WO2013150979A1 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
WO2013150979A1
WO2013150979A1 PCT/JP2013/059591 JP2013059591W WO2013150979A1 WO 2013150979 A1 WO2013150979 A1 WO 2013150979A1 JP 2013059591 W JP2013059591 W JP 2013059591W WO 2013150979 A1 WO2013150979 A1 WO 2013150979A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
resin composition
mass
parts
manufactured
Prior art date
Application number
PCT/JP2013/059591
Other languages
French (fr)
Japanese (ja)
Inventor
大夢 佐藤
勝由 江幡
雅則 二階堂
鈴木 勤
三村 博
Original Assignee
ライオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライオン株式会社 filed Critical ライオン株式会社
Priority to CN201380018465.3A priority Critical patent/CN104245832B/en
Priority to KR1020147026025A priority patent/KR102000809B1/en
Priority to MYPI2014702847A priority patent/MY184861A/en
Publication of WO2013150979A1 publication Critical patent/WO2013150979A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/72Derivatisation
    • C08G2261/724Hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a resin composition.
  • the present invention claims priority based on Japanese Patent Application No. 2012-085075 filed in Japan on April 4, 2012, the contents of which are incorporated herein by reference.
  • a semiconductor storage and conveyance container made of a resin molded body is used to convey or store a wafer or the like.
  • the performance required for semiconductor storage and transport containers includes mechanical strength against bending, impact, heat resistance, and antistatic properties (ie, conductivity) to prevent dust or dust adhesion or circuit breakdown. It is mentioned that it is excellent.
  • a resin composition for providing such a semiconductor storage and conveyance container for example, a resin composition containing a cyclic olefin copolymer, an olefin-based resin, and a conductive filler has been proposed (see Patent Document 1).
  • the glass transition temperature obtained by polymerizing a cyclic olefin polymer having a specific glass transition temperature and two or more monomers selected from the group consisting of olefin, diene and aromatic vinyl hydrocarbon is 0 ° C. or less.
  • a resin composition obtained by melt-kneading a soft copolymer, a radical initiator, and a polyfunctional compound having two or more radical polymerizable functional groups in the molecule has been proposed (see Patent Document 2). ).
  • one embodiment of the resin composition of the present invention comprises a cyclic olefin homopolymer (A) having a glass transition temperature of 101 to 160 ° C., a fibrous conductive filler (B), an olefin elastomer and a styrene elastomer. And containing at least one elastomer (C) selected from the group consisting of 5 to 25 parts by mass with respect to 100 parts by mass of the cyclic olefin homopolymer (A). It is characterized by.
  • the resin composition of the present invention preferably further contains polyethylene (D) having a viscosity average molecular weight of 1,000,000 or more. Moreover, it is preferable that the resin composition of this invention further contains a particulate conductive filler (E).
  • the particulate conductive filler (E) is preferably carbon black having an n-dibutyl phthalate oil absorption of 180 mL / 100 g or more.
  • the resin composition of the present invention is selected from the group consisting of a cyclic olefin homopolymer (A) having a glass transition temperature of 101 to 160 ° C., a fibrous conductive filler (B), an olefin elastomer and a styrene elastomer. Containing at least one elastomer (C).
  • a cyclic olefin homopolymer A having a glass transition temperature of 101 to 160 ° C.
  • B fibrous conductive filler
  • an olefin elastomer and a styrene elastomer Containing at least one elastomer (C).
  • these components are also referred to as component (A), component (B), and component (C), respectively.
  • the component (A) is used as a base resin for the resin composition.
  • the resin composition contains the component (A)
  • it is excellent in low outgassing in addition to heat resistance.
  • the component (A) has a low water absorption compared to other types of thermoplastic resins, when the resin composition containing the component (A) is formed into a molded body, it is possible to prevent moisture from adhering to a wafer or the like. .
  • Cyclic olefin homopolymer means a polymer (homopolymer) obtained by homopolymerizing the cyclic olefin using a cyclic olefin as a monomer, and the main chain of the polymer has a cyclic hydrocarbon structure composed of carbon-carbon bonds. It is a polymer compound.
  • the cyclic olefin refers to a cyclic hydrocarbon having at least one olefin (double bond) represented by norbornene and tetracyclododecene.
  • polycyclic olefins represented by norbornene and tetracyclododecene are preferable.
  • Examples of the component (A) include a ring-opening polymer of a monomer having a norbornene ring or a hydrogenated product thereof disclosed in JP-A-1-168724 and JP-A-1-168725.
  • the monomer having a norbornene ring is a bicyclic olefin norbornene that is an adduct of ethylene and cyclopentadiene, or a tetracyclic olefin tetracyclododecene or cyclopentadiene that is obtained by adding cyclopentadiene to norbornene.
  • a tricyclic diene tricyclodecadiene also called dicyclopentadiene
  • a tricyclic olefin tricyclodecene and cyclopentadiene trimer in which a part of the unsaturated bond of dicyclopentadiene is saturated by hydrogenation.
  • Pentacyclopentadecene, a pentacyclic diene, pentacyclopentadecene, a pentacyclic olefin in which part of the unsaturated bond of pentacyclopentadedecadiene is saturated by hydrogenation also known as 2,3-dihydrodicyclopentadiene
  • substitutions thereof are exemplified. .
  • glass transition temperature (Tg) indicates a value measured by a method based on JIS K7121.
  • the Tg of the component (A) is 101 to 160 ° C., preferably 101 to 150 ° C., more preferably 101 to 140 ° C., particularly preferably 102 to 140 ° C., and most preferably 105 to 140 ° C. If Tg of (A) component is 101 degreeC or more, the generation amount of outgas will be easy to reduce. In addition, the heat resistance is further increased. If Tg is 160 ° C. or lower, the amount of outgas generated is likely to be reduced.
  • the component (A) in the resin composition, as the component (A), one type may be used alone, or two or more types may be used in combination.
  • the component (A) is preferably a ring-opening polymer of a monomer having a Tg of 101 to 160 ° C. and having a norbornene ring or a hydrogenated product thereof, because the effects of the present invention are more excellent.
  • a hydrogenated product of a ring-opening polymer is particularly preferable.
  • the number average molecular weight of the component (A) is preferably 3,000 to 500,000, and more preferably 8,000 to 200,000.
  • the aspect ratio of the component (B) is preferably 3 to 3000, more preferably 50 to 2000 from the viewpoint of handling and strength reinforcement.
  • the component (B) carbon fiber, carbon nanotube, or the like can be used.
  • the type of carbon fiber is not particularly limited, and various types such as polyacrylonitrile (PAN) -based, pitch-based, cellulose-based, and lignin-based are included.
  • PAN-based or pitch-based carbon fibers are preferably used from the viewpoint of strength reinforcement. From the viewpoint of improving handling properties, it is preferable to use one having a fiber length of 3 to 6 mm bundled with a sizing agent.
  • the sizing agent refers to a sizing agent that is added to the carbon fiber for the purpose of dispersing the carbon fiber in the resin and improving handling properties.
  • the sizing agent from the viewpoint of dispersibility in the resin, it is preferable to use epoxy, urethane, or a converging agent using a combination of epoxy and urethane.
  • (B) component contains the said sizing agent and carbon fiber.
  • the fiber diameter is preferably in the range of 5 to 15 ⁇ m, more preferably in the range of 5 to 12 ⁇ m, and still more preferably in the range of 6 to 10 ⁇ m.
  • the impregnation ratio of the sizing agent is preferably 3% by mass or less, more preferably 1 to 3% by mass with respect to the entire carbon fiber (100% by mass).
  • Commercially available products include NPS chopped fiber (manufactured by Nippon Polymer Co., Ltd., PAN-based carbon fiber, sizing agent: 1.75% epoxy urethane, fiber length: 6 mm), trading card (registered trademark) (manufactured by Toray Industries, Inc., PAN-based carbon) Fiber, sizing agent: urethane 3.0%, fiber length: 6 mm), Pyrofil (registered trademark) (manufactured by Mitsubishi Rayon Co., Ltd., PAN-based carbon fiber, sizing agent: 3.0%, fiber length: 6 mm) It is done.
  • both single-walled carbon nanotubes having a structure in which a graphite layer is wound in one layer, multi-walled carbon nanotubes having a structure in which two or more layers are wound, and multi-walled carbon nanotubes are used. It is preferable.
  • the fiber diameter and fiber length are not particularly limited as long as they have the effects of the present invention and have an aspect ratio of 3.0 to 250. Examples of commercially available products include VGCF (registered trademark) and VGCF-X (registered trademark) (both manufactured by Showa Denko KK).
  • the component (B) one type may be used alone, or two or more types may be used in combination.
  • the content of the component (B) in the resin composition is not particularly limited as long as it has the effects of the present invention, but it is preferably 3 to 25 parts by weight with respect to 100 parts by weight of the component (A), and 3 to 20 parts by weight. More preferably, it is 3 to 15 parts by mass, particularly preferably 4 to 15 parts by mass.
  • the content of the component (B) is less than 3 parts by mass with respect to 100 parts by mass of the component (A), it becomes difficult to obtain sufficient conductivity. Moreover, when it exceeds 25 mass parts, it will be easy to cause a fall of impact resistance.
  • the content of the component (B) in the resin composition is preferably 2 to 25% by mass, more preferably 3 to 20% by mass when the entire resin composition is 100% by mass, It is particularly preferably 3 to 12% by mass.
  • the content of the component (B) is less than 2% by mass, it is difficult to obtain sufficient conductivity.
  • content of (B) component exceeds 25 mass%, it will be easy to cause a fall of impact resistance. That is, when the content of the component (B) is 3 to 25 parts by mass with respect to 100 parts by mass of the component (A), or 2 to 25% by mass when the total resin composition is 100% by mass. If it exists, sufficient electroconductivity is acquired and since the impact resistance of a molded object does not fall, it is preferable.
  • the component (C) mainly contributes to improvement of mechanical strength (impact strength).
  • “Elastomer” means a polymer substance that is an elastic body at room temperature (25 ° C.).
  • the polymer material may be a natural polymer material or a synthetic polymer material.
  • the olefin-based elastomer (hereinafter also referred to as “component (C1)”) is composed of carbon atoms and hydrogen atoms obtained by polymerizing the olefin using olefin as a monomer, and has no aromatic ring.
  • component (C1) is composed of carbon atoms and hydrogen atoms obtained by polymerizing the olefin using olefin as a monomer, and has no aromatic ring.
  • Styrenic elastomer (hereinafter also referred to as “(C2) component”) is a styrene-based monomer having butadiene, butylene, or the like as a monomer, and having an aromatic ring in the main chain obtained by polymerizing the monomer, at room temperature ( A polymer substance that is an elastic material at 25 ° C.) and is typified by an aromatic vinyl-conjugated diene block copolymer.
  • the styrene elastomer is preferably styrene / butadiene / styrene (SBS), styrene / butadiene / butylene / styrene (SBBS), or styrene / ethylene / butylene / styrene (SEBS).
  • SBS styrene / butadiene / styrene
  • SBBS styrene / butadiene / butylene / styrene
  • SEBS styrene / ethylene / butylene / styrene
  • each of the (C1) component or the (C2) component may be used alone or in combination of two or more, and the (C1) component and the (C2) component are used in combination. May be.
  • the content of the component (C) in the resin composition is 5 to 25 parts by weight, preferably 5 to 20 parts by weight, and preferably 7 to 20 parts by weight with respect to 100 parts by weight of the component (A). Is more preferably 7 to 15 parts by mass, and most preferably 9 to 15 parts by mass.
  • the content of the component (C) is less than 5 parts by mass, the effect of improving the impact resistance is not sufficient, and when it exceeds 25 parts by mass, the heat resistance and the mechanical strength are likely to be reduced. In addition, the amount of outgas generated increases.
  • the content of the component (C) in the resin composition is preferably 2 to 22% by mass, more preferably 3 to 20% by mass when the entire resin composition is 100% by mass. If the content of the component (C) in the resin composition is less than 2% by mass, the effect of improving the impact resistance is not sufficient, and if it exceeds 22% by mass, the heat resistance is lowered and the mechanical strength is lowered. It is easy to invite. In addition, the amount of outgas generated increases. That is, when the content of the component (C) in the resin composition is 5 to 25 parts by mass with respect to 100 parts by mass of the component (A), or when the entire resin composition is 100% by mass. The content of 2 to 22% by mass is preferable because the heat resistance and mechanical strength of the resin composition do not decrease and the amount of outgas generated can be reduced.
  • the intrinsic viscosity is measured by a method according to JIS K7367-3 (1999).
  • the viscosity average molecular weight of the component (D) is 1 million or more, preferably 1 million or more and 6 million or less, more preferably 1 million or more and 4 million or less, particularly preferably 1.2 million or more and 4 million or less, Preferably they are 1.5 million or more and 4 million or less.
  • the viscosity average molecular weight of (D) component is 1 million or more, the abrasion resistance with respect to a wafer etc. and weld adhesiveness will improve.
  • the weld adhesion is improved because the viscosity of the resin composition increases due to the viscosity average molecular weight of the component (D) being 1 million or more, and the adhesion between the resin compositions on the weld surface is improved. it is conceivable that.
  • the impact strength and fluidity of the resin composition are easily maintained favorably. Also, the amount of outgas generated is small.
  • welding adhesiveness means a state of occurrence of a line (weld line) generated in a portion where a molten resin composition joins in a mold, and the weld line of the obtained molded body is defined as a weld line. Evaluation was performed by visual confirmation.
  • the component (D) in the resin composition, as the component (D), one type may be used alone, or two or more types may be used in combination.
  • the component (D) is preferably in the form of a powder having a particle size of about 10 to 50 ⁇ m because it can be more uniformly mixed.
  • the “particle diameter” refers to a value measured using a Coulter counter TA-II type, Nikki Co., Ltd. under the condition that component (D) is dispersed in water.
  • a commercial item can be used for a component.
  • Hi-Zex Million registered trademark
  • Mipperon registered trademark
  • polyethylene having a viscosity average molecular weight of 1 million or more and 4 million or less
  • miperon made by Mitsui Chemicals is more preferable.
  • the effect of improving wear resistance and weld adhesion is not sufficient, and when the content exceeds 18% by mass, It tends to cause a decrease in fluidity. That is, if the content of the component (D) in the resin composition is 1 to 20 parts by mass with respect to 100 parts by mass of the component (A), or a total of 100 parts by mass of the components (A) to (C) 1 to 20 parts by mass or the content of the component (D) in the resin composition is 0.4 to 18% by mass when the entire resin composition is 100% by mass. For example, the effect of improving the wear resistance and weld adhesion can be sufficiently obtained, and the fluidity is unlikely to be lowered when formed into a molded body, which is preferable.
  • the component (B) forms a non-uniform conductive network at a low addition amount
  • the component (E) forms a uniform conductive network even at a low addition amount. It is because it acts on.
  • surface resistivity refers to a value measured under the conditions of ASTM D257 using MCP-HT260 Hiresta IP manufactured by Mitsubishi Chemical Analytech.
  • the curvature amount at the time of setting it as a molded object can be reduced (the generation
  • the component (E) refers to a conductive filler having an aspect ratio (length (major axis of particles) / width (minor axis of particles)) of less than 3.
  • the aspect ratio of the component (E) is preferably 1 or more and less than 3, and more preferably 1 or 2.
  • carbon black, graphite or the like can be used as the component (E). Among these, carbon black is preferable because a conductive network can be formed in the resin composition with a small addition amount and the impact strength is not impaired.
  • the component (E) one type may be used alone, or two or more types may be used in combination.
  • a commercial item can be used for a component.
  • the commercial products include Ketjen Black EC 300J (manufactured by Lion Corporation, primary particle diameter 40 nm), Ketjen Black EC 600JD (manufactured by Lion Corporation, primary particle diameter 34 nm), Vulcan XC-72 (manufactured by Cabot Corporation, primary A particle diameter of 37 nm), Denka Black (manufactured by Denki Kagaku Kogyo Co., Ltd., primary particle diameter of 43 nm) (all are trade names) and the like can be suitably used.
  • the content of the component (E) in the resin composition is preferably 1 to 15 parts by weight, more preferably 1 to 12 parts by weight, with respect to 100 parts by weight of the component (A). Part is particularly preferred.
  • the content of the component (E) is less than the preferred lower limit with respect to 100 parts by mass of the component (A)
  • the content of the component (E) in the resin composition is preferably 1 to 12 parts by mass, and preferably 1 to 10 parts by mass with respect to 100 parts by mass in total of the components (A) to (C). Is more preferably 5 to 10 parts by mass.
  • the content of the component (E) is less than the preferred lower limit with respect to a total of 100 parts by mass of the components (A) to (C)
  • the effect of stabilizing the surface resistivity when formed into a molded product, and molding caused by molding The effect of suppressing the warp of the body is not sufficiently obtained, and when the preferable upper limit is exceeded, the impact resistance is likely to be lowered.
  • the content of the component (E) in the resin composition is preferably 0.4 to 15% by mass, and preferably 0.5 to 13% by mass when the entire resin composition is 100% by mass. Is more preferably 1 to 12% by mass, and more preferably 1 to 10% by mass.
  • the content of the component (E) is less than the preferred lower limit, it is difficult to sufficiently obtain the effect of stabilizing the conductivity when forming a molded body and the effect of suppressing warpage of the molded body caused by molding. If the upper limit is exceeded, impact resistance tends to be reduced. Moreover, there is a risk of becoming a source of contamination.
  • the content of the component (E) in the resin composition is 1 to 15 parts by mass relative to 100 parts by mass of the component (A), or a total of 100 parts by mass of the components (A) to (C)
  • the amount is 1 to 12 parts by mass, or 0.4 to 15% by mass when the entire resin composition is 100% by mass, the surface resistivity is stabilized when the molded body is formed. And the effect of suppressing warpage of the molded product produced by molding can be sufficiently obtained, impact resistance is not lowered, and component (E) itself is not likely to become a contamination source, which is preferable.
  • the total content of the component (B) and the component (E) in the resin composition is 5 to 25% by mass when the total resin composition is 100% by mass. It is preferably 5 to 18% by mass.
  • the total content of the component (B) and the component (E) is less than the preferred lower limit, it is difficult to obtain desired conductivity, and when it exceeds the preferred upper limit, impact resistance tends to be lowered. . That is, if the total content of the component (B) and the component (E) is 5 to 25% by mass when the entire resin composition is 100% by mass, desired conductivity can be obtained, and It is preferable because the impact resistance of the molded body is difficult to decrease.
  • the content ratio ((B) component content / (E) component content) of (B) component and (E) component is 3.0 or less, the effect of curvature suppression is high and preferable.
  • the resin composition of the present invention can be produced by melt kneading the above-described components using a known resin kneading equipment (for example, a heat roll, a kneader, a Banbury mixer, etc.) or a twin-screw kneading extruder. If necessary, a pelletized resin composition may be formed using a pelletizer. What is necessary is just to set suitably the temperature at the time of melt-kneading the component mentioned above according to the kind of cyclic olefin homopolymer (A) to be used, and it is 200-400 degreeC normally.
  • a known resin kneading equipment for example, a heat roll, a kneader, a Banbury mixer, etc.
  • a twin-screw kneading extruder e.g., a twin-screw kneading extruder.
  • a pelletized resin composition may
  • a molded object is obtained by performing injection molding, injection compression molding, compression molding, extrusion molding, or blow molding using the resin composition of the present invention (preferably a resin composition in the form of pellets). be able to.
  • the resin composition of the present invention preferably a resin composition in the form of pellets.
  • a method for manufacturing a semiconductor storage container includes a step of melting a resin composition of the present invention (preferably a pellet-shaped resin composition) to obtain a molten resin, and filling the mold with the molten resin
  • the method preferably includes a step of obtaining a molded body.
  • the temperature for melting the resin composition of the present invention is preferably 260 to 300 ° C.
  • the mold temperature is preferably 50 to 100 ° C.
  • the molding temperature is preferably 260 to 290 ° C.
  • the mechanical strength is high, and the wafer and the like can be protected from impact caused by contact with other members.
  • heat resistance is high, and when a molded body is dried, deformation due to heat can be prevented.
  • a resin composition of the present invention is particularly suitable as an electronic component packaging container used in an electronic component manufacturing process in which low outgassing is strongly desired as semiconductor circuit patterns become finer.
  • it is suitable for a semiconductor storage and conveyance container.
  • A′-1 Cyclic olefin homopolymer, manufactured by Nippon Zeon Co., Ltd., trade name “ZEONOR (registered trademark) 1060R”, Tg is 100 ° C.
  • A′-2 Cyclic olefin homopolymer, manufactured by Nippon Zeon Co., Ltd., trade name “ZEONOR (registered trademark) 1600”, Tg: 163 ° C.
  • A′-3 Cyclic olefin copolymer, manufactured by Mitsui Chemicals, trade name “Apel (registered trademark) 5014DP”, Tg: 135 ° C.
  • [Fibrous conductive filler (B)] B-1 Carbon fiber, manufactured by Nippon Polymer Co., Ltd., trade name “EPU-LCL”. The fiber diameter is 7.0 ⁇ m, and the fiber length is 6.0 mm (aspect ratio 857).
  • C At least one elastomer (C) selected from the group consisting of olefin elastomers and styrene elastomers]
  • C-1 Styrene elastomer, manufactured by Asahi Kasei Chemical Co., Ltd., trade name “Tuftec (registered trademark) H1053”.
  • C-2 Olefin-based elastomer, manufactured by Mitsui Chemicals, Inc., trade name “Tuffmer (registered trademark) A4085S”.
  • C′-1 Polyester elastomer, manufactured by Toyobo Co., Ltd., trade name “Perprene (registered trademark) P150M”.
  • D-1 Ultra high molecular weight polyethylene, manufactured by Mitsui Chemicals, trade name “Miperon (registered trademark) XM-220”; viscosity average molecular weight 2 million, average particle size 30 ⁇ m.
  • Comparison component (D ′) of component (D)] D′-1 polyethylene having a viscosity average molecular weight of less than 1 million (high density polyethylene), manufactured by Prime Polymer Co., Ltd., trade name “Hi-Zex (registered trademark) 2208J”; viscosity average molecular weight of about 65,000.
  • E-1 Carbon black, manufactured by Lion Corporation, trade name “Ketjen Black (registered trademark) EC300J”; particle size (primary particle size) 40 nm, aspect ratio of about 1, n-dibutyl phthalate (DBP) oil absorption 360 mL / 100 g.
  • E′-1 Carbon black, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “Denka Black (registered trademark)”; particle size (primary particle size) 43 nm, n-dibutyl phthalate (DBP) oil absorption 165 mL / 100 g.
  • Example 1 Using a twin screw extruder NR-II (manufactured by Nakatani Machinery Co., Ltd., screw diameter: 57 mm), a pre-blended mixture of component (A) and component (C) is supplied from the former hopper of the extruder, and the mixture was completely melted at 280 ° C., component (B) was forcibly supplied to the extruder through a side feeder using a quantitative feeder and kneaded to obtain a compound. Next, after cooling the compound, a cylindrical pellet (diameter 2 mm, length 2 to 4 mm) was prepared using a pelletizer (manufactured by Nakatani Machinery Co., Ltd., GF5).
  • a pelletizer manufactured by Nakatani Machinery Co., Ltd., GF5
  • Example 5 A cylindrical pellet was prepared in the same manner as in Example 1 except that the composition was changed to the composition shown in Table 1.
  • Example 6 (Examples 6 and 7) Using a twin-screw extruder NR-II (manufactured by Nakatani Machinery Co., Ltd., screw diameter 57 mm), a pre-blended mixture of component (A), component (C) and component (D) was transferred from the former hopper of the extruder. When the mixture was completely melted, the compound (B) was forcibly supplied to the extruder through a side feeder using a quantitative feeder and kneaded to obtain a compound. Next, after cooling this compound, cylindrical pellets were prepared in the same manner as in Example 1.
  • NR-II manufactured by Nakatani Machinery Co., Ltd., screw diameter 57 mm
  • Example 8 A cylindrical pellet was prepared in the same manner as in Example 6 except that the component was changed to the comparative component (D ′).
  • Example 9 A cylindrical pellet was prepared in the same manner as in Example 1 except that the component (E) was supplied together with the component (B) through the side feeder by the quantitative feeder.
  • Example 11 Cylindrical pellets were prepared in the same manner as in Examples 6 and 7, except that the component (E) was supplied together with the component (B) through the side feeder using a quantitative feeder.
  • Example 12 Columnar pellets were prepared in the same manner as in Examples 9 and 10 except that the component (E) was changed to the comparative component (E ′).
  • Component is not blended, that is, using a twin screw extruder NR-II (manufactured by Nakatani Machinery Co., Ltd., screw diameter 57 mm), a mixture of (A) component and (C) component pre-blended in advance
  • the compound was obtained by supplying from the former hopper of the machine and melt-kneading. Next, after cooling this compound, cylindrical pellets were prepared in the same manner as in Example 1.
  • Example 3 A cylindrical pellet was prepared in the same manner as in Example 1 except that the composition was changed to the composition shown in Table 1.
  • Example 5 A columnar pellet was prepared in the same manner as in Example 2 except that the component (B) was changed to the comparative component (B ′).
  • test piece Using an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd., FS120EM25ASE), from the resin composition (cylindrical pellet) of each example prepared in the above production example, a dumbbell test piece for strength measurement (ISO standard multipurpose test piece) A), a flat plate for measuring conductivity (76 mm ⁇ 76 mm ⁇ 3.2 mm), and a test piece (310 mm ⁇ 360 mm ⁇ 20 mm) for evaluation of warpage suppression of the molded body were molded by a conventional method, and each evaluation A test piece was prepared for use.
  • the molding temperature was 250 to 280 ° C, and the mold temperature was set to 50 ° C.
  • the deflection temperature under load was measured by a method based on ISO 75-2Af as an index of heat resistance. The case where the deflection temperature under load was 95 ° C. or higher was regarded as acceptable. The higher the deflection temperature under load, the better the heat resistance.
  • the surface resistivity was measured by a method based on ASTM D257 as a conductivity index. A case where the surface resistivity was 1.0E + 4 to 1.0E + 10 (1.0 ⁇ 10 4 to 1.0 ⁇ 10 10 ) ⁇ was regarded as acceptable.
  • the amount of outgas generated as an indicator of low outgassing property was measured by the following method. Weigh out 5.0 g of the resin composition (cylindrical pellet) of each example, collect it in a test tube, and measure the amount of outgas generated when heated at 150 ° C. for 1 hour using a gas chromatograph mass spectrometer (GC-MS). And measured by the headspace (HS) method. The amount of volatile gas generated was converted from the relative concentration using phenol, and the value calculated as the concentration per unit mass was defined as the outgas generation amount.
  • GC-MS gas chromatograph mass spectrometer
  • HS headspace
  • the amount of volatile gas generated was converted from the relative concentration using phenol, and the value calculated as the concentration per unit mass was defined as the outgas generation amount.
  • the measuring apparatus 5890 manufactured by HP as a gas chromatography apparatus and 5972 manufactured by HP as a mass spectrometer were used. A case where the amount of outgas generated was less than 40 ppm was regarded as acceptable. The
  • Wafer sliding load was measured by conducting a wafer sliding wear test as an index of wear resistance. Using an amplitude tester, the cleaned and dried injection molded test piece (20 mm ⁇ 40 mm ⁇ 3 mm) was brought into contact with the outer peripheral portion (peripheral surface) of a 300 mm diameter silicon wafer. The reciprocating test was conducted 100,000 times. After the end of the reciprocating test, the amplitude tester was removed, and the peripheral surface of the silicon wafer that was in contact with the injection-molded test piece was connected to a tensile tester positioned vertically upward via a pulley. Then, the tensile load was measured at a constant speed, and the value was defined as the wafer sliding load (N).
  • Tensilon RTC-1325A (manufactured by ORIENTEC) was used as the tensile tester. If the wafer sliding load is within 0.40N, it is A. If it is better than 0.40N, B is better if it is within 0.40N but less than 0.60N, and if it is more than 0.60N, it is bad. As C, wear resistance was evaluated.
  • weld adhesion is a line (weld line) formed at a portion where a molten resin composition is joined when a cubic container (width 430 mm ⁇ length 356 mm ⁇ height 339 mm) is manufactured by injection molding from one gate. ) Occurrence state (appearance of the container) was observed visually. The weld adhesion was evaluated with A as the case where substantial weld lines were not observed, B as the case where weld lines were slightly observed, and C as the case where weld lines were clearly observed.
  • the standard deviation (variation) of the surface resistivity was determined as an index for stabilizing the conductivity (antistatic ability).
  • a flat plate (76 mm ⁇ 76 mm ⁇ 3.2 mm) for conductivity measurement was divided into six locations, and the surface resistivity of each division was measured.
  • the surface resistivity was measured using an MCP-HT260 Hiresta IP manufactured by Mitsubishi Chemical Analytech Co., Ltd. with an electrode-shaped URS probe.
  • the common logarithm of the surface resistivity of each category was calculated, and their standard deviation (variation) was analyzed. When the standard deviation of the logarithm of the surface resistivity is less than 0.03, the conductivity stability is better as A. When the standard deviation is 0.03 or more and less than 0.10, the conductivity stability is good. Assuming that B is 0.10 or more, C is regarded as having a variation in conductivity, and the conductivity stability was evaluated.
  • Example 9 containing E-1 having a DBP oil absorption of 180 mL or more is more than Example 12 containing E′-1 having a DBP oil absorption of less than 180 mL. It can be seen that, although the amount of the particulate conductive filler used is small, the same conductivity is exhibited, and the warpage of the molded body caused by stabilization of the conductivity and molding is achieved.
  • the resin composition of the present invention it is possible to provide a molded article having excellent mechanical strength, heat resistance, conductivity and low outgassing properties.

