WO2013145149A1 - 無端金属リングの製造方法及び製造装置並びに無端金属リング - Google Patents

無端金属リングの製造方法及び製造装置並びに無端金属リング Download PDF

Info

Publication number
WO2013145149A1
WO2013145149A1 PCT/JP2012/058124 JP2012058124W WO2013145149A1 WO 2013145149 A1 WO2013145149 A1 WO 2013145149A1 JP 2012058124 W JP2012058124 W JP 2012058124W WO 2013145149 A1 WO2013145149 A1 WO 2013145149A1
Authority
WO
WIPO (PCT)
Prior art keywords
endless metal
metal ring
annular member
manufacturing
molten
Prior art date
Application number
PCT/JP2012/058124
Other languages
English (en)
French (fr)
Inventor
幸司 西田
一朗 青戸
涼 安富
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2014507117A priority Critical patent/JP5817921B2/ja
Priority to CN201280071941.3A priority patent/CN104220608A/zh
Priority to US14/376,576 priority patent/US20150031486A1/en
Priority to EP12873204.7A priority patent/EP2832870A4/en
Priority to PCT/JP2012/058124 priority patent/WO2013145149A1/ja
Publication of WO2013145149A1 publication Critical patent/WO2013145149A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/16Making other particular articles rings, e.g. barrel hoops
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/16V-belts, i.e. belts of tapered cross-section consisting of several parts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material

