレートが用いられる。グリセロールモノ(メタ)アクリレートをレンズ成分として用いることで、何ら特別な後処理や高分子量親水性ポリマーを用いることなく、しかも、従来コンタクトレンズのモールド材料として一般的に用いられているポリプロピレンを鋳型材料として用いた場合においても、容易に湿潤性表面を有するシリコーンハイドロゲルを得ることが出来る。このような特異的な効果を発揮するのは、グリセロールモノ(メタ)アクリレートの分子構造中に2つの水酸基を有することが寄与しているのだと推察される。すなわち、レンズが乾燥状態ではレンズ表面には疎水性の高いシリコーン構造が配向し高い撥水性を示すが、一旦、レンズ表面が水で覆われた(濡れた)場合には、シリコーンハイドロゲルの高い分子運動性に起因してグリセロールモノ(メタ)アクリレート構造が表面に配向することで水分子を強く保持し、その結果、湿潤性表面を形成および維持できるのだと考えられる。従って、本発明のソフトコンタクトレンズは、乾燥状態では高い撥水性(高い接触角)を示すが、一旦、表面が水に濡れた場合には、表面が一様に水の膜で覆われ、その状態が長時間維持される。従って、ソフトコンタクトレンズ用洗浄液でこすり洗いをした後、蒸留水やソフトコンタクトレンズ用すすぎ液ですすいだ後に、レンズ表面が一様に水の膜で覆われ、水中での気泡法による接触角測定では低い接触角を示す。
 しかしながらこのような性質は、分子構造中に2つ以上の水酸基を持つものであれば全て同様な効果を発揮するものではない。例えば、容易に入手可能な化合物として2-メタクリロイルオキシエチルアシッドホスフェート(下記式B1)やN-[トリス(ヒドロキシメチル)メチル]アクリルアミド(下記式B2)が挙げられるが、2-メタクリロイルオキシエチルアシッドホスフェートを用いても表面の水濡れ性は改善されず、レンズが黄色く着色し、さらにはレンズが脆くコンタクトレンズとして使用できるものではない(本願比較例6参照)。また、N-[トリス(ヒドロキシメチル)メチル]アクリルアミドを用いた場合には、他のモノマーと溶解せず、均質なモノマー混合液を得ることができない(本願比較例7参照)。従って、本発明においては、グリセロールモノ(メタ)アクリレートの使用が重要な意味を持つ。
Figure JPOXMLDOC01-appb-C000009
 必須成分となるグリセロールモノ(メタ)アクリレートには、下記式(C1)や(C2)のような構造異性体が存在する。本発明では、構造異性体の混合物を用いても良いし、いずれか一方の構造のみからなるものを用いても良い。
Figure JPOXMLDOC01-appb-C000010

       (式中、Rは水素原子あるいはメチル基である)
 なお、本明細書において「(メタ)アクリレート」は、アクリレートとメタクリレートの両方を意味する。
 本発明のコンタクトレンズにおいて、グリセロールモノ(メタ)アクリレートの含有量は15~60重量%であることが好ましい。グリセロールモノ(メタ)アクリレートの含有量を15重量%以上とすることで、何ら特別な後処理や高分子量親水性ポリマーを用いることなく、しかも、従来一般的に用いられているポリプロピレンを鋳型材料として用いた場合においても、容易に湿潤性表面を有するシリコーンハイドロゲルを得ることが可能となり、60重量%以下とすることでレンズの機械的強度が低下することを防ぐことが出来る。グリセロールモノ(メタ)アクリレートの含有量は、より好ましくは20~50重量%である。
 なお本発明において「何ら特別な後処理」とは、プラズマ処理、グラフト処理、塩基処理、酸処理などのコンタクトレンズの表面の水濡れ性を向上させる方法のことをいう。また湿潤性表面とは、ソフトコンタクトレンズ用洗浄液でコンタクトレンズの両面を擦り洗いし、蒸留水やソフトコンタクトレンズ用すすぎ液ですすぎ洗いした後でも、コンタクトレンズ表面が一様に水の膜で覆われていることをいう。
 本発明の含水性ソフトコンタクトレンズには、上記2つの成分の他に、酸素透過性を向上させるために分子構造中に水酸基またはポリエチレングリコール基を含まないシリコーンモノマーや含水率を調整するための親水性モノマー、さらには機械的強度や耐久性を付与させるための架橋性モノマーを成分として含むことが出来る。
 分子構造中に水酸基またはポリエチレングリコール基を含まないシリコーンモノマーとしては、例えば、トリス(トリメチルシロキシ)-γ-メタクリロキシプロピルシラン、メタクリロイルオキシエチルコハク酸3-[トリス(トリメチルシロキシ)シリル]プロピル、メタクリルアミドプロピルビス(トリメチルシロキシ)メチルシラン、O-メタクリルオキシエトキシ-N-[ビス(トリメチルシロキシ)メチルシリル]プロピルカルバメート、メタクリルオキシメチルビス(トリメチルシロキシ)メチルシラン、3-メタクリルオキシプロピルビス(トリメチルシロキシ)メチルシラン、メタクリルオキシメチルトリス(トリメチルシロキシ)シラン、メタクリルオキシプロピルビス(トリメチルシロキシ)シラノールなどの1種以上のモノマーが挙げられ、0~20重量%の範囲で用いることが出来る。これらシリコーンモノマーの含有量を20重量%以下とすることで、モノマー混合液が白濁することなく、均質なモノマー混合溶液を調製することが出来、さらにはレンズ表面の撥水性を防ぐことができる。
 含水率を調整するための親水性モノマーとしては、2-ヒドロキシエチルメタクリレート、N-ビニル-2-ピロリドン、メタクリル酸などから選らばれる1種以上のモノマーが挙げられ、0~50重量%の範囲で用いることが出来る。これら親水性モノマーの含有量を50%以下とすることで、適度な含水率をレンズに付与することが出来る。親水性モノマーの含有量は、より好ましくは0~45重量%であり、さらに好ましくは0~40重量%である。
 機械的強度や耐久性を付与させるための架橋性モノマーとしては、例えば、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、アリルメタクリレート、ビニルメタクリレート、ジアリルマレエート、トリアリルイソシアヌレートなどから選ばれる1種以上のモノマーが挙げられる。これらの架橋性モノマー成分の含有量は、共重合体成分の合計量に対し0.1~1重量%であることが好ましい。架橋性モノマーの使用量が0.1重量%以上で機械的強度と耐久性の付与が認められ、また1重量%以下とすることで、得られるソフトコンタクトレンズが脆くなることを防止することが出来る。架橋性モノマーの含有量は、より好ましくは0.2~0.8重量%である。
 さらに本発明の含水性ソフトコンタクトレンズは、得られるソフトコンタクトレンズに紫外線吸収能を付与したり、視認性向上を目的として着色したりするために共重合成分として、例えば、重合性紫外線吸収剤や重合性色素などを含有することができる。前記重合性紫外線吸収剤の具体例としては、5-クロロ-2-[2-ヒドロキシ-5-(β-メタクリロイルオキシエチルカルバモイルオキシエチル)]フェニル-2H-ベンゾトリアゾ-ル、2-[2-ヒドロキシ-5-(β-メタクリロイルオキシエチルカルバモイルオキシエチル)]フェニル-2H-ベンゾトリアゾ-ル、5-クロロ-2-[2-ヒドロキシ-4-(p-ビニルベンジルオキシ-2-ヒドロキシプロピルオキシ)]フェニル-2H-ベンゾトリアゾ-ル、4-メタクリルオキシ-2-ヒドロキシベンゾフェノン、2-(2’-ヒドロキシ-5’-メタクリルオキシエチルフェニル)-2H-ベンゾトリアゾールなどが挙げられる。前記重合性色素の具体例としては、1,4-ビス(4-ビニルベンジルアミノ)アントラキノン、1-p-ヒドロキシベンジルアミノ-4-p-ビニルベンジルアミノアントラキノン、1-アニリノ-4-メタクリロイルアミノアントラキノン、1,4-ビス[4-(2-メタクリルオキシエチル)フェニルアミノ]-9,10-アントラキノンなどが挙げられる。
 本発明からなる含水性ソフトコンタクトレンズを着色する場合、これらの色素を用いずに建て染め浴に漬け、染料のロイコ体をレンズ全体に十分に含浸させた後、酸化浴に漬けてロイコ体を酸化体に変えて定着させる建て染め法を用いることができる。その他に着色剤として、AlcianBlue8GXやAlcianGreen2GXなどのフタロシアニン色素を本発明のコンタクトレンズ材料に含有させることもできる。前記重合性紫外線吸収剤および重合性色素の含有量は、この材料から作製されるレンズの厚さに影響されるため、共重合成分の5重量%以下、特に好ましくは0.02~3重量%であることが適当である。使用量を5重量%以下とすることで、得られるコンタクトレンズの機械的強度を低下するのを防止でき、かつ生体に直接接触するコンタクトレンズの安全性の面からも好ましい。
 本発明の含水性ソフトコンタクトレンズの製造に際しては、まず、上記モノマーを含む混合液に重合開始剤を添加して十分に撹拌し、均質なモノマーの混合液にする。ここで用いられる重合開始剤としては、ラウロイルパーオキサイド、クメンハイドロパーオキサイド、ベンゾイルパーオキサイドなどの過酸化物や2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(イソブチロニトリル)、また光重合法を採用する場合には、ベンゾインメチルエーテル、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-ジメトキシ-1-フェニルプロパン-1-オン、フェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイドなどを用いることができる。重合開始剤の量は重合温度や光の照射波長や照射強度により種々選択されるが、0.1~1重量%が好ましい。
 さらに重合は、適当な希釈剤の存在下または非存在下で行うことができる。適当な希釈剤は、使用するモノマー成分を均質に溶解するものであればいかなるものでもよく、例えば、アルコール(例えば、エタノール、n-ヘキサノール、オクタノール、1,3-プロパンジオール、1,4-ブタンジオール)、ジメチルスルホキシドのような双極性非プロトン溶媒、などがあげられる。希釈剤を用いた場合には、モノマー混合液の粘性が低下することに起因してモールド型への注入が容易になり、また重合時に重合熱を効果的に除去し、得られたレンズの機械的強度が向上したり、レンズの弾性率を低下させるなどの効果が期待できる。
 上記モノマー混合液は、コンタクトレンズ形状を有するコンタクトレンズ製造用モールド型に注入した後、重合される。このモールド型は凸面と凹面の曲率をもつ合わせ型であり、金属、樹脂などの材質からなるものである。但し、重合時の剥離性がよく、耐溶剤性、耐熱性に優れた材質であることが好ましい。樹脂製のモールド型は、所望のレンズデザインに必要な形状を有するモールド型を容易に製造できるため好ましい。これら樹脂材料としては、成形収縮が低く、金属からの面転写性がよく、寸法精度および耐溶剤性に優れるものの中から選択することが好ましく、価格や容易に入手できることなどからポリプロピレンが好ましい。但し、ポリプロピレンのみに限定されるものではなく、例えば、ポリエチレン、ポリエチレンテレフタレート、ポリメチルペンペンテン、ポリサルフォン、ポリフェニレンサルファイド、環状オレフィン共重合体、エチレンビニルアルコール共重合物などを用いても良い。
 モノマー混合液の注入に際しては、成形直後のモールド型を使用しても良いし、モールド型の曲率を安定させるために10~40時間程度ストックしておいたものを用いてもよい。またモールド型を用いる前には十分に減圧して型表面の水分や酸素等の反応に影響を及ぼす物質を除去し、窒素又はアルゴンなどの不活性ガスでパージした後に、モノマー混合液をモールド型に注入しても良い。さらに、モノマー混合液を注入する際には、あらかじめモノマー混合液を窒素又はアルゴン等の不活性ガスでバブリングすることでモノマー混合液中に溶存する酸素を除去してから使用しても良いし、溶存酸素を除去することなく用いても良い。
 重合方法としては、前記光重合開始剤を配合して、紫外線や可視光線などを照射する光重合法を挙げることができる。光重合法を適用する場合には、配合した光重合開始剤の特性により照射する光の波長は適宜選択され、例えば、200~280nm域および350nmに強いピークを持つランプ、350~400nm域を強調したランプ、420nm域を中心に400~425nm域を強調したランプ、400~450nm域を強調したランプ等を使用することができる。また光の照射強度は、照射強度を測定する機器の受光部面積により値は異なるが、例えば、フュージョンUVシステムズ・ジャパン(株)社製のUV Power MAPを用いて測定したときに、約10~60mW/cmの照射強度で約1~30分の範囲で重合することが好ましい。またこのときの雰囲気は大気中であっても良いが、得られるコンタクトレンズの重合率を向上させることを目的として、窒素又はアルゴン等の不活性ガス雰囲気で重合することも可能である。また重合に際しては、例えば、段階的あるいは連続的に20~120℃の温度範囲で昇温し、30分~24時間で重合を完結させるような、熱重合による方法も適用することができる。このとき重合炉内の環境は大気圧条件下であっても良いし、窒素またはアルゴン等の不活性ガスの雰囲気とし、加圧条件下で重合しても良い。加圧条件下で重合する場合、炉内の圧力は0.5~3 kgf/cm の圧力範囲であることが好ましい。さらに、前記光重合により1~30分の範囲で重合した後、続いて、モールド型を熱重合で使用する重合炉へ移した後、段階的あるいは連続的に20~120℃の温度範囲で昇温し30分~24時間加熱するか、あるいはあらかじめ一定温度(90~120℃)に設定された重合炉内で10~60分加熱し、光重合と熱重合の両方を用いるような重合方法を採用しても良い。
 重合後にモールド型から取り出したレンズ形状ポリマーは、溶媒(例えば、メタノール、エタノール、イソプロパノール、メタノール水溶液、エタノール水溶液など)で未重合モノマーやオリゴマーを抽出して、除去することができる。引き続き、生理食塩水またはソフトコンタクトレンズ用保存液等に浸漬することにより含水させ、目的の含水性ソフトコンタクトレンズを得ることができる。
 本発明の含水性ソフトコンタクトレンズの含水率は20%以上、50%未満であることが好ましい。含水率が20%未満ではレンズに適度な柔軟性を付与することができず、また50%以上ではレンズからの水分蒸発速度が高くなり、その結果として装用時の乾燥感を感じやすくなる傾向にあるため好ましくない。レンズの含水率は、より好ましくは20~45%である。
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
[使用成分]
 以下の実施例で用いられている化学物質の名称と略語を示す。
(a)分子構造中に少なくとも1つの水酸基またはポリエチレングリコール基を有するシリコーンモノマー
4Si-6PEG:合成例1で得られたシリコーンモノマー
3Si-9PEG:合成例2で得られたシリコーンモノマー
3Si-GMA:メタクリルオキシ-2-ヒドロキシプロポキシプロピルビス(トリメチルシロキシ)メチルシラン
(b)グリセロールモノ(メタ)アクリレート
GlyMA:グリセロールモノメタクリレート
(c)分子構造中に水酸基またはポリエチレングリコール基を含まないシリコーンモノマー
MTS:メタクリロイルオキシエチルコハク酸3-[トリス(トリメチルシロキシ)シリル]プロピル
TRIS:トリス(トリメチルシロキシ)-γ-メタクリロキシプロピルシラン
TRIS-VC:トリス(トリメチルシロキシ)シリルプロピルビニルカルバメート
(d)親水性モノマー
HEMA:2-ヒドロキシエチルメタクリレート
NVP:N-ビニル-2-ピロリドン
MAA:メタクリル酸
DMAA:N,N-ジメチルアクリルアミド
(e)架橋性モノマー
EDMA:エチレングリコールジメタクリレート
DAM:ジアリルマレエート
VMA:ビニルメタクリレート
(f)その他モノマー
P-1M:2-メタクリロイルオキシエチルアシッドホスフェート
TRIS-AA:N-[トリス(ヒドロキシメチル)メチル]アクリルアミド
(g)重合開始剤
AIBM:2,2’-アゾビス(イソブチロニトリル)
BAPO:フェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド
合成例1
 PEG部分の繰り返し数が6のみであるシリコーンモノマーの合成
市販のヘキサエチレングリコールを購入し、カラム精製によりPEG部分の繰り返し数が6のもののみとした。次に、ヘキサエチレングリコールの片末端のみをトリチルクロリドを用いて保護した(反応式1)。もう一方の片末端はアリルクロライドを用いてアリル化した後(反応式2)、白金触媒を用いたヒドロシリル化反応によりトリス(トリメチルシロキシ)シランを付与した(反応式3)。最後に、トリチル基を脱保護することでエチレンオキサイドの繰り返し数が6のみであるシロキサン化合物(下記式D1)を得た。
Figure JPOXMLDOC01-appb-C000011

Figure JPOXMLDOC01-appb-C000012

Figure JPOXMLDOC01-appb-C000013
 この化合物のH-NMRスペクトルを図1に、MALDI-TOF MSスペクトルを図2に示す。H-NMRスペクトルより、エチレンオキサイドユニット(3.6ppm)、トリス(トリメチルシロキシ)プロピルシラン構造(3.4ppm、1.6ppm、0.4ppm、0.1ppm)に由来するピークが検出された。また、MALDI-TOF MSスペクトルより、m/z 641に構造に由来するイオン[M+Na]+ が検出され、その他のユニット数(例えば5や7)のイオンは検出されなかったことから、得られた化合物はエチレンオキサイドの繰り返し数が6のみであることが確認された。
Figure JPOXMLDOC01-appb-C000014
NMRの測定条件は下記の通りである。
観測周波数:H;600MHz
測定溶媒:CDCl3
測定温度:室温
化学シフト基準:測定溶媒(H:7.25ppm)
MALDI-TOF MSの測定条件は下記の通りである。
レーザー光源:N2レーザー(波長:337nm)
測定モード:リフレクターモード、ポジティブイオンモード
測定質量範囲(m/z):20~3000
積算回数:500回
イオン化試薬:トリフルオロ酢酸ナトリウム(THF溶液)
 次に、このD1で示されるシロキサン化合物と、メタクリロイルクロリドを用いて、触媒として1,8-ジアザビシクロ[5.4.0]-7-ウンデセンを用い、n-ヘキサン溶媒中で反応させた。反応後の溶液はガラス繊維濾紙で濾過した後、メタノール、続いて飽和塩化ナトリウム水溶液を用いて洗浄した後、カラム精製、さらには溶媒を留去することで、下記式D2のシリコーンモノマー(以下、4Si-6PEG)を得た。
Figure JPOXMLDOC01-appb-C000015

合成例2
 PEG部分の繰り返し数の平均値が9であるシリコーンモノマーの合成
エチレンオキサイドの繰り返し数が1~17であって、PEG部分の繰り返し数の平均値が9である3-[ヒドロキシ(ポリエチレンオキシ)プロピル]ヘプタメチルトリシロキサンを出発原料に用いた。この化合物を触媒(ジブチルスズジラウレート)の存在下で、2-イソシアナトエチルメタクリレートと塩化メチレン溶媒中で反応させた。反応はIRスペクトルにおけるイソシアネートの吸収帯が消失するまで行い、反応終了後濾過および溶媒を留去することで下記式D3のシリコーンモノマー(以下、3Si-9PEG)を得た。この化合物のIRスペクトルを図3に示す。また、ゲルパーミエーションクロマトグラフィーにより分子量測定を行った結果、数平均分子量は907(ポリスチレン換算)であった。
Figure JPOXMLDOC01-appb-C000016
ゲルパーミエーションクロマトグラフィーの測定条件は下記の通りです。
カラム:Shodex KF-402.5HQ 2本
溶離液:THF
流 量:0.3mL/min
検出器:RI
カラム温度:40℃
実施例1
 容量20mLの褐色のガラス瓶に合成例1で得られた4Si-6PEGを10g(50重量%)、GlyMAを10g(50重量%)、架橋性モノマーとしてEDMAを0.06g(4Si-6PEGとGlyMAの合計量に対して0.3重量%)、重合開始剤としてBAPOを0.12g(4Si-6PEGとGlyMAの合計量に対して0.6重量%)を計り取り、室温で約16時間撹拌した。このモノマー混合液をポリプロピレン製のコンタクトレンズ作製用の両面キャストモールド型、および厚さの異なるポリエチレンテレフタレートシートをスペーサーとしてポリプロピレン板で挟むことにより作製したセルに注入し、UV硬化装置(フュージョンUVシステムズ・ジャパン(株))のVバルブを用いて、395~445nmの波長域の照射強度が30mW/cmの光を10分間照射した。引き続き、あらかじめ110℃に設定した熱風循環式乾燥機に入れ、60分加熱することで重合を完結させた。
 重合後のレンズ形状および平板形状の重合物は型から取り出し、50vol%エタノール水溶液に4時間浸漬した後、蒸留水、さらにはソフトコンタクトレンズ用すすぎ液(HOYA(株)社製 商品名:ピュアソークS)で置換しソフトコンタクトレンズおよび平板形状重合物を得た。得られたソフトコンタクトレンズおよび平板形状重合物を用いて、以下の評価および測定を行った。結果を表1に示す。得られたソフトコンタクトレンズは、高い透明性と湿潤性表面を有するものであった。
[モノマー混合液の性状]
 重合前のモノマー混合液の一部を透明なガラス瓶に入れ、目視で以下の評価基準に従い評価した。
評価基準
○:モノマー混合液は溶解し均質である
×:モノマー混合液は白濁するか二層に分離し溶解しない
[ソフトコンタクトレンズの透明性評価]
 ソフトコンタクトレンズの透明性を、目視で以下の評価基準に従い評価した。
評価基準
○:レンズは透明である
×:レンズは白濁あるいは黄色に着色している
[湿潤性]
 ソフトコンタクトレンズの両面をソフトコンタクトレンズ用洗浄液(HOYA(株)社製 商品名:ピュアクリーナーS)でこすり洗いし、その後、蒸留水で十分にすすいだ。すすぎ後のソフトコンタクトレンズをピンセットでつまみ、コンタクトレンズ表面の水濡れ性を目視で以下の評価基準に従い評価した。
評価基準
○:レンズの表面は一様に水の膜で覆われている
×:レンズ表面は撥水性を示し、水の膜で覆われている部分はほとんどない
[含水率]
 23℃で平衡膨潤に達したソフトコンタクトレンズの含水状態の重量(Ww)、および真空乾燥機で70℃、4時間以上乾燥させた乾燥状態の重量(Wd)を測定し、次式により含水率を算出した。
     含水率(%)=(Ww-Wd)/Ww×100
[酸素透過係数]
 厚さの異なる平板形状の重合物を角膜上皮用トレパン・パンチ(φ11mm)で打ち抜き、ツクバリカセイキ(株)社製の電極法フィルム酸素透過率測定器により、35℃の生理食塩液中にて酸素透過係数を測定した。なお、酸素透過係数の単位は(cm/sec)・(mLO2/mL×mmHg)であり、表中の酸素透過係数は、本来の酸素透過係数に1011を乗じた値である。
[接触角測定(液滴法、気泡法)]
 ソフトコンタクトレンズ表面の水濡れ性を接触角測定により評価した。ソフトコンタクトレンズ表面の水分を拭き取った後、保持台にレンズを貼り付け、蒸留水を用いた液滴法により接触角を測定した。測定には協和界面科学(株)社製の接触角計を用い、液滴の大きさはシリンジで約1.5mmとした。
 また、ソフトコンタクトレンズを保持台に貼り付け、その保持台ごと25℃の蒸留水中に浸漬し、シリンジを用いて約1.7μLの気泡をソフトコンタクトレンズ表面に付着させ、蒸留水中におけるソフトコンタクトレンズと気泡とのなす角を測定した。いずれの測定方法においても、値が小さい方が水濡れ性に優れることを表す。
実施例2~10
 ソフトコンタクトレンズのモノマー組成を表1に示す組成に変更した以外は、実施例1と同様の方法で作製した。得られたソフトコンタクトレンズは、高い透明性と湿潤性表面を有するものであった。
実施例11~12
 ソフトコンタクトレンズのモノマー組成を表1に示す組成に変更しモノマー混合液を得た。このモノマー混合液をポリプロピレン製のコンタクトレンズ作製用の両面キャストモールド型、および厚さの異なるポリエチレンテレフタレートシートをスペーサーとしてポリプロピレン板で挟むことにより作製したセルに注入し、あらかじめ110℃に設定した熱風循環式乾燥機に入れ60分加熱することで重合を完結させた。
 重合後のレンズ形状および平板形状の重合物を50vol%エタノール水溶液に4時間浸漬した後、蒸留水、さらにはソフトコンタクトレンズ用すすぎ液(HOYA(株)社製 商品名:ピュアソークS)で置換しソフトコンタクトレンズおよび平板形状重合物を得た。得られたソフトコンタクトレンズおよび平板形状重合物を用いて評価および測定を行った。結果を表1に示す。得られたソフトコンタクトレンズは、高い透明性と湿潤性表面を有するものであった。
実施例13~16
 ソフトコンタクトレンズのモノマー組成を表1に示す組成に変更しモノマー混合液を得た。このモノマー混合液をポリプロピレン製のコンタクトレンズ作製用の両面キャストモールド型、および厚さの異なるポリエチレンテレフタレートシートをスペーサーとしてポリプロピレン板で挟むことにより作製したセルに注入し、UV硬化装置(フュージョンUVシステムズ・ジャパン(株))のVバルブを用いて、395~445nmの波長域の照射強度が30mW/cmの光を5分間照射した。引き続き、あらかじめ110℃に設定した熱風循環式乾燥機に入れ30分加熱することで重合を完結させた。
 重合後のレンズ形状および平板形状の重合物を50vol%エタノール水溶液に4時間浸漬した後、蒸留水、さらにはソフトコンタクトレンズ用すすぎ液(HOYA(株)社製 商品名:ピュアソークS)で置換しソフトコンタクトレンズおよび平板形状重合物を得た。得られたソフトコンタクトレンズおよび平板形状重合物を用いて評価および測定を行った。結果を表1に示す。得られたソフトコンタクトレンズは、高い透明性と湿潤性表面を有するものであった。
比較例1~5(GlyMAを構成成分として含まない系)
 ソフトコンタクトレンズのモノマー組成を表2に示す組成で調製しモノマー混合液を得た。このモノマー混合液をポリプロピレン製のコンタクトレンズ作製用の両面キャストモールド型、および厚さの異なるポリエチレンテレフタレートシートをスペーサーとしてポリプロピレン板で挟むことにより作製したセルに注入し、あらかじめ110℃に設定した熱風循環式乾燥機に入れ60分加熱することで重合を完結させた。重合後のレンズ形状および平板形状の重合物を50vol%エタノール水溶液に4時間浸漬した後、蒸留水、さらにはソフトコンタクトレンズ用すすぎ液(HOYA(株)社製 商品名:ピュアソークS)で置換しソフトコンタクトレンズおよび平板形状重合物を得た。得られたソフトコンタクトレンズおよび平板形状重合物を用いて評価および測定を行った。結果を表2に示す。比較例1~3のコンタクトレンズは、こすり洗い洗浄後において撥水性を示し、コンタクトレンズ表面が水の膜で覆われている部分はほとんどなかった。次に、比較例4および5のコンタクトレンズは、50vol%エタノール溶液に浸漬した後、ソフトコンタクトレンズ用すすぎ液で置換したところレンズは白濁しコンタクトレンズとして使用できるものではなかった。
比較例6(分子構造中に2個以上の水酸基を有するモノマーとして、2-メタクリロイルオキシエチルアシッドフォスフェートを用いた系)
 コンタクトレンズの成分として2-メタクリロイルオキシエチルアシッドフォスフェート(下記式E1)を用いて、表2に示すモノマー混合液を調製した。このモノマー混合液をポリプロピレン製のコンタクトレンズ作製用の両面キャストモールド型に注入し、あらかじめ110℃に設定した熱風循環式乾燥機に入れ60分加熱することで重合を完結させた。重合後のレンズ形状および平板形状の重合物を50vol%エタノール水溶液に4時間浸漬した後、蒸留水、さらにはソフトコンタクトレンズ用すすぎ液(HOYA(株)社製 商品名:ピュアソークS)で置換しソフトコンタクトレンズおよび平板形状重合物を得た。結果を表2に示す。得られたソフトコンタクトレンズは黄色に着色し、しかもこすり洗い洗浄後において撥水性を示し、コンタクトレンズ表面が水の膜で覆われている部分はほとんどなかった。
Figure JPOXMLDOC01-appb-C000017
比較例7(分子構造中に2個以上の水酸基を有するモノマーとして、N-[トリス(ヒドロキシメチル)メチル]アクリルアミドを用いた系)
 コンタクトレンズの成分としてN-[トリス(ヒドロキシメチル)メチル]アクリルアミド(下記式E2)を用いて、表2に示すモノマー混合液を調製したが、N-[トリス(ヒドロキシメチル)メチル]アクリルアミドが全く溶解しなかった。
Figure JPOXMLDOC01-appb-C000018

比較例8(分子構造中に水酸基またはポリエチレングリコール基を含まないシリコーンモノマーを用いた場合)
 コンタクトレンズの成分として、メタクリロイルオキシエチルコハク酸3-[トリス(トリメチルシロキシ)シリル]プロピル(下記式E3)を用いて、表2に示すモノマー混合液を調製したが、溶液は二層分離し、グリセロールメタクリレートとの均質なモノマー混合液を得ることは出来なかった。
Figure JPOXMLDOC01-appb-C000019
比較例9(分子構造中に水酸基またはポリエチレングリコール基を含まないシリコーンモノマーを用いた場合)
 コンタクトレンズの成分として、トリス(トリメチルシロキシ-γ-メタクリロキシプロピルシラン(下記式E4)を用いて、表2に示すモノマー混合液を調製したが、溶液は二層分離し、グリセロールメタクリレートとの均質なモノマー混合液を得ることは出来なかった。
Figure JPOXMLDOC01-appb-C000020

比較例10(分子構造中に水酸基またはポリエチレングリコール基を含まないシリコーンモノマーを用いた場合)
 コンタクトレンズの成分として、 トリス(トリメチルシロキシ)シリルプロピルビニルカルバメート(下記式E5)を用いて、表2に示すモノマー混合液を調製したが、溶液は二層分離し、グリセロールメタクリレートとの均質なモノマー混合液を得ることは出来なかった。
Figure JPOXMLDOC01-appb-C000021

Figure JPOXMLDOC01-appb-T000022

Figure JPOXMLDOC01-appb-T000023

 

Claims (10)

  1.  分子構造中に少なくとも1つの水酸基またはポリエチレングリコール基を有するシリコーンモノマーの少なくとも1種以上とグリセロールモノ(メタ)アクリレートとを含む混合液を両面キャストモールドの中で硬化させることによって得られるシリコーンハイドロゲルソフトコンタクトレンズであって、重合後のレンズ形状材料に表面の水濡れ性を良化させるための後処理をしなくても湿潤性表面を有するシリコーンハイドロゲルソフトコンタクトレンズ。
  2.  分子構造中に少なくとも1つの水酸基またはポリエチレングリコール基を有するシリコーンモノマーが、下記一般式(I)で示される、請求項1に記載のシリコーンハイドロゲルソフトコンタクトレンズ。
    Figure JPOXMLDOC01-appb-C000001

    [式中、R、R、RおよびRはメチル基であって、aは1~3の整数を表し、nは0又は1を表し、mは0又は4~10を表わす。ただし、nが1であるときにはmは0であって、nが0であるときにはmは4~10である。式中のxは下記式(Y1)~(Y3)で表される置換基から選ばれた1つである。]
    Figure JPOXMLDOC01-appb-C000002
  3.  分子構造中に少なくとも1つの水酸基またはポリエチレングリコール基を有するシリコーンモノマーが30~70重量%であり、グリセロールモノ(メタ)アクリレートが15~60重量%を含む重合溶液を重合することにより得られる請求項1又は2に記載のシリコーンハイドロゲルソフトコンタクトレンズ。
  4.  (a)分子構造中に少なくとも1つの水酸基またはポリエチレングリコール基を有するシリコーンモノマーが30~70重量%、
     (b)グリセロールモノ(メタ)アクリレートが15~60重量%、
     (c)分子構造中に水酸基またはポリエチレングリコール基を含まないシリコーンモノマーが0~20重量%、
     (d)親水性モノマーが0~50重量%、
     (e)架橋性モノマーが0.1~1重量%
    を含む混合液を重合することにより得られる請求項1~3のいずれか1項に記載のシリコーンハイドロゲルソフトコンタクトレンズ。
  5.  分子構造中に水酸基またはポリエチレングリコール基を含まないシリコーンモノマー(c)が、トリス(トリメチルシロキシ)-γ-メタクリロキシプロピルシラン、メタクリロイルオキシエチルコハク酸3-[トリス(トリメチルシロキシ)シリル]プロピルから選ばれる1種以上のモノマーである、請求項4に記載のシリコーンハイドロゲルソフトコンタクトレンズ。
  6.  親水性モノマー(d)が2-ヒドロキシエチルメタクリレート、N-ビニル-2-ピロリドン、メタクリル酸から選らばれる1種以上のモノマーである、請求項4又は5に記載のシリコーンハイドロゲルソフトコンタクトレンズ。
  7.  両面キャストモールドの材質がポリプロピレンである請求項1~6のいずれか1項に記載のシリコーンハイドロゲルソフトコンタクトレンズ。
  8.  該ソフトコンタクトレンズの含水率が20%以上、50%未満である、請求項1~7のいずれか1項に記載のシリコーンハイドロゲルソフトコンタクトレンズ。
  9.  分子構造中に少なくとも1つの水酸基またはポリエチレングリコール基を有するシリコーンモノマーの少なくとも1種以上とグリセロールモノ(メタ)アクリレートとを混合することによって、混合液を調製する工程;
     該混合液を両面キャストモールド型にキャストする工程;及び
     該混合液を該両面キャストモールド型中で硬化させる工程
    を含む、シリコーンハイドロゲルソフトコンタクトレンズの製造方法。
  10.  重合後のレンズ形状材料に表面の水濡れ性を良化させるための後処理をしない、請求項9に記載の製造方法。
PCT/JP2013/056613 2012-04-18 2013-03-11 湿潤性表面を有するシリコーンハイドロゲルソフトコンタクトレンズ WO2013157320A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380004103.9A CN103959140B (zh) 2012-04-18 2013-03-11 具有可湿性表面的有机硅水凝胶软性隐形眼镜
SG11201402563RA SG11201402563RA (en) 2012-04-18 2013-03-11 Silicone hydrogel soft contact lens having wettable surface
EP13778371.8A EP2840431B1 (en) 2012-04-18 2013-03-11 Silicone hydrogel soft contact lens having wettable surface
US14/361,195 US10241234B2 (en) 2012-04-18 2013-03-11 Silicone hydrogel soft contact lens having wettable surface
KR1020147014644A KR101918645B1 (ko) 2012-04-18 2013-03-11 습윤성 표면을 가지는 실리콘 하이드로겔 소프트 콘택트 렌즈

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012094875A JP5927014B2 (ja) 2012-04-18 2012-04-18 湿潤性表面を有するシリコーンハイドロゲルソフトコンタクトレンズ
JP2012-094875 2012-04-18

Publications (1)

Publication Number Publication Date
WO2013157320A1 true WO2013157320A1 (ja) 2013-10-24

Family

ID=49383288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056613 WO2013157320A1 (ja) 2012-04-18 2013-03-11 湿潤性表面を有するシリコーンハイドロゲルソフトコンタクトレンズ

Country Status (7)

Country Link
US (1) US10241234B2 (ja)
EP (1) EP2840431B1 (ja)
JP (1) JP5927014B2 (ja)
KR (1) KR101918645B1 (ja)
CN (1) CN103959140B (ja)
SG (1) SG11201402563RA (ja)
WO (1) WO2013157320A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3110405A4 (en) * 2014-02-25 2017-10-18 Oculeve, Inc. Polymer formulations for nasolacrimal stimulation
US10112048B2 (en) 2014-10-22 2018-10-30 Oculeve, Inc. Stimulation devices and methods for treating dry eye
US10155108B2 (en) 2013-04-19 2018-12-18 Oculeve, Inc. Nasal stimulation devices and methods
US10207108B2 (en) 2014-10-22 2019-02-19 Oculeve, Inc. Implantable nasal stimulator systems and methods
JP2019053125A (ja) * 2017-09-13 2019-04-04 日油株式会社 コンタクトレンズ用モノマー組成物、コンタクトレンズ用重合体及びその製造方法、並びにコンタクトレンズ及びその製造方法
US10252048B2 (en) 2016-02-19 2019-04-09 Oculeve, Inc. Nasal stimulation for rhinitis, nasal congestion, and ocular allergies
US10328262B2 (en) 2010-11-16 2019-06-25 The Board Of Trustees Of The Leland Stanford Junior University Stimulation devices and methods
US10426958B2 (en) 2015-12-04 2019-10-01 Oculeve, Inc. Intranasal stimulation for enhanced release of ocular mucins and other tear proteins
US10537469B2 (en) 2013-03-12 2020-01-21 Oculeve, Inc. Implant delivery devices, systems, and methods
US10610095B2 (en) 2016-12-02 2020-04-07 Oculeve, Inc. Apparatus and method for dry eye forecast and treatment recommendation
US10610695B2 (en) 2014-10-22 2020-04-07 Oculeve, Inc. Implantable device for increasing tear production
US10722713B2 (en) 2014-07-25 2020-07-28 Oculeve, Inc. Stimulation patterns for treating dry eye
US10918864B2 (en) 2016-05-02 2021-02-16 Oculeve, Inc. Intranasal stimulation for treatment of meibomian gland disease and blepharitis

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2873673B1 (en) * 2013-11-14 2017-06-28 Shin-Etsu Chemical Co., Ltd. Silicone compound and a use thereof
CN107003541B (zh) 2014-10-08 2020-11-17 印诺维嘉有限公司 接触镜和用于构造接触镜的方法和***
JP6333211B2 (ja) * 2015-04-23 2018-05-30 信越化学工業株式会社 眼科デバイス製造用シリコーン
JP2017080303A (ja) * 2015-10-30 2017-05-18 日油株式会社 薬物徐放性医療用コンタクトレンズ
JP6805488B2 (ja) * 2015-12-02 2020-12-23 国立大学法人山形大学 医療用具用重合体用単量体組成物、及び、医療用具用重合体
US10268053B2 (en) * 2016-02-22 2019-04-23 Novartis Ag UV/visible-absorbing vinylic monomers and uses thereof
CN109790259B (zh) * 2016-09-30 2021-12-07 东丽株式会社 共聚物和使用其的医疗材料
KR101966799B1 (ko) 2017-01-24 2019-04-08 충북대학교 산학협력단 모바일 기기 진단시스템
KR102508096B1 (ko) * 2017-05-11 2023-03-10 도레이 카부시키가이샤 의료 디바이스의 제조 방법
JP6693469B2 (ja) * 2017-05-12 2020-05-13 信越化学工業株式会社 表面改質剤およびこれを用いた表面改質方法
KR102006918B1 (ko) * 2017-12-21 2019-08-02 주식회사 티씨 싸이언스 실리콘 함유 소프트 콘텍트렌즈 제조방법과 상기 방법에 의해 제조된 소프트 콘텍트렌즈 및 상기 소프트 콘텍트렌즈 성형용 조성물
SG11202013115UA (en) * 2018-06-28 2021-01-28 Acuity Polymers Inc Ultra-high dk material
US10633472B2 (en) 2018-06-28 2020-04-28 Acuity Polymers, Inc. Ultra-high Dk material
US11578176B2 (en) * 2019-06-24 2023-02-14 Johnson & Johnson Vision Care, Inc. Silicone hydrogel contact lenses having non-uniform morphology
US20210347929A1 (en) * 2020-05-07 2021-11-11 Alcon Inc. Method for producing silicone hydrogel contact lenses
US20220075210A1 (en) * 2020-09-10 2022-03-10 Coopervision International Limited Contact lens
CN112175130B (zh) * 2020-10-17 2022-06-10 甘肃天后光学科技有限公司 高亲水性有机硅水凝胶、角膜接触镜及制备方法
WO2022235777A1 (en) * 2021-05-04 2022-11-10 Acuity Polymers, Inc. Transparent polymeric materials with high oxygen diffusion containing di-functional poss cages with hydrophilic substituents