Abstract

The present invention relates to a resin composition which is characterized by containing (A) a cyclic olefin homopolymer that has a glass transition temperature of 101-160°C, (B) a fibrous conductive filler, and (C) at least one elastomer that is selected from the group consisting of olefin-based elastomers and styrene-based elastomers. This resin composition is also characterized in that the content of the elastomer (C) is 5-25 parts by mass relative to 100 parts by mass of the cyclic olefin homopolymer (A). The present invention is able to provide a resin composition which is capable of providing a molded body that has excellent mechanical strength, heat resistance, electrical conductivity and low-outgas properties.

Description

樹脂組成物Resin composition
 本発明は、樹脂組成物に関する。
 本発明は、2012年4月4日に、日本に出願された特願2012-085075号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a resin composition.
The present invention claims priority based on Japanese Patent Application No. 2012-085075 filed in Japan on April 4, 2012, the contents of which are incorporated herein by reference.
 半導体の製造工程では、ウェーハ等を搬送又は保管するために、樹脂成形体からなる半導体保管搬送容器が用いられている。
 半導体保管搬送容器に要求される性能としては、曲げ、衝撃に対する機械的強度、耐熱性、更には、ゴミもしくは塵の付着又は回路破壊等を防止するための静電気防止性(即ち、導電性)に優れていることが挙げられる。
 かかる半導体保管搬送容器を提供する樹脂組成物としては、たとえば、環状オレフィンコポリマーと、オレフィン系樹脂と、導電性フィラーとを含有するものが提案されている(特許文献1参照)。
 また、特定のガラス転移温度をもつ環状オレフィン重合体と、オレフィン、ジエン及び芳香族ビニル炭化水素からなる群より選択される2種以上の単量体を重合してなるガラス転移温度が0℃以下である軟質共重合体と、ラジカル開始剤と、ラジカル重合性の官能基を分子内に2個以上有する多官能化合物とを溶融混練してなる樹脂組成物が提案されている(特許文献2参照)。
In a semiconductor manufacturing process, a semiconductor storage and conveyance container made of a resin molded body is used to convey or store a wafer or the like.
The performance required for semiconductor storage and transport containers includes mechanical strength against bending, impact, heat resistance, and antistatic properties (ie, conductivity) to prevent dust or dust adhesion or circuit breakdown. It is mentioned that it is excellent.
As a resin composition for providing such a semiconductor storage and conveyance container, for example, a resin composition containing a cyclic olefin copolymer, an olefin-based resin, and a conductive filler has been proposed (see Patent Document 1).
The glass transition temperature obtained by polymerizing a cyclic olefin polymer having a specific glass transition temperature and two or more monomers selected from the group consisting of olefin, diene and aromatic vinyl hydrocarbon is 0 ° C. or less. A resin composition obtained by melt-kneading a soft copolymer, a radical initiator, and a polyfunctional compound having two or more radical polymerizable functional groups in the molecule has been proposed (see Patent Document 2). ).
特開平7-118465号公報JP-A-7-118465 国際公開第2006/025294号パンフレットInternational Publication No. 2006/025294 Pamphlet
 近年、半導体の回路パターンの微細化に伴って、前記半導体保管搬送容器には、機械的強度、耐熱性及び導電性に加えて、それ自体が汚染源とならないことに対する要求が特に厳しくなってきている。具体的には、半導体保管搬送容器の材料である樹脂組成物から発生したアウトガスがウェーハ等を汚染することにより、回路パターン形成に不具合が生じやすくなるため、アウトガスの発生量を少なくすること(低アウトガス性)がいっそう求められている。アウトガスの発生量を少なくすることによって、ウェーハの歩留まりを向上することができる。しかしながら、特許文献1、2に記載された技術では、アウトガスの発生を充分に抑えきれない。
 本発明は上記事情を鑑みてなされたものであり、成形体とした際に機械的強度、耐熱性、導電性及び低アウトガス性がいずれも優れる樹脂組成物を提供することを課題とする。
In recent years, with the miniaturization of semiconductor circuit patterns, the requirement for the semiconductor storage and transport container not to be a pollution source in addition to mechanical strength, heat resistance and conductivity has become particularly severe. . Specifically, the outgas generated from the resin composition that is the material of the semiconductor storage and transfer container contaminates the wafer and the like, and it is likely to cause defects in circuit pattern formation. Outgassing) is more demanded. By reducing the amount of outgas generated, the yield of wafers can be improved. However, the techniques described in Patent Documents 1 and 2 cannot sufficiently suppress the generation of outgas.
This invention is made | formed in view of the said situation, and makes it a subject to provide the resin composition which is excellent in mechanical strength, heat resistance, electroconductivity, and low outgassing property when it is set as a molded object.
 本発明者らは鋭意検討した結果、上記課題を解決するために以下の手段を提供する。
 即ち、本発明の樹脂組成物の一つの態様は、ガラス転移温度が101~160℃の環状オレフィンホモポリマー(A)と、繊維状導電性フィラー(B)と、オレフィン系エラストマー及びスチレン系エラストマーからなる群より選択される少なくとも一種のエラストマー(C)とを含有し、前記エラストマー(C)の含有量が、前記環状オレフィンホモポリマー(A)100質量部に対して5~25質量部であることを特徴とする。
 本発明の樹脂組成物は、粘度平均分子量が100万以上のポリエチレン(D)をさらに含有することが好ましい。
 また、本発明の樹脂組成物は、粒子状導電性フィラー(E)をさらに含有することが好ましい。前記粒子状導電性フィラー(E)は、n-ジブチルフタレート吸油量が180mL/100g以上のカーボンブラックであることが好ましい。
As a result of intensive studies, the present inventors provide the following means in order to solve the above problems.
That is, one embodiment of the resin composition of the present invention comprises a cyclic olefin homopolymer (A) having a glass transition temperature of 101 to 160 ° C., a fibrous conductive filler (B), an olefin elastomer and a styrene elastomer. And containing at least one elastomer (C) selected from the group consisting of 5 to 25 parts by mass with respect to 100 parts by mass of the cyclic olefin homopolymer (A). It is characterized by.
The resin composition of the present invention preferably further contains polyethylene (D) having a viscosity average molecular weight of 1,000,000 or more.
Moreover, it is preferable that the resin composition of this invention further contains a particulate conductive filler (E). The particulate conductive filler (E) is preferably carbon black having an n-dibutyl phthalate oil absorption of 180 mL / 100 g or more.
 本発明によれば、成形体とした際に機械的強度、耐熱性、導電性及び低アウトガス性がいずれも優れる樹脂組成物を提供できる。 According to the present invention, it is possible to provide a resin composition having excellent mechanical strength, heat resistance, conductivity, and low outgassing properties when formed into a molded body.
<樹脂組成物>
 本発明の樹脂組成物は、ガラス転移温度が101~160℃の環状オレフィンホモポリマー(A)と、繊維状導電性フィラー(B)と、オレフィン系エラストマー及びスチレン系エラストマーからなる群より選択される少なくとも一種のエラストマー(C)とを含有する。以下、これらの成分をそれぞれ(A)成分、(B)成分、(C)成分ともいう。
 本発明の樹脂組成物は、電子部品の部材や、電子部品の製造工程で使用される容器又は治具の材料として好適なものであり、ウェーハ等を搬送する際に使用される搬送容器(FOUP:Front Opening Unified Pod)、パターン形成時に必要なフォトマスクを保管するフォトマスクケース等の材料として特に好適なものである。
<Resin composition>
The resin composition of the present invention is selected from the group consisting of a cyclic olefin homopolymer (A) having a glass transition temperature of 101 to 160 ° C., a fibrous conductive filler (B), an olefin elastomer and a styrene elastomer. Containing at least one elastomer (C). Hereinafter, these components are also referred to as component (A), component (B), and component (C), respectively.
The resin composition of the present invention is suitable as a material for a component of an electronic component, a container or a jig used in the manufacturing process of the electronic component, and a transport container (FOUP) used when transporting a wafer or the like. : Front Opening Unified Pod), which is particularly suitable as a material for a photomask case for storing a photomask necessary for pattern formation.
(ガラス転移温度が101~160℃の環状オレフィンホモポリマー(A))
 本発明において(A)成分は、樹脂組成物のベース樹脂として用いられる。樹脂組成物が(A)成分を含むことで、耐熱性に加えて低アウトガス性にも優れる。また、(A)成分は、他種の熱可塑性樹脂と比較して吸水性が低いため、前記(A)成分を含む樹脂組成物を成形体とした際にウェーハ等への水分の付着を防げる。
 「環状オレフィンホモポリマー」とは、環状オレフィンをモノマーとし、前記環状オレフィンを単独重合させたポリマー(ホモポリマー)であって、前記ポリマーの主鎖が炭素-炭素結合からなる環状炭化水素構造を有する高分子化合物である。
 前記環状オレフィンとは、ノルボルネンやテトラシクロドデセンに代表される、少なくとも一つのオレフィン(二重結合)を有する環状炭化水素のことを指す。
 前記環状オレフィンとしては、ノルボルネンやテトラシクロドデセンに代表される多環状オレフィンが好ましい。
(Cyclic olefin homopolymer (A) having a glass transition temperature of 101 to 160 ° C.)
In the present invention, the component (A) is used as a base resin for the resin composition. When the resin composition contains the component (A), it is excellent in low outgassing in addition to heat resistance. In addition, since the component (A) has a low water absorption compared to other types of thermoplastic resins, when the resin composition containing the component (A) is formed into a molded body, it is possible to prevent moisture from adhering to a wafer or the like. .
“Cyclic olefin homopolymer” means a polymer (homopolymer) obtained by homopolymerizing the cyclic olefin using a cyclic olefin as a monomer, and the main chain of the polymer has a cyclic hydrocarbon structure composed of carbon-carbon bonds. It is a polymer compound.
The cyclic olefin refers to a cyclic hydrocarbon having at least one olefin (double bond) represented by norbornene and tetracyclododecene.
As the cyclic olefin, polycyclic olefins represented by norbornene and tetracyclododecene are preferable.
 (A)成分としては、特開平1-168724号公報、特開平1-168725号公報などに開示される、ノルボルネン環を有するモノマーの開環重合体又はその水素添加物などが挙げられる。
 ノルボルネン環を有するモノマーとしては、エチレンとシクロペンタジエンとの付加体である2環式オレフィンのノルボルネン、ノルボルネンにシクロペンタジエンが付加した4環式オレフィンのテトラシクロドデセン、シクロペンタジエンの2量体である3環式ジエンのトリシクロデカジエン(ジシクロペンタジエンともいう)、ジシクロペンタジエンの不飽和結合の一部を水素添加により飽和させた3環式オレフィンのトリシクロデセン、シクロペンタジエンの3量体である5環式ジエンのペンタシクロペンタデカジエン、ペンタシクロペンタデカジエンの不飽和結合の一部を水素添加により飽和させた5環式オレフィンのペンタシクロペンタデセン(2,3-ジヒドロジシクロペンタジエンともいう)又はこれらの置換体等が例示される。
 これらの置換体としては、極性基を有さない基(アルキル基、アルキリデン基、芳香族基など)により置換された誘導体もしくはその水素添加物、又はこれら誘導体から脱水素して得られる誘導体(例えば、2-ノルボルネン、5-メチル-2-ノルボルネン、5,5-ジメチル-2-ノルボルネン、5-エチル-2-ノルボルネン、5-ブチル-2-ノルボルネン、5-エチリデン-2-ノルボルネン、5-ヘキシル-2-ノルボルネン、5-フェニル-2-ノルボルネン、5-オクチル-2-ノルボルネン、5-オクタデシル-2-ノルボルネン、5-エチリデン-2-ノルボルネン等のノルボルネン誘導体;1,4:5,8-ジメタノ-1,2,3,4,4a,5,8,8a-2,3-シクロペンタジエノオクタヒドロナフタレン、6-メチル-1,4:5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、1,4:5,10:6,9-トリメタノ-1,2,3,4,4a,5,5a,6,9,9a,10,10a-ドデカヒドロ-2,3-シクロペンタジエノアントラセン等のテトラシクロドデセン誘導体など);極性基(ハロゲン原子、水酸基、エステル基、アルコキシ基、シアノ基、アミド基、イミド基、シリル基など)により置換された誘導体(例えば、5-メトキシ-カルボニル-2-ノルボルネン、5-シアノ-2-ノルボルネン、5-メチル-5-メトキシカルボニル-2-ノルボルネンなど)等が挙げられる。
Examples of the component (A) include a ring-opening polymer of a monomer having a norbornene ring or a hydrogenated product thereof disclosed in JP-A-1-168724 and JP-A-1-168725.
The monomer having a norbornene ring is a bicyclic olefin norbornene that is an adduct of ethylene and cyclopentadiene, or a tetracyclic olefin tetracyclododecene or cyclopentadiene that is obtained by adding cyclopentadiene to norbornene. A tricyclic diene tricyclodecadiene (also called dicyclopentadiene), a tricyclic olefin tricyclodecene and cyclopentadiene trimer in which a part of the unsaturated bond of dicyclopentadiene is saturated by hydrogenation. Pentacyclopentadecene, a pentacyclic diene, pentacyclopentadecene, a pentacyclic olefin in which part of the unsaturated bond of pentacyclopentadedecadiene is saturated by hydrogenation (also known as 2,3-dihydrodicyclopentadiene) And the substitutions thereof are exemplified. .
Examples of these substitutes include derivatives substituted with groups having no polar group (alkyl groups, alkylidene groups, aromatic groups, etc.) or hydrogenated products thereof, or derivatives obtained by dehydrogenating these derivatives (for example, 2-norbornene, 5-methyl-2-norbornene, 5,5-dimethyl-2-norbornene, 5-ethyl-2-norbornene, 5-butyl-2-norbornene, 5-ethylidene-2-norbornene, 5-hexyl Norbornene derivatives such as -2-norbornene, 5-phenyl-2-norbornene, 5-octyl-2-norbornene, 5-octadecyl-2-norbornene, 5-ethylidene-2-norbornene; 1,4: 5,8-dimethano -1,2,3,4,4a, 5,8,8a-2,3-cyclopentadienooctahydronaphthalene, 6 Methyl-1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 1,4: 5,10: 6,9-trimethano-1,2, 3,4,4a, 5,5a, 6,9,9a, 10,10a-tetracyclododecene derivatives such as dodecahydro-2,3-cyclopentadienoanthracene; polar groups (halogen atoms, hydroxyl groups, esters) Derivatives substituted with groups, alkoxy groups, cyano groups, amide groups, imide groups, silyl groups, etc. (eg 5-methoxy-carbonyl-2-norbornene, 5-cyano-2-norbornene, 5-methyl-5- Methoxycarbonyl-2-norbornene, etc.).
 本発明において「ガラス転移温度(Tg)」は、JIS K 7121に準拠した方法により測定される値を示す。
 (A)成分のTgは101~160℃であり、好ましくは101~150℃であり、より好ましくは101~140℃であり、特に好ましいのは102~140℃であり、最も好ましいのは105~140℃である。(A)成分のTgが101℃以上であれば、アウトガスの発生量が低減しやすい。加えて、耐熱性がより高まる。Tgが160℃以下であれば、アウトガスの発生量が低減しやすい。
In the present invention, “glass transition temperature (Tg)” indicates a value measured by a method based on JIS K7121.
The Tg of the component (A) is 101 to 160 ° C., preferably 101 to 150 ° C., more preferably 101 to 140 ° C., particularly preferably 102 to 140 ° C., and most preferably 105 to 140 ° C. If Tg of (A) component is 101 degreeC or more, the generation amount of outgas will be easy to reduce. In addition, the heat resistance is further increased. If Tg is 160 ° C. or lower, the amount of outgas generated is likely to be reduced.
 樹脂組成物中、(A)成分は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 中でも、(A)成分は、本発明の効果がより優れることから、Tgが101~160℃であって、ノルボルネン環を有するモノマーの開環重合体又はその水素添加物であることが好ましく、前記開環重合体の水素添加物であることが特に好ましい。
 また、(A)成分の数平均分子量は、3,000~500,000であることが好ましく、8,000~200,000であることがより好ましい。ここで、数平均分子量とは、シクロヘキサンを溶媒としたゲルパーミエーションクロマトグラフィ(以下、GPCという)により、イソプレン換算にて算出した値のことを指す。
 (A)成分は市販品を用いることができる。前記市販品としては、ZEONEX(登録商標)、ZEONOR(登録商標)(いずれも商品名、日本ゼオン株式会社製)が好適である。
In the resin composition, as the component (A), one type may be used alone, or two or more types may be used in combination.
Among these, the component (A) is preferably a ring-opening polymer of a monomer having a Tg of 101 to 160 ° C. and having a norbornene ring or a hydrogenated product thereof, because the effects of the present invention are more excellent. A hydrogenated product of a ring-opening polymer is particularly preferable.
The number average molecular weight of the component (A) is preferably 3,000 to 500,000, and more preferably 8,000 to 200,000. Here, the number average molecular weight refers to a value calculated in terms of isoprene by gel permeation chromatography (hereinafter referred to as GPC) using cyclohexane as a solvent.
(A) A commercial item can be used for a component. As the commercial product, ZEONEX (registered trademark) and ZEONOR (registered trademark) (both are trade names, manufactured by Nippon Zeon Co., Ltd.) are suitable.
 樹脂組成物における(A)成分の含有量は、樹脂組成物全体を100質量%とした際に60~90質量%であることが好ましく、70~90質量%であることがより好ましい。
 (A)成分の含有量が好ましい下限値未満であると、樹脂組成物としての低アウトガス性が損なわれやすい。好ましい上限値を超えると、(A)成分以外の成分を充分に配合できず、成形体とした際に、ゴミや塵などの付着低減効果や機械的強度(衝撃強さ)が得られにくい。すなわち、(A)成分の含有量が、樹脂組成物100質量%に対して、60~90質量%であれば、低アウトガス性に優れた樹脂組成物が得られ、かつ、ごみや塵などの付着低減効果や機械的強度を付与するために、その他の成分を十分に配合することができるため好ましい。
The content of the component (A) in the resin composition is preferably 60 to 90% by mass and more preferably 70 to 90% by mass when the entire resin composition is 100% by mass.
When the content of the component (A) is less than the preferred lower limit, the low outgassing property as the resin composition is likely to be impaired. When a preferable upper limit is exceeded, components other than the component (A) cannot be sufficiently blended, and when a molded body is formed, it is difficult to obtain an effect of reducing adhesion of dust and dust and mechanical strength (impact strength). That is, when the content of the component (A) is 60 to 90% by mass with respect to 100% by mass of the resin composition, a resin composition excellent in low outgassing property can be obtained, and dust, dust, etc. In order to give an adhesion reduction effect and mechanical strength, other components can be sufficiently blended, which is preferable.
(繊維状導電性フィラー(B))
 本発明において(B)成分は、主として導電性付与及び機械的強度(曲げ強さ)、耐熱性の向上に寄与する。
 「繊維状導電性フィラー」とは、JIS K 3850「空気中の繊維状粒子測定方法」において定義される繊維状粒子、すなわち、アスペクト比(長さ(繊維長)/幅(繊維径))3以上の導電性フィラーをいう。ここで、「繊維径」とは繊維状導電性フィラーの直径(太さ)のことを意味する。また、「繊維長」とは、繊維状導電性フィラーの長さのことを意味する。これらは、顕微鏡による観察から測定することができる。
 本発明の一つの態様において、(B)成分のアスペクト比は、3~3000であることが好ましく、ハンドリングと強度補強の観点から50~2000であることがより好ましい。
 (B)成分としては、炭素繊維、カーボンナノチューブ等を用いることができる。
 炭素繊維を使用する場合、炭素繊維の種類は特に制限されず、ポリアクリロニトリル(PAN)系、ピッチ系、セルロース系、リグニン系などの種々のものが挙げられる。このうち、強度補強の観点から、PAN系、又はピッチ系の炭素繊維を用いることが好ましい。また、ハンドリング性向上の観点から、サイジング剤で束ねられた、繊維長3~6mmのものを用いる事が好ましい。ここで、サイジング剤とは、樹脂への炭素繊維の分散や、ハンドリング性向上を目的に炭素繊維に添加される収束剤のことを指す。サイジング剤としては、樹脂への分散性の観点から、エポキシや、ウレタン、もしくはエポキシとウレタンを併用した収束剤を用いることが好ましい。また、(B)成分としてサイジング剤で束ねられた炭素繊維を用いる場合、(B)成分は、前記サイジング剤と炭素繊維とを含むものである事が好ましい。
 繊維径は、5~15μmの範囲が好ましく、5~12μmの範囲がより好ましく、6~10μmの範囲がさらに好ましい。また、低アウトガス性の観点から、サイジング剤の含浸率は、炭素繊維全体(100質量%)に対して、3質量%以下のものが好ましく、1~3質量%であることがより好ましい。市販品としては、NPSチョップドファイバー(日本ポリマー株式会社製、PAN系炭素繊維、サイジング剤:エポキシウレタン1.75%、繊維長:6mm)、トレカ(登録商標)(東レ株式会社製、PAN系炭素繊維、サイジング剤:ウレタン3.0%、繊維長:6mm)、パイロフィル(登録商標)(三菱レイヨン株式会社製、PAN系炭素繊維、サイジング剤:3.0%、繊維長:6mm)等が挙げられる。
 カーボンナノチューブを使用する場合、グラファイト層を1層で巻いた構造を持つ単層カーボンナノチューブ、2層以上で巻いた構造を持つ多層カーボンナノチューブのいずれも用いることができ、なかでも多層カーボンナノチューブを用いることが好ましい。繊維径や繊維長は、本発明の効果を有し、かつ、アスペクト比が3.0以上250以下のものであれば、特に制限はない。市販品としては、VGCF(登録商標)、VGCF-X(登録商標)(いずれも昭和電工株式会社製)等が挙げられる。
(Fibrous conductive filler (B))
In the present invention, the component (B) mainly contributes to imparting electrical conductivity and improving mechanical strength (bending strength) and heat resistance.
“Fibrous conductive filler” means fibrous particles defined in JIS K 3850 “Measurement method of fibrous particles in air”, that is, aspect ratio (length (fiber length) / width (fiber diameter)) 3 The above conductive filler is said. Here, the “fiber diameter” means the diameter (thickness) of the fibrous conductive filler. The “fiber length” means the length of the fibrous conductive filler. These can be measured from observation with a microscope.
In one embodiment of the present invention, the aspect ratio of the component (B) is preferably 3 to 3000, more preferably 50 to 2000 from the viewpoint of handling and strength reinforcement.
As the component (B), carbon fiber, carbon nanotube, or the like can be used.
When carbon fiber is used, the type of carbon fiber is not particularly limited, and various types such as polyacrylonitrile (PAN) -based, pitch-based, cellulose-based, and lignin-based are included. Of these, PAN-based or pitch-based carbon fibers are preferably used from the viewpoint of strength reinforcement. From the viewpoint of improving handling properties, it is preferable to use one having a fiber length of 3 to 6 mm bundled with a sizing agent. Here, the sizing agent refers to a sizing agent that is added to the carbon fiber for the purpose of dispersing the carbon fiber in the resin and improving handling properties. As the sizing agent, from the viewpoint of dispersibility in the resin, it is preferable to use epoxy, urethane, or a converging agent using a combination of epoxy and urethane. Moreover, when using the carbon fiber bundled with the sizing agent as (B) component, it is preferable that (B) component contains the said sizing agent and carbon fiber.
The fiber diameter is preferably in the range of 5 to 15 μm, more preferably in the range of 5 to 12 μm, and still more preferably in the range of 6 to 10 μm. From the viewpoint of low outgassing, the impregnation ratio of the sizing agent is preferably 3% by mass or less, more preferably 1 to 3% by mass with respect to the entire carbon fiber (100% by mass). Commercially available products include NPS chopped fiber (manufactured by Nippon Polymer Co., Ltd., PAN-based carbon fiber, sizing agent: 1.75% epoxy urethane, fiber length: 6 mm), trading card (registered trademark) (manufactured by Toray Industries, Inc., PAN-based carbon) Fiber, sizing agent: urethane 3.0%, fiber length: 6 mm), Pyrofil (registered trademark) (manufactured by Mitsubishi Rayon Co., Ltd., PAN-based carbon fiber, sizing agent: 3.0%, fiber length: 6 mm) It is done.
When carbon nanotubes are used, both single-walled carbon nanotubes having a structure in which a graphite layer is wound in one layer, multi-walled carbon nanotubes having a structure in which two or more layers are wound, and multi-walled carbon nanotubes are used. It is preferable. The fiber diameter and fiber length are not particularly limited as long as they have the effects of the present invention and have an aspect ratio of 3.0 to 250. Examples of commercially available products include VGCF (registered trademark) and VGCF-X (registered trademark) (both manufactured by Showa Denko KK).
 樹脂組成物中、(B)成分は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 樹脂組成物における(B)成分の含有量は、本発明の効果を有する限り特に制限はないが、(A)成分100質量部に対して3~25質量部が好ましく、3~20質量部であることがより好ましく、3~15質量部であることが特に好ましく、4~15質量部であることが最も好ましい。(A)成分100質量部に対して(B)成分の含有量が3質量部未満であると、充分な導電性が得られにくくなる。また、25質量部を超えると、耐衝撃性の低下を招きやすい。
 また、樹脂組成物における(B)成分の含有量は、樹脂組成物全体を100質量%とした際に2~25質量%であることが好ましく、3~20質量%であることがより好ましく、3~12質量%であることが特に好ましい。樹脂組成物中、(B)成分の含有量が2質量%未満であると、充分な導電性が得られにくくなる。また、(B)成分の含有量が25質量%を超えると、耐衝撃性の低下を招きやすい。すなわち、(B)成分の含有量が、(A)成分100質量部に対して3~25質量部であれば、あるいは、樹脂組成物全体を100質量%とした際に2~25質量%であれば、十分な導電性が得られ、成形体の耐衝撃性が低下しないため好ましい。
In the resin composition, as the component (B), one type may be used alone, or two or more types may be used in combination.
The content of the component (B) in the resin composition is not particularly limited as long as it has the effects of the present invention, but it is preferably 3 to 25 parts by weight with respect to 100 parts by weight of the component (A), and 3 to 20 parts by weight. More preferably, it is 3 to 15 parts by mass, particularly preferably 4 to 15 parts by mass. When the content of the component (B) is less than 3 parts by mass with respect to 100 parts by mass of the component (A), it becomes difficult to obtain sufficient conductivity. Moreover, when it exceeds 25 mass parts, it will be easy to cause a fall of impact resistance.
In addition, the content of the component (B) in the resin composition is preferably 2 to 25% by mass, more preferably 3 to 20% by mass when the entire resin composition is 100% by mass, It is particularly preferably 3 to 12% by mass. In the resin composition, when the content of the component (B) is less than 2% by mass, it is difficult to obtain sufficient conductivity. Moreover, when content of (B) component exceeds 25 mass%, it will be easy to cause a fall of impact resistance. That is, when the content of the component (B) is 3 to 25 parts by mass with respect to 100 parts by mass of the component (A), or 2 to 25% by mass when the total resin composition is 100% by mass. If it exists, sufficient electroconductivity is acquired and since the impact resistance of a molded object does not fall, it is preferable.
(オレフィン系エラストマー及びスチレン系エラストマーからなる群より選択される少なくとも一種のエラストマー(C))
 本発明において(C)成分は、主として機械的強度(衝撃強さ)の向上に寄与する。
 「エラストマー」とは、常温(25℃)で弾性体である高分子物質を意味する。前記高分子物質は、天然高分子物質であってもよく合成の高分子物質であってもよい。
(At least one elastomer selected from the group consisting of olefin elastomers and styrene elastomers (C))
In the present invention, the component (C) mainly contributes to improvement of mechanical strength (impact strength).
“Elastomer” means a polymer substance that is an elastic body at room temperature (25 ° C.). The polymer material may be a natural polymer material or a synthetic polymer material.
 オレフィン系エラストマー(以下「(C1)成分」ともいう。)とは、オレフィンをモノマーとし、前記オレフィンを重合して得られる、炭素原子及び水素原子から構成され、かつ、芳香環を有さない、常温(25℃)で弾性体である高分子物質をいう。すなわち、本発明の一つの態様において、オレフィン系エラストマーのモノマーとしては、エチレン、プロピレン、ブテンのようなオレフィンをベースにコモノマーとして、エチレン、プロピレン、ブテンを重合したものが好ましく、なかでもガラス転移温度の低いオレフィン系エラストマーがより好ましい。
 また、(C1)成分のガラス転移温度は、-100~-10℃であることが好ましく、-65℃~-50℃であることがより好ましい。
 工業的には、エスポレックスTPE(商標登録)(住友化学株式会社製)、サーリンク(商標登録)(東洋紡績株式会社製)、サーモラン(商標登録)(三菱化学株式会社製)、タフマー(商標登録)(三井化学株式会社製)、ミラストマー(商標登録)(三井化学株式会社製)(以上、いずれも商品名)等の市販品を好適に用いることができる。中でも、タフマー、ミラストマー(三井化学株式会社製)がより好ましい。
The olefin-based elastomer (hereinafter also referred to as “component (C1)”) is composed of carbon atoms and hydrogen atoms obtained by polymerizing the olefin using olefin as a monomer, and has no aromatic ring. A high-molecular substance that is an elastic body at room temperature (25 ° C.). That is, in one embodiment of the present invention, the monomer of the olefin elastomer is preferably a polymer obtained by polymerizing ethylene, propylene, and butene as a comonomer based on an olefin such as ethylene, propylene, and butene. Are more preferable.
The glass transition temperature of the component (C1) is preferably −100 to −10 ° C., more preferably −65 ° C. to −50 ° C.
Industrially, Espolex TPE (registered trademark) (manufactured by Sumitomo Chemical Co., Ltd.), Surlink (trademark registered) (manufactured by Toyobo Co., Ltd.), Thermoran (registered trademark) (manufactured by Mitsubishi Chemical Corporation), Tuffmer (trademark) Commercially available products such as (Registered) (manufactured by Mitsui Chemicals, Inc.) and Miralastomer (trademark registered) (manufactured by Mitsui Chemicals, Inc.) (all are trade names) can be suitably used. Among these, Tuffmer and Miralastomer (made by Mitsui Chemicals, Inc.) are more preferable.
 スチレン系エラストマー(以下「(C2)成分」ともいう。)とは、スチレンをベースにブタジエンやブチレン等をモノマーとし、前記モノマーを重合して得られる、主鎖に芳香環を有し、常温(25℃)で弾性体である高分子物質をいい、芳香族ビニル-共役ジエンブロック共重合体に代表される。すなわち、本発明の一つの態様において、スチレン系エラストマーとしては、スチレン/ブタジエン/スチレン(SBS)、スチレン/ブタジエン/ブチレン/スチレン(SBBS)、スチレン/エチレン/ブチレン/スチレン(SEBS)が好ましく、なかでも相溶性の観点からSEBSがより好ましい。
 工業的には、タフプレン(商標登録)(旭化成株式会社製)、タフテック(商標登録)(旭化成株式会社製)、クレイトン(商標登録)(クレイトンポリマージャパン株式会社製)、エスポレックスSB(商標登録)(住友化学株式会社製)、ラバロン(商標登録)(三菱化学株式会社製)、セプトン(商標登録)(株式会社クラレ製)(以上、いずれも商品名)等の市販品を好適に用いることができる。中でも、セプトン(株式会社クラレ製)、タフテック(旭化成株式会社製)がより好ましい。
Styrenic elastomer (hereinafter also referred to as “(C2) component”) is a styrene-based monomer having butadiene, butylene, or the like as a monomer, and having an aromatic ring in the main chain obtained by polymerizing the monomer, at room temperature ( A polymer substance that is an elastic material at 25 ° C.) and is typified by an aromatic vinyl-conjugated diene block copolymer. That is, in one embodiment of the present invention, the styrene elastomer is preferably styrene / butadiene / styrene (SBS), styrene / butadiene / butylene / styrene (SBBS), or styrene / ethylene / butylene / styrene (SEBS). However, SEBS is more preferable from the viewpoint of compatibility.
Industrially, TUFPRENE (registered trademark) (manufactured by Asahi Kasei Corporation), TUFTEC (registered trademark) (manufactured by Asahi Kasei Corporation), Clayton (trademark registered) (manufactured by Kraton Polymer Japan Co., Ltd.), Espolex SB (trademark registered) Commercially available products such as Sumitomo Chemical Co., Ltd., Lavalon (trademark registration) (Mitsubishi Chemical Co., Ltd.), Septon (trademark registration) (manufactured by Kuraray Co., Ltd.) (all of which are trade names) are preferably used. it can. Of these, Septon (manufactured by Kuraray Co., Ltd.) and Tuftec (manufactured by Asahi Kasei Co., Ltd.) are more preferred.
 樹脂組成物中、(C1)成分又は(C2)成分はそれぞれ、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよく、(C1)成分と(C2)成分とを併用してもよい。
 樹脂組成物における(C)成分の含有量は、(A)成分100質量部に対して5~25質量部であり、5~20質量部であることが好ましく、7~20質量部であることがより好ましく、7~15質量部であることが特に好ましく、9~15質量部であることが最も好ましい。
 (C)成分の含有量が5質量部未満であると、耐衝撃性の向上効果が充分ではなく、25質量部を超えると、耐熱性の低下や機械的強度の低下を招きやすい。また、アウトガスの発生量も多くなる。
 また、樹脂組成物における(C)成分の含有量は、樹脂組成物全体を100質量%とした際に2~22質量%であることが好ましく、3~20質量%であることがより好ましい。樹脂組成物中の(C)成分の含有量が、2質量%未満であると、耐衝撃性の向上効果が十分ではなく、22質量%を超えると、耐熱性の低下や機械的強度の低下を招きやすい。また、アウトガスの発生量も多くなる。すなわち、樹脂組成物中の(C)成分の含有量が、(A)成分100質量部に対して、5~25質量部であれば、あるいは、樹脂組成物全体を100質量%とした際に、2~22質量%であれば、樹脂組成物の耐熱性、機械的強度が低下せず、さらにアウトガスの発生量を少なくすることができるため好ましい。
In the resin composition, each of the (C1) component or the (C2) component may be used alone or in combination of two or more, and the (C1) component and the (C2) component are used in combination. May be.
The content of the component (C) in the resin composition is 5 to 25 parts by weight, preferably 5 to 20 parts by weight, and preferably 7 to 20 parts by weight with respect to 100 parts by weight of the component (A). Is more preferably 7 to 15 parts by mass, and most preferably 9 to 15 parts by mass.
When the content of the component (C) is less than 5 parts by mass, the effect of improving the impact resistance is not sufficient, and when it exceeds 25 parts by mass, the heat resistance and the mechanical strength are likely to be reduced. In addition, the amount of outgas generated increases.
In addition, the content of the component (C) in the resin composition is preferably 2 to 22% by mass, more preferably 3 to 20% by mass when the entire resin composition is 100% by mass. If the content of the component (C) in the resin composition is less than 2% by mass, the effect of improving the impact resistance is not sufficient, and if it exceeds 22% by mass, the heat resistance is lowered and the mechanical strength is lowered. It is easy to invite. In addition, the amount of outgas generated increases. That is, when the content of the component (C) in the resin composition is 5 to 25 parts by mass with respect to 100 parts by mass of the component (A), or when the entire resin composition is 100% by mass. The content of 2 to 22% by mass is preferable because the heat resistance and mechanical strength of the resin composition do not decrease and the amount of outgas generated can be reduced.
(粘度平均分子量が100万以上のポリエチレン(D))
 本発明の樹脂組成物は、前記の(A)~(C)成分に加えて、粘度平均分子量が100万以上のポリエチレン(D)(以下「(D)成分」ともいう。)をさらに含有することが好ましい。(D)成分を含有することにより、ウェーハ等に対する耐磨耗性が向上し、パーティクル(異物)発生が防止される。加えて、ウェルド接着性も向上し、本発明の樹脂組成物は大型の半導体容器にも好適に利用できる。
(Polyethylene (D) having a viscosity average molecular weight of 1 million or more)
The resin composition of the present invention further contains polyethylene (D) having a viscosity average molecular weight of 1 million or more (hereinafter also referred to as “component (D)”) in addition to the components (A) to (C). It is preferable. By containing the component (D), the wear resistance to the wafer and the like is improved, and the generation of particles (foreign matter) is prevented. In addition, weld adhesiveness is also improved, and the resin composition of the present invention can be suitably used for large semiconductor containers.
 本発明において「粘度平均分子量」は、135℃のデカリン溶媒における極限粘度[η]を測定し、式:[η]=kMνα(Mνは粘度平均分子量、kとαは常数)に基づいて算出される値を示す。極限粘度は、JIS K7367-3(1999年)に準拠した方法により測定される。
 (D)成分の粘度平均分子量は、100万以上であり、好ましくは100万以上600万以下であり、より好ましくは100万以上400万以下、特に好ましくは120万以上400万以下であり、最も好ましくは150万以上400万以下である。
 (D)成分の粘度平均分子量が100万以上であれば、ウェーハ等に対する耐磨耗性、及びウェルド接着性が向上する。特にウェルド接着性が向上するのは、(D)成分の粘度平均分子量が100万以上であることにより、樹脂組成物の粘度が増加し、ウェルド面での樹脂組成物同士の接着性が向上したためと考えられる。一方、好ましい上限値以下であると、樹脂組成物の衝撃強さや流動性が良好に維持されやすい。また、アウトガスの発生量も少ない。ここで、「ウェルド接着性」とは、金型内において溶融状態の樹脂組成物が合流する部分に生じるライン(ウェルドライン)の発生状態のことを意味し、得られた成形体のウェルドラインを目視で確認することで評価をおこなった。
In the present invention, “viscosity average molecular weight” is calculated based on the formula: [η] = kMν α (Mν is a viscosity average molecular weight, k and α are constants) by measuring the intrinsic viscosity [η] in a decalin solvent at 135 ° C. Indicates the value to be processed. The intrinsic viscosity is measured by a method according to JIS K7367-3 (1999).
The viscosity average molecular weight of the component (D) is 1 million or more, preferably 1 million or more and 6 million or less, more preferably 1 million or more and 4 million or less, particularly preferably 1.2 million or more and 4 million or less, Preferably they are 1.5 million or more and 4 million or less.
If the viscosity average molecular weight of (D) component is 1 million or more, the abrasion resistance with respect to a wafer etc. and weld adhesiveness will improve. In particular, the weld adhesion is improved because the viscosity of the resin composition increases due to the viscosity average molecular weight of the component (D) being 1 million or more, and the adhesion between the resin compositions on the weld surface is improved. it is conceivable that. On the other hand, when it is at most the preferable upper limit value, the impact strength and fluidity of the resin composition are easily maintained favorably. Also, the amount of outgas generated is small. Here, “weld adhesiveness” means a state of occurrence of a line (weld line) generated in a portion where a molten resin composition joins in a mold, and the weld line of the obtained molded body is defined as a weld line. Evaluation was performed by visual confirmation.
 樹脂組成物中、(D)成分は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 また、(D)成分は、より均一に混合しやすいことから、粒子径10~50μm程度の粉末状のものを用いることが好ましい。ここで「粒子径」とは、コールターカウンター TA-II型、日科機(株)を用いて、(D)成分を水中に分散した条件で測定した値のことを指す。
 (D)成分は市販品を用いることができる。前記市販品としては、粘度平均分子量100万以上、400万以下のポリエチレンを主成分とする、ハイゼックスミリオン(登録商標)、ミペロン(登録商標)(いずれも三井化学株式会社製)等を好適に用いることができる。これらの中でも、ミペロン(三井化学株式会社製)がより好ましい。
In the resin composition, as the component (D), one type may be used alone, or two or more types may be used in combination.
The component (D) is preferably in the form of a powder having a particle size of about 10 to 50 μm because it can be more uniformly mixed. Here, the “particle diameter” refers to a value measured using a Coulter counter TA-II type, Nikki Co., Ltd. under the condition that component (D) is dispersed in water.
(D) A commercial item can be used for a component. As the above-mentioned commercially available products, Hi-Zex Million (registered trademark), Mipperon (registered trademark) (both manufactured by Mitsui Chemicals, Inc.), etc., mainly composed of polyethylene having a viscosity average molecular weight of 1 million or more and 4 million or less are suitably used. be able to. Among these, miperon (made by Mitsui Chemicals) is more preferable.
 樹脂組成物における(D)成分の含有量は、(A)成分100質量部に対して1~20質量部であることが好ましく、5~15質量部であることがより好ましい。(A)成分100質量部に対して(D)成分の含有量が好ましい下限値未満であると、耐磨耗性及びウェルド接着性の向上効果が充分ではなく、好ましい上限値を超えると、成形体とした際に流動性の低下を招きやすい。
 また、樹脂組成物における(D)成分の含有量は、(A)~(C)成分の合計100質量部に対して1~20質量部であることが好ましく、5~15質量部であることがより好ましい。(A)~(C)成分の合計100質量部に対して(D)成分の含有量が好ましい下限値未満であると、耐磨耗性及びウェルド接着性の向上効果が充分ではなく、好ましい上限値を超えると、成形体とした際に流動性の低下を招きやすい。
 また、樹脂組成物における(D)成分の含有量は、樹脂組成物全体を100質量%とした際に0.4~18質量%であることが好ましく、0.5~16質量%であることがより好ましい。樹脂組成物中の(D)成分の含有量が、0.4質量%未満であると、耐磨耗性及びウェルド接着性の向上効果が充分ではなく、18質量%を超えると、成形体とした際に流動性の低下を招きやすい。すなわち、樹脂組成物における(D)成分の含有量が、(A)成分100質量部に対して、1~20質量部であれば、あるいは、(A)~(C)成分の合計100質量部に対して、1~20質量部であれば、または、樹脂組成物における(D)成分の含有量が、樹脂組成物全体を100質量%とした際に、0.4~18質量%であれば、耐摩耗性及びウェルド接着性の向上効果を十分に得られ、かつ、成形体とした際に流動性が低下しにくいため好ましい。
The content of the component (D) in the resin composition is preferably 1 to 20 parts by mass and more preferably 5 to 15 parts by mass with respect to 100 parts by mass of the component (A). When the content of component (D) is less than the preferred lower limit relative to 100 parts by weight of component (A), the effect of improving wear resistance and weld adhesion is not sufficient, and when the preferred upper limit is exceeded, molding is performed. When used as a body, it tends to cause a decrease in fluidity.
In addition, the content of the component (D) in the resin composition is preferably 1 to 20 parts by mass with respect to 100 parts by mass in total of the components (A) to (C), and 5 to 15 parts by mass. Is more preferable. When the content of the component (D) is less than the preferred lower limit with respect to 100 parts by mass of the total of the components (A) to (C), the effect of improving wear resistance and weld adhesion is not sufficient, and the preferred upper limit If the value is exceeded, fluidity tends to be lowered when formed into a molded body.
Further, the content of the component (D) in the resin composition is preferably 0.4 to 18% by mass, and preferably 0.5 to 16% by mass when the entire resin composition is 100% by mass. Is more preferable. When the content of the component (D) in the resin composition is less than 0.4% by mass, the effect of improving wear resistance and weld adhesion is not sufficient, and when the content exceeds 18% by mass, It tends to cause a decrease in fluidity. That is, if the content of the component (D) in the resin composition is 1 to 20 parts by mass with respect to 100 parts by mass of the component (A), or a total of 100 parts by mass of the components (A) to (C) 1 to 20 parts by mass or the content of the component (D) in the resin composition is 0.4 to 18% by mass when the entire resin composition is 100% by mass. For example, the effect of improving the wear resistance and weld adhesion can be sufficiently obtained, and the fluidity is unlikely to be lowered when formed into a molded body, which is preferable.
(粒子状導電性フィラー(E))
 本発明の樹脂組成物は、前記の(A)~(C)成分に加えて、又は、前記の(A)~(D)成分に加えて、粒子状導電性フィラー(E)(以下「(E)成分」ともいう。)をさらに含有することが好ましい。
 (E)成分を含有することにより、成形体とした際、前記成形体はどの場所でもほぼ一定の表面抵抗率を示し(即ち、導電性のバラツキが少なく)、導電性の安定化がより図られる。かかる効果が得られる理由は、前記(B)成分が低添加量で不均一な導電性ネットワークを形成するのに対し、(E)成分は、低添加量でも均一な導電性ネットワークを形成するように作用するためである。ここで、「表面抵抗率」とは、三菱化学アナリテック社製のMCP-HT260 ハイレスタIPを用いて、ASTM D257の条件で測定した値のことを指す。
 また、(E)成分を含有することにより、成形体とした際の反り量を低減する(成形による反りの発生を抑制する)ことができる。かかる効果が得られる理由は、前記(B)成分は成形体中での配向性が高いことにより、成形時の縦方向と横方向との収縮比が異なるのに対し、(E)成分は成形体中での配向性が低いことにより、成形時の縦方向と横方向との収縮比が同程度になるためである。
 (E)成分は、アスペクト比(長さ(粒子の長軸)/幅(粒子の短軸))3未満の導電性フィラーをいう。本発明の1つの態様において、(E)成分のアスペクト比は、1以上3未満であることが好ましく、1~2であることがより好ましい。
 (E)成分としては、カーボンブラック、黒鉛等を用いることができる。中でも、少ない添加量で、樹脂組成物中で導電性のネットワークを形成できて衝撃強さを損なわないことから、カーボンブラックが好ましい。
(Particulate conductive filler (E))
In addition to the components (A) to (C) described above or in addition to the components (A) to (D) described above, the resin composition of the present invention comprises a particulate conductive filler (E) (hereinafter referred to as “( It is also preferable to further contain “E) component”.
By containing the component (E), when formed into a molded body, the molded body exhibits a substantially constant surface resistivity everywhere (that is, there is less variation in conductivity), and the conductivity is more stabilized. It is done. The reason why such an effect is obtained is that the component (B) forms a non-uniform conductive network at a low addition amount, whereas the component (E) forms a uniform conductive network even at a low addition amount. It is because it acts on. Here, “surface resistivity” refers to a value measured under the conditions of ASTM D257 using MCP-HT260 Hiresta IP manufactured by Mitsubishi Chemical Analytech.
Moreover, by containing (E) component, the curvature amount at the time of setting it as a molded object can be reduced (the generation | occurrence | production of the curvature by shaping | molding) can be suppressed. The reason why such an effect can be obtained is that the component (B) has a high orientation in the molded body, so that the shrinkage ratio between the vertical direction and the horizontal direction during molding is different, while the component (E) is molded. This is because the orientation ratio in the body is low, so that the shrinkage ratio between the vertical direction and the horizontal direction during molding becomes approximately the same.
The component (E) refers to a conductive filler having an aspect ratio (length (major axis of particles) / width (minor axis of particles)) of less than 3. In one embodiment of the present invention, the aspect ratio of the component (E) is preferably 1 or more and less than 3, and more preferably 1 or 2.
As the component (E), carbon black, graphite or the like can be used. Among these, carbon black is preferable because a conductive network can be formed in the resin composition with a small addition amount and the impact strength is not impaired.
 カーボンブラックの種類は本発明の効果を有する限り特に制限されず、目的に応じて適宜選択することができ、例えばオイルファーネス法によって製造されるファーネスブラック、アセチレンガスを原料として製造されるアセチレンブラック、閉鎖空間で原料を直燃して製造されるランプブラック、天然ガスの熱分解によって製造されるサーマルブラック、拡散炎をチャンネル鋼の底面に接触させて捕捉するチャンネルブラック等が挙げられる。
 これらの中でも、導電性、樹脂組成物中での分散性などの観点から、n-ジブチルフタレート(DBP)吸油量が180mL/100g以上のカーボンブラックが好ましく、300mL/100g以上のカーボンブラックがより好ましい。
 DBP吸油量が180mL/100g未満であると、所望とする効果を得るのに使用量が多くなり、耐衝撃性の低下を招きやすくなる。DBP吸油量が180mL/100g以上であれば、より少量で所望とする効果が得られやすい。
 本発明において「n-ジブチルフタレート(DBP)吸油量」は、ASTM D2414(DBPアブソープトメーター使用)に準拠した方法により測定される値を示す。
 また、前記カーボンブラックは、導電性の観点からオイルファーネス法によって製造されるファーネスブラック、アセチレンガスを原料として製造されるアセチレンブラックであることが好ましく、かつ、前記カーボンブラックの一次粒子径が、30~50nmのものであることが好ましく、30~40nmのものであることがより好ましい。前記カーボンブラックの一次粒子径が、30~50nmであれば、比表面積が十分に大きくなり、DBP吸油量が前述の好ましい範囲となるため好ましい。前記一次粒子径は、電子顕微鏡画像から測定した値のことを指す。
The type of carbon black is not particularly limited as long as it has the effects of the present invention, and can be appropriately selected according to the purpose.For example, furnace black produced by an oil furnace method, acetylene black produced using acetylene gas as a raw material, Examples thereof include lamp black produced by directly burning raw materials in a closed space, thermal black produced by pyrolysis of natural gas, and channel black that captures a diffusion flame in contact with the bottom surface of the channel steel.
Among these, carbon black having an n-dibutyl phthalate (DBP) oil absorption of 180 mL / 100 g or more is preferable and carbon black of 300 mL / 100 g or more is more preferable from the viewpoint of conductivity, dispersibility in the resin composition, and the like. .
When the DBP oil absorption is less than 180 mL / 100 g, the amount used is increased to obtain the desired effect, and the impact resistance is likely to be lowered. If the DBP oil absorption is 180 mL / 100 g or more, the desired effect can be easily obtained with a smaller amount.
In the present invention, “n-dibutyl phthalate (DBP) oil absorption” indicates a value measured by a method based on ASTM D2414 (using DBP Absorbometer).
The carbon black is preferably furnace black produced by an oil furnace method from the viewpoint of conductivity, acetylene black produced using acetylene gas as a raw material, and the primary particle diameter of the carbon black is 30. It is preferably from ˜50 nm, more preferably from 30 to 40 nm. A primary particle diameter of the carbon black of 30 to 50 nm is preferable because the specific surface area is sufficiently large and the DBP oil absorption is within the above-mentioned preferable range. The primary particle diameter refers to a value measured from an electron microscope image.
 樹脂組成物中、(E)成分は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 (E)成分は市販品を用いることができる。前記市販品としては、ケッチェンブラックEC 300J(ライオン株式会社製、一次粒子径40nm)、ケッチェンブラックEC 600JD(ライオン株式会社製、一次粒子径34nm)、バルカンXC-72(キャボット社製、一次粒子径37nm)、デンカブラック(電気化学工業株式会社製、一次粒子径43nm)(以上、いずれも商品名)等を好適に用いることができる。中でも、少ない添加量で、樹脂組成物中で導電性のネットワークを形成できるケッチェンブラックEC 300J(ライオン株式会社製)、ケッチェンブラックEC 600JD(ライオン株式会社製)がより好ましい。
In the resin composition, as the component (E), one type may be used alone, or two or more types may be used in combination.
(E) A commercial item can be used for a component. Examples of the commercial products include Ketjen Black EC 300J (manufactured by Lion Corporation, primary particle diameter 40 nm), Ketjen Black EC 600JD (manufactured by Lion Corporation, primary particle diameter 34 nm), Vulcan XC-72 (manufactured by Cabot Corporation, primary A particle diameter of 37 nm), Denka Black (manufactured by Denki Kagaku Kogyo Co., Ltd., primary particle diameter of 43 nm) (all are trade names) and the like can be suitably used. Among them, ketjen black EC 300J (manufactured by Lion Corporation) and ketjen black EC 600JD (manufactured by Lion Corporation) that can form a conductive network in the resin composition with a small addition amount are more preferable.
 樹脂組成物における(E)成分の含有量は、(A)成分100質量部に対して1~15質量部であることが好ましく、1~12質量部であることがより好ましく、5~12質量部であることが特に好ましい。(A)成分100質量部に対して(E)成分の含有量が好ましい下限値未満であると、成形体とした際における表面抵抗率の安定効果、及び成形によって生じる成形体の反り抑制の効果が充分に得られにくく、好ましい上限値を超えると、耐衝撃性の低下を招きやすい。また、汚染源となるおそれがある。
 また、樹脂組成物における(E)成分の含有量は、(A)~(C)成分の合計100質量部に対して1~12質量部であることが好ましく、1~10質量部であることがより好ましく、5~10質量部であることが特に好ましい。(A)~(C)成分の合計100質量部に対して(E)成分の含有量が好ましい下限値未満であると、成形体とした際における表面抵抗率の安定効果、及び成形によって生じる成形体の反り抑制の効果が充分に得られにくく、好ましい上限値を超えると、耐衝撃性の低下を招きやすい。また、汚染源となるおそれがある。
 また、樹脂組成物における(E)成分の含有量は、樹脂組成物全体を100質量%とした際に0.4~15質量%であることが好ましく、0.5~13質量%であることがより好ましく、1~12質量%であることが好ましく、1~10質量%であることがより好ましい。樹脂組成物中、(E)成分の含有量が好ましい下限値未満であると、成形体とした際における導電性の安定効果、及び成形によって生じる成形体の反り抑制の効果が充分に得られにくく、好ましい上限値を超えると、耐衝撃性の低下を招きやすい。また、汚染源となるおそれがある。すなわち、樹脂組成物における(E)成分の含有量が、(A)成分100質量部に対して、1~15質量部であれば、または、(A)~(C)成分の合計100質量部に対して、1~12質量部であれば、あるいは、樹脂組成物全体を100質量%とした際に0.4~15質量%であれば、成形体とした際における表面抵抗率の安定化、および成形によって生じる成形体の反り抑制の効果が十分に得られ、耐衝撃性が低下せず、かつ、(E)成分そのものが汚染源となる恐れがないため好ましい。
The content of the component (E) in the resin composition is preferably 1 to 15 parts by weight, more preferably 1 to 12 parts by weight, with respect to 100 parts by weight of the component (A). Part is particularly preferred. When the content of the component (E) is less than the preferred lower limit with respect to 100 parts by mass of the component (A), the effect of stabilizing the surface resistivity when forming a molded product and the effect of suppressing warpage of the molded product caused by molding. Is difficult to obtain sufficiently, and when the preferable upper limit is exceeded, impact resistance tends to be lowered. Moreover, there is a risk of becoming a source of contamination.
In addition, the content of the component (E) in the resin composition is preferably 1 to 12 parts by mass, and preferably 1 to 10 parts by mass with respect to 100 parts by mass in total of the components (A) to (C). Is more preferably 5 to 10 parts by mass. When the content of the component (E) is less than the preferred lower limit with respect to a total of 100 parts by mass of the components (A) to (C), the effect of stabilizing the surface resistivity when formed into a molded product, and molding caused by molding The effect of suppressing the warp of the body is not sufficiently obtained, and when the preferable upper limit is exceeded, the impact resistance is likely to be lowered. Moreover, there is a risk of becoming a source of contamination.
Further, the content of the component (E) in the resin composition is preferably 0.4 to 15% by mass, and preferably 0.5 to 13% by mass when the entire resin composition is 100% by mass. Is more preferably 1 to 12% by mass, and more preferably 1 to 10% by mass. In the resin composition, when the content of the component (E) is less than the preferred lower limit, it is difficult to sufficiently obtain the effect of stabilizing the conductivity when forming a molded body and the effect of suppressing warpage of the molded body caused by molding. If the upper limit is exceeded, impact resistance tends to be reduced. Moreover, there is a risk of becoming a source of contamination. That is, if the content of the component (E) in the resin composition is 1 to 15 parts by mass relative to 100 parts by mass of the component (A), or a total of 100 parts by mass of the components (A) to (C) On the other hand, if the amount is 1 to 12 parts by mass, or 0.4 to 15% by mass when the entire resin composition is 100% by mass, the surface resistivity is stabilized when the molded body is formed. And the effect of suppressing warpage of the molded product produced by molding can be sufficiently obtained, impact resistance is not lowered, and component (E) itself is not likely to become a contamination source, which is preferable.
 (E)成分を用いる場合、樹脂組成物における、(B)成分と(E)成分との合計の含有量は、樹脂組成物全体を100質量%とした際に5~25質量%であることが好ましく、5~18質量%であることがより好ましい。
 (B)成分と(E)成分との合計の含有量が好ましい下限値未満であると、所望とする導電性が得られにくく、好ましい上限値超であると、耐衝撃性の低下を招きやすい。すなわち、(B)成分と(E)成分との合計の含有量が、樹脂組成物全体を100質量%とした際に5~25質量%であれば、所望とする導電性が得られ、かつ成形体の耐衝撃性が低下しにくいため好ましい。
 また、(B)成分と(E)成分の含有比((B)成分含有量/(E)成分含有量)が3.0以下であれば、反り抑制の効果が高く好ましい。
When the component (E) is used, the total content of the component (B) and the component (E) in the resin composition is 5 to 25% by mass when the total resin composition is 100% by mass. It is preferably 5 to 18% by mass.
When the total content of the component (B) and the component (E) is less than the preferred lower limit, it is difficult to obtain desired conductivity, and when it exceeds the preferred upper limit, impact resistance tends to be lowered. . That is, if the total content of the component (B) and the component (E) is 5 to 25% by mass when the entire resin composition is 100% by mass, desired conductivity can be obtained, and It is preferable because the impact resistance of the molded body is difficult to decrease.
Moreover, if the content ratio ((B) component content / (E) component content) of (B) component and (E) component is 3.0 or less, the effect of curvature suppression is high and preferable.
 本発明の樹脂組成物には、さらに、任意成分として滑剤、染料、顔料、種々の安定剤、強化剤、充填剤などを含有してもよい。 The resin composition of the present invention may further contain lubricants, dyes, pigments, various stabilizers, reinforcing agents, fillers and the like as optional components.
<樹脂組成物の製造方法>
 本発明の樹脂組成物は、公知の樹脂混練設備(たとえば熱ロール、ニーダー、バンバリーミキサー等)又は二軸混練押出機を用い、前述した成分を溶融混練することにより製造できる。必要に応じて、ペレタイザーを使用してペレット状の樹脂組成物としてもよい。
 前述した成分を溶融混練する際の温度は、使用する環状オレフィンホモポリマー(A)の種類によって適宜設定すればよく、通常200~400℃である。
<Method for producing resin composition>
The resin composition of the present invention can be produced by melt kneading the above-described components using a known resin kneading equipment (for example, a heat roll, a kneader, a Banbury mixer, etc.) or a twin-screw kneading extruder. If necessary, a pelletized resin composition may be formed using a pelletizer.
What is necessary is just to set suitably the temperature at the time of melt-kneading the component mentioned above according to the kind of cyclic olefin homopolymer (A) to be used, and it is 200-400 degreeC normally.
<半導体保管搬送容器(FOUP)の製造方法>
 そして、本発明の樹脂組成物(好ましくはペレット状の形態とした樹脂組成物)を用いて、射出成形、射出圧縮成形、圧縮成形、押出成形、又はブロー成形等を行うことにより成形体を得ることができる。ここでは、成形体形状や寸法精度の観点から射出成形を用いることがより好ましい。
 本発明の一つの態様において、半導体保管容器の製造方法は、本発明の樹脂組成物(好ましくはペレット状の樹脂組成物)を溶融して溶融樹脂を得る工程、前記溶融樹脂を金型に充填して成形体を得る工程を含む方法であることが好ましい。前記溶融樹脂を得る工程において、本発明の樹脂組成物を溶融するための温度は、260~300℃であることが好ましい。また、前記成形体を得る工程において、金型温度は50~100℃であることが好ましく、成形温度は、260~290℃であることが好ましい。
 本発明に係る、(A)~(C)成分を含有する樹脂組成物を半導体保管搬送容器の材料として用いることで、機械的強度(曲げ強さ、衝撃強さ)、耐熱性、導電性及び低アウトガス性のいずれも優れた成形体(半導体保管搬送容器)が得られる。
 たとえば、この成形体からなる搬送容器(FOUP)によれば、機械的強度が高く、他部材との接触による衝撃からウェーハ等を保護することができる。また、耐熱性が高く、成形体を乾燥した際、熱による変形を防ぐことができる。加えて、導電性に優れることから静電気を生じにくく、さらに、発生するアウトガス量が少ないことからそれ自体が汚染源となりにくく、ウェーハ等への汚染物質の付着を防止することができる。そのため、ウェーハの歩留まりを向上することができる。
 かかる本発明の樹脂組成物は、特に、半導体の回路パターンの微細化が進むのに伴って低アウトガス性が強く望まれる、電子部品の製造工程で使用される電子部品包装容器として好適なものであり、特に半導体保管搬送容器用として好適なものである。
<Manufacturing method of semiconductor storage and conveyance container (FOUP)>
And a molded object is obtained by performing injection molding, injection compression molding, compression molding, extrusion molding, or blow molding using the resin composition of the present invention (preferably a resin composition in the form of pellets). be able to. Here, it is more preferable to use injection molding from the viewpoint of the molded body shape and dimensional accuracy.
In one embodiment of the present invention, a method for manufacturing a semiconductor storage container includes a step of melting a resin composition of the present invention (preferably a pellet-shaped resin composition) to obtain a molten resin, and filling the mold with the molten resin Thus, the method preferably includes a step of obtaining a molded body. In the step of obtaining the molten resin, the temperature for melting the resin composition of the present invention is preferably 260 to 300 ° C. In the step of obtaining the molded body, the mold temperature is preferably 50 to 100 ° C., and the molding temperature is preferably 260 to 290 ° C.
By using the resin composition containing the components (A) to (C) according to the present invention as a material for a semiconductor storage and transport container, mechanical strength (bending strength, impact strength), heat resistance, conductivity and A molded product (semiconductor storage and conveyance container) excellent in both low outgassing properties can be obtained.
For example, according to the transport container (FOUP) made of this molded body, the mechanical strength is high, and the wafer and the like can be protected from impact caused by contact with other members. Moreover, heat resistance is high, and when a molded body is dried, deformation due to heat can be prevented. In addition, since it is excellent in conductivity, it is difficult to generate static electricity, and since the amount of outgas generated is small, it itself is unlikely to become a contamination source, and it is possible to prevent adhesion of contaminants to a wafer or the like. Therefore, the yield of the wafer can be improved.
Such a resin composition of the present invention is particularly suitable as an electronic component packaging container used in an electronic component manufacturing process in which low outgassing is strongly desired as semiconductor circuit patterns become finer. In particular, it is suitable for a semiconductor storage and conveyance container.
 以下、本発明を実施例等により具体的に説明するが、本発明はこれらに限定されるものではない。
 各例の樹脂組成物の組成を表1~3に示した。表中、(B)~(E)成分又は(B’)~(E’)成分の配合量は、(A)成分又は(A’)成分100質量部に対する質量部をそれぞれ表す。
 本実施例において使用した成分は下記の通りである。
EXAMPLES Hereinafter, although an Example etc. demonstrate this invention concretely, this invention is not limited to these.
The composition of the resin composition of each example is shown in Tables 1 to 3. In the table, the blending amounts of the components (B) to (E) or the components (B ′) to (E ′) represent parts by mass with respect to 100 parts by mass of the component (A) or the component (A ′).
The components used in this example are as follows.
[ガラス転移温度が101~160℃の環状オレフィンホモポリマー(A)]
 A-1:環状オレフィンホモポリマー、日本ゼオン株式会社製、商品名「ZEONOR(登録商標)1420R」、Tgは135℃。
 A-2:環状オレフィンホモポリマー、日本ゼオン株式会社製、商品名「ZEONOR(登録商標)1020R」、Tgは102℃。
[Cyclic olefin homopolymer (A) having a glass transition temperature of 101 to 160 ° C.]
A-1: Cyclic olefin homopolymer, manufactured by Nippon Zeon Co., Ltd., trade name “ZEONOR (registered trademark) 1420R”, Tg: 135 ° C.
A-2: Cyclic olefin homopolymer, manufactured by Nippon Zeon Co., Ltd., trade name “ZEONOR (registered trademark) 1020R”, Tg is 102 ° C.
[(A)成分の比較成分(A’)]
 A’-1:環状オレフィンホモポリマー、日本ゼオン株式会社製、商品名「ZEONOR(登録商標)1060R」、Tgは100℃。
 A’-2:環状オレフィンホモポリマー、日本ゼオン株式会社製、商品名「ZEONOR(登録商標)1600」、Tgは163℃。
 A’-3:環状オレフィンコポリマー、三井化学株式会社製、商品名「アペル(登録商標)5014DP」、Tgは135℃。
[Comparison component (A ′) of component (A)]
A′-1: Cyclic olefin homopolymer, manufactured by Nippon Zeon Co., Ltd., trade name “ZEONOR (registered trademark) 1060R”, Tg is 100 ° C.
A′-2: Cyclic olefin homopolymer, manufactured by Nippon Zeon Co., Ltd., trade name “ZEONOR (registered trademark) 1600”, Tg: 163 ° C.
A′-3: Cyclic olefin copolymer, manufactured by Mitsui Chemicals, trade name “Apel (registered trademark) 5014DP”, Tg: 135 ° C.
[繊維状導電性フィラー(B)]
 B-1:炭素繊維、日本ポリマー株式会社製、商品名「EPU-LCL」。繊維径は、7.0μm、繊維長は、6.0mm(アスペクト比857)。
[Fibrous conductive filler (B)]
B-1: Carbon fiber, manufactured by Nippon Polymer Co., Ltd., trade name “EPU-LCL”. The fiber diameter is 7.0 μm, and the fiber length is 6.0 mm (aspect ratio 857).
[(B)成分の比較成分(B’)]
 B’-1:粒子状導電性フィラー(下記のE-1と同一のもの)を用いた。
[Comparison component (B ′) of component (B)]
B′-1: Particulate conductive filler (same as E-1 below) was used.
[オレフィン系エラストマー及びスチレン系エラストマーからなる群より選択される少なくとも一種のエラストマー(C)]
 C-1:スチレン系エラストマー、旭化成化学株式会社製、商品名「タフテック(登録商標)H1053」。
 C-2:オレフィン系エラストマー、三井化学株式会社製、商品名「タフマー(登録商標)A4085S」。
[At least one elastomer (C) selected from the group consisting of olefin elastomers and styrene elastomers]
C-1: Styrene elastomer, manufactured by Asahi Kasei Chemical Co., Ltd., trade name “Tuftec (registered trademark) H1053”.
C-2: Olefin-based elastomer, manufactured by Mitsui Chemicals, Inc., trade name “Tuffmer (registered trademark) A4085S”.
[(C)成分の比較成分(C’)]
 C’-1:ポリエステル系エラストマー、東洋紡績株式会社製、商品名「ペルプレン(登録商標)P150M」。
[Comparison component (C ′) of component (C)]
C′-1: Polyester elastomer, manufactured by Toyobo Co., Ltd., trade name “Perprene (registered trademark) P150M”.
[粘度平均分子量が100万以上のポリエチレン(D)]
 D-1:超高分子量ポリエチレン、三井化学株式会社製、商品名「ミペロン(登録商標)XM-220」;粘度平均分子量200万、平均粒径30μm。
[Polyethylene (D) having a viscosity average molecular weight of 1 million or more]
D-1: Ultra high molecular weight polyethylene, manufactured by Mitsui Chemicals, trade name “Miperon (registered trademark) XM-220”; viscosity average molecular weight 2 million, average particle size 30 μm.
[(D)成分の比較成分(D’)]
 D’-1:粘度平均分子量が100万未満のポリエチレン(高密度ポリエチレン)、株式会社プライムポリマー製、商品名「ハイゼックス(登録商標)2208J」;粘度平均分子量約65000。
[Comparison component (D ′) of component (D)]
D′-1: polyethylene having a viscosity average molecular weight of less than 1 million (high density polyethylene), manufactured by Prime Polymer Co., Ltd., trade name “Hi-Zex (registered trademark) 2208J”; viscosity average molecular weight of about 65,000.
[粒子状導電性フィラー(E)]
 E-1:カーボンブラック、ライオン株式会社製、商品名「ケッチェンブラック(登録商標)EC300J」;粒子径(1次粒子径)40nm、アスペクト比約1、n-ジブチルフタレート(DBP)吸油量360mL/100g。
[Particulate conductive filler (E)]
E-1: Carbon black, manufactured by Lion Corporation, trade name “Ketjen Black (registered trademark) EC300J”; particle size (primary particle size) 40 nm, aspect ratio of about 1, n-dibutyl phthalate (DBP) oil absorption 360 mL / 100 g.
[(E)成分の比較成分(E’)]
 E’-1:カーボンブラック、電気化学工業株式会社製、商品名「デンカブラック(登録商標)」;粒子径(1次粒子径)43nm、n-ジブチルフタレート(DBP)吸油量165mL/100g。
[Comparison component (E ′) of component (E)]
E′-1: Carbon black, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “Denka Black (registered trademark)”; particle size (primary particle size) 43 nm, n-dibutyl phthalate (DBP) oil absorption 165 mL / 100 g.
<樹脂組成物の製造例>
 表1~3に示す組成(配合成分、配合量(質量部))に従い、各例の樹脂組成物(円柱状ペレット)を以下に記載する製造方法によりそれぞれ製造した。
 表中、空欄の配合成分がある場合、その配合成分は配合されていない。配合量は、配合成分の純分量を示す。
<Production Example of Resin Composition>
According to the compositions shown in Tables 1 to 3 (blending components, blending amount (parts by mass)), the resin compositions (cylindrical pellets) of each example were produced by the production methods described below.
In the table, when there is a blank blending component, the blending component is not blended. A compounding quantity shows the pure amount of a compounding component.
(実施例1)
 二軸押出機NR-II(ナカタニ機械社製、スクリュー口径57mm)を用い、予めプレブレンドした(A)成分と(C)成分との混合物を、前記押出機の元ホッパーより供給し、前記混合物を280℃で完全に溶融したところで、(B)成分を定量フィーダーによりサイドフィーダを通して強制的に前記押出機に供給して混練することによりコンパウンドを得た。
 次いで、このコンパウンドを冷却した後、ペレタイザー(ナカタニ機械社製、GF5)を用いて円柱状ペレット(直径2mm、長さ2~4mm)を調製した。
Example 1
Using a twin screw extruder NR-II (manufactured by Nakatani Machinery Co., Ltd., screw diameter: 57 mm), a pre-blended mixture of component (A) and component (C) is supplied from the former hopper of the extruder, and the mixture Was completely melted at 280 ° C., component (B) was forcibly supplied to the extruder through a side feeder using a quantitative feeder and kneaded to obtain a compound.
Next, after cooling the compound, a cylindrical pellet (diameter 2 mm, length 2 to 4 mm) was prepared using a pelletizer (manufactured by Nakatani Machinery Co., Ltd., GF5).
(実施例2~5)
 表1に示す組成に変更した以外は、実施例1と同様にして円柱状ペレットを調製した。
(Examples 2 to 5)
A cylindrical pellet was prepared in the same manner as in Example 1 except that the composition was changed to the composition shown in Table 1.
(実施例6、7)
 二軸押出機NR-II(ナカタニ機械社製、スクリュー口径57mm)を用い、予めプレブレンドした(A)成分と(C)成分と(D)成分との混合物を、前記押出機の元ホッパーより供給し、前記混合物が完全に溶融したところで、(B)成分を定量フィーダーによりサイドフィーダを通して強制的に前記押出機に供給して混練することによりコンパウンドを得た。
 次いで、このコンパウンドを冷却した後、実施例1と同様にして円柱状ペレットを調製した。
(Examples 6 and 7)
Using a twin-screw extruder NR-II (manufactured by Nakatani Machinery Co., Ltd., screw diameter 57 mm), a pre-blended mixture of component (A), component (C) and component (D) was transferred from the former hopper of the extruder. When the mixture was completely melted, the compound (B) was forcibly supplied to the extruder through a side feeder using a quantitative feeder and kneaded to obtain a compound.
Next, after cooling this compound, cylindrical pellets were prepared in the same manner as in Example 1.
(実施例8)
 (D)成分を比較成分(D’)に変更した以外は、実施例6と同様にして円柱状ペレットを調製した。
(Example 8)
(D) A cylindrical pellet was prepared in the same manner as in Example 6 except that the component was changed to the comparative component (D ′).
(実施例9、10)
 (B)成分とともに(E)成分を定量フィーダーによりサイドフィーダを通して供給した以外は、実施例1と同様にして円柱状ペレットを調製した。
(Examples 9 and 10)
A cylindrical pellet was prepared in the same manner as in Example 1 except that the component (E) was supplied together with the component (B) through the side feeder by the quantitative feeder.
(実施例11)
 (B)成分とともに(E)成分を定量フィーダーによりサイドフィーダを通して供給した以外は、実施例6、7と同様にして円柱状ペレットを調製した。
(Example 11)
Cylindrical pellets were prepared in the same manner as in Examples 6 and 7, except that the component (E) was supplied together with the component (B) through the side feeder using a quantitative feeder.
(実施例12)
 (E)成分を比較成分(E’)に変更した以外は、実施例9、10と同様にして円柱状ペレットを調製した。
Example 12
Columnar pellets were prepared in the same manner as in Examples 9 and 10 except that the component (E) was changed to the comparative component (E ′).
(比較例1)
 (C)成分を配合しない、即ち、予めプレブレンドした(A)成分と(C)成分との混合物を(A)成分のみに変更した以外は、実施例1と同様にして円柱状ペレットを調製した。
(Comparative Example 1)
(C) Component is not blended, that is, cylindrical pellets are prepared in the same manner as in Example 1 except that the pre-blended component (A) and component (C) are changed to component (A) only. did.
(比較例2)
 (B)成分を配合しない、即ち、二軸押出機NR-II(ナカタニ機械社製、スクリュー口径57mm)を用い、予めプレブレンドした(A)成分と(C)成分との混合物を、前記押出機の元ホッパーより供給し、溶融混練することでコンパウンドを得た。
 次いで、このコンパウンドを冷却した後、実施例1と同様にして円柱状ペレットを調製した。
(Comparative Example 2)
(B) Component is not blended, that is, using a twin screw extruder NR-II (manufactured by Nakatani Machinery Co., Ltd., screw diameter 57 mm), a mixture of (A) component and (C) component pre-blended in advance The compound was obtained by supplying from the former hopper of the machine and melt-kneading.
Next, after cooling this compound, cylindrical pellets were prepared in the same manner as in Example 1.
(比較例3)
 表1に示す組成に変更した以外は、実施例1と同様にして円柱状ペレットを調製した。
(Comparative Example 3)
A cylindrical pellet was prepared in the same manner as in Example 1 except that the composition was changed to the composition shown in Table 1.
(比較例4)
 (C)成分を比較成分(C’)に変更した以外は、実施例2と同様にして円柱状ペレットを調製した。
(Comparative Example 4)
(C) A cylindrical pellet was prepared in the same manner as in Example 2 except that the component was changed to the comparative component (C ′).
(比較例5)
 (B)成分を比較成分(B’)に変更した以外は、実施例2と同様にして円柱状ペレットを調製した。
(Comparative Example 5)
A columnar pellet was prepared in the same manner as in Example 2 except that the component (B) was changed to the comparative component (B ′).
(比較例6~8)
 (A)成分を比較成分(A’)に変更した以外は、実施例1と同様にして円柱状ペレットを調製した。
(Comparative Examples 6 to 8)
A columnar pellet was prepared in the same manner as in Example 1 except that the component (A) was changed to the comparative component (A ′).
<樹脂組成物の評価>
 各例の樹脂組成物について、以下に示す評価方法により、機械的強度、導電性、アウトガス性、耐摩耗性、ウェルド接着性、導電性の安定化、成形によって生じる成形体の反り抑制の効果についてそれぞれ評価を行った。
<Evaluation of resin composition>
About the resin composition of each example, with the evaluation method shown below, mechanical strength, electrical conductivity, outgas properties, wear resistance, weld adhesion, conductivity stabilization, the effect of suppressing warpage of the molded product caused by molding Each was evaluated.
 試験片の作製:
 射出成形機(日精樹脂工業株式会社製、FS120EM25ASE)を用い、前記の製造例で調製された各例の樹脂組成物(円柱状ペレット)から、強度測定用ダンベル試験片(ISO規格の多目的試験片A)、導電性測定用の平板プレート(76mm×76mm×3.2mm)、及び、成形体の反り抑制の評価用の試験片(310mm×360mm×20mm)をそれぞれ常法により成形し、各評価に供する試験片を作製した。成形温度は250~280℃とし、金型温度は50℃に設定した。
Preparation of test piece:
Using an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd., FS120EM25ASE), from the resin composition (cylindrical pellet) of each example prepared in the above production example, a dumbbell test piece for strength measurement (ISO standard multipurpose test piece) A), a flat plate for measuring conductivity (76 mm × 76 mm × 3.2 mm), and a test piece (310 mm × 360 mm × 20 mm) for evaluation of warpage suppression of the molded body were molded by a conventional method, and each evaluation A test piece was prepared for use. The molding temperature was 250 to 280 ° C, and the mold temperature was set to 50 ° C.
[機械的強度]
 機械的強度の指標として曲げ強さ、シャルピー衝撃強さをそれぞれ以下に示す方法により測定した。
・曲げ強さ
 曲げ強さは、ISO 178/A/2に準拠した方法により測定した。この曲げ強さが、80MPa超である場合を合格とした。
・シャルピー衝撃強さ
 シャルピー衝撃強さは、ISO 179/1eAに準拠した方法により測定した。このシャルピー衝撃強さが、3.0kJ/m超である場合を合格とした。前記シャルピー衝撃強さの値が大きいほど、耐衝撃性が良好であることを意味する。
[Mechanical strength]
As an index of mechanical strength, bending strength and Charpy impact strength were measured by the following methods.
-Bending strength Bending strength was measured by the method based on ISO178 / A / 2. The case where the bending strength was more than 80 MPa was regarded as acceptable.
-Charpy impact strength Charpy impact strength was measured by the method based on ISO 179 / 1eA. The case where the Charpy impact strength was more than 3.0 kJ / m 2 was regarded as acceptable. The larger the Charpy impact strength value, the better the impact resistance.
[耐熱性]
 耐熱性の指標として荷重たわみ温度(HDT)を、ISO 75-2Afに準拠した方法により測定した。この荷重たわみ温度が、95℃以上である場合を合格とした。前記荷重たわみ温度が高いほど、耐熱性が良好であることを意味する。
[Heat-resistant]
The deflection temperature under load (HDT) was measured by a method based on ISO 75-2Af as an index of heat resistance. The case where the deflection temperature under load was 95 ° C. or higher was regarded as acceptable. The higher the deflection temperature under load, the better the heat resistance.
[導電性]
 導電性の指標として表面抵抗率を、ASTM D257に準拠した方法により測定した。この表面抵抗率が、1.0E+4~1.0E+10(1.0×10~1.0×1010)Ωである場合を合格とした。
[Conductivity]
The surface resistivity was measured by a method based on ASTM D257 as a conductivity index. A case where the surface resistivity was 1.0E + 4 to 1.0E + 10 (1.0 × 10 4 to 1.0 × 10 10 ) Ω was regarded as acceptable.
[低アウトガス性]
 低アウトガス性の指標としてアウトガスの発生量を、以下に示す方法により測定した。
 各例の樹脂組成物(円柱状ペレット)5.0gを秤量して試験管に採取し、150℃で1時間加熱した際に発生するアウトガス量を、ガスクロマトグラフ質量分析計(GC-MS)を用いてヘッドスペース(HS)法により測定した。
 発生した揮発性ガス量を、フェノールを用いての相対濃度から換算し、単位質量当たりの濃度として算出した数値を、アウトガスの発生量とした。
 測定装置には、ガスクロマトグラフィー装置としてHP社製の5890と、質量分析装置としてHP社製の5972とを用いた。
 このアウトガスの発生量が、40ppm未満である場合を合格とした。前記アウトガス量が少ないほど、低アウトガス性が優れていることを意味する。
[Low outgassing]
The amount of outgas generated as an indicator of low outgassing property was measured by the following method.
Weigh out 5.0 g of the resin composition (cylindrical pellet) of each example, collect it in a test tube, and measure the amount of outgas generated when heated at 150 ° C. for 1 hour using a gas chromatograph mass spectrometer (GC-MS). And measured by the headspace (HS) method.
The amount of volatile gas generated was converted from the relative concentration using phenol, and the value calculated as the concentration per unit mass was defined as the outgas generation amount.
As the measuring apparatus, 5890 manufactured by HP as a gas chromatography apparatus and 5972 manufactured by HP as a mass spectrometer were used.
A case where the amount of outgas generated was less than 40 ppm was regarded as acceptable. The smaller the outgas amount, the better the low outgassing property.
[耐摩耗性]
 耐摩耗性の指標としてウェーハ滑り荷重を、ウェーハ滑り磨耗試験を行うことにより測定した。
 定盤上で、洗浄・乾燥した射出成形試験片(20mm×40mm×3mm)を、直径300mmのシリコンウェーハの外周部(周面)に当接させながら、振幅試験機を用いて、振幅2mmの往復試験を10万回行った。
 前記往復試験の終了後、振幅試験機を取り外し、前記シリコンウェーハにおける、射出成形試験片が接していた周面を、滑車を介して垂直上方に位置する引張り試験機に接続した。そして、一定の速度で引張り荷重を測定し、その値をウェーハ滑り荷重(N)とした。引張り試験機にはテンシロン RTC-1325A(ORIENTEC製)を用いた。
 このウェーハ滑り荷重が、0.40N以内である場合をより良好であるとしてA、0.40超0.60N以内である場合を良好であるとしてB、0.60N超である場合を不良であるとしてCとし、耐摩耗性について評価した。
[Abrasion resistance]
Wafer sliding load was measured by conducting a wafer sliding wear test as an index of wear resistance.
Using an amplitude tester, the cleaned and dried injection molded test piece (20 mm × 40 mm × 3 mm) was brought into contact with the outer peripheral portion (peripheral surface) of a 300 mm diameter silicon wafer. The reciprocating test was conducted 100,000 times.
After the end of the reciprocating test, the amplitude tester was removed, and the peripheral surface of the silicon wafer that was in contact with the injection-molded test piece was connected to a tensile tester positioned vertically upward via a pulley. Then, the tensile load was measured at a constant speed, and the value was defined as the wafer sliding load (N). Tensilon RTC-1325A (manufactured by ORIENTEC) was used as the tensile tester.
If the wafer sliding load is within 0.40N, it is A. If it is better than 0.40N, B is better if it is within 0.40N but less than 0.60N, and if it is more than 0.60N, it is bad. As C, wear resistance was evaluated.
[ウェルド接着性]
 ウェルド接着性の評価は、1ゲートから射出成形して立方体形状の容器(横430mm×縦356mm×高さ339mm)を製造する際、溶融状態の樹脂組成物が合流する部分に生じるライン(ウェルドライン)の発生状態(前記容器の外観)を目視により観察することで行った。
 そして、実質的なウェルドラインの発生が認められない場合をA、ウェルドラインの発生がやや認められる場合をB、ウェルドラインの発生が明瞭に認められる場合をCとし、ウェルド接着性について評価した。
[Weld adhesiveness]
Evaluation of weld adhesion is a line (weld line) formed at a portion where a molten resin composition is joined when a cubic container (width 430 mm × length 356 mm × height 339 mm) is manufactured by injection molding from one gate. ) Occurrence state (appearance of the container) was observed visually.
The weld adhesion was evaluated with A as the case where substantial weld lines were not observed, B as the case where weld lines were slightly observed, and C as the case where weld lines were clearly observed.
[導電安定性]
 導電性(帯電防止能)の安定化の指標として、表面抵抗率の標準偏差(バラツキ)を求めた。
 導電性測定用の平板プレート(76mm×76mm×3.2mm)を6箇所に区分し、各区分の表面抵抗率を測定した。表面抵抗率の測定には、三菱化学アナリテック社製のMCP-HT260 ハイレスタIPを用い、電極形状URSプローブにて測定を行った。
 各区分の表面抵抗率の常用対数を計算し、それらの標準偏差(バラツキ)を解析した。
 この表面抵抗率の常用対数での標準偏差が、0.03未満である場合を導電安定性がより良好であるとしてA、0.03以上0.10未満である場合を導電安定性が良好であるとしてB、0.10以上である場合を導電性にバラツキがあるとしてCとし、導電安定性について評価した。
[Conductive stability]
The standard deviation (variation) of the surface resistivity was determined as an index for stabilizing the conductivity (antistatic ability).
A flat plate (76 mm × 76 mm × 3.2 mm) for conductivity measurement was divided into six locations, and the surface resistivity of each division was measured. The surface resistivity was measured using an MCP-HT260 Hiresta IP manufactured by Mitsubishi Chemical Analytech Co., Ltd. with an electrode-shaped URS probe.
The common logarithm of the surface resistivity of each category was calculated, and their standard deviation (variation) was analyzed.
When the standard deviation of the logarithm of the surface resistivity is less than 0.03, the conductivity stability is better as A. When the standard deviation is 0.03 or more and less than 0.10, the conductivity stability is good. Assuming that B is 0.10 or more, C is regarded as having a variation in conductivity, and the conductivity stability was evaluated.
[成形によって生じる成形体の反り抑制の効果]
 射出成形試験片(310mm×360mm×20mm)を水平な台に置き、長手方向(360mm辺に平行な方向)の端部と台との離間距離を測定した。そして、前記離間距離の最大値(台から最も離れていた端部と台との離間距離L)を「成形体の反り量」とし、成形によって生じる成形体の反り抑制の効果について評価を行った。
 この成形体の反り量(離間距離L)が、0.10mm未満の場合を反り抑制の効果がより良好であるとしてA、0.10mm以上0.20mm未満である場合を反り抑制が良好であるとしてB、0.20mm以上である場合を反りが抑制されていないとしてCとし、成形体の反り抑制の効果について評価した。
[Effects of suppressing warpage of molded product caused by molding]
An injection-molded test piece (310 mm × 360 mm × 20 mm) was placed on a horizontal table, and the distance between the end in the longitudinal direction (direction parallel to the 360 mm side) and the table was measured. Then, the maximum value of the separation distance (the separation distance L between the end portion farthest from the table and the table) was set as “the amount of warpage of the molded body”, and the effect of suppressing the warpage of the molded body caused by molding was evaluated. .
When the amount of warpage (separation distance L) of this molded product is less than 0.10 mm, the effect of warpage suppression is better, A, and when the amount is 0.10 mm or more and less than 0.20 mm, warpage suppression is good. As B, when 0.20 mm or more, the warpage is not suppressed, and C, and the effect of suppressing warpage of the molded body was evaluated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~3に示す結果より、本発明を適用した実施例の樹脂組成物によれば、成形体とした際に機械的強度、耐熱性、導電性及び低アウトガス性がいずれも優れることが分かる。
 表2に示す結果より、(A)~(C)成分に加えて(D)成分をさらに含有することにより、ウェーハ等に対する耐磨耗性及びウェルド接着性がより向上することが分かる。
 表3に示す結果より、(A)~(C)成分に加えて(E)成分をさらに含有することにより、導電性の安定化がより図られる。また、(B)成分と(E)成分比が3.0以下である場合、反り抑制効果の効果が高いことが分かる。
From the results shown in Tables 1 to 3, it can be seen that according to the resin compositions of the examples to which the present invention is applied, the mechanical strength, heat resistance, conductivity, and low outgassing properties are all excellent when formed into molded bodies. .
From the results shown in Table 2, it can be seen that by further including the component (D) in addition to the components (A) to (C), the wear resistance and weld adhesion to the wafer and the like are further improved.
From the results shown in Table 3, the electrical conductivity is further stabilized by further containing the component (E) in addition to the components (A) to (C). Moreover, when the (B) component and (E) component ratio are 3.0 or less, it turns out that the effect of the curvature suppression effect is high.
 実施例9と実施例12との対比より、DBP吸油量が180mL以上のE-1を含有する実施例9は、DBP吸油量が180mL未満のE’-1を含有する実施例12に比べて、粒子状導電性フィラーの使用量が少ないにもかかわらず、同等の導電性を示し、かつ、導電性の安定化と成形によって生じる成形体の反り抑制が図られていることが分かる。 From a comparison between Example 9 and Example 12, Example 9 containing E-1 having a DBP oil absorption of 180 mL or more is more than Example 12 containing E′-1 having a DBP oil absorption of less than 180 mL. It can be seen that, although the amount of the particulate conductive filler used is small, the same conductivity is exhibited, and the warpage of the molded body caused by stabilization of the conductivity and molding is achieved.
 本発明の樹脂組成物によれば、機械的強度、耐熱性、導電性及び低アウトガス性がいずれも優れる成形体を提供することができる。 According to the resin composition of the present invention, it is possible to provide a molded article having excellent mechanical strength, heat resistance, conductivity and low outgassing properties.

Claims (4)

  1.  ガラス転移温度が101~160℃の環状オレフィンホモポリマー(A)と、繊維状導電性フィラー(B)と、オレフィン系エラストマー及びスチレン系エラストマーからなる群より選択される少なくとも一種のエラストマー(C)とを含有し、
     前記エラストマー(C)の含有量が、前記環状オレフィンホモポリマー(A)100質量部に対して5~25質量部であることを特徴とする樹脂組成物。
    A cyclic olefin homopolymer (A) having a glass transition temperature of 101 to 160 ° C., a fibrous conductive filler (B), and at least one elastomer (C) selected from the group consisting of olefin elastomers and styrene elastomers; Containing
    A resin composition, wherein the content of the elastomer (C) is 5 to 25 parts by mass with respect to 100 parts by mass of the cyclic olefin homopolymer (A).
  2.  粘度平均分子量が100万以上のポリエチレン(D)をさらに含有することを特徴とする請求項1記載の樹脂組成物。 The resin composition according to claim 1, further comprising polyethylene (D) having a viscosity average molecular weight of 1,000,000 or more.
  3.  粒子状導電性フィラー(E)をさらに含有することを特徴とする請求項1又は請求項2記載の樹脂組成物。 The resin composition according to claim 1 or 2, further comprising a particulate conductive filler (E).
  4.  前記粒子状導電性フィラー(E)は、n-ジブチルフタレート吸油量が180mL/100g以上のカーボンブラックであることを特徴とする請求項3記載の樹脂組成物。 4. The resin composition according to claim 3, wherein the particulate conductive filler (E) is carbon black having an n-dibutyl phthalate oil absorption of 180 mL / 100 g or more.
PCT/JP2013/059591 2012-04-04 2013-03-29 Resin composition WO2013150979A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380018465.3A CN104245832B (en) 2012-04-04 2013-03-29 Resin composition
KR1020147026025A KR102000809B1 (en) 2012-04-04 2013-03-29 Resin composition
MYPI2014702847A MY184861A (en) 2012-04-04 2013-03-29 Resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-085075 2012-04-04
JP2012085075 2012-04-04

Publications (1)

Publication Number Publication Date
WO2013150979A1 true WO2013150979A1 (en) 2013-10-10

Family

ID=49300464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059591 WO2013150979A1 (en) 2012-04-04 2013-03-29 Resin composition

Country Status (6)

Country Link
JP (1) JP6139223B2 (en)
KR (1) KR102000809B1 (en)
CN (1) CN104245832B (en)
MY (1) MY184861A (en)
TW (1) TWI564337B (en)
WO (1) WO2013150979A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI644965B (en) * 2013-12-04 2018-12-21 迪睿合股份有限公司 Cyclic olefin resin composition film
US20210301079A1 (en) * 2018-07-19 2021-09-30 Zeon Corporation Shaping material and shaped product

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6031625B1 (en) * 2016-03-11 2016-11-24 クオドラントポリペンコジャパン株式会社 Resin composition and molded body
JPWO2020196227A1 (en) * 2019-03-26 2020-10-01
US20230136721A1 (en) * 2020-08-12 2023-05-04 Zeon Corporation Resin composition and method of producing same, shaping material, packaging container, and semiconductor container

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118465A (en) * 1993-10-27 1995-05-09 Denki Kagaku Kogyo Kk Resin composition having heat resistance and electrical conductivity resistance
JP2000511582A (en) * 1996-06-06 2000-09-05 ヘキスト・セラニーズ・コーポレーション Cyclic olefin polymer formulations exhibiting improved impact resistance and excellent transparency
JP2003261688A (en) * 2002-03-06 2003-09-19 Yuka Denshi Co Ltd Semi-conductive resin molded article
WO2004029152A1 (en) * 2002-09-26 2004-04-08 Zeon Corporation Alicyclic structure containing polymer resin composition and formed article
JP2005336335A (en) * 2004-05-27 2005-12-08 Nippon Zeon Co Ltd Resin composition and molding
JP2010155930A (en) * 2008-12-26 2010-07-15 Asahi Kasei Chemicals Corp Composite material composition and molded product using the same
JP2011006534A (en) * 2009-06-24 2011-01-13 Nippon Zeon Co Ltd Electroconductive polymer film, collector including the same, and manufacturing method therefor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109396A (en) * 1993-08-19 1995-04-25 Sumitomo Bakelite Co Ltd Conductive amorphous polyolefin resin composition
JP2000273321A (en) * 1999-03-24 2000-10-03 Cci Corp Abrasion-resistant, lubricative thermosetting resin composition
JP4691283B2 (en) * 2001-09-13 2011-06-01 日本ポリプロ株式会社 Polyolefin resin composition and molded article thereof
DE10259498A1 (en) * 2002-12-19 2004-07-01 Bayer Ag Conductive thermoplastics with soot and carbon nanofibrils
TWI343396B (en) 2004-08-30 2011-06-11 Fuji Bakelite Co Ltd A forming article for cleanroom and the process for preparing thereof
WO2006095511A1 (en) * 2005-03-07 2006-09-14 Mitsui Chemicals, Inc. Cyclic olefin resin composition, and substrate provided from said resin composition
CN101501126A (en) * 2006-08-04 2009-08-05 埃克森美孚化学专利公司 Polymer compositions comprising cyclic olefin polymers, polyolefin modifiers, and fillers
JP2010138237A (en) * 2008-12-10 2010-06-24 Nippon Zeon Co Ltd Conductive elastomer film and method for producing the same
JP2011073344A (en) * 2009-09-30 2011-04-14 Nippon Zeon Co Ltd Device and method of taking-out resin molding

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118465A (en) * 1993-10-27 1995-05-09 Denki Kagaku Kogyo Kk Resin composition having heat resistance and electrical conductivity resistance
JP2000511582A (en) * 1996-06-06 2000-09-05 ヘキスト・セラニーズ・コーポレーション Cyclic olefin polymer formulations exhibiting improved impact resistance and excellent transparency
JP2003261688A (en) * 2002-03-06 2003-09-19 Yuka Denshi Co Ltd Semi-conductive resin molded article
WO2004029152A1 (en) * 2002-09-26 2004-04-08 Zeon Corporation Alicyclic structure containing polymer resin composition and formed article
JP2005336335A (en) * 2004-05-27 2005-12-08 Nippon Zeon Co Ltd Resin composition and molding
JP2010155930A (en) * 2008-12-26 2010-07-15 Asahi Kasei Chemicals Corp Composite material composition and molded product using the same
JP2011006534A (en) * 2009-06-24 2011-01-13 Nippon Zeon Co Ltd Electroconductive polymer film, collector including the same, and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI644965B (en) * 2013-12-04 2018-12-21 迪睿合股份有限公司 Cyclic olefin resin composition film
US20210301079A1 (en) * 2018-07-19 2021-09-30 Zeon Corporation Shaping material and shaped product

Also Published As

Publication number Publication date
CN104245832B (en) 2017-01-18
MY184861A (en) 2021-04-28
KR102000809B1 (en) 2019-07-16
TW201345968A (en) 2013-11-16
KR20140147822A (en) 2014-12-30
CN104245832A (en) 2014-12-24
JP6139223B2 (en) 2017-05-31
JP2013231171A (en) 2013-11-14
TWI564337B (en) 2017-01-01

Similar Documents

Publication Publication Date Title
JP6139223B2 (en) Resin composition
Bokobza et al. Blends of carbon blacks and multiwall carbon nanotubes as reinforcing fillers for hydrocarbon rubbers
KR101742926B1 (en) Masterbatches for preparing a composite materials with enhanced conductivity properties, process and composite materials produced
US10550231B2 (en) Masterbatches for preparing a composite material based on semi-crystalline polymer with enhanced conductivity properties, process and composite materials produced therefrom
KR20070100770A (en) Electrically conductive compositions and method of manufacture thereof
KR101269422B1 (en) Polycarbonate Resin Composition having Excellent Wear resistance and Electric Conductivity, and Method of Preparing the Same
US20090281227A1 (en) Polymer Composition Suitable for Electrostatic Discharge Applications
JP2018513230A (en) Method for manufacturing composite articles having improved electrical properties
US8796371B2 (en) Resin composition and electrically insulating part obtained from the same
KR100793396B1 (en) Electrically conductive compositions and methods for producing same
Esmizadeh et al. Effect of carbon nanotube on PA6/ECO composites: Morphology development, rheological, and thermal properties
Sumdani et al. Effects of variation of steric repulsion between multiwall carbon nanotubes and anionic surfactant in epoxy nanocomposites
US20170298214A1 (en) Thinwall moldable coductive compositions with improved physical properties and uses thereof
JP6052020B2 (en) Conductive polyethylene composition for injection molding and molded body and fuel system part using the same
EP3620488A1 (en) Electrically conductive resin composition and preparation method thereof
JP2006097005A (en) Electrically conductive resin composition and method for producing the same
WO2006095821A1 (en) Thermoplastic resin composition and thermoplastic resin molded article
JP7418342B2 (en) Solid additives and resin compositions and methods for their production
KR101281112B1 (en) Modified polyphenylene oxide composition for ic test socket
Chan et al. Effect of blend ratio on the properties of polystyrene/acrylonitrile butadiene styrene/carbon black (PS/ABS/CB) conductive materials
US20240043652A1 (en) Antistatic resin composition, molded article thereof, and method of manufacturing the same
KR20160072683A (en) Thermoplastic resin composition for shipping tray
US20240043680A1 (en) Antistatic resin composition comprising thermoplastic resin and conductive filler
US20240043679A1 (en) Eco-friendly antistatic resin composition and molded product thereof
JP2014193974A (en) Electrically conductive polyethylene composition for extrusion molding and blow molding, and molding thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147026025

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201406571

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 13772741

Country of ref document: EP

Kind code of ref document: A1