Definitions

  • the present invention relates to a manufacturing method of an endless metal ring used for power transmission of a continuously variable transmission of a vehicle, an apparatus for manufacturing the same, and an endless metal ring.
  • a continuously variable transmission mounted on a vehicle for example, an endless metal belt in which a plurality of elements are engaged with a plurality of endless metal rings stacked between a drive shaft pulley and a driven shaft pulley rotates.
  • a belt-type continuously variable transmission is used. Unlike a multi-stage transmission that changes gears by changing gear combinations, this continuously variable transmission has excellent fuel efficiency because the gear ratio can be changed continuously and continuously. Aiming to achieve this, the gear ratio range tends to be expanded. However, when the transmission ratio width is increased, the load on the belt increases, and thus an endless metal ring having higher strength than the present is demanded.
  • maraging steel having excellent strength characteristics is known as a material used for endless metal rings.
  • a material used for endless metal rings In order to increase the strength (particularly fatigue strength) of the endless metal ring of this maraging steel, by heating in a specific range (about 500 to 750 ° C.) at a temperature lower than the austenitization start temperature of about 750 ° C.
  • a technique for generating a reverse-transformed austenite phase is disclosed (for example, see Patent Documents 1 and 2).
  • the cause of lowering the fatigue limit in the ultra-high cycle region (region exceeding 10 7) in the endless metal ring of maraging steel is known to originate from internal inclusions (TiN, etc.). ing. Therefore, the raw material for Ti-containing steel (for example, maraging steel) containing no TiN-based inclusions is melted in a vacuum induction furnace, and the TiN-based steel material is remelted by a vacuum arc melting method as an electrode to form a TiN-based material. A technique for miniaturizing inclusions is disclosed (for example, see Patent Document 3).
  • the aging temperature is maintained at around 480 ° C. for 100 hours or more, or at about 530 ° C. for 7 hours or more. In both cases, productivity is greatly reduced.
  • the temperature is raised to about 600 ° C., the treatment can be performed for a short time, but even if the treatment is performed under the same nitriding conditions, the nitriding state varies and the austenite amount varies, thereby obtaining a stable strength guarantee. There was a problem that it was difficult.
  • the present invention has been made to solve the above-mentioned problems, and is endless capable of improving fatigue strength by miniaturizing non-metallic inclusions while ensuring a predetermined amount of retained austenite without impeding productivity.
  • An object of the present invention is to provide a metal ring manufacturing method and manufacturing apparatus, and an endless metal ring.
  • An endless metal ring manufacturing method for solving the above-described problems is an endless manufacturing method in which an annular member made of maraging steel containing molybdenum is cut into a ring body having a predetermined width.
  • a molten / solidified layer is formed on an outer periphery of the annular member, and the molten / solidified layer is continuously connected in a circumferential direction of the ring body.
  • molybdenum (Mo) having a higher melting point than other alloy elements is formed in the molten / solidified layer. Solidify preferentially to form a segregation part. Since molybdenum is an austenite stabilizing element, a large amount of austenite remains in the molybdenum segregation part where originally it should be transformed into martensite.
  • molybdenum segregation portions are continuously formed in the circumferential direction on the ring body. That is, the residual austenite phase remaining by the molybdenum segregation part is continuously formed in the circumferential direction of the ring body.
  • Austenite is partly transformed into martensite (processing-induced martensite) when pressure is applied from the outside. At that time, the crystal structure changes from a face-centered cubic lattice to a body-centered cubic lattice, and the volume expands. For this reason, compressive stress acts on the grain boundaries where cracks are likely to occur. As a result, the progress of cracks can be suppressed against external stress.
  • the amount of retained austenite at this time is preferably about 2 to 3% by volume effective for fatigue characteristics, and this can be realized in the present invention. Therefore, the endless metal ring manufactured by the above method can greatly improve the fatigue life even when a constant stress amplitude repeatedly acts.
  • the molten / solidified layer is preferably formed by locally heating and cooling the outer periphery of the annular member.
  • the molten / solidified layer is formed by locally heating and cooling the outer periphery of the annular member, so that the molybdenum segregation portion can be formed without breaking the shape of the annular member.
  • the molten / solidified layer is cooled immediately after melting. Therefore, non-metallic inclusions such as TiN contained in the material are decomposed in the melting process, but the cooling rate in the solidification process is fast, so the growth in recrystallization of non-metallic inclusions is suppressed and refined. Can be promoted. Since miniaturization of non-metallic inclusions is promoted, fatigue failure that becomes the starting point of inclusions can be suppressed. Therefore, the fatigue life of the endless metal ring can be further improved.
  • the molten / solidified layer may be formed by heating and cooling the outer periphery of the annular member in a spiral or annular shape. preferable.
  • the molten / solidified layer is formed by heating or cooling the outer periphery of the annular member in a spiral shape or an annular shape. Therefore, by arbitrarily setting the width of the spiral or the annular shape and the feed pitch, the molten / solidified layer is melted.
  • the solidified layer can be formed on the entire circumference of the annular member or a part continuous in the circumferential direction. For example, by setting the width of the spiral or ring and the feed pitch to be within the width of the ring body, a molten / solidified layer that rotates at least once can be formed on the outer periphery of the ring body.
  • a molybdenum segregation part can also be formed in the whole periphery of a ring body, and a molybdenum segregation part can also be formed only in the site
  • the predetermined retained austenite amount can be ensured substantially equal to the predetermined width in the circumferential direction, and the fatigue strength of the endless metal ring can be improved.
  • the molten / solidified layer is formed at an axial end of the ring body.
  • the predetermined retained austenite amount can be substantially ensured in the circumferential direction at the axial end portion of the ring body.
  • the stress amplitude when the endless metal ring is used in a continuously variable transmission is greatly affected at the axial end compared to the axial center of the endless metal ring. Therefore, the fatigue strength of the endless metal ring can be effectively improved by ensuring a predetermined retained austenite amount in the circumferential direction at the axial end of the endless metal ring where the stress amplitude acts greatly.
  • the molten / solidified layer is formed by heating and cooling the outer periphery of the annular member in the axial direction, and a plurality of linear fusions -It is preferable to form the solidified layer next to each other.
  • the molten / solidified layer is formed by continuously forming a plurality of linear fused / solidified layers formed by heating and cooling the outer periphery of the annular member in the axial direction.
  • the predetermined retained austenite amount can be ensured to be approximately equal. Therefore, the predetermined retained austenite amount can be ensured substantially equally over the entire circumference of the ring body cut to a predetermined width.
  • the inner peripheral side is not necessarily continuous. This is because when the endless metal ring is used in a continuously variable transmission, the stress amplitude acts more on the outer peripheral side than on the inner peripheral side of the endless metal ring.
  • the solidification time can be shortened, and the molten / solidified layer can be formed while maintaining the outer shape and thickness of the annular member.
  • the recrystallization rate of TiN or the like in the solidification process is high, the growth of non-metallic inclusions can be suppressed and further miniaturization can be promoted. Since miniaturization of non-metallic inclusions is further promoted, fatigue fracture that becomes an inclusion starting point can be further suppressed. Therefore, the fatigue life of the endless metal ring can be further improved.
  • the heating is preferably laser heating or plasma heating.
  • the heating is laser heating or plasma heating
  • the melting rate is high, and the molybdenum containing A molten / solidified layer can be formed in a short time on the outer periphery of an annular member made of aging steel. Therefore, productivity of the endless metal ring is not hindered.
  • laser heating or plasma heating is local heating and cooling, miniaturization of non-metallic inclusions is promoted, and fatigue failure that becomes the starting point of inclusions can be suppressed.
  • the annular member is formed by joining ends of the plate material made of the maraging steel. Is preferred.
  • the annular member is formed by joining the end portions of the plate material made of maraging steel, an annular member having an arbitrary outer diameter can be easily produced.
  • the joining method includes diffusion welding in addition to laser welding or plasma welding.
  • the annular member is preferably formed by extruding a billet of the maraging steel.
  • annular member is formed by extruding the billet of maraging steel, a seamless annular member can be produced. Since a seamless annular member made of maraging steel containing molybdenum is formed, residual austenite remains in a more uniform amount in the circumferential direction in the molybdenum segregation portion formed by melting and solidification.
  • An endless metal ring manufacturing apparatus for solving the above-described problem is used in the endless metal ring manufacturing method described in any one of (1) to (9).
  • An endless metal ring manufacturing apparatus comprising: a holding device that holds the annular member rotatably in a circumferential direction; and a local heating device that faces the outer peripheral surface of the annular member.
  • the holding device that rotatably holds the annular member in the circumferential direction and the local heating device that faces the outer peripheral surface of the annular member.
  • the molten / solidified layer can be formed in a short time.
  • the holding device rotates the annular member continuously, and intermittently rotates the annular member when forming a plurality of linear molten / solidified layers.
  • the movement of the annular member in the axial direction can be performed by a holding device. Note that the torch of the local heating device may be moved or swung without moving the annular member in the axial direction.
  • An endless metal ring which is another aspect of the present invention for solving the above-mentioned problem is an endless metal ring used for a continuously variable transmission for a vehicle, and the endless metal ring is low carbon containing molybdenum. It is made of alloy steel, and is characterized in that the entire circumference of the ring body or a part continuous in the circumferential direction is melted and solidified.
  • the endless metal ring used for a continuously variable transmission for a vehicle
  • the endless metal ring is made of low carbon alloy steel containing molybdenum, and part of the ring body that is continuous in the entire circumference or circumferential direction. Since this is melted and solidified, molybdenum segregation portions are formed on the entire circumference or a part of the endless metal ring continuous in the circumferential direction. Since molybdenum is an austenite stabilizing element, a large amount of austenite remains in the molybdenum segregation part. Austenite transforms to martensite (processing induced martensite) when stress is applied from the outside.
  • the crystal structure changes from a face-centered cubic lattice to a body-centered cubic lattice.
  • the volume of the crystal expands, so that it acts as a compressive stress on the crystal grain boundary where cracks easily occur. Therefore, it is possible to suppress the progress of cracks against external stress. As a result, the fatigue life can be improved even if a constant stress amplitude repeatedly acts on the endless metal ring.
  • it since it is a low carbon alloy steel, since there is little formation of a heat transformation martensite, the increase in hardness more than necessary can be avoided and predetermined elongation can be maintained.
  • a predetermined amount of retained austenite can be continuously secured in the circumferential direction of the endless metal ring while maintaining a predetermined hardness and elongation, and repeatedly acts in the circumferential direction.
  • the fatigue strength against the stress amplitude can be improved.
  • the low carbon alloy steel is preferably maraging steel.
  • the low carbon alloy steel is maraging steel, excellent strength characteristics can be secured by aging treatment.
  • the fatigue strength can be improved by refining non-metallic inclusions while securing a predetermined amount of retained austenite without impeding productivity.
