WO2013143490A1 - 电磁诱导装置 - Google Patents

电磁诱导装置 Download PDF

Info

Publication number
WO2013143490A1
WO2013143490A1 PCT/CN2013/073456 CN2013073456W WO2013143490A1 WO 2013143490 A1 WO2013143490 A1 WO 2013143490A1 CN 2013073456 W CN2013073456 W CN 2013073456W WO 2013143490 A1 WO2013143490 A1 WO 2013143490A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnet array
magnetic field
magnetic
array
Prior art date
Application number
PCT/CN2013/073456
Other languages
English (en)
French (fr)
Inventor
森下明平
横山修一
Original Assignee
仁维国际股份有限公司
学校法人工学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 仁维国际股份有限公司, 学校法人工学院大学 filed Critical 仁维国际股份有限公司
Publication of WO2013143490A1 publication Critical patent/WO2013143490A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type

Definitions

  • the present invention relates to an electromagnetic induction device, and more particularly to an electromagnetic induction device used as an electric motor or as a generator.
  • a Holbeck arrangement In order to increase the magnetic field of a motor or generator, there is an arrangement called a Holbeck arrangement. A configuration in which the N pole and the S pole of the permanent magnet are alternately arranged. The magnetic field cannot be generated on the outside and inside of the magnet array. The magnetic field cannot be used effectively. For this.
  • the Holbeck arrangement is such that the magnetic poles of the permanent magnets are arranged 90 degrees apart by adjacent magnets. Attenuate the magnetic field on the side of the magnet arrangement. The opposite magnetic field is on the other side of the magnet array. It can produce a permanent magnet arrangement with a strong single-sided magnetic field.
  • the ironless core motor and the ironless core generator using a double-layer Holbeck array of permanent magnets increase the number of turns of the armature winding (armature coil) as much as possible, but the conventional structure is not The number of coil turns pursues a larger number of turns in an optimized condition
  • the technical problem to be solved by the present invention is to provide an electromagnetic induction device.
  • the present invention provides an electromagnetic induction device having a first permanent magnet array and a second permanent magnet array disposed facing each other, and the magnetic pole directions of the first permanent magnet array are sequentially divided by an integer of 2 ⁇ .
  • the magnetic field on the side of the second permanent magnet array is enhanced by the effect of superposition, and the second permanent magnet array and the magnetic field on the opposite side are weakened by the effect of "cancellation", and the plurality of configurations are a permanent magnet; and the magnetic pole direction of the second permanent magnet array is sequentially changed by an integer of 2 ⁇ , and the magnetic field on the side of the first permanent magnet array is enhanced by the effect of superposition, and the first permanent magnet array and the opposite side are
  • the magnetic field is weakened by the canceling effect, and a plurality of second permanent magnets of the above configuration are provided, thereby preparing the first permanent magnet array, the second permanent magnet array, and the armature windings disposed between the two columns (armature) Coil).
  • the second permanent magnet and the second permanent magnet have the same cross-sectional area in the direction of the parallel magnetization direction, and the space between the first and second permanent magnet arrays is provided. More than double, 1. 5 times less than the electromagnetic induction device. Further, a magnetic pole direction of the first permanent magnet is arranged in a direction in which the specific direction is rotated 90 degrees in a row, and a magnetic pole direction of the second permanent magnet is arranged in a direction in which the specific direction is rotated 90 degrees in a row. The direction of the magnetic pole of one permanent magnet is perpendicular or opposite to the direction of the magnetic pole of the second permanent magnet.
  • the direction is a linear direction.
  • the direction is a circumferential direction.
  • the electromagnetic induction device is an electric motor or a generator.
  • the direction of the magnetic poles of the first permanent magnet array is sequentially changed by an integer of 2 ⁇
  • the direction of the magnetic poles of the second permanent magnet array is sequentially changed by an integer of 2 11 .
  • An electromagnetic induction device capable of increasing the number of turns of the armature winding (armature coil) is provided.
  • Figure 1 is a cross-sectional view of a two-layer Holbeck alignment magnetic field using an equivalent magnetic field line method.
  • Figure 2 is a diagram illustrating the equivalent magnetic field line method of Figure 1.
  • Figure 3 is a cross-sectional view of a two-layer Holbeck alignment magnetic field applying the equivalent magnetic field line method.
  • Figure 4 is a graph showing the relationship between the gap length and the number of turns of the coil.
  • Figure 5 is a graph showing the relationship between the gap length and the number of turns of the coil.
  • Fig. 6 is a schematic perspective view showing a cylindrical three-phase linear synchronous motor 100, which is a preferred first embodiment of the present invention.
  • Figure 7 is a section A-A of Figure 6.
  • Figure 8 is a B-B section of Figure 6.
  • Figure 9 is a C-C section of Figure 6.
  • Fig. 10 is a schematic perspective view showing a three-phase synchronous motor 200 which is a preferred second embodiment of the present invention.
  • Fig. 11 (A) is a schematic cross-sectional view of the three-phase synchronous motor 200 in the cross section in the parallel magnetization direction, and (B) is a wiring diagram of the armature winding (armature coil).
  • the average magnetic field line density in the center of the magnetic pole gap is obtained by the equivalent magnetic field line method.
  • the density of magnetic lines outside the permanent magnet array becomes extremely low, and the specific magnetic permeability of the permanent magnet is almost the same as that of air.
  • the magnetic flux concentration or magnetic saturation does not occur without using a ferromagnetic material such as iron, so that the magnetic flux density required for the equivalent magnetic field lines can be obtained.
  • Figure 1 is a cross-sectional view of a two-layer Holbeck array magnetic field 10 applying the equivalent magnetic field line method.
  • the two-layer Hallbeck array magnetic field 10 is a permanent magnet array 12 in which the magnetic poles of the permanent magnets 13 are successively rotated by 90 degrees in the first linear direction, and the magnetic poles of the permanent magnets 17 are sequentially rotated by the first straight line and the parallel second straight line direction by 90 degrees. Prepared by rotating the arrangement of permanent magnets 16 .
  • the permanent magnet array 12 is provided by a permanent magnet 13 that is reinforced by the side magnetic field of the permanent magnet array 16 and weakened on the other side.
  • the permanent magnet array 16 is reinforced by the side magnetic field of the permanent magnet array 12 and weakened by the other side.
  • the magnet 17 is arranged.
  • Fig. 1 is a cross-sectional view showing a plane in which the permanent magnets 13, 17 are parallel magnetized.
  • the permanent magnets 13 and 17 are square in the plane parallel to the magnetization direction and have the same sectional area.
  • the sectional area of the plane of the parallel permanent magnets 13, 17 is normalized, and the sectional area of the permanent magnets 13, 17 is 1, and since the sectional area is square, the side length of the square is also 1.
  • the permanent magnet arrangement between 12 and 16 and the spacing of 14 (gap length) is a.
  • Figure 1 shows that the closed curve is the magnetic field line.
  • the magnetic flux path is represented by a dotted line.
  • the main magnetic field lines of the equivalent magnetic field lines of the two-layer Hallbeck magnetic field shown in Fig. 1 pass through the magnetic flux path of Fig. 1, and because the magnetic paths are symmetric with respect to the magnetic pole center line XX, the magnetic lines of force are respectively symmetric with respect to the respective magnetic poles, and now, as shown in Fig. 2 Define a magnetic line of force.
  • R is the magnetic impedance of the permanent magnets 13
  • S is the sectional area of the magnet perpendicular to the magnetic pole.
  • the direction of the magnetic pole of the permanent magnet is 1 meter long, and the vacuum permeability is expressed by ⁇ ⁇ in the following formula:
  • can be expressed as
  • the average magnetic flux density Bav between the NS poles on the center line of the gap is expressed as: a v S v SR r ⁇
  • Br is the residual magnetic flux density of the permanent magnet.
  • FIG. 3 is a cross-sectional view of a Holbeck array magnetic field 20 to which an equivalent magnetic field line method is applied.
  • the Hallbeck array magnetic field 20 is a permanent magnet array 22 in which the magnetic poles of the permanent magnet 23 are sequentially rotated by 90 degrees in the circumferential direction.
  • the permanent magnet arrangement 26 is formed by sequentially rotating the magnetic poles of the permanent magnets 27 at about 90 degrees in the circumferential direction.
  • the permanent magnet array 22 is composed of a permanent magnet 26—the side magnetic field is enhanced by the additive effect, and the other side magnetic field is arranged by the permanent magnet 23 which is weakened by the canceling effect.
  • the permanent magnet array 26 is composed of the permanent magnet 22 and the magnetic field is enhanced by the additive effect.
  • the other side of the magnetic field is arranged by the permanent magnets 27 which are produced by the weakening effect.
  • Figure 3 is a cross-sectional view parallel to the magnetization directions of the permanent magnets 23, 27.
  • the section parallel to the magnetization direction of the permanent magnets 23, 27 (the plane parallel to the plane of the paper) is trapezoidal and has the same sectional area.
  • the permanent magnet 23 has the same number as the permanent magnet 27, and the number of the permanent magnets 23 and 27, for example, if there are 64, adjacent to the permanent magnet 23 or the permanent magnet 27, will be close to 180 degrees.
  • the 174 degree joint, so the permanent magnets 23 and 27 can be considered to be approximately square.
  • the square root of the sectional area of the permanent magnets 23, 27 parallel to the magnetization directions (parallel to the plane of the paper) of the permanent magnets 23, 27 is regarded as 1 normalized, since the square root of the sectional area is 1,
  • the cross-sectional areas of the permanent magnets 23, 27 are also 1, and the cross-sectional shapes of the permanent magnets 23, 27 parallel to the magnetization direction are approximately square, and the side lengths of the permanent magnets 23, 27 are also close to 1, the permanent magnet array 22 and the permanent magnet
  • the interval between the rows 26 (the gap length) is a.
  • the average value of the magnetic flux density Bav ⁇ is 1/V 2 times that of Bav.
  • the magnetic poles of the permanent magnet 13 are rotated 90 degrees in the first linear direction, and the permanent magnet array 12 and the magnetic poles of the permanent magnet 17 in the Holbeck arrangement pass through the first straight line direction and the parallel second straight line direction 90.
  • the permanent magnet arrangement 16 arranged by Holbeck the permanent magnets 13, 17 having a square shape, a double-layer Holbeck alignment magnetic field 10 having the same sectional area as described above, and a permanent magnet as shown in FIG.
  • the magnetic pole direction of 23 is sequentially rotated 90 degrees in the circumferential direction, and the permanent magnet array 22 in the Holbeck arrangement and the magnetic poles of the permanent magnet 27 are sequentially rotated 90 degrees in the circumferential direction, and the permanent magnet array 26 in the Holbeck arrangement, the permanent magnet 23 27 has an approximately square cross section, and has a double-layer Holbeck arrangement 20 having the same sectional area as described above.
  • the average magnetic flux density Bav ⁇ between the NS pole pitches on the gap center line ⁇ is:
  • Br is the residual magnetic flux density of the permanent magnet, and ⁇ is: 1 (l + 3 If the number of magnetic links ⁇ of the armature winding (armature coil) arranged in the gap of the double-layer Hallbeck alignment magnetic field is the magnetic path sectional area S of each pole distance, the number of turns N of the coil is expressed as:
  • the armature winding (armature coil) arranged in the interval can be made to have the maximum number of turns when the pole width is filled and filled, and the square root of the permanent magnet broken area in the plane of the parallel magnetization direction is regarded as 1, and in the case of the square of the section
  • the side length of the square is 1, and in the case where the permanent magnet section is approximately square, the approximate square side length is 1, and S is the ratio of the depth 1 of the magnetic field (the length of the permanent magnet in the straight section of the square section), and N is the depth 1
  • the ratio to the gap length a is fixed in proportion to k.
  • the function f (a) can be maximized. If a value exists, the maximum number of magnetic links can be achieved by using the gap length to form a double-layer Holbeck alignment magnetic field.
  • the Holbeck alignment magnetic field and the armature winding are in relative motion, in order to prevent the permanent magnet from coming into contact with the armature winding, a certain amount of space is required to actually configure the armature coil in the magnetic field gap, and the armature
  • the winding is a wire around the shaft and the wound wire is fixed by the model. Therefore, the thickness of the coil is not completely filled by the conductor. If the square section of the permanent magnet is 1 cm long, the magnetic field and the coil conductor face the magnetic field. There is a non-conducting body of about 1 mm.
  • the square root of the area of the permanent magnet in the parallel magnetization direction is regarded as 1, and when the section is square, the side length of the square is 1, and when the permanent magnet is approximately square, the side length of the square is approximately 1, the magnetic field gap
  • the number of armature winding turns N configured in the middle is the same as in the case of equation (7).
  • the gap length is set to a square. In the case where the permanent magnet is square, the gap length is set to square. 1 ⁇ 1. 5 ⁇ , The maximum length of the armature winding is 1. 2 ⁇ 1. 5 times, the length of the armature winding is the largest. The number of magnetic links.
  • FIG. 6 is a schematic perspective view showing a cylindrical three-phase linear synchronous motor 100 according to a preferred first embodiment of the present invention.
  • Figure 7 is a section A-A of Figure 6.
  • Figure 8 is a B-B section of Figure 6.
  • Figure 9 is a cross section taken along the line C-C of Figure 6.
  • the cylindrical three-phase linear synchronous motor 100 is a driving device 109 in which a cylindrical movable member 107 having a cylindrical stator 105 and a stator 105 axially movable and having a notch, and a movable member 107 supplied with electric power from an external power source 108 Prepared.
  • the stator 105 is an outer permanent magnet array 111 in which the magnetic poles of the annular permanent magnet 112 are rotated on the cross section including the central axis, 90 degrees are sequentially rotated, and the magnetic poles of the annular permanent magnet 116 include the central axis.
  • the inner permanent magnet array 115 of the second permanent magnet array adjacently formed by the 90 degree rotation is successively rotated, and the first annular fixing member fixed by the first permanent magnet array 111 on the inner side of the inner side surface, the outer tube 113 And a second annular fixing member fixed to the inner side of the outer side surface by the permanent magnet array 115, the inner tube 113, and the fixing plate 123 for fixing the notched outer tube 113 and the inner tube 117 so as not to interfere with the movable member 107 Prepared.
  • stator 105 is attached by the outer upper portion and the lower portion of the outer tube 113 by the guide rod supporting members 211, 213, and the side surface of the guide rod 121 is between the side end of the guide rod supporting member 211 and the guide rod supporting member.
  • the range is divided into upper and lower fixed electrodes 203, 205, 207, and 209, and the wires 141 drawn from the electrodes are bundled and introduced into the driving device via the lead-out path 143 provided on the guide supporting member 211.
  • the movable member 107 is a notch fixing plate 139 which is fixed by the three-phase coil 131 and which is provided with a coil ring 133 and a notched portion fixed at both ends of the coil ring 133, and a notched fixing plate 139 which is fixed to the notch portion of the output ring 137, and is attached to the output.
  • the coil loop 133 of the end portion of the ring 137 is prepared along the linear bearing 135 into which the guide rod 121 enters.
  • the linear bearing 135 includes a sliding electrode 201 in which the electrodes 203, 205, 207, and 209 provided on the surface of the guide rod 121 are in contact with each other, and a wire 141 whose one end is in contact with the three-phase coil 131 passes through the output ring 137 and the linear bearing 135.
  • the lead-out path 143 is connected to the slide electrode 201. Therefore, the three-phase coil 131 is electrically connected to the driving device 109 through the electrodes 203, 205, 207, and 209 on the side of the stator 105.
  • each of the electrodes 203, 205, 207, and 209 flows to a three-phase alternating current U phase, a V phase, a W phase, and a neutral point current, respectively, corresponding to the three-phase AC voltage generated by the driving device 109, along with the three-phase coil 131.
  • the thrust generated by the excitation causes the movable member 107 to move axially.
  • the number of the permanent magnets 112 of the outer permanent magnet 111 is the same as the number of the permanent magnets 116 of the inner permanent magnet array 115, and the magnetic pole direction and the inner side of the permanent magnet 112 magnetized in the inner diameter direction of the permanent magnet 112 of the outer permanent magnet array 111 disposed on the same radius.
  • the permanent magnets 116 magnetized in the inner diameter direction of the permanent magnet 115 have the same magnetic pole direction.
  • the permanent magnet 112 of the outer permanent magnet array 111 disposed on the same radius 111 is magnetized in the axial direction.
  • the magnetization direction of the permanent magnet 112 is opposite to that of the permanent magnet 116 in the inner permanent magnet array 115.
  • the outer permanent magnet array 111 is formed by sequentially rotating the magnetic pole sides of the permanent magnets 112 in the axial direction by 90 degrees, the magnetic field on one side of the array (the outer side in this embodiment) is weakened, and the other side (the inner side in this embodiment)
  • the side of the inner permanent magnet array 115 is an increase proportional to the weakening ratio, and a strong magnetic field can be generated on one side of the outer permanent magnet array 111 (inside in this embodiment).
  • the inner permanent magnet array 115 is formed by sequentially rotating the magnetic pole sides of the permanent magnets 116 in the axial direction by 90 degrees, the magnetic field of one side of the array (the inner side in this embodiment) is weakened, and the other side (this embodiment is The outer side, the inner permanent magnet array 111 side) is an increase proportional to the weakening ratio, and a strong magnetic field can be generated on one side (the outer side in the present embodiment) of the inner permanent magnet array 115.
  • the outer magnet array 111 and the inner magnet array 115 are arranged as described above, the magnetic field of the space between the outer permanent magnet array 111 and the inner permanent magnet array 115 becomes strong, and on the other hand, the outer and inner permanent magnet arrays 115 of the outer permanent magnet array 111 are arranged 115. On the inside, almost no magnetic leakage occurs. A large number of radial magnetic lines of force are distributed in the gap between the outer permanent magnet array 111 and the inner permanent magnet array 115. Minute A three-phase coil 131 is disposed in a gap of a plurality of radial magnetic lines of force, and since the magnetic lines of force mostly intersect perpendicularly with the three-phase coil 131, the electric power supplied from the driving device 109 is more efficiently converted into thrust.
  • the three-phase coil 131 can be strongly excited without using the iron core, and can generate a strong thrust to axially move the movable member 107. Therefore, since the core is not used, there is no cogging and the volume can be reduced.
  • the outer permanent magnet array 111 is formed by stacking annular permanent magnets 112 having a square shape which is magnetized in the radial direction and the thickness direction. Further, the inner permanent magnet array 115 is formed by stacking annular permanent magnets 116 having a square shape which is magnetized in the radial direction and the thickness direction.
  • the outer cylindrical magnetic field formed by the outer permanent magnet array 111 and the inner cylindrical magnetic field formed by the inner permanent magnet array 115 constitute a two-layer Hallbeck alignment magnetic field.
  • the outer cylindrical magnetic field and the inner cylindrical magnetic field have their respective cylindrical magnetic field central axes overlapping each other.
  • the distance between the inner surface of the outer cylindrical magnetic field and the surface of the inner cylindrical magnetic field is such that the distance between the Holbeck alignment magnetic fields is long, and the pitch is set to the square root of the square cross-sectional area in the plane of the magnetization direction of the parallel annular permanent magnets 112, 116. 2 ⁇ (equivalent to the length of the single side of the square cross section of the permanent magnets 112, 116).
  • This embodiment is constructed of an insulated coated copper tape endless package having a thickness defined by each armature winding 131 and a width (4/3 times) of a square cross-section of the permanent magnets 112 and 116 of about 1.3 times.
  • the dimensional accuracy and the space factor thus constituted are high, and the magnetic field formed by the magnetic field pitch is almost filled with the conductor and the armature coil is not in contact with each other. Therefore, the armature coil can be maximized based on the above formula (10).
  • the number of magnetic cross links of 131 increases the axial thrust per 1 A.
  • the outer permanent magnet array 111 is a magnetic pole of the permanent magnet 112.
  • the outer permanent magnetic field of the outer permanent magnet array 111 is weakened, and the inner side is increased by a weakening ratio, and a strong magnetic field is generated inside the outer permanent magnet array 111, and the inner permanent magnet array 115 is formed by the rotation of the outer permanent magnet array 111.
  • the magnetic poles of the permanent magnets 116 are sequentially rotated and arranged in the axial direction at 90 degrees.
  • the inner magnetic field of the inner permanent magnet array 115 is weakened, and the outer side is increased in proportion to the weakening, and a strong magnetic field is generated outside the outer permanent magnet array 111, but it is not necessarily It is necessary to rotate 90 degrees one by one, for example, 45 degrees by rotation, and to rotate the integer division of 2 ⁇ in the axial direction, and to arrange a plurality of first permanent magnets in the axial direction, the magnetic field inside the first permanent magnet array may be superimposed.
  • the outer magnetic field is weakened by the counteracting effect
  • the first permanent magnet is along the circumferential direction Rotating in opposite directions, arranged in the circumferential direction of the second plurality of permanent magnets arranged in the first inner permanent magnet arrangement
  • the magnetic field on the outer side of the second permanent magnet array is enhanced by the additive effect, and the inner magnetic field may be weakened by the canceling effect.
  • the second preferred embodiment of the present invention is a three-phase synchronous generator.
  • Fig. 10 is a schematic perspective view showing a three-phase synchronous motor 200 in a preferred second embodiment of the present invention.
  • Fig. 11 (A) is a schematic cross-sectional view of the three-phase synchronous motor 200 in the cross section in the parallel magnetization direction.
  • Figure 11 (B) is a schematic diagram of the wiring of the armature winding (armature coil).
  • the generator 200 of the present embodiment is prepared by the rotor 250 and the stator 260.
  • the rotor 250 is prepared from permanent magnet arrays 210, 220.
  • the stator 26 is prepared from a coil arrangement 230.
  • the permanent magnet arrays 210 and 220 are each formed in a ring shape, and the coil array 230 is also formed in a ring shape.
  • the permanent magnets 210, 220 and the coil arrangement 230 are arranged concentrically.
  • the permanent magnet array 220 is disposed inside the permanent magnet array 20.
  • the permanent magnet arrays 210 and 220 are respectively formed by Holbeck array in which the magnetic poles of the permanent magnets 211 and 221 are rotated 90 degrees.
  • the number of the permanent magnets 211 of the permanent magnet array 210 and the number of the permanent magnets 221 of the permanent magnet array 220 are the same, and the direction of the magnetic poles of the permanent magnets 221 magnetized in the inner diameter direction of the permanent magnets 211 of the permanent magnet array 210 disposed on the same radius and the permanent magnet array 220
  • the permanent magnets 221 magnetized in the inner diameter direction have the same magnetic pole direction.
  • the permanent magnets 211 arranged in the same radius of the permanent magnets 211 are magnetized in the inner circumferential direction of the permanent magnets 211.
  • the magnetization direction is opposite to that of the permanent magnets 221 in the inner circumferential direction of the permanent magnets 221 of the permanent magnet array 220.
  • the permanent magnet array 210 is formed by sequentially rotating the magnetic pole sides of the permanent magnet 211 in the circumferential direction by 90 degrees, the magnetic field of one side of the array (the outer side in this embodiment) is weakened, and the other side (the inner side in this embodiment). Then, it is an increase proportional to the weakening ratio, and a strong magnetic field can be generated on one side of the 210 on which the permanent magnets 211 are arranged (inside in this embodiment). Further, since the permanent magnet array 220 is formed by sequentially rotating the magnetic pole sides of the permanent magnet 221 in the circumferential direction by 90 degrees, the magnetic field of one side of the array (the inner side in this embodiment) is weakened, and the other side (this embodiment is the outer side). It is an increase proportional to the weakening ratio, and a strong magnetic field can be generated on one side of the 220 (the outer side in this embodiment) in which the permanent magnets 221 are arranged.
  • the permanent magnet array 210 and the permanent magnet array 220 are arranged as described above, the magnetic field of the space between the permanent magnet array 210 and the permanent magnet array 220 becomes strong, and on the one hand, the permanent magnet array 210 The outer side and the inner side of the permanent magnet array 220 hardly generate magnetic leakage.
  • a coil arrangement 230 is disposed between the permanent magnet array 210 and the permanent magnet array 220 to generate a high voltage. In this arrangement, since the field magnetic field in which the coil array 230 is disposed is enhanced, the coil 231 constituted by the coil array 230 can generate a high voltage even without using a core. Therefore, since the core is not used, there is no cogging and the volume can be reduced. As shown in Fig. 11(B), the coil array 230 is formed by winding a plurality of coils 231 in the order of the U-phase-V phase-W phase to generate three-phase alternating current.
  • the rotating shaft 240 is formed by the arrangement of the permanent magnets 211 and 221 by Holbeck, and the two rows of magnet arrays 201 and 220 constitute a double-layer Holbeck array magnetic field.
  • the radial directions (sections parallel to the magnetization direction) of the individual permanent magnets 211 and 221 are approximately equal, and the inner faces of the permanent magnets 211 constituting the outer magnet array 210 and the outer faces of the permanent magnets 221 constituting the inner magnet array 220 face each other.
  • the permanent magnets 211 constituting the outer magnet array 210 and the permanent magnets 221 constituting the inner magnet array 220 have a trapezoidal radial cross section, and each of the 64 mirrors constitutes a double-layer Holbeck alignment magnetic field.
  • the armature winding 231 is disposed in the double-layer Holbeck alignment magnetic field, but the outer magnet array 210 and the inner magnet array 220 are both 64-sided, and the gap faces of the adjacent permanent magnets 211 and 221 have a connection angle.
  • the radial sectional shape of the armature winding 231 is a rectangle, and the amplitude is an estimated angle from the center of the rotating shaft to the permanent magnets 211 and 221, and the armature winding 231 is coated with an insulating coating.
  • the layer of round copper wire is wound around the flange bearing.
  • the distance between the inner surface of the permanent magnet 211 constituting the outer magnet 210 and the outer surface of the permanent magnet 221 constituting the inner magnet 220 becomes a long gap in the Holbeck arrangement.
  • the gap is long, considering the connection angle, the thickness of the bearing flange, and the gap between the permanent magnets 211 and 221 and the bearing flange, and is set to the square root of the trapezoidal sectional area of the parallel magnetization directions of the permanent magnets 211 and 221 (corresponding to the permanent magnet 211, 5 ⁇ When 221 is approximately square, the length of the square is 1. 5 times.
  • the magnetic field spacing length is set to 1.5 times the trapezoidal radial sectional area of the magnetic field gap surrounded by the opposing faces of the face-to-face permanent magnets 211, 221.
  • the above-mentioned connection angle is about 174 degrees, and the radial cross-sections of the permanent magnets 211 and 221 are approximately square, which is based on the formula (12), in this embodiment.
  • Synchronous generator the armature winding can reach the maximum number of magnetic cross links, and the generated voltage can be increased at the rated number of revolutions.
  • the permanent magnet array 210 of the generator 200 is formed by sequentially rotating the magnetic pole sides of the permanent magnet 211 in the circumferential direction by about 90 degrees, and the outer magnetic field is weakened, and the inner side is increased in proportion.
  • a strong magnetic field is generated inside the 210 of the permanent magnet 211
  • the permanent magnet array 220 is formed by sequentially rotating the magnetic pole sides of the permanent magnet 221 in the circumferential direction by about 90 degrees. Weakened, and the outside is proportionally enhanced.
  • a strong magnetic field is generated outside the 220 in which the permanent magnets 221 are arranged, but it is not necessary to rotate 90 degrees one by one.
  • an integer division of 2 II may be sequentially rotated in the circumferential direction, and a plurality of circumferential directions may be arranged.
  • the magnetic field inside the first permanent magnet array is enhanced by the additive effect, and the outer magnetic field is weakened by the canceling effect, and rotates in the opposite direction to the first permanent magnet in the circumferential direction, and a plurality of circumferential directions are arranged.
  • the permanent magnets are disposed inside the first permanent magnet array, and the magnetic field outside the second permanent magnet array is enhanced by the additive effect, and the inner magnetic field may be weakened by the canceling effect.
  • the gap of the double-layer Hallbeck alignment magnetic field is 1. 2 ⁇ 1. 5 times, and the permanent magnet is square. 2 ⁇ 1. 5 ⁇
  • the permanent magnet is approximately square, it is set to be approximately 2. 2 ⁇ 1. 5 times. According to the above situation, the armature winding can obtain a large number of magnetic links. Therefore, in the case of a generator, the maximum amount of magnet is used to reach the maximum voltage, and the motor reaches the maximum torque at the minimum amount of magnets, and the amount of permanent magnets in the double-layer Holbeck array magnetic field can be minimized, which can be achieved. Consumption and the effect of saving resources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Linear Motors (AREA)

Abstract

本发明公开了一种电磁诱导装置,包含第一永久磁铁阵列及第二永久磁铁阵列,第一永久磁铁阵列是沿特定方向2π的整数等分逐次变化方向,第二永久磁铁阵列是沿特定方向2π的整数等分逐次变化方向,利用等价磁力线法,提升电枢绕组缠绕的线圈匝数。

Description

电磁诱导装置 技术领域
本发明涉及电磁诱导装置,特别是指一种当作电动机或称为发电机使用的电 磁诱导装置。
背景技术
为了提高电动机或称为发电机的磁场, 而有了称为霍尔贝克排列的排列方 式。将永久磁铁的 N极与 S极交互配置形成的构造。磁场在磁铁排列的外侧及内 侧皆无法产生。无法有效的利用磁场。针对这一点。霍尔贝克排列则是将永久磁 铁的磁极以相邻磁铁相差 90度的排列。 减弱磁铁排列一侧的磁场。 在该磁铁排 列的另一侧相对的增强磁场。则可以产生单侧磁场较强的永久磁铁排列。 以使用 了霍尔贝克排列配置的 2列永久磁铁排列 (Duel)之间配置电枢绕组(电枢线圈) 的永久磁铁回转电机和电动机。使用双层霍尔贝克排列永久磁铁的无铁芯马达及 无铁芯发电机, 是将电枢绕组(电枢线圈)缠绕的线圈匝数尽可能的增大, 但以往 的构造则是未将线圈匝数在最优化的状况下追求更大的线圈匝数
发明内容
本发明所要解决的技术问题在于提供一种电磁诱导装置。
为解决上述问题,本发明提供一种电磁诱导装置, 具有相互面对配置的第一 永久磁铁阵列、 第二永久磁铁阵列, 所述第一永久磁铁阵列的磁极方向以 2 ΐΐ的 整数等分逐次变换方向, 第二永久磁铁阵列侧边的磁场构成叠加性的效果而增 强, 而第二永久磁铁阵列与相反侧的磁场构成 "抵消性"的效果而减弱, 而有了 多个上述配置的第一永久磁铁; 而第二永久磁铁阵列的磁极方向以 2 ΐΐ的整数等 分逐次变换方向,第一永久磁铁阵列侧边的磁场构成叠加性的效果而增强, 而第 一永久磁铁阵列与相反侧的磁场构成抵消性的效果而减弱,而有了多个上述配置 的第 2永久磁铁, 因此制备了第一永久磁铁阵列、第二永久磁铁阵列与两列之间 配置的电枢绕组(电枢线圈)。
所述的第一永久磁铁以及第 2永久磁铁,在平行磁化方向的面上有相同的断 面积, 在第一、 第 2用永久磁铁阵列之间的间隔, 提供该断面积平方根的 1. 2 倍以上、 1. 5倍以下的电磁诱导装置。 进一步地, 所述第一永久磁铁的磁极方向为所述特定方向 90度逐次旋转的 方向排列, 所述第 2永久磁铁的磁极方向为所述特定方向 90度逐次旋转的方向 排列, 所述第一永久磁铁的磁极方向和所述第 2永久磁铁的磁极方向垂直或相 反。
进一步地, 所述的方向为直线方向。
进一步地, 所述的方向为圆周方向。
进一步地, 所述的电磁诱导装置为电动机或者是发电机。
本发明所述的电磁诱导装置, 通过将第一永久磁铁阵列的磁极方向以 2 ΐΐ的 整数等分逐次变换方向, 第二永久磁铁阵列的磁极方向以 2 11的整数等分逐次变 换方向, 可以提供能够提升电枢绕组(电枢线圈)缠绕的线圈匝数的电磁诱导装 置。
附图说明
图 1 是使用等价磁力线法的双层霍尔贝克排列磁场的断面图。
图 2 是说明图 1等价磁力线法。
图 3 是适用等价磁力线法的双层霍尔贝克排列磁场的断面图。
图 4 是间隙长与线圈匝数的关系表示图。
图 5 是间隙长与线圈匝数的关系表示图。
图 6 是说明本发明的最佳第一实施例, 圆筒型三相直线同步马达 100的概 略斜视图。
图 7 是图 6的 A-A断面。
图 8 是图 6的 B-B断面。
图 9 是图 6的 C-C断面。
图 10 是说明本发明的最佳第二实施例, 三相同步马达 200的概略斜视图。 图 11 (A)是平行磁化方向的断面中的三相同步马达 200的概略断面图, (B) 是电枢绕组(电枢线圈)的配线示意图。
附图标记说明
112是永久磁铁
111是永久磁铁排列
116是永久磁铁 115是永久磁铁排列
131是电枢绕组
具体实施方式
关于磁极以 90度逐次旋转排列的双层霍尔贝克排列磁场, 使用等价磁力线 法得到磁极间隙中央的平均磁力线密度。双层霍尔贝克排列, 永久磁铁阵列外侧 的磁力线密度变得极低, 又永久磁铁的比导磁率几乎与空气相同。
不使用铁等强磁性材料磁力线集中或磁饱和的情况就不会发生,因此可以得 到等价磁力线所需的磁力线密度。
图 1是适用等价磁力线法的双层霍尔贝克排列磁场 10的断面图。
双层霍尔贝克排列磁场 10是由永久磁铁 13的磁极经第 1直线方向 90度逐 次旋转配置的永久磁铁排列 12与永久磁铁 17的磁极经第 1直线与平行的第 2 直线方向 90度逐次旋转配置的永久磁铁排列 16所制备的。
永久磁铁排列 12是由永久磁铁排列 16的侧边磁场增强,另一侧减弱的永久 磁铁 13所配置的, 永久磁铁排列 16是由永久磁铁排列 12的侧边磁场增强, 另 一侧减弱的永久磁铁 17所配置的。
图 1是永久磁铁 13、 17平行磁化方向的平面的断面图。 永久磁铁 13和 17, 在平行磁化方向的平面上都是正方形, 有相同的断面积。
以平行永久磁铁 13、 17的平面的断面积为 1单位作规格化, 永久磁铁 13、 17的断面积则为 1, 又因为断面积为正方形, 所以正方形的边长也是 1。 永久磁 铁排列 12与 16之间, 14的间隔(间隙长)则为 a。
图 1表示是的闭曲线是磁力线,从磁力线形状了解每一极距都存在相同的磁 通量路径, 将此磁通量路径以点线表示。
图 1表示的双层霍尔贝克磁场的等价磁力线的主磁力线通过图 1的磁通量路 径, 又因为磁路对称于磁极中心线 XX, 磁力线分别对称于各自的磁极, 现在, 如图 2的方式定义一条磁力线。 图 2中, R为永久磁铁 13、 17的磁力阻抗, S 为垂直于磁极的磁铁断面积, 永久磁铁的磁极方向长 1公尺, 真空透磁率以 μ ο 表示于下列公式:
•0) 在这里, 永久磁铁的比导磁率趋近于 1, 又图 2中, γ为磁铁的磁极面到纵 向路径的距离, δ是磁极面到间隙中最接近横向路径的点的距离与间隙长的比 例, Sv为纵向路径的断面积, Sr为间隙中横向路径的断面面积。 ?、, S '二1 ~~ r 5
ν 2 ' r 2 所以, 三个闭合回路的主磁力线 Ψ ΐ、 Ψ 2、 Ψ 3满足下一个回路方程式
Figure imgf000006_0001
Hm: 永久磁铁的保持力, 磁极间隔长( =1)
根据 (2)是, α可表示为
Figure imgf000006_0002
因此, 间隙中心线 ΥΥ上的 NS磁极间平均磁力线密度 Bav表示为下式: av Sv SR r }
Br为永久磁铁的残留磁力线密度。
图 3为适用等价磁力线法的霍尔贝克排列磁场 20的断面图, 霍尔贝克排列 磁场 20是由永久磁铁 23的磁极沿圆周方向 90度逐次旋转霍尔贝克排列下行成 的永久磁铁排列 22和永久磁铁 27的磁极沿圆周方向约 90度逐次旋转、 霍尔贝 克排列下形成的永久磁铁排列 26所制备。
永久磁铁排列 22是由永久磁铁 26—边磁场因叠加性效果增强,另一边磁场 因抵消性效果减弱产生的永久磁铁 23所排列, 永久磁铁排列 26是由永久磁铁 22一边磁场因叠加性效果增强, 另一边磁场因抵消性效果减弱产生的永久磁铁 27所排列。 图 3是平行于永久磁铁 23、 27磁化方向的断面图。 平行于永久磁铁 23、 27 磁化方向的断面(与纸面平行的面)皆为梯形, 有相同的断面积。 永久磁铁 23与 永久磁铁 27有相同的数量, 永久磁铁 23以及 27的数量, 举例来说, 若有 64 个的话, 相邻的是永久磁铁 23又或者是永久磁铁 27, 会以接近 180度的 174度 接合, 因此永久磁铁 23与 27可视为近似正方形的存在。
如同图 1的情况, 将平行于永久磁铁 23、 27的磁化方向(与纸面平行的面) 的永久磁铁 23、 27的断面积平方根视为 1作规格化, 由于断面积的平方根为 1, 永久磁铁 23、 27的断面积也是 1, 又永久磁铁 23、 27平行于磁化方向的断面形 状皆近似于正方形, 永久磁铁 23、 27的边长也趋近于 1, 永久磁铁排列 22与永 久磁铁排 26之间 24的间隔(间隙长)则为 a。
如图 3所示, 在使用永久磁铁 23、 27的磁极沿圆周方向 90度逐次旋转, 霍 尔贝克排列下所形成的永久磁铁排列 22、 26的情况, 近似于图 2的等价磁力线, 可以直接套用上述理论。
间隙长 a为 0. 25、 0. 5、 1. 0、 1. 5、 2. 0的情况, 以直线 YY上的 y方向磁力 线密的 By的磁极间平均值 B0、 Y及 δ作为参数代入 (4), 将求得的 Bav值以下 表 1表示:
表 1
Figure imgf000007_0001
表 1中, γ =0。 25, δ =0。 25是选择几何中心的磁力线当作路径的情况。 又 Υ =0。 10, δ =0。 25是将 Β0与 Bav误差最小化的值, B τ是根据二次方 有限元素法磁场解析的解析值为 By的极距间平均值。 在这里, 假设磁距间磁力 线密度为正弦波状分布的话, 磁力线密度平均值 Bav τ为 Bav的 1/ V 2倍。 B τ 与 Bav τ的误差在 γ =0。 20, δ =0。 25为最小的情况。
如图 1所示,永久磁铁 13的磁极经第 1直线方向 90度逐次旋转, 霍尔贝克 排列下的永久磁铁排列 12与永久磁铁 17的磁极经第 1直线方向与平行的第 2 直线方向 90度逐次旋转, 霍尔贝克排列下的永久磁铁排列 16, 永久磁铁 13、 17 具备正方形的形状, 具有与上述相同断面积的双层霍尔贝克排列磁场 10以及如 图 3所示的,永久磁铁 23的磁极方向沿圆周方向 90度逐次旋转, 霍尔贝克排列 下的永久磁铁排列 22与永久磁铁 27的磁极沿圆周方向 90度逐次旋转, 霍尔贝 克排列下的永久磁铁排列 26, 永久磁铁 23、 27具备近似正方形的断面, 具有与 上述相同断面积的双层霍尔贝克排列 20, 如同上文所描述, 间隙中心线 ΥΥ上的 NS极距间的平均磁力线密度 Bav τ为:
S。w = V^ -…………
Br为永久磁铁的残留磁力线密度, 而 α为: 1 (l一
Figure imgf000008_0001
+ 3 若将双层霍尔贝克排列磁场的间隙中配置的电枢绕组(电枢线圈)的磁交链 数 Φ以每个极距的磁路断面积 S, 线圈匝数 N表示:
Φ =腸 avf (6)
间隔中配置的电枢绕组(电枢线圈),极距宽填满间隙下制作即可得到最大的 匝数, 平行磁化方向的面中永久磁铁断面积的平方根视为 1, 断面正方形的情况 下, 正方形边长为 1, 而在永久磁铁断面近似于正方形的情况下, 近似的正方形 边长为 1, S是磁场的深度 1 (正方形断面直行方向的永久磁铁长度)的比例, N 是深度 1与间隙长 a的比例, 以 k为比例定数。
若 w = …… "' 、 则 S = 2/'....·.......'.(8) 将式(7)、 式 (8)代入式 (6)磁交链数 Φ可表示为:
Figure imgf000009_0001
一方面, 如同上述, 式(5)中 Υ =0。 20, δ =0。 22时, 式(4' )的 Bav τ就成 为表示实际的磁极距间平均磁力线密度的计算式, 因此, 实际的磁交链可以由 Υ =0。 20, δ =0。 22时的式 (9)计算出, 因为式中 k和 1为所定的定数。
/(。) = = ~ ^ ^2γ+ )α _ _ (■■ , = 0.20, 0.22) αζ (ΐ ~ 2δ δ + 2γ + 3)+ 2α{2γ + 4y2 + 8^+ 3
(10) 可以使函数 f (a)达到最大的间隙长 a值存在的话, 用该间隙长构成双层霍 尔贝克排列磁场的话, 可以达到最大的磁交链数。
将函数 f (a)图形化, 即为图 4。 由于存在最大值: 0
da 可由上式求出 a=1. 2。也就是说平行于磁化方向的永久磁场断面积的平方根 的 1. 2倍,断面为正方形的情况,间隙长取边长的 1. 2倍,为近似正方形的情况, 取近似正方形边长的 1. 2倍, 可以在规定的匝数下得到最大的磁交链数。
由于霍尔贝克排列磁场与电枢绕组为相对运动的关系,为了不让永久磁铁与 电枢绕组接触, 实际将电枢线圈配制在磁场间隙中的时候需留有一定程度的空 间, 又电枢绕组是电线绕轴且卷好的电线以模型固定行成的, 因此线圈的厚度并 非全部由导体填满,若永久磁铁的正方形断面一边长 1公分,磁场与线圈导体间, 面对磁场的面上存在约 1毫米的非导电体。
在这情况下, 将平行磁化方向的永久磁铁断面积的平方根视为 1, 断面为正 方形时, 正方形的边长为 1, 永久磁铁为近似于正方形时, 近似正方形的边长为 1, 磁场间隙中配置的电枢绕组匝数 N如同式 (7)的情况。
以 :^"— 0'2 …^ 来表示, 因此, 磁交链数最大的间隙长为:
g(a = ^ . 2(2y+ lXa~ .2) (..■ =。 2。' g = Q 22) (12) 以上式定义的函数 g (a)为最大的间距长。
将函数 g (a)图形化, 即为图 5。 由于存在最大值: da 可由上式求出 a=1. 5。也就是说平行于磁化方向的永久磁场断面积的平方根 的 1. 5倍,断面为正方形的情况,间隙长取边长的 1. 5倍,为近似正方形的情况, 取近似正方形边长的 1. 5倍, 可以在规定的匝数下得到最大的磁交链数。
就像这样,双层霍尔贝克排列磁场的间隙长为平行磁化方向的永久磁铁断面 积的平方根的 1. 2〜1. 5倍, 永久磁铁为正方形的情况下, 将间隙长设定为正方 形边长的 1. 2〜1. 5倍, 在断面是近似于正方形的情况下, 将间隙长设定为近似 正方形边长的 1. 2〜1. 5倍, 在电枢绕组可得到最大的磁交链数。
第 1实施例
本发明最佳的第 1实施例, 圆筒型三相直线同步马达, 图 6是说明本发明的 最佳第一实施例, 圆筒型三相直线同步马达 100的概略斜视图。 图 7是图 6的 A-A断面。 图 8是图 6的 B-B断面。 图 9是图 6的 C-C断面。
圆筒型三相直线同步马达 100是由圆筒状的定子 105与定子 105轴向可动且 具备缺口的圆筒状可动子 107与可动子 107由外部电源 108供给电力的驱动装置 109所制备。
定子 105是由环状永久磁铁 112的磁极在包含中心轴的断面上, 90度逐次 旋转邻接构成的第一永久磁铁阵列的外侧永久磁铁阵列 111, 和环状永久磁铁 116的磁极在包含中心轴的断面上, 90度逐次旋转邻接构成的第二永久磁铁阵列 的内侧永久磁铁阵列 115, 和在内侧面的内侧, 用第一永久磁铁阵列 111固定的 第 1圆环状固定构件, 外侧管 113, 和在外侧面的内侧, 用永久磁铁阵列 115固 定的第 2圆环状固定构件, 内侧管 113, 和为了不干涉可动子 107, 固定有缺口 的外侧管 113与内侧管 117的固定板 123所制备。
并且, 固定子 105是由外侧管 113的外侧上部及下部用导杆支撑构件 211、 213将导杆 121附上, 导杆 121表面上将导杆支撑构件 211侧面端点到导杆支撑 构件之间的范围分为上下两段固定上电极 203、 205、 207、 209, 各电极引出的 导线 141捆绑在一起经由导杆支撑构件 211上设置的导出路 143导入驱动装置 可动子 107是由三相线圈 131卷装出来线圈环 133和线圈环 133两端固定的 缺口部分配有的出力环 137和出力环 137的缺口部分固定的缺口固定板 139和将 附在出力环 137端点部分的线圈环 133沿着导杆 121进入的直线轴承 135所制备。 直线轴承 135具备导杆 121表面所设置的电极 203、 205、 207、 209各自接触的 滑动电极 201、单边端点由三相线圈 131接触的导线 141穿过出力环 137及直线 轴承 135上设置的导出路 143连接滑动电极 201。 因此, 三相线圈 131是穿过固 定子 105侧边各电极 203、 205、 207、 209与驱动装置 109电力上连接。 在这里, 各电极 203、 205、 207、 209分别流向与驱动装置 109产生的三相交流电压相对 的三相交流电流 U相、 V相、 W相、 中性点电流, 随着三相线圈 131励磁产生的 推力让可动子 107轴向移动。
外侧永久磁铁 111的永久磁铁 112数量与内侧永久磁铁排列 115的永久磁铁 116数量相同, 在同一个半径上配置的外侧永久磁铁排列 111的永久磁铁 112内 径方向磁化的永久磁铁 112的磁极方向与内侧永久磁铁 115内径方向磁化的永久 磁铁 116的磁极方向相同。在同一个半径上配置的外侧永久磁铁排列 111的永久 磁铁 112内轴方向磁化的永久磁铁 112磁化方向与内侧永久磁铁排列 115的永久 磁铁 116内轴方向磁化的永久磁铁 116相反。
由于外侧永久磁铁排列 111是由永久磁铁 112的磁极边沿轴方向 90度逐次 旋转边排列而成的, 排列的一侧 (本实施例为外侧)的磁场减弱, 另一侧 (本实施 例为内侧, 内侧永久磁铁排列 115侧)则是与减弱比例成正比的增强, 能在外侧 永久磁铁排列 111的单侧(本实施例为内侧)发生强烈的磁场。又因为内侧永久磁 铁排列 115是由永久磁铁 116的磁极边沿轴方向 90度逐次旋转边排列而成的, 排列的一侧(本实施例为内侧)的磁场减弱, 另一侧(本实施例为外侧, 内侧永久 磁铁排列 111侧)则是与减弱比例成正比的增强, 能在内侧永久磁铁排列 115的 单侧(本实施例为外侧)发生强烈的磁场。
由于外侧磁铁排列 111和内侧磁铁排列 115是如前述排列,外侧永久磁铁排 列 111和内侧永久磁铁排列 115之间的空间之磁场变强,一方面外侧永久磁铁排 列 111的外侧与内侧永久磁铁排列 115的内侧,几乎不会产生磁漏。而外侧永久 磁铁排列 111和内侧永久磁铁排列 115之间的空隙中分布极多径向的磁力线。分 布极多径向的磁力线的空隙中配置有三相线圈 131, 由于磁力线大多与三相线圈 131垂直相交, 从驱动装置 109提供的电力更有效率的转换成推力。 由于配置三 相线圈 131的领域之磁场变强,三相线圈 131不需要使用铁芯就能强烈励磁, 并 可以产生强大的推力使可动子 107轴向移动。所以, 由于没有使用铁芯, 就没有 齿槽并能縮小体积。
外侧永久磁铁排列 111是由径方向与厚度方向磁化的断面为正方形的环状 永久磁铁 112堆迭构成的。又内侧永久磁铁排列 115是由径方向与厚度方向磁化 的断面为正方形的环状永久磁铁 116堆迭构成的。外侧永久磁铁排列 111所构成 的外侧圆筒磁场和内侧永久磁铁排列 115所构成的内侧圆筒磁场构成双层霍尔 贝克排列磁场。 外侧圆筒磁场与内侧圆筒磁场各自的圆筒磁场中心轴互相重迭。 外侧圆筒磁场的内面和内侧圆筒磁场的表面之距离为霍尔贝克排列磁场的间距 长, 这个间距长设定为平行环状永久磁铁 112、 116磁化方向的面里之正方形断 面面积的平方根 (相当于永久磁铁 112、 116的正方形断面的单边长)的 1. 2倍。 本实施例为以各个电枢绕组 131所定的厚度、 永久磁铁 112、 116的正方形断面 边长约 1. 3倍的宽度 (4/3倍)的绝缘涂层铜带环状卷装构成。这样构成的尺寸精 度和占空系数较高,就算磁场间距长几乎填满导体而构成的该磁场与电枢线圈也 不会接触, 因此, 以上述(10)式为基础能最大化电枢线圈 131的磁交链数, 每 1A的轴推力增加。
上述的实施, 由于三相线圈 131配置在分布极多径向磁力线的空隙中, 磁力 线大多与三相线圈 131垂直相交, 少量电流产生强大的推力, 外侧永久磁铁排列 111是由永久磁铁 112的磁极沿轴方向 90度逐次旋转排列而成, 外侧永久磁铁 排列 111的外侧磁场减弱, 内侧则依减弱的比例增强, 在外侧永久磁铁排列 111 的内侧产生强烈的磁场,又内侧永久磁铁排列 115是由永久磁铁 116的磁极沿轴 方向 90度逐次旋转排列而成, 内侧永久磁铁排列 115的内侧磁场减弱, 外侧则 依减弱的比例增强,在外侧永久磁铁排列 111的外侧产生强烈的磁场, 但是不一 定要 90度逐次旋转, 例如 45度逐次旋转也可以, 沿轴方向逐次旋转 2 π的整数 等分,轴方向排列多个第 1永久磁铁, 则第 1永久磁铁排列内侧的磁场会因叠加 性效果增强,外侧的磁场因抵消性效果而减弱, 沿圆周方向与第 1永久磁铁的相 反方向旋转, 圆周方向排列多个的第 2永久磁铁, 配置于第 1永久磁铁排列的内 侧,第 2永久磁铁排列外侧的磁场会因叠加性效果增强, 内侧的磁场因抵消性效 果而减弱也可以。
第 2实施例
本发明最佳的第 2实施例是三相同步发电机。 图 10是说明本发明的最佳第 二实施例, 三相同步马达 200的概略斜视图。 图 11 (A)是平行磁化方向的断面中 的三相同步马达 200的概略断面图。 图 11 (B)是电枢绕组(电枢线圈)的配线示意 图。
本实施例的发电机 200, 是由转子 250与定子 260所制备。 在转子 250上安 装轴 240,并旋转轴 240的话,即可构成发电机。转子 250是由永久磁铁排列 210、 220所制备。 定子 26是由线圈排列 230所制备。 永久磁铁排列 210、 220各自以 环状构成, 线圈排列 230也以环状构成。 永久磁铁 210、 220以及线圈排列 230 为同心圆状配置。 永久磁铁排列 220设置在永久磁铁排列 20的内侧。
永久磁铁排列 210、 220分别是由永久磁铁 211、 221的磁极 90度逐次旋转 的霍尔贝克排列所构成。
永久磁铁排列 210的永久磁铁 211与永久磁铁排列 220的永久磁铁 221数量 相同,在同一个半径上配置的永久磁铁排列 210的永久磁铁 211内径方向磁化的 永久磁铁 221的磁极方向与永久磁铁排列 220内径方向磁化的永久磁铁 221的磁 极方向相同。在同一个半径上配置的永久磁铁排列 210的永久磁铁 211内圆周方 向磁化的永久磁铁 211磁化方向与永久磁铁排列 220的永久磁铁 221内圆周方向 磁化的永久磁铁 221相反。
由于永久磁铁排列 210是由永久磁铁 211的磁极边沿圆周方向 90度逐次旋 转边排列而成的, 排列的一侧 (本实施例为外侧)的磁场减弱, 另一侧 (本实施例 为内侧)则是与减弱比例成正比的增强,能在永久磁铁 211所排列的 210单侧 (本 实施例为内侧)发生强烈的磁场。 又因为永久磁铁排列 220是由永久磁铁 221的 磁极边沿圆周方向 90度逐次旋转边排列而成的, 排列的一侧(本实施例为内侧) 的磁场减弱, 另一侧 (本实施例为外侧)则是与减弱比例成正比的增强, 能在永久 磁铁 221所排列的 220单侧(本实施例为外侧)发生强烈的磁场。
由于永久磁铁排列 210和永久磁铁排列 220是如上面所述的排列,永久磁铁 排列 210和永久磁铁排列 220之间的空间之磁场变强, 一方面永久磁铁排列 210 的外侧与永久磁铁排列 220的内侧, 几乎不会产生磁漏。 而永久磁铁排列 210 和永久磁铁排列 220之间配置有线圈排列 230, 可以产生高电压。 如此排列下, 由于线圈排列 230配置的领域磁场增强,线圈排列 230构成的线圈 231就算不使 用铁芯,也能产生高电压。所以, 由于没有使用铁芯,就没有齿槽又能縮小体积。 而如图 11 (B)所示, 线圈排列 230是由多个的线圈 231照 U相 -V相 -W相的顺序 缠绕而成, 产生三相交流。
本实施例, 转轴 240周为由永久磁铁 211、 221依霍尔贝克排列构成, 由内 外两组的磁铁列 201、 220构成双层霍尔贝克排列磁场。 个个永久磁铁 211、 221 的径向(与磁化方向平行的断面)断面积约略相等,构成外侧磁铁列 210的永久磁 铁 211内面与构成内侧磁铁列 220的永久磁铁 221外面互相面对。个个构成外侧 磁铁列 210的永久磁铁 211以及构成内侧磁铁列 220的永久磁铁 221的径向断面 皆为梯形, 各取 64个构成双层霍尔贝克排列磁场。 电枢绕组 231配置在双层霍 尔贝克排列磁场中, 但是外侧磁铁列 210与内侧磁铁列 220都是 64边形, 相邻 的永久磁铁 211、 221的间隙面存在连接角度。 本实施例的三相同步发电机 200, 电枢绕组 231的径向断面外形为长方形, 这个幅度就是从转轴中心到永久磁铁 211、 221两者的估计角度, 又电枢绕组 231是由绝缘涂层圆铜线缠绕法兰轴承 而构成的。构成外侧磁铁 210的永久磁铁 211的内面与构成内侧磁铁 220的永久 磁铁 221的外面之距离成为霍尔贝克排列的间隙长。 此间隙长、 考虑到连接角、 轴承凸缘的厚度、 永久磁铁 211、 221与轴承凸缘的间隙, 设定为永久磁铁 211、 221平行磁化方向的梯形断面积平方根 (相当于永久磁铁 211、 221近似于正方形 时, 正方形的边长)的 1. 5倍。 也就是说, 将磁场间隔长设定为面对面的永久磁 铁 211、 221之对向面包围的磁场间隙的梯形径向断面积的 1. 5倍。 为了使本实 施例的磁场呈 64边形, 上述的连接角度约为 174度, 永久磁铁 211、 221的径向 断面约略可视为正方形, 因此以式(12)为基础, 本实施例中的同步发电机, 电枢 绕组可达到最大的磁交链数, 在所定的额定回转数可以增大发电电压。
上述的实施例,发电机 200的永久磁铁排列 210是由永久磁铁 211的磁极边 沿圆周方向约 90度逐次旋转边排列而成, 排列外侧磁场减弱, 内侧则等比例增 强。在永久磁铁 211所排列的 210内侧产生强烈的磁场, 永久磁铁排列 220是由 永久磁铁 221的磁极边沿圆周方向约 90度逐次旋转边排列而成, 排列内侧磁场 减弱, 外侧则等比例增强。 在永久磁铁 221所排列的 220外侧产生强烈的磁场, 但是不一定要 90度逐次旋转,例如 45度逐次旋转也可以, 沿圆周方向逐次旋转 2 II的整数等分, 圆周方向排列多个的第 1永久磁铁, 则第 1永久磁铁排列内侧 的磁场会因叠加性效果增强,外侧的磁场因抵消性效果而减弱, 沿圆周方向与第 1永久磁铁的相反方向旋转, 圆周方向排列多个的第 2永久磁铁, 配置于第 1永 久磁铁排列的内侧,第 2永久磁铁排列外侧的磁场会因叠加性效果增强, 内侧的 磁场因抵消性效果而减弱也可以。
如同以上说明,双层霍尔贝克排列磁场的间隙长为平行磁化方向的永久磁铁 断面积平方根的 1. 2〜1. 5倍, 永久磁铁为正方形的情况下, 设定为正方形边长 的 1. 2〜1. 5倍, 永久磁铁为近似正方形的情况, 则设定为近似正方形边长的 1. 2〜1. 5倍, 根据上述情况, 电枢绕组可得到大的磁交链数。 因此, 发电机的 情况,用最小的磁铁量达到最大的电压,又马达在最小的磁铁量达到最大的扭矩, 又因为双层霍尔贝克排列磁场的永久磁铁量能达到最小化,可达到低消耗以及省 资源的效果。

Claims

权利要求
1 .一种电磁诱导装置, 其特征在于: 包含第一永久磁铁阵列及第二永久磁 铁阵列; 所述第一永久磁铁阵列与第二永久磁铁阵列互相面对配置, 所述第一永 久磁铁阵列是沿特定方向 2 π的整数等分逐次变化方向, 所述第 2永久磁铁阵列 的一侧磁场因叠加性效果增强, 另一侧因抵消性效果减弱, 以此方式配置多个第 一永久磁铁;所述第 2永久磁铁阵列是沿特定方向 2 II的整数等分逐次变化方向, 所述第一永久磁铁阵列的一侧磁场因叠加性效果增强, 另一侧因抵消性效果减 弱, 以此方式配置多个第 2永久磁铁; 所述第一永久磁铁阵列与第 2永久磁铁阵 列之间配置电枢绕组;
所述的第一永久磁铁与第 2永久磁铁,在平行磁化方向的断面上具有相同的 断面积;
所述的第一永久磁铁阵列与第 2永久磁铁阵列的间隔中,所配置的前述断面 积平方根 1. 2倍以上、 1. 5倍以下大小的电磁诱导装置。
2.如权利要求 1所述的电磁诱导装置,其特征在于: 所述第一永久磁铁的磁 极方向为所述特定方向 90度逐次旋转的排列, 所述第 2永久磁铁的磁极方向为 所述特定方向 90度逐次旋转的排列, 所述第一永久磁铁的磁极方向和所述第 2 永久磁铁的磁极方向垂直或相反。
3.如权利要求 1或 2所述的电磁诱导装置,其特征在于: 所述的方向为直线 方向。
4.如权利要求 1或 2所述的电磁诱导装置,其特征在于: 所述的方向为圆周 方向。
5.如权利要求 1至 4任意一项所述的电磁诱导装置,其特征在于: 所述的电 磁诱导装置为电动机或者是发电机。
PCT/CN2013/073456 2012-03-30 2013-03-29 电磁诱导装置 WO2013143490A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-83282_ 2012-03-30
JP2012083282A JP2013215021A (ja) 2012-03-30 2012-03-30 電磁誘導装置

Publications (1)

Publication Number Publication Date
WO2013143490A1 true WO2013143490A1 (zh) 2013-10-03

Family

ID=49258243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073456 WO2013143490A1 (zh) 2012-03-30 2013-03-29 电磁诱导装置

Country Status (4)

Country Link
JP (1) JP2013215021A (zh)
CN (1) CN103368284A (zh)
TW (1) TW201347359A (zh)
WO (1) WO2013143490A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6415029B2 (ja) * 2013-07-27 2018-10-31 株式会社アテック 電磁誘導装置
CN104578635B (zh) * 2015-01-09 2017-04-12 浙江大学 一种不对称双定子圆筒型永磁直线电机
JP5870326B1 (ja) 2015-01-22 2016-02-24 サンテスト株式会社 ボイスコイルモータ及びこのボイスコイルモータを用いた直動型サーボ弁
EP3276645B1 (en) 2015-03-24 2022-05-04 Nitto Denko Corporation Method for producing sintered body that forms rare-earth permanent magnet and has non-parallel easy magnetization axis orientation
KR102453981B1 (ko) 2015-03-24 2022-10-12 닛토덴코 가부시키가이샤 희토류 자석 형성용 소결체 및 희토류 소결 자석
KR101702026B1 (ko) * 2015-05-29 2017-02-02 재단법인 중소조선연구원 복합재료를 포함하는 자속 집중형 리니어 발전기
CN104953784A (zh) * 2015-06-25 2015-09-30 金陵科技学院 一种低速筒形双动子永磁直线发电机
JP2018064371A (ja) * 2016-10-12 2018-04-19 株式会社アテック デュアルハルバッハ配列界磁
CN106374718B (zh) * 2016-10-28 2019-06-18 华中科技大学 聚磁型交替极游标永磁电机及其应用
KR102020232B1 (ko) * 2017-08-23 2019-09-10 세메스 주식회사 타워 리프트
JP7020258B2 (ja) 2018-04-06 2022-02-16 村田機械株式会社 位置検出システムおよび走行システム
WO2019202765A1 (ja) * 2018-04-17 2019-10-24 Kyb株式会社 筒型リニアモータ
JP2019187226A (ja) * 2018-04-17 2019-10-24 Kyb株式会社 筒型リニアモータ
JP2022182315A (ja) 2021-05-28 2022-12-08 トヨタ自動車株式会社 ハルバッハ磁石配列体を製造する方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992498A (ja) * 1995-09-26 1997-04-04 Shin Etsu Chem Co Ltd 挿入光源装置用磁気回路
US20060138879A1 (en) * 2004-12-27 2006-06-29 Denso Corporation Electric wheel
CN102239625A (zh) * 2008-09-23 2011-11-09 艾罗威罗门特公司 无铁芯电动机的通量集中器
CN102265490A (zh) * 2008-12-25 2011-11-30 株式会社东芝 线性电动机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992498A (ja) * 1995-09-26 1997-04-04 Shin Etsu Chem Co Ltd 挿入光源装置用磁気回路
US20060138879A1 (en) * 2004-12-27 2006-06-29 Denso Corporation Electric wheel
CN102239625A (zh) * 2008-09-23 2011-11-09 艾罗威罗门特公司 无铁芯电动机的通量集中器
CN102265490A (zh) * 2008-12-25 2011-11-30 株式会社东芝 线性电动机

Also Published As

Publication number Publication date
TW201347359A (zh) 2013-11-16
JP2013215021A (ja) 2013-10-17
CN103368284A (zh) 2013-10-23

Similar Documents

Publication Publication Date Title
WO2013143490A1 (zh) 电磁诱导装置
JP6346172B2 (ja) 電気機械パワー変換のための複合ステータ
US10326326B2 (en) IPM machine with specialized winding for automotive electric vehicles
JP5472254B2 (ja) ダブルステータ型モータ
JP4833275B2 (ja) スロットレスモーター
US8400044B2 (en) Electromotive machines
US20130221889A1 (en) Multi-phase switched reluctance motor apparatus and control method thereof
JP5542849B2 (ja) スイッチドリラクタンスモータ
CN108141090A (zh) 旋转电机
JP2013055872A (ja) スイッチドリラクタンスモータ
JP2019075986A (ja) 金属リボンステータおよびそれを備えるモータ
US20220094228A1 (en) Axial flux electrical machine
US20100117461A1 (en) Electromotive machines
JP5708750B2 (ja) ダブルステータ型モータ
WO2016004823A1 (zh) 一种定子及无刷直流电机、三相开关磁阻和罩极电机
US20140252913A1 (en) Single phase switched reluctance machine with axial flux path
US20220094230A1 (en) Axial flux electrical machine
JP5698715B2 (ja) アキシャルギャップ型ブラシレスモータ
JP2009077480A (ja) 回転電動機
KR20160091057A (ko) 전자 유도 장치
JP2005124309A (ja) リラクタンスモータ、モータのロータコア及びモータのロータコアの製造方法
JP6415029B2 (ja) 電磁誘導装置
WO2013084901A1 (ja) モータ
KR20120134984A (ko) 스위치드 릴럭턴스 모터
TW201628318A (zh) 電磁感應裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13770053

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 13770053

Country of ref document: EP

Kind code of ref document: A1