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515110A (en) 1978-07-15 1980-02-02 Toyo Contact Lens Co Ltd Contact lens
US4395496A (en) 1981-11-16 1983-07-26 Uco Optics, Inc. Cured cellulose ester, method of curing same, and use thereof
JPS63163811A (ja) 1986-12-26 1988-07-07 Seiko Epson Corp コンタクトレンズ
JPH03196117A (ja) 1989-12-26 1991-08-27 Seiko Epson Corp ソフトコンタクトレンズ
JPH04332760A (ja) 1991-05-09 1992-11-19 Nippon Contact Lens Kk 医療用材料
JPH11502949A (ja) 1995-04-04 1999-03-09 ノバルティス アクチエンゲゼルシャフト 長期装着用の眼のレンズ
JPH11228644A (ja) 1997-10-09 1999-08-24 Johnson & Johnson Vision Prod Inc シリコーンヒドロゲルポリマー
JPH11315142A (ja) * 1998-03-02 1999-11-16 Johnson & Johnson Vision Prod Inc シリコ―ンヒドロゲルポリマ―
JP2000191667A (ja) 1998-12-24 2000-07-11 Toray Ind Inc 眼用レンズ用モノマー、眼用レンズ用ポリマーおよびそれを用いたコンタクトレンズ
JP2001183502A (ja) 1999-12-24 2001-07-06 Asahi Kasei Aimii Kk 耐汚れ付着性ソフトコンタクトレンズ材料
JP2001311917A (ja) 2000-02-24 2001-11-09 Hoya Healthcare Corp 側鎖にポリシロキサン構造を有するマクロマーからなるコンタクトレンズ材料
JP2001323024A (ja) 2000-05-12 2001-11-20 Toray Ind Inc モノマー、ポリマーおよびそれを用いた眼用レンズ
WO2003021336A1 (fr) * 2000-02-24 2003-03-13 Johnson & Johnson Vision Care, Inc. Procede de production de polymere destine a des lentilles ophtalmiques et lentilles ophtalmiques correspondantes
JP2003215509A (ja) 2002-01-24 2003-07-30 Hoya Healthcare Corp 親水化表面を有するシリコーンハイドロゲルからなるソフトコンタクトレンズの製造方法及びソフトコンタクトレンズ
JP2005513173A (ja) 2001-09-10 2005-05-12 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 内部湿潤剤を含有している生体医学装置
JP2005539098A (ja) * 2002-03-11 2005-12-22 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 低多分散性ポリhema組成物
JP2007160706A (ja) 2005-12-14 2007-06-28 Asahi Kasei Aimii Kk 重合用の樹脂鋳型
JP2009522596A (ja) * 2005-12-29 2009-06-11 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 界面活性剤を用いて、シリコーンヒドロゲルの眼科用レンズを離型させるための方法およびシステム
JP2010510550A (ja) 2006-11-22 2010-04-02 サフロン シーエル リミテッド コンタクトレンズ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034461A (en) * 1989-06-07 1991-07-23 Bausch & Lomb Incorporated Novel prepolymers useful in biomedical devices
US6310116B1 (en) * 1997-10-09 2001-10-30 Kuraray Co., Ltd. Molded polymer article having a hydrophilic surface and process for producing the same
US6822016B2 (en) * 2001-09-10 2004-11-23 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
US5998498A (en) * 1998-03-02 1999-12-07 Johnson & Johnson Vision Products, Inc. Soft contact lenses
JP4438162B2 (ja) 2000-02-24 2010-03-24 東レ株式会社 眼用レンズ用ポリマーの製造法および眼用レンズ
US8414804B2 (en) * 2006-03-23 2013-04-09 Johnson & Johnson Vision Care, Inc. Process for making ophthalmic lenses
EP2388281B1 (en) * 2009-01-19 2013-11-06 NOF Corporation Silicone monomer

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515110A (en) 1978-07-15 1980-02-02 Toyo Contact Lens Co Ltd Contact lens
US4395496A (en) 1981-11-16 1983-07-26 Uco Optics, Inc. Cured cellulose ester, method of curing same, and use thereof
JPS63163811A (ja) 1986-12-26 1988-07-07 Seiko Epson Corp コンタクトレンズ
JPH03196117A (ja) 1989-12-26 1991-08-27 Seiko Epson Corp ソフトコンタクトレンズ
JPH04332760A (ja) 1991-05-09 1992-11-19 Nippon Contact Lens Kk 医療用材料
JPH11502949A (ja) 1995-04-04 1999-03-09 ノバルティス アクチエンゲゼルシャフト 長期装着用の眼のレンズ
JPH11228644A (ja) 1997-10-09 1999-08-24 Johnson & Johnson Vision Prod Inc シリコーンヒドロゲルポリマー
JPH11315142A (ja) * 1998-03-02 1999-11-16 Johnson & Johnson Vision Prod Inc シリコ―ンヒドロゲルポリマ―
JP2000191667A (ja) 1998-12-24 2000-07-11 Toray Ind Inc 眼用レンズ用モノマー、眼用レンズ用ポリマーおよびそれを用いたコンタクトレンズ
JP2001183502A (ja) 1999-12-24 2001-07-06 Asahi Kasei Aimii Kk 耐汚れ付着性ソフトコンタクトレンズ材料
JP2001311917A (ja) 2000-02-24 2001-11-09 Hoya Healthcare Corp 側鎖にポリシロキサン構造を有するマクロマーからなるコンタクトレンズ材料
WO2003021336A1 (fr) * 2000-02-24 2003-03-13 Johnson & Johnson Vision Care, Inc. Procede de production de polymere destine a des lentilles ophtalmiques et lentilles ophtalmiques correspondantes
JP2001323024A (ja) 2000-05-12 2001-11-20 Toray Ind Inc モノマー、ポリマーおよびそれを用いた眼用レンズ
JP2005513173A (ja) 2001-09-10 2005-05-12 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 内部湿潤剤を含有している生体医学装置
JP2003215509A (ja) 2002-01-24 2003-07-30 Hoya Healthcare Corp 親水化表面を有するシリコーンハイドロゲルからなるソフトコンタクトレンズの製造方法及びソフトコンタクトレンズ
JP2005539098A (ja) * 2002-03-11 2005-12-22 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 低多分散性ポリhema組成物
JP2007160706A (ja) 2005-12-14 2007-06-28 Asahi Kasei Aimii Kk 重合用の樹脂鋳型
JP2009522596A (ja) * 2005-12-29 2009-06-11 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 界面活性剤を用いて、シリコーンヒドロゲルの眼科用レンズを離型させるための方法およびシステム
JP2010510550A (ja) 2006-11-22 2010-04-02 サフロン シーエル リミテッド コンタクトレンズ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2840431A4