  • FIG. 2 is a detailed view of a melting / solidifying step in the manufacturing process shown in FIG. 1.
  • FIG. 2 is a detailed view of a melting / solidifying step in the manufacturing process shown in FIG. 1.
  • FIG. 2 is a detailed view of a melting / solidifying step in the manufacturing process shown in FIG. 1.
  • FIG. 2 is a schematic cross-sectional view of a melted / solidified layer formed on an annular member in the melting / solidifying step shown in FIG. 1.
  • FIG. 2 is a schematic cross-sectional view of a melted / solidified layer formed at an axial end of a ring body in the melting / solidifying step shown in FIG. 1.
  • FIG. 1 the manufacturing process of the endless metal ring which is embodiment which concerns on this invention is shown.
  • 2 to 4 show detailed views of the melting / solidifying process in the manufacturing process shown in FIG.
  • FIG. 5 is a schematic cross-sectional view of the molten / solidified layer formed on the annular member in the melting / solidifying step shown in FIG.
  • FIG. 6 is a schematic cross-sectional view of the melted / solidified layer formed at the axial end of the ring body in the melting / solidifying step shown in FIG.
  • the manufacturing process of an endless metal ring includes (a) an annular member forming process, (b) a joining process, (c) a melting / solidifying process, (d) a solution forming 1 (annealing) process, e) A ring cutting step, (f) a rolling step, (g) a solution forming two step, (h) a circumferential length adjusting step, and (i) an aging / nitriding treatment step.
  • the description will focus on (a) the annular member forming step, (b) the joining step, and (c) the melting / solidifying step, which are the characteristics of the present invention, and the other steps will be described focusing on the necessary range. .
  • the step of forming the annular member is a step of forming a cylindrical body having a predetermined length in the axial direction and opened in the axial direction.
  • the forming process of the annular member includes a cutting / bending method for cutting a coiled steel strip and then bending, an extrusion method for extruding a predetermined billet, a pipe cutting method for cutting a pipe-shaped steel pipe, and the like. .
  • a strip-shaped maraging steel sheet Z is unwound from a coil, cut into a sheet material ZS of a predetermined size, and then bent so as to abut each other. .
  • the bending process is performed using a roll or a mold.
  • the billet is inserted into a container in a hollow shape, pierced with a mandrel (core bar) and pressed with a ram, and an annular member is extruded and molded from the opening of the die.
  • the thickness of the annular member 1 is about 0.4 to 0.5 mm.
  • the diameter of the annular member 1 is about 100 to 200 mm.
  • the maraging steel used in this embodiment necessarily contains iron, nickel, and molybdenum, and cobalt, titanium, aluminum, and the like are applied and added as necessary.
  • the nickel content in the maraging steel is not limited to 18% by weight but may be about 20 to 25% by weight.
  • the molybdenum content is preferably at least 3% by weight. If nickel increases, an austenite phase is likely to be formed. However, if molybdenum having a melting point higher than that of other alloy elements is not contained to some extent, it is difficult to form a molybdenum segregation part in the solidification process.
  • the joining step is a step of joining the end portions when a cutting / bending method is used in the annular member forming step.
  • a joining method there are a welding method in which the end portion is melted, a diffusion bonding method in which the end oxide film is removed, and the like.
  • the welding device 2 is opposed to the butting portion 13 of the annular member 1, and the torch of the annular member 1 or the welding device 2 is moved in the axial direction (direction of arrow F). Weld.
  • a laser welding apparatus or a plasma welding apparatus that can be melted locally is suitable.
  • the weld 21 is formed so as to penetrate from the outer peripheral surface of the annular member 1 to the inner peripheral surface. If sinking occurs at the boundary between the welded part 21 and the base material part 22, it causes a decrease in strength. Therefore, welding conditions (spot diameter, focal length, welding speed, etc.) that do not cause sinking are selected. In addition, when an extrusion molding method and a pipe cutting method are used for the formation process of the annular member, the joining process is naturally omitted.
  • the local heating device 3 is opposed to the upper periphery of the annular member 1, heated and cooled from the outer peripheral surface side of the annular member 1, and the molten / solidified layer 4 ( 41, 42, 43) are continuously formed.
  • the local heating device 3 is preferably a laser welding device or a plasma welding device used for the welding device 2.
  • the molybdenum segregation part in the molten / solidified layer 4 can be formed to be approximately the same as the welded part 21, the segregation amount in the molybdenum segregation part can be made substantially uniform in the circumferential direction.
  • the local heating device 3 is provided with a heating torch 31 and a cooling nozzle 32.
  • the heating torch 31 is opposed to the outer periphery of the annular member 1 at a predetermined distance in the normal direction.
  • the heat input diameter of the heating torch 31 is preferably larger than that during welding. At the time of welding, since the butting portion 13 having a slight gap is melted, dripping or melting of the molten metal becomes a problem. However, in the molten / solidified layer 4, the problem is small and the processing time can be shortened. However, if the heat input diameter of the heating torch 31 is made too large, the shape of the annular member 1 is destroyed. Therefore, the heat input diameter is selected so as not to cause continuous shape melting and solidification.
  • the local heating device 3 is provided with a cooling nozzle 32 adjacent to the heating torch 31 at the rear in the feed direction.
  • the lower end of the cooling nozzle 32 is inclined toward the heating torch 31.
  • compressed air, inert gas, such as nitrogen gas and argon gas is injected, and the part fuse
  • the method of forced cooling includes a method of cooling from the inner diameter side of the annular member 1 in addition to the cooling nozzle 32.
  • a circulation pipe (not shown) for circulating cooling water in the holding device 7 that holds the inner diameter side of the annular member 1.
  • the method shown in FIG. 2 is a method of forming the linear melted / solidified layer 41 extending along the axial direction of the annular member 1.
  • the linear molten / solidified layer 41 is formed continuously from the front end to the rear end of the annular member 1 by moving the holding device 7 that holds the annular member 1 in the axial direction (the direction of the arrow F).
  • the linear melted / solidified layer 41 is formed by wrapping so that adjacent neighbors in the circumferential direction are continuous.
  • the holding device 7 rotates the annular member 1 by a certain angle in the circumferential direction every time one linear molten / solidified layer 41 is formed.
  • each annular molten / solidified layer 42 is formed by rotating the rotating shaft of the holding device 7 holding the annular member 1 in the circumferential direction (direction of arrow R).
  • the annular fused / solidified layer 42 intersects the welded portion 21 extending in the axial direction.
  • a molybdenum segregated portion that is continuous in the circumferential direction is formed in the annular melted and solidified layer 42.
  • the annular fused / solidified layer 42 may be formed over the entire circumference so that the adjacent layers wrap, but may be formed by limiting the portion to be strengthened.
  • FIG. 5 QQ cross section in FIG. 3) schematically shows a state in which the adjacent fused / solidified layers 42 are wrapped.
  • the annular molten / solidified layer 42 is formed so as to penetrate from the outer peripheral surface 11 to the inner peripheral surface 12 of the annular member 1. Since the local heating device 3 heats the annular member 1 while facing the upper periphery of the annular member 1, the annular molten / solidified layer 42 has a larger outer peripheral side A1 of the annular member 1 and a smaller inner peripheral side A2.
  • the adjacent lap allowance B sets the feed pitch P so that at least the outer peripheral side A1 wraps. This is because, when used as the endless metal ring 10 (see FIG. 10), the stress amplitude acting on the outer peripheral side of the endless metal ring 10 is larger than that on the inner peripheral side and tends to affect the fatigue strength.
  • FIG. 6 QQ cross section in FIG. 3 schematically shows a state in which the annular molten / solidified layer 42 is formed so as to be limited to a portion to be strengthened without being wrapped next to each other.
  • the annular molten / solidified layer 42 is formed at an axial end 53 of the ring body 5 to be described later.
  • the stress amplitude acting on the end 53 in the axial direction of the endless metal ring 10 is larger than the central part in the axial direction, which tends to affect the fatigue strength. is there.
  • the annular molten / solidified layer 42 is formed so as to penetrate from the outer periphery 51 to the inner periphery 52 of the ring body 5.
  • the ring body 5 may be cut simultaneously with the formation of the annular fused / solidified layer 42 at the axial end 53.
  • the method shown in FIG. 4 is a method of forming a spiral molten / solidified layer 43 extending along the outer periphery of the annular member 1.
  • the spiral molten / solidified layer 43 is moved at a feed speed V in the axial direction while rotating the rotating shaft of the holding device 7 holding the annular member 1 in the circumferential direction (the direction of the arrow R). It is formed in a spiral shape on the outer periphery.
  • the spiral molten / solidified layer 43 may also be formed over the entire circumference so that the adjacent layers wrap, but may be limited to a portion to be strengthened.
  • the idea of wrapping the spiral molten / solidified layer 43 next to each other is the same as in the case of the annular molten / solidified layer 42 (see FIG. 5). Further, the idea of forming the spiral melted / solidified layer 43 not to wrap next to each other but to be limited to the portion to be strengthened is basically the same as the case of the annular melted / solidified layer 42 (see FIG. 6). . However, when the spiral melt / solidified layer 43 is formed at the axial end 53 of the ring body 5, the local heating device 3 is moved in the axial direction at a position corresponding to the axial end 53 of the ring body 5. It is necessary to perform an irregular axial feed in which the speed V is substantially zero.
  • the solution forming 1 (annealing) step shown in FIG. 1 is a step of homogenizing the hardness that is partially hardened in the process of welding or melting / solidifying the annular member 1. Therefore, the solution treatment 1 (annealing) step may be performed as necessary.
  • the (e) ring cutting step is a step of cutting the width used as the endless metal ring 10 in consideration of the elongation in the next rolling step.
  • (f) rolling process is a process of rolling the ring body cut
  • Solution forming 2 process is a process of recrystallizing the rolling structure of the rolling ring body 6, and restoring the metal crystal grain shape deform
  • the circumferential length adjusting step is a step of correcting the circumferential length necessary for the rolling ring body 6 in order to make the endless metal ring 10 to be laminated.
  • the (i) aging / nitriding treatment step is a step of ensuring a predetermined hardness by the aging treatment and forming a uniform nitride layer by the nitriding treatment on the rolled ring body 6 whose circumference has been corrected. Since the steps from (d) solution treatment 1 (annealing) to (i) aging / nitriding treatment steps are well known in the art, a detailed description thereof is omitted.
  • FIG. 10 the endless metal ring 10 manufactured by the manufacturing process mentioned above is shown.
  • a plurality of elements 9 are engaged with a plurality of endless metal rings 10 stacked to constitute an endless metal belt 100.
  • the endless metal belt 100 plays a role of transmitting driving force between the drive-side pulley C1 on the driving side and the driven-side pulley C2 on the driven side. Therefore, when the endless metal ring 10 passes through the pulleys C1 and C2, it repeatedly undergoes bending deformation, and repeated tensile stress acts.
  • the mechanism of how the endless metal ring 10 manufactured in the above-described manufacturing process has improved fatigue strength compared to the endless metal ring manufactured in the conventional manufacturing process will be described below.
  • FIG. 7 is a graph showing the amount of retained austenite in each manufacturing process shown in FIG. Reference numerals (a) to (i) on the horizontal axis represent the manufacturing steps described above.
  • the vertical axis is a value indicating the amount of retained austenite in volume%.
  • the amount of retained austenite was measured by analyzing the metal crystal structure using an X-ray diffraction apparatus.
  • the alloy component ratio (% by weight) of maraging steel is about 18% for nickel (Ni), about 9% for cobalt (Co), about 5% for molybdenum (Mo), and about 0.45% for titanium (Ti).
  • Aluminum (Al) is about 0.1% and carbon (C) is 0.03% or less.
  • the amount of austenite is substantially constant and no increase is observed.
  • the amount of austenite increases about twice in the (c) melting / solidification step, and (f) temporarily decreases in the rolling step. It returned to the original increased amount of austenite in the chemical conversion 2 step, and thereafter there is no particular change.
  • FIG. 8 is a graph showing the size of nonmetallic inclusions before and after the melting / solidifying step in the manufacturing process shown in FIG. (D)
  • the TiN inclusion size does not change, so this measurement result is interpreted as the TiN inclusion size in the endless metal ring 10. it can.
  • the alloy component ratio (weight%) of maraging steel is the same as the time of measuring the amount of retained austenite mentioned above.
  • the size of TiN inclusions was measured by collecting 5 grams of material, dissolving with acid, and filtering with a 3 ⁇ m filter, and observing with an electron microscope. For the measurement results, the maximum inclusion size was estimated using the extreme value statistical method.
  • the conventional inclusion size shown in FIG. 8 is about 5.8 ⁇ m, although it is the maximum inclusion size collected from the material before the (c) melting / solidifying step.
  • the inclusion size of the embodiment according to the present invention is the maximum inclusion size collected from the material after the (c) melting / solidifying step, and was about 3.6 ⁇ m.
  • FIG. 9 is a graph (SN diagram) showing the fatigue life of the endless metal ring manufactured by the manufacturing process shown in FIG.
  • the vertical axis shows the load stress (stress amplitude), and the horizontal axis shows the number of repetitions until breakage.
  • the horizontal axis is a logarithmic scale.
  • the endless metal ring 10 manufactured by the manufacturing method according to the embodiment of the present invention has a fatigue life increased by about 2 to 3 times compared to the conventional one. Even if the load stress (stress amplitude) increases, the tendency does not change. Therefore, in recent years, it can be said that the present invention is very effective even when the speed ratio width of the continuously variable transmission is increased with the aim of further improving the fuel efficiency.
  • the mechanism by which the fatigue strength of the endless metal ring 10 is improved is as follows. That is, the endless metal ring 10 is made of low-carbon alloy steel (maraging steel) containing molybdenum, and molybdenum having a high melting point preferentially solidifies on the entire circumference or a part of the ring body 5 that continues in the circumferential direction. Thus, a molybdenum segregation part is formed. A large amount of austenite remains in the molybdenum segregation part. Austenite is partly transformed into martensite (processing induced martensite) due to external stress.
  • martensite processing induced martensite
  • the crystal structure changes from the face-centered cubic lattice to the body-centered cubic lattice, and the volume expands. Therefore, it acts as a compressive stress on the grain boundary where cracks are likely to occur, and the crack progresses against external stress. Can be suppressed. That is, the austenite phase remaining in the molybdenum segregation portion formed in the molten / solidified layer 4 (41, 42, 43) exhibits a crack growth suppressing effect.
  • the molten / solidified layer 4 (41, 42, 43) is formed by local heating, non-metallic inclusions such as TiN contained in the material are refined in the solidification process in which the material is rapidly cooled. Since the non-metallic inclusions are miniaturized, the non-metallic inclusions that can be the origin of internal cracks are greatly reduced. That is, the molten / solidified layer 4 (41, 42, 43) formed by local heating also has an effect of reducing the starting point of inclusions in the ultra-high cycle region (region exceeding 10 7 times).
  • the endless metal ring 10 manufactured from the ring body 5 in which the molten / solidified layer 4 (41, 42, 43) is formed on the whole circumference or a part continuous in the circumferential direction has a large amount of austenite phase remaining. Fatigue strength could be greatly improved by forming molybdenum segregation and reducing non-metallic inclusions that could become crack initiation points.
  • the molten / solidified layer 4 (41, 42, 41) is formed on the outer periphery of the annular member 1 made of maraging steel containing molybdenum. 43) is formed, molybdenum (Mo) having a higher melting point than other alloy elements is preferentially solidified in the molten / solidified layer 4 (41, 42, 43) to form a segregation part. Since molybdenum is an austenite stabilizing element, a large amount of austenite remains in the molybdenum segregation part where originally it should be transformed into martensite.
  • the molybdenum segregation portion is continuously formed in the circumferential direction on the ring body 5.
  • Austenite is partly transformed into martensite (processing-induced martensite) when pressure is applied from the outside. At that time, the crystal structure changes from a face-centered cubic lattice to a body-centered cubic lattice, and the volume expands. For this reason, compressive stress acts on the grain boundaries where cracks are likely to occur.
  • the amount of retained austenite at this time is preferably about 2 to 3% by volume, which is effective for fatigue characteristics, and this can be achieved in the present invention. Therefore, the endless metal ring 10 manufactured by the above method can greatly improve the fatigue life even when a constant stress amplitude repeatedly acts.
  • the molten / solidified layer 4 (41, 42, 43) is formed by locally heating and cooling the outer periphery of the annular member 1, so that the shape of the annular member 1 is not destroyed.
  • a molybdenum segregation part can be formed.
  • the melted / solidified layer 4 (41, 42, 43) is cooled immediately after being melted. Therefore, non-metallic inclusions such as TiN contained in the material are decomposed in the melting process, but the cooling rate in the solidification process is fast, so the growth in recrystallization of non-metallic inclusions is suppressed and refined. Can be promoted. Since miniaturization of non-metallic inclusions is promoted, fatigue failure that becomes the starting point of inclusions can be suppressed. Therefore, the fatigue life of the endless metal ring 10 can be further improved.
  • the melted / solidified layers 42 and 43 are formed by heating and cooling the outer periphery of the annular member 1 in a spiral shape or an annular shape, so that the width and feed pitch of the spiral or the annular shape can be arbitrarily set.
  • the melted / solidified layers 42 and 43 can be formed on the entire circumference of the annular member 1 or a part continuous in the circumferential direction. For example, by setting the width of the spiral or ring and the feed pitch within the width of the ring body 5, the molten / solidified layers 42 and 43 that rotate at least once can be formed on the outer periphery of the ring body 5.
  • a molybdenum segregation part can also be formed in the perimeter of the ring body 5, and a molybdenum segregation part can also be formed only in the site
  • the predetermined retained austenite amount can be secured substantially equal to the predetermined width in the circumferential direction, and the fatigue strength of the endless metal ring 10 can be improved.
  • a predetermined retained austenite amount is provided at the axial end portion 53 of the ring body 5. It can be ensured approximately equal in the circumferential direction.
  • the stress amplitude acts on the axial end 53 more greatly than the axial center of the endless metal ring 10. Therefore, the fatigue strength of the endless metal ring 10 can be effectively improved by ensuring a predetermined amount of retained austenite at the end 53 in the axial direction of the endless metal ring 10 where the stress amplitude acts greatly in the circumferential direction.
  • the molten / solidified layer 4 is formed by continuously adjoining a plurality of linear molten / solidified layers 41 formed by heating and cooling the outer periphery of the annular member 1 in the axial direction.
  • the predetermined retained austenite amount can be ensured substantially equally over the entire outer periphery of the annular member 1. Therefore, the predetermined retained austenite amount can be ensured substantially equally over the entire circumference of the ring body 5 cut to a predetermined width.
  • the linear melted / solidified layer 41 is continuously formed adjacent to each other, if the outer peripheral side of the annular member 1 is continuous, the inner peripheral side does not necessarily have to be continuous. This is because when the endless metal ring 10 is used in a continuously variable transmission, the stress amplitude acts more on the outer peripheral side than on the inner peripheral side of the endless metal ring 10.
  • the solidification time can be shortened, and the molten / solidified layer 4 (41, 42, 41) is maintained while maintaining the outer shape and thickness of the annular member 1. 43) can be formed.
  • the recrystallization rate of TiN or the like in the solidification process is high, the growth of non-metallic inclusions can be suppressed and further miniaturization can be promoted. Since miniaturization of non-metallic inclusions is further promoted, fatigue fracture that becomes an inclusion starting point can be further suppressed. Therefore, the fatigue life of the endless metal ring 10 can be further improved.
  • the heating is laser heating or plasma heating, even in an alloy steel having a high heat input density and containing a high melting point alloy element (for example, molybdenum), the melting rate is fast.
  • the molten / solidified layer 4 (41, 42, 43) can be formed in a short time on the outer periphery of the annular member 1 made of maraging steel. Therefore, productivity of the endless metal ring 10 is not hindered.
  • laser heating or plasma heating is local heating and cooling, miniaturization of non-metallic inclusions is promoted, and fatigue failure that becomes the starting point of inclusions can be suppressed.
  • the annular member 1 is formed by joining the end portions of plate materials made of maraging steel, so that the annular member 1 having an arbitrary outer diameter can be easily produced.
  • the joining method includes diffusion welding in addition to laser welding or plasma welding.
  • the annular member 1 is formed by extruding a billet of maraging steel, so that the seamless annular member 1 can be produced. Since the seamless annular member 1 made of maraging steel containing molybdenum is formed, residual austenite remains in a more uniform amount in the circumferential direction in the molybdenum segregation part formed by melting and solidification. .
  • maintenance apparatus 7 which hold
  • the local heating apparatus 3 which opposes the outer peripheral surface of the annular member 1.
  • the molten / solidified layer 4 (41, 42, 43) can be formed in a short time continuously on the outer periphery of the annular member 1 with a simple apparatus.
  • the holding device 7 rotates the annular member 1 continuously and forms a plurality of linear molten / solidified layers 41 in an annular shape.
  • the member 1 is rotated intermittently.
  • the movement of the annular member 1 in the axial direction can be performed by the holding device 7.
  • the heating torch 31 of the local heating device 3 may be moved or swung.
  • the endless metal ring 10 used for the continuously variable transmission for vehicles, Comprising:
  • the endless metal ring 10 consists of a low carbon alloy steel containing molybdenum, Since a part continuous in the entire circumference or circumferential direction is melted and solidified, a molybdenum segregation part is formed in a part continuous in the whole circumference or circumferential direction of the endless metal ring 10. Since molybdenum is an austenite stabilizing element, a large amount of austenite remains in the molybdenum segregation part. Austenite transforms to martensite (processing induced martensite) when stress is applied from the outside.
  • the crystal structure changes from a face-centered cubic lattice to a body-centered cubic lattice.
  • the volume of the crystal expands, so that it acts as a compressive stress on the crystal grain boundary where cracks easily occur. Therefore, it is possible to suppress the progress of cracks against external stress. As a result, even if a constant stress amplitude repeatedly acts on the endless metal ring 10, the fatigue life can be improved.
  • it since it is a low carbon alloy steel, since there is little formation of a heat transformation martensite, the increase in hardness more than necessary can be avoided and predetermined elongation can be maintained.
  • the low carbon alloy steel is maraging steel, excellent strength characteristics can be secured by aging treatment.
  • the molten / solidified layer 4 (41, 42, 43) formed on the outer periphery of the annular member 1 penetrates from the outer periphery 11 to the inner periphery 12 of the annular member 1, but is not necessarily limited to the annular member 1. It is not necessary to penetrate to the inner periphery 12 of the. This is because the stress amplitude acting when the endless metal ring 10 is used in a continuously variable transmission is larger on the outer peripheral side of the endless metal ring 10 than on the inner peripheral side. In this case, the molten / solidified layer 4 (41, 42, 43) can be formed in a shorter time, so that the productivity can be further improved.
  • the present invention can be used as an endless metal ring manufacturing method and manufacturing apparatus and an endless metal ring constituting a drive belt that circulates between a drive shaft pulley and a driven shaft pulley of a vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 モリブデンを含有するマルエージング鋼からなる環状部材を、所定幅のリング体に切断して製造する無端金属リングの製造方法であって、環状部材の外周に溶融・凝固層を形成するとともに、溶融・凝固層は、リング体の周方向に連続して繋がる。

Description

無端金属リングの製造方法及び製造装置並びに無端金属リング
 本発明は、車両の無段変速機の動力伝達に用いられる無端金属リングの製造方法及びその製造装置並びに無端金属リングに関する。
 車両に搭載される無段変速機には、例えば、ドライブ軸プーリとドリブン軸プーリとの間で、複数枚積層された無端金属リングに複数個のエレメントが係合された無端金属ベルトが周回動作するベルト式の無段変速機が用いられている。この無段変速機は、ギアの組み合わせを替えて変速する多段変速機と異なり、連続的に無段階で変速比を変更できるので、燃費性能に優れているが、近年、更なる燃費性能の向上を目指して、変速比幅の拡大がなされる傾向にある。ところが、変速比幅が拡大されると、ベルトへの負荷は上昇するため、現在よりもさらに高強度な無端金属リングが求められている。
 一般に、無端金属リングに用いる材料として、優れた強度特性を有するマルエージング鋼が知られている。このマルエージング鋼の無端金属リングにおける強度(特に、疲労強度)を高めるために、約750℃のオーステナイト化開始温度よりも低い温度における特定の範囲(約500~750℃程度)で加熱することにより、逆変態オーステナイト相を生成する技術が開示されている(例えば、特許文献1、2参照)。
 一方、マルエージング鋼の無端金属リングにおける超高サイクル域(10の7乗回を超える領域)で疲労限を低下させる原因には、内部の介在物(TiN等)を起点とすることが知られている。そのため、TiN系介在物を含まない含Ti鋼(例えば、マルエージング鋼)用原材料を真空誘導炉で溶解し、鋳造した含Ti鋼材を電極として真空アーク溶解法で再溶解することで、TiN系介在物を微細化する技術が開示されている(例えば、特許文献3参照)。
特開2002-3946号公報 特開2004-315875号公報 特開2001-214212号公報
 しかしながら、特許文献1、2の技術のように、逆変態オーステナイト相を多量(15~25体積%、又は、25~35体積%)に生成させると、引張試験において伸びは増加するものの、降伏強度が低下するため、高負荷での疲労寿命は明らかに低下する。マルエージング鋼において逆変態オーステナイトが疲労強度を向上させるのは、例えば、「材料」((J.Soc.Mat.Sci.,Japan),Vol.44,No.497,pp.181-186,Feb.1995)に掲載された論文『18%Niマルエージング鋼の疲労特性に及ぼす逆変態オーステナイトの影響』に記載されているように、2~3体積%程度までとされている。
 ところが、逆変態を利用して残留オーステナイト量を2~3体積%程度で安定して制御するためには、時効温度を480℃付近で100時間以上保持するか、530℃程度で7時間以上保持することが必要となり、いずれも生産性が大きく低下する。ただし、600℃程度の高温にすれば、短時間処理も可能となるが、同じ窒化条件で処理しても窒化状態がバラついたり、オーステナイト量がバラついたりして、安定した強度保証を得にくいという問題があった。
 また、特許文献3の技術のように、真空アーク溶解法で再溶解する量産設備では、一般に冷却速度が遅いので、非金属介在物のサイズを疲労破壊の起点となりにくい程度の大きさである約7μm以下に安定的に微細化することは困難である。真空アーク溶解法で再溶解する量産設備において、冷却速度を上げるためには、溶かす量を少なくすればよいが、生産性が大幅に低下するので、現実的ではない。また、非金属介在物のない高品質な原料を用いるのは、コスト面から好ましくない。
 本発明は、上記問題点を解決するためになされたものであり、生産性を阻害することなく、所定の残留オーステナイト量を確保しつつ、非金属介在物を微細化して疲労強度を向上できる無端金属リングの製造方法及び製造装置並びに無端金属リングを提供することを目的とする。
(1)上記課題を解決するための本発明の一態様である無端金属リングの製造方法は、モリブデンを含有するマルエージング鋼からなる環状部材を、所定幅のリング体に切断して製造する無端金属リングの製造方法であって、前記環状部材の外周に溶融・凝固層を形成するとともに、前記溶融・凝固層は、前記リング体の周方向に連続して繋がることを特徴とする。
 上記態様によれば、モリブデンを含有するマルエージング鋼からなる環状部材の外周に溶融・凝固層を形成するので、溶融・凝固層には、他の合金元素よりも融点の高いモリブデン(Mo)が優先的に凝固して偏析部を形成する。モリブデンは、オーステナイト安定化元素であるので、モリブデン偏析部では、本来はマルテンサイトに変態すべきところでオーステナイト相が多く残存する。
 また、溶融・凝固層は、リング体の周方向に連続して繋がることとしたので、リング体には、モリブデン偏析部が周方向に連続して形成される。つまり、モリブデン偏析部によって残存した残留オーステナイト相が、リング体の周方向に連続して形成される。オーステナイトは、外部から圧力が加わった時、一部マルテンサイト(加工誘起マルテンサイト)に変態するが、そのとき結晶構造が面心立方格子から体心立方格子に変化して、体積が膨張する。そのため、亀裂が生じやすい結晶粒界に圧縮応力が作用する。その結果、外部応力に対抗して亀裂の進展を抑制することができる。このときの残留オーステナイト量は、疲労特性に効果的な2~3体積%程度が好ましく、本発明ではこれを実現することができる。したがって、上記方法により製造される無端金属リングは、一定の応力振幅が繰り返し作用しても、疲労寿命を大幅に向上させることができる。
(2)(1)に記載された無端金属リングの製造方法において、前記溶融・凝固層は、前記環状部材の外周を局部的に加熱、冷却して形成することが好ましい。
 上記態様によれば、溶融・凝固層は、環状部材の外周を局部的に加熱、冷却して形成するので、環状部材の形状を崩すことなく、モリブデン偏析部を形成することができる。
 また、局部的な加熱、冷却であるため、溶融・凝固層は溶融した後、直ぐに冷却される。そのため、素材に含まれていたTiN等の非金属介在物は、溶融過程で分解されるが、凝固過程における冷却速度が速いので、非金属介在物の再結晶における成長が抑制されて、微細化を促進することができる。非金属介在物の微細化が促進されるので、介在物起点となる疲労破壊を抑制することができる。そのため、無端金属リングの疲労寿命を一層向上させることができる。
 この場合、局部的な加熱、冷却であるので、特許文献3の技術のような素材製造工程での再溶解を行う必要がなく、生産性への影響は少ない。また、純度の高い原料への制約も少なくなることで、コスト低減にも寄与できる。なお、必要に応じて、溶融・凝固工程の後に溶体化(焼鈍)熱処理を行うことによって、モリブデン偏析部内におけるモリブデンの均一化を図ることもできる。
(3)(1)又は(2)に記載された無端金属リングの製造方法において、前記溶融・凝固層は、前記環状部材の外周を螺旋状又は円環状に加熱、冷却して形成することが好ましい。
 上記態様によれば、溶融・凝固層は、環状部材の外周を螺旋状又は円環状に加熱、冷却して形成するので、螺旋又は円環の幅及び送りピッチを任意に設定することによって、溶融・凝固層を環状部材の全周又は周方向に連続する一部に形成できる。例えば、螺旋又は円環の幅及び送りピッチを、リング体の幅以内とすることによって、リング体の外周には、少なくとも一回転する溶融・凝固層を形成することができる。そのため、リング体の全周にモリブデン偏析部を形成することもできるし、強化したい部位にのみモリブデン偏析部を形成することもできる。その結果、所定の残留オーステナイト量を周方向の所定の幅で略等しく確保して、無端金属リングの疲労強度を向上できる。
(4)(3)に記載された無端金属リングの製造方法において、前記溶融・凝固層は、前記リング体の軸方向端部に形成されていることが好ましい。
 上記態様によれば、溶融・凝固層は、リング体の軸方向端部に形成されているので、リング体の軸方向端部において所定の残留オーステナイト量を周方向で略等しく確保できる。無端金属リングを無段変速機に使用したときの応力振幅は、無端金属リングの軸方向中央部に比べて軸方向端部に大きく作用する。よって、応力振幅が大きく作用する無端金属リングの軸方向端部に、所定の残留オーステナイト量を周方向で略等しく確保することによって、無端金属リングの疲労強度を効果的に向上できる。
(5)(1)又は(2)に記載された無端金属リングの製造方法において、前記溶融・凝固層は、前記環状部材の外周を軸方向に加熱、冷却して形成する複数の線状溶融・凝固層を隣同士連続させて形成することが好ましい。
 上記態様によれば、溶融・凝固層は、環状部材の外周を軸方向に加熱、冷却して形成する複数の線状溶融・凝固層を隣同士連続させて形成するので、環状部材の外周全体で所定の残留オーステナイト量を略等しく確保することができる。したがって、所定幅に切断されたリング体の全周において、所定の残留オーステナイト量を略等しく確保することができる。ここで、線状溶融・凝固層を隣同士連続させて形成する場合に、環状部材の外周側が連続していれば、内周側が必ずしも連続していなくてもよい。無端金属リングを無段変速機に使用したときには、応力振幅が無端金属リングの内周側より外周側に大きく作用するからである。
(6)(2)乃至(5)のいずれか1つに記載された無端金属リングの製造方法において、前記冷却を強制的に行うことが好ましい。
 上記態様によれば、冷却を強制的に行うので、凝固時間を短縮することができ、環状部材の外形形状や厚さを維持しつつ、溶融・凝固層を形成することができる。また、凝固過程におけるTiN等の再結晶速度が速いので、非金属介在物の成長が抑制されて、微細化を一層促進することができる。非金属介在物の微細化が一層促進されるので、介在物起点となる疲労破壊をより一層抑制することができる。そのため、無端金属リングの疲労寿命をより一層向上させることができる。
(7)(2)乃至(6)のいずれか1つに記載された無端金属リングの製造方法において、前記加熱は、レーザ加熱又はプラズマ加熱であることが好ましい。
 上記態様によれば、加熱は、レーザ加熱又はプラズマ加熱であるので、入熱密度が高く、高融点の合金元素(例えば、モリブデン)を含有する合金鋼でも溶融速度が速く、モリブデンを含有するマルエージング鋼からなる環状部材の外周に溶融・凝固層を短時間で形成することができる。したがって、無端金属リングの生産性を阻害しない。また、レーザ加熱又はプラズマ加熱は、局部的な加熱、冷却であるため、非金属介在物の微細化が促進されて、介在物起点となる疲労破壊を抑制することができる。
(8)(1)乃至(7)のいずれか1つに記載された無端金属リングの製造方法において、前記環状部材は、前記マルエージング鋼からなる板材の端部同士を接合して形成することが好ましい。
 上記態様によれば、環状部材は、マルエージング鋼からなる板材の端部同士を接合して形成するので、任意の外径の環状部材を簡単に作製することができる。接合方法には、レーザ溶接又はプラズマ溶接の他に拡散接合等が含まれる。
(9)(1)乃至(8)のいずれか1つに記載された無端金属リングの製造方法において、前記環状部材は、前記マルエージング鋼のビレットを押出し成形して形成することが好ましい。
 上記態様によれば、環状部材は、マルエージング鋼のビレットを押出し成形して形成するので、継ぎ目なしの環状部材を作製することができる。モリブデンを含有するマルエージング鋼からなる継ぎ目なしの環状部材が形成されるので、溶融・凝固によって形成されるモリブデン偏析部には、残留オーステナイトが周方向で一層均等な量で連続して残存する。
(10)上記課題を解決するための本発明の他の態様である無端金属リングの製造装置は、(1)乃至(9)のいずれか1つに記載された無端金属リングの製造方法において使用される無端金属リングの製造装置であって、前記環状部材を周方向へ回転可能に保持する保持装置と、前記環状部材の外周面に対峙する局部加熱装置とを備えることを特徴とする。
 上記態様によれば、環状部材を周方向へ回転可能に保持する保持装置と、環状部材の外周面に対峙する局部加熱装置とを備える程度でよいので、簡単な装置で環状部材の外周に連続して溶融・凝固層を短時間で形成することができる。保持装置は、例えば、溶融・凝固層を螺旋状又は円環状に形成するときには、環状部材を連続的に回転させ、複数の線状溶融・凝固層を形成するときには、環状部材を間欠的に回転させる。環状部材の軸方向への移動は、保持装置によって行うことができる。なお、環状部材を軸方向に移動させず、局部加熱装置のトーチを移動させるか、首振りさせてもよい。
(11)上記課題を解決するための本発明の他の態様である無端金属リングは、車両用無段変速機に用いる無端金属リングであって、前記無端金属リングは、モリブデンを含有する低炭素合金鋼からなり、リング体の全周又は周方向に連続する一部が溶融・凝固されていることを特徴とする。
 上記態様によれば、車両用無段変速機に用いる無端金属リングであって、無端金属リングは、モリブデンを含有する低炭素合金鋼からなり、リング体の全周又は周方向に連続する一部が溶融・凝固されているので、無端金属リングの全周又は周方向に連続する一部には、モリブデン偏析部が形成される。モリブデンは、オーステナイト安定化元素であるので、モリブデン偏析部では、オーステナイト相が多く残存する。オーステナイトは、外部から応力が加わった時、マルテンサイト(加工誘起マルテンサイト)に変態する。そのとき、結晶構造が面心立方格子から体心立方格子に変化する。面心立方格子から体心立方格子に変化する際、結晶の体積が膨張するので、亀裂の生じやすい結晶粒界に圧縮応力として作用する。したがって、外部応力に対抗して亀裂の進展を抑制することができる。その結果、無端金属リングに一定の応力振幅が繰り返し作用しても、疲労寿命を向上させることができる。なお、低炭素合金鋼であるため、熱変態マルテンサイトの形成は少ないので、必要以上の硬度上昇を回避し、所定の伸びを維持できる。よって、本発明の他の態様の構成によれば、所定の硬度や伸びを維持しつつ、所定の残留オーステナイト量を無端金属リングの周方向に連続して確保できて、周方向に繰り返し作用する応力振幅に対する疲労強度を向上できる。
(12)(11)に記載された無端金属リングにおいて、前記低炭素合金鋼は、マルエージング鋼であることが好ましい。
 上記態様によれば、低炭素合金鋼は、マルエージング鋼であるので、時効処理によって優れた強度特性を確保できる。
 本発明によれば、生産性を阻害することなく、所定の残留オーステナイト量を確保しつつ、非金属介在物を微細化して疲労強度を向上できる。
本発明に係る実施形態である無端金属リングの製造工程である。 図1に示す製造工程のうち、溶融・凝固工程の詳細図である。 図1に示す製造工程のうち、溶融・凝固工程の詳細図である。 図1に示す製造工程のうち、溶融・凝固工程の詳細図である。 図1に示す溶融・凝固工程にて環状部材に形成した溶融・凝固層の模式的断面図である。 図1に示す溶融・凝固工程にてリング体の軸方向端部に形成した溶融・凝固層の模式的断面図である。 図1に示す各製造工程における残留オーステナイト量を表すグラフである。 図1に示す製造工程のうち、溶融・凝固工程の前後における非金属介在物のサイズを表すグラフである。 図1に示す製造工程によって製造した無端金属リングの疲労寿命を表すグラフ(S-N線図)である。 図1に示す製造工程で製造した無端金属リングの全体図である。
 次に、本発明に係る無端金属リングの製造方法及び製造装置並びに無端金属リングの実施形態について、図面を参照して詳細に説明する。図1に、本発明に係る実施形態である無端金属リングの製造工程を示す。図2~図4に、図1に示す製造工程のうち、溶融・凝固工程の詳細図を示す。図5に、図1に示す溶融・凝固工程にて環状部材に形成した溶融・凝固層の模式的断面図を示す。図6に、図1に示す溶融・凝固工程にてリング体の軸方向端部に形成した溶融・凝固層の模式的断面図を示す。
<無端金属リングの製造工程>
 図1に示すように、無端金属リングの製造工程は、(a)環状部材の形成工程、(b)接合工程、(c)溶融・凝固工程、(d)溶体化1(焼鈍)工程、(e)リング切断工程、(f)圧延工程、(g)溶体化2工程、(h)周長調整工程、(i)時効・窒化処理工程を備えている。ここでは、本発明の特徴である(a)環状部材の形成工程、(b)接合工程、(c)溶融・凝固工程を中心に説明し、その他の工程は、必要な範囲に絞って説明する。
 (a)環状部材の形成工程は、軸方向に所定の長さを有し、かつ軸方向に開放された筒状体を形成する工程である。環状部材の形成工程には、コイル状の帯鋼を切断後、曲げ加工する切断・曲げ工法や、所定のビレットを押出し成形する押出し成形工法、パイプ状の鋼管を切断するパイプ切断工法などがある。例えば、図1(a)に示す切断・曲げ工法では、帯状のマルエージング鋼板Zをコイルから巻き戻して、所定サイズのシート材ZSに切断してから、端部同士を突き合わせるよう曲げ加工する。曲げ加工は、ロール又は金型を用いて行う。また、押出し成形工法(図示せず)では、ビレットを中空な形状としてコンテナに挿入し、マンドレル(芯棒)を刺してラムで押圧し、ダイの開口部から環状部材を押出して成形する。この際、ビレット及びラム等を1000~1300℃程度に加熱して行うことが好ましい。ビレットの塑性流動性を高めて、押出し荷重を低減できるからである。
 環状部材1の厚さは、0.4~0.5mm程度である。また、環状部材1の直径は、約100~200mm程度である。本実施形態で使用するマルエージング鋼は、鉄、ニッケル、モリブデンを必ず含み、コバルト、チタン、アルミ等を必要に応じて適用添加されている。なお、マルエージング鋼におけるニッケルの含有量は、18重量%に限らず、20~25重量%程度であってもよい。モリブデンの含有量は、少なくとも3重量%以上が好ましい。ニッケルが増加すれば、オーステナイト相が形成されやすいが、他の合金元素より融点の高いモリブデンがある程度含有されていないと、凝固過程においてモリブデン偏析部を形成しにくくなるからである。
 (b)接合工程は、環状部材の形成工程に切断・曲げ工法を用いた場合に、端部同士を接合する工程である。接合方法には、端部を溶融する溶接方法や、端部の酸化被膜を除去して拡散接合する方法などがある。図1(b)に示す溶接方法では、溶接装置2を環状部材1の突き合わせ部13に対峙させ、環状部材1又は溶接装置2のトーチを軸方向(矢印Fの方向)に移動させて、突き合わせ溶接する。溶接装置2には、例えば、局部的に溶融させることができるレーザ溶接装置又はプラズマ溶接装置が適している。溶接部21は、環状部材1の外周面から内周面まで貫通して形成する。溶接部21と母材部22との境界にひけが発生すると、強度低下の原因となるので、ひけが生じない溶接条件(スポット径、焦点距離、溶接速度等)を選定する。なお、環状部材の形成工程に押出し成形工法、パイプ切断工法を用いた場合には、当然、接合工程は省略する。
 (c)溶融・凝固工程は、局部加熱装置3を環状部材1の外周上方に対峙させ、環状部材1の外周面側から加熱、冷却して、環状部材1の外周に溶融・凝固層4(41、42、43)を連続的に形成する工程である。溶融・凝固層の形成方法には、図2~図4に示すように、各種方法がある。局部加熱装置3には、溶接装置2に用いるレーザ溶接装置又はプラズマ溶接装置が好ましい。設備の共通化によるコスト低減のほか、溶融・凝固層4におけるモリブデン偏析部を溶接部21と略同程度に形成できるから、モリブデン偏析部における偏析量を周方向で略均一化できる。
 図2~図4に示すように、局部加熱装置3には、加熱トーチ31と冷却ノズル32とを備えている。加熱トーチ31は、環状部材1の外周から法線方向に所定の距離を離して対峙させる。加熱トーチ31の入熱径は、溶接時より大きくするのが好ましい。溶接時には、僅かな隙間を有する突き合わせ部13を溶融するので、溶融金属の垂れ、溶け落ちが問題となるが、溶融・凝固層4では、その問題は少なく、加工時間も短縮できるからである。ただし、加熱トーチ31の入熱径をあまり大きくしすぎると、環状部材1の形状が崩れるので、連続して溶融・凝固して形状崩れを起こさない程度の入熱径を選定する。
 図2~図4に示すように、局部加熱装置3には、加熱トーチ31に隣接して、送り方向後部に冷却ノズル32を備えている。冷却ノズル32は、下端が加熱トーチ31寄りに傾斜している。冷却ノズル32からは、圧縮空気や、窒素ガス、アルゴンガス等の不活性ガスを噴射して、加熱トーチ31で溶融させた箇所を速やかに強制冷却する。
 なお、強制冷却する方法には、上記冷却ノズル32以外に、環状部材1の内径側から冷却する方法もある。例えば、環状部材1の内径側を保持する保持装置7に、冷却水を循環させる循環パイプ(図示しない)を設置する方法がある。なお、加熱トーチ31からの入熱量が少ない場合には、強制冷却を行うことなく、自己冷却でもよい。
 図2に示す方法は、環状部材1の軸方向に沿って延びる線状溶融・凝固層41を形成する方法である。線状溶融・凝固層41は、環状部材1を保持する保持装置7を軸方向(矢印Fの方向)に移動させて、環状部材1の前端から後端まで連続して形成する。線状溶融・凝固層41は、周方向に隣接する隣同士が連続するようにラップさせて形成する。線状溶融・凝固層41を隣同士ラップさせるため、保持装置7は、1本の線状溶融・凝固層41を形成するたびに、環状部材1を周方向に一定角度分だけ回転させる。なお、線状溶融・凝固層41を環状部材1の軸対称位置(180度回転した位置)に形成することで、隣接する線状溶融・凝固層41における入熱温度の影響を受けにくくすることもできる。
 図3に示す方法は、環状部材1の軸方向に所定の間隔で複数の円環状溶融・凝固層42を形成する方法である。各円環状溶融・凝固層42は、環状部材1を保持する保持装置7の回転軸を周方向(矢印Rの方向)に一回転させて形成する。図1(b)接合工程に溶接方法を用いた場合には、円環状溶融・凝固層42は、軸方向に延びる溶接部21と交差する。そのとき、溶接部21は再度溶融・凝固されるので、円環状溶融・凝固層42には、周方向に連続したモリブデン偏析部が形成される。円環状溶融・凝固層42は、隣同士がラップするよう全周にわたって形成してもよいが、強化したい部位を限定して形成してもよい。
 図5(図3のQ-Q断面)は、円環状溶融・凝固層42の隣同士がラップする状態を模式的に示している。図5に示すように、円環状溶融・凝固層42は、環状部材1の外周面11から内周面12まで貫通して形成されている。局部加熱装置3が、環状部材1の外周上方に対峙した状態で加熱するので、円環状溶融・凝固層42は環状部材1の外周側A1が大きく、内周側A2が小さくなる。そのとき、隣同士のラップ代Bは、少なくとも外周側A1がラップするよう送りピッチPを設定する。無端金属リング10(図10を参照)として使用するとき、無端金属リング10の外周側に作用する応力振幅の方が、内周側より大きく、疲労強度に影響を与えやすいからである。
 図6(図3のQ-Q断面)は、円環状溶融・凝固層42を隣同士ラップさせず、強化したい部位に限定して形成された状態を模式的に示している。図6に示すように、円環状溶融・凝固層42は、後述するリング体5の軸方向端部53に形成されている。無端金属リング10(図10を参照)として使用するとき、無端金属リング10の軸方向端部53に作用する応力振幅の方が、軸方向中央部より大きく、疲労強度に影響を与えやすいからである。この場合でも、円環状溶融・凝固層42は、リング体5の外周51から内周52まで貫通して形成されている。この軸方向端部53に円環状溶融・凝固層42を形成すると同時に、リング体5を切断してもよい。例えば、レーザ溶接装置にアシストガスを供給しながら、軸方向端部53の溶融・凝固と切断とを同時に行う方法がある。
 図4に示す方法は、環状部材1の外周に沿って延びる螺旋状溶融・凝固層43を形成する方法である。螺旋状溶融・凝固層43は、環状部材1を保持する保持装置7の回転軸を周方向(矢印Rの方向)に回転させながら、軸方向に送り速度Vで移動させて、環状部材1の外周に螺旋状に形成する。螺旋状溶融・凝固層43についても、隣同士がラップするよう全周にわたって形成してもよいが、強化したい部位に限定して形成してもよい。螺旋状溶融・凝固層43を隣同士ラップさせる考え方は、円環状溶融・凝固層42の場合と同様である(図5を参照)。また、螺旋状溶融・凝固層43が隣同士ラップせず、強化したい部位に限定して形成する考え方も、円環状溶融・凝固層42の場合と基本的に同様である(図6を参照)。ただし、リング体5の軸方向端部53に、螺旋状溶融・凝固層43を形成するときは、局部加熱装置3がリング体5の軸方向端部53に対応する位置で、軸方向の送り速度Vを略ゼロとする変則的な軸方向送りをする必要がある。
 図1に示す(d)溶体化1(焼鈍)工程は、環状部材1に対する溶接や溶融・凝固の過程で部分的に硬くなった硬度を均質化する工程である。したがって、溶体化1(焼鈍)工程は、必要に応じて行えばよい。また、(e)リング切断工程は、無端金属リング10として使用する幅に、次の圧延工程での伸びを考慮して切断する工程である。また、(f)圧延工程は、所定幅に切断したリング体を、圧延リング体6として必要な所定長となるように圧延する工程である。圧延されることで、硬度も上昇する。また、(g)溶体化2工程は、圧延リング体6の圧延組織を再結晶させて圧延により変形された金属結晶粒形状を復元する工程である。また、(h)周長調整工程は、複数枚積層する無端金属リング10にする上で、圧延リング体6に必要な周長補正をする工程である。また、(i)時効・窒化処理工程は、周長補正した圧延リング体6に対して、時効処理による所定の硬度確保と、窒化処理による均一な窒化層の形成を行う工程である。(d)溶体化1(焼鈍)工程から(i)時効・窒化処理工程までの工程は、従来公知であるので、詳細な説明は割愛する。
 図10に、上述した製造工程で製造した無端金属リング10を示す。図10に示すように、複数枚積層された無端金属リング10には、複数個のエレメント9が係合されて、無端金属ベルト100を構成する。無端金属ベルト100は、駆動側のドライブ軸プーリC1と従動側のドリブン軸プーリC2との間で、駆動力を伝達する役割を果たしている。したがって、無端金属リング10は、各プーリC1、C2を通過するとき、繰り返し曲げ変形を生じ、繰り返しの引張応力が作用する。
 上述した製造工程で製造した無端金属リング10が、従来の製造工程で製造した無端金属リングに比較して、どのように疲労強度が向上したのか、そのメカニズムについて、以下説明する。
<残留オーステナイトの増加>
 以下の成分のマルエージング鋼で、上述した製造工程によって製造した無端金属リングについて、各工程におけるオーステナイト量を測定した。図7に、図1に示す各製造工程における残留オーステナイト量を表すグラフを示す。横軸における符号(a)~(i)は、上述した各製造工程である。縦軸は、残留オーステナイト量を体積%で示した値である。残留オーステナイト量は、X線回析装置を用いて金属結晶構造を分析して測定した。
 マルエージング鋼の合金成分比率(重量%)は、ニッケル(Ni)が18%程度、コバルト(Co)が9%程度、モリブデン(Mo)が5%程度、チタン(Ti)が0.45%程度、アルミ(Al)が0.1%程度、炭素(C)が0.03%以下である。
 図7に示すように、従来の製造工程では、オーステナイト量は略一定で増加が見られない。これに対して、本発明に係る実施形態の製造工程では、(c)溶融・凝固工程で、オーステナイト量が約2倍に増加し、(f)圧延工程で一旦低下するが、(g)溶体化2工程で元の増加したオーステナイト量に戻り、その後は特に変動していない。
 溶融・凝固過程で合金成分の偏析(主に、モリブデン)が起こることで、その偏析部でオーステナイトが安定化し、常温に戻した時にもマルテンサイトに変態せずに、オーステナイトのまま残存したと考えられる。このときの残留オーステナイト量は、約3体積%であった。残留オーステナイト量が約2~3体積%の値は、顕著な疲労強度の向上が期待できる値である。なお、(f)圧延工程では、約50%程度の圧下率で圧延しているので、準安定オーステナイト相のマルテンサイト化が進んだため、オーステナイト量が一時的に減少したものと思われる。
<非金属介在物の低減>
 次に、(c)溶融・凝固工程の前後で、非金属介在物であるTiNについて、介在物サイズを測定した。図8に、図1に示す製造工程のうち、溶融・凝固工程の前後における非金属介在物のサイズを表すグラフを示す。(d)溶体化1(焼鈍)工程から(i)時効・窒化処理工程までの工程では、TiN介在物サイズは変化しないので、この測定結果が無端金属リング10におけるTiN介在物サイズであると解釈できる。なお、マルエージング鋼の合金成分比率(重量%)は、上述した残留オーステナイト量を測定した時と同じである。
 TiN介在物サイズは、5グラムの材料を採取し、酸で溶解したのちに、3μmのフィルタでろ過したものを電子顕微鏡で観察して測定した。その測定結果に対して、極値統計手法を用いて最大介在物サイズを推定した。
 図8に示す従来の介在物サイズは、(c)溶融・凝固工程の前の材料から採取した最大介在物サイズであるが、約5.8μmであった。これに対して、本発明に係る実施形態の介在物サイズは、(c)溶融・凝固工程の後の材料から採取した最大介在物サイズであるが、約3.6μmであった。このように最大介在物サイズが、(c)溶融・凝固工程によって大幅に減少することが判明した。これによって、介在物起点となる疲労破壊を抑制する効果が大きいことは明らかである。
 今回、最大介在物サイズが大幅に減少した理由は、前述した(c)溶融・凝固工程の中で、素材に含まれていたTiN等の非金属介在物が溶融時に分解し、局部溶融のため自己冷却又は強制冷却で急冷されることによって、凝固過程における再結晶時の成長を抑制されたからであると推定できる。
<疲労強度の向上>
 次に、上述した製造工程で製造した無端金属リング10について、リング単体での疲労試験(専用試験)を行った結果を説明する。図9に、図1に示す製造工程によって製造した無端金属リングの疲労寿命を表すグラフ(S-N線図)を示す。縦軸に負荷応力(応力振幅)を示し、横軸に破断までの繰り返し回数を示す。横軸は、対数目盛である。
 図9に示すように、本発明に係る実施形態の製造方法で製造した無端金属リング10は、従来のものに比べて疲労寿命が約2~3倍に増加した。負荷応力(応力振幅)が増加しても、その傾向は変わらない。そのため、近年、更なる燃費性能の向上を目指して、無段変速機における変速比幅を拡大する場合にも、非常に有効であると言える。
<疲労強度向上のメカニズム>
 上記の内容から、無端金属リング10の疲労強度が向上したメカニズムを整理すると、以下のようになる。すなわち、無端金属リング10は、モリブデンを含有する低炭素合金鋼(マルエージング鋼)からなり、リング体5の全周又は周方向に連続する一部には、融点の高いモリブデンが優先的に凝固してモリブデン偏析部が形成される。モリブデン偏析部では、オーステナイト相が多く残存する。オーステナイトは、外部応力により一部マルテンサイト(加工誘起マルテンサイト)に変態する。そのとき、結晶構造が面心立方格子から体心立方格子に変化して、体積が膨張するので、亀裂が生じやすい結晶粒界に圧縮応力として作用し、外部応力に対抗して亀裂の進展を抑制することができる。つまり、溶融・凝固層4(41、42、43)に形成されるモリブデン偏析部に残存するオーステナイト相が、亀裂進展抑制効果を奏する。
 また、溶融・凝固層4(41、42、43)を局部加熱によって形成すると、素材に含まれていたTiN等の非金属介在物が、急冷される凝固過程で微細化される。非金属介在物が微細化されるので、内部亀裂の起点となりうる非金属介在物が大幅に減少する。つまり、局部加熱により形成する溶融・凝固層4(41、42、43)は、超高サイクル域(10の7乗回を超える領域)での介在物起点減少効果をも奏する。
 以上のことから、全周又は周方向に連続する一部に溶融・凝固層4(41、42、43)が形成されたリング体5から製造した無端金属リング10は、オーステナイト相が多く残存するモリブデン偏析部を形成するとともに、亀裂起点となりうる非金属介在物を減少することによって、疲労強度を大幅に向上することができたのである。
<作用効果>
 以上、詳細に説明したように、本実施形態に係る無端金属リング10の製造方法によれば、モリブデンを含有するマルエージング鋼からなる環状部材1の外周に溶融・凝固層4(41、42、43)を形成するので、溶融・凝固層4(41、42、43)には、他の合金元素よりも融点の高いモリブデン(Mo)が優先的に凝固して偏析部を形成する。モリブデンは、オーステナイト安定化元素であるので、モリブデン偏析部では、本来はマルテンサイトに変態すべきところでオーステナイト相が多く残存する。
 また、溶融・凝固層4(41、42、43)は、リング体5の周方向に連続して繋がることとしたので、リング体5には、モリブデン偏析部が周方向に連続して形成される。つまり、モリブデン偏析部によって残存した残留オーステナイト相が、リング体5の周方向に連続して形成される。オーステナイトは、外部から圧力が加わった時、一部マルテンサイト(加工誘起マルテンサイト)に変態するが、そのとき結晶構造が面心立方格子から体心立方格子に変化して、体積が膨張する。そのため、亀裂が生じやすい結晶粒界に圧縮応力が作用する。その結果、外部応力に対抗して亀裂の進展を抑制することができる。このときの残留オーステナイト量は、疲労特性に効果的な2~3体積%程度が好ましく、本発明ではこれを実現することができた。したがって、上記方法により製造される無端金属リング10は、一定の応力振幅が繰り返し作用しても、疲労寿命を大幅に向上させることができる。
また、本実施形態によれば、溶融・凝固層4(41、42、43)は、環状部材1の外周を局部的に加熱、冷却して形成するので、環状部材1の形状を崩すことなく、モリブデン偏析部を形成することができる。
 また、局部的な加熱、冷却であるため、溶融・凝固層4(41、42、43)は溶融した後、直ぐに冷却される。そのため、素材に含まれていたTiN等の非金属介在物は、溶融過程で分解されるが、凝固過程における冷却速度が速いので、非金属介在物の再結晶における成長が抑制されて、微細化を促進することができる。非金属介在物の微細化が促進されるので、介在物起点となる疲労破壊を抑制することができる。そのため、無端金属リング10の疲労寿命を一層向上させることができる。
 この場合、局部的な加熱、冷却であるので、特許文献3の技術のような素材製造での再溶解を行う必要がなく、生産性への影響は少ない。また、純度の高い原料への制約も少なくなることで、コスト低減に寄与できる。なお、必要に応じて、溶融・凝固工程の後に溶体化(焼鈍)熱処理を行うことによって、モリブデン偏析部内におけるモリブデンの均一化を図ることもできる。
 また、本実施形態よれば、溶融・凝固層42、43は、環状部材1の外周を螺旋状又は円環状に加熱、冷却して形成するので、螺旋又は円環の幅及び送りピッチを任意に設定することによって、溶融・凝固層42、43を環状部材1の全周又は周方向に連続する一部に形成できる。例えば、螺旋又は円環の幅及び送りピッチを、リング体5の幅以内とすることによって、リング体5の外周には、少なくとも一回転する溶融・凝固層42、43を形成することができる。そのため、リング体5の全周にモリブデン偏析部を形成することもできるし、強化したい部位にのみモリブデン偏析部を形成することもできる。その結果、所定の残留オーステナイト量を周方向の所定の幅で略等しく確保して、無端金属リング10の疲労強度を向上できる。
 また、本実施形態によれば、溶融・凝固層42、43は、リング体5の軸方向端部53に形成されているので、リング体5の軸方向端部53において所定の残留オーステナイト量を周方向で略等しく確保できる。無端金属リング10を無段変速機に使用したときの応力振幅は、無端金属リング10の軸方向中央部に比べて軸方向端部53に大きく作用する。よって、応力振幅が大きく作用する無端金属リング10の軸方向端部53に、所定の残留オーステナイト量を周方向で略等しく確保することによって、無端金属リング10の疲労強度を効果的に向上できる。
 また、本実施形態によれば、溶融・凝固層4は、環状部材1の外周を軸方向に加熱、冷却して形成する複数の線状溶融・凝固層41を隣同士連続させて形成するので、環状部材1の外周全体で所定の残留オーステナイト量を略等しく確保することができる。したがって、所定幅に切断されたリング体5の全周において、所定の残留オーステナイト量を略等しく確保することができる。ここで、線状溶融・凝固層41を隣同士連続させて形成する場合に、環状部材1の外周側が連続していれば、内周側が必ずしも連続していなくてもよい。無端金属リング10を無段変速機に使用したときには、応力振幅が無端金属リング10の内周側より外周側に大きく作用するからである。
 また、本実施形態によれば、冷却を強制的に行うので、凝固時間を短縮することができ、環状部材1の外形形状や厚さを維持しつつ、溶融・凝固層4(41、42、43)を形成することができる。また、凝固過程におけるTiN等の再結晶速度が速いので、非金属介在物の成長が抑制されて、微細化を一層促進することができる。非金属介在物の微細化が一層促進されるので、介在物起点となる疲労破壊をより一層抑制することができる。そのため、無端金属リング10の疲労寿命をより一層向上させることができる。
 また、本実施形態によれば、加熱は、レーザ加熱又はプラズマ加熱であるので、入熱密度が高く、高融点の合金元素(例えば、モリブデン)を含有する合金鋼でも溶融速度が速く、モリブデンを含有するマルエージング鋼からなる環状部材1の外周に溶融・凝固層4(41、42、43)を短時間で形成することができる。したがって、無端金属リング10の生産性を阻害しない。また、レーザ加熱又はプラズマ加熱は、局部的な加熱、冷却であるため、非金属介在物の微細化が促進されて、介在物起点となる疲労破壊を抑制することができる。
 また、本実施形態によれば、環状部材1は、マルエージング鋼からなる板材の端部同士を接合して形成するので、任意の外径の環状部材1を簡単に作製することができる。接合方法には、レーザ溶接又はプラズマ溶接の他に拡散接合等が含まれる。
 また、本実施形態によれば、環状部材1は、マルエージング鋼のビレットを押出し成形して形成するので、継ぎ目なしの環状部材1を作製することができる。モリブデンを含有するマルエージング鋼からなる継ぎ目なしの環状部材1が形成されるので、溶融・凝固によって形成されるモリブデン偏析部には、残留オーステナイトが周方向で一層均等な量で連続して残存する。
 また、本発明の他の実施形態によれば、環状部材1を周方向へ回転可能に保持する保持装置7と、環状部材1の外周面に対峙する局部加熱装置3とを備える程度でよいので、簡単な装置で環状部材1の外周に連続して溶融・凝固層4(41、42、43)を短時間で形成することができる。保持装置7は、例えば、溶融・凝固層42、43を螺旋状又は円環状に形成するときには、環状部材1を連続的に回転させ、複数の線状溶融・凝固層41を形成するときには、環状部材1を間欠的に回転させる。環状部材1の軸方向への移動は、保持装置7によって行うことができる。なお、環状部材1を軸方向に移動させず、局部加熱装置3の加熱トーチ31を移動させるか、首振りさせてもよい。
 また、本発明の他の実施形態によれば、車両用無段変速機に用いる無端金属リング10であって、無端金属リング10は、モリブデンを含有する低炭素合金鋼からなり、リング体5の全周又は周方向に連続する一部が溶融・凝固されているので、無端金属リング10の全周又は周方向に連続する一部には、モリブデン偏析部が形成される。モリブデンは、オーステナイト安定化元素であるので、モリブデン偏析部では、オーステナイト相が多く残存する。オーステナイトは、外部から応力が加わった時、マルテンサイト(加工誘起マルテンサイト)に変態する。そのとき、結晶構造が面心立方格子から体心立方格子に変化する。面心立方格子から体心立方格子に変化する際、結晶の体積が膨張するので、亀裂の生じやすい結晶粒界に圧縮応力として作用する。したがって、外部応力に対抗して亀裂の進展を抑制することができる。その結果、無端金属リング10に一定の応力振幅が繰り返し作用しても、疲労寿命を向上させることができる。なお、低炭素合金鋼であるため、熱変態マルテンサイトの形成は少ないので、必要以上の硬度上昇を回避し、所定の伸びを維持できる。よって、本発明の他の実施形態の構成によれば、所定の硬度や伸びを維持しつつ、所定の残留オーステナイト量を無端金属リング10の周方向に連続して確保できて、周方向に繰り返し作用する応力振幅に対する疲労強度を向上できる。
 また、本発明の他の実施形態によれば、低炭素合金鋼は、マルエージング鋼であるので、時効処理によって優れた強度特性を確保できる。
 上述した本実施形態は、本発明の要旨を変更しない範囲で変更することができる。
 例えば、本実施形態では、環状部材1の外周に形成する溶融・凝固層4(41、42、43)は、環状部材1の外周11から内周12まで貫通しているが、必ずしも環状部材1の内周12まで貫通している必要はない。無端金属リング10を無段変速機に使用したときに作用する応力振幅は、無端金属リング10の外周側の方が、内周側より大きいからである。この場合、溶融・凝固層4(41、42、43)は、より短い時間で形成できるので、生産性を一層向上することができる。
 本発明は、車両のドライブ軸プーリとドリブン軸プーリとの間で周回動作する駆動ベルトを構成する無端金属リングの製造方法及び製造装置並びに無端金属リングとして利用できる。
   1       環状部材
   2       溶接装置
   3       局部加熱装置
   4       溶融・凝固層
   5       リング体
   6       圧延リング体
   7       保持装置
   9       エレメント
   10      無端金属リング
   11      環状部材の外周面
   12      環状部材の内周面
   31      加熱トーチ
   32      冷却ノズル
   41      線状溶融・凝固層
   42      円環状溶融・凝固層
   43      螺旋状溶融・凝固層
   53      リング体の軸方向端部
   100     無端金属ベルト

Claims (12)

  1.  モリブデンを含有するマルエージング鋼からなる環状部材を、所定幅のリング体に切断して製造する無端金属リングの製造方法であって、
     前記環状部材の外周に溶融・凝固層を形成するとともに、前記溶融・凝固層は、前記リング体の周方向に連続して繋がることを特徴とする無端金属リングの製造方法。
  2.  請求項1に記載された無端金属リングの製造方法において、
     前記溶融・凝固層は、前記環状部材の外周を局部的に加熱、冷却して形成することを特徴とする無端金属リングの製造方法。
  3.  請求項1又は請求項2に記載された無端金属リングの製造方法において、
     前記溶融・凝固層は、前記環状部材の外周を螺旋状又は円環状に加熱、冷却して形成することを特徴とする無端金属リングの製造方法。
  4.  請求項3に記載された無端金属リングの製造方法において、
     前記溶融・凝固層は、前記リング体の軸方向端部に形成されていることを特徴とする無端金属ベルトの製造方法。
  5.  請求項1又は請求項2に記載された無端金属リングの製造方法において、
     前記溶融・凝固層は、前記環状部材の外周を軸方向に加熱、冷却して形成する複数の線状溶融・凝固層を隣同士連続させて形成することを特徴とする無端金属リングの製造方法。
  6.  請求項2乃至請求項5のいずれか1項に記載された無端金属リングの製造方法において、
     前記冷却を強制的に行うことを特徴とする無端金属リングの製造方法。
  7.  請求項2乃至請求項6のいずれか1項に記載された無端金属リングの製造方法において、
     前記加熱は、レーザ加熱又はプラズマ加熱であることを特徴とする無端金属リングの製造方法。
  8.  請求項1乃至請求項7のいずれか1項に記載された無端金属リングの製造方法において、
     前記環状部材は、前記マルエージング鋼からなる板材の端部同士を接合して形成することを特徴とする無端金属リングの製造方法。
  9.  請求項1乃至請求項7のいずれか1項に記載された無端金属リングの製造方法において、
     前記環状部材は、前記マルエージング鋼のビレットを押出し成形して形成することを特徴とする無端金属リングの製造方法。
  10.  請求項1乃至請求項9のいずれか1項に記載された無端金属リングの製造方法において使用される無端金属リングの製造装置であって、
     前記環状部材を周方向へ回転可能に保持する保持装置と、前記環状部材の外周面に対峙する局部加熱装置とを備えることを特徴とする無端金属リングの製造装置。
  11.  車両用無段変速機に用いる無端金属リングであって、
     前記無端金属リングは、モリブデンを含有する低炭素合金鋼からなり、リング体の全周又は周方向に連続する一部が溶融・凝固されていることを特徴とする無端金属リング。
  12.  請求項11に記載された無端金属リングにおいて、
     前記低炭素合金鋼は、マルエージング鋼であることを特徴とする無端金属リング。
     
PCT/JP2012/058124 2012-03-28 2012-03-28 無端金属リングの製造方法及び製造装置並びに無端金属リング WO2013145149A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014507117A JP5817921B2 (ja) 2012-03-28 2012-03-28 無端金属リングの製造方法及び製造装置
CN201280071941.3A CN104220608A (zh) 2012-03-28 2012-03-28 环形金属环的制造方法及制造装置以及环形金属环
US14/376,576 US20150031486A1 (en) 2012-03-28 2012-03-28 Method and device for manufacturing endless metal ring, and endless metal ring
EP12873204.7A EP2832870A4 (en) 2012-03-28 2012-03-28 METHOD AND DEVICE FOR MANUFACTURING AN ENDLESS METAL RING AND AN ENDLESS METAL RING
PCT/JP2012/058124 WO2013145149A1 (ja) 2012-03-28 2012-03-28 無端金属リングの製造方法及び製造装置並びに無端金属リング

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/058124 WO2013145149A1 (ja) 2012-03-28 2012-03-28 無端金属リングの製造方法及び製造装置並びに無端金属リング

Publications (1)

Publication Number Publication Date
WO2013145149A1 true WO2013145149A1 (ja) 2013-10-03

Family

ID=49258515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058124 WO2013145149A1 (ja) 2012-03-28 2012-03-28 無端金属リングの製造方法及び製造装置並びに無端金属リング

Country Status (5)

Country Link
US (1) US20150031486A1 (ja)
EP (1) EP2832870A4 (ja)
JP (1) JP5817921B2 (ja)
CN (1) CN104220608A (ja)
WO (1) WO2013145149A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109563907A (zh) * 2016-07-27 2019-04-02 罗伯特·博世有限公司 由马氏体钢制成的并设有氮化表面层的柔性钢制环
CN114367592A (zh) * 2021-12-06 2022-04-19 中国航空制造技术研究院 环形钎焊钎料制作工装及环形钎焊钎料制作方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018062549A1 (ja) * 2016-09-30 2019-04-11 アイシン・エィ・ダブリュ株式会社 被溶接部の洗浄方法、溶接システムおよびリングの製造方法
CN110280592B (zh) * 2019-07-19 2020-09-11 大冶特殊钢有限公司 一种超高强度合金的无缝管轧制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293407A (ja) * 1998-04-14 1999-10-26 Hitachi Metals Ltd マルエージング鋼帯
JP2001214212A (ja) 2000-01-28 2001-08-07 Daido Steel Co Ltd TiN系介在物を微細にする含Ti鋼の製造方法
JP2002003946A (ja) 2000-06-26 2002-01-09 Honda Motor Co Ltd 積層リングの製造方法
JP2004315875A (ja) 2003-04-15 2004-11-11 Honda Motor Co Ltd マルエージング鋼の熱処理方法
JP2005155755A (ja) * 2003-11-25 2005-06-16 Toyota Motor Corp 無段変速機に用いられる無端金属リングの製造装置および製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4249408A (en) * 1978-07-12 1981-02-10 Robert Lovell Process for extruding maraging steel
CN100460552C (zh) * 2002-09-24 2009-02-11 本田技研工业株式会社 金属环的氮化处理方法
CN102239348B (zh) * 2008-06-30 2014-05-07 罗伯特·博世有限公司 传动带金属环部件的热处理方法
JP5302036B2 (ja) * 2009-02-10 2013-10-02 本田技研工業株式会社 円筒状ワーク切断装置
EP2523530B1 (en) * 2010-01-06 2016-07-13 Nippon Steel & Sumitomo Metal Corporation Induction heating coil, device for manufacturing of workpiece, and manufacturing method
WO2011135624A1 (ja) * 2010-04-28 2011-11-03 トヨタ自動車株式会社 金属リングおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293407A (ja) * 1998-04-14 1999-10-26 Hitachi Metals Ltd マルエージング鋼帯
JP2001214212A (ja) 2000-01-28 2001-08-07 Daido Steel Co Ltd TiN系介在物を微細にする含Ti鋼の製造方法
JP2002003946A (ja) 2000-06-26 2002-01-09 Honda Motor Co Ltd 積層リングの製造方法
JP2004315875A (ja) 2003-04-15 2004-11-11 Honda Motor Co Ltd マルエージング鋼の熱処理方法
JP2005155755A (ja) * 2003-11-25 2005-06-16 Toyota Motor Corp 無段変速機に用いられる無端金属リングの製造装置および製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Influence of Reversion Austenite on Fatigue Property of 18%Ni Maraging Steel", J.SOC, MAT.SCI., JAPAN, vol. 44, no. 497, February 1995 (1995-02-01), pages 181 - 186
See also references of EP2832870A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109563907A (zh) * 2016-07-27 2019-04-02 罗伯特·博世有限公司 由马氏体钢制成的并设有氮化表面层的柔性钢制环
JP2019528409A (ja) * 2016-07-27 2019-10-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh マルエージング鋼から形成されかつ窒化された表面層が設けられたフレキシブルな鋼リング
CN109563907B (zh) * 2016-07-27 2021-12-07 罗伯特·博世有限公司 由马氏体钢制成的并设有氮化表面层的柔性钢制环
CN114367592A (zh) * 2021-12-06 2022-04-19 中国航空制造技术研究院 环形钎焊钎料制作工装及环形钎焊钎料制作方法

Also Published As

Publication number Publication date
JPWO2013145149A1 (ja) 2015-08-03
EP2832870A1 (en) 2015-02-04
CN104220608A (zh) 2014-12-17
US20150031486A1 (en) 2015-01-29
EP2832870A4 (en) 2015-11-25
JP5817921B2 (ja) 2015-11-18

Similar Documents

Publication Publication Date Title
US8414267B2 (en) Multiple alloy turbine rotor section, welded turbine rotor incorporating the same and methods of their manufacture
JP5817921B2 (ja) 無端金属リングの製造方法及び製造装置
CN101878086B (zh) 制造卷取机卷筒的方法及卷取机卷筒
JP2012240086A (ja) 継手強度に優れたレーザ溶接継手及びその製造方法
CN104603499A (zh) 环形金属带的制造方法及环形金属带以及带式无级变速器
JP5768746B2 (ja) 無端金属リングの製造方法
JP6556143B2 (ja) 無段変速機用の駆動ベルトにおいて使用するのに適したキャリヤリングを製造する方法
EP2656931B1 (en) PRODUCTION METHOD FOR ROUND STEEL BAR FOR SEAMLESS PIPE COMPRISING HIGH Cr-Ni ALLOY, AND PRODUCTION METHOD FOR SEAMLESS PIPE USING ROUND STEEL BAR
WO2017018520A1 (ja) チタン複合材および熱間圧延用チタン材
JP5973244B2 (ja) 無端金属リングの製造方法
CN109822101B (zh) 一种多点逐层精注液体金属增材制造方法
US10960486B2 (en) Method of producing endless metal ring
JP6137423B1 (ja) チタン複合材および熱間圧延用チタン材
KR20140107230A (ko) 플래쉬 버트 용접에 의해 강재 부품을 제조하기 위한 방법 및 상기 방법에 의해 제조되는 부품
JP2019189927A (ja) 無端金属リング、及びその製造方法
WO2017018521A1 (ja) 熱間圧延用チタン材
JP6471444B2 (ja) 熱間鍛造用金型の製造方法
KR102384384B1 (ko) 동합금재, 동합금재의 제조방법 및 케이지형 회전자
JP2015509847A (ja) 方法、リング、および軸受
WO2017018523A1 (ja) 熱間圧延用チタン材
JP2006142331A (ja) ロールの製造方法
CN118207471A (zh) 抗氢不锈钢母合金棒材的制备方法及储氢容器
BE498630A (ja)
JP2010242115A (ja) 建築構造用リング鋼材の製造方法
JP2005146380A (ja) 高ケイ素ステンレス鋼及びそれを素材とするバネ並びに高ケイ素ステンレス鋼の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507117

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14376576

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012873204

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012873204

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE