WO2013132871A1 - 炭素繊維の製造方法および炭素繊維 - Google Patents

炭素繊維の製造方法および炭素繊維 Download PDF

Info

Publication number
WO2013132871A1
WO2013132871A1 PCT/JP2013/001473 JP2013001473W WO2013132871A1 WO 2013132871 A1 WO2013132871 A1 WO 2013132871A1 JP 2013001473 W JP2013001473 W JP 2013001473W WO 2013132871 A1 WO2013132871 A1 WO 2013132871A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
gas
raw material
reactor
carbon fiber
Prior art date
Application number
PCT/JP2013/001473
Other languages
English (en)
French (fr)
Inventor
紳 向井
優介 力間
陸 古川
荻野 勲
東吾 山口
Original Assignee
旭カーボン株式会社
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭カーボン株式会社, 国立大学法人北海道大学 filed Critical 旭カーボン株式会社
Priority to JP2014503505A priority Critical patent/JP6020850B2/ja
Priority to KR1020147024045A priority patent/KR101952479B1/ko
Priority to US14/382,427 priority patent/US9475700B2/en
Priority to CN201380012268.0A priority patent/CN104246030B/zh
Publication of WO2013132871A1 publication Critical patent/WO2013132871A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/166Preparation in liquid phase
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols

Definitions

  • the present invention relates to a method for producing carbon fibers and carbon fibers obtained thereby.
  • Carbon fibers are very excellent in mechanical strength, electrical conductivity, thermal conductivity and the like compared to glass fibers and the like. For this reason, carbon fibers are used in a wide range of applications such as plastic reinforcing materials, gas storage materials, and electrode materials.
  • a method of producing carbon fiber a method of carbonizing an organic fiber such as synthetic fiber or petroleum pitch fiber, and a method of thermally decomposing a hydrocarbon such as benzene or methane in the presence of a catalyst to generate carbon fiber (gas phase method And are well known.
  • the gas phase method is the most suitable method for continuous mass production of carbon fibers.
  • a first production method in which a catalyst fixed on a substrate and a gaseous hydrocarbon introduced into the reactor are brought into contact in a high temperature reactor;
  • the second production methods in which the raw material containing the hydrocarbon and the catalyst component is introduced in gaseous or liquid form into a high temperature region in the reactor.
  • the first production method is not suitable for continuous production because it is necessary to take out the substrate on which the catalyst is fixed and recover the carbon fibers after the completion of production.
  • the second manufacturing method is suitable for continuous manufacturing because such a complicated operation is unnecessary.
  • the method (liquid pulse injection method; LPI method) of introducing the raw material liquid in a pulse form is a method capable of generating catalyst fine particles advantageous for the production of carbon fibers at high density.
  • Patent Documents 1 to 3 As an example of the second production method (LPI method), in Patent Documents 1 to 3, a raw material liquid containing a hydrocarbon and a catalyst component is introduced in a pulse shape into a reactor in which a carrier gas continuously flows, A method of efficiently producing carbon fibers in a short time is disclosed. Further, Patent Document 4 discloses a method of continuously producing carbon fibers while efficiently using a catalyst by introducing a raw material liquid containing 15 mol% or more of methane into a high temperature region of 1100 to 1500 ° C. ing.
  • the growth of carbon fibers in the second production method is the “longitudinal growth” in which the initial fibers grow in the length direction by catalysis, and the “radial direction in which the initial fibers grow in the radial direction by thermal CVD. Proceed in a two-step process of growth. Both of these processes proceed in the high temperature region of the reactor. Therefore, initial fibers can be efficiently generated by rapidly feeding a raw material gas (a mixture produced by evaporation or thermal decomposition of the raw material liquid) containing a carbon source and catalyst fine particles into a high temperature region. Thereafter, the initial fibers are allowed to grow in the radial direction by staying in the high temperature region for a certain period of time.
  • a raw material gas a mixture produced by evaporation or thermal decomposition of the raw material liquid
  • the carrier gas is flowed at a constant linear velocity. Therefore, in these production methods, if the initial fibers are to be generated efficiently, the linear velocity of the carrier gas is increased to rapidly feed the raw material gas to the high temperature region. However, when the linear velocity of the carrier gas is increased, the initial fiber can not sufficiently grow in the radial direction because the residence time of the initial fiber in the high temperature region becomes short. As a result, the yield of carbon fiber is lowered. On the other hand, if the linear velocity of the carrier gas is lowered, the time from the introduction of the raw material solution to the start of initial fiber growth will be long, and the carbon fiber production efficiency will be reduced. In addition, since the width of the timing at which the catalyst fine particles reach the high temperature region becomes large, the timing at which the initial fiber growth starts varies. As a result, the dispersion of the fiber diameter of the carbon fiber becomes large.
  • the present invention also relates to the following carbon fibers.
  • Carbon fibers having a fiber diameter in the range of 1 to 1000 nm and a relative standard deviation of the fiber diameter of 20% or less.
  • the manufacturing method according to the present invention can introduce the raw material solution at short intervals and reduce the amount of carrier gas used, as compared with the conventional LPI method. Therefore, according to the production method of the present invention, the production efficiency of carbon fibers can be greatly improved.
  • FIGS. 2A to 2C are schematic views illustrating the procedure for producing carbon fibers.
  • FIGS. 3A to 3C are electron microscope images of carbon fibers produced by the production methods according to Examples 1 to 3.
  • FIGS. 4A to 4C are electron microscope images of carbon fibers produced by the production methods according to Comparative Examples 1 to 3.
  • the carbon fiber manufacturing method comprises 1) a first step of preparing a raw material liquid, 2) a second step of preparing a heated reactor, and 3) introducing the raw material liquid into the reactor. And 4) a fourth step of pulse-wise introduction of a carrier gas into the reactor, and 5) a fifth step of producing carbon fibers.
  • the fifth step is naturally performed when the fourth step is performed.
  • the third step, the fourth step, and the fifth step are a series of steps, and the series of steps is repeated a plurality of times. Each step will be described below.
  • a raw material liquid containing a carbon compound and a catalyst or a precursor of a catalyst is prepared.
  • the raw material liquid can be prepared by dispersing or dissolving a catalyst or a catalyst precursor in a liquid composed of a carbon compound.
  • Carbon compounds are a source of carbon for producing carbon fibers.
  • the type of carbon compound is not particularly limited, but hydrocarbons are usually used.
  • Examples of carbon compounds contained in the raw material liquid include liquid aliphatic hydrocarbons such as hexane, heptane, octane, pentene and hexene; aromatic hydrocarbons such as benzene, toluene, naphthalene and anthracene; alcohols such as methanol and ethanol Ketone; ether etc. are included. These carbon compounds may be used alone or in combination of two or more.
  • the fiber diameter of the produced carbon fiber can be controlled by selecting the type of carbon compound.
  • thin carbon fibers with a fiber diameter of 1 to 50 nm can be produced.
  • carbon sources many carbon compounds such as cracked oils obtained by thermal decomposition of waste rubber and waste rubber, refined oils derived from animals and plants and their waste oils, and residual oils produced in oil refineries Compositions comprising can also be used.
  • the carbon source is brought into contact with the catalyst fine particles (fine particles of metal catalyst) in a high temperature range to form carbon fibers.
  • metals used as catalysts here include iron, nickel, cobalt, titanium, zirconium, vanadium, niobium, manganese, rhodium, tungsten, palladium, platinum, silicon and the like.
  • Catalyst fine particles made of these metals are added to the raw material liquid as metal fine particles that become catalyst fines as they are or as an organic metal compound that is a precursor of the catalyst.
  • organometallic compounds used as precursors of catalysts include ferrocene and iron acetylacetonate.
  • a co-catalyst may be further added to the raw material liquid. Examples of cocatalysts include thiophene and benzothiophene.
  • the concentration of the catalyst or catalyst precursor in the raw material liquid By adjusting the concentration of the catalyst or catalyst precursor in the raw material liquid, it is possible to control the growth rate of the carbon fiber, the size (length and fiber diameter) of the carbon fiber, the surface state of the carbon fiber, and the like. For example, when the concentration of the catalyst is increased, the number of carbon fine particles generated increases because the number of catalyst fine particles in the raw material gas generated in the third step increases. As a result, the amount of carbon that can be used per carbon fiber decreases, so the fiber diameter of the carbon fiber decreases. On the other hand, when the concentration of the catalyst is lowered, the number of carbon fibers produced decreases, and the fiber diameter of the carbon fibers increases.
  • the concentration of the catalyst or catalyst precursor in the raw material solution is usually 0.01 to 15% by mass, preferably 0.05 to 10% by mass.
  • Second Step In the second step, a heated reactor for producing carbon fiber is prepared.
  • the second step may be performed after or before the first step.
  • the shape of the reactor is not particularly limited as long as the third, fourth and fifth steps can be performed.
  • the shape of the reactor is a circular pipe, a square pipe or the like.
  • a circular pipe shape as illustrated in FIG. 1 can be mentioned.
  • the size of the reactor is not particularly limited, and may be appropriately set according to the amounts of the raw material liquid and the carrier gas introduced.
  • the raw material liquid inlet, the carrier gas inlet and the gas outlet are connected to the reactor.
  • the carrier gas introduced in a pulse from the carrier gas inlet into the reactor is discharged from the gas outlet after the mixture (described later) derived from the raw material liquid is extruded into the high temperature region (described later) of the reactor.
  • the reactor preferably has heat resistance and pressure resistance because it is heated and carrier gas (gas pulse) is introduced into the inside thereof.
  • carrier gas gas pulse
  • examples of materials of the reactor include ceramics, stainless steel, glass, metal coated with glass on the inner surface, and the like.
  • At least a portion of the reactor is heated to a temperature at which carbon fibers can be produced.
  • a region heated to produce carbon fibers (carbon fiber production region) will be referred to as a "high temperature region".
  • the temperature in the high temperature region is, for example, in the range of 900 to 1300.degree.
  • the method of heating the reactor is not particularly limited.
  • the reactor is heated by an electric furnace.
  • the reactor is preferably filled with, for example, helium gas, argon gas, nitrogen gas, neon gas, krypton gas, hydrogen gas, carbon monoxide gas, chlorine gas, or the like.
  • the raw material liquid prepared in the first step is introduced into the reactor prepared in the second step.
  • a mixture (hereinafter also referred to as a "raw gas") composed of a gas containing a carbon source and catalyst fine particles dispersed in the gas is generated.
  • the introduction method of the raw material liquid is not particularly limited.
  • droplets of the raw material liquid may be dropped into the reactor using a microsyringe or a quantitative pulse pump or the like, or may be sprayed into the reactor using a spray device or the like.
  • the raw material liquid evaporates or thermally decomposes, and the raw material gas containing carbon source and catalyst fine particles It is generated.
  • the fine particles of the raw material liquid are evaporated or thermally decomposed in the reactor, respectively, to generate a raw material gas containing a carbon source and fine catalyst particles.
  • the source liquid is preferably introduced in a pulse form.
  • the carbon source is generated by evaporation or thermal decomposition of a carbon compound contained in the raw material liquid.
  • the type of carbon compound serving as the carbon source changes with the passage of time.
  • the carbon compound contained in the raw material liquid is benzene
  • the carbon source contained in the raw material gas is considered to be changing in the direction of decreasing molecular weight such as benzene, propylene, ethylene and methane.
  • the catalyst fine particles are generated by thermal decomposition of an organometallic compound contained in the raw material liquid or a precursor of the catalyst.
  • atomic metal is generated by thermal decomposition of the organometallic compound
  • catalyst fine particles are generated by aggregation of the atomic metal. Therefore, when the raw material liquid is introduced in a pulsed manner, the carbon source and the catalyst fine particles will be present in the raw material gas in a state of being densely collected.
  • the source gas is extruded to a high temperature region by the carrier gas in the fourth step. Therefore, usually, the raw material liquid to be the raw material gas is introduced into a region other than the high temperature region of the reactor.
  • the introduction amount of the raw material liquid is appropriately set according to the capacity and the like in the reactor. For example, when the size of the reactor is about 1 to 5 L, the introduction amount of the raw material solution is about 20 to 200 ⁇ L.
  • the introduction time of the raw material liquid is about 0.2 to 4.0 seconds, preferably in the range of 0.3 to 0.6 seconds.
  • the fourth step is carried out after the third step, preferably immediately after the third step.
  • the carrier gas is introduced into the reactor in a pulsed manner. Thereby, the source gas generated in the third step is extruded to the high temperature region of the reactor.
  • the carrier gas has a function of pushing the source gas located in the region other than the high temperature region of the reactor to the high temperature region.
  • the carrier gas is introduced into the region other than the high temperature region of the reactor.
  • the carrier gas is introduced into the region where the raw material liquid is introduced in the third step.
  • the method of introducing the carrier gas is not particularly limited.
  • the carrier gas may be supplied into the reactor using a valve that opens and closes at a predetermined timing.
  • the amount of carrier gas per pulse is appropriately set according to the capacity in the reactor, the distance between the carrier gas inlet and the high temperature region, and the like. For example, when the size of the reactor is about 1 to 5 L, the amount of carrier gas per pulse is about 20 to 100 mL.
  • the pulse width of the carrier gas (introduction time of one pulse) is about 0.005 to 2.0 seconds, preferably in the range of 0.01 to 0.5 seconds.
  • the carrier gas is required to be inert at the temperature at which the carbon fiber is grown (eg, 900-1300 ° C.), not to reduce the activity of the catalyst, and not to react with the carbon fiber.
  • the type of carrier gas is not particularly limited as long as it satisfies these requirements.
  • Examples of the carrier gas include helium gas, argon gas, nitrogen gas, neon gas, krypton gas, hydrogen gas, carbon monoxide gas, chlorine gas and the like. These gases may be used alone or in combination of two or more.
  • the fifth step is a step naturally performed in a high temperature region as a result of introducing the gas pulse in the fourth step.
  • the carbon source contained in the raw material gas is brought into contact with the catalyst fine particles to grow initial fibers, and then carbon fibers are grown.
  • the linear velocity of the extruded carrier gas is high at the time of initial fiber growth.
  • the gas pressure is lost with time, so that the linear velocity of the carrier gas becomes slower, and the carrier gas becomes stagnant.
  • the third step, the fourth step, and the fifth step occurring thereafter are a series of steps.
  • a carbon fiber can be manufactured continuously by repeating a series of these processes several times.
  • the introduction interval of the raw material liquid is preferably in the range of 5 to 120 seconds, and more preferably in the range of 30 to 90 seconds.
  • introduction interval means an interval of introduction start time. The shorter the introduction interval of the raw material liquid, the better the yield and production efficiency of the carbon fiber, but the purity of the carbon fiber is lowered by interference between the raw materials derived from the raw material liquid introduced at different timings in the reactor. There is a risk of
  • droplets of the raw material liquid 210 containing a hydrocarbon or alcohol (carbon compound) and an organic metal compound (precursor of catalyst) are dropped into the reaction tube 130 from the raw material liquid inlet 110 Do it (in a pulse form). Droplets of the raw material liquid 210 fall on the heated filter 140 and are evaporated and thermally decomposed in an instant. Thereby, the source gas 230 including the carbon source 232 and the catalyst fine particles 234 is generated.
  • the carrier gas 220 is introduced into the reaction tube 130 in a pulse form from the carrier gas inlet 120.
  • the raw material gas 230 is rapidly extruded to the high temperature region 170 and heated to 900 to 1300.degree.
  • the contact between the carbon source 232 and the catalyst fine particles 234 in a high temperature environment causes the initial fine fibers 236 to grow in the length direction from the catalyst fine particles 234.
  • carbon fibers 238 of desired length and thickness can be continuously produced in large quantities.
  • the electric furnace 150 is turned off and the temperature of the reaction tube 130 is lowered to room temperature. Thereafter, the carbon fibers 238 deposited in the lower portion of the reaction tube 130 are recovered from the lower portion of the reaction tube 130.
  • the method for producing a carbon fiber according to the present invention is characterized in that the carrier gas is introduced in a pulsed manner into the reactor after the raw material liquid is introduced into the reactor.
  • the raw material gas derived from the raw material liquid is promptly carried to the high temperature region of the reactor, and thereafter, stays in the high temperature region for a relatively long time.
  • longitudinal growth and radial growth of the initial fibers can be efficiently and sufficiently advanced, and carbon fibers sufficiently grown in the longitudinal direction and radial direction can be efficiently produced.
  • Example 1 First, with the reaction tube 130 at room temperature, nitrogen gas was flowed from the carrier gas inlet 120 into the reaction tube 130 to replace the air in the reaction tube 130 with nitrogen gas. Next, hydrogen gas was flowed into the reaction tube 130 from the carrier gas inlet 120, and the nitrogen gas in the reaction tube 130 was replaced with hydrogen gas. Thereafter, in a state where hydrogen gas is retained in the reaction tube 130, the temperature of the reaction tube 130 is raised to 1200 ° C. by using the electric furnace 150 and maintained.
  • a raw material liquid containing carbon compound and a precursor of catalyst (carbon compound: 94% by mass of benzene, precursor of catalyst: 5% by mass of ferrocene, cocatalyst: 1% by mass of thiophene) was prepared. 20 ⁇ L of the raw material solution is introduced into the reaction tube 130 in the form of pulses from the raw material solution inlet 110 using a microsyringe, and 40 mL of hydrogen gas is introduced into the reaction tube 130 in the form of pulses from the carrier gas inlet 120 immediately thereafter. did. A series of operations of introduction of the raw material liquid and introduction of hydrogen gas were repeated every 60 seconds for a total of 20 times.
  • reaction tube 130 was cooled to room temperature. Thereafter, carbon fibers deposited in the lower part of the reaction tube 130 were recovered from the lower part of the reaction tube 130.
  • the amount of hydrogen gas (carrier gas) used during production was 800 mL.
  • Example 2 A carbon fiber was prepared in the same manner as in Example 1, except that the amount of hydrogen gas introduced each time was 60 mL and the series of operations for introducing the raw material solution and hydrogen gas were repeated a total of 20 times every 20 seconds. Manufactured. The amount of hydrogen gas (carrier gas) used during the production was 1200 mL.
  • Example 3 The procedure is the same as in Example 1 except that a raw material liquid containing ethanol as a carbon compound (carbon compound: ethanol 97% by mass, catalyst precursor: ferrocene 2% by mass, cocatalyst: thiophene 1% by mass) is used. Carbon fiber was produced. The amount of hydrogen gas (carrier gas) used during production was 800 mL.
  • a raw material liquid containing carbon compound and a precursor of catalyst (carbon compound: 94% by mass of benzene, precursor of catalyst: 5% by mass of ferrocene, cocatalyst: 1% by mass of thiophene) was prepared. While flowing hydrogen gas at a flow rate of 100 mL / min, 20 ⁇ L of the raw material liquid was pulsed repeatedly from the raw material liquid inlet 110 using a microsyringe into the reaction tube 130 repeatedly for a total of 20 times every 60 seconds.
  • Comparative example 2 A carbon fiber was manufactured in the same manner as Comparative Example 1 except that the flow rate of hydrogen gas was 400 mL / min. The amount of hydrogen gas (carrier gas) used during production was 8000 mL.
  • the method for producing a carbon fiber according to the present invention is useful as a method for producing a high quality carbon fiber because it can continuously produce a carbon fiber having a long thickness and a small variation in thickness.
  • the carbon fiber produced by the production method according to the present invention can be used in a wide range of applications such as, for example, plastic reinforcing materials, gas storage materials, and electrode materials.

Abstract

 炭素化合物と触媒または触媒の前駆体とを含む原料液と、900~1300℃に加熱された高温領域を有する反応器を準備する。原料液を反応器内に導入して、炭素源を含むガスとそのガスに分散した触媒微粒子とからなる混合物を生成させる。次いで、キャリアガスを反応器内にパルス状に導入して、混合物を高温領域に押し出す。次いで、高温領域において、混合物に含まれる炭素源と触媒微粒子とを接触させて初期繊維を成長させ、その後にキャリアガスが滞留した環境で炭素繊維を成長させる。

Description

炭素繊維の製造方法および炭素繊維
 本発明は、炭素繊維の製造方法およびそれにより得られる炭素繊維に関する。
 炭素繊維は、ガラス繊維などに比べて、機械的強度や電気伝導性、熱伝導性などの点で非常に優れている。このため、炭素繊維は、プラスチック強化材料やガス吸蔵材料、電極材料などの幅広い用途に使用されている。
 炭素繊維の製造方法としては、合成繊維や石油ピッチ繊維などの有機繊維を炭化する方法と、ベンゼンやメタンなどの炭化水素を触媒存在下で熱分解して炭素繊維を生成する方法(気相法)とがよく知られている。気相法は、炭素繊維を連続的に大量生産するのに最も適した方法である。
 気相法による炭素繊維の製造は、通常、1)高温の反応器内において、基板に固定された触媒と反応器内に導入されたガス状の炭化水素とを接触させる第1の製造方法、または2)炭化水素および触媒成分を含む原料をガス状または液状で反応器内の高温領域に導入する第2の製造方法、のいずれかにより実施される。第1の製造方法は、製造終了後に、触媒が固定された基板を取り出して炭素繊維を回収する作業が必要なため、連続生産に向かない。一方、第2の製造方法は、このような煩雑な作業が不要であるため、連続製造に適している。第2の製造方法の中でも特に原料液をパルス状で導入する方法(液パルスインジェクション法;LPI法)は、炭素繊維の製造に有利な触媒微粒子を高密度に発生させることができる手法である。
 第2の製造方法(LPI法)の例として、特許文献1~3には、キャリアガスが連続して流れる反応器内に、炭化水素および触媒成分を含む原料液をパルス状に導入して、炭素繊維を短時間で効率的に製造する方法が開示されている。また、特許文献4には、15mol%以上のメタンを含む原料液を1100~1500℃の高温領域に導入することで、触媒を効率的に用いながら炭素繊維を連続的に製造する方法が開示されている。
特開平6-146116号公報 特開平6-146117号公報 特開2004-360108号公報 国際公開第2006/030963号
 第2の製造方法(LPI法)における炭素繊維の成長は、触媒作用によって初期繊維が長さ方向に成長する「長さ方向成長」と、熱CVDにより初期繊維が半径方向に成長する「半径方向成長」の二段階プロセスで進行する。これらのプロセスは、いずれも反応器の高温領域において進行する。したがって、炭素源および触媒微粒子を含む原料ガス(原料液が蒸発または熱分解されることで生成される混合物)を高温領域に速やかに送り込むことで、初期繊維を効率的に生成することができる。この後、初期繊維を高温領域に一定時間滞留させることで、初期繊維を半径方向に成長させる。
 特許文献1~4に記載の従来の炭素繊維の製造方法では、キャリアガスを一定の線速で流している。したがって、これらの製造方法において、初期繊維を効率的に生成しようとすれば、キャリアガスの線速を上げて原料ガスを高温領域に速やかに送り込むこととなる。しかしながら、キャリアガスの線速を上げると、初期繊維の高温領域での滞留時間が短くなるため、初期繊維を半径方向に十分に成長させることができない。その結果、炭素繊維の収率が低くなってしまう。一方、キャリアガスの線速を下げると、原料液を導入してから初期繊維の成長が始めるまでの時間が長くなり、炭素繊維の製造効率が低下してしまう。また、触媒微粒子が高温領域に到達するタイミングの幅が大きくなるため、初期繊維の成長開始のタイミングがバラついてしまう。その結果、炭素繊維の繊維径のバラつきが大きくなってしまう。
 本発明の目的は、繊維径のバラつきが小さい炭素繊維を効率的に製造することができる、炭素繊維の製造方法を提供することである。また、本発明の別の目的は、この炭素繊維の製造方法により製造される炭素繊維を提供することである。
 本発明者は、キャリアガスをパルス状に導入することで上記課題を解決できることを見出し、さらに検討を加えて本発明を完成させた。
 すなわち、本発明は、以下の炭素繊維の製造方法に関する。
 [1]炭素化合物と、触媒または触媒の前駆体とを含む原料液を準備する工程と;炭素繊維が成長できる温度に加熱された高温領域を有する反応器を準備する工程と;前記原料液を前記反応器内に導入して、炭素源を含むガスと前記ガスに分散した触媒微粒子とからなる混合物を生成させる工程と;キャリアガスを前記反応器内にパルス状に導入して、前記混合物を前記高温領域に押し出す工程と;を有する、炭素繊維の製造方法。
 [2]前記キャリアガスを前記反応器内にパルス状に導入して、前記混合物を前記高温領域に押し出す工程の後に、前記高温領域において、前記混合物に含まれる前記炭素源と前記触媒微粒子とを接触させて初期繊維を成長させ、その後に前記キャリアガスが滞留した環境で炭素繊維を成長させる工程をさらに有する、[1]に記載の炭素繊維の製造方法。
 [3]前記混合物および前記キャリアガスは、前記反応器内の前記高温領域以外の領域に導入される、[1]または[2]に記載の炭素繊維の製造方法。
 [4]前記混合物は、前記反応器内に導入された前記原料液を蒸発または熱分解させることで生成される、[1]~[3]のいずれか一項に記載の炭素繊維の製造方法。
 [5]前記高温領域の温度は、900~1300℃の範囲内である、[1]~[4]のいずれか一項に記載の炭素繊維の製造方法。
 また、本発明は、以下の炭素繊維に関する。
 [6]繊維径が1~1000nmの範囲内であり、かつ繊維径の相対標準偏差が20%以下である、炭素繊維。
 本発明に係る製造方法によれば、繊維径のバラつきが小さい炭素繊維を高い収率で製造することができる。また、本発明に係る製造方法は、従来のLPI法に比べて、原料液を短い間隔で導入すること、およびキャリアガスの使用量を削減することが可能である。したがって、本発明に係る製造方法によれば、炭素繊維の製造効率を大幅に向上させることができる。
本発明の一実施の形態に係る炭素繊維の製造装置の構成を示す模式図である。 図2A~Cは、炭素繊維を製造する手順を説明する模式図である。 図3A~Cは、実施例1~3に係る製造方法で製造された炭素繊維の電子顕微鏡像である。 図4A~Cは、比較例1~3に係る製造方法で製造された炭素繊維の電子顕微鏡像である。
 本発明に係る炭素繊維の製造方法は、1)原料液を準備する第1の工程と、2)加熱された反応器を準備する第2の工程と、3)原料液を反応器内に導入する第3の工程と、4)キャリアガスを反応器内にパルス状に導入する第4の工程と、5)炭素繊維を生成させる第5の工程とを有する。後述するように、第5の工程は、第4の工程が行われると自然になされる。通常は、第3の工程、第4の工程および第5の工程は一連の工程であり、これらの一連の工程は複数回繰り返される。以下、各工程について説明する。
 1)第1の工程
 第1の工程では、炭素化合物と、触媒または触媒の前駆体とを含む原料液を準備する。たとえば、炭素化合物からなる液体に触媒または触媒の前駆体を分散または溶解させることで、原料液を調製することができる。
 炭素化合物は、炭素繊維を生成するための炭素の供給源である。炭素化合物の種類は特に限定されないが、通常は炭化水素が使用される。原料液に含まれる炭素化合物の例には、ヘキサンやヘプタン、オクタン、ペンテン、ヘキセンなどの液状の脂肪族炭化水素;ベンゼンやトルエン、ナフタレン、アントラセンなどの芳香族炭化水素;メタノールやエタノールなどのアルコール;ケトン;エーテルなどが含まれる。これらの炭素化合物は、1種で使用してもよいし、2種以上を組み合わせて使用してもよい。本発明の製造方法では、炭素化合物の種類を選択することにより、製造される炭素繊維の繊維径を制御することができる。たとえば、メタノールやエタノールなどのアルコールを使用すると、繊維径1~50nmの細い炭素繊維を製造することができる。また、炭素の供給源としては、廃タイヤなどの廃ゴムを熱分解することにより得られる分解油や、動植物由来の精製油およびそれらの廃油、オイルリファイナリーで生じる残渣油などの、炭素化合物を多く含む組成物を使用することもできる。
 後述するように、本発明に係る炭素繊維の製造方法では、高温領域において炭素源と触媒微粒子(金属触媒の微粒子)とを接触させて炭素繊維を生成させる。ここで触媒として用いられる金属の例には、鉄、ニッケル、コバルト、チタン、ジルコニウム、バナジウム、ニオブ、マンガン、ロジウム、タングステン、パラジウム、白金、シリコンなどが含まれる。これらの金属からなる触媒微粒子は、原料液に、そのまま触媒微粒子となる金属微粒子として、または触媒の前駆体である有機金属化合物として添加される。触媒の前駆体として使用される有機金属化合物の例には、フェロセンや鉄アセチルアセトナートなどが含まれる。また、原料液には、さらに助触媒を添加してもよい。助触媒の例には、チオフェンやベンゾチオフェンなどが含まれる。
 原料液中の触媒または触媒の前駆体の濃度を調整することで、炭素繊維の成長速度や、炭素繊維のサイズ(長さおよび繊維径)、炭素繊維の表面状態などを制御することができる。たとえば、触媒の濃度を高めると、第3の工程で生成される原料ガス中の触媒微粒子の数が多くなるため、生成される炭素繊維の数は多くなる。その結果、炭素繊維1本あたりに使用可能な炭素の量が減少するため、炭素繊維の繊維径は小さくなる。一方、触媒の濃度を低くすると、生成される炭素繊維の数が少なくなり、炭素繊維の繊維径は大きくなる。原料液中の触媒または触媒の前駆体の濃度は、通常0.01~15質量%であり、好ましくは0.05~10質量%である。
 2)第2の工程
 第2の工程では、炭素繊維を生成するための加熱された反応器を準備する。第2の工程は、第1の工程の後に行ってもよいし、前に行ってもよい。
 反応器の形状は、第3の工程、第4の工程および第5の工程を行うことができれば特に限定されない。たとえば、反応器の形状は、円管、角管などである。具体的な例としては、図1で例示されるような円管形状が挙げられる。反応器のサイズは、特に限定されず、原料液およびキャリアガスの導入量などに応じて適宜設定すればよい。反応器には、原料液導入口、キャリアガス導入口およびガス排出口が連結されている。キャリアガス導入口から反応器内にパルス状に導入されたキャリアガスは、原料液に由来する混合物(後述)を反応器の高温領域(後述)に押し出した後にガス排出口から排出される。
 反応器は、加熱されること、およびその内部にキャリアガス(ガスパルス)を導入されることから、耐熱性および耐圧性を有することが好ましい。反応器の素材の例には、セラミックス、ステンレス鋼、ガラス、内面がガラスコーティングされた金属などが含まれる。
 反応器の少なくとも一部は、炭素繊維を生成させうる温度まで加熱される。本願明細書では、炭素繊維を生成するために加熱された領域(炭素繊維生成領域)を「高温領域」と称することとする。高温領域の温度は、例えば900~1300℃の範囲内である。反応器を加熱する方法は、特に限定されない。たとえば、反応器は、電気炉により加熱される。反応器中には、例えばヘリウムガスやアルゴンガス、窒素ガス、ネオンガス、クリプトンガス、水素ガス、一酸化炭素ガス、塩素ガスなどが充填されていることが好ましい。
 3)第3の工程
 第3の工程では、第1の工程で準備した原料液を、第2の工程で準備した反応器内に導入する。反応器内において原料液が蒸発することにより、炭素源を含むガスとそのガスに分散した触媒微粒子とからなる混合物(以下「原料ガス」ともいう)が生成する。
 原料液の導入方法は、特に限定されない。たとえば、原料液の液滴をマイクロシリンジや定量パルスポンプなどを用いて反応器内に滴下したり、スプレー装置などを用いて反応器内に噴霧したりすればよい。前者の場合は、反応器の内壁や反応器内に設置された多孔質体などに液滴が接触することで、原料液が蒸発または熱分解して、炭素源および触媒微粒子を含む原料ガスが生成される。後者の場合は、原料液の微粒子が反応器内においてそれぞれ蒸発または熱分解することで、炭素源および触媒微粒子を含む原料ガスが生成される。
 炭素源および触媒微粒子を原料ガス中に高密度に集まった状態で存在させる観点からは、原料液はパルス状に導入されることが好ましい。炭素源は、原料液に含まれる炭素化合物が蒸発または熱分解することにより生成される。炭素源となる炭素化合物の種類は、時間の経過と共に変化する。たとえば、原料液に含まれる炭素化合物がベンゼンである場合、原料ガスに含まれる炭素源は、ベンゼン、プロピレン、エチレン、メタンのように分子量が小さくなる方向へ変化していると考えられる。触媒微粒子は、原料液に含まれているか、または触媒の前駆体である有機金属化合物が熱分解することにより生成される。後者の場合、有機金属化合物が熱分解することにより原子状金属が生成され、この原子状金属が凝集することにより触媒微粒子が生成される。したがって、原料液がパルス状に導入されると、炭素源および触媒微粒子は原料ガス中に高密度に集まった状態で存在することとなる。
 後述するように、原料ガスは、第4の工程においてキャリアガスにより高温領域に押し出される。したがって、通常は、原料ガスの素となる原料液は、反応器の高温領域以外の領域に導入される。原料液の導入量は、反応器内の容量などに応じて適宜設定される。たとえば、反応器の大きさが1~5L程度の場合、原料液の導入量は、20~200μL程度である。また、原料液の導入時間は、0.2~4.0秒程度であり、0.3~0.6秒の範囲内が好ましい。
 4)第4の工程
 第4の工程は、第3の工程の後、好ましくは第3の工程の直後に行われる。第4の工程では、キャリアガスを反応器内にパルス状に導入する。これにより、第3の工程で生成した原料ガスが、反応器の高温領域に押し出される。
 キャリアガスは、反応器の高温領域以外の領域に位置している原料ガスを、高温領域に押し出す機能を担う。したがって、通常は、キャリアガスは、反応器の高温領域以外の領域に導入される。たとえば、キャリアガスは、第3の工程で原料液を導入した領域に導入される。
 キャリアガス(ガスパルス)の導入方法は、特に限定されない。たとえば、所定のタイミングで開閉するバルブなどを用いてキャリアガスを反応器内に供給すればよい。キャリアガスの1パルスあたりの量は、反応器内の容量や、キャリアガス導入口と高温領域との間の距離などに応じて適宜設定される。たとえば、反応器の大きさが1~5L程度の場合、キャリアガスの1パルスあたりの量は、20~100mL程度である。また、キャリアガスのパルス幅(1パルスの導入時間)は、0.005~2.0秒程度であり、0.01~0.5秒の範囲内が好ましい。
 キャリアガスには、炭素繊維を成長させる温度(例えば、900~1300℃)で不活性であること、触媒の活性を低下させないこと、および炭素繊維と反応しないことが要求される。キャリアガスの種類は、これらの要求を満たすものであれば特に限定されない。キャリアガスの例には、ヘリウムガス、アルゴンガス、窒素ガス、ネオンガス、クリプトンガス、水素ガス、一酸化炭素ガス、塩素ガスなどが含まれる。これらのガスは、1種で使用してもよいし、2種以上を組み合わせて使用してもよい。
 5)第5の工程
 第5の工程は、第4の工程でガスパルスを導入した結果、高温領域で自然になされる工程である。第5の工程では、反応器の高温領域において、原料ガスに含まれる炭素源と触媒微粒子とを接触させて初期繊維を成長させ、その後に炭素繊維を成長させる。本発明の炭素繊維の製造方法では、キャリアガスをパルス状に導入するため、初期繊維の成長時においては、押し出されたキャリアガスの線速が速い。一方、その後の炭素繊維の成長時においては、ガス圧が時間とともに損失されることからキャリアガスの線速が遅くなり、キャリアガスが滞留した環境となる。
 高温(例えば、900~1300℃)環境下において炭素源と触媒微粒子とが接触すると、触媒の作用により初期繊維が長さ方向に成長する(長さ方向成長)。次いで、熱CVDにより、初期繊維が半径方向に成長する(半径方向成長)。反応器の高温領域内に滞留している原料ガスにおいて、これらの二段階プロセスが順次進行することで、炭素繊維が生成される。
 原料ガスを高温領域内に滞留させる時間は、炭素繊維を長さ方向および半径方向に十分に成長させる観点、および生産効率の観点から適宜設定すればよい。たとえば、反応器の大きさが1~5L程度の場合、原料ガスを高温領域内に滞留させる時間は、10~20秒程度である。
 前述の通り、第3の工程、第4の工程およびその後に生じる第5の工程は、一連の工程である。これらの一連の工程を複数回繰り返すことで、炭素繊維を連続して製造することができる。この場合、原料液の導入間隔は、5~120秒の範囲内が好ましく、30~90秒の範囲内がより好ましい。ここで「導入間隔」とは、導入開始時期の間隔を意味する。原料液の導入間隔を短くするほど、炭素繊維の収率および生産効率が向上するが、異なるタイミングで導入した原料液に由来する原料同士が反応器内で干渉することにより炭素繊維の純度が低下してしまうおそれがある。
 以上の手順により、繊維径のバラつきが小さい炭素繊維を高い収率で製造することができる。本発明の製造方法によれば、例えば、繊維径が1~1000nmの範囲内の、いわゆる「カーボンナノファイバー」を製造することができる。本発明の製造方法により得られるカーボンナノファイバーの繊維径の相対標準偏差は、20%以下(好ましくは10%以下)である。
 (実施の形態)
 以下、本発明に係る実施の形態について図面を参照して説明する。ここでは、原料液をパルス状に導入するLPI法で炭素繊維を製造する例を示すが、本発明の範囲はこれらに限定されない。
 図1は、本発明の一実施の形態に係る炭素繊維の製造装置の模式図である。図1に示されるように、本実施の形態に係る炭素繊維の製造装置100は、原料液導入口110、キャリアガス導入口120、反応管130、フィルター140、電気炉150およびガス排出口160を有する。
 反応管130は、炭素繊維を生成するための円管状の反応器であり、中心軸が鉛直方向に向くように配置されている。原料液導入口110およびキャリアガス導入口120は、反応管130の上側の開口部に設けられており、ガス排出口160は、反応管130の下側の開口部に設けられている。反応管130の端部を除く部分は、電気炉150に取り囲まれている。電気炉150は、反応管130を加熱して、900~1300℃に加熱された高温領域170を形成する。また、原料液導入口110およびキャリアガス導入口120を設けられた開口部と、高温領域170との間には、原料液から原料ガスを生成するための多孔質体であるフィルター140が配置されている。フィルター140も電気炉150により加熱されている。
 次に、図2A~Cを参照して、炭素繊維の製造装置100を用いて炭素繊維を製造する手順を説明する。図2A~Cは、炭素繊維の製造装置100の部分拡大図である。これらの図では、電気炉150を省略している。また、反応管130の温度を色で示している(高温:黒色、低温:白色)。
 炭素繊維の製造を開始する前に、予め反応管130を900~1300℃に加熱しておく。これに伴い、フィルター140も加熱される。
 まず、図2Aに示されるように、炭化水素またはアルコール(炭素化合物)および有機金属化合物(触媒の前駆体)を含む原料液210の液滴を、原料液導入口110から反応管130内に滴下する(パルス状に導入する)。原料液210の液滴は、加熱されたフィルター140の上に落ち、一瞬にして蒸発および熱分解される。これにより、炭素源232および触媒微粒子234を含む原料ガス230が生成される。
 原料液210の液滴を導入した直後に、図2Bに示されるように、キャリアガス220をキャリアガス導入口120から反応管130内にパルス状に導入する。これに伴い、原料ガス230は、速やかに高温領域170に押し出され、900~1300℃に加熱される。高温環境下において炭素源232と触媒微粒子234とが接触することで、触媒微粒子234から初期繊維236が長さ方向に成長する。
 前述の通り、キャリアガス220は、パルス状に導入される。したがって、高温領域170に到達した原料ガス230は、それ以上反応管130の下部(ガス排出口160)に向かって押し出されることはない。したがって、原料ガス230は、比較的長時間高温領域170に滞留する。その結果、図2Cに示されるように、触媒微粒子234から成長した初期繊維236が熱CVDにより半径方向に成長して、長さ方向および半径方向に十分に成長した炭素繊維238が生成される。
 図2A~図2Cに示される操作を順次繰り返すことで、所望の長さおよび太さの炭素繊維238を連続して大量に製造することができる。必要量の炭素繊維を製造した後、電気炉150の電源を切り、反応管130の温度を室温まで下げる。その後、反応管130の下部から、反応管130の下部に堆積した炭素繊維238を回収する。
 以上のように、本発明に係る炭素繊維の製造方法は、原料液を反応器内に導入した後に、キャリアガスを反応器内にパルス状に導入することを特徴とする。これにより、原料液に由来する原料ガスは、速やかに反応器の高温領域に運ばれ、その後比較的長い時間高温領域に滞留する。その結果、初期繊維の長さ方向の成長および半径方向の成長を効率的かつ十分に進行させることができ、長さ方向および半径方向に十分に成長した炭素繊維を効率よく製造することができる。
 以下、本発明について実施例を参照して詳細に説明するが、本発明はこれらの実施例により限定されない。
 1.炭素繊維の製造
 図1に示される炭素繊維の製造装置100を用いて、以下の手順で炭素繊維を製造した。反応管130としては、長さ100cm、内径4.2cmのセラミックスチューブ(株式会社ニッカトー)を使用した。実施例1~3では、炭素繊維を製造する際にキャリアガスをパルス状に反応管130内に導入した。一方、比較例1~3では、炭素繊維を製造する際にキャリアガスを連続して反応管130内に導入した。
 (実施例1)
 まず、反応管130が室温の状態で、キャリアガス導入口120から窒素ガスを反応管130内に流し、反応管130内の空気を窒素ガスに置換した。次いで、キャリアガス導入口120から水素ガスを反応管130内に流し、反応管130内の窒素ガスを水素ガスに置換した。その後、反応管130内に水素ガスを留めた状態で、電気炉150を用いて反応管130を1200℃まで昇温させ、維持させた。
 炭素化合物および触媒の前駆体を含む原料液(炭素化合物:ベンゼン94質量%、触媒の前駆体:フェロセン5質量%、助触媒:チオフェン1質量%)を調製した。この原料液20μLをマイクロシリンジを用いて原料液導入口110からパルス状に反応管130内に導入し、その直後に、水素ガス40mLをキャリアガス導入口120からパルス状に反応管130内に導入した。この原料液の導入および水素ガスの導入の一連の操作を60秒ごとに、合計20回繰り返した。
 最後に、キャリアガス導入口120から窒素ガスを反応管130内に流し、反応管130内の空気を窒素ガスに置換するとともに、反応管130を室温まで冷却した。その後、反応管130の下部に堆積した炭素繊維を、反応管130の下部から回収した。製造中に使用した水素ガス(キャリアガス)の量は、800mLであった。
 (実施例2)
 毎回の水素ガスの導入量を60mLとすると共に、原料液の導入および水素ガスの導入の一連の操作を20秒ごとに合計20回繰り返した点を除き、実施例1と同様の手順で炭素繊維を製造した。製造中に使用した水素ガス(キャリアガス)の量は、1200mLであった。
 (実施例3)
 炭素化合物としてエタノールを含む原料液(炭素化合物:エタノール97質量%、触媒の前駆体:フェロセン2質量%、助触媒:チオフェン1質量%)を使用した点を除き、実施例1と同様の手順で炭素繊維を製造した。製造中に使用した水素ガス(キャリアガス)の量は、800mLであった。
 (比較例1)
 まず、反応管130が室温の状態で、キャリアガス導入口120から窒素ガスを反応管130内に流し、反応管130内の空気を窒素ガスに置換した。次いで、キャリアガス導入口120から水素ガスを反応管130内に流し、反応管130内の窒素ガスを水素ガスに置換した。水素ガスを100mL/分の流量で流しながら、電気炉150を用いて反応管130を1200℃まで昇温させ、維持させた。
 炭素化合物および触媒の前駆体を含む原料液(炭素化合物:ベンゼン94質量%、触媒の前駆体:フェロセン5質量%、助触媒:チオフェン1質量%)を調製した。水素ガスを100mL/分の流量で流しながら、原料液20μLをマイクロシリンジを用いて原料液導入口110からパルス状に反応管130内に60秒ごとに合計20回繰り返し導入した。
 最後に、キャリアガス導入口120から窒素ガスを反応管130内に流し、反応管130内の空気を窒素ガスに置換するとともに、反応管130を室温まで冷却した。その後、反応管130の下部に堆積した炭素繊維を、反応管130の下部から回収した。製造中に使用した水素ガス(キャリアガス)の量は、2000mLであった。
 (比較例2)
 水素ガスの流量を400mL/分とした点を除き、比較例1と同様の手順で炭素繊維を製造した。製造中に使用した水素ガス(キャリアガス)の量は、8000mLであった。
 (比較例3)
 水素ガスの流量を180mL/分とすると共に、原料液の導入を20秒ごとに合計20回繰り返した点を除き、比較例1と同様の手順で炭素繊維を製造した。製造中に使用した水素ガス(キャリアガス)の量は、1200mLであった。
 2.各製造方法の評価
 実施例1~3および比較例1~3の各製造方法について、炭素収率を算出すると共に、製造された炭素繊維の繊維径を測定した。また各製造方法について、炭素繊維の繊維径の相対標準偏差を算出した。
 (1)炭素収率の算出
 実施例1~3および比較例1~3の各製造方法について、以下の式(1)により炭素収率を算出した。
 [炭素収率の算出式]
 炭素収率=(炭素繊維の質量)/(原料液に含まれる炭素の質量)×100…(1)
 (2)繊維径の測定および相対標準偏差の算出
 実施例1~3および比較例1~3の各製造方法で製造された炭素繊維を、走査電子顕微鏡(JSM-5410;日本電子株式会社)および電界放射型走査顕微鏡(JSM-6500F;日本電子株式会社)を用いて観察した。図3Aは、実施例1の製造方法で製造された炭素繊維の電子顕微鏡像であり、図3Bは、実施例2の製造方法で製造された炭素繊維の電子顕微鏡像であり、図3Cは、実施例3の製造方法で製造された炭素繊維の電子顕微鏡像である。また、図4Aは、比較例1の製造方法で製造された炭素繊維の電子顕微鏡像であり、図4Bは、比較例2の製造方法で製造された炭素繊維の電子顕微鏡像であり、図4Cは、比較例3の製造方法で製造された炭素繊維の電子顕微鏡像である。
 各製造方法について、得られた電子顕微鏡像から無作為に30本の炭素繊維を選択し、各炭素繊維の繊維径を計測した。次いで、各製造方法について、炭素繊維の繊維径の算術平均値および標準偏差を算出し、標準偏差を算術平均値で除することにより相対標準偏差を算出した。
 (3)結果
 各製造方法についての、炭素収率、炭素繊維の繊維径、その相対標準偏差、キャリアガスの使用量、原料の導入間隔および副生成物の量を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、比較例1では、原料ガスが高温領域に到達するのに時間がかかり、初期繊維の生成開始のタイミングがずれるため、炭素繊維の繊維径のバラつきが大きかった。比較例2では、原料ガスが高温領域を短時間で通過してしまうため、炭素繊維の繊維径のバラつきが大きく、炭素収率も低かった。比較例3では、原料が高温領域に到達するまでの間に異なるパルスに由来する原料同士が干渉してしまうため、炭素繊維の繊維径のバラつきが大きく、繊維状ではない副生成物の量が非常に多かった(図4C参照)。
 これに対し、実施例1~3では、原料ガスが高温領域に到達する時間が短く、かつ原料ガスが高温領域に滞留する時間が長いため、炭素繊維の繊維径のバラつきが小さく、炭素収率も高かった。また、副生成物の量も少なかった。なお、実施例3では、炭素収率が9.6%であるが、炭素化合物としてエタノールを使用している割には炭素収率が高いといえる。
 本出願は、2012年3月8日出願の特願2012-051855に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
 本発明に係る炭素繊維の製造方法は、長く、かつ太さのバラつきが小さい炭素繊維を連続して製造することができるため、高品質な炭素繊維の製造方法として有用である。本発明に係る製造方法により製造された炭素繊維は、例えば、プラスチック強化材料やガス吸蔵材料、電極材料などの幅広い用途において使用されうる。
 100 炭素繊維の製造装置
 110 原料液導入口
 120 キャリアガス導入口
 130 反応管
 140 フィルター
 150 電気炉
 160 ガス排出口
 210 原料液
 220 キャリアガス
 230 原料ガス
 232 炭素源
 234 触媒微粒子
 236 初期繊維
 238 炭素繊維

Claims (6)

  1.  炭素化合物と、触媒または触媒の前駆体とを含む原料液を準備する工程と、
     炭素繊維が成長できる温度に加熱された高温領域を有する反応器を準備する工程と、
     前記原料液を前記反応器内に導入して、炭素源を含むガスと前記ガスに分散した触媒微粒子とからなる混合物を生成させる工程と、
     キャリアガスを前記反応器内にパルス状に導入して、前記混合物を前記高温領域に押し出す工程と、
     を有する、炭素繊維の製造方法。
  2.  前記キャリアガスを前記反応器内にパルス状に導入して、前記混合物を前記高温領域に押し出す工程の後に、
     前記高温領域において、前記混合物に含まれる前記炭素源と前記触媒微粒子とを接触させて初期繊維を成長させ、その後に前記キャリアガスが滞留した環境で炭素繊維を成長させる工程をさらに有する、請求項1に記載の炭素繊維の製造方法。
  3.  前記混合物および前記キャリアガスは、前記反応器内の前記高温領域以外の領域に導入される、請求項1に記載の炭素繊維の製造方法。
  4.  前記混合物は、前記反応器内に導入された前記原料液を蒸発または熱分解させることで生成される、請求項1に記載の炭素繊維の製造方法。
  5.  前記高温領域の温度は、900~1300℃の範囲内である、請求項1に記載の炭素繊維の製造方法。
  6.  繊維径が1~1000nmの範囲内であり、かつ繊維径の相対標準偏差が20%以下である、炭素繊維。
PCT/JP2013/001473 2012-03-08 2013-03-07 炭素繊維の製造方法および炭素繊維 WO2013132871A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014503505A JP6020850B2 (ja) 2012-03-08 2013-03-07 炭素繊維の製造方法および炭素繊維
KR1020147024045A KR101952479B1 (ko) 2012-03-08 2013-03-07 탄소섬유의 제조 방법 및 탄소섬유
US14/382,427 US9475700B2 (en) 2012-03-08 2013-03-07 Method for manufacturing carbon fiber, and carbon fiber
CN201380012268.0A CN104246030B (zh) 2012-03-08 2013-03-07 碳纤维制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-051855 2012-03-08
JP2012051855 2012-03-08

Publications (1)

Publication Number Publication Date
WO2013132871A1 true WO2013132871A1 (ja) 2013-09-12

Family

ID=49116360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001473 WO2013132871A1 (ja) 2012-03-08 2013-03-07 炭素繊維の製造方法および炭素繊維

Country Status (5)

Country Link
US (1) US9475700B2 (ja)
JP (1) JP6020850B2 (ja)
KR (1) KR101952479B1 (ja)
CN (1) CN104246030B (ja)
WO (1) WO2013132871A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109205589B (zh) * 2017-07-07 2022-04-01 天津大学 多孔肋骨状碳材料的制备方法
CN109881305B (zh) * 2019-04-03 2023-08-22 中国恩菲工程技术有限公司 一种连续制备硅纳米纤维的气相纺丝方法及装置
CN115382467A (zh) * 2022-08-24 2022-11-25 常州爱特恩新材料科技有限公司 一种碳纤维的制造***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262914A (ja) * 1985-09-11 1987-03-19 Asahi Chem Ind Co Ltd 炭素質繊維の製造方法
JP2003171832A (ja) * 2001-12-11 2003-06-20 Showa Denko Kk 炭素繊維の合成用原料組成物、それを用いた炭素繊維の製造方法および炭素繊維
JP2010052958A (ja) * 2008-08-26 2010-03-11 Toshiba Corp ナノカーボン生成炉

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440621A (en) * 1987-08-07 1989-02-10 Showa Denko Kk Production of carbon fiber by vapor process
JPH0314623A (ja) * 1988-11-07 1991-01-23 Asahi Chem Ind Co Ltd 炭素繊維の製造方法
JP3117523B2 (ja) 1992-01-09 2000-12-18 住友ベークライト株式会社 気相法炭素繊維の製造方法
JP3071571B2 (ja) 1992-07-24 2000-07-31 住友ベークライト株式会社 気相法炭素繊維の製造方法
US5374415A (en) * 1993-02-03 1994-12-20 General Motors Corporation Method for forming carbon fibers
US5846509A (en) * 1995-09-11 1998-12-08 Applied Sciences, Inc. Method of producing vapor grown carbon fibers using coal
FR2841233B1 (fr) * 2002-06-24 2004-07-30 Commissariat Energie Atomique Procede et dispositif de depot par pyrolyse de nanotubes de carbone
JP4156978B2 (ja) 2003-06-04 2008-09-24 住友ベークライト株式会社 炭素繊維の製造方法
FI121334B (fi) * 2004-03-09 2010-10-15 Canatu Oy Menetelmä ja laitteisto hiilinanoputkien valmistamiseksi
JP2006030963A (ja) 2004-06-15 2006-02-02 Canon Inc ユニットおよび電子写真画像形成装置
ATE423231T1 (de) 2004-09-15 2009-03-15 Showa Denko Kk Herstellungsverfahren für in der gasphase gewachsene kohlenstofffasern
TWI247060B (en) * 2004-12-31 2006-01-11 Yonyu Plastics Co Ltd Method producing vapor-grown carbon fibers having 3-d linkage structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262914A (ja) * 1985-09-11 1987-03-19 Asahi Chem Ind Co Ltd 炭素質繊維の製造方法
JP2003171832A (ja) * 2001-12-11 2003-06-20 Showa Denko Kk 炭素繊維の合成用原料組成物、それを用いた炭素繊維の製造方法および炭素繊維
JP2010052958A (ja) * 2008-08-26 2010-03-11 Toshiba Corp ナノカーボン生成炉

Also Published As

Publication number Publication date
KR101952479B1 (ko) 2019-02-26
KR20140131935A (ko) 2014-11-14
JPWO2013132871A1 (ja) 2015-07-30
US9475700B2 (en) 2016-10-25
CN104246030B (zh) 2016-02-24
JP6020850B2 (ja) 2016-11-02
CN104246030A (zh) 2014-12-24
US20150086469A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
KR101460373B1 (ko) 유동층에서 탄소 나노튜브를 제조하는 방법
JP5550833B2 (ja) 高品質単層カーボンナノチューブ成長の方法および装置
CN100340476C (zh) 由高压co气相成核和生长单壁碳质毫微管
JP4968643B2 (ja) 単層カーボンナノチューブの製造方法
JP5594961B2 (ja) 狭小な直径のカーボン単層ナノチューブの合成
CN100564251C (zh) 用于生产碳纳米管的方法和催化剂
KR101614878B1 (ko) 긴 탄소 나노튜브를 제조하는 방법 및 장치
KR102388564B1 (ko) 유동층 반응기에서 카본 나노튜브 제조 방법
US20090275696A1 (en) Vapor Grown Carbon Fiber, and Production Method and Use Thereof
JP2011148689A (ja) カーボンナノチューブから成る集合体および糸条体の製造方法
WO2013132871A1 (ja) 炭素繊維の製造方法および炭素繊維
Baldissarelli et al. Plasma-assisted production of carbon black and carbon nanotubes from methane by thermal plasma reform
EP1407064B1 (en) Method for producing vapor grown carbon fiber
JP6403144B2 (ja) 気相法微細炭素繊維の製造方法
JP2006057231A (ja) 気相法炭素繊維の製造方法および製造装置
JP6569101B2 (ja) カーボンナノファイバーの製造方法
JP2016153353A (ja) カーボンナノチューブの製造装置
CN114174220B (zh) 碳纳米管的制造装置和制造方法
RU2546154C1 (ru) Нанокомпозит на основе азотосодержащих углеродных нанотрубок с инкапсулированными частицами кобальта и никеля и способ его получения
Ibrahim et al. Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone
WO2018132373A2 (en) Apparatus and methods of forming solid carbon
RU2431600C1 (ru) Способ получения углеродных нанотрубок
JP4156978B2 (ja) 炭素繊維の製造方法
Sehrawat et al. Floating catalyst chemical vapour deposition (FCCVD) for direct spinning of CNT aerogel: A review
JPH0413448B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380012268.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014503505

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147024045

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14382427

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13757711

Country of ref document: EP

Kind code of ref document: A1