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10328262B2 (en) 2010-11-16 2019-06-25 The Board Of Trustees Of The Leland Stanford Junior University Stimulation devices and methods
US10835748B2 (en) 2010-11-16 2020-11-17 Oculeve, Inc. Stimulation devices and methods
US10537469B2 (en) 2013-03-12 2020-01-21 Oculeve, Inc. Implant delivery devices, systems, and methods
US10238861B2 (en) 2013-04-19 2019-03-26 Oculeve, Inc. Nasal stimulation devices and methods for treating dry eye
US10155108B2 (en) 2013-04-19 2018-12-18 Oculeve, Inc. Nasal stimulation devices and methods
US10967173B2 (en) 2013-04-19 2021-04-06 Oculeve, Inc. Nasal stimulation devices and methods for treating dry eye
US10835738B2 (en) 2013-04-19 2020-11-17 Oculeve, Inc. Nasal stimulation devices and methods
US10799695B2 (en) 2013-04-19 2020-10-13 Oculeve, Inc. Nasal stimulation devices and methods
US10799696B2 (en) 2014-02-25 2020-10-13 Oculeve, Inc. Polymer formulations for nasolacrimal stimulation
EP3110405A4 (en) * 2014-02-25 2017-10-18 Oculeve, Inc. Polymer formulations for nasolacrimal stimulation
US9956397B2 (en) 2014-02-25 2018-05-01 Oculeve, Inc. Polymer Formulations for nasolacrimal stimulation
EP3689338A1 (en) * 2014-02-25 2020-08-05 Oculeve, Inc. Polymer formulations for nasolacrimal stimulation
US10722713B2 (en) 2014-07-25 2020-07-28 Oculeve, Inc. Stimulation patterns for treating dry eye
US10610695B2 (en) 2014-10-22 2020-04-07 Oculeve, Inc. Implantable device for increasing tear production
US10780273B2 (en) 2014-10-22 2020-09-22 Oculeve, Inc. Stimulation devices and methods for treating dry eye
US10207108B2 (en) 2014-10-22 2019-02-19 Oculeve, Inc. Implantable nasal stimulator systems and methods
US10112048B2 (en) 2014-10-22 2018-10-30 Oculeve, Inc. Stimulation devices and methods for treating dry eye
US10426958B2 (en) 2015-12-04 2019-10-01 Oculeve, Inc. Intranasal stimulation for enhanced release of ocular mucins and other tear proteins
US10252048B2 (en) 2016-02-19 2019-04-09 Oculeve, Inc. Nasal stimulation for rhinitis, nasal congestion, and ocular allergies
US10940310B2 (en) 2016-02-19 2021-03-09 Oculeve, Inc. Nasal stimulation for rhinitis, nasal congestion, and ocular allergies
US10918864B2 (en) 2016-05-02 2021-02-16 Oculeve, Inc. Intranasal stimulation for treatment of meibomian gland disease and blepharitis
US10610095B2 (en) 2016-12-02 2020-04-07 Oculeve, Inc. Apparatus and method for dry eye forecast and treatment recommendation
JP2019053125A (ja) * 2017-09-13 2019-04-04 日油株式会社 コンタクトレンズ用モノマー組成物、コンタクトレンズ用重合体及びその製造方法、並びにコンタクトレンズ及びその製造方法

Also Published As

Publication number Publication date
SG11201402563RA (en) 2014-09-26
US20140362339A1 (en) 2014-12-11
KR101918645B1 (ko) 2018-11-15
JP2013222141A (ja) 2013-10-28
EP2840431A4 (en) 2016-01-06
JP5927014B2 (ja) 2016-05-25
CN103959140A (zh) 2014-07-30
EP2840431B1 (en) 2016-09-07
CN103959140B (zh) 2016-05-04
EP2840431A1 (en) 2015-02-25
US10241234B2 (en) 2019-03-26
KR20140146050A (ko) 2014-12-24

Similar Documents

Publication Publication Date Title
JP5927014B2 (ja) 湿潤性表面を有するシリコーンハイドロゲルソフトコンタクトレンズ
US9529119B2 (en) Method for fabricating silicone-containing copolymer molded article having hydrophilic surface and silicone-hydrogel contact lens having hydrophilic surface
JP4732464B2 (ja) 重合可能な界面活性剤、および器具形成コモノマーとしてのその利用
KR101617831B1 (ko) 친수성 실리콘 단량체, 그 제조 방법 및 그것을 함유하는 박막
JP5604154B2 (ja) ポリマー材料、眼用レンズ及びコンタクトレンズ
EP2828337B1 (en) Hydrophilic macromers and hydrogels comprising the same
TW201243428A (en) Dimensionally stable silicone hydrogel contact lenses
Chekina et al. A new polymeric silicone hydrogel for medical applications: synthesis and properties
US9804296B2 (en) Hydrophilic macromers and hydrogels comprising the same
JP2014040598A (ja) ポリマー材料、眼用レンズ及びコンタクトレンズ
JP4772939B2 (ja) 重合性単量体組成物およびコンタクトレンズ
JP2015515514A5 (ja)
KR101860832B1 (ko) 산소투과성 및 습윤성이 우수한 신규한 실리콘하이드로겔 콘택트렌즈
WO2024058213A1 (ja) コンタクトレンズ用モノマー組成物、コンタクトレンズ用重合体、並びにコンタクトレンズ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380004103.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778371

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013778371

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013778371

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14361195

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147014644

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE