WO2016004823A1 - 一种定子及无刷直流电机、三相开关磁阻和罩极电机 - Google Patents

一种定子及无刷直流电机、三相开关磁阻和罩极电机 Download PDF

Info

Publication number
WO2016004823A1
WO2016004823A1 PCT/CN2015/082402 CN2015082402W WO2016004823A1 WO 2016004823 A1 WO2016004823 A1 WO 2016004823A1 CN 2015082402 W CN2015082402 W CN 2015082402W WO 2016004823 A1 WO2016004823 A1 WO 2016004823A1
Authority
WO
WIPO (PCT)
Prior art keywords
tooth
rotor
phase winding
small
phase
Prior art date
Application number
PCT/CN2015/082402
Other languages
English (en)
French (fr)
Inventor
顾明
Original Assignee
顾明
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410326325.9A external-priority patent/CN104092345A/zh
Priority claimed from CN201410326323.XA external-priority patent/CN104079137A/zh
Priority claimed from CN201410326324.4A external-priority patent/CN104079085A/zh
Priority claimed from CN201410326346.0A external-priority patent/CN104079136A/zh
Application filed by 顾明 filed Critical 顾明
Publication of WO2016004823A1 publication Critical patent/WO2016004823A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors

Definitions

  • the invention relates to the field of electric machines, in particular to a stator and a brushless DC motor, a three-phase switched reluctance motor and a shaded pole motor.
  • stator and rotor windings including single and double stacked windings, concentric distributed windings, distributed slots on fractional slots, or the shape of the rotor core is sinusoidal, in order to make the air gap potential wave It is sinusoidal.
  • the invention provides a stator, wherein the stator is changed in shape of the stator core, the pole pitch is shortened and the total magnetic density of one pole is constant, and the air gap of the three-tooth pole arc surface is similar to a sinusoidal distribution, thereby When the motor is running, a circular rotating magnetic field is generated, which reduces the pulsation phenomenon of the motor and makes the motor start smoothly.
  • the invention discloses a stator comprising a large tooth and a small tooth, wherein the large tooth and the small tooth cycle are alternately arranged, and an arc distance between a center line of the adjacent large tooth body and a center line of the small tooth body Similarly, a plurality of slots are associated between the large teeth and the small teeth, and the coils are embedded in the slots to form the core of each phase winding. They are composed of small teeth, large teeth and small teeth, which are arranged in order. There is a common small tooth between each phase winding and its adjacent winding. The tooth surface of the large tooth changes according to the sine law, between the large tooth and the rotor.
  • the large-tooth arc surface air gap is a sinusoidal gradation air gap with small middle and large ends, and the air gap of the small tooth arc surface between the small teeth and the rotor is a uniform air gap and is larger than the air gap at the two ends of the large tooth arc gap.
  • the pole-arc air gap of each phase winding is similar to the sinusoidal distribution.
  • the invention discloses a stator comprising a large tooth and a small tooth, wherein the large tooth and the small tooth cycle are alternately arranged, and an arc distance between a center line of the adjacent large tooth body and a center line of the small tooth body Similarly, a plurality of slots are associated between the large teeth and the small teeth, and the coils are embedded in the slots, so that the iron cores of each phase winding are respectively arranged by small teeth, large teeth and small teeth.
  • the tooth top arc surface of the large tooth is left and right symmetrically chamfered, and the large tooth arc surface air gap between the large tooth and the rotor is small in the middle and large in both ends.
  • the air gap, the small tooth arc gap between the small teeth and the rotor is a uniform air gap and is larger than the air gap at the two ends of the large tooth arc gap.
  • the pole air gap of each phase winding is similar to the sinusoidal distribution.
  • the invention discloses a stator comprising a large tooth and a small tooth, wherein the large tooth and the small tooth cycle are alternately arranged, and an arc distance between a center line of the adjacent large tooth body and a center line of the small tooth body Similarly, a plurality of slots are associated between the large teeth and the small teeth, and the coils are embedded in the slots, so that the iron cores of each phase winding are respectively arranged by small teeth, large teeth and small teeth.
  • the large tooth gap air gap between the large tooth and the rotor is a uniform air gap
  • the small tooth arc surface air gap between the small tooth and the rotor is The uniform air gap is larger than the large tooth arc air gap
  • the pole arc air gap of each phase winding is similar to the sinusoidal distribution.
  • the invention discloses a stator comprising a large tooth and a small tooth, wherein the large tooth and the small tooth cycle are alternately arranged, and an arc distance between a center line of the adjacent large tooth body and a center line of the small tooth body Similarly, a plurality of slots are associated between the large teeth and the small teeth, and the coils are embedded in the slots to form the core of each phase winding. They are respectively arranged by three teeth of small teeth, large teeth and small teeth.
  • the root portions of the large tooth body and the yoke border portion of the four types of stators may be split and assembled, and the root portion of the large tooth body is a convex dovetail tooth and the inner side of the yoke is a concave dovetail side.
  • the slot is closely spliced with convex and concave dovetail shaped slots; the length of the tooth top of the small tooth body is greater than the length of the root curved surface, which is similar to the trapezoidal tooth; the stator processing procedure is to wind the electromagnetic wire first.
  • the convex dovetail teeth at the root of the large tooth are placed in the concave dovetail groove on the inner side of the yoke.
  • the large tooth body width is equal to or larger than the small tooth (2) tooth body width or at least twice the width of the small tooth tooth body.
  • the invention also discloses a brushless DC motor with any of the above stators, further comprising a rotor and an electronic commutation device, wherein the rotor is provided with a plurality of pairs of parallel magnetization or radial magnetization N/S a rotor permanent pole; the commutation device comprising a Hall position sensor and a rotor position permanent pole, the permanent poles of the rotor position being arranged at equal intervals of N/S poles or spaced over the shaft and being identical to the rotor permanent pole
  • the axis has the same number of poles.
  • the slot of the stator and the permanent magnet of the rotor are substantially oblique and intersecting, and the slot of the stator is equal to the slope of the permanent pole of the rotor.
  • the brushless DC motor is a two-phase brushless DC motor
  • the stator includes an A-phase winding and a B-phase winding
  • the A-phase winding and the B-phase winding are spatially 90° apart from each other.
  • the electrical angle, wherein the number of poles per phase is the same as the number of permanent poles of the rotor, that is, the number of the slots is four times the number of permanent poles of the rotor
  • the pole pitch of the permanent pole of the rotor is (0.65-1.0) ⁇ D/P.
  • a further technical solution is that the Hall position sensors of the two-phase brushless DC motor are respectively set The A-phase winding core pole and the B-phase winding core pole axis center line side of each other at a spatial position of 90° electrical angle; the permanent pole of the rotor and the permanent magnetic pole of the rotor position are at an electrical angle of 0° with each other in a spatial position
  • the permanent magnet pole of the rotor also serves as the permanent magnetic pole of the rotor position.
  • the brushless DC motor is a three-phase brushless DC motor
  • the stator includes an A-phase winding, a B-phase winding, and a C-phase winding, the A-phase winding, the B-phase winding, and the The C-phase windings are spatially 120° electrical angles to each other, wherein the number of poles per phase is 1/2 of the number of permanent poles of the rotor, that is, the number of the slots is three times the number of permanent poles of the rotor.
  • the pole pitch of the permanent pole of the rotor is (0.8-1.0) ⁇ D/P.
  • a further technical solution is that the rotor position permanent magnetic pole and the permanent magnet pole of the rotor are at an electrical angle of 90° with each other in a spatial position, and the Hall position sensor is three-phase and 120° electrical angles in a spatial position, respectively set.
  • the Hall position sensor is three-phase and 120° electrical angles in a spatial position, respectively set.
  • the invention also discloses a three-phase switched reluctance motor with any of the above stators, further comprising a rotor and an electronic commutation device, wherein the rotor is provided with a plurality of pairs of salient pole cores, and the phase change device a Hall position sensor and a rotor position permanent magnetic pole; the stator is including an A-phase winding, a B-phase winding, and a C-phase winding, the A-phase winding, the B-phase winding, and the C-phase winding are spatially mutually 120° electrical angle, wherein the number of poles per phase is the same as the number of poles of the salient pole core of the rotor, that is, the number of the slots is six times the number of poles of the salient pole of the rotor, and one pole of the salient pole of the rotor
  • the pole pitch is (0.38-0.42) ⁇ D/P.
  • the slot of the stator and the salient pole core of the rotor are oblique and intersecting, and the slot of the stator is equal to the slope of the salient pole core of the rotor.
  • a further technical solution is that the permanent magnet pole of the rotor position is coaxial with the rotor salient pole core and the pole pair is the same.
  • the rotor pole position of the permanent pole is equal to or smaller than the pole pole of the rotor permanent pole and is in a spatial position. The upper ones are 0° electrical angles.
  • a further technical solution is that the Hall position sensors are three-phase and are mutually in a spatial position.
  • the 120° electrical angle is set at the neutral of the A-phase winding, the B-phase winding, and the C-phase winding.
  • the present invention also discloses a shaded pole motor with any of the above stators, further comprising a rotor and a magnetically permeable ring, the magnetically permeable ring comprising an upper yoke and a lower yoke, the upper yoke
  • the lower yoke is tightly assembled without a gap, and the magnetic permeable ring is symmetrically disposed on the circumference of the stator, and the number of the magnetic permeable rings and the stator pole ratio is 1:1.
  • the stator includes the A-phase winding and the B-phase winding, and the B-phase windings of the A-phase winding are spatially 90° electrical angles with each other;
  • the B-phase winding is a secondary winding; when the B-phase winding is a main winding, the A-phase winding is a secondary winding; the primary winding is a multi-turn coil, and the secondary winding is a single-turn short-circuit coil Or multiple short-circuit coils.
  • the upper yoke is disposed at one end or one end of the stator core and is integrally pressed with the stator, and the upper yoke is pressed against the A-phase large teeth and the B-phase large teeth positions. And an effective side of the A-phase winding coil adjacent to the "back"-shaped yoke and an effective side of the B-phase winding coil, that is, the inner yoke is embedded in the groove One of each of the A-phase winding coil and the B-phase winding coil.
  • a further technical solution is that the brushless DC motor with any of the above stators is any two-phase, three-phase brushless DC linear motor.
  • a further technical solution is that a three-phase switched reluctance motor with any of the above stators is any three-phase switched reluctance linear motor.
  • a further technical solution is that the brushless DC motor with any of the above stators is any two-phase, three-phase brushless DC disk motor.
  • the three-phase switched reluctance motor with any of the above stators is any three-phase switched reluctance disc type motor.
  • the large teeth and the small teeth of the stator of the present invention are alternately arranged, and the magnetic poles of each phase winding core are mainly composed of large teeth, and the left and right small teeth are arranged by auxiliary three teeth, and the air gap of the three teeth is similar to that of
  • the sinusoidal distribution is such that the coil after energization can generate a circular rotating magnetic field, and the fusion of the phase and the same polar magnetic field reduces the pulsation phenomenon of the motor, so that the motor starts smoothly.
  • the width of the large tooth body is twice or more than the width of the small tooth tooth, the large tooth is long, the small tooth is short, and the cross-sectional area of the core of each phase remains unchanged. As the distance becomes shorter, the length of the end portion of the stator coil becomes relatively smaller, the coil resistance is small, the loss is reduced, and the efficiency is increased.
  • the two-phase windings of the two-phase brushless DC motor stator are 90° electrical angles in space, so that the two-phase combined magnetic potential and the permanent magnet potential of the rotor are always at an electrical angle of 90° when energized, and the torque is always kept at a maximum.
  • Figure 1 is a schematic view showing the unfolded structure of the stator of the present invention
  • FIG. 2 is a schematic view showing the assembly structure of the two-phase brushless DC motor of the present invention
  • FIG. 3 is a schematic view showing the assembly structure of a three-phase brushless DC motor or a three-phase switched reluctance motor according to the present invention
  • FIG. 4 is a schematic view showing the unfolding structure of the stator and the rotor cross-slot of the present invention
  • FIG. 5 is a schematic view showing winding of a stator two-phase coil of a two-phase brushless DC motor according to the present invention
  • FIG. 6 is a schematic diagram of a stator and a rotor of a two-phase brushless DC motor according to the present invention
  • Figure 8 is a schematic view showing the winding of a three-phase coil of a three-phase brushless DC motor according to the present invention.
  • Figure 9 is a schematic diagram of the stator and rotor eight poles of the three-phase brushless DC motor of the present invention.
  • FIG. 10 is a main circuit of an electronic commutation of a three-phase H-bridge driver of a three-phase brushless DC motor according to the present invention
  • Figure 11 is a schematic view showing the winding of a three-phase coil of a three-phase switched reluctance motor of the present invention.
  • Figure 12 is a schematic view showing the stator and rotor of the three-phase switched reluctance motor of the present invention.
  • FIG. 13 is a schematic diagram of a three-phase electronic commutation main circuit of the three-phase switched reluctance motor of the present invention.
  • Figure 14 is a schematic view showing the assembly structure of the shaded pole motor of the present invention.
  • Figure 15 is a schematic view showing the assembly of the magnetic flux ring and the stator of the shaded pole motor of the present invention.
  • Figure 16 is a schematic structural view of a magnetic conductive ring of a shaded pole motor of the present invention.
  • Figure 17 is a schematic structural view of an upper yoke of a shaded pole motor of the present invention.
  • Figure 18 is a perspective view of a large tooth of the stator of the present invention.
  • the present invention discloses a stator 9 comprising a large tooth 1 and a small tooth 2, wherein the large tooth 1 and the small tooth 2 are alternately arranged, and adjacent large teeth 1 tooth
  • the circular arc distance between the center line and the center line of the small tooth 2 tooth body is the same, and several tooth grooves 3 are associated between the large tooth 1 and the small tooth 2, and the tooth width of the large tooth 1 is equal to or larger than the small tooth.
  • the width of the tooth body, or at least twice the width of the tooth body of the small tooth 2 is determined according to the power of the motor and the size of the motor, the tooth width of the large tooth 1
  • the width of the small tooth 2 is twice or more than the width of the tooth, and the winding is embedded in the slot 3, and each pole core in each phase winding is respectively a small tooth 2, a large tooth 1 and a small tooth 2
  • the components are arranged in sequence; there is a common small tooth 2 between each phase winding and its adjacent winding, and each phase winding contains a large
  • the tooth 1 and the two small teeth 2 are mainly the large teeth 1 and the left and right small teeth 2 are auxiliary.
  • the large tooth cam surface air gap 5 and the small tooth cam surface air gap 6 of the large tooth 1 and the small tooth 2 are set, so that the pole arc air gap of each phase of the stator 9 is similar to a sinusoidal regular distribution, after being energized
  • the magnetic potential waves generated by the coil 4 are similar to the sinusoidal regular distribution, and there is a common small tooth 2 between each phase winding and its adjacent winding, so that the phase and the same polar magnetic field are fused and merged to produce a circular rotating magnetic field.
  • the motor pulsation phenomenon is reduced, and the motor starts smoothly; since the number of teeth constituting one pole of the stator 9 is only three teeth, the number of slots is relatively reduced compared to the existing single-phase or three-phase motor or multi-phase motor of the same specification, the slot A reduction in the number of teeth will reduce the harmonic potential of the teeth and increase the tank fullness.
  • the large-tooth arc surface air gap 5 and the small-tooth arc surface air gap 6 of the large tooth 1 and the small tooth 2 may be in accordance with the following three types. The situation is set.
  • the scope of protection of the present application is not limited to the manner described below, and any other large and small tooth gap setting of the stator having a pole arc air gap of each phase of the stator 9 similar to a sinusoidal distribution is realized. The methods are all protected by this application.
  • Method 1 The curved surface of the tooth tip of the large tooth 1 changes according to the sinusoidal law, and the air gap 5 of the large tooth surface between the large tooth 1 and the rotor 10 is a sinusoidal gradient air gap with a small middle and a large end, the small tooth 2 and the rotor 10
  • the interdental arc gap air gap 6 is a uniform air gap and is larger than the air gap at both ends of the large tooth arc surface air gap 5.
  • Method 2 The tooth top surface of the large tooth 1 is a left-right symmetric chamfer, and the large-tooth arc surface air gap 5 between the large tooth 1 and the rotor 10 is a small intermediate air gap with large ends, and the small tooth 2 and the rotor 10
  • the interdental arc gap air gap 6 is a uniform air gap and is larger than the air gap at both ends of the large tooth arc surface air gap 5.
  • Manner 3 The large-tooth arc surface air gap 5 between the large tooth 1 and the rotor 10 is a uniform air gap, and the small tooth arc surface air gap 6 between the small tooth 2 and the rotor 10 is a uniform air gap and larger than the large tooth Curved air gap 5.
  • the large teeth 1 are long in length, and the small teeth 2 are short in teeth, so that the cross-sectional area of the core of each phase remains unchanged and the pole pitch becomes shorter, and the length of the end portion of the coil 4 of the stator 9 becomes shorter.
  • the resistance of the coil 4 becomes smaller, The loss is reduced, resulting in an increase in motor efficiency.
  • the small tooth cam surface air gap 6 between the small tooth 2 and the rotor 10 and the large tooth arc surface air gap 5 between the large tooth 1 and the rotor 10 may be uniform air.
  • the gap, and the large tooth cam surface air gap 5 is the same as the small tooth cam surface air gap 6.
  • the root portion of the large tooth 1 and the yoke border portion of the above-mentioned four types of stators can be assembled and assembled.
  • the root portion of the large tooth 1 is a convex dovetail tooth 17 and the inner side of the yoke is concave.
  • the dovetail groove 18 is closely spliced with convex and concave dovetail-shaped cogging; the length of the tooth top of the small tooth 2 tooth body is larger than the length of the tooth root arc surface is similar to the trapezoidal tooth; the stator 9 processing procedure is to take the electromagnetic wire First, the left and right small teeth 2 are wound, and then the convex dovetail teeth 17 at the root of the large tooth 1 are embedded in the concave dovetail groove 18 on the inner side of the yoke.
  • the stator 9 material comprises a high magnetic conductive silicon steel sheet or a silicon steel sheet or a non-metal and high conductivity wire; the stator 9 is an inner stator or an outer stator or a disc stator or a linear stator; the stator 9 has a square or circular shape; The stator 9 is used as a stator of a single-phase or three-phase motor, a multi-phase motor or a generator.
  • the non-metallic material is used as the stator 9 skeleton for the disc motor.
  • the rotor When the stator is used in a single-phase AC motor, the rotor further includes a rotor, the rotor is a squirrel cage type, a winding type, and a permanent magnetic pole type; the stator includes an A phase winding and the B phase winding, and the A phase winding And the B-phase windings are spatially 90° electrical degrees from each other.
  • the rotor When the stator is used as a three-phase AC motor, the rotor further includes a rotor, the rotor is a squirrel-cage type, a winding type, and a permanent magnetic pole type; and the stator includes an A-phase winding, a B-phase winding, and a C-phase winding, The A-phase winding, the B-phase winding, and the C-phase winding are spatially 120° electrical degrees from each other.
  • the rotor When the stator is used in a multi-phase AC motor, the rotor further includes a rotor and a frequency converter, the rotor is a squirrel cage type, a permanent magnetic pole type; and the stator includes any A phase winding, a B phase winding, and a C phase winding.
  • the A-phase winding, the B-phase winding, and the C-phase winding are spatially 120° electrical degrees from each other; or the stator includes any A-phase winding and the B-phase winding, the A-phase winding and the B-phase winding They are spatially 90° electrical angles to each other;
  • the frequency converter is three-phase or two-phase corresponding to the phase of the winding between the phases.
  • a brushless DC motor comprising the stator 9, the rotor 10 and the electronic commutation device according to any one of the embodiments, wherein the rotor 10 is provided with a plurality of pairs of parallel magnetized or radially magnetized N/S rotor permanent magnetic poles.
  • the electronic commutation device includes a Hall position sensor 14 and a rotor position permanent magnetic pole 12, and the rotor position permanent magnetic poles 12 are arranged at the N/S pole alternately spaced or spaced on the rotating shaft to be coaxial with the rotor 10 permanent magnetic poles. And the pole pairs are the same.
  • the permanent magnetic pole of the rotor 10 doubles as the rotor position permanent magnetic pole 12, and the Hall position sensor 14 is mounted on the inner circumference side of the stator 9 core and the permanent magnetic pole of the rotor 10. Form the signal acquisition part, as shown in Figure 2.
  • the Hall position sensor 14 and the rotor position permanent magnetic pole 12 constitute a signal acquisition portion, and the Hall position sensor 14 is mounted on the casing of the stator 9.
  • the bracket 13 is provided at the neutral line of each phase winding of the stator 9, as shown in FIG.
  • the tooth groove 3 of the stator 9 and the permanent magnetic pole of the rotor 10 are obliquely shaped and have a cross shape, and the pitch of the stator 9 and the permanent magnetic pole of the rotor 10 are equal.
  • FIG. 4 when one pole pole surface of the permanent magnet end of the rotor 10 is turned to the one pole pole surface of the stator 9 When the acute angle points intersect, the maximum spacing 15 between the other end two-pole arc surfaces is more than twice the slot width. This is used as a reference for the trough degree of the rotor 9 of the stator 9.
  • the core length of the stator 9 and the rotor 10 is also weighed. The effect on the chute, the longer the length, the smaller the chute should be, and vice versa.
  • the brushless DC motor is a two-phase brushless DC motor
  • the stator 9 includes an A-phase winding and a B-phase winding, and the A-phase winding and the B-phase winding They are spatially 90° electrical angles to each other, wherein the number of poles per phase is the same as the number of permanent poles of the rotor 10, that is, the number of the slots 3 is four times the number of permanent poles of the rotor 10.
  • the 6 is a two-phase brushless DC motor in which the number of slots 3 of the stator 9 is 16, and the number of permanent poles of the rotor 10 is 4.
  • the tooth width of the large tooth 1 of the motor is 8 mm
  • the tooth width of the small tooth 2 is 2.6 mm
  • the polar arc faces of the four A phase core magnetic poles 11 and the four B phase iron core magnetic poles 22 are respectively
  • the large teeth 1 are mainly composed, and the small teeth 2 are arranged in a secondary arrangement, and the pole air gaps are similarly distributed in a sinusoidal manner, and the stator 9 is connected to each phase winding to form a N/S/N/S symmetry.
  • Magnetic pole is a two-phase brushless DC motor in which the number of slots 3 of the stator 9 is 16, and the number of permanent poles of the rotor 10 is 4.
  • the tooth width of the large tooth 1 of the motor is 8 mm
  • the tooth width of the small tooth 2 is 2.6 mm
  • the pole pitch of the permanent magnetic pole of the rotor 10 is (0.65-1.0) ⁇ D/P.
  • D is the diameter of the rotor and P is the number of poles.
  • the slot 3 of the stator 9 has a slot width of 0.2 mm to 3 mm.
  • the two-phase brushless DC motor is controlled by a two-phase H-bridge driver open-loop or closed-loop electronic commutation circuit device.
  • the brushless DC motor is a three-phase brushless DC motor
  • the stator 9 includes an A-phase winding, a B-phase winding, and a C-phase winding, the A-phase winding,
  • the B-phase winding and the C-phase winding are spatially 120° electrical angles with each other, wherein the number of poles per phase is 1/2 of the number of permanent poles of the rotor 10, that is, the stator 9 is 3
  • the number is three times the number of permanent poles of the rotor 10.
  • Fig. 9 shows a three-phase brushless DC motor in which the number of slots 3 of the stator 9 is 24 and the number of permanent poles of the rotor 10 is 8.
  • the large tooth 1 has a tooth width of 7 mm
  • the small tooth 2 has a tooth width of 2.6 mm
  • the arc faces are mainly composed of large teeth 1 and left and right small teeth 2, and the arc gap air gap is similar to the sinusoidal distribution.
  • the stator 9 adopts a datum-type winding for each phase, and is connected in parallel or in series to form four N/N/N/N or S/S/S/S isotropic magnetic poles.
  • the polarities of the four A-phase iron core poles 11 are N/N/N/N or S/S/S/S polarity identical isotropic magnetic poles, and the other two phases are analogous; the rotor 10 permanent magnetic pole
  • the pole pitch of one pole is (0.8-1.0) ⁇ D/P. D is the diameter of the rotor and P is the number of poles.
  • the slot 3 of the stator 9 has a slot width of 0.2 mm to 3 mm.
  • the three-phase brushless DC motor has three Hall position sensors 14, and the Hall position sensors 14 are sequentially disposed on the A-phase core magnetic poles 11 through brackets 13 mounted on the casing of the stator 9.
  • the polar phase of the B-phase core pole 22 and the C-phase core pole 33 are at the neutral line; the rotor position of the permanent pole 12 is coaxial with the permanent pole of the rotor 10 and the pole pair is equal, and the pole pitch is equal to or less than
  • the permanent magnet poles of the rotor 10 are at a pole pitch and are at an electrical angle of 90° to each other in a spatial position.
  • the three-phase brushless DC motor is controlled by a three-phase H-bridge driver closed-loop or open-loop electronic commutation circuit device.
  • a three-phase switched reluctance motor includes the stator 9 of any one of the embodiments, and further includes a rotor 10 and an electronic commutation device, and the rotor 10 is provided with a plurality of pairs of salient pole cores.
  • the rotor 10 has no windings and permanent poles on the salient core; the commutation device includes a Hall position sensor 14 and a rotor position permanent pole 12, the rotor position permanent pole 12 is an independent permanent pole, rotor position
  • the permanent magnetic pole 12 is coaxial with the salient pole core of the rotor 10 and has the same number of pole pairs, and their mutual position
  • the space position sensor 14 and the rotor position permanent magnetic pole 12 constitute a signal acquisition portion, which is disposed in the frame 13 mounted on the casing of the stator 9 at a mutual electrical angle of 0°.
  • the stator 9 is at the neutral line of each phase winding, as shown in Figure 3.
  • the stator 9 is comprised of an A-phase winding and a B-phase winding and a C-phase winding, the A-phase winding, the B-phase winding and the C-phase winding are spatially 120° electrical angles with each other, wherein each phase winding
  • the number of poles is the same as the number of poles of the salient pole of the rotor 10, that is, the number of slots 3 of the stator 9 is six times the number of poles of the salient pole of the rotor 10.
  • Fig. 11 shows a three-phase switched reluctance motor in which the number of the slots 9 of the stator 9 is 24 and the number of poles of the rotor 10 is 4.
  • the large tooth 1 has a tooth width of 6 mm
  • the small tooth 2 has a tooth width of 2.6 mm
  • the pole arc faces of the magnetic poles 33 are mainly composed of the large teeth 1 and the left and right small teeth 2 are auxiliary arrays, and the pole arc air gaps are similarly distributed in a sinusoidal manner, and the stator 9 is connected to each phase winding. Symmetrical N/S/N/S four magnetic poles.
  • the pole pitch of the salient pole core of the rotor 10 is (0.38-0.42) ⁇ D/P.
  • D is the diameter of the rotor and P is the number of poles.
  • the slot 3 of the stator 9 has a slot width of 0.2 mm to 3 mm.
  • the slot 3 of the stator 9 and the salient pole core of the rotor 10 are obliquely shaped and have a cross shape, and the stator 9 has a slot 3 and the rotor 10 has a salient pole core.
  • the slopes are equal.
  • FIG. 4 when one pole pole surface of one end of the salient pole of the rotor 10 is turned to intersect the acute angle of one pole of the stator 9, the other end of the arc is between the arc surfaces.
  • the maximum spacing 15 is more than twice the notch width. This is used as a reference for the trough of the stator 9 rotor 10; it is also necessary to weigh the stator 9 and the rotor 10 core length. The influence of the degree on the chute, the longer the length, the smaller the chute should be, and vice versa.
  • the three-phase switched reluctance motor is also provided with a three-phase electronic commutation circuit control device, which can be controlled by a closed loop or an open loop, depending on the needs.
  • a shaded pole motor comprising the stator 9 of any one of the embodiments, further comprising a rotor 10 and a magnetically permeable ring, as shown in FIG. 16, the magnetically permeable ring comprising an upper yoke 7 and a lower yoke 8 in which the upper yoke 7 and the lower yoke 8 are tightly fitted without a gap, and the magnetically permeable ring is symmetrically disposed on the circumference of the stator 9, the number and the number of the magnetic conductive rings
  • the stator pole ratio is 1:1.
  • the stator includes the A-phase winding and the B-phase winding, and the B-phase windings of the A-phase winding are spatially 90° electrical angles with each other;
  • the winding is a main winding
  • the B-phase winding is a secondary winding
  • the A-phase winding is a secondary winding
  • the primary winding is a multi-turn coil
  • the secondary winding is a single winding ⁇ Short-circuit coil or multi-turn short-circuit coil.
  • the upper yoke 7 is disposed at one end or one end of the stator 9 core and is integrally pressed with the stator.
  • the upper yoke 7 is pressed against the A-phase large teeth 1 and the B-phase large teeth 1 position.
  • the lower yoke 8 is similar to the "back" type of the adjacent one of the A-phase winding coils and an effective side of the A-phase winding coil, that is, the groove 16 is embedded in the groove 16 One side of each of the A-phase winding coil and the B-phase winding coil.
  • Any of the above embodiments can also be applied to a disc motor, including a two-phase, three-phase brushless DC disc motor or a three-phase switched reluctance disc motor. Any of the above embodiments can also be applied to a linear motor, including a two-phase, three-phase brushless DC linear motor or a three-phase switched reluctance linear motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种定子,包含周期交替排列的大齿(1)和小齿(2),相邻的大齿(1)齿身中心线与小齿(2)齿身中心线之间的圆弧距离相同,若干条齿槽(3)伴生于大齿(1)与小齿(2)之间,大齿(1)的齿顶弧面按正弦规律变化,大齿(1)与转子(10)间的大齿弧面气隙(5)为中间小、两端大的正弦渐变气隙,小齿(2)与转子(10)间的小齿弧面气隙(6)为均匀气隙且大于大齿弧面气隙(5)的两端气隙,在齿槽(3)里嵌有线圈(W)使构成的每相绕组的铁芯分别由小齿(2)、大齿(1)、小齿(2)三齿依次排列组成,每相绕组与其相邻绕组之间有一个共用的小齿(2),每相绕组的极弧面气隙呈相似于正弦规律分布状,可产生圆形旋转磁场,降低电机脉动现象。

Description

一种定子及无刷直流电机、三相开关磁阻和罩极电机 技术领域
本发明涉及电机领域,尤其涉及一种定子及无刷直流电机、三相开关磁阻电机和罩极电机。
背景技术
现有的电机定子铁芯圆内分别分布着均等的槽和齿,并在齿槽中绕有三相或者二相绕组,对于这种传统的电机在运转时会产生谐波磁势,造成电机脉动明显,电机设计师在设计电机时力图把消除谐波磁势当作重要内容来设计。目前消除谐波磁势的技术主要表现在于定子、转子绕组:包括单、双层叠式绕组、同心分布式绕组、分数槽分布式绕组上或转子铁芯形状呈正弦状,目的使气隙电势波呈正弦状。虽然在采用上述对应的分布式绕组时消除一定量的谐波磁势,但也带来槽齿较多、齿谐波量增大、绕线工艺复杂、线圈端部较长、漏磁量增多及电阻电抗增大等问题,对电机效率、功率、转矩产生下降的影响。而微型电机在实施分布绕组技术方案时往往操作较难。这就是微型电机功率因素提不高的原因。
发明内容
本发明提供一种定子,所述定子是通过改变其定子铁芯形状,使极距变短而一极总的磁密不变,三齿极弧面气隙呈相似于正弦规律分布状,从而在电机运行时产生圆形旋转磁场,降低了电机的脉动现象,使电机启动平稳。
为达此目的,本发明采用以下技术方案:
本发明公开了一种定子,包含大齿和小齿,所述大齿和所述小齿周期交替排列,相邻的大齿齿身中心线与小齿齿身中心线之间的圆弧距离相同,若干条齿槽伴生于大齿与小齿之间,在所述齿槽里嵌有线圈使构成的每相绕组的铁芯 分别由小齿、大齿、小齿三齿依次排列组成,每相绕组与其相邻绕组之间有一个共用的小齿,大齿的齿顶弧面按正弦规律变化,大齿与转子间的大齿弧面气隙为中间小、两端大的正弦渐变气隙,所述小齿与转子间的小齿弧面气隙为均匀气隙且大于大齿弧面气隙的两端气隙,每相绕组的极弧面气隙呈相似于正弦规律分布状。
本发明公开了一种定子,包含大齿和小齿,所述大齿和所述小齿周期交替排列,相邻的大齿齿身中心线与小齿齿身中心线之间的圆弧距离相同,若干条齿槽伴生于大齿与小齿之间,在所述齿槽里嵌有线圈使构成的每相绕组的铁芯分别由小齿、大齿、小齿三齿依次排列组成,每相绕组与其相邻绕组之间有一个共用的小齿,大齿的齿顶弧面为左右对称削角,大齿与转子间的大齿弧面气隙为中间小、两端大的渐变气隙,小齿与转子间的小齿弧面气隙为均匀气隙且大于大齿弧面气隙的两端气隙,每相绕组的极弧面气隙呈相似于正弦规律分布状。
本发明公开了一种定子,包含大齿和小齿,所述大齿和所述小齿周期交替排列,相邻的大齿齿身中心线与小齿齿身中心线之间的圆弧距离相同,若干条齿槽伴生于大齿与小齿之间,在所述齿槽里嵌有线圈使构成的每相绕组的铁芯分别由小齿、大齿、小齿三齿依次排列组成,每相绕组与其相邻绕组之间有一个共用的小齿,所述的大齿与转子之间的大齿弧面气隙为均匀气隙,小齿与转子间的小齿弧面气隙为均匀气隙且大于大齿弧面气隙,每相绕组的极弧面气隙呈相似于正弦规律分布状。
本发明公开了一种定子,包含大齿和小齿,所述大齿和所述小齿周期交替排列,相邻的大齿齿身中心线与小齿齿身中心线之间的圆弧距离相同,若干条齿槽伴生于大齿与小齿之间,在所述齿槽里嵌有线圈使构成的每相绕组的铁芯 分别由小齿、大齿、小齿三齿依次排列组成,每相绕组与其相邻绕组之间有一个共用的小齿,所述小齿与转子间的小齿弧面气隙与大齿与转子间的大齿弧面气隙均为均匀气隙,且大齿弧面气隙与小齿弧面气隙相同,线圈通电后会产生相似于方波磁场。
进一步的技术方案是,上述所述四种定子的大齿齿身根部与磁轭接壤部均可以拆分拼装,所述大齿齿身根部为凸形燕尾齿与磁轭内径侧为凹形燕尾槽呈凸凹燕尾形齿槽紧密拼接;所述的小齿齿身的齿顶弧面长度大于齿根弧面长度,呈相似于梯形齿;所述的定子加工程序是将电磁导线先绕线于左右小齿上,后把大齿齿身根部的凸形燕尾齿镶在磁轭内径侧凹形燕尾槽里。
进一步的技术方案是,所述大齿齿身宽度等于或大于所述的小齿(2)齿身宽度,或者是所述小齿齿身宽度的至少两倍。
本发明还公开了一种带有上述任一所述定子的无刷直流电机,还包括转子和电子换相装置,所述转子上设有若干对平行充磁或者径向充磁的N/S转子永久磁极;所述换相装置包括霍尔位置传感器和转子位置永久磁极,所述转子位置永久磁极按N/S极交替间隔排列布满或间隔布满在转轴上且其与转子永久磁极同轴且极对数相同。
进一步的技术方案是,所述定子的齿槽和所述转子永久磁极为斜形且呈交叉形状,定子的齿槽与转子永久磁极的斜度相等。
进一步的技术方案是,所述无刷直流电机为二相无刷直流电机,所述定子包括A相绕组和B相绕组,所述A相绕组和所述B相绕组在空间上互为90°电角度,其中,每相绕组极数与转子永久磁极极数相同,即所述齿槽的个数是转子永久磁极极数的四倍,转子永久磁极的一极极距为(0.65-1.0)πD/P。
进一步的技术方案是,所述二相无刷直流电机的霍尔位置传感器分别设置 在空间位置互为90°电角度的A相绕组铁芯磁极和B相绕组铁芯磁极轴中心线一侧;所述的转子永久磁极与转子位置永久磁极在空间位置上互为0°电角度,所述的转子永久磁极兼作转子位置永久磁极。
进一步的技术方案是,所述无刷直流电机为三相无刷直流电机,所述定子为包括A相绕组、B相绕组和C相绕组,所述A相绕组、所述B相绕组和所述C相绕组在空间上互为120°电角度,其中,每相绕组极数为转子永久磁极极数的1/2,即所述齿槽的个数是转子永久磁极极数的三倍,转子永久磁极的一极极距为(0.8-1.0)πD/P。
进一步的技术方案是,所述转子位置永久磁极与转子永久磁极在空间位置上互为90°电角度,所述霍尔位置传感器为三相且在空间位置上互为120°电角度,分别设置在A相绕组、B相绕组和C相绕组中性线处。
本发明还公开了一种带有上述任一所述定子的三相开关磁阻电机,还包括转子和电子换相装置,所述转子上设有若干对凸极铁芯,所述换相装置包括霍尔位置传感器和转子位置永久磁极;所述定子为包括A相绕组、B相绕组和C相绕组,所述A相绕组、所述B相绕组和所述C相绕组在空间上互为120°电角度,其中,每相绕组极数与转子凸极铁芯极数相同,即所述齿槽的个数是转子凸极铁芯极数的六倍,转子凸极铁芯的一极极距为(0.38-0.42)πD/P。
进一步的技术方案是,所述定子的齿槽和所述转子凸极铁芯为斜形且呈交叉形状,定子的齿槽与转子凸极铁芯的斜度相等。
进一步的技术方案是,所述转子位置永久磁极与转子凸极铁芯同轴且极对数相同,所述转子位置永久磁极一极极距等于或小于转子永久磁极一极极距且在空间位置上互为0°电角度。
进一步的技术方案是,所述的霍尔位置传感器为三相且在空间位置上互为 120°电角度,分别设置在A相绕组、B相绕组和C相绕组中性线处。
本发明还公开了一种带有上述任一所述定子的罩极电机,还包括转子和导磁环,所述导磁环包括上导磁轭和下导磁轭,所述上导磁轭和所述下导磁轭无间隙紧密装配,所述导磁环对称设置于所述定子圆周,所述导磁环的个数和所述定子极数比为1∶1。
进一步的技术方案是,所述的定子包括所述A相绕组和所述B相绕组,所述A相绕组所述B相绕组在空间上互为90°电角度;所述A相绕组为主绕组时,所述的B相绕组为副绕组;所述B相绕组为主绕组时,所述A相绕组为副绕组;所述主绕组为多匝线圈,所述副线圈为单匝短路线圈或多匝短路线圈。
进一步的技术方案是,所述上导磁轭设在所述定子铁芯两端或一端且与定子压合为一体,所述上导磁轭压合于A相大齿和B相大齿位置,并与下导磁轭呈相似于“回”字型合围相邻的所述A相绕组线圈一有效边和所述B相绕组线圈一有效边,即:在凹槽内嵌有所述的A相绕组线圈和所述B相绕组线圈的各其中一边。
进一步的技术方案是,一种带有上述任一所述定子的无刷直流电机为任一二相、三相无刷直流直线电机。
进一步的技术方案是,一种带有上述任一所述定子的三相开关磁阻电机为任一三相开关磁阻直线电机。
进一步的技术方案是,一种带有上述任一所述定子的无刷直流电机为任一二相、三相无刷直流盘式电机。
进一步的技术方案是,一种带有上述任一所述定子的三相开关磁阻电机为任一三相开关磁阻盘式电机。
本发明的有益效果为:
1、本发明的所述定子的大齿和小齿交替排列,每相绕组铁芯磁极分别由大齿为主、左右小齿为辅三齿排列组成且三齿极弧面气隙呈相似于正弦规律分布状,使得通电后的线圈可产生圆形旋转磁场,相与相同极磁场融合交接降低了电机的脉动现象,使电机启动平稳。
2、所述大齿齿身的宽度是小齿齿身宽度的两倍或者两倍以上,所述大齿齿长,所述小齿齿短,每相的铁芯截面积保持不变而极距变短,定子线圈端部长度相对变小,线圈电阻小、损耗减少,效率增大。
3、由于组成定子一极的齿数仅三个,相比于同规格的现有单相或三相电机,齿数相对减少,齿数的减少将会减少齿部谐波电势和提高槽满率。
4、所述二相无刷直流电机定子的二相绕组在空间上互为90°电角度,使得通电时二相合成磁势与转子永久磁势始终为90°电角度,力矩永远保持最大。
附图说明
图1是本发明定子展开结构示意图;
图2是本发明二相无刷直流电机总装结构示意图;
图3是本发明三相无刷直流电机或三相开关磁阻电机总装结构示意图;
图4是本发明定子与转子交叉斜槽展开结构示意图;
图5是本发明二相无刷直流电机定子二相线圈绕线示意图;
图6是本发明二相无刷直流电机定子、转子四极示意图;
图7是本发明二相无刷直流电机二相H桥驱动器电子换相主电路;
图8是本发明三相无刷直流电机定子三相线圈绕线示意图;
图9是本发明三相无刷直流电机定子、转子八极示意图;
图10是本发明三相无刷直流电机三相H桥驱动器电子换相主电路;
图11是本发明三相开关磁阻电机定子三相线圈绕线示意图;
图12是本发明三相开关磁阻电机定子、转子四极示意图;
图13是本发明三相开关磁阻电机三相电子换相主电路示意图;
图14是本发明罩极电机的总装结构示意图;
图15是本发明罩极电机的导磁环与定子的装配示意图;
图16是本发明罩极电机的导磁环的结构示意图;
图17是本发明罩极电机的上导磁轭的结构示意图;
图18是本发明定子的大齿拼接图。
其中:1-大齿;2-小齿;3-齿槽;4-线圈;5-大齿弧面气隙;6-小齿弧面气隙;7、上导磁轭;8、下导磁轭;9-定子;10-转子;11-A相铁芯磁极;22-B相铁芯磁极;33-C相铁芯磁极;12-转子位置永久磁极;13-支架;14-霍尔位置传感器;15-间距;16-凹槽;17-凸形燕尾齿;18-凹形燕尾槽。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
实施方式一
如图1所示,本发明公开了一种定子9,所述定子9包含大齿1和小齿2,所述大齿1和所述小齿2周期交替排列,相邻的大齿1齿身中心线与小齿2齿身中心线之间的圆弧距离相同,若干条齿槽3伴生于大齿1与小齿2之间,大齿1齿身宽度等于或大于所述的小齿(2)齿身宽度,或者是小齿2齿身宽度的至少两倍,大齿1和小齿2齿身宽度根据电机的功率的大小和电机尺寸而定,所述大齿1齿身宽度是所述小齿2齿身宽度的二倍或二倍以上,在所述齿槽3里嵌有绕组,每相绕组中的每极铁芯分别由小齿2、大齿1、小齿2依次排列组成;每相绕组与其相邻的绕组之间有一个共用的小齿2,每相绕组包含有一个大 齿1和两个小齿2,大齿1为主,左右小齿2为辅。
设定大齿1与小齿2的大齿弧面气隙5和小齿弧面气隙6,使得所述定子9每相的极弧面气隙呈相似于正弦规律分布状,通电后的线圈4所产生的磁势波呈相似于正弦规律分布状,加之每相绕组与其相邻绕组之间有一个共用的小齿2,使相与相同极磁场融合交接,产生相似于圆形旋转磁场,降低了电机的脉动现象,使电机启动平稳;由于组成定子9一极的齿数仅三齿,相比于同规格的现有单相或三相电机或多相电机,槽齿数相对减少,槽齿数的减少将会减少齿部谐波电势和提高槽满率。
为了实现定子9每相的极弧面气隙呈相似于正弦规律分布状,所述大齿1和小齿2的大齿弧面气隙5和小齿弧面气隙6可按照以下三种情况进行设定。当然,本申请所保护的范围不仅局限于下述所述方式,其他任何可实现定子9每相的极弧面气隙呈相似于正弦规律分布状的定子的大齿和小齿的间隙设定方式均受本申请的保护。
方式一:大齿1的齿顶弧面按正弦规律变化,大齿1与转子10间的大齿弧面气隙5为中间小、两端大的正弦渐变气隙,小齿2与转子10间的小齿弧面气隙6为均匀气隙且大于大齿弧面气隙5的两端气隙。
方式二:大齿1的齿顶弧面为左右对称削角,大齿1与转子10间的大齿弧面气隙5为中间小、两端大的渐变气隙,小齿2与转子10间的小齿弧面气隙6为均匀气隙且大于大齿弧面气隙5的两端气隙。
方式三:所述的大齿1与转子10之间的大齿弧面气隙5为均匀气隙,小齿2与转子10间的小齿弧面气隙6为均匀气隙且大于大齿弧面气隙5。
上述三种方式所述大齿1齿长,所述小齿2齿短,因而每相的铁芯截面积保持不变而极距变短,所述定子9的线圈4端部长度变短,线圈4电阻变小, 损耗减少,使得电机效率增大。
方式四:除上述三种方式外,还可以将所述小齿2与转子10间的小齿弧面气隙6与大齿1与转子10间的大齿弧面气隙5均为均匀气隙,且大齿弧面气隙5与小齿弧面气隙6相同。这种设置方式使得通电后的线圈4所产生的磁势波呈相似于方波的磁场,但加之每相绕组与其相邻绕组之间有一个共用的小齿2,使相与相同极磁场融合交接,依然产生相似于圆形旋转磁场,降低了电机的脉动现象,使电机启动平稳。这种方式相对于上述三种而言,脉动相对大些,但其具有提高了电机的功率的优点。
如图18所示,上述四种定子的所述大齿1齿身根部与磁轭接壤部可以拆分拼装,所述大齿1齿身根部为凸形燕尾齿17与磁轭内径侧为凹形燕尾槽18呈凸凹燕尾形齿槽紧密拼接;所述的小齿2齿身的齿顶弧面长度大于齿根弧面长度呈相似于梯形齿;所述的定子9加工程序是将电磁导线先绕线于左右小齿2上,后把大齿1齿身根部的凸形燕尾齿17镶在磁轭内径侧凹形燕尾槽18里。
所述定子9材料为包括高导磁矽钢片或硅钢片或非金属和高导电率导线;定子9为内定子或外定子或盘式定子或直线定子;定子9外形为方形或圆形;定子9作为单相或三相电机、多相电机或者发电机的定子使用。
所述的非金属材料作定子9骨架用于盘式电机。
所述定子为单相交流电机使用时,还包括转子,所述转子为鼠笼型、绕线型、永久磁极型;所述定子包括A相绕组和所述B相绕组,所述A相绕组和所述B相绕组在空间上互为90°电角度。
所述定子为三相交流电机使用时,还包括转子,所述转子为鼠笼型、绕线型、永久磁极型;所述定子为包括A相绕组、B相绕组和C相绕组,所述A相绕组、B相绕组和C相绕组在空间上互为120°电角度。
所述定子为多相交流电机使用时,还包括转子和变频器,所述转子为鼠笼型,永久磁极型;所述定子为包括任意个A相绕组、B相绕组和C相绕组,所述A相绕组、B相绕组和C相绕组在空间上互为120°电角度;或所述定子包括任意个A相绕组和所述B相绕组,所述A相绕组和所述B相绕组在空间上互为90°电角度;所述的变频器为三相或二相与所述相与相之间绕组相位相对应。
实施方式二
一种无刷直流电机,包括实施方式任一所述定子9,转子10和电子换相装置,所述转子10上设有若干对平行充磁或者径向充磁的N/S转子永久磁极,所述电子换相装置包括霍尔位置传感器14和转子位置永久磁极12,所述转子位置永久磁极12按N/S极交替间隔排列布满或间隔布满在转轴上与转子10永久磁极同轴且极对数相同。
所述无刷直流电机为二相无刷直流电机时,所述转子10永久磁极兼作转子位置永久磁极12,所述霍尔位置传感器14安装在定子9铁芯内圆一侧与转子10永久磁极组成信号采集部分,如图2所示。
所述无刷直流电机为三相无刷直流电机时,所述霍尔位置传感器14与所述转子位置永久磁极12组成信号采集部分,所述霍尔位置传感器14通过安装在定子9机壳上的支架13设在定子9每相绕组中性线处,如图3所示。
当电机转子10旋转时,永久磁极N极和S极轮流通过霍尔位置传感器14,因而产生对应转子10位置的正的和负的霍尔电势,经放大后控制场效应管导通,使定子9绕组轮流切换电流。
为了降低齿槽定位力矩,将所述定子9的齿槽3与所述转子10永久磁极设为斜形且呈交叉形状,所述定子9齿槽3与所述转子10永久磁极的斜度相等,如图4所示,当转子10永磁一端的一极极弧面转至与所述定子9一极极弧面两 锐角点相交时,另一端两极弧面之间的最大间距15为二倍以上的槽口宽度,这个作为定子9转子10斜槽度的参考;另外亦要权衡定子9和转子10铁芯磁极长度对斜槽度的影响,长度越长,其斜槽度应越小,反之越大。
(一)如图5和图6所示,所述无刷直流电机为二相无刷直流电机,所述定子9包括A相绕组和B相绕组,所述A相绕组和所述B相绕组在空间上互为90°电角度,其中,每相绕组极数与所述转子10永久磁极极数相同,即所述齿槽3的个数是转子10永久磁极极数的四倍。
图6为所述定子9齿槽3个数为16,所述转子10永久磁极极数为4的二相无刷直流电机。该电机的所述大齿1齿身宽度为8mm、所述小齿2齿身宽度为2.6mm,四个A相铁芯磁极11、四个B相铁芯磁极22的极弧面分别由所述大齿1为主、左右所述小齿2为辅排列组成且极弧面气隙呈相似于正弦规律分布状,所述的定子9每相绕组连接成N/S/N/S相对称的磁极。
所述转子10永久磁极的一极极距为(0.65-1.0)πD/P。D为转子圆直径,P为极数。
所述定子9的齿槽3槽口宽度为0.2mm-3mm。所述霍尔位置传感器14有两个,分别为H1,H2;H2粘在A相铁芯磁极11极轴中性线处一侧,H1粘在B相铁芯磁极22极轴中性线处一侧,H1与H2相隔机械角45°。
如图7所示,所述二相无刷直流电机采用二相H桥驱动器开环或闭环电子换相电路装置控制。
(二)如图8和图9所示,所述无刷直流电机为三相无刷直流电机,所述定子9为包括A相绕组、B相绕组和C相绕组,所述A相绕组、所述B相绕组和所述C相绕组在空间上互为120°电角度,其中,每相绕组极数为所述转子10永久磁极极数的1/2,即所述定子9齿槽3个数是转子10永久磁极极数的三倍。
图9为所述定子9齿槽3个数为24,所述转子10永久磁极极数为8的三相无刷直流电机。该电机的大齿1齿身宽度为7mm、小齿2齿身宽度为2.6mm,四个A相铁芯磁极11、四个B相铁芯磁极22、四个C相铁芯磁极33的极弧面分别由大齿1为主、左右小齿2为辅排列组成且极弧面气隙呈相似于正弦规律分布状。
所述的定子9每一相采用庶极式绕组,分别采用并联或串联的方法连接成N/N/N/N或S/S/S/S四个同性磁极。比如,四个A相铁芯磁极11的极性都是N/N/N/N或S/S/S/S极性一致的同性磁极,其余二相依次类推;所述转子10永久磁极的一极极距为(0.8-1.0)πD/P。D为转子圆直径,P为极数。
所述定子9的齿槽3槽口宽度为0.2mm-3mm。
如图9所示,所述三相无刷直流电机有三个霍尔位置传感器14,所述霍尔位置传感器14通过安装在定子9机壳上的支架13依次设在A相铁芯磁极11、B相铁芯磁极22、C相铁芯磁极33的极轴中性线处;所述的转子位置永久磁极12与转子10永久磁极同轴且极对数相等,其一极极距等于或小于转子10永久磁极一极极距且在空间位置上互为90°电角度。
如图10所示,所述三相无刷直流电机采用三相H桥驱动器闭环或开环电子换相电路装置控制。
实施方式三
如图12所示,一种三相开关磁阻电机,包括实施方式任一所述的定子9,还包括转子10和电子换相装置,所述转子10上设有若干对凸极铁芯,所述转子10凸极铁芯上没有绕组和永久磁极;所述换相装置包括霍尔位置传感器14和转子位置永久磁极12,所述的转子位置永久磁极12是一个独立的永久磁极,转子位置永久磁极12与转子10凸极铁芯同轴且极对数相同,其两者相互位置 在空间上互为0°电角度,所述霍尔位置传感器14与所述转子位置永久磁极12组成信号采集部分,所述霍尔位置传感器14通过安装在定子9机壳上的支架13设在定子9每相绕组中性线处,如图3所示。
当电机转子10旋转时,永久磁极N极和S极轮流通过霍尔位置传感器14,因而产生对应转子10位置的正的和负的霍尔电势,经放大后控制场效应管导通,使定子9绕组轮流切换电流。
所述定子9为包括A相绕组和B相绕组和C相绕组,所述A相绕组、所述B相绕组和所述C相绕组在空间上互为120°电角度,其中,每相绕组极数与所述转子10凸极铁芯极数相同,即所述定子9齿槽3个数是转子10凸极铁芯极数的六倍。
图11为所述定子9齿槽3的个数为24,所述转子10凸极铁芯极数为4的三相开关磁阻电机。该电机的所述大齿1齿身宽度为6mm、所述小齿2齿身宽度为2.6mm,四个A相铁芯磁极11、四个B相铁芯磁极22、四个C相铁芯磁极33的极弧面分别由所述大齿1为主、左右所述小齿2为辅排列组成且极弧面气隙呈相似于正弦规律分布状,所述的定子9每相绕组分别连接成对称的N/S/N/S四个磁极。
所述转子10凸极铁芯的一极极距为(0.38-0.42)πD/P。D为转子圆直径,P为极数。所述定子9的齿槽3槽口宽度为0.2mm-3mm。
为了降低齿槽定位力矩,将所述定子9的齿槽3与所述转子10凸极铁芯设为斜形且呈交叉形状,所述定子9齿槽3与所述转子10凸极铁芯的斜度相等,如图4所示,当转子10凸极铁芯一端的一极极弧面转至与所述定子9一极极弧面两锐角点相交时,另一端两极弧面之间的最大间距15为二倍以上的槽口宽度,这个作为定子9转子10斜槽度的参考;另外亦要权衡定子9和转子10铁芯长 度对斜槽度的影响,长度越长,其斜槽度应越小,反之越大。
如图13所示,所述三相开关磁阻电机还配置三相电子换相电路控制装置,根据需要不同,可以采用闭环的、也可以采用开环的来控制。
实施方式四
如图14所示,一种罩极电机,包括实施方式任一所述的定子9,还包括转子10和导磁环,如图16所示,所述导磁环包括上导磁轭7和下导磁轭8,所述上导磁轭7和所述下导磁轭8无间隙紧密装配,所述导磁环对称设置于所述定子9圆周,所述导磁环的个数和所述定子极数比为1∶1。
如图15-图17所示,所述的定子包括所述A相绕组和所述B相绕组,所述A相绕组所述B相绕组在空间上互为90°电角度;所述A相绕组为主绕组时,所述的B相绕组为副绕组;所述B相绕组为主绕组时,所述A相绕组为副绕组;所述主绕组为多匝线圈,所述副线圈为单匝短路线圈或多匝短路线圈。所述上导磁轭7设在所述定子9铁芯两端或一端且与定子压合为一体,所述上导磁轭7压合于A相大齿1和B相大齿1位置,并与下导磁轭8呈相似于“回”字型合围相邻的所述A相绕组线圈一有效边和所述B相绕组线圈一有效边,即:在凹槽16内嵌有所述的A相绕组线圈和所述B相绕组线圈的各其中一边。
上述任一实施方式亦能应用在盘式电机上,包括二相、三相无刷直流盘式电机或三相开关磁阻盘式电机。上述任一实施方式亦能应用在直线电机上,包括二相、三相无刷直流直线电机或三相开关磁阻直线电机。
以上结合具体实施例描述了本发明的技术原理。这些描述只是为了解释本发明的原理,而不能以任何方式解释为对本发明保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其它具体实施方式,这些方式都将落入本发明的保护范围之内。

Claims (17)

  1. 一种定子,其特征在于,包含大齿(1)和小齿(2),所述大齿(1)和所述小齿(2)周期交替排列,相邻的大齿(1)齿身中心线与小齿(2)齿身中心线之间的圆弧距离相同,若干条齿槽(3)伴生于大齿(1)与小齿(2)之间,在所述齿槽(3)里嵌有线圈(4)使构成的每相绕组的铁芯分别由小齿(2)、大齿(1)、小齿(2)三齿依次排列组成,每相绕组与其相邻绕组之间有一个共用的小齿(2),大齿(1)的齿顶弧面按正弦规律变化,大齿(1)与转子(10)间的大齿弧面气隙(5)为中间小、两端大的正弦渐变气隙,所述小齿(2)与转子(10)间的小齿弧面气隙(6)为均匀气隙且大于大齿弧面气隙(5)的两端气隙,每相绕组的极弧面气隙呈相似于正弦规律分布状。
  2. 一种定子,其特征在于,包含大齿(1)和小齿(2),所述大齿(1)和所述小齿(2)周期交替排列,相邻的大齿(1)齿身中心线与小齿(2)齿身中心线之间的圆弧距离相同,若干条齿槽(3)伴生于大齿(1)与小齿(2)之间,在所述齿槽(3)里嵌有线圈(4)使构成的每相绕组的铁芯分别由小齿(2)、大齿(1)、小齿(2)三齿依次排列组成,每相绕组与其相邻绕组之间有一个共用的小齿(2),大齿(1)的齿顶弧面为左右对称削角,大齿(1)与转子(10)间的大齿弧面气隙(5)为中间小、两端大的渐变气隙,小齿(2)与转子(10)间的小齿弧面气隙(6)为均匀气隙且大于大齿弧面气隙(5)的两端气隙,每相绕组的极弧面气隙呈相似于正弦规律分布状。
  3. 一种定子,其特征在于,包含大齿(1)和小齿(2),所述大齿(1)和所述小齿(2)周期交替排列,相邻的大齿(1)齿身中心线与小齿(2)齿身中心线之间的圆弧距离相同,若干条齿槽(3)伴生于大齿(1)与小齿(2)之间,在所述齿槽(3)里嵌有线圈(4)使构成的每相绕组的铁芯分别由小齿(2)、大齿(1)、小齿(2)三齿依次排列组成,每相绕组与其相邻绕组之间有一个共 用的小齿(2),所述的大齿(1)与转子(10)之间的大齿弧面气隙(5)为均匀气隙,小齿(2)与转子(10)间的小齿弧面气隙(6)为均匀气隙且大于大齿弧面气隙(5),每相绕组的极弧面气隙呈相似于正弦规律分布状。
  4. 一种定子,其特征在于:包含大齿(1)和小齿(2),所述大齿(1)和所述小齿(2)周期交替排列,相邻的大齿(1)齿身中心线与小齿(2)齿身中心线之间的圆弧距离相同,若干条齿槽(3)伴生于大齿(1)与小齿(2)之间,在所述齿槽(3)里嵌有线圈(4)使构成的每相绕组的铁芯分别由小齿(2)、大齿(1)、小齿(2)三齿依次排列组成,每相绕组与其相邻绕组之间有一个共用的小齿(2),所述小齿(2)与转子(10)间的小齿弧面气隙(6)与大齿(1)与转子(10)间的大齿弧面气隙(5)均为均匀气隙,且大齿弧面气隙(5)与小齿弧面气隙(6)相同,线圈通电后会产生相似于方波磁场。
  5. 根据权利要求1-4任一所述的定子,其特征在于:大齿(1)齿身根部与磁轭接壤部可以拆分拼装,所述大齿(1)齿身根部为凸形燕尾齿(17)与磁轭内径侧为凹形燕尾槽(18)呈凸凹燕尾形齿槽紧密拼接;所述的小齿(2)齿身的齿顶弧面长度大于齿根弧面长度呈相似于梯形齿;所述的定子(9)加工程序是将电磁导线先绕线于左右小齿(2)上,后把大齿(1)齿身根部的凸形燕尾齿(17)镶在磁轭内径侧凹形燕尾槽(18)里。
  6. 根据权利要求1-4任一所述的定子,其特征在于:所述大齿(1)齿身宽度等于或大于所述的小齿(2)齿身宽度,或者是所述小齿(2)齿身宽度的至少两倍。
  7. 一种带有权利要求1-4任一所述定子的无刷直流电机,其特征在于:还包括转子(10)和电子换相装置,所述转子(10)上设有若干对平行充磁或者径向充磁的N/S转子永久磁极;所述换相装置包括霍尔位置传感器(14)和转 子位置永久磁极(12),所述转子位置永久磁极(12)按N/S极交替间隔排列布满或间隔布满在转轴上与转子(10)永久磁极同轴且极对数相同。
  8. 根据权利要求7所述的无刷直流电机,其特征在于:所述无刷直流电机为二相无刷直流电机,所述定子包括A相绕组和B相绕组,所述A相绕组和所述B相绕组在空间上互为90°电角度,其中,每相绕组极数与转子(10)永久磁极极数相同,即所述齿槽(3)的个数是转子(10)永久磁极极数的四倍,转子(10)永久磁极的一极极距为(0.65-1.0)πD/P。
  9. 根据权利要求7或8所述的无刷直流电机,其特征在于:所述二相无刷直流电机的霍尔位置传感器(14)分别设置在空间位置互为90°电角度的A相绕组铁芯磁极和B相绕组铁芯磁极轴中心线一侧;所述的转子(10)永久磁极与转子位置永久磁极(12)在空间位置上互为0°电角度;所述的转子(10)永久磁极兼作转子位置永久磁极(12)。
  10. 根据权利要求7所述的无刷直流电机,其特征在于:所述无刷直流电机为三相无刷直流电机,所述定子为包括A相绕组、B相绕组和C相绕组,所述A相绕组、所述B相绕组和所述C相绕组在空间上互为120°电角度,其中,每相绕组极数为转子(10)永久磁极极数的1/2,即所述齿槽(3)的个数是转子(10)永久磁极极数的三倍,转子(10)永久磁极的一极极距为(0.8-1.0)πD/P。
  11. 根据权利要求7或10所述的无刷直流电机,其特征在于:所述转子位置永久磁极(12)与转子(10)永久磁极在空间位置上互为90°电角度,所述霍尔位置传感器(14)为三相且在空间位置上互为120°电角度,分别设置在A相绕组、B相绕组和C相绕组中性线处。
  12. 一种带有权利要求1-4任一所述定子的三相开关磁阻电机,其特征在 于:还包括转子(10)和电子换相装置,所述转子(10)上设有若干对凸极铁芯,所述换相装置包括霍尔位置传感器(14)和转子位置永久磁极(12);所述定子为包括A相绕组、B相绕组和C相绕组,所述A相绕组、所述B相绕组和所述C相绕组在空间上互为120°电角度,其中,每相绕组极数与转子(10)凸极铁芯极数相同,即所述齿槽(3)的个数是转子(10)凸极铁芯极数的六倍,转子(10)凸极铁芯的一极极距为(0.38-0.42)πD/P。
  13. 根据权利要求12所述的三相开关磁阻电机,其特征在于:所述转子位置永久磁极(12)与转子(10)凸极铁芯同轴且极对数相同,所述转子位置永久磁极(12)一极极距等于或小于转子(10)凸极铁芯一极极距且在空位置上互为0°电角度。
  14. 根据权利要求12或13所述的三相开关磁阻电机,其特征在于:所述的霍尔位置传感器(14)为三相且在空间位置上互为120°电角度,分别设置在A相绕组、B相绕组和C相绕组中性线处。
  15. 一种带有权利要求1-4任一所述定子的罩极电机,其特征在于:还包括转子(10)和导磁环,所述导磁环包括上导磁轭(7)和下导磁轭(8),所述上导磁轭(7)和所述下导磁轭(8)无间隙紧密装配,所述导磁环对称设置于所述定子(9)圆周,所述导磁环的个数和所述定子极数比为1∶1。
  16. 根据权利要求15所述的罩极电机,其特征在于:所述的定子包括所述A相绕组和所述B相绕组,所述A相绕组所述B相绕组在空间上互为90°电角度;所述A相绕组为主绕组时,所述的B相绕组为副绕组;所述B相绕组为主绕组时,所述A相绕组为副绕组;所述主绕组为多匝线圈,所述副线圈为单匝短路线圈或多匝短路线圈。
  17. 根据权利要求16所述的罩极电机,其特征在于:所述上导磁轭(7) 设在所述定子(9)铁芯两端或一端且与定子压合为一体,所述上导磁轭(7)压合于A相大齿(1)和B相大齿(1)位置,并与下导磁轭(8)呈相似于“回”字型合围相邻的所述A相绕组线圈一有效边和所述B相绕组线圈一有效边,即:在凹槽(16)内嵌有所述的A相绕组线圈和所述B相绕组线圈的各其中一边。
PCT/CN2015/082402 2014-07-08 2015-06-25 一种定子及无刷直流电机、三相开关磁阻和罩极电机 WO2016004823A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201410326325.9A CN104092345A (zh) 2014-07-08 2014-07-08 一种三相无刷直流电机及正弦定子
CN201410326323.XA CN104079137A (zh) 2014-07-08 2014-07-08 一种二相无刷直流电机及正弦定子
CN201410326324.4A CN104079085A (zh) 2014-07-08 2014-07-08 一种电机及正弦定子
CN201410326346.0 2014-07-08
CN201410326323.X 2014-07-08
CN201410326325.9 2014-07-08
CN201410326324.4 2014-07-08
CN201410326346.0A CN104079136A (zh) 2014-07-08 2014-07-08 一种三相开关磁阻电机及正弦定子
CN201410719607.5A CN104410177B (zh) 2014-07-08 2014-12-02 一种定子及其相应的无刷直流电机和三相开关磁阻电机
CN201410719607.5 2014-12-02

Publications (1)

Publication Number Publication Date
WO2016004823A1 true WO2016004823A1 (zh) 2016-01-14

Family

ID=52647781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082402 WO2016004823A1 (zh) 2014-07-08 2015-06-25 一种定子及无刷直流电机、三相开关磁阻和罩极电机

Country Status (2)

Country Link
CN (2) CN204258453U (zh)
WO (1) WO2016004823A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI738096B (zh) * 2019-10-25 2021-09-01 黃柏原 可變定子無刷直流馬達

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204258453U (zh) * 2014-07-08 2015-04-08 顾明 一种定子及其相应的无刷直流电机和三相开关磁阻电机
CN104917309A (zh) * 2015-06-25 2015-09-16 顾明 一种定子及其相应的无刷直流、三相开关磁阻和罩极电机
DE102017216075A1 (de) * 2017-09-12 2019-03-14 Robert Bosch Gmbh Stator für eine elektrische Maschine, eine elektrische Maschine und Verfahren zum Herstellen eines solchen Stators
CN109713818B (zh) * 2018-12-29 2023-12-08 湖南开启时代科技股份有限公司 径向充磁永磁转子倍极式开关磁阻电机
CN110912293A (zh) * 2019-12-09 2020-03-24 珠海格力电器股份有限公司 单相永磁同步电机及具有其的吸尘器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064949A (ja) * 2000-08-18 2002-02-28 Aichi Emerson Electric Co Ltd 電動機
CN201509142U (zh) * 2009-08-12 2010-06-16 深圳航天科技创新研究院 大极型方波三相无刷永磁直流电动机
CN102223041A (zh) * 2010-04-13 2011-10-19 依必安-派特穆尔芬根股份有限两合公司 电机
CN104079085A (zh) * 2014-07-08 2014-10-01 顾明 一种电机及正弦定子
CN104079136A (zh) * 2014-07-08 2014-10-01 顾明 一种三相开关磁阻电机及正弦定子
CN104079137A (zh) * 2014-07-08 2014-10-01 顾明 一种二相无刷直流电机及正弦定子
CN104092345A (zh) * 2014-07-08 2014-10-08 顾明 一种三相无刷直流电机及正弦定子
CN104410177A (zh) * 2014-07-08 2015-03-11 顾明 一种定子及其相应的无刷直流电机和三相开关磁阻电机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285444A (ja) * 1991-03-12 1992-10-09 Fujitsu General Ltd 電動機の固定子鉄心
JP2007209186A (ja) * 2006-02-06 2007-08-16 Mitsubishi Electric Corp 同期電動機及び同期電動機の製造方法
CN2935612Y (zh) * 2006-06-22 2007-08-15 江苏超力电器有限公司 汽车电动助力转向永磁无刷直流电动机
CN201204536Y (zh) * 2008-04-29 2009-03-04 陈炎平 电动车辆用开关磁阻轮毂电动机
WO2011029230A1 (zh) * 2009-09-11 2011-03-17 深圳航天科技创新研究院 大小齿结构的方波无刷永磁直流电机及其装配方法
CN103269143A (zh) * 2013-05-06 2013-08-28 德清县金宇达电气有限公司 一种两相无刷直流电机
CN203406763U (zh) * 2013-08-30 2014-01-22 台州指鼎电器有限公司 永磁直流无刷电机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064949A (ja) * 2000-08-18 2002-02-28 Aichi Emerson Electric Co Ltd 電動機
CN201509142U (zh) * 2009-08-12 2010-06-16 深圳航天科技创新研究院 大极型方波三相无刷永磁直流电动机
CN102223041A (zh) * 2010-04-13 2011-10-19 依必安-派特穆尔芬根股份有限两合公司 电机
CN104079085A (zh) * 2014-07-08 2014-10-01 顾明 一种电机及正弦定子
CN104079136A (zh) * 2014-07-08 2014-10-01 顾明 一种三相开关磁阻电机及正弦定子
CN104079137A (zh) * 2014-07-08 2014-10-01 顾明 一种二相无刷直流电机及正弦定子
CN104092345A (zh) * 2014-07-08 2014-10-08 顾明 一种三相无刷直流电机及正弦定子
CN104410177A (zh) * 2014-07-08 2015-03-11 顾明 一种定子及其相应的无刷直流电机和三相开关磁阻电机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI738096B (zh) * 2019-10-25 2021-09-01 黃柏原 可變定子無刷直流馬達

Also Published As

Publication number Publication date
CN204258453U (zh) 2015-04-08
CN104410177A (zh) 2015-03-11
CN104410177B (zh) 2017-06-16

Similar Documents

Publication Publication Date Title
JP4926107B2 (ja) 回転電機
WO2016004823A1 (zh) 一种定子及无刷直流电机、三相开关磁阻和罩极电机
US11532963B2 (en) Torque tunnel Halbach Array electric machine
KR101255960B1 (ko) 스위치드 릴럭턴스 모터
EP3062426A1 (en) Single-phase brushless motor
JP2013215021A (ja) 電磁誘導装置
US20130069453A1 (en) Mechanically commutated switched reluctance motor
CN105048740A (zh) 一种永磁和变磁阻并列式混合励磁无刷电机
US7638917B2 (en) Electrical rotating machine
US8917004B2 (en) Homopolar motor-generator
CN205178671U (zh) 一种定子及其相应的无刷直流、三相开关磁阻和罩极电机
US10020717B2 (en) Dual stator, flux switching permanent magnet machine
JP6176217B2 (ja) 磁石レス回転電機
US20140375163A1 (en) Electromagnetic Generator
US20100052460A1 (en) Electrical rotating machine
RU2534046C1 (ru) Электрогенератор
US20150180296A1 (en) Winding for a stator element of an electromagnetic motor or generator, comprising at least one single-component, rigid limb, and method for producing same
KR101614685B1 (ko) 권선계자형 동기 전동기 및 그의 회전자
JP2017204961A (ja) 回転電機
JP2005020885A (ja) ロータリ・リニア直流モータ
JP2017509311A (ja) ハイブリッド電気機械
RU115978U1 (ru) Магнитоэлектрический генератор
JP2009171799A (ja) 永久磁石式同期モータ
WO2002082622A1 (fr) Moteur synchrone du type a aimant permanent
CN104917309A (zh) 一种定子及其相应的无刷直流、三相开关磁阻和罩极电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 17/03/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15819060

Country of ref document: EP

Kind code of ref document: A1