WO2013128521A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2013128521A1
WO2013128521A1 PCT/JP2012/007474 JP2012007474W WO2013128521A1 WO 2013128521 A1 WO2013128521 A1 WO 2013128521A1 JP 2012007474 W JP2012007474 W JP 2012007474W WO 2013128521 A1 WO2013128521 A1 WO 2013128521A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
resin
active material
negative electrode
electrode active
Prior art date
Application number
PCT/JP2012/007474
Other languages
English (en)
French (fr)
Inventor
佳世 水野
林 圭一
栄克 河端
佑介 杉山
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to US14/381,797 priority Critical patent/US20150050564A1/en
Priority to DE112012005969.7T priority patent/DE112012005969T5/de
Publication of WO2013128521A1 publication Critical patent/WO2013128521A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a secondary battery such as a lithium ion secondary battery.
  • Secondary batteries such as lithium ion secondary batteries are small and have a large capacity, so they are used in a wide range of fields such as mobile phones and notebook computers. In recent years, it has been studied to be used as a vehicle drive source.
  • the secondary battery is composed of a positive electrode, a negative electrode, and an electrolytic solution.
  • the positive electrode is, for example, a positive electrode active composed of a metal composite oxide of lithium and a transition metal such as a lithium / manganese composite oxide, a lithium / cobalt composite oxide, or a lithium / nickel composite oxide.
  • the negative electrode is formed by covering a current collector with a negative electrode active material capable of inserting and extracting lithium ions.
  • a negative electrode active material capable of inserting and extracting lithium ions carbon materials such as graphite and graphite, silicon-based materials such as silicon and silicon oxide, and the like are used.
  • Patent Document 1 discloses an electrolytic solution for a lithium ion secondary battery to which a hydroxy acid derivative compound is added.
  • the cyclic carbonate is described as an organic solvent which can be used.
  • FEC fluoroethylene carbonate
  • DFEC difluoroethylene carbonate
  • VC vinylene carbonate
  • VEC vinyl ethylene carbonate
  • a nonaqueous electrolytic solution in which LiPF 6 is dissolved as an electrolyte in an organic solvent prepared by mixing ethylene carbonate (EC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC).
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • FEC is a component that has a high oxidation-reduction potential and is easily reductively decomposed among the components of the electrolytic solution.
  • a solid electrolyte interface coating (SEI (Solid Electrolyte Interface) film) containing a reduction product of FEC on the surface of the negative electrode active material or the surface of the positive electrode active material. Is easily formed.
  • SEI film prevents direct contact between the electrolytic solution and the active material, thereby suppressing deterioration of the electrolytic solution and improving the cycle characteristics of the secondary battery.
  • the present invention has been made in view of such circumstances, and provides a secondary battery capable of maintaining cycle characteristics at room temperature and suppressing deterioration in cycle characteristics when used at high temperatures.
  • a secondary battery of the present invention is a secondary battery comprising a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolyte solution.
  • the positive electrode and / or the negative electrode has an organic part made of resin and an inorganic part made of silica, and contains a binder containing the organic-inorganic hybrid material that binds the positive electrode active material and / or the negative electrode active material Including
  • the electrolytic solution includes a fluorine-containing cyclic carbonate containing at least one fluorine.
  • HF is captured by the inorganic part (silica) of the organic-inorganic silica hybrid material contained in the binder that binds the active material, so that the cycle characteristics of the secondary battery by HF are captured. It is thought that the decrease of the is suppressed.
  • silica of an organic-inorganic hybrid material does not participate in charging / discharging, even if it contacts with HF and is corroded, there is no bad influence on a battery characteristic.
  • the effect of the secondary battery of the present invention becomes remarkable. This is because silicon oxide is easily corroded by HF. It is considered that the deterioration of the cycle characteristics is suppressed when the inorganic part (silica) of the organic-inorganic hybrid material is corroded by HF before the silicon oxide contained in the negative electrode active material.
  • the secondary battery of the present invention the deterioration of the cycle characteristics at the time of high temperature use which can occur in the secondary battery using the electrolytic solution containing the fluorine-containing cyclic carbonate is suppressed.
  • the numerical range “a to b” described in this specification includes the lower limit “a” and the upper limit “b”.
  • the numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples.
  • the secondary battery of the present invention mainly includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolytic solution. Below, it explains in full detail about a positive electrode, a negative electrode, electrolyte solution, and another structure.
  • the positive electrode may include a positive electrode active material that can occlude and release alkali metal ions such as lithium ions and sodium ions that serve as electrolyte ions, and a binder that binds the positive electrode active material. Furthermore, the positive electrode may contain a conductive additive.
  • the positive electrode active material, the conductive additive, and the binder are not particularly limited and can be used as long as they can be used in the secondary battery.
  • the binder will be described in detail later.
  • the positive electrode contains a conductive additive
  • a material generally used for a secondary battery electrode may be used as the conductive additive.
  • the conductive assistant for example, conductive carbon materials such as carbon black (carbonaceous fine particles) such as acetylene black and ketjen black, and carbon fibers are preferably used. Besides conductive carbon materials, conductive organic compounds are also used. A known conductive aid such as may be used. One of these may be used alone or in combination of two or more.
  • the positive electrode active material for example, a metal composite oxide of an element serving as an electrolyte ion and a transition metal such as a lithium / manganese composite oxide, a lithium / cobalt composite oxide, or a lithium / nickel composite oxide can be used.
  • a metal composite oxide of an element serving as an electrolyte ion and a transition metal such as a lithium / manganese composite oxide, a lithium / cobalt composite oxide, or a lithium / nickel composite oxide
  • examples of the positive electrode active material include LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , and Li 2 MnO 3 . It is done.
  • an active material that does not contain an element such as lithium that becomes an electrolyte ion in charge and discharge for example, sulfur-modified compound obtained by introducing sulfur into an organic compound such as simple sulfur (S) or polyacrylonitrile can be used.
  • S simple sulfur
  • polyacrylonitrile a compound obtained by introducing sulfur into an organic compound such as simple sulfur (S) or polyacrylonitrile
  • an active material that does not include an element that becomes an electrolyte ion is used for both the positive electrode and the negative electrode, it is necessary to pre-dope an element that becomes an electrolyte ion.
  • the positive electrode active material is preferably in powder form, and the particle size is not particularly limited.
  • the current collector that can be used for the positive electrode may be any material that is generally used for the positive electrode of a secondary battery, such as aluminum, nickel, and stainless steel. Various shapes of current collectors such as meshes and metal foils can be used.
  • the positive electrode active material described above constitutes a positive electrode material that covers at least the surface of the current collector.
  • a positive electrode is comprised by crimping
  • the negative electrode may include a negative electrode active material that can occlude / release alkali metal ions such as lithium ions and sodium ions that serve as electrolyte ions, and a binder that binds the negative electrode active material. Furthermore, the negative electrode may contain a conductive additive.
  • the binder will be described in detail later.
  • a material generally used for a secondary battery electrode may be used as the conductive aid.
  • conductive carbon materials such as carbon black (carbonaceous fine particles) such as acetylene black and ketjen black, and carbon fibers.
  • known conductive materials such as conductive organic compounds are also used.
  • An auxiliary agent may be used.
  • the conductive assistant one of these may be used alone or in combination of two or more.
  • the negative electrode active material contains an element that can occlude / release lithium ions and can be alloyed with lithium and / or an element that can be alloyed with lithium.
  • the negative electrode active material consists of a compound.
  • Elements that can be alloyed with lithium include Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, Ge, Sn, Pb, Sb, Bi are mentioned. It is preferable to use a negative electrode active material containing one or more of these.
  • an element that can be alloyed with lithium is preferably silicon (Si) or tin (Sn).
  • the compound having an element that can be alloyed with lithium is preferably a silicon compound or a tin compound.
  • the silicon compound is preferably a silicon oxide represented by SiOx (0.3 ⁇ x ⁇ 2.3).
  • tin compounds include tin alloys (Cu—Sn alloy, Co—Sn alloy, etc.).
  • a carbon-based material such as graphite can be used as the negative electrode active material, and metallic lithium can also be used.
  • the negative electrode active material one of these can be used alone or a mixture of two or more can be used.
  • the SiOx preferably includes a Si phase and a SiO 2 phase.
  • the Si phase is composed of simple silicon and is a phase that can occlude and release electrolyte ions.
  • the Si phase has a large theoretical discharge capacity, and expands and contracts as electrolyte ions are stored and released.
  • the SiO 2 phase is made of SiO 2 and relaxes expansion / contraction of the Si phase.
  • Si phase is covered by SiO 2 phase, it may form a negative electrode active material composed of a Si phase and SiO 2 phase.
  • a plurality of miniaturized Si phases are covered with a SiO 2 phase and integrated to form one particle, that is, a negative electrode active material. In this case, the volume change of the whole negative electrode active material particle can be suppressed effectively.
  • the mass ratio of the SiO 2 phase to the Si phase in the negative electrode active material is preferably 1 to 3. When the mass ratio is 1 or more, expansion / contraction of the negative electrode active material is suppressed. When the mass ratio is 3 or less, the charge / discharge capacity of the negative electrode active material can be maintained high.
  • a raw material powder containing silicon monoxide may be used as a raw material for the negative electrode active material.
  • silicon monoxide in the raw material powder is disproportionated into two phases of SiO 2 phase and Si phase.
  • silicon monoxide which is a homogeneous solid having an atomic ratio of Si to O of approximately 1: 1, is separated into two phases of SiO 2 phase and Si phase by reaction inside the solid. .
  • the silicon oxide powder obtained by disproportionation includes a SiO 2 phase and a Si phase.
  • Disproportionation of silicon monoxide in the raw powder proceeds by applying energy to the raw powder.
  • Examples of the disproportionation method of silicon monoxide include a method of heating the raw material powder and milling.
  • the raw material powder When the raw material powder is heated, it is generally said that almost all silicon monoxide is disproportionated and separated into two phases at 800 ° C. or higher if oxygen is removed.
  • the raw material powder containing the amorphous silicon monoxide powder is subjected to heat treatment at 800 ° C. to 1200 ° C. for 1 hour to 5 hours in an inert atmosphere such as vacuum or inert gas.
  • an inert atmosphere such as vacuum or inert gas.
  • the raw material powder When milling the raw material powder, a part of the mechanical energy of the milling contributes to chemical atomic diffusion at the solid phase interface of the raw material powder, and generates an oxide phase and a silicon phase.
  • the raw material powder may be mixed using a V-type mixer, a ball mill, an attritor, a jet mill, a vibration mill, a high energy ball mill or the like in an inert gas atmosphere such as vacuum or argon gas. Further heat treatment may be performed after milling to further promote disproportionation of silicon monoxide.
  • the negative electrode active material is preferably in the form of powder, and the average particle size is preferably 1 ⁇ m to 10 ⁇ m.
  • the negative electrode active material powder may be used after being classified to 2 ⁇ m or less, further 4 ⁇ m or less.
  • the above-described negative electrode active material constitutes a negative electrode material that covers at least the surface of the current collector.
  • the negative electrode is configured by pressing the negative electrode material as a negative electrode active material layer onto a current collector.
  • a current collector for example, a metal mesh or metal foil such as copper or copper alloy may be used.
  • the secondary battery of the present invention includes a binder in the positive electrode and / or the negative electrode.
  • the binder binds the positive electrode active material at the positive electrode and the negative electrode active material at the negative electrode.
  • the binder contains an organic-inorganic hybrid material.
  • the organic-inorganic hybrid material mainly has an organic part mainly composed of a resin such as an organic polymer and an inorganic part mainly composed of silica. Below, an organic-inorganic hybrid material is demonstrated.
  • the organic-inorganic hybrid material is preferably a cured product of an alkoxysilyl group-containing compound containing an alkoxysilyl group.
  • the alkoxysilyl group has a structure represented by the formula (I).
  • R 1 independently represents an alkyl group having 1 to 8 carbon atoms
  • R 2 represents an alkyl group or alkoxyl group having 1 to 8 carbon atoms
  • n 1 and n 2 each independently represents an integer of 1 to 100.
  • all of R 1 and R 2 are methyl groups. That is, the alkoxysilyl group-containing compound is a compound in which a component (alkoxysilyl group) that changes to silica represented by the formula (I) is bonded to at least a part of the precursors of various base resins.
  • the base resin precursor is not particularly limited as long as it is a precursor corresponding to the structure of the organic part of the organic-inorganic hybrid material. Specifically, bisphenol A type epoxy resin precursor, novolak type epoxy resin precursor, acrylic resin precursor, phenol resin precursor, polyamic acid (polyimide resin precursor), soluble polyimide resin precursor, polyurethane resin precursor, A polyamide-imide resin precursor.
  • an alkoxysilyl group-containing compound in which the alkoxysilyl group represented by the formula (I) is introduced into these resin precursors specifically, an alkoxy group-containing silane-modified bisphenol A type epoxy resin, an alkoxy group-containing silane Modified novolac epoxy resin, alkoxy group-containing silane-modified acrylic resin, alkoxy group-containing silane-modified phenol resin, alkoxy group-containing silane-modified polyamic acid resin, alkoxy group-containing silane-modified soluble polyimide resin, alkoxy group-containing silane-modified polyurethane resin, alkoxy group Containing silane-modified polyamideimide resin.
  • the binder is desirably made of one or more selected from these groups.
  • Each alkoxysilyl group-containing compound can be synthesized by a known technique.
  • the alkoxysilyl group-containing compound is an alkoxy group-containing silane-modified polyamic acid resin
  • it can be synthesized by reacting a polyamic acid composed of a carboxylic acid anhydride component and a diamine component with an alkoxysilane partial condensate.
  • the alkoxysilane partial condensate a product obtained by partially condensing a hydrolyzable alkoxysilane monomer in the presence of an acid or base catalyst and water is used.
  • the alkoxysilane partial condensate can be reacted with an epoxy compound in advance to form an epoxy group-containing alkoxysilane partial condensate, and then reacted with a polyamic acid to synthesize an alkoxy group-containing silane-modified polyamic acid resin.
  • an organic-inorganic hybrid material having an organic part and an inorganic part is obtained.
  • the alkoxysilyl group represented by the formula (I) participates in the sol-gel reaction, and an inorganic part made of silica is synthesized.
  • the sol-gel method will be described below.
  • a metal alkoxide compound represented by M (OR) y , M is a metal, OR is an alkoxysilyl group, and y is an integer corresponding to the valence of M
  • M (OR) y reacts as shown in the following formula (A) by hydrolysis.
  • the alkoxysilyl group-containing compound reacts with the alkoxysilyl group of another alkoxysilyl group-containing compound at the same time as the alkoxysilyl group represented by the formula (I) becomes silica.
  • the alkoxysilyl group represented by the formula (I) becomes silica, and at the same time, reacts with and binds to the OH group of the organic part (resin precursor). That is, after curing of the alkoxysilyl group-containing compound, an organic-inorganic hybrid material having a structure in which an organic part made of resin is crosslinked with an inorganic part made of silica is desirably obtained. Therefore, it has good adhesion to non-organic current collectors, active materials, and conductive assistants, and the current collector can be firmly held in the current collector.
  • the curing process until the organic part is synthesized differs depending on the type of resin that constitutes the organic part.
  • the alkoxysilyl group-containing compound is mixed with a positive electrode active material or a negative electrode active material, and a conductive additive and a solvent as necessary.
  • the organic part include those that solidify (dry) as the solvent evaporates, and those that solidify by various polymerization reactions after volatilization of the solvent.
  • the resin constituting the organic portion is a thermosetting resin, condensation polymerization is caused by heating to form a polymer network structure.
  • the curing conditions may be selected according to the type of the alkoxysilyl group-containing compound to be used, but it is convenient and desirable to cure by heating.
  • the organic part made of resin in which the solvent is volatilized and the resin precursor is solidified the hydrolysis and polycondensation of the alkoxysilyl group represented by formula (I) are promoted, and the inorganic part made of silica, respectively.
  • an organic-inorganic hybrid material having an organic part made of resin and an inorganic part made of silica can be obtained.
  • alkoxysilyl group-containing compounds listed above are cured to give bisphenol A type epoxy resin-silica hybrid, novolac type epoxy resin-silica hybrid, acrylic resin-silica hybrid, phenol resin-silica hybrid, polyimide.
  • As a binder it is good to contain 1 or more of these as essential.
  • the inorganic part of the organic / inorganic hybrid material is very fine.
  • n is 1 to 100 in the formula (I)
  • the size of the silica particles is on the order of several nanometers. Therefore, silica is finely dispersed in the organic-inorganic hybrid material.
  • the heating condition is preferably 80 ° C. to 250 ° C. for 2 hours to 4 hours, although it depends on the thickness formed on the current collector. However, it is not limited to this condition.
  • the organic / inorganic hybrid material may be contained as a binder in at least one of the positive electrode and the negative electrode.
  • the organic-inorganic hybrid material is preferably contained in a binder that binds the negative electrode active material containing silicon oxide from the viewpoint of reducing the adverse effect of HF on the silicon oxide used as the negative electrode active material.
  • the alkoxysilyl group of the alkoxysilyl group-containing compound is preferentially bonded to the surface of the negative electrode active material containing Si, so that a stable film is formed on the negative electrode active material. This is presumably because the alkoxy group easily reacts with the surface hydroxyl group (—OH group) of the silicon-based negative electrode active material.
  • the composite oxide used as the positive electrode active material is also easily affected by HF, it is also effective to use an organic-inorganic hybrid material as a binder for binding the positive electrode active material.
  • the binder may contain an organic / inorganic hybrid material as well as other binder components.
  • the organic / inorganic hybrid material is preferably contained in an amount of 30% by mass or more, more preferably 50% by mass to 100% by mass, based on 100% by mass of the entire binder.
  • binder components include polyvinylidene fluoride (PolyvinylideneDiFluoride: PVDF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyimide (PI), polyamideimide (PAI), carboxymethylcellulose (CMC), Examples include polyvinyl chloride (PVC), methacrylic resin (PMA), polyacrylonitrile (PAN), modified polyphenylene oxide (PPO), polyethylene oxide (PEO), polyethylene (PE), and polypropylene (PP). One or more of these may be used in combination with the organic-inorganic hybrid material.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene-butadiene rubber
  • PI polyimide
  • PAI polyamideimide
  • CMC carboxymethylcellulose
  • PVC polyvinyl chloride
  • PMA methacrylic resin
  • PAN polyacrylonit
  • a commercial item can also be used suitably as an alkoxysilyl group containing compound.
  • the trade name “COMPOCERAN E” (manufactured by Arakawa Chemical Industries) which is an alkoxy group-containing silane-modified bisphenol A type epoxy resin or an alkoxy group-containing silane-modified novolak type epoxy resin
  • the trade name “COMPOCELAN” which is an alkoxy group-containing silane-modified acrylic resin.
  • “Bisphenol A type epoxy resin-silica hybrid or novolac type epoxy resin-silica hybrid can be obtained by curing“ Composeran E ”.
  • the electrolytic solution contains a fluorine-containing cyclic carbonate containing at least one fluorine.
  • the electrolytic solution is a non-aqueous electrolytic solution in which an alkali metal salt as an electrolyte is dissolved in an organic solvent.
  • the electrolytic solution contains a fluorinated cyclic carbonate as an essential component.
  • the fluorine-containing cyclic carbonate only needs to contain at least one fluorine and may contain other halogens, but is preferably represented by the following formula (II).
  • each R 3 is independently hydrogen, fluorine, an alkyl group or a fluorinated alkyl group, and at least one of them represents fluorine or a fluorinated alkyl group
  • the electrolytic solution may include at least one of the fluorine-containing cyclic carbonates represented by the formula (II).
  • the carbon number thereof is preferably 1 or 2.
  • the electrolytic solution is a fluorine-containing cyclic carbonate having a structure in which at least one fluorine is bonded to one or more carbons constituting the cyclic structure as represented by the following formulas (II-1) to (II-3). It is preferable to include.
  • 4-fluoro-1,3-dioxolan-2-one represented by the formula (II-1) is preferable from the viewpoint of oxidation resistance.
  • organic solvents are preferably aprotic organic solvents, and for example, cyclic carbonates (excluding fluorine-containing cyclic carbonates), chain carbonates, ethers, and the like may be used.
  • cyclic carbonates excluding fluorine-containing cyclic carbonates
  • chain carbonates ethers, and the like
  • Cyclic carbonate has a high dielectric constant, and chain carbonate has low viscosity. For this reason, when electrolyte solution contains both a cyclic carbonate and a chain carbonate, the movement of electrolyte ion is not prevented and battery capacity can be improved.
  • the cyclic carbonate When the total organic solvent of the electrolytic solution is 100% by volume, the cyclic carbonate is 20% by volume to 40% by volume, further 25% by volume to 35% by volume, and the chain carbonate is 60% by volume to 80% by volume, and further 65% by volume.
  • the volume% is preferably 75% by volume.
  • the cyclic carbonate increases the dielectric constant of the electrolytic solution, while having a high viscosity. As the dielectric constant increases, the conductivity of the electrolyte improves. If the viscosity is high, the movement of the electrolyte ions is hindered and the conductivity is deteriorated.
  • Chain carbonate has a low dielectric constant but low viscosity. By blending both in a well-balanced range within the above blending ratio, the dielectric constant of the organic solvent can be increased to some extent and the viscosity can be decreased, a solvent having good conductivity can be adjusted, and the battery capacity can be improved.
  • the fluorine-containing cyclic carbonate is preferably 1% by volume to 40% by volume, more preferably 25% by volume to 35% by volume, when the entire organic solvent of the electrolytic solution is 100% by volume.
  • the charge / discharge cycle characteristics of the battery can be effectively improved, and the battery capacity can be further improved by suppressing the viscosity of the electrolytic solution to facilitate movement of electrolyte ions.
  • the cyclic carbonate contains a fluorine-containing cyclic carbonate as an essential component, and in addition, propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate, ⁇ -butyrolactone, vinylene carbonate, 2-methyl-gammabutyrolactone, acetyl-gammabutyrolactone, and gamma.
  • PC propylene carbonate
  • EC ethylene carbonate
  • butylene carbonate butylene carbonate
  • ⁇ -butyrolactone vinylene carbonate
  • 2-methyl-gammabutyrolactone 2-methyl-gammabutyrolactone
  • acetyl-gammabutyrolactone acetyl-gammabutyrolactone
  • gamma gamma
  • the chain carbonate is not particularly limited as long as it is a chain.
  • at least one selected from dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dibutyl carbonate, dipropyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester and acetic acid alkyl ester may be used. it can.
  • ethers examples include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane, and the like.
  • the electrolyte is preferably an alkali metal fluoride soluble in an organic solvent.
  • the alkali metal fluoride salt e.g., LiPF 6, LiBF 4, LiAsF 6, NaPF 6, may be used at least one selected from the group consisting of NaBF 4 and NaAsF 6.
  • the concentration of the electrolyte may be about 0.5 mol / L to 1.7 mol / L.
  • the above-described positive electrode and negative electrode, and the above electrolyte solution constitute the secondary battery of the present invention.
  • This secondary battery includes a separator sandwiched between a positive electrode and a negative electrode, as in a general secondary battery.
  • the separator is disposed between the positive electrode and the negative electrode, allows ions to move between the positive electrode and the negative electrode, and prevents an internal short circuit between the positive electrode and the negative electrode.
  • the non-aqueous electrolyte secondary battery is a sealed type, the separator is also required to have a function of holding an electrolytic solution.
  • the separator it is preferable to use a thin, microporous or non-woven membrane made of polyethylene, polypropylene, PAN, aramid, polyimide, cellulose, glass or the like.
  • the shape of the secondary battery is not particularly limited, and various shapes such as a cylindrical shape, a stacked shape, and a coin shape can be adopted. Regardless of the shape, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body, and the space between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal is used for current collection. After connecting using a lead or the like, the electrode body is sealed in a battery case together with an electrolytic solution to form a battery.
  • the secondary battery of the present invention may be mounted on a vehicle.
  • the vehicle may be a vehicle that uses electric energy from the secondary battery for all or part of its power source, and may be, for example, an electric vehicle, a hybrid vehicle, or the like.
  • a secondary battery When a secondary battery is mounted on a vehicle, a plurality of secondary batteries may be connected in series to form an assembled battery.
  • the secondary battery of the present invention can be used for various home appliances, office equipment, industrial equipment and the like driven by batteries such as personal computers and portable communication devices in addition to vehicles.
  • Lithium ion secondary battery of Example> A secondary battery containing a polyamide-imide resin-silica hybrid binder as the negative electrode and fluoroethylene carbonate (FEC) as the electrolyte was prepared by the following procedure.
  • a silane-modified polyamide-imide resin (“COMPOCERAN H900” manufactured by Arakawa Industrial Co., Ltd.) was prepared as a raw material for the binder that binds these negative electrode active material and conductive additive.
  • the basic skeleton of Composelan H900 is shown below. “Me” is a methyl group, “X” is an alkyl group spacer, and “m” is 0-2.
  • the above negative electrode active material, conductive additive and binder were mixed to obtain a slurry mixture.
  • This mixture contains N-methyl-2-pyrrolidone (NMP), which is a solvent for Composelan H900.
  • NMP N-methyl-2-pyrrolidone
  • the slurry-like mixture is applied to one side of a copper foil (thickness 20 ⁇ m) as a current collector using a doctor blade, pressed at a predetermined pressure, and heated at 200 ° C. for 2 hours for binding.
  • the agent was cured.
  • the negative electrode provided with the negative electrode active material layer of thickness 15 micrometers on the collector surface.
  • the base polyamideimide resin constitutes the organic part.
  • the silane-modified site at the end of the polyamideimide resin is converted into silica by hydrolysis and condensation polymerization with water in the atmosphere, and constitutes an inorganic part.
  • the silane-modified polyamideimide resin is a polyamide in which the polyamideimide resin that is an organic part is crosslinked with silica that is an inorganic part. It changes to an imide resin-silica hybrid.
  • lithium composite oxide LiNi 1/3 Co 1/3 Mn 1/3 O 2
  • acetylene black AB
  • PVDF polyvinylidene fluoride
  • a lithium ion secondary battery was produced using the positive electrode and the negative electrode produced by the above procedure.
  • An electrode body was produced by sandwiching a polypropylene porous film as a separator between a positive electrode and a negative electrode in which a positive electrode active material layer and a negative electrode active material layer were opposed to each other.
  • This electrode body was sealed with an aluminum film together with an electrolytic solution to obtain a laminate cell.
  • two aluminum films are formed into a bag shape by heat-sealing except for a part of the periphery of the aluminum film. The part was completely hermetically sealed. At this time, the tips of the current collector on the positive electrode side and the negative electrode side were protruded from the edge of the film so that they could be connected to external terminals.
  • FEC fluoroethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • the lithium ion secondary battery of the comparative example was the same as the above except that the silane-modified polyamideimide resin (hybrid binder) used in the lithium ion secondary battery of the example was changed to a polyamideimide resin (non-hybrid binder). A battery was produced.
  • the polyamideimide resin used is shown below. (“Q” is about 1 to 100 on average)
  • Lithium ion secondary battery of reference example A lithium ion secondary battery of a reference example was fabricated in the same procedure as described above except that the electrolyte solution containing FEC used in the lithium ion secondary battery of the example was changed to an electrolyte solution not containing FEC.
  • LiPF 6 as an electrolyte was dissolved in the prepared organic solvent so as to be 1 mol / L.
  • Table 1 shows the binders used in the lithium ion secondary batteries of Examples, Comparative Examples, and Reference Examples, and the organic solvents contained in the electrolytic solution.
  • each lithium ion secondary battery was conditioned prior to the charge / discharge test.
  • the conditioning treatment was performed by repeating charging and discharging three times at 25 ° C.
  • FIG. 1 shows the discharge capacity maintenance rate when charging / discharging at 25 ° C.
  • FIG. 2 shows the discharge capacity maintenance rate when charging / discharging at 55 ° C., respectively.
  • the lithium ion secondary batteries of Examples and Comparative Examples using an electrolytic solution containing FEC exhibited a high discharge capacity maintenance rate of about 80% in charge and discharge at 500 cycles at room temperature (FIG. 1). That is, when a lithium ion secondary battery is used at 25 ° C., cycle characteristics are improved by using FEC. At this time, the lithium ion secondary battery of the comparative example showed better cycle characteristics than the lithium ion secondary battery of the example. Both types differ in the type of binder contained in the negative electrode, but it was found that the cycle characteristics were not significantly reduced even when a polyamideimide resin-silica hybrid binder was used for the negative electrode.
  • the lithium ion secondary battery of the reference example using the electrolytic solution not containing FEC is higher in temperature than the lithium ion secondary battery of the example and comparative example using the electrolytic solution containing FEC. It was found that the cycle characteristics were excellent. This is presumably because hydrogen fluoride (HF) was generated by using an electrolytic solution containing FEC at a high temperature, and HF had an adverse effect on the active material. That is, since the lithium ion secondary battery of the reference example does not contain FEC, no hydrogen fluoride derived from FEC was generated, and excellent cycle characteristics were exhibited. However, even the lithium ion secondary batteries of Examples and Comparative Examples showed sufficient cycle characteristics as secondary batteries.
  • HF hydrogen fluoride
  • the lithium ion secondary battery of the example using the polyamideimide resin-silica hybrid binder for the negative electrode showed better cycle characteristics than the lithium ion secondary battery of the comparative example using the non-hybrid for the negative electrode. This is presumably because hydrogen fluoride was trapped in the silica portion of the polyamideimide resin-silica hybrid binder, and the adverse effects of hydrogen fluoride were reduced.
  • the cycle characteristics due to the temperature difference during charging and discharging were compared between the lithium ion secondary battery of the example and the lithium ion secondary battery of the comparative example. Comparing the discharge capacity retention rate at the 500th cycle, the lithium ion secondary battery of the comparative example was 82.0% at 25 ° C., but greatly decreased to 73.4% at 55 ° C. On the other hand, in the lithium ion secondary battery of the example, the discharge capacity maintenance rate at the 500th cycle was 77.2% at 25 ° C., but it was 75.7% at 55 ° C., and the discharge capacity decreased due to temperature rise. It can be said that the amount was greatly suppressed. In other words, the lithium ion secondary batteries of the examples were able to maintain cycle characteristics at room temperature and suppress deterioration in cycle characteristics when used at high temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 室温でのサイクル特性を維持するとともに、高温で使用される場合のサイクル特性の低下を抑制することが可能な二次電池を提供する。 正極活物質を含む正極と、負極活物質を含む負極と、電解液と、を備える二次電池において、正極および/または負極は、樹脂からなる有機部とシリカからなる無機部とを有し、正極活物質および/または負極活物質を結着する有機無機ハイブリッド材料を含有する結着剤を含み、電解液は、少なくとも1つのフッ素を含有する含フッ素環状カーボネートを含むことを特徴とする。

Description

二次電池
 本発明は、リチウムイオン二次電池などの二次電池に関するものである。
 リチウムイオン二次電池などの二次電池は、小型で大容量であるため、携帯電話やノート型パソコンといった幅広い分野で用いられている。また、近年、車両の駆動源としても用いられることが検討されている。
 二次電池は、正極と負極と電解液とから構成されている。リチウムイオン二次電池であれば、正極は、たとえば、リチウム・マンガン複合酸化物、リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物などのリチウムと遷移金属との金属複合酸化物からなる正極活物質と、正極活物質で被覆された集電体とからなる。負極は、リチウムイオンを吸蔵・放出し得る負極活物質で集電体を被覆して形成されている。リチウムイオンを吸蔵・放出し得る負極活物質として、グラファイトや黒鉛などの炭素材料、珪素や珪素酸化物などの珪素系材料などが用いられている。
 ところで近年、電池特性を向上させるべく、電解液中の成分について検討されている。特許文献1には、ヒドロキシ酸誘導体化合物を添加したリチウムイオン二次電池用電解液が開示されている。また、使用可能な有機溶媒として、環状カーボネートが記載されている。環状カーボネートのなかでも、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)を含むと、二次電池の高温サイクル特性が向上することが記載されている。
国際公開2009/113545号
 一般的な電解液として、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)およびジメチルカーボネート(DMC)を混合して調製した有機溶媒に、電解質としてLiPFを溶解させた非水電解液がある。この電解液を用いた二次電池のサイクル特性を向上させる一手段として、ECをFECに変更することが挙げられる。FECは、酸化還元電位が高く、電解液の成分の中でも還元分解されやすい成分である。このため、FECを含む電解液を用いた二次電池で充放電を行うと、負極活物質表面や正極活物質表面に、FECの還元生成物を含む固体電解質界面被膜(SEI(SolidElectrolyteInterphase)膜)が形成されやすい。このSEI膜により、電解液と活物質との直接接触が防止されることで、電解液の劣化が抑制され、二次電池のサイクル特性が向上するものと考えられる。
 ところが、本発明者等の検討によれば、FECを含む電解液を用いた二次電池で充放電を行うと、55℃の高温環境下では、室温で充放電を行った場合と比較して、二次電池のサイクル特性が低下することがわかった。これは、FECの高温安定性が低いこと、SEI膜が高温で電解液に溶解すること、等に起因すると推察される。
 本発明はかかる事情に鑑みてなされたものであり、室温でのサイクル特性を維持するとともに、高温で使用される場合のサイクル特性の低下を抑制することが可能な二次電池を提供する。
 本発明の二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、電解液と、を備える二次電池において、
 前記正極および/または前記負極は、樹脂からなる有機部とシリカからなる無機部とを有し、前記正極活物質および/または前記負極活物質を結着する有機無機ハイブリッド材料を含有する結着剤を含み、
 前記電解液は、少なくとも1つのフッ素を含有する含フッ素環状カーボネートを含むことを特徴とする。
 本発明の二次電池のサイクル特性が良好である理由は、次のように考えられる。
 既に説明した通り、本発明の二次電池を室温にて充放電させると、FECなどの含フッ素環状カーボネートの還元分解により、活物質の表面にSEI膜が形成される。室温においては、安定したSEI膜が形成され、優れたサイクル特性が維持される。一方、本発明の二次電池を高温で充放電させると、高温安定性に乏しい含フッ素環状カーボネートからフッ化水素(HF)が発生しやすい。HFは無機酸化物などを腐食させる性質を有するため、活物質とHFとが接触することでフッ化物が形成され、電池特性(とくにサイクル特性)が低下する恐れがある。しかし、本発明の二次電池では、活物質を結着する結着剤に含まれる有機無機シリカハイブリッド材料の無機部(シリカ)にHFが捕捉されることで、HFによる二次電池のサイクル特性の低下が抑制されると考えられる。なお、有機無機ハイブリッド材料のシリカは、充放電に関与するものではないため、HFと接触して腐食されても電池特性に悪影響はない。
 特に、珪素酸化物を含む負極活物質を用いた負極を備える場合には、本発明の二次電池の効果が顕著となる。これは、珪素酸化物がHFにより腐食しやすいためである。負極活物質に含まれる珪素酸化物よりも先に有機無機ハイブリッド材料の無機部(シリカ)がHFにより腐食されることで、サイクル特性の低下が抑制されると考えられる。
 本発明の二次電池によれば、含フッ素環状カーボネートを含む電解液を使用した二次電池に起こりうる高温使用時のサイクル特性の低下が、抑制される。
本発明の二次電池、比較例および参考例の二次電池を25℃で充放電させた結果を示すグラフであって、サイクル数の増加に対する放電容量維持率の変化を示す。 本発明の二次電池、比較例および参考例の二次電池を55℃で充放電させた結果を示すグラフであって、サイクル数の増加に対する放電容量維持率の変化を示す。
 以下に、本発明の二次電池を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a~b」は、下限aおよび上限bをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。
 本発明の二次電池は、主として、正極活物質を含む正極と、負極活物質を含む負極と、電解液と、を備える。以下に、正極、負極、電解液およびその他の構成について詳説する。
 <正極>
 正極は、電解質イオンとなるリチウムイオン、ナトリウムイオンなどのアルカリ金属イオンを吸蔵・放出可能な正極活物質と、正極活物質を結着する結着剤と、を含むとよい。さらに、正極は導電助剤を含んでもよい。正極活物質、導電助剤および結着剤は、特に限定はなく、二次電池で使用可能なものであれば使用できる。
 結着剤については、後に詳説する。結着剤の配合割合は、質量比で、正極活物質:結着剤=1:0.05~1:0.2であるのが好ましい。結着剤の配合割合がこの範囲にあれば、電極の成形性を低下させることなく電極のエネルギー密度を向上させられる。
 正極が導電助剤を含む場合には、導電助剤として二次電池の電極で一般的に用いられている材料を用いればよい。導電助剤として、たとえば、アセチレンブラック、ケッチェンブラック等のカーボンブラック(炭素質微粒子)、炭素繊維などの導電性炭素材料を用いるのが好ましく、導電性炭素材料の他にも、導電性有機化合物などの既知の導電助剤を用いてもよい。これらのうちの一種を単独でまたは二種以上を混合して用いるとよい。導電助剤の配合割合は、質量比で、正極活物質:導電助剤=1:0.01~1:0.3であるのが好ましい。導電助剤の配合割合がこの範囲にあれば、効率のよい導電パスが形成されるとともに、電極の成形性を低下させることなく電極のエネルギー密度を向上させられる。
 正極活物質としては、たとえば、リチウム・マンガン複合酸化物、リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物など、電解質イオンとなる元素と遷移金属との金属複合酸化物を用いることができる。具体的には、リチウム(イオン)二次電池用正極活物質であれば、正極活物質としてLiCoO、LiNi1/3Co1/3Mn1/3、LiMnO、などが挙げられる。正極活物質として、充放電における電解質イオンとなるリチウム等の元素を含まない活物質、たとえば硫黄単体(S)、ポリアクリロニトリルなどの有機化合物に硫黄を導入した硫黄変性化合物などを用いることもできる。ただし、正極および負極ともに電解質イオンとなる元素を含まない活物質を使用する場合には、電解質イオンとなる元素をプレドープする必要がある。正極活物質は、粉末状が好ましく、その粒径に特に限定はない。
 正極に使用可能な集電体は、アルミニウム、ニッケル、ステンレス鋼など、二次電池の正極に一般的に使用されるものであればよい。メッシュや金属箔などの種々の形状の集電体を用いることができる。
 上記の正極活物質は、集電体の少なくとも表面を被覆する正極材を構成する。一般的に、正極は、上記正極材を正極活物質層として集電体に圧着されることで構成される。
 <負極>
 負極は、電解質イオンとなるリチウムイオン、ナトリウムイオンなどのアルカリ金属イオンを吸蔵・放出可能な負極活物質と、負極活物質を結着する結着剤と、を含むとよい。さらに、負極は導電助剤を含んでもよい。
 結着剤については、後に詳説する。結着剤の配合割合は、質量比で、負極活物質:結着剤=1:0.05~1:0.2であるのが好ましい。結着剤の配合割合がこの範囲にあれば、電極の成形性を低下させることなく電極のエネルギー密度を向上させられる。
 負極が導電助剤を含む場合には、導電助剤として二次電池の電極で一般的に用いられている材料を用いればよい。たとえば、アセチレンブラック、ケッチェンブラック等のカーボンブラック(炭素質微粒子)、炭素繊維などの導電性炭素材料を用いるのが好ましく、導電性炭素材料の他にも、導電性有機化合物などの既知の導電助剤を用いてもよい。導電助剤として、これらのうちの一種を単独でまたは二種以上を混合して用いるとよい。導電助剤の配合割合は、質量比で、負極活物質:導電助剤=1:0.01~1:0.3であるのが好ましい。導電助剤の配合割合がこの範囲にあれば、効率のよい導電パスが形成されるとともに、電極の成形性を低下させることなく電極のエネルギー密度を向上させられる。
 本発明の二次電池がリチウムイオン二次電池であれば、負極活物質は、リチウムイオンを吸蔵・放出可能であってリチウムと合金化可能な元素および/またはリチウムと合金化可能な元素を含む化合物からなるのがよい。リチウムと合金化可能な元素としては、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biが挙げられる。これらのうちの一種以上を含む負極活物質を使用するのが好ましく、中でも、リチウムと合金化可能な元素は、珪素(Si)または錫(Sn)であるとよい。リチウムと合金化可能な元素を有する化合物は、珪素化合物または錫化合物であることがよい。珪素化合物は、SiOx(0.3≦x≦2.3)で表される珪素酸化物であることがよい。錫化合物としては、たとえば、スズ合金(Cu-Sn合金、Co-Sn合金等)などが挙げられる。また、負極活物質として黒鉛などの炭素系材料も使用可能であり、金属リチウムも使用可能である。負極活物質として、これらのうちの一種を単独あるいは二種以上を混合して使用することができる。
 上記のSiOxは、Si相と、SiO相とを含むことが好ましい。Si相は、珪素単体からなり、電解質イオンを吸蔵・放出し得る相である。Si相は、理論放電容量が大きく、電解質イオンの吸蔵・放出に伴って膨張・収縮する。SiO相は、SiOからなり、Si相の膨張・収縮を緩和する。Si相がSiO相により被覆されることで、Si相とSiO相とからなる負極活物質を形成しているとよい。さらには、微細化された複数のSi相がSiO相により被覆されて一体となって、1つの粒子、すなわち負極活物質を形成しているとよい。この場合には、負極活物質粒子全体の体積変化を効果的に抑えることができる。
 負極活物質でのSi相に対するSiO相の質量比は、1~3であることが好ましい。質量比が1以上であれば、負極活物質の膨張・収縮が抑制される。質量比が3以下であれば、負極活物質での充放電容量を高く維持できる。
 負極活物質の原料として、一酸化珪素を含む原料粉末を用いるとよい。この場合、原料粉末中の一酸化珪素を、SiO相とSi相との二相に不均化する。一酸化珪素の不均化では、SiとOとの原子比が概ね1:1の均質な固体である一酸化珪素が固体内部の反応により、SiO相とSi相との二相に分離する。不均化により得られる酸化珪素粉末は、SiO相とSi相とを含む。
 原料粉末の一酸化珪素の不均化は、原料粉末にエネルギーを与えることにより進行する。一酸化珪素の不均化方法として、一例として、原料粉末を加熱する、ミリングする、などの方法が挙げられる。
 原料粉末を加熱する場合、一般に、酸素を絶った状態であれば800℃以上で、ほぼすべての一酸化珪素が不均化して二相に分離すると言われている。具体的には、非結晶性の一酸化珪素粉末を含む原料粉末に対して、真空中または不活性ガス中などの不活性雰囲気中で800℃~1200℃、1時間~5時間の熱処理を行うことにより、非結晶性のSiO相と結晶性のSi相の二相を含む酸化珪素粉末が得られる。
 原料粉末をミリングする場合には、ミリングの機械的エネルギーの一部が、原料粉末の固相界面における化学的な原子拡散に寄与し、酸化物相と珪素相などを生成する。ミリングでは、原料粉末を、真空中、アルゴンガス中などの不活性ガス雰囲気下で、V型混合機、ボールミル、アトライタ、ジェットミル、振動ミル、高エネルギーボールミル等を使用して混合するとよい。ミリング後にさらに熱処理を施すことで、一酸化珪素の不均化をさらに促進させてもよい。
 負極活物質は、粉末状が好ましく、その平均粒径が1μm~10μmであるとよい。負極活物質粉末は、2μm以下さらには4μm以下に分級して使用されるとよい。
 上記の負極活物質は、集電体の少なくとも表面を被覆する負極材を構成する。一般的に、負極は、上記負極材を負極活物質層として集電体に圧着されることで構成される。集電体は、たとえば、銅や銅合金などの金属製のメッシュや金属箔を用いるとよい。
  <結着剤>
 本発明の二次電池は、正極および/または負極に結着剤を含む。結着剤は、正極では正極活物質を、負極では負極活物質を、それぞれ結着する。結着剤は、有機無機ハイブリッド材料を含有する。有機無機ハイブリッド材料は、主として、有機高分子などの樹脂を主成分とする有機部と、シリカを主成分とする無機部と、を有する。以下に、有機無機ハイブリッド材料について説明する。
 有機無機ハイブリッド材料は、アルコキシシリル基を含有するアルコキシシリル基含有化合物の硬化物であるのが好ましい。アルコキシシリル基は、式(I)で示される構造を有する。
Figure JPOXMLDOC01-appb-C000001
 式(I)において、Rは炭素数1~8のアルキル基、Rは炭素数1~8のアルキル基またはアルコキシル基、nおよびnは1~100の整数、をそれぞれ独立に表す。特に好ましくは、RおよびRの全てがメチル基である。すなわち、アルコキシシリル基含有化合物は、ベースとなる各種樹脂の前駆体の少なくとも一部に、式(I)で表されるシリカに変化する成分(アルコキシシリル基)を結合した化合物である。
 ベースとなる樹脂の前駆体は、有機無機ハイブリッド材料の有機部の構造に応じた前駆体であれば、その種類に特に限定はない。具体的には、ビスフェノールA型エポキシ樹脂前駆体、ノボラック型エポキシ樹脂前駆体、アクリル樹脂前駆体、フェノール樹脂前駆体、ポリアミック酸(ポリイミド樹脂前駆体)、可溶性ポリイミド樹脂前駆体、ポリウレタン樹脂前駆体、ポリアミドイミド樹脂前駆体、が挙げられる。すなわち、これらの樹脂前駆体に式(I)で表されるアルコキシシリル基が導入されたアルコキシシリル基含有化合物として、具体的には、アルコキシ基含有シラン変性ビスフェノールA型エポキシ樹脂、アルコキシ基含有シラン変性ノボラック型エポキシ樹脂、アルコキシ基含有シラン変性アクリル樹脂、アルコキシ基含有シラン変性フェノール樹脂、アルコキシ基含有シラン変性ポリアミック酸樹脂、アルコキシ基含有シラン変性可溶性ポリイミド樹脂、アルコキシ基含有シラン変性ポリウレタン樹脂、アルコキシ基含有シラン変性ポリアミドイミド樹脂、が挙げられる。結着剤は、これらの群から選ばれる一種以上を原料とするのが望ましい。
 アルコキシシリル基含有化合物は、それぞれ公知の技術によって合成することが出来る。たとえば、アルコキシシリル基含有化合物がアルコキシ基含有シラン変性ポリアミック酸樹脂であれば、カルボン酸無水物成分とジアミン成分とからなるポリアミック酸と、アルコキシシラン部分縮合物と、を反応させて合成することができる。アルコキシシラン部分縮合物としては、加水分解性アルコキシシランモノマーを、酸または塩基触媒、ならびに水の存在下で部分的に縮合させて得られるものが用いられる。このとき、アルコキシシラン部分縮合物を予めエポキシ化合物と反応させてエポキシ基含有アルコキシシラン部分縮合物としてから、ポリアミック酸と反応させて、アルコキシ基含有シラン変性ポリアミック酸樹脂を合成することもできる。
 アルコキシシリル基含有化合物を硬化させることで、有機部と無機部とを有する有機無機ハイブリッド材料が得られる。具体的には、式(I)で表されるアルコキシシリル基がゾル-ゲル反応に関与し、シリカからなる無機部が合成される。以下に、ゾル-ゲル法を説明する。ゾル-ゲル法の出発原料には、金属アルコキシド(M(OR)で表される化合物、Mは金属、ORはアルコキシシリル基、yはMの価数に応じた整数)が用いられる。M(OR)で表される化合物は、加水分解によって下記式(A)のように反応する。
 式(A):M(OR)+HO→M(OH)(OR)y-1+ROH
 ここで示した反応がさらに促進されると最終的にM(OH)が生成され、ここで生成した2分子の水酸化物間で縮合がおこると下記式(B)のように反応する。
 式(B):M(OH)+M(OH)→(OH)y-1M-O-M(OH)y-1+H
 このとき全てのOH基は重縮合することが可能であり、また末端にOH基を有する樹脂とも脱水重縮合反応することが可能である。
 すなわち、アルコキシシリル基含有化合物は、式(I)で示されるアルコキシシリル基がシリカになると同時に、他のアルコキシシリル基含有化合物のアルコキシシリル基とも反応する。あるいは、式(I)で示されるアルコキシシリル基がシリカになると同時に、有機部(樹脂前駆体)が有するOH基などとも反応して結合する。つまり、アルコキシシリル基含有化合物の硬化後には、望ましくは、樹脂からなる有機部がシリカからなる無機部で架橋された構造の有機無機ハイブリッド材料が得られる。そのため、有機的ではない集電体、活物質および導電助剤との密着性がよく、集電体に活物質などを強固に保持出来る。
 有機部が合成されるまでの硬化過程は、有機部を構成する樹脂の種類により異なる。通常、アルコキシシリル基含有化合物は、正極活物質または負極活物質と、必要に応じて導電助剤と、溶剤とともに混合される。有機部は、溶剤が蒸発するだけでそのまま固化(乾燥)するもの、溶剤の揮発の後に各種重合反応により固化するもの、が挙げられる。たとえば、有機部を構成する樹脂が熱硬化性樹脂であれば、加熱により縮合重合を起こして高分子の網目構造が形成される。
 したがって、硬化条件は、使用するアルコキシシリル基含有化合物の種類に応じて選択すればよいが、加熱により硬化させるのが簡便であり望ましい。加熱により、溶剤が揮発して樹脂前駆体が固化した樹脂からなる有機部に、式(I)で表されるアルコキシシリル基の加水分解および縮重合が促進されてシリカからなる無機部に、それぞれ変化することにより、樹脂からなる有機部とシリカからなる無機部とを有する有機無機ハイブリッド材料が得られる。
 すなわち、既に列挙したアルコキシシリル基含有化合物の具体例は、硬化することで、ビスフェノールA型エポキシ樹脂-シリカハイブリッド、ノボラック型エポキシ樹脂-シリカハイブリッド、アクリル樹脂-シリカハイブリッド、フェノール樹脂-シリカハイブリッド、ポリイミド樹脂-シリカハイブリッド、可溶性ポリイミド樹脂-シリカハイブリッド、ポリウレタン樹脂-シリカハイブリッド、ポリアミドイミド樹脂-シリカハイブリッド、となる。結着剤としては、これらのうちの一種以上を必須として含むのがよい。
 有機無機ハイブリッド材料の無機部は、非常に微細である。式(I)においてnが1~100であれば、シリカ粒子の大きさは、数ナノメートルオーダーである。したがって、シリカは、有機無機ハイブリッド材料において微分散している。
 上記のいずれの有機無機ハイブリッド材料であっても、加熱条件は、集電体に形成される厚さにもよるが、80℃~250℃で2時間~4時間程度が望ましい。しかし、この条件に限定されない。
 有機無機ハイブリッド材料は、正極および負極のうちの少なくとも一方に結着剤として含まれればよい。有機無機ハイブリッド材料は、負極活物質として用いられる珪素酸化物に対するHFの悪影響を低減する観点から、珪素酸化物を含む負極活物質を結着する結着剤に含まれるのが好ましい。特に、Siを含む珪素系負極活物質は、Siを含む負極活物質の表面にアルコキシシリル基含有化合物のアルコキシシリル基が優先的に結合して、負極活物質に安定した皮膜が形成される。これは、アルコキシ基が、珪素系負極活物質がもつ表面水酸基(-OH基)と反応しやすいためであると考えられる。しかし、正極活物質として用いられる複合酸化物も、HFの影響を受けやすいため、正極活物質を結着する結着剤として有機無機ハイブリッド材料を用いることも有効である。
 また、結着剤は、有機無機ハイブリッド材料を必須で含むとともに、他のバインダ成分を含んでもよい。有機無機ハイブリッド材料は、結着剤全体を100質量%としたときに、30質量%以上さらには50質量%~100質量%含むのが好ましい。他のバインダ成分としては、ポリフッ化ビニリデン(PolyVinylideneDiFluoride:PVDF)、ポリ四フッ化エチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリイミド(PI)、ポリアミドイミド(PAI)、カルボキシメチルセルロース(CMC)、ポリ塩化ビニル(PVC)、メタクリル樹脂(PMA)、ポリアクリロニトリル(PAN)、変性ポリフェニレンオキシド(PPO)、ポリエチレンオキシド(PEO)、ポリエチレン(PE)、ポリプロピレン(PP)等が例示される。これらのうちの一種以上を、有機無機ハイブリッド材料と併用してもよい。
 なお、アルコキシシリル基含有化合物として、市販品を好適に用いることもできる。たとえばアルコキシ基含有シラン変性ビスフェノールA型エポキシ樹脂またはアルコキシ基含有シラン変性ノボラック型エポキシ樹脂である商品名「コンポセランE」(荒川化学工業社製)、アルコキシ基含有シラン変性アクリル樹脂である商品名「コンポセランAC」(荒川化学工業社製)、アルコキシ基含有シラン変性フェノール樹脂である商品名「コンポセランP」(荒川化学工業社製)、アルコキシ基含有シラン変性ポリアミック酸樹脂である商品名「コンポセランH800」(荒川化学工業社製)、アルコキシ基含有シラン変性可溶性ポリイミド樹脂である商品名「コンポセランH700」(荒川化学工業社製)、アルコキシ基含有シラン変性ポリウレタン樹脂である商品名「ユリアーノU」(荒川化学工業社製)あるいはアルコキシ基含有シラン変性ポリアミドイミド樹脂である商品名「コンポセランH900」(荒川化学工業社製)等、種々の市販品がある。
 「コンポセランE」を硬化させることで、ビスフェノールA型エポキシ樹脂-シリカハイブリッドまたはノボラック型エポキシ樹脂-シリカハイブリッドが得られる。「コンポセランAC」を硬化させることで、アクリル樹脂-シリカハイブリッドが得られる。「コンポセランP」を硬化させることで、フェノール樹脂-シリカハイブリッドが得られる。「コンポセランH800」を硬化させることで、ポリイミド樹脂-シリカハイブリッドが得られる。「コンポセランH700」を硬化させることで、可溶性ポリイミド樹脂-シリカハイブリッドが得られる。「ユリアーノU」を硬化させることで、ポリウレタン樹脂-シリカハイブリッドが得られる。「コンポセランH900」を硬化させることで、ポリアミドイミド樹脂-シリカハイブリッドが得られる。
 <電解液>
 電解液は、少なくとも1つのフッ素を含有する含フッ素環状カーボネートを含む。電解液は、有機溶媒に電解質であるアルカリ金属塩を溶解させた非水電解液であって、本発明の二次電池では、含フッ素環状カーボネートを電解液に必須として含む。含フッ素環状カーボネートは、少なくとも1つのフッ素を含有すればよく他のハロゲンを含有してもよいが、下記の式(II)で表されるのが好ましい。
Figure JPOXMLDOC01-appb-C000002
(式(II)において、Rは、それぞれ独立して、水素、フッ素、アルキル基あるいはフッ化アルキル基であり、それらのうちの少なくとも1つはフッ素またはフッ化アルキル基を表す)
 電解液は、式(II)で表される含フッ素環状カーボネートの一種以上を必須で含めばよい。式(II)において、Rがアルキル基またはフッ化アルキル基である場合、それらの炭素数は1または2であるのが好ましい。特に電解液は下記の式(II-1)~(II-3)で表されるような、環状構造を構成する1以上の炭素に少なくとも1つのフッ素が結合した構造を有する含フッ素環状カーボネートを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000003
 なかでも、耐酸化性の観点から、式(II-1)で表される4-フルオロ-1,3-ジオキソラン-2-オン(フルオロエチレンカーボネート:FEC)が好ましい。
 電解液として含フッ素環状カーボネートとともに、他の有機溶媒を使用することも可能である。他の有機溶媒としては、非プロトン性有機溶媒であることがよく、たとえば、環状カーボネート(含フッ素環状カーボネートを除く)、鎖状カーボネート、エーテル類などを用いるとよい。特に、電解液として含フッ素環状カーボネートを含む環状カーボネートと、鎖状カーボネートとを併用することが好ましい。環状カーボネートは誘電率が高く、鎖状カーボネートは粘性が低い。このため、電解液が環状カーボネートと鎖状カーボネートとの双方を含むことにより、電解質イオンの移動を妨げず、電池容量を向上させることができる。
 電解液の有機溶媒全体を100体積%としたとき、環状カーボネートは20体積%~40体積%さらには25体積%~35体積%であり、鎖状カーボネートは60体積%~80体積%さらには65体積%~75体積%であるとよい。環状カーボネートは、電解液の誘電率を高くする一方、粘性が高い。誘電率が上がると電解液の導電性が良くなる。粘性が高いと電解質イオンの移動が妨げられ導電性が悪くなる。鎖状カーボネートは、低い誘電率であるが、粘性は低い。両者を上記の配合比の範囲でバランスよく配合することで、有機溶媒の誘電率をある程度高く、また粘性も低くして、導電性のよい溶媒を調整でき、電池容量を向上させることができる。
 含フッ素環状カーボネートは、電解液の有機溶媒全体を100体積%としたときに、1体積%~40体積%さらには25体積%~35体積%であることが好ましい。この場合には、電池の充放電のサイクル特性を効果的に向上させることができるとともに、電解液の粘性も低く抑えて電解質イオンを移動させやすくして電池容量を更に向上させることができる。
 環状カーボネートは、含フッ素環状カーボネートを必須成分とし、そのほか、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート、γ-ブチロラクトン、ビニレンカーボネート、2-メチル-ガンマブチロラクトン、アセチル-ガンマブチロラクトンおよびガンマバレロラクトンの群から選ばれる1種以上を含んでもよい。
 鎖状カーボネートは、鎖状である限り特に限定はない。たとえば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジブチルカーボネート、ジプロピルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステルおよび酢酸アルキルエステルから選ばれる一種以上を用いることができる。
 また、エーテル類として、たとえば、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタン等が挙げられる。
 電解質は、有機溶媒に可溶なアルカリ金属フッ化塩であることが好ましい。アルカリ金属フッ化塩としては、たとえば、LiPF、LiBF、LiAsF、NaPF、NaBFおよびNaAsFの群から選ばれる少なくとも1種を用いるとよい。電解質の濃度は、0.5mol/L~1.7mol/L程度であればよい。
 <その他の構成>
 上記の正極および負極と、上記の電解液と、で本発明の二次電池が構成される。この二次電池は、一般の二次電池と同様、正極と負極の間に挟装されるセパレータを備える。セパレータは、正極と負極との間に配置され、正極と負極との間のイオンの移動を許容するとともに、正極と負極との内部短絡を防止する。非水電解質二次電池が密閉型であれば、セパレータには電解液を保持する機能も求められる。セパレータとしては、ポリエチレン、ポリプロピレン、PAN、アラミド、ポリイミド、セルロース、ガラス等を材料とする薄肉かつ微多孔性または不織布状の膜を用いるのが好ましい。
 二次電池の形状に特に限定はなく、円筒型、積層型、コイン型等、種々の形状を採用することができる。いずれの形状を採る場合であっても、正極および負極にセパレータを挟装させ電極体とし、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後、この電極体を電解液とともに電池ケースに密閉して電池となる。
 本発明の二次電池は、車両に搭載されるとよい。車両は、その動力源の全部あるいは一部に二次電池による電気エネルギーを使用している車両であればよく、たとえば、電気車両、ハイブリッド車両などであるとよい。車両に二次電池を搭載する場合には、二次電池を複数直列に接続して組電池とするとよい。本発明の二次電池は、車両以外にも、パーソナルコンピュータや携帯通信機器などの電池で駆動される各種の家電製品、オフィス機器、産業機器などに用いることができる。
 以上、本発明の二次電池の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
 以下に、本発明の二次電池の実施例を挙げて、本発明を具体的に説明する。
 <実施例のリチウムイオン二次電池>
 負極にポリアミドイミド樹脂-シリカハイブリッドバインダ、電解液にフルオロエチレンカーボネート(FEC)を含む二次電池を、以下の手順で作製した。
 負極活物質として熱処理により不均化された酸化珪素粉末(シグマアルドリッチジャパン株式会社製SiOx(xは0.3~1.6)、平均粒径5μm)および塊状人造黒鉛(MAG:粒径20μm以下)の混合粉末、導電助剤としてケッチェンブラック(KB)、を準備した。また、これらの負極活物質および導電助剤を結着する結着剤の原料として、シラン変性ポリアミドイミド樹脂(荒川工業株式会社製「コンポセランH900」)を準備した。コンポセランH900の基本骨格を以下に示す。
Figure JPOXMLDOC01-appb-C000004
 “Me”はメチル基、“X”はアルキル基スペーサー、“m”は0~2である。
 上記の負極活物質、導電助剤および結着剤を混合し、スラリー状の混合物を得た。なお、この混合物は、コンポセランH900の溶剤であるN-メチル-2-ピロリドン(NMP)が含まれる。溶剤を除くSiOx、MAG、KBおよびシラン変性ポリアミドイミド樹脂の質量比は、SiOx/MAG/KB/シラン変性ポリアミドイミド樹脂=42/40/3/15とした。
 次に、スラリー状の混合物を、ドクターブレードを用いて集電体である銅箔(厚さ20μm)の片面に塗布し、所定の圧力でプレスした後、200℃で2時間加熱して結着剤を硬化させた。これにより、集電体表面に厚さ15μmの負極活物質層を備える負極を得た。ここで、ベースとなるポリアミドイミド樹脂は、有機部を構成する。ポリアミドイミド樹脂の末端のシラン変性部位は、雰囲気中の水によって加水分解および縮重合してシリカに変化し、無機部を構成する。このとき、シラン変性部位が他ポリアミドイミド樹脂の末端のシラン変性部位と反応して結合するため、シラン変性ポリアミドイミド樹脂は、有機部であるポリアミドイミド樹脂が無機部であるシリカで架橋されたポリアミドイミド樹脂-シリカハイブリッドに変化する。
 次に、正極活物質としてリチウム複合酸化物(LiNi1/3Co1/3Mn1/3)、導電助剤としてアセチレンブラック(AB)、結着剤としてポリフッ化ビニリデン(PVDF)、を準備した。これらを、リチウム複合酸化物/AB/PVDF=88/6/6の質量比で混合してスラリー状とした。このスラリー状の混合物を、集電体であるアルミニウム箔(厚さ20μm)の片面に塗布し、プレスして成形した後、120℃で6時間加熱した。これにより、集電体の表面に厚さ50μmの正極活物質層を備える正極を得た。
 上記の手順で作製された正極および負極を用いて、リチウムイオン二次電池を作製した。正極活物質層と負極活物質層とを対向させた正極と負極との間に、セパレータとしてのポリプロピレン多孔質膜を挟み込んで電極体を作製した。この電極体を電解液とともにアルミニウムフィルムで封止し、ラミネートセルとした。封止の際には、2枚のアルミニウムフィルムをその周囲の一部を除いて熱溶着をすることにより袋状とし、その開口部から電極体、さらに電解液を入れて、真空引きしながら開口部を完全に気密に封止した。このとき、正極側および負極側の集電体の先端を、フィルムの端縁部から突出させ、外部端子に接続可能とした。
 電解液は、フルオロエチレンカーボネート(FEC)、エチルメチルカーボネート(EMC)およびジメチルカーボネート(DMC)を、体積比で、FEC/EMC/DMC=3/3/4で混合して調製した有機溶媒に、電解質としてLiPFを1mol/Lとなるように溶解させて用いた。
 <比較例のリチウムイオン二次電池>
 実施例のリチウムイオン二次電池において使用したシラン変性ポリアミドイミド樹脂(ハイブリッドバインダ)を、ポリアミドイミド樹脂(未ハイブリッドバインダ)に変更した他は、上記と同様の手順で、比較例のリチウムイオン二次電池を作製した。使用したポリアミドイミド樹脂を以下に示す。(“q”は平均で1~100程度)
Figure JPOXMLDOC01-appb-C000005
 <参考例のリチウムイオン二次電池>
 実施例のリチウムイオン二次電池で用いたFECを含有する電解液を、FECを含まない電解液に変更した他は、上記と同様の手順で、参考例のリチウムイオン二次電池を作製した。
 参考例のリチウムイオン二次電池の電解液は、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)およびジメチルカーボネート(DMC)を、体積比で、EC/EMC/DMC=3/3/4で混合して調製した有機溶媒に、電解質としてLiPFを1mol/Lとなるように溶解させた。
 実施例、比較例および参考例のリチウムイオン二次電池で用いたバインダおよび電解液に含まれる有機溶媒を、表1に示した。
Figure JPOXMLDOC01-appb-T000001
 <充放電試験>
 上記の手順で作製した実施例、比較例および参考例のリチウムイオン二次電池について、室温条件(25℃)および高温条件(55℃)にて充放電試験を行った。
 充放電試験に先立ち、各リチウムイオン二次電池にコンディショニング処理を行った。コンディショニング処理は、25℃で充放電を3回繰り返して行った。
 充放電試験は、25℃または55℃において、充電条件を1C、4.2VのCC(定電流)充電とし、放電条件を1C、2.5VのCC(定電流)放電とした。コンディショニング処理後の最初の充放電試験を1サイクル目とし、500サイクル目まで同様の充放電を繰り返し行った。そして、1サイクル目の放電容量を100としたときの、各サイクルにおける放電容量を算出し、放電容量維持率(%)とした。25℃で充放電を行ったときの放電容量維持率を図1に、55℃で充放電を行ったときの放電容量維持率を図2に、それぞれ示した。
 FECを含む電解液を使用した実施例および比較例のリチウムイオン二次電池は、室温での500サイクル目の充放電で80%程度の高い放電容量維持率を示した(図1)。すなわち、25℃でリチウムイオン二次電池を使用する場合には、FECの使用によりサイクル特性が向上する。このとき、比較例のリチウムイオン二次電池の方が、実施例のリチウムイオン二次電池よりも優れたサイクル特性を示した。両者は負極に含まれる結着剤の種類が異なるが、負極にポリアミドイミド樹脂-シリカハイブリッドバインダを使用してもサイクル特性が大きく低下することはないことがわかった。
 一方、図2より、FECを含まない電解液を使用した参考例のリチウムイオン二次電池は、FECを含む電解液を使用した実施例および比較例のリチウムイオン二次電池よりも、高温でのサイクル特性に優れることがわかった。これは、FECを含む電解液を高温で使用したことで、フッ化水素(HF)が発生し、HFが活物質に悪影響を及ぼしたためであると推察される。つまり、参考例のリチウムイオン二次電池にはFECが含まれないため、FEC由来のフッ化水素は発生せず、優れたサイクル特性を示した。しかし、実施例および比較例のリチウムイオン二次電池であっても、二次電池として十分なサイクル特性を示した。
 特に、負極にポリアミドイミド樹脂-シリカハイブリッドバインダを使用した実施例のリチウムイオン二次電池は、負極に未ハイブリッドを使用した比較例のリチウムイオン二次電池よりも優れたサイクル特性を示した。これは、ポリアミドイミド樹脂-シリカハイブリッドバインダのシリカ部位にフッ化水素が捕捉され、フッ化水素による悪影響が低減されたためと推察される。
 また、実施例のリチウムイオン二次電池と比較例のリチウムイオン二次電池とで、充放電の際の温度の違いによるサイクル特性を比較した。500サイクル目の放電容量維持率を比較すると、比較例のリチウムイオン二次電池では、25℃で82.0%であったが、55℃で73.4%に大きく低下した。一方、実施例のリチウムイオン二次電池では、500サイクル目の放電容量維持率は25℃で77.2%であったものの、55℃では75.7%であり、温度上昇による放電容量の低下量が大きく抑制されたと言える。つまり、実施例のリチウムイオン二次電池は、室温でのサイクル特性を維持するとともに、高温で使用される場合のサイクル特性の低下を抑制することが可能であった。

Claims (8)

  1.  正極活物質を含む正極と、負極活物質を含む負極と、電解液と、を備える二次電池において、
     前記正極および/または前記負極は、樹脂からなる有機部とシリカからなる無機部とを有し、前記正極活物質および/または前記負極活物質を結着する有機無機ハイブリッド材料を含有する結着剤を含み、
     前記電解液は、少なくとも1つのフッ素を含有する含フッ素環状カーボネートを含むことを特徴とする二次電池。
  2.  前記負極活物質は珪素酸化物を含み、前記有機無機ハイブリッド材料は少なくとも該負極活物質を結着する請求項1に記載の二次電池。
  3.  前記含フッ素環状カーボネートは、環状構造を構成する1以上の炭素に少なくとも1つのフッ素が結合した構造を有する請求項1または2に記載の二次電池。
  4.  前記電解液は、4-フルオロ-1,3-ジオキソラン-2-オン(フルオロエチレンカーボネート)を含む請求項1~3のいずれかに記載の二次電池。
  5.  前記有機無機ハイブリッド材料は、ビスフェノールA型エポキシ樹脂-シリカハイブリッド、ノボラック型エポキシ樹脂-シリカハイブリッド、アクリル樹脂-シリカハイブリッド、フェノール樹脂-シリカハイブリッド、ポリイミド樹脂-シリカハイブリッド、可溶性ポリイミド樹脂-シリカハイブリッド、ポリウレタン樹脂-シリカハイブリッドおよびポリアミドイミド樹脂-シリカハイブリッドから選ばれる一種以上を含む請求項1~4のいずれかに記載の二次電池。
  6.  前記有機無機ハイブリッド材料は、式(I)で示される構造を有するアルコキシシリル基を含有するアルコキシシリル基含有化合物の硬化物である請求項1~5のいずれかに記載の二次電池。
    Figure JPOXMLDOC01-appb-C000006
    (式(I)において、Rは炭素数1~8のアルキル基、Rは炭素数1~8のアルキル基またはアルコキシル基、nおよびnは1~100の整数、をそれぞれ独立に表す。)
  7.  前記アルコキシシリル基含有化合物は、アルコキシ基含有シラン変性ビスフェノールA型エポキシ樹脂、アルコキシ基含有シラン変性ノボラック型エポキシ樹脂、アルコキシ基含有シラン変性アクリル樹脂、アルコキシ基含有シラン変性フェノール樹脂、アルコキシ基含有シラン変性ポリアミック酸樹脂、アルコキシ基含有シラン変性可溶性ポリイミド樹脂、アルコキシ基含有シラン変性ポリウレタン樹脂およびアルコキシ基含有シラン変性ポリアミドイミド樹脂から選ばれる一種以上を含む請求項6に記載の二次電池。
  8.  前記結着剤は、前記有機部がポリアミドイミド樹脂からなるポリアミドイミド樹脂-シリカハイブリッドを含有し、
     前記電解液は、フルオロエチレンカーボネートを含む、請求項1~7のいずれかに記載の二次電池。
PCT/JP2012/007474 2012-03-02 2012-11-21 二次電池 WO2013128521A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/381,797 US20150050564A1 (en) 2012-03-02 2012-11-21 Secondary battery
DE112012005969.7T DE112012005969T5 (de) 2012-03-02 2012-11-21 Sekundärbatterie

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-046636 2012-03-02
JP2012046636A JP5263416B1 (ja) 2012-03-02 2012-03-02 二次電池およびそれを搭載した車両

Publications (1)

Publication Number Publication Date
WO2013128521A1 true WO2013128521A1 (ja) 2013-09-06

Family

ID=49053022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007474 WO2013128521A1 (ja) 2012-03-02 2012-11-21 二次電池

Country Status (4)

Country Link
US (1) US20150050564A1 (ja)
JP (1) JP5263416B1 (ja)
DE (1) DE112012005969T5 (ja)
WO (1) WO2013128521A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191327A (ja) * 2012-03-13 2013-09-26 Toyota Industries Corp 非水電解質二次電池および車両
JP6443437B2 (ja) * 2014-02-28 2018-12-26 三洋電機株式会社 非水電解質二次電池
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
KR101996513B1 (ko) * 2015-06-03 2019-07-04 주식회사 엘지화학 이차전지용 첨가제와, 이를 포함하는 비수계 전해액 및 이차전지
KR101997052B1 (ko) * 2015-07-31 2019-07-05 주식회사 엘지화학 이차전지용 첨가제와, 이를 포함하는 비수계 전해액, 및 이차전지
JP6739046B2 (ja) 2015-10-30 2020-08-12 パナソニックIpマネジメント株式会社 非水電解質二次電池
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US10991981B2 (en) 2016-12-22 2021-04-27 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
JP7047836B2 (ja) * 2017-03-15 2022-04-05 日本電気株式会社 二次電池用バインダ組成物
US11870035B2 (en) 2017-08-30 2024-01-09 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary cell
US20210020990A1 (en) 2018-02-26 2021-01-21 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
CN112151788A (zh) * 2019-06-26 2020-12-29 珍拉布斯能源有限公司 具有高性能电解质和氧化硅活性材料的锂离子电池
US11973178B2 (en) 2019-06-26 2024-04-30 Ionblox, Inc. Lithium ion cells with high performance electrolyte and silicon oxide active materials achieving very long cycle life performance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062041A (ja) * 2008-09-04 2010-03-18 Toyota Industries Corp リチウムイオン二次電池用負極及びその製造方法
WO2010092977A1 (ja) * 2009-02-12 2010-08-19 ダイキン工業株式会社 リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池
WO2011002097A1 (ja) * 2009-07-03 2011-01-06 ダイキン工業株式会社 リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池
JP2011040326A (ja) * 2009-08-17 2011-02-24 Toyota Industries Corp 非水系二次電池用負極および非水系二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101451801B1 (ko) * 2007-02-14 2014-10-17 삼성에스디아이 주식회사 음극 활물질, 그 제조 방법 및 이를 채용한 음극과 리튬전지
US20110031935A1 (en) * 2008-04-18 2011-02-10 Kabushiki Kaisha Toyota Jidoshokki Negative electrode for lithium-ion secondary battery and manufacturing process for the same
KR101056714B1 (ko) * 2008-11-10 2011-08-12 주식회사 엘지화학 고전압 특성이 향상된 양극 활물질

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062041A (ja) * 2008-09-04 2010-03-18 Toyota Industries Corp リチウムイオン二次電池用負極及びその製造方法
WO2010092977A1 (ja) * 2009-02-12 2010-08-19 ダイキン工業株式会社 リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池
WO2011002097A1 (ja) * 2009-07-03 2011-01-06 ダイキン工業株式会社 リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池
JP2011040326A (ja) * 2009-08-17 2011-02-24 Toyota Industries Corp 非水系二次電池用負極および非水系二次電池

Also Published As

Publication number Publication date
DE112012005969T5 (de) 2014-11-13
JP2013182807A (ja) 2013-09-12
JP5263416B1 (ja) 2013-08-14
US20150050564A1 (en) 2015-02-19

Similar Documents

Publication Publication Date Title
JP5263416B1 (ja) 二次電池およびそれを搭載した車両
CN110720156B (zh) 锂离子二次电池
JP6011607B2 (ja) 非水系電解質二次電池
WO2017183696A1 (ja) リチウム二次電池及びリチウム二次電池の製造方法
JP2013137873A (ja) リチウムイオン二次電池
KR20090042735A (ko) 부극 및 그 제조 방법, 및 이차전지
JP6052179B2 (ja) リチウムイオン二次電池
JP5357517B2 (ja) リチウムイオン二次電池
JP2008198524A (ja) 非水電解質二次電池
JPWO2012153469A1 (ja) リチウムイオン二次電池用電極、その製造方法及びその電極を用いたリチウムイオン二次電池
JP2013197012A (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池及び車両
JP5445683B2 (ja) 負極材料、リチウム二次電池、および負極材料の製造方法
JP5482858B2 (ja) リチウムイオン二次電池
JP5534377B2 (ja) リチウムイオン二次電池用正極活物質およびそれを有するリチウムイオン二次電池
JPWO2012160763A1 (ja) リチウムイオン二次電池用電極及びその製造方法、並びにその電極を用いたリチウムイオン二次電池
CN111052486B (zh) 非水电解质二次电池
WO2013132824A1 (ja) リチウムイオン二次電池
JP5962467B2 (ja) リチウムイオン二次電池
JP5862490B2 (ja) リチウムイオン二次電池
WO2013128805A1 (ja) リチウムイオン二次電池
JP2018113164A (ja) 非水電解液電池およびその製造方法
JP2006156021A (ja) 非水電解質二次電池
JP6124061B2 (ja) 非水系二次電池用負極とその製造方法及び非水系二次電池
WO2012120574A1 (ja) 二次電池用負極合材及び負極、並びに二次電池
JP5659994B2 (ja) 負極活物質、リチウム二次電池、負極活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869782

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14381797

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012005969

Country of ref document: DE

Ref document number: 1120120059697

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869782

Country of ref document: EP

Kind code of ref document: A1