WO2013123874A1 - 一种网络定位方法和相关设备 - Google Patents

一种网络定位方法和相关设备 Download PDF

Info

Publication number
WO2013123874A1
WO2013123874A1 PCT/CN2013/071693 CN2013071693W WO2013123874A1 WO 2013123874 A1 WO2013123874 A1 WO 2013123874A1 CN 2013071693 W CN2013071693 W CN 2013071693W WO 2013123874 A1 WO2013123874 A1 WO 2013123874A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
unit
location information
ues
nodes
Prior art date
Application number
PCT/CN2013/071693
Other languages
English (en)
French (fr)
Inventor
肖登坤
崔杰
贺媛
朱江波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13751537.5A priority Critical patent/EP2818886B1/en
Publication of WO2013123874A1 publication Critical patent/WO2013123874A1/zh
Priority to US14/463,295 priority patent/US9888348B2/en
Priority to US15/854,552 priority patent/US10667084B2/en
Priority to US16/863,881 priority patent/US11178510B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0284Relative positioning
    • G01S5/0289Relative positioning of multiple transceivers, e.g. in ad hoc networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/12Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/50Service provisioning or reconfiguring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • the present invention relates to the field of communications, and in particular, to a network positioning method and related equipment. Background of the invention
  • GPS Global Positioning System
  • UTDOA Uplink Time Difference of Arrival
  • OTDOA Observed Time Difference Of Arrival
  • the UTDOA positioning mode sends an uplink positioning signal (such as a sounding reference signal (SRS)) through the user equipment (UE, User Equipment), in an evolved type.
  • the base station (eNB, evolved Node) side performs an estimation of the arrival time of the uplink signal, and obtains the distance between the eNB and the UE. Therefore, the distance between the plurality of eNBs and the UE is obtained, and the relative coordinate position of the UE relative to the eNB is calculated by an algorithm such as the trilateral method.
  • the network can obtain the absolute position of the UE according to the actual location of the eNB.
  • the UTDOA positioning method uses the estimation of the uplink positioning signal of the UE, it is limited by the uplink transmission power of the UE.
  • UTDOA is also a positioning algorithm based on signal arrival time estimation. Therefore, if the positioning signal is blocked or reflected, it will affect the arrival time of the signal, thus affecting the positioning accuracy.
  • the principle of the OTDOA positioning mode is that when there are three or more base stations in the system, the location of the UE can be determined according to the time difference of arrival of the downlink transmission signals of different base stations.
  • the downlink transmission signal may be a positioning reference signal or a synchronization signal. It is known from the definition of the hyperbola that a point where the difference between the two fixed point distances is a constant value constitutes a hyperbola. As shown in FIG. 1 , there are base station 0, base station 1 and base station 2 in the system. It is assumed that the black entity part in FIG.
  • the Enhanced Serving Mobile Location Centre specifies positioning signals for the base station and the mobile station (PRS, Positioning Reference).
  • the base station After the transmission and reception configuration of the signal, the base station transmits the PRS in the downlink, and the mobile station recognizes the first path position of each PRS after receiving the PRS from the multiple base stations, and can obtain the PRS arrival time difference between different base stations, and report the difference
  • To e-SMLC casserole e-SMLC can map the distance difference between the mobile station and different base stations by the received PRS arrival time difference.
  • the e-SMLC can obtain the exact position of the mobile station. It can be seen that the accuracy of OTDOA positioning depends largely on the PRS letter.
  • Embodiments of the present invention provide a network positioning method and related device, which are used to improve network positioning accuracy.
  • the embodiment of the present invention provides the following technical solutions:
  • a network positioning method includes:
  • the user equipment UE receives the positioning signals of the at least three positioning nodes, where the at least three positioning nodes include at least one auxiliary UE, and the auxiliary UE is located in the end-to-end communication range of the UE and currently has the effective location of the auxiliary UE.
  • a network positioning method includes:
  • the locating device obtains the measurement result of the user equipment UE, and the foregoing measurement result is obtained by the UE measuring the positioning signals of the at least three positioning nodes that are received by the UE, where the measurement result includes that the UE receives the positioning signals of the at least three positioning nodes. a time difference, wherein the at least three positioning nodes include at least one secondary UE, where the secondary UE is located in the end-to-end communication range of the UE and currently has valid location information of the secondary UE;
  • a network positioning method includes:
  • the locating device obtains the measurement result of the at least three locating nodes, and the foregoing measurement result is obtained by the at least three positioning nodes respectively measuring the positioning signal sent by the user equipment UE, where the measurement result includes that the at least three positioning nodes respectively receive the UE Time of the positioning signal, where at least one of the at least three positioning nodes includes at least one auxiliary UE, and the auxiliary UE is located.
  • the effective location information of the foregoing auxiliary UE is currently existed in the end-to-end communication range of the UE; and the current location of the UE is calculated according to the obtained measurement result and the effective location information of the at least three positioning nodes.
  • a user equipment UE including:
  • a receiving unit configured to receive a positioning signal of the at least three positioning nodes, where the at least three positioning nodes include at least one secondary UE, where the secondary UE is located in an end-to-end communication range of the UE, and the auxiliary UE currently exists Effective location information;
  • a measurement acquisition unit configured to measure a positioning signal of the at least three positioning nodes received by the receiving unit, and obtain a measurement result that includes a time difference of the positioning signals received by the UE by the at least three positioning nodes;
  • a calculating unit configured to calculate a current location of the UE according to the foregoing measurement result and valid location information of the at least three positioning nodes.
  • a positioning device comprising:
  • an acquiring unit configured to obtain a measurement result of the user equipment UE, where the foregoing measurement result is obtained by the UE, and the measurement result of the at least three positioning nodes is received by the UE, where the measurement result includes that the UE receives the at least three positioning nodes.
  • the time difference of the positioning signal wherein the at least three positioning nodes include at least one secondary UE, and the secondary UE is located in the end-to-end communication range of the UE and currently has valid location information of the secondary UE;
  • a calculating unit configured to calculate a current location of the UE according to the measurement result obtained by the acquiring unit and the effective location information of the at least three positioning nodes.
  • a positioning device comprising:
  • an obtaining unit configured to obtain a measurement result of the at least three positioning nodes, where the foregoing measurement result is obtained by measuring, by the at least three positioning nodes, the positioning signal sent by the user equipment UE, where the foregoing measurement result includes receiving by each of the at least three positioning nodes a time to the positioning signal of the UE, where the at least three positioning nodes include at least one secondary UE, and the secondary UE is located in the end-to-end communication range of the UE and currently has valid location information of the secondary UE;
  • a calculating unit configured to calculate a current location of the UE according to the measurement result obtained by the acquiring unit and the effective location information of the at least three positioning nodes.
  • FIG. 1 is a schematic diagram of a system principle of an OTDOA positioning method provided by the present invention
  • FIG. 2 is a schematic flowchart of a network positioning method according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of another embodiment of a network positioning method according to the present invention
  • FIG. 5 is a schematic flowchart of still another embodiment of a network positioning method according to the present invention
  • FIG. 6 is a schematic flowchart of still another embodiment of a network positioning method according to the present invention
  • FIG. 8 is a schematic structural diagram of an embodiment of a user equipment according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an embodiment of a positioning apparatus according to the present invention.
  • FIG. 10 is a schematic structural diagram of another embodiment of a positioning device according to the present invention.
  • An embodiment of the present invention provides a network positioning method and related equipment.
  • the network positioning method provided by the embodiment of the present invention is described below.
  • the network positioning method in the embodiment of the present invention uses the end-to-end downlink positioning mode, and the UE calculates its own location. As shown in FIG. 2, the present invention is implemented.
  • a network positioning method in the example includes:
  • the UE receives a positioning signal of at least three positioning nodes.
  • the UE receives the positioning signal of the at least three positioning nodes, and the positioning signal may be a positioning reference signal or a synchronization signal, which is not limited herein.
  • the at least three positioning nodes include at least one secondary UE, and the secondary UE is located in the end-to-end communication range of the UE and currently has valid location information of the secondary UE.
  • End-to-end communication is an effective communication mode. UEs can communicate directly without forwarding through the base station. However, due to the limited transmission power of the source UE itself, the receiving capability of the target UE, that is, the sensitivity of the received signal is limited.
  • the end-to-end communication range is called the end-to-end communication range, that is, the effective distance of the end-to-end communication. Generally, the end-to-end communication range is small, such as May be within 50 meters.
  • the effective location information refers to location information of a positioning time point (ie, a time point of obtaining location information) and a current time point within a predetermined time range, and the positioning time point and the current time point are All the location information whose interval exceeds the specified time range is regarded as the failed location information, and the above time range may be a parameter configured by the network side.
  • the valid location information of the secondary UE may be obtained by using a GPS, or may be obtained by using a network positioning method, which is not limited herein.
  • the UE when the UE performs positioning, the UE first determines whether all other UEs in the end-to-end communication range do not have valid location information, and if not, selects other UEs with valid location information as an auxiliary.
  • the UE in the embodiment of the present invention is a UE1, and the UEs that can perform end-to-end communication have UE2, UE3, and UE4, that is, UE2, UE3, and UE4 exist in the end-to-end communication range of UE1, Only UE2 and UE3 have valid location information, and UE1 selects UE2 and UE3 as the secondary UE set.
  • the positioning process is terminated or the other network positioning modes, such as UTDOA, OTDOA, and the like, are used for positioning, which is not limited herein.
  • the UE determines whether the local end-to-end communication range is smaller than a preset range, where the preset range is a threshold value set by the network side according to the network positioning accuracy requirement, if If the local end-to-end communication range of the UE is smaller than the preset range, the distance between the secondary UE in the secondary UE set and the UE is considered to be smaller than the positioning error required by the network.
  • the UE may select a secondary UE from the set of secondary UEs, and use the effective location information of the selected secondary UE as the effective location information of the UE, where the manner of selecting one secondary UE from the secondary UE set may be, for example, a secondary UE set.
  • the auxiliary UE with the strongest signal is selected, or a secondary UE may be randomly selected from the set of secondary UEs.
  • the UE may also use the secondary UE.
  • the position coordinates of all the auxiliary UEs in the set take the centroid, and the obtained centroid coordinates are used as the effective position information of the UE, which is not limited herein.
  • the UE before the step 201 is performed, the UE needs to send the positioning signal configuration information to the auxiliary UE of the at least three positioning nodes, so that the auxiliary UE of the at least three positioning nodes is configured according to the received positioning signal.
  • the transmission time and the transmission format specified by the configuration information are sent to the UE.
  • the other devices in the at least three positioning nodes such as the base station, may send a positioning signal to the UE according to a downlink positioning technology such as OTDOA.
  • the UE measures the received at least three positioning signals to obtain a measurement result, where the measurement result includes a time difference of receiving the positioning signals of the at least three positioning nodes.
  • the UE calculates its current location according to the time difference of the positioning signals of the at least three positioning nodes and the effective location information of the at least three positioning nodes.
  • the method includes:
  • UE1 selects a UE that can perform end-to-end communication with itself as a candidate set; that is, the UE in the candidate set is within an end-to-end range of UE1.
  • UE1 detects each UE in the candidate set, and uses a UE that already has valid location information as a set of secondary UEs.
  • the embodiment of the present invention is applied to a scenario in which a UE that already has valid location information exists in a candidate set.
  • a UE that already has valid location information may not exist in the candidate set, and the positioning process may be ended at this time, or Use other network positioning methods such as UTDOA, OTDOA, etc. for positioning.
  • the UE1 determines whether the end-to-end range of the UE1 is smaller than a preset range.
  • the preset range is characterized by the network requirements for positioning accuracy, and is configured by the network side. If it is less than the preset range, step 304 is performed, and if it is greater than the preset range, step 305 is performed.
  • step 303 If it is determined in step 303 that the end-to-end range of the UE1 is smaller than the preset range, it means that the distance between the UE and the UE1 capable of performing end-to-end communication with the UE1 in the auxiliary UE set is smaller than the positioning error required by the network, and the auxiliary UE is within the set.
  • the secondary UE already has valid location information, so the location coordinates of the secondary UE in the secondary UE set can be directly used as the current location coordinates of UE1.
  • the method of selecting the location coordinate of the auxiliary UE in the secondary UE set as the current location coordinate of the UE1 may be as follows: selecting the location coordinate of the secondary UE with the highest signal strength received by the UE1 from the secondary UE set as the current location of the UE1 Coordinates; or, randomly select the position coordinates of one auxiliary UE from the set of auxiliary UEs as the current position coordinates of UE1.
  • the UE1 may take the centroid coordinates of the location coordinates of all the secondary UEs in the set of the secondary UEs, and use the obtained centroid coordinates as the current location coordinates of the UE1, which is not limited herein.
  • UE1 sends positioning signal configuration information to the auxiliary UE in the set of auxiliary UEs.
  • the positioning signal configuration information may be sent by the UE1 to the auxiliary by using UE-UE signaling.
  • a secondary UE in the UE set A secondary UE in the UE set.
  • the auxiliary UE in the auxiliary set sends the positioning signal according to the positioning signal configuration information. After receiving the positioning signal configuration information, the auxiliary UE in the auxiliary set sends the positioning signal according to the sending time and the sending format specified in the positioning signal configuration information, so that The UE1 may open a search window before and after the corresponding time, search for a positioning signal transmitted by the secondary UE in the auxiliary set, and prepare a local sequence for decoding or the like according to the transmission format.
  • the UE1 measures a positioning signal from the secondary UE, and calculates a current location according to the measurement result and the effective location information of the secondary UE.
  • the arrival time difference of the positioning signals of the different reference points obtained according to the measurement, and the effective position information of each positioning node may be determined.
  • the number of the secondary UEs in the auxiliary set is greater than or equal to three.
  • step 307 only needs to measure the positioning signal from the secondary UE in the auxiliary set to determine its own current location. .
  • UE1 also measures the positioning signal from the base station, and calculates according to the measurement result, the effective location information of the base station and the secondary UE. The current location of itself.
  • a network positioning method in the embodiment of the present invention uses the end-to-end downlink positioning mode, and the positioning device (such as a positioning server or a base station) calculates the location of the UE1, such as As shown in FIG. 4, a network positioning method in the embodiment of the present invention includes:
  • the positioning device acquires a measurement result of the UE.
  • the positioning device acquires the measurement result of the UE, and the measurement result is obtained by the UE by using the positioning signal (which may be a positioning reference signal or a synchronization signal) of the received at least three positioning nodes.
  • the measurement result includes a time difference of the positioning signals received by the UE by the at least three positioning nodes, where the at least three positioning nodes include at least one secondary UE, where the secondary UE is located in the end-to-end communication range of the UE and currently exists.
  • the effective location information of the above auxiliary UE is a time difference of the positioning signals received by the UE by the at least three positioning nodes, where the at least three positioning nodes include at least one secondary UE, where the secondary UE is located in the end-to-end communication range of the UE and currently exists.
  • the effective location information refers to location information of a positioning time point (ie, a time point of obtaining location information) and a current time point within a predetermined time range, and the positioning time point and the current time point are All the location information whose interval exceeds the specified time range is regarded as the failed location information, and the above time range may be a parameter configured by the network side.
  • the valid location information of the secondary UE may be obtained by using a GPS, or may be obtained by using a network positioning method, which is not limited herein.
  • the positioning device when positioning the UE, the positioning device first determines whether all other UEs in the UE end-to-end communication range do not have valid location information, and if not, selects For example, it is assumed that the UE in the embodiment of the present invention is the UE1, and the UE that can perform end-to-end communication has UE2, UE3, and UE4, that is, the UE1 end. There are UE2, UE3, and UE4 in the peer communication range. If only UE2 and UE3 have valid location information, the positioning device selects UE2 and UE3 as the secondary UE set of UE1.
  • the positioning process is terminated or the other network positioning modes, such as UTDOA, OTDOA, and the like, are used for positioning, which is not limited herein.
  • the positioning device determines whether the end-to-end communication range of the UE is smaller than a preset range, where the preset range is a threshold value set by the network side according to the requirement of the network for positioning accuracy, and if If the local end-to-end communication range of the UE is smaller than the preset range, the distance between the secondary UE and the UE in the secondary UE set of the UE is considered to be smaller than the positioning error required by the network, and the positioning device may obtain the secondary UE set from the UE.
  • the preset range is a threshold value set by the network side according to the requirement of the network for positioning accuracy
  • the effective location information of the selected secondary UE is used as the effective location information of the UE, where the manner of selecting a secondary UE from the secondary UE set of the UE may be, for example, from the secondary UE set of the UE.
  • the auxiliary UE with the strongest and largest signal is selected, or a secondary UE may be randomly selected from the set of secondary UEs of the UE.
  • the positioning device may also The location coordinates of all the secondary UEs in the UE's secondary UE set are taken as the centroid, and the obtained centroid coordinates are used as the effective location information of the UE, which is not limited herein.
  • the positioning device before the step 401 is performed, the positioning device further needs to send the positioning signal configuration information to the UE and the auxiliary UE of the at least three positioning nodes, so that the auxiliary UE of the at least three positioning nodes is configured according to The transmission time and the transmission format specified by the received positioning signal configuration information are sent to the UE, and the UE receives the positioning signal of the auxiliary UE according to the transmission time and the transmission format specified by the received positioning signal configuration information.
  • the positioning device may directly send the positioning signal configuration information to the auxiliary UE in the at least three positioning nodes, or send the positioning signal configuration information to the auxiliary UE in the at least three positioning nodes by using the UE, where not limited.
  • another device such as a base station, of the at least three positioning nodes may send a positioning signal to the UE according to a downlink positioning technology such as OTDOA.
  • a downlink positioning technology such as OTDOA.
  • the positioning device may be, for example, a positioning server or a base station. If the positioning device is a positioning server, the interaction between the positioning server and the UE and the auxiliary UE may be based on Long Term Evolution Positioning (LPP). Protocol implementation, the interaction between the positioning server and the base station (such as an eNB) may be based on LTE positioning protocol A (ie, LPPa) signaling; if the positioning device is a base station, the base station is connected to the UE and the secondary UE The interaction can be implemented by Radio Resource Control (RRC) signaling.
  • LPP Long Term Evolution Positioning
  • RRC Radio Resource Control
  • the method includes:
  • the positioning server selects a UE that can perform end-to-end communication with UE1 as a candidate set of UE1.
  • the UE in the candidate set is within the end-to-end range of UE1.
  • the positioning server detects each UE in the candidate set of UE1, and uses the UE that already contains the effective location information as the auxiliary UE set of UE1.
  • the embodiment of the present invention is applied to a scenario in which a UE that already has valid location information exists in a candidate set.
  • a UE that already has valid location information may not exist in the candidate set, and the positioning process may be ended at this time, or Use other network positioning methods such as UTDOA, OTDOA, etc. for positioning.
  • the positioning server determines whether the end-to-end range of the UE1 is smaller than a preset range.
  • the preset range represents a network requirement for positioning accuracy, and is configured by the network side. If it is less than the preset range, step 504 is performed, and if it is greater than the preset range, step 505 is performed.
  • the positioning server uses the location coordinates of the secondary UE in the secondary UE set as the current location coordinate of the UE1. If it is determined in step 503 that the end-to-end range of the UE1 is smaller than the preset range, it means that the distance between the UE and the UE1 capable of performing end-to-end communication with the UE1 in the secondary UE set is smaller than the positioning error required by the network, and the auxiliary UE is within the set.
  • the secondary UE already has valid location information, so the location server can directly use the location coordinates of the secondary UE in the secondary UE set as the current location coordinates of UE1.
  • the method of selecting the location coordinate of the secondary UE in the secondary UE set as the current location coordinate of the UE1 may be as follows: the positioning server selects the location coordinate of the secondary UE with the highest signal strength received by the UE1 from the secondary UE set as the UE1. The current position coordinate; or, the positioning server randomly selects the position coordinate of one auxiliary UE from the set of auxiliary UEs as the current position coordinate of the UE1.
  • the UE1 may take the centroid coordinates of the location coordinates of all the secondary UEs in the set of the secondary UEs, and use the obtained centroid coordinates as the current location coordinates of the UE1, which is not limited herein.
  • the positioning server sends positioning signal configuration information to the UE1 and the auxiliary UE in the foregoing auxiliary UE set.
  • the positioning server may directly send the positioning signal configuration information to the UE1 and the auxiliary UE in the foregoing auxiliary UE set, or may forward the positioning signal configuration information to the auxiliary UE in the auxiliary UE set of the UE1 by using the UE1, in the embodiment of the present invention.
  • the positioning server may transmit the positioning signal configuration information to the UE1 and the auxiliary UE by using LPP signaling.
  • the auxiliary UE in the auxiliary set sends the positioning signal according to the positioning signal configuration information. After receiving the positioning signal configuration information, the auxiliary UE in the auxiliary set sends the positioning signal according to the sending time and the sending format specified in the positioning signal configuration information.
  • the UE1 measures a positioning signal from the auxiliary UE, and sends the measurement result to the positioning server.
  • the UE1 starts the search window before and after the corresponding time according to the received positioning signal configuration information, searches for the positioning signal sent by the auxiliary UE in the auxiliary set, and prepares a local sequence for decoding according to the transmission format.
  • the number of the secondary UEs in the auxiliary set is greater than or equal to three.
  • step 507 only needs to measure the positioning signal from the secondary UE in the auxiliary set, and send the measurement result to the positioning server. Just fine.
  • the UE1 measures the positioning signal from the base station in step 507, and the measurement result reported by the UE1 to the positioning server includes the measurement of the base station by the UE1. result. 508.
  • the positioning server calculates a current location of the UE1 according to the obtained measurement result and the effective location information of the secondary UE.
  • step 508 the current location of the UE1 needs to be calculated in conjunction with the effective location information of the base station measured by UE1 in step 507.
  • the embodiment of the present invention uses the positioning server as the positioning device of the UE1.
  • the base station (such as the eNB) can be used as the positioning device of the UE1.
  • the process can refer to the description in FIG. 5 (replace the positioning server with the base station), which can be understood.
  • the base station may use RRC signaling to transmit positioning signal configuration information to the UE1 and the secondary UE.
  • a network positioning method in the embodiment of the present invention uses the end-to-end uplink positioning mode, and the positioning device (which may be the UE itself) calculates the location of the UE.
  • a network positioning method in the embodiment of the present invention includes:
  • the positioning device acquires measurement results of at least three positioning nodes.
  • the positioning device acquires measurement results of at least three positioning nodes, and the measurement result is measured by the at least three positioning nodes respectively for the positioning signal (which may be a positioning reference signal or a synchronization signal) sent by the UE.
  • the measurement result includes the time that the at least three positioning nodes respectively receive the positioning signal of the UE, where the at least three positioning nodes include at least one secondary UE, where the secondary UE is located in the end-to-end communication range of the UE and
  • the effective location information of the above-mentioned secondary UE exists.
  • the effective location information refers to location information of a positioning time point (ie, a time point of obtaining location information) and a current time point within a predetermined time range, and the positioning time point and the current time point are All the location information whose interval exceeds the specified time range is regarded as the failed location information, and the above time range may be a parameter configured by the network side.
  • the valid location information of the secondary UE may be obtained by using a GPS, or may be obtained by using a network positioning method, which is not limited herein.
  • the positioning device when positioning the UE, the positioning device first determines whether all other UEs in the UE end-to-end communication range do not have valid location information, and if not, selects other information that has valid location information.
  • the UE serves as the secondary UE set of the UE. If all the other UEs in the end-to-end communication range of the UE do not have valid location information, the current positioning process is terminated or other network positioning modes such as UTDOA, OTDOA, etc. are used for positioning. , here is not limited.
  • the positioning device determines whether the end-to-end communication range of the UE is smaller than a preset range, where the preset range is a threshold value set by the network side according to the requirement of the network for positioning accuracy, and if If the local end-to-end communication range of the UE is smaller than the preset range, the distance between the secondary UE and the UE in the secondary UE set of the UE is considered to be smaller than the positioning error required by the network, and the positioning device may obtain the secondary UE set from the UE.
  • the preset range is a threshold value set by the network side according to the requirement of the network for positioning accuracy
  • the effective location information of the selected secondary UE is used as the effective location information of the UE, where the manner of selecting a secondary UE from the secondary UE set of the UE may be, for example, from the secondary UE set of the UE.
  • the auxiliary UE with the strongest and largest signal is selected, or a secondary UE may be randomly selected from the set of secondary UEs of the UE.
  • the positioning device may also The location coordinates of all the secondary UEs in the UE's secondary UE set are taken as the centroid, and the obtained centroid coordinates are used as the effective location information of the UE, which is not limited herein.
  • the positioning device before the step 601 is performed, the positioning device further needs to send the positioning signal configuration information of the UE to the auxiliary UE of the at least three positioning nodes, so that the auxiliary UE of the at least three positioning nodes receives according to the receiving.
  • the sending time and the sending format specified by the positioning signal configuration information are received, and the positioning signal is sent by the UE.
  • the at least three positioning nodes measure the positioning signal received from the UE, estimate the time of receiving the positioning signal of the UE, and send the measurement result including the time to the positioning device.
  • another device such as a base station, of the at least three positioning nodes may receive and estimate a positioning signal of the UE according to an uplink positioning technology such as UTDOA.
  • UTDOA uplink positioning technology
  • the positioning device calculates a current location of the UE according to the obtained measurement result and valid location information of the at least three positioning nodes.
  • the positioning device sends the positioning signal configuration information of the UE to the serving base station of the UE, and the serving base station of the UE passes And transmitting, by the X2 interface between the other base stations, the positioning signal configuration information of the UE to the other base station, or, if the positioning device is a positioning server,
  • the positioning server may also directly send the positioning signal configuration information of the UE to the serving base station and other base stations of the UE, which is not limited herein.
  • the positioning device may be, for example, a UE, a positioning server, or a base station. If the positioning device is a UE, the interaction between the UE and the secondary UE may be implemented based on UE-UE signaling, and the interaction between the UE and the base station may be The RRC signaling is implemented. If the positioning device is a positioning server, the interaction between the positioning server and the foregoing UE and the auxiliary UE may be implemented based on LPP signaling, and the interaction between the positioning server and the base station (such as an eNB) may be based on the LPPa letter. The interaction is performed; if the positioning device is a base station, the interaction between the base station and the UE and the secondary UE may be implemented by using RRC signaling.
  • the method includes:
  • the positioning server selects a UE that can perform end-to-end communication with UE1 as a candidate set of UE1.
  • the UE in the candidate set is within the end-to-end range of UE1.
  • the positioning server detects each UE in the candidate set of UE1, and uses the UE that already contains the effective location information as the secondary UE set of UE1.
  • the embodiment of the present invention is applied to a scenario in which a UE that already has valid location information exists in a candidate set.
  • a UE that already has valid location information may not exist in the candidate set, and the positioning process may be ended at this time, or Use other network positioning methods such as UTDOA, OTDOA, etc. for positioning.
  • the positioning server determines whether the end-to-end range of the UE1 is smaller than a preset range.
  • the preset range is a network-side configuration requirement. If it is less than the preset range, step 704 is performed, and if it is greater than the preset range, step 705 is performed.
  • the positioning server uses the location coordinates of the secondary UE in the secondary UE set as the current location coordinate of the UE1. If the step 703 determines that the end-to-end range of the UE1 is smaller than the preset range, it means that the distance between the UE and the UE1 capable of performing end-to-end communication with the UE1 is smaller than the positioning error required by the network, and the auxiliary UE is within the set of the auxiliary UE.
  • the secondary UE already has valid location information, so the location server can directly use the location coordinates of the secondary UE in the secondary UE set as the current location coordinates of UE1.
  • the method of selecting the location coordinate of the secondary UE in the secondary UE set as the current location coordinate of the UE1 may be as follows: the positioning server selects the location coordinate of the secondary UE with the highest signal strength received by the UE1 from the secondary UE set as the UE1. The current position coordinate; or, the positioning server randomly selects the position coordinate of one auxiliary UE from the set of auxiliary UEs as the current position coordinate of the UE1.
  • the UE1 may take the centroid coordinates of the location coordinates of all the secondary UEs in the set of the secondary UEs, and use the obtained centroid coordinates as the current location coordinates of the UE1, which is not limited herein.
  • the positioning server sends the positioning signal configuration information of the UE1 to the auxiliary UE in the foregoing auxiliary UE set.
  • the positioning server may directly send the positioning signal configuration information of the UE1 to the secondary UE in the auxiliary UE set, or may send the positioning signal configuration information of the UE1 to the secondary UE in the secondary UE set of the UE1 by using the UE1.
  • the positioning server may use LPP signaling to transmit positioning signal configuration information to the secondary UE.
  • the auxiliary UE in the auxiliary set receives the positioning signal sent by the UE1 according to the positioning signal configuration information.
  • the auxiliary UE in the auxiliary set After receiving the positioning signal configuration information, the auxiliary UE in the auxiliary set receives the positioning signal of the UE1 according to the transmission time and the transmission format specified in the positioning signal configuration information.
  • the auxiliary UE in the auxiliary set measures the positioning signal from the UE1, and sends the measurement result to the positioning server.
  • the auxiliary UE in the auxiliary set starts the search window before and after the corresponding time according to the positioning signal configuration information of the received UE1, searches for the positioning signal transmitted by the UE1, and prepares a local sequence for decoding according to the transmission format.
  • the secondary UE in the secondary set measures the positioning signal from the UE1, estimates the time at which the positioning signal of the UE1 is received, and transmits the measurement result including the time to the positioning server.
  • the positioning server calculates a current location of the UE1 according to the obtained measurement result and the effective location information of the secondary UE.
  • the number of secondary UEs in the auxiliary set is greater than or equal to three.
  • the serving base station and other base stations of UE1 are required to participate in the positioning of UE1, so as to ensure that the number of positioning nodes is not less than three.
  • the embodiment of the present invention uses the positioning server as the positioning device.
  • the base station or the UE1 itself can be used as the positioning device.
  • the base station may use the RRC signaling to transmit the positioning signal configuration information of the UE1 to the secondary UE, and transmit the positioning signal configuration information of the UE1 to the other base station through the X2 interface (if other base stations are required to participate in the positioning)
  • the UE1 may transmit the positioning signal configuration information of the UE1 to the secondary UE by using UE-UE signaling, and transmit the positioning signal configuration information of the UE1 to the service through RRC signaling.
  • the base station (in the scenario where the serving base station needs to participate in the positioning), or the positioning signal configuration information of the UE1 is transmitted to the other base stations through the X2 interface that the serving base station connects with other base stations (in the scenario where other base stations are required to participate in the positioning).
  • the user equipment 800 in the embodiment of the present invention includes:
  • the receiving unit 801 is configured to receive the positioning signals of the at least three positioning nodes, where the at least three positioning nodes include at least one secondary UE, where the secondary UE is located in the end-to-end communication range of the user equipment 800, and the foregoing auxiliary Effective location information of the UE;
  • the measurement acquisition unit 802 is configured to measure the positioning signals of the at least three positioning nodes received by the receiving unit 801, and obtain a measurement result including a time difference of the positioning signals received by the user equipment 800 to the at least three positioning nodes.
  • the calculating unit 803 is configured to calculate a current location of the user equipment 800 according to the measurement result obtained by the measurement acquiring unit 802 and the effective location information of the at least three positioning nodes.
  • the user equipment 800 further includes: a first determining unit and a selecting unit, where the first determining unit is configured to determine whether all other UEs in the end-to-end communication range of the user equipment 800 are not valid. Location information; the above selection unit is used for the first judgment When the judgment result of the unit is no, the other UEs having the valid location information are selected as the secondary UE set.
  • the user equipment 800 further includes: a second determining unit and a selecting positioning unit; the second determining unit is configured to determine, after the triggering of the selecting unit, whether the local end-to-end communication range of the user equipment 800 is smaller than a preset range, and the foregoing selection
  • the positioning unit is configured to: when the determination result of the second determining unit is yes, select one of the auxiliary UEs from the set of auxiliary UEs, and use the selected effective location information of the secondary UE as the effective location information of the user equipment 800, or
  • the selecting positioning unit may also take the centroid coordinates of the position coordinates of all the auxiliary UEs in the auxiliary UE set as the valid position information of the user equipment 800 when the judgment result of the second determining unit is YES, where the obtained centroid coordinates are used as the effective position information of the user equipment 800, where Not limited.
  • the receiving unit 801, the measurement acquisition unit 802, and the calculation unit 803 are triggered only when the determination result of the second determination unit is NO.
  • the user equipment 800 further includes a sending unit, configured to send the positioning signal configuration information to the auxiliary UE of the at least three positioning nodes before the receiving unit 801 receives the positioning signals of the at least three positioning nodes.
  • the auxiliary UE of the at least three positioning nodes sends the positioning signal to the user equipment 800 according to the sending time and the sending format specified by the positioning signal configuration information.
  • the user equipment 800 in the embodiment of the present invention may be used as the UE in the foregoing method embodiment, and may be used to implement all the technical solutions in the foregoing method embodiments, and the functions of the various functional modules may be according to the foregoing method embodiments.
  • the functions of the various functional modules may be according to the foregoing method embodiments.
  • the positioning device 900 in the embodiment of the present invention includes:
  • the obtaining unit 901 is configured to obtain a measurement result of the UE, where the measurement result is obtained by the UE, and the positioning result of the received at least three positioning nodes is obtained by the UE, where the measurement result includes that the UE receives the location of the at least three positioning nodes. a time difference of the signal, where the at least three positioning nodes include at least one auxiliary UE, and the auxiliary UE is located at the end of the UE.
  • the effective location information of the above-mentioned auxiliary UE exists within the communication range and currently exists;
  • the calculating unit 902 is configured to calculate a current location of the UE according to the measurement result acquired by the acquiring unit 901 and the effective location information of the at least three positioning nodes.
  • the positioning device 900 further includes a first determining unit and a selecting unit, where the first determining unit is configured to determine whether all other UEs in the end-to-end communication range of the UE do not have valid location information.
  • the selecting unit is configured to: when the determining result of the first determining unit is no, select the other UEs that have valid location information as the auxiliary UE set.
  • the positioning device 900 further includes: a second determining unit and a selecting positioning unit; the second determining unit is configured to determine, after the triggering of the selecting unit, whether the end-to-end communication range of the UE is smaller than a preset range, and the selecting the positioning unit And when the determining result of the second determining unit is YES, selecting one of the auxiliary UEs from the set of secondary UEs, and using the selected effective location information of the secondary UE as the effective location information of the UE, or the selected positioning unit.
  • the position coordinates of all the auxiliary UEs in the set of the auxiliary UEs may be the centroids, and the obtained centroid coordinates may be used as the effective position information of the UE, which is not limited herein.
  • the obtaining unit 901 and the calculating unit 902 are triggered only when the judgment result of the second judging unit is NO.
  • the locating device 900 further includes a sending unit, configured to send the positioning signal configuration information to the UE and the auxiliary UE of the at least three positioning nodes before the acquiring unit 901 acquires the measurement result of the UE. And the auxiliary UE of the at least three positioning nodes sends the positioning signal to the UE according to the sending time and the sending format specified by the positioning signal configuration information.
  • the positioning device 900 in the embodiment of the present invention may be a positioning server or a base station, which is not limited herein.
  • the positioning device 900 in the embodiment of the present invention may be used as the positioning device in the foregoing method embodiments of FIG. 4 and FIG. 5, and may be used to implement all the technical solutions in the foregoing method embodiments, and the functions of the various functional modules.
  • the method in the foregoing method embodiment may be specifically implemented.
  • the positioning device 1000 in the embodiment of the present invention includes:
  • the obtaining unit 1001 is configured to obtain the measurement result of the at least three positioning nodes, where the measurement result is obtained by measuring, by the at least three positioning nodes, the positioning signal sent by the UE, where the measurement result includes that each of the at least three positioning nodes respectively receives The time of the positioning signal of the UE, where the at least three positioning nodes include at least one secondary UE, where the secondary UE is located in the end-to-end communication range of the UE and currently has valid location information of the secondary UE;
  • the calculating unit 1002 is configured to calculate a current location of the UE according to the measurement result acquired by the obtaining unit 1001 and the effective location information of the at least three positioning nodes.
  • the positioning device 1000 further includes a first determining unit and a selecting unit, where the first determining unit is configured to determine whether all other UEs in the end-to-end communication range of the UE do not have valid location information.
  • the selecting unit is configured to: when the determining result of the first determining unit is no, select the other UEs that have valid location information as the auxiliary UE set.
  • the positioning device 1000 further includes: a second determining unit and a selecting positioning unit; the second determining unit is configured to determine, after the triggering of the selecting unit, whether the end-to-end communication range of the UE is smaller than a preset range, and the selecting the positioning unit And when the determining result of the second determining unit is YES, selecting one of the auxiliary UEs from the set of secondary UEs, and using the selected effective location information of the secondary UE as the effective location information of the UE, or the selected positioning unit.
  • the position coordinates of all the auxiliary UEs in the set of the auxiliary UEs may be the centroids, and the obtained centroid coordinates may be used as the effective position information of the UE, which is not limited herein.
  • the obtaining unit 1001 and the calculating unit 1002 are triggered only when the judgment result of the second judging unit is NO.
  • the positioning apparatus 1000 further includes a sending unit, configured to send the positioning signal configuration information of the UE to the at least three positioning nodes after the acquiring unit 1001 obtains the measurement results of the at least three positioning nodes. And assisting the UE, so that the auxiliary UE of the at least three positioning nodes receives the positioning signal sent by the UE according to the sending time and the sending format specified by the positioning signal configuration information.
  • the locating device 1000 in the embodiment of the present invention may be a UE, or a positioning server, or may be a base station, which is not limited herein.
  • the positioning device 1000 in the embodiment of the present invention may be as shown in FIG. 6 and FIG.
  • the locating device in the method embodiment can be used to implement all the technical solutions in the foregoing method embodiments, and the functions of the respective functional modules can be specifically implemented according to the method in the foregoing method embodiment, and the specific implementation process can refer to the foregoing embodiment. The relevant description in the description will not be repeated here.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the components displayed as units may or may not be physical units, i.e., may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium. , including instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods of the various embodiments of the present invention Part or part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM, a random access memory), a magnetic disk or an optical disk, and the like. The medium of the code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明实施例公开了一种网络定位方法和相关设备,其中,一种网络定位方法包括:用户设备UE接收至少三个定位节点的定位信号,其中,所述至少三个定位节点中包含至少一个辅助UE,所述辅助UE位于所述UE 的端对端通信范围内且当前存在所述辅助UE的有效位置信息;对所述至少三个定位节点的定位信号进行测量,获得包含所述UE接收到所述至少三个定位节点的定位信号的时间差的测量结果;根据所述测量结果和所述至少三个定位节点的有效位置信息计算所述UE的当前位置。本发明提供的技术方案能够有效提高网络定位精度。

Description

一种网络定位方法和相关设备 本申请要求于 2012 年 2 月 20 日提交中国专利局、 申请号为 201210038267.0、 发明名称为 "一种网络定位方法和相关设备" 的中国专利 申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信领域, 尤其涉及一种网络定位方法和相关设备。 发明背景
目前随着移动通信技术的不断发展,对于定位服务的需求也日渐增加。 定位服务的应用场景呈现出多元化的趋势, 例如紧急求援定位, 犯罪位置 追踪, 导航及交通控制等等。 但不论应用场景如何多样, 业界对于定位的 需求始终是希望获得可靠、 有效、 快速的方法, 换言之, 易于实现并且高 精度的定位技术一直是人们追捧的热点。
全球定位***(GPS , Global Positioning System ) 的发展, 使得具有 GPS模块的移动台可以获得精确的定位, 但 GPS的弊端也比较明显, 首先 GPS模块的增加势必带来移动台成本的提高, 其次, GPS作为一种卫星定 位技术不适用与高密度城区 (有建筑物遮挡) 的场景。 网络定位虽然没有 GPS定位的高精度, 但是它更适用于高密度城区的场景, 因此将 GPS和网 络定位相结合的算法是目前研究的重点。
目前存在两种网络定位的方案: 一种是上行到达时间差 (UTDOA, Uplink Time Difference of Arrival ) 定位方式, 一种是可观察到达时间差 ( OTDOA, Observed Time Difference Of Arrival )定位方式。
UTDOA定位方式通过用户设备 ( UE, User Equipment )发送上行的定 位信号(如探测参考信号(SRS , Sounding reference signal )等), 在演进型 基站(eNB, evolved Node )侧进行上行信号的到达时间估计, 得到 eNB与 此 UE的距离。 从而, 得到多个 eNB与此 UE的距离, 通过三边法等算法 计算得到 UE的相对于 eNB的相对坐标位置, 网络根据 eNB的实际位置, 即可以得到 UE的绝对位置。 但是, 由于 UTDOA定位方式釆用的是对 UE 上行的定位信号的估计, 因此受到 UE上行发射功率的限制, 由于 UE的上 行发射功率有限, 导致其发射的定位信号可以覆盖的范围有限, 因此为该 UE进行 UTDOA定位的 eNB数目也受到了限制, 限制了 UTDOA的定位 精度。 同时 UTDOA也是一种基于信号到达时刻估计的定位算法, 因此若 定位信号受到遮挡或是反射, 会对信号到达时刻造成影响, 从而影响定位 的精度。
OTDOA定位方式的原理是, 当***中存在三个或以上基站时, 可以 根据不同基站下行传输信号的到达时间差确定 UE的位置。此下行传输信号 可以是定位参考信号, 也可以是同步信号。 由双曲线的定义知, 到两个定 点距离之差为恒定值的点构成一条双曲线。如图 1所示,***中存在基站 0、 基站 1和基站 2, 假设图 1中黑色实体部分表示 UE的位置, UE到基站 0 和基站 1距离之差为 drdo构成一条双曲线, UE到基站 1和基站 2距离之 差 4-4构成另一条双曲线, 两条双曲线的交点即为 UE的位置。 当***中 存在的基站数量越多时, 确定的 UE位置越精确。 在 LTE中, OTDOA定位 作为一种网络辅助 UE 定位的技术, 在网络侧, 增强的服务移动定位中心 ( e-SMLC, Enhanced Serving Mobile Location Centre )为基站和移动台指定 定位信号 (PRS, Positioning Reference Signal ) 的发送和接收配置之后, 基 站下行发送 PRS,移动台接收到来自多个基站的 PRS后识别每个 PRS的首 达径位置, 可以得到不同基站之间的 PRS 到达时间差, 并将其上报至 e-SMLC„ e-SMLC通过接收到的 PRS到达时间差可以映射出移动台与不同 基站之间的距离差, 通过上述的双曲线模型数学计算, e-SMLC就可以得到 移动台的准确位置。 可见, OTDOA定位的精度很大程度上依赖于 PRS信 号的接收和首达径位置的估计, 在密集城区的场景, 由于受到建筑物的遮 挡, 导致信号的多次反射, 折射及衰耗, 使得 PRS经历的路径不再是一条 直线径, 若仍然根据 PRS到达时间差进行移动台的位置估计, 就会带来很 大的定位误差。
发明内容 本发明实施例提供了一种网络定位方法和相关设备, 用于提高网络定 位精度。
为解决上述技术问题, 本发明实施例提供以下技术方案:
一种网络定位方法, 包括:
用户设备 UE接收至少三个定位节点的定位信号,其中,上述至少三个 定位节点中包含至少一个辅助 UE, 上述辅助 UE位于上述 UE的端对端通 信范围内且当前存在上述辅助 UE的有效位置信息;
对上述至少三个定位节点的定位信号进行测量,获得包含上述 UE接收 到上述至少三个定位节点的定位信号的时间差的测量结果;
根据上述测量结果和上述至少三个定位节点的有效位置信息计算上述 UE的当前位置。
一种网络定位方法, 包括:
定位设备获取用户设备 UE的测量结果,上述测量结果由上述 UE对接 收到的至少三个定位节点的定位信号进行测量得到, 上述测量结果包含上 述 UE接收到上述至少三个定位节点的定位信号的时间差,其中,上述至少 三个定位节点中包含至少一个辅助 UE, 上述辅助 UE位于上述 UE的端对 端通信范围内且当前存在上述辅助 UE的有效位置信息;
根据上述获取的测量结果和上述至少三个定位节点的有效位置信息, 计算上述 UE的当前位置。
一种网络定位方法, 包括:
定位设备获取至少三个定位节点的测量结果, 上述测量结果由上述至 少三个定位节点分别对用户设备 UE发送的定位信号进行测量得到,上述测 量结果包含上述至少三个定位节点各自接收到上述 UE的定位信号的时间 , 其中, 上述至少三个定位节点中包含至少一个辅助 UE, 上述辅助 UE位于 上述 UE的端对端通信范围内且当前存在上述辅助 UE的有效位置信息; 根据上述获取的测量结果和上述至少三个定位节点的有效位置信息, 计算上述 UE的当前位置。
一种用户设备 UE, 包括:
接收单元, 用于接收至少三个定位节点的定位信号, 其中, 上述至少 三个定位节点中包含至少一个辅助 UE, 上述辅助 UE位于上述 UE的端对 端通信范围内且当前存在上述辅助 UE的有效位置信息;
测量获取单元, 用于对上述接收单元接收的上述至少三个定位节点的 定位信号进行测量,获得包含上述 UE接收到上述至少三个定位节点的定位 信号的时间差的测量结果;
计算单元, 用于根据上述测量结果和上述至少三个定位节点的有效位 置信息计算上述 UE的当前位置。
一种定位设备, 包括:
获取单元, 用于获取用户设备 UE 的测量结果, 上述测量结果由上述 UE对接收到的至少三个定位节点的定位信号进行测量得到, 上述测量结果 包含上述 UE接收到上述至少三个定位节点的定位信号的时间差,其中,上 述至少三个定位节点中包含至少一个辅助 UE, 上述辅助 UE位于上述 UE 的端对端通信范围内且当前存在上述辅助 UE的有效位置信息;
计算单元, 用于根据上述获取单元获取的测量结果和上述至少三个定 位节点的有效位置信息, 计算上述 UE的当前位置。
一种定位设备, 包括:
获取单元, 用于获取至少三个定位节点的测量结果, 上述测量结果由 上述至少三个定位节点分别对用户设备 UE发送的定位信号进行测量得到 , 上述测量结果包含上述至少三个定位节点各自接收到上述 UE 的定位信号 的时间, 其中, 上述至少三个定位节点中包含至少一个辅助 UE, 上述辅助 UE位于上述 UE的端对端通信范围内且当前存在上述辅助 UE的有效位置 信息;
计算单元, 用于根据上述获取单元获取的测量结果和上述至少三个定 位节点的有效位置信息, 计算上述 UE的当前位置。
由上可见, 本发明实施例中将 UE端对端通信范围内且存在有效位置信 息的其它 UE作为该 UE进行定位的辅助 UE ,由于端对端范围内的 UE之间距 离较短, 因此可避免因建筑物的遮挡使定位信号多次反射, 折射及衰耗而 带来了定位误差, 有效提高了网络定位精度。 附图简要说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1为本发明提供的 OTDOA定位方式的***原理示意图;
图 2为本发明提供的一种网络定位方法一个实施例流程示意图; 图 3为本发明提供的一种网络定位方法另一个实施例流程示意图; 图 4为本发明提供的一种网络定位方法再一个实施例流程示意图; 图 5为本发明提供的一种网络定位方法再一个实施例流程示意图; 图 6为本发明提供的一种网络定位方法再一个实施例流程示意图; 图 7为本发明提供的一种网络定位方法再一个实施例流程示意图; 图 8为本发明提供的一种用户设备一个实施例结构示意图;
图 9为本发明提供的一种定位设备一个实施例结构示意图;
图 10为本发明提供的另一种定位设备一个实施例结构示意图。
实施本发明的方式 本发明实施例提供了一种网络定位方法和相关设备。
为使得本发明的发明目的、 特征、 优点能够更加的明显和易懂, 下面 将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而非全 部实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。 下面对本发明实施例提供的一种网络定位方法进行描述, 本发明实施 例中的网络定位方法釆用端对端下行定位方式, 并由 UE计算自身的位置, 如图 2所示, 本发明实施例中的一种网络定位方法包括:
201、 UE接收至少三个定位节点的定位信号;
在本发明实施例中, UE接收至少三个定位节点的定位信号, 定位信号 可以是定位参考信号, 也可以是同步信号, 此处不作限定。 其中, 上述至 少三个定位节点中包含至少一个辅助 UE, 上述辅助 UE位于该 UE的端对 端通信范围内且当前存在上述辅助 UE的有效位置信息。
端对端通信(即 D2D )是一种有效的通信模式, UE之间可以直接通信 而无须经过基站转发, 但由于源 UE本身的发射功率有限, 目标 UE的接收 能力即接收信号灵敏度也有限, 使得端对端通信的距离有限, 在本发明实 施例中, 将端对端通信距离称为端对端通信范围, 即端对端通信的有效距 离, 通常, 端对端通信范围较小, 如可能在 50米之内。
在本发明实施例中, 有效位置信息指的是定位时间点 (即位置信息的 获得时间点) 与当前时间点的间隔在规定的时间范围内的位置信息, 而定 位时间点与当前时间点的间隔超过规定的时间范围的所有位置信息都认定 为失效的位置信息, 上述时间范围可以是由网络侧配置的参数。 其中, 上 述辅助 UE的有效位置信息可以通过 GPS得到, 或者也可以通过网络定位 方式得到, 此处不作限定。
在一种应用场景中, 在 UE进行定位时, 该 UE先判断其端对端通信范 围内的所有其它 UE是否都不存在有效位置信息,若否,则选取存在有效位 置信息的其它 UE作为辅助 UE集合, 举例说明, 假设本发明实施例中的 UE为 UE1 , 与其可以进行端对端通信的 UE有 UE2、 UE3和 UE4, 即 UE1 的端对端通信范围内存在 UE2、 UE3和 UE4, 假设只有 UE2和 UE3存在 有效位置信息, 则 UE1选取 UE2和 UE3作为辅助 UE集合。 若该 UE的端 对端通信范围内的所有其它 UE都不存在有效位置信息,则结束本次定位流 程或者釆用其它网络定位方式如 UTDOA、 OTDOA等进行定位, 此处不作 限定。 进一步, 当该 UE存在辅助 UE集合时, 该 UE判断本地的端对端通 信范围是否小于预置范围, 该预置范围为网络侧根据网络对定位精度的要 求而设置的门限值,若该 UE本地的端对端通信范围小于预置范围, 则认为 辅助 UE集合中的辅助 UE与该 UE的距离小于网络要求的定位误差, 此时 该 UE可以从辅助 UE集合中选取一个辅助 UE, 将选取的辅助 UE的有效 位置信息作为该 UE的有效位置信息, 其中, 从辅助 UE集合中选取一个辅 助 UE的方式例如可以是从辅助 UE集合中选取信号强大最大的辅助 UE, 或者, 也可以是从辅助 UE集合中随机选取一个辅助 UE, 当然, 当该 UE 本地的端对端通信范围小于预置范围时,该 UE也可以将辅助 UE集合中的 所有辅助 UE的位置坐标取质心,将得到的质心坐标作为该 UE的有效位置 信息, 此处不作限定。
在本发明实施例中, 在步骤 201执行之前, UE需要将定位信号配置信 息发送给上述至少三个定位节点中的辅助 UE, 以便上述至少三个定位节点 中的辅助 UE根据接收到的定位信号配置信息规定的发送时间和发送格式, 向该 UE发送定位信号。 而上述至少三个定位节点中的其它设备如基站,则 可以按照 OTDOA等下行定位技术向该 UE发送定位信号。
202、 对上述至少三个定位节点的定位信号进行测量, 获得包含该 UE 接收到上述至少三个定位节点的定位信号的时间差的测量结果;
UE对接收到的上述至少三个定位信号进行测量, 得到测量结果, 该测 量结果包含接收到上述至少三个定位节点的定位信号的时间差。
203、 根据上述测量结果和上述至少三个定位节点的有效位置信息计算 该 UE的当前位置;
UE根据接收到上述至少三个定位节点的定位信号的时间差, 以及上述 至少三个定位节点的有效位置信息, 计算自身的当前位置。
由上可见,本发明实施例中将 UE端对端通信范围内且存在有效位置信 息的其它 UE作为该 UE进行定位的辅助 UE, 由于端对端范围内的 UE之 间距离较短, 因此可避免因建筑物的遮挡使定位信号多次反射, 折射及衰 耗而带来了定位误差, 有效提高了网络定位精度。 为便于更好地理解本发明技术方案, 下面以一具体应用场景对本发明 实施例中由 UE进行下行定位的网络定位方法进行描述,如图 3所示,包括:
301、 UE1选择能与自身进行端对端通信的 UE作为候选集合; 即候选集合中的 UE在 UE1的端对端范围内。
302、 UE1检测候选集合中的每一个 UE, 将已经含有有效位置信息的 UE作为一个辅助 UE集合; 本发明实施例应用于候选集合中存在已经含有有效位置信息的 UE 的 场景中, 当然, 候选集合中也可能不存在已经含有有效位置信息的 UE, 则 此时可以结束此次定位流程, 或者釆用其它网络定位方式如 UTDOA、 OTDOA等进行定位。
303、 UE1判断 UE1的端对端范围是否小于预置范围;
其中, 预置范围表征的是网络对于定位精度的要求, 由网络侧配置。 若小于预置范围, 则执行步骤 304, 若大于预置范围, 则执行步骤 305。
304、 使用辅助 UE集合内的辅助 UE的位置坐标作为 UE1的当前位置 坐标;
若步骤 303判断出 UE1的端对端范围小于预置范围,则意味着辅助 UE 集合内, 能够与 UE1进行端对端通信的 UE与 UE1的距离小于网络要求的 定位误差, 而辅助 UE集合内的辅助 UE已经具有有效位置信息, 因此可以 直接将辅助 UE集合中的辅助 UE的位置坐标作为 UE1的当前位置坐标。 具体地, 选择辅助 UE集合中的哪一个辅助 UE的位置坐标作为 UE1的当 前位置坐标的方法可以如下: 从辅助 UE集合选择 UE1接收到的信号强度 最大的辅助 UE的位置坐标作为 UE1 的当前位置坐标; 或者, 从辅助 UE 集合中随机选择一个辅助 UE的位置坐标作为 UE1的当前位置坐标。 当前, UE1也可将辅助 UE集合中的所有辅助 UE的位置坐标取质心,将得到的质 心坐标作为 UE1当前的位置坐标, 此处不作限定。
305、 UE1发送定位信号配置信息给辅助 UE集合中的辅助 UE;
其中, 定位信号配置信息可以由 UE1通过 UE-UE间信令发送给辅助
UE集合中的辅助 UE。
306、 辅助集合中的辅助 UE根据定位信号配置信息发送定位信号; 辅助集合中的辅助 UE接收到定位信号配置信息后,根据定位信号配置 信息中规定的发送时间和发送格式, 发送定位信号, 以便 UE1可在相应时 刻的前后开启搜索窗,搜索辅助集合中的辅助 UE所发送的定位信号,并根 据发送格式准备用于解码的本地序列等。
307、 UE1测量来自辅助 UE的定位信号, 根据测量结果、 辅助 UE的 有效位置信息, 计算自身的当前位置;
当 UE1测量的定位节点大于或等于三个时, 可以才艮据测量得到的不同 参考点的定位信号的到达时间差、 以及各个定位节点的有效位置信息确定 出 UE1的当前位置。
本发明实施例中以辅助集合中的辅助 UE的数目大于或者等于 3个为例 进行说明, 因此, 步骤 307只需测量来自辅助集合中的辅助 UE的定位信号 即可确定出其自身的当前位置。
在实际应用中, 若辅助集合中的辅助 UE大于 1个但少于 3个, 步骤 307中 UE1对来自基站的定位信号也进行测量, 并根据测量结果、 基站和 辅助 UE的有效位置信息, 计算自身的当前位置。
由上可见,本发明实施例中将 UE端对端通信范围内且存在有效位置信 息的其它 UE作为该 UE进行定位的辅助 UE, 由于端对端范围内的 UE之 间距离较短, 因此可避免因建筑物的遮挡使定位信号多次反射, 折射及衰 耗而带来了定位误差, 有效提高了网络定位精度。 下面对本发明实施例提供的一种网络定位方法进行描述, 本发明实施 例中的网络定位方法釆用端对端下行定位方式, 并由定位设备(如定位服 务器或基站)计算 UE1的位置, 如图 4所示, 本发明实施例中的一种网络 定位方法包括:
401、 定位设备获取 UE的测量结果;
在本发明实施例中, 定位设备获取上述 UE的测量结果,测量结果由上 述 UE对接收到的至少三个定位节点的定位信号(可以是定位参考信号,也 可以是同步信号)进行测量得到, 测量结果包含上述 UE接收到上述至少三 个定位节点的定位信号的时间差, 其中, 上述至少三个定位节点中包含至 少一个辅助 UE, 上述辅助 UE位于该 UE的端对端通信范围内且当前存在 上述辅助 UE的有效位置信息。
在本发明实施例中, 有效位置信息指的是定位时间点 (即位置信息的 获得时间点) 与当前时间点的间隔在规定的时间范围内的位置信息, 而定 位时间点与当前时间点的间隔超过规定的时间范围的所有位置信息都认定 为失效的位置信息, 上述时间范围可以是由网络侧配置的参数。 其中, 上 述辅助 UE的有效位置信息可以通过 GPS得到, 或者也可以通过网络定位 方式得到, 此处不作限定。
在一种应用场景中, 在对上述 UE进行定位时, 定位设备先判断该 UE 端对端通信范围内的所有其它 UE是否都不存在有效位置信息,若否,则选 取存在有效位置信息的其它 UE作为该 UE的辅助 UE集合, 举例说明 , 假 设本发明实施例中的 UE为 UE1 , 与其可以进行端对端通信的 UE有 UE2、 UE3和 UE4, 即 UE1的端对端通信范围内存在 UE2、 UE3和 UE4, 假设只 有 UE2和 UE3存在有效位置信息 , 则定位设备选取 UE2和 UE3作为 UE1 的辅助 UE集合。 若该 UE的端对端通信范围内的所有其它 UE都不存在有 效位置信息, 则结束本次定位流程或者釆用其它网络定位方式如 UTDOA、 OTDOA等进行定位, 此处不作限定。 进一步, 当该 UE存在辅助 UE集合 时,定位设备判断该 UE的端对端通信范围是否小于预置范围,该预置范围 为网络侧根据网络对定位精度的要求而设置的门限值,若该 UE本地的端对 端通信范围小于预置范围, 则认为该 UE的辅助 UE集合中的辅助 UE与该 UE的距离小于网络要求的定位误差,此时定位设备可以从该 UE的辅助 UE 集合中选取一个辅助 UE, 将选取的辅助 UE的有效位置信息作为该 UE的 有效位置信息, 其中, 从该 UE的辅助 UE集合中选取一个辅助 UE的方式 例如可以是从该 UE的辅助 UE集合中选取信号强大最大的辅助 UE,或者, 也可以是从该 UE的辅助 UE集合中随机选取一个辅助 UE, 当然, 当该 UE 的端对端通信范围小于预置范围时,定位设备也可以将该 UE的辅助 UE集 合中的所有辅助 UE的位置坐标取质心,将得到的质心坐标作为该 UE的有 效位置信息, 此处不作限定。
在本发明实施例中, 在步骤 401 执行之前, 定位设备还需要将定位信 号配置信息发送给该 UE以及上述至少三个定位节点中的辅助 UE, 以便上 述至少三个定位节点中的辅助 UE根据接收到的定位信号配置信息规定的 发送时间和发送格式, 向该 UE发送定位信号, 由该 UE根据接收到的定位 信号配置信息规定的发送时间和发送格式, 接收上述辅助 UE的定位信号。 其中, 定位设备可以将定位信号配置信息直接发送给上述至少三个定位节 点中的辅助 UE, 也可以通过上述 UE将定位信号配置信息发送给上述至少 三个定位节点中的辅助 UE, 此处不作限定。
在本发明实施例中, 上述至少三个定位节点中的其它设备如基站, 可 以按照 OTDOA等下行定位技术向该 UE发送定位信号。
402、 根据上述测量结果和上述至少三个定位节点的有效位置信息计算 该 UE的当前位置;
定位设备根据步骤 401获取的测量结果包含的上述 UE接收到上述至少 三个定位节点的定位信号的时间差, 以及上述至少三个定位节点的有效位 置信息, 计算该 UE的当前位置。
本发明实施例中, 定位设备例如可以是定位服务器或基站, 若定位设 备为定位服务器,则定位服务器与上述 UE和上述辅助 UE之间的交互可基 于长期演进定位协议 ( LPP, Long Term Evolution Positioning Protocol )信令 实现,定位服务器与基站(如 eNB )之间的交互可基于 LTE定位协议 A (即 LPPa )信令进行交互; 若定位设备为基站, 则基站与上述 UE和上述辅助 UE之间的交互可通过无线资源控制 ( RRC, Radio Resource Control )信令 实现。
由上可见,本发明实施例中将 UE端对端通信范围内且存在有效位置信 息的其它 UE作为该 UE进行定位的辅助 UE, 由于端对端范围内的 UE之 间距离较短, 因此可避免因建筑物的遮挡使定位信号多次反射, 折射及衰 耗而带来了定位误差, 有效提高了网络定位精度。 为便于更好地理解本发明技术方案, 下面以一具体应用场景对本发明 实施例中由定位服务器进行下行定位的网络定位方法进行描述, 如图 5 所 示, 包括:
501、 定位服务器选择能与 UE1进行端对端通信的 UE作为 UE1的候 选集合;
即候选集合中的 UE在 UE1的端对端范围内。
502、 定位服务器检测 UE1的候选集合中的每一个 UE, 将已经含有有 效位置信息的 UE作为 UE1的辅助 UE集合;
本发明实施例应用于候选集合中存在已经含有有效位置信息的 UE 的 场景中, 当然, 候选集合中也可能不存在已经含有有效位置信息的 UE, 则 此时可以结束此次定位流程, 或者釆用其它网络定位方式如 UTDOA、 OTDOA等进行定位。
503、 定位服务器判断 UE1的端对端范围是否小于预置范围; 其中, 预置范围表征的是网络对于定位精度的要求, 由网络侧配置。 若小于预置范围, 则执行步骤 504, 若大于预置范围, 则执行步骤 505。
504、 定位服务器使用辅助 UE集合内的辅助 UE的位置坐标作为 UE1 的当前位置坐标; 若步骤 503判断出 UEl的端对端范围小于预置范围,则意味着辅助 UE 集合内, 能够与 UE1进行端对端通信的 UE与 UE1的距离小于网络要求的 定位误差, 而辅助 UE集合内的辅助 UE已经具有有效位置信息, 因此定位 服务器可以直接将辅助 UE集合中的辅助 UE的位置坐标作为 UE1的当前 位置坐标。 具体地, 选择辅助 UE集合中的哪一个辅助 UE的位置坐标作为 UE1的当前位置坐标的方法可以如下:定位服务器从辅助 UE集合选择 UE1 接收到的信号强度最大的辅助 UE的位置坐标作为 UE1的当前位置坐标; 或者,定位服务器从辅助 UE集合中随机选择一个辅助 UE的位置坐标作为 UE1 的当前位置坐标。 当前, UE1也可将辅助 UE集合中的所有辅助 UE 的位置坐标取质心, 将得到的质心坐标作为 UE1 当前的位置坐标, 此处不 作限定。
505、定位服务器发送定位信号配置信息给 UE1和上述辅助 UE集合中 的辅助 UE;
其中, 定位服务器可以直接将定位信号配置信息发送给 UE1和上述辅 助 UE集合中的辅助 UE,也可以通过 UE1将定位信号配置信息转发给 UE1 的辅助 UE集合中的辅助 UE, 本发明实施例中, 定位服务器可以釆用 LPP 信令传输定位信号配置信息给 UE1和辅助 UE。
506、 辅助集合中的辅助 UE根据定位信号配置信息发送定位信号; 辅助集合中的辅助 UE接收到定位信号配置信息后,根据定位信号配置 信息中规定的发送时间和发送格式, 发送定位信号。
507、 UE1测量来自辅助 UE的定位信号, 将测量结果发送给定位服务 器;
UE1 根据接收到的定位信号配置信息在相应时刻的前后开启搜索窗, 搜索辅助集合中的辅助 UE所发送的定位信号,并根据发送格式准备用于解 码的本地序列等。
本发明实施例中以辅助集合中的辅助 UE的数目大于或者等于 3个为例 进行说明,因此,步骤 507只需测量来自辅助集合中的辅助 UE的定位信号, 并将测量结果发送给定位服务器即可。
在实际应用中, 若辅助集合中的辅助 UE大于 1个但少于 3个, 步骤 507中 UE1对来自基站的定位信号也进行测量, 则 UE1向定位服务器上报 的测量结果包含 UE1对基站的测量结果。 508、 定位服务器根据获取的测量结果和辅助 UE的有效位置信息, 计 算 UE1的当前位置;
在实际应用中,若辅助集合中的辅助 UE大于 1个但少于 3个,在步骤 508还需要结合步骤 507中 UE1测量的基站的有效位置信息, 计算 UE1的 当前位置。
本发明实施例使用定位服务器作为 UE1的定位设备, 当然, 也可以是 利用基站(如 eNB )作为 UE1的定位设备, 其流程可以参照图 5中的描述 (将定位服务器替换为基站), 可以理解的是, 替换后的方案中, 基站可以 釆用 RRC信令传输定位信号配置信息给 UE1和辅助 UE。
由上可见,本发明实施例中将 UE端对端通信范围内且存在有效位置信 息的其它 UE作为该 UE进行定位的辅助 UE, 由于端对端范围内的 UE之 间距离较短, 因此可避免因建筑物的遮挡使定位信号多次反射, 折射及衰 耗而带来了定位误差, 有效提高了网络定位精度。 下面对本发明实施例提供的一种网络定位方法进行描述, 本发明实施 例中的网络定位方法釆用端对端上行定位方式, 并由定位设备(可以是 UE 本身)计算 UE的位置, 如图 6所示, 本发明实施例中的一种网络定位方法 包括:
601、 定位设备获取至少三个定位节点的测量结果;
在本发明实施例中, 定位设备获取至少三个定位节点的测量结果, 测 量结果由上述至少三个定位节点分别对 UE发送的定位信号(可以是定位参 考信号, 也可以是同步信号)进行测量得到, 测量结果包含上述至少三个 定位节点各自接收到 UE的定位信号的时间,其中,上述至少三个定位节点 中包含至少一个辅助 UE, 上述辅助 UE位于上述 UE的端对端通信范围内 且当前存在上述辅助 UE的有效位置信息。
在本发明实施例中, 有效位置信息指的是定位时间点 (即位置信息的 获得时间点) 与当前时间点的间隔在规定的时间范围内的位置信息, 而定 位时间点与当前时间点的间隔超过规定的时间范围的所有位置信息都认定 为失效的位置信息, 上述时间范围可以是由网络侧配置的参数。 其中, 上 述辅助 UE的有效位置信息可以通过 GPS得到, 或者也可以通过网络定位 方式得到, 此处不作限定。 在一种应用场景中 , 在对上述 UE进行定位时 , 定位设备先判断该 UE 端对端通信范围内的所有其它 UE是否都不存在有效位置信息,若否,则选 取存在有效位置信息的其它 UE作为该 UE的辅助 UE集合, 若该 UE的端 对端通信范围内的所有其它 UE都不存在有效位置信息,则结束本次定位流 程或者釆用其它网络定位方式如 UTDOA、 OTDOA等进行定位, 此处不作 限定。 进一步, 当该 UE存在辅助 UE集合时, 定位设备判断该 UE的端对 端通信范围是否小于预置范围, 该预置范围为网络侧根据网络对定位精度 的要求而设置的门限值,若该 UE本地的端对端通信范围小于预置范围,则 认为该 UE的辅助 UE集合中的辅助 UE与该 UE的距离小于网络要求的定 位误差, 此时定位设备可以从该 UE的辅助 UE集合中选取一个辅助 UE, 将选取的辅助 UE的有效位置信息作为该 UE的有效位置信息, 其中, 从该 UE的辅助 UE集合中选取一个辅助 UE的方式例如可以是从该 UE的辅助 UE集合中选取信号强大最大的辅助 UE, 或者, 也可以是从该 UE的辅助 UE集合中随机选取一个辅助 UE, 当然, 当该 UE的端对端通信范围小于 预置范围时, 定位设备也可以将该 UE的辅助 UE集合中的所有辅助 UE的 位置坐标取质心,将得到的质心坐标作为该 UE的有效位置信息,此处不作 限定。
在本发明实施例中, 在步骤 601执行之前, 定位设备还需要将上述 UE 的定位信号配置信息发送给至少三个定位节点中的辅助 UE, 以便上述至少 三个定位节点中的辅助 UE根据接收到的定位信号配置信息规定的发送时 间和发送格式,接收该 UE发送定位信号。 当上述至少三个定位节点测量接 收到来自 UE的定位信号后, 估计接收到该 UE的定位信号的时间, 并将包 含该时间的测量结果发送给定位设备。
在本发明实施例中, 上述至少三个定位节点中的其它设备如基站, 可 以按照 UTDOA等上行定位技术接收并估计该 UE的定位信号。
602、 定位设备根据获取的测量结果和上述至少三个定位节点的有效位 置信息, 计算上述 UE的当前位置;
在本发明实施例中,若上述至少三个定位节点包含上述 UE的服务基站 和其它基站,则定位设备将该 UE的定位信号配置信息发送给该 UE的服务 基站, 由该 UE的服务基站通过与其它基站之间的 X2接口, 将该 UE的定 位信号配置信息发送给其它基站, 或者, 若上述定位设备为定位服务器, 则定位服务器也可直接将该 UE的定位信号配置信息发送给该 UE的服务基 站和其它基站, 此处不作限定。
本发明实施例中, 定位设备例如可以是 UE、 定位服务器或基站, 若定 位设备为 UE, 则 UE与辅助 UE之间的交互可基于 UE-UE信令实现, UE 与基站之间的交互可通过 RRC信令实现, 若定位设备为定位服务器, 则定 位服务器与上述 UE和上述辅助 UE之间的交互可基于 LPP信令实现,定位 服务器与基站(如 eNB )之间的交互可基于 LPPa信令进行交互; 若定位设 备为基站, 则基站与上述 UE和上述辅助 UE之间的交互可通过 RRC信令 实现。
由上可见,本发明实施例中将 UE端对端通信范围内且存在有效位置信 息的其它 UE作为该 UE进行定位的辅助 UE, 由于端对端范围内的 UE之 间距离较短, 因此可避免因建筑物的遮挡使定位信号多次反射, 折射及衰 耗而带来了定位误差, 有效提高了网络定位精度。 为便于更好地理解本发明技术方案, 下面以一具体应用场景对本发明 实施例中由定位服务器进行上行定位的网络定位方法进行描述, 如图 7 所 示, 包括:
701、 定位服务器选择能与 UE1进行端对端通信的 UE作为 UE1的候 选集合;
即候选集合中的 UE在 UE1的端对端范围内。
702、 定位服务器检测 UE1的候选集合中的每一个 UE, 将已经含有有 效位置信息的 UE作为 UE1的辅助 UE集合;
本发明实施例应用于候选集合中存在已经含有有效位置信息的 UE 的 场景中, 当然, 候选集合中也可能不存在已经含有有效位置信息的 UE, 则 此时可以结束此次定位流程, 或者釆用其它网络定位方式如 UTDOA、 OTDOA等进行定位。
703、 定位服务器判断 UE1的端对端范围是否小于预置范围; 其中, 预置范围表征的是网络对于定位精度的要求, 由网络侧配置。 若小于预置范围, 则执行步骤 704, 若大于预置范围, 则执行步骤 705。
704、 定位服务器使用辅助 UE集合内的辅助 UE的位置坐标作为 UE1 的当前位置坐标; 若步骤 703判断出 UEl的端对端范围小于预置范围,则意味着辅助 UE 集合内, 能够与 UE1进行端对端通信的 UE与 UE1的距离小于网络要求的 定位误差, 而辅助 UE集合内的辅助 UE已经具有有效位置信息, 因此定位 服务器可以直接将辅助 UE集合中的辅助 UE的位置坐标作为 UE1的当前 位置坐标。 具体地, 选择辅助 UE集合中的哪一个辅助 UE的位置坐标作为 UE1的当前位置坐标的方法可以如下:定位服务器从辅助 UE集合选择 UE1 接收到的信号强度最大的辅助 UE的位置坐标作为 UE1的当前位置坐标; 或者,定位服务器从辅助 UE集合中随机选择一个辅助 UE的位置坐标作为 UE1 的当前位置坐标。 当前, UE1也可将辅助 UE集合中的所有辅助 UE 的位置坐标取质心, 将得到的质心坐标作为 UE1 当前的位置坐标, 此处不 作限定。
705、定位服务器发送 UE1的定位信号配置信息给上述辅助 UE集合中 的辅助 UE;
其中, 定位服务器可以直接将 UE1的定位信号配置信息发送给上述辅 助 UE集合中的辅助 UE, 也可以通过 UE1将 UE1的定位信号配置信息发 送给 UE1的辅助 UE集合中的辅助 UE, 本发明实施例中, 定位服务器可以 釆用 LPP信令传输定位信号配置信息给辅助 UE。
706、辅助集合中的辅助 UE根据定位信号配置信息接收 UEl发送的定 位信号;
辅助集合中的辅助 UE接收到定位信号配置信息后,根据定位信号配置 信息中规定的发送时间和发送格式, 接收 UE1的定位信号。
707、 辅助集合中的辅助 UE测量来自 UE1的定位信号, 将测量结果发 送给定位服务器;
辅助集合中的辅助 UE根据接收到 UE1的定位信号配置信息在相应时 刻的前后开启搜索窗, 搜索 UE1所发送的定位信号, 并根据发送格式准备 用于解码的本地序列等。
辅助集合中的辅助 UE测量来自 UE1的定位信号, 估计接收到 UE1的 定位信号的时间, 将包含该时间的测量结果发送刚给定位服务器
708、 定位服务器根据获取的测量结果和辅助 UE的有效位置信息, 计 算 UE1的当前位置;
本发明实施例中以辅助集合中的辅助 UE的数目大于或者等于 3个为例 进行说明, 实际应用中, 若辅助集合中的辅助 UE大于 1个但少于 3个, 则 需要 UE1的服务基站、 其它基站参与 UE1的定位, 以保证定位节点不少于 3个。
本发明实施例使用定位服务器作为定位设备, 当然, 也可以是由基站 或 UE1 自身作为定位设备, 其流程可以参照图 5中的描述(将定位服务器 替换为基站或 UE1 ), 可以理解的是, 若替换为由基站作为定位设备, 则基 站可以釆用 RRC信令将 UE1的定位信号配置信息传输给辅助 UE、通过 X2 口将 UE1的定位信号配置信息传输给其它基站(在需要其它基站参与定位 的场景中), 若替换为由 UE1作为定位设备, 则 UE1可以釆用 UE-UE信令 将 UE1的定位信号配置信息传输给辅助 UE、通过 RRC信令将 UE1的定位 信号配置信息传输给服务基站(在需要服务基站参与定位的场景中), 或者 通过服务基站与其它基站连接的 X2接口将 UE1的定位信号配置信息传输 给其它基站(在需要其它基站参与定位的场景中)。
由上可见,本发明实施例中将 UE端对端通信范围内且存在有效位置信 息的其它 UE作为该 UE进行定位的辅助 UE, 由于端对端范围内的 UE之 间距离较短, 因此可避免因建筑物的遮挡使定位信号多次反射, 折射及衰 耗而带来了定位误差, 有效提高了网络定位精度。 下面对本发明实施例中的一种用户设备进行描述, 如图 8 所示, 本发 明实施例中的用户设备 800包括:
接收单元 801 , 用于接收至少三个定位节点的定位信号, 其中, 上述至 少三个定位节点中包含至少一个辅助 UE, 上述辅助 UE位于用户设备 800 的端对端通信范围内且当前存在上述辅助 UE的有效位置信息;
测量获取单元 802,用于对接收单元 801接收的上述至少三个定位节点 的定位信号进行测量, 获得包含用户设备 800接收到上述至少三个定位节 点的定位信号的时间差的测量结果;
计算单元 803 ,用于根据测量获取单元 802获得的测量结果和上述至少 三个定位节点的有效位置信息计算用户设备 800的当前位置。
在一种应用场景中, 用户设备 800还包括: 第一判断单元和选取单元; 其中, 上述第一判断单元用于判断用户设备 800 的端对端通信范围内的所 有其它 UE是否都不存在有效位置信息;上述选取单元用于当上述第一判断 单元的判断结果为否时, 选取存在有效位置信息的上述其它 UE作为辅助 UE集合。 进一步, 用户设备 800还包括: 第二判断单元和选取定位单元; 上述第二判断单元用于在上述选取单元触发之后, 判断用户设备 800本地 的端对端通信范围是否小于预置范围, 上述选取定位单元用于当上述第二 判断单元的判断结果为是时, 从上述辅助 UE集合选取一个上述辅助 UE, 将选取的上述辅助 UE的有效位置信息作为用户设备 800的有效位置信息, 或者, 上述选取定位单元也可以在上述第二判断单元的判断结果为是时, 将上述辅助 UE集合中的所有辅助 UE的位置坐标取质心,将得到的质心坐 标作为用户设备 800的有效位置信息, 此处不作限定。 接收单元 801、 测量 获取单元 802和计算单元 803在上述第二判断单元的判断结果为否时才触 发。
在另一种应用场景中, 用户设备 800还包括发送单元, 用于在接收单 元 801接收至少三个定位节点的定位信号之前, 将定位信号配置信息发送 给上述至少三个定位节点中的辅助 UE, 以便上述至少三个定位节点中的辅 助 UE根据上述定位信号配置信息规定的发送时间和发送格式,向用户设备 800发送定位信号。
需要说明的是, 本发明实施例中的用户设备 800可以如上述方法实施 例中的 UE, 可以用于实现上述方法实施例中的全部技术方案, 其各个功能 模块的功能可以根据上述方法实施例中的方法具体实现, 其具体实现过程 可参照上述实施例中的相关描述, 此处不再赘述。
由上可见,本发明实施例中将 UE端对端通信范围内且存在有效位置信 息的其它 UE作为该 UE进行定位的辅助 UE, 由于端对端范围内的 UE之 间距离较短, 因此可避免因建筑物的遮挡使定位信号多次反射, 折射及衰 耗而带来了定位误差, 有效提高了网络定位精度。 下面对本发明实施例中的一种定位设备进行描述,请参阅图 9, 本发明 实施例中的定位设备 900包括:
获取单元 901 , 用于获取 UE的测量结果, 上述测量结果由该 UE对接 收到的至少三个定位节点的定位信号进行测量得到, 上述测量结果包含该 UE接收到上述至少三个定位节点的定位信号的时间差, 其中, 上述至少三 个定位节点中包含至少一个辅助 UE, 上述辅助 UE位于上述 UE的端对端 通信范围内且当前存在上述辅助 UE的有效位置信息;
计算单元 902,用于根据获取单元 901获取的测量结果和上述至少三个 定位节点的有效位置信息, 计算上述 UE的当前位置。
在一种应用场景中, 定位设备 900还包括第一判断单元和选取单元, 其中,上述第一判断单元用于判断上述 UE的端对端通信范围内的所有其它 UE是否都不存在有效位置信息, 上述选取单元用于当上述第一判断单元的 判断结果为否时,选取存在有效位置信息的上述其它 UE作为辅助 UE集合。 进一步, 定位设备 900还包括: 第二判断单元和选取定位单元; 上述第二 判断单元用于在上述选取单元触发之后,判断上述 UE的端对端通信范围是 否小于预置范围, 上述选取定位单元用于当上述第二判断单元的判断结果 为是时,从上述辅助 UE集合选取一个上述辅助 UE,将选取的上述辅助 UE 的有效位置信息作为上述 UE的有效位置信息,或者,上述选取定位单元也 可以在上述第二判断单元的判断结果为是时,将上述辅助 UE集合中的所有 辅助 UE的位置坐标取质心,将得到的质心坐标作为上述 UE的有效位置信 息, 此处不作限定。 获取单元 901和计算单元 902在上述第二判断单元的 判断结果为否时才触发。
在另一种应用场景中, 定位设备 900还包括发送单元, 用于在获取单 元 901获取上述 UE的测量结果之前, 将定位信号配置信息发送给上述 UE 和上述至少三个定位节点中的辅助 UE, 以便上述至少三个定位节点中的辅 助 UE根据上述定位信号配置信息规定的发送时间和发送格式, 向上述 UE 发送定位信号。
本发明实施例中的定位设备 900可以是定位服务器, 也可以是基站, 此处不作限定。
需要说明的是,本发明实施例中的定位设备 900可以如上述图 4和图 5 方法实施例中的定位设备, 可以用于实现上述方法实施例中的全部技术方 案, 其各个功能模块的功能可以根据上述方法实施例中的方法具体实现, 其具体实现过程可参照上述实施例中的相关描述, 此处不再赘述。
由上可见,本发明实施例中将 UE端对端通信范围内且存在有效位置信 息的其它 UE作为该 UE进行定位的辅助 UE, 由于端对端范围内的 UE之 间距离较短, 因此可避免因建筑物的遮挡使定位信号多次反射, 折射及衰 耗而带来了定位误差, 有效提高了网络定位精度。 下面对本发明实施例中的另一种定位设备进行描述, 请参阅图 10, 本 发明实施例中的定位设备 1000, 包括:
获取单元 1001 , 用于获取至少三个定位节点的测量结果, 上述测量结 果由上述至少三个定位节点分别对 UE发送的定位信号进行测量得到,上述 测量结果包含上述至少三个定位节点各自接收到上述 UE 的定位信号的时 间, 其中, 上述至少三个定位节点中包含至少一个辅助 UE, 上述辅助 UE 位于上述 UE的端对端通信范围内且当前存在上述辅助 UE的有效位置信 息;
计算单元 1002,用于根据获取单元 1001获取的测量结果和上述至少三 个定位节点的有效位置信息, 计算上述 UE的当前位置。
在一种应用场景中, 定位设备 1000还包括第一判断单元和选取单元, 其中,上述第一判断单元用于判断上述 UE的端对端通信范围内的所有其它 UE是否都不存在有效位置信息, 上述选取单元用于当上述第一判断单元的 判断结果为否时,选取存在有效位置信息的上述其它 UE作为辅助 UE集合。 进一步, 定位设备 1000还包括: 第二判断单元和选取定位单元; 上述第二 判断单元用于在上述选取单元触发之后,判断上述 UE的端对端通信范围是 否小于预置范围, 上述选取定位单元用于当上述第二判断单元的判断结果 为是时,从上述辅助 UE集合选取一个上述辅助 UE,将选取的上述辅助 UE 的有效位置信息作为上述 UE的有效位置信息,或者,上述选取定位单元也 可以在上述第二判断单元的判断结果为是时,将上述辅助 UE集合中的所有 辅助 UE的位置坐标取质心,将得到的质心坐标作为上述 UE的有效位置信 息, 此处不作限定。 获取单元 1001和计算单元 1002在上述第二判断单元 的判断结果为否时才触发。
在另一种应用场景中, 定位设备 1000还包括发送单元, 用于在获取单 元 1001获取至少三个定位节点的测量结果之后, 将 UE的定位信号配置信 息发送给上述至少三个定位节点中的辅助 UE, 以便上述至少三个定位节点 中的辅助 UE根据上述定位信号配置信息规定的发送时间和发送格式,接收 上述 UE发送的定位信号。
本发明实施例中的定位设备 1000可以是 UE, 或者定位服务器, 也可 以是基站, 此处不作限定。
需要说明的是, 本发明实施例中的定位设备 1000可以如上述图 6和图 7方法实施例中的定位设备,可以用于实现上述方法实施例中的全部技术方 案, 其各个功能模块的功能可以根据上述方法实施例中的方法具体实现, 其具体实现过程可参照上述实施例中的相关描述, 此处不再赘述。
由上可见,本发明实施例中将 UE端对端通信范围内且存在有效位置信 息的其它 UE作为该 UE进行定位的辅助 UE, 由于端对端范围内的 UE之 间距离较短, 因此可避免因建筑物的遮挡使定位信号多次反射, 折射及衰 耗而带来了定位误差, 有效提高了网络定位精度。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述 描述的装置和单元的具体工作过程, 可以参考前述方法实施例中的对应过 程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的装置和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性 的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以 有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 ***, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之 间的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接 耦合或通信连接, 可以是电性, 机械或其它的形式。 作为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地 方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的 部分或者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在 一个单元中。 上述集成的单元既可以釆用硬件的形式实现, 也可以釆用软 件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销 售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方 案的全部或部分可以以软件产品的形式体现出来, 该计算机软件产品存储 在一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人 计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全 部或部分步骤。而前述的存储介质包括: U盘、移动硬盘、只读存储器( ROM, Read-Only Memory ). 随机存取存 4诸器 ( RAM, Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。
以上对本发明所提供的一种网络定位方法和相关设备进行了详细介 绍, 对于本领域的一般技术人员, 依据本发明实施例的思想, 在具体实施 方式及应用范围上均会有改变之处, 综上, 本说明书内容不应理解为对本 发明的限制。

Claims

权利要求
1、 一种网络定位方法, 其特征在于, 包括:
用户设备 UE接收至少三个定位节点的定位信号,其中,所述至少三个 定位节点中包含至少一个辅助 UE, 所述辅助 UE位于所述 UE的端对端通 信范围内且当前存在所述辅助 UE的有效位置信息;
对所述至少三个定位节点的定位信号进行测量,获得包含所述 UE接收 到所述至少三个定位节点的定位信号的时间差的测量结果;
根据所述测量结果和所述至少三个定位节点的有效位置信息计算所述 UE的当前位置。
2、 根据权利要求 1所述的方法, 其特征在于,
所述接收至少三个定位节点的定位信号之前包括:
判断所述 UE的端对端通信范围内的所有其它 UE是否都不存在有效位 置信息,若否,则选取存在有效位置信息的所述其它 UE作为辅助 UE集合。
3、 根据权利要求 2所述的方法, 其特征在于,
所述选取存在有效位置信息的所述其它 UE作为辅助 UE集合之后包 括:
所述 UE判断本地的端对端通信范围是否小于预置范围,
若是, 则从所述辅助 UE集合选取一个所述辅助 UE, 将所述选取的所 述辅助 UE的有效位置信息作为所述 UE的有效位置信息;
若否, 才执行所述接收至少三个定位节点的定位信号、 所述对所述至 少三个定位节点的定位信号进行测量、 以及所述根据所述测量结果和所述 至少三个定位节点的有效位置信息计算所述 UE的当前位置的流程。
4、 根据权利要求 2所述的方法, 其特征在于,
所述选取存在有效位置信息的所述其它 UE作为辅助 UE集合之后包 括:
所述 UE判断本地的端对端通信范围是否小于预置范围,
若是, 则将所述辅助 UE集合中的所有辅助 UE的位置坐标取质心, 将 得到的质心坐标作为所述 UE的有效位置信息;
若否, 才执行所述接收至少三个定位节点的定位信号、 所述对所述至 少三个定位节点的定位信号进行测量、 以及所述根据所述测量结果和所述 至少三个定位节点的有效位置信息计算所述 UE的当前位置的流程。
5、 根据权利要求 1至 4任一项所述的方法, 其特征在于,
若执行所述接收至少三个定位节点的定位信号, 则所述接收至少三个 定位节点的定位信号之前包括:
将定位信号配置信息发送给所述至少三个定位节点中的辅助 UE, 以便 所述至少三个定位节点中的辅助 UE根据所述定位信号配置信息规定的发 送时间和发送格式, 向所述 UE发送定位信号。
6、 一种网络定位方法, 其特征在于, 包括:
定位设备获取用户设备 UE的测量结果,所述测量结果由所述 UE对接 收到的至少三个定位节点的定位信号进行测量得到, 所述测量结果包含所 述 UE接收到所述至少三个定位节点的定位信号的时间差,其中, 所述至少 三个定位节点中包含至少一个辅助 UE, 所述辅助 UE位于所述 UE的端对 端通信范围内且当前存在所述辅助 UE的有效位置信息;
根据所述获取的测量结果和所述至少三个定位节点的有效位置信息, 计算所述 UE的当前位置。
7、 根据权利要求 6所述的方法, 其特征在于,
所述获取用户设备 UE的测量结果之前包括:
判断所述 UE的端对端通信范围内的所有其它 UE是否都不存在有效位 置信息,若否,则选取存在有效位置信息的所述其它 UE作为辅助 UE集合。
8、 根据权利要求 7所述的方法, 其特征在于,
所述选取存在有效位置信息的所述其它 UE作为辅助 UE集合之后包 括:
判断所述 UE的端对端通信范围是否小于预置范围,
若是, 则从所述辅助 UE集合选取一个所述辅助 UE, 将所述选取的所 述辅助 UE的有效位置信息作为所述 UE的有效位置信息;
若否, 才执行所述获取用户设备 UE的测量结果、以及根据所述用户设 备 UE的测量结果和所述至少三个定位节点的有效位置信息, 计算所述 UE 的当前位置的流程。
9、 根据权利要求 7所述的方法, 其特征在于,
所述选取存在有效位置信息的所述其它 UE作为辅助 UE集合之后包 括:
判断所述 UE的端对端通信范围是否小于预置范围,
若是, 则将所述辅助 UE集合中的所有辅助 UE的位置坐标取质心, 将 得到的质心坐标作为所述 UE的有效位置信息;
若否, 才执行所述获取用户设备 UE的测量结果、以及根据所述用户设 备 UE的测量结果和所述至少三个定位节点的有效位置信息, 计算所述 UE 的当前位置的流程。
10、 根据权利要求 6至 9任一项所述的方法, 其特征在于,
若执行所述获取用户设备 UE的测量结果,则所述获取用户设备 UE的 测量结果之前包括:
将定位信号配置信息发送给所述 UE和所述至少三个定位节点中的辅 助 UE, 以便所述至少三个定位节点中的辅助 UE根据所述定位信号配置信 息规定的发送时间和发送格式, 向所述 UE发送定位信号。
11、 根据权利要求 6至 9任一项所述的方法, 其特征在于,
所述定位设备具体为定位服务器或基站。
12、 一种网络定位方法, 其特征在于, 包括:
定位设备获取至少三个定位节点的测量结果, 所述测量结果由所述至 少三个定位节点分别对用户设备 UE发送的定位信号进行测量得到,所述测 量结果包含所述至少三个定位节点各自接收到所述 UE的定位信号的时间, 其中, 所述至少三个定位节点中包含至少一个辅助 UE, 所述辅助 UE位于 所述 UE的端对端通信范围内且当前存在所述辅助 UE的有效位置信息; 根据所述获取的测量结果和所述至少三个定位节点的有效位置信息, 计算所述 UE的当前位置。
13、 根据权利要求 12所述的方法, 其特征在于,
所述获取用户设备 UE的测量结果之前包括:
判断所述 UE的端对端通信范围内的所有其它 UE是否都不存在有效位 置信息,若否,则选取存在有效位置信息的所述其它 UE作为辅助 UE集合。
14、 根据权利要求 13所述的方法, 其特征在于,
所述选取存在有效位置信息的所述其它 UE作为辅助 UE集合之后包 括:
判断所述 UE的端对端通信范围是否小于预置范围, 若是, 则从所述辅助 UE集合选取一个所述辅助 UE, 将所述选取的所 述辅助 UE的有效位置信息作为所述 UE的有效位置信息;
若否, 才执行所述获取至少三个定位节点的测量结果、 以及根据所述 至少三个定位节点的测量结果和所述至少三个定位节点的有效位置信息, 计算所述 UE的当前位置的流程。
15、 根据权利要求 13所述的方法, 其特征在于,
所述选取存在有效位置信息的所述其它 UE作为辅助 UE集合之后包 括:
判断所述 UE的端对端通信范围是否小于预置范围,
若是, 则将所述辅助 UE集合中的所有辅助 UE的位置坐标取质心, 将 得到的质心坐标作为所述 UE的有效位置信息;
若否, 才执行所述获取至少三个定位节点的测量结果、 以及根据所述 至少三个定位节点的测量结果和所述至少三个定位节点的有效位置信息, 计算所述 UE的当前位置的流程。
16、 根据权利要求 12至 15任一项所述的方法, 其特征在于, 若执行所述获取至少三个定位节点的测量结果, 则所述获取至少三个 定位节点的测量结果之前包括:
将所述 UE 的定位信号配置信息发送给所述至少三个定位节点中的辅 助 UE, 以便所述至少三个定位节点中的辅助 UE根据所述定位信号配置信 息规定的发送时间和发送格式, 接收所述 UE发送的定位信号。
17、 根据权利要求 12至 15任一项所述的方法, 其特征在于, 所述定位设备具体为: 所述 UE, 或者定位服务器, 或者基站。
18、 一种用户设备 UE, 其特征在于, 包括:
接收单元, 用于接收至少三个定位节点的定位信号, 其中, 所述至少 三个定位节点中包含至少一个辅助 UE, 所述辅助 UE位于所述 UE的端对 端通信范围内且当前存在所述辅助 UE的有效位置信息;
测量获取单元, 用于对所述接收单元接收的所述至少三个定位节点的 定位信号进行测量,获得包含所述 UE接收到所述至少三个定位节点的定位 信号的时间差的测量结果;
计算单元, 用于根据所述测量结果和所述至少三个定位节点的有效位 置信息计算所述 UE的当前位置。
19、 根据权利要求 18所述的 UE, 其特征在于,
所述 UE还包括: 第一判断单元和选取单元;
所述第一判断单元用于判断所述 UE 的端对端通信范围内的所有其它 UE是否都不存在有效位置信息;
所述选取单元用于当所述第一判断单元的判断结果为否时, 选取存在 有效位置信息的所述其它 UE作为辅助 UE集合。
20、 根据权利要求 18所述的 UE, 其特征在于,
所述 UE还包括: 第二判断单元和选取定位单元;
所述第二判断单元用于在所述选取单元触发之后, 判断本地的端对端 通信范围是否小于预置范围,
所述选取定位单元用于当所述第二判断单元的判断结果为是时, 从所 述辅助 UE集合选取一个所述辅助 UE, 将所述选取的所述辅助 UE的有效 位置信息作为所述 UE的有效位置信息;
所述接收单元、 所述测量获取单元和所述计算单元在所述第二判断单 元的判断结果为否时才触发。
21、 根据权利要求 18所述的 UE, 其特征在于,
所述 UE还包括: 第二判断单元和选取定位单元;
所述第二判断单元用于在所述选取单元触发之后, 判断本地的端对端 通信范围是否小于预置范围,
所述选取定位单元用于当所述第二判断单元的判断结果为是时, 将所 述辅助 UE集合中的所有辅助 UE的位置坐标取质心,将得到的质心坐标作 为所述 UE的有效位置信息;
所述接收单元、 所述测量获取单元和所述计算单元在所述第二判断单 元的判断结果为否时才触发。
22、 根据权利要求 18至 21所述的 UE, 其特征在于,
所述 UE还包括:
发送单元, 用于在所述接收单元接收至少三个定位节点的定位信号之 前, 将定位信号配置信息发送给所述至少三个定位节点中的辅助 UE, 以便 所述至少三个定位节点中的辅助 UE根据所述定位信号配置信息规定的发 送时间和发送格式, 向所述 UE发送定位信号。
23、 一种定位设备, 其特征在于, 包括: 获取单元, 用于获取用户设备 UE 的测量结果, 所述测量结果由所述 UE对接收到的至少三个定位节点的定位信号进行测量得到, 所述测量结果 包含所述 UE接收到所述至少三个定位节点的定位信号的时间差,其中, 所 述至少三个定位节点中包含至少一个辅助 UE, 所述辅助 UE位于所述 UE 的端对端通信范围内且当前存在所述辅助 UE的有效位置信息;
计算单元, 用于根据所述获取单元获取的测量结果和所述至少三个定 位节点的有效位置信息, 计算所述 UE的当前位置。
24、 根据权利要求 23所述的定位设备, 其特征在于,
所述定位设备还包括: 第一判断单元和选取单元;
所述第一判断单元用于判断所述 UE 的端对端通信范围内的所有其它 UE是否都不存在有效位置信息;
所述选取单元用于当所述第一判断单元的判断结果为否时, 选取存在 有效位置信息的所述其它 UE作为辅助 UE集合。
25、 根据权利要求 24所述的定位设备, 其特征在于,
所述定位设备还包括: 第二判断单元和选取定位单元;
所述第二判断单元用于在所述选取单元触发之后,判断所述 UE的端对 端通信范围是否小于预置范围;
所述选取定位单元用于当所述第二判断单元的判断结果为是时, 从所 述辅助 UE集合选取一个所述辅助 UE, 将所述选取的所述辅助 UE的有效 位置信息作为所述 UE的有效位置信息;
所述获取单元和所述计算单元在所述第二判断单元的判断结果为否时 才触发。
26、 根据权利要求 24所述的定位设备, 其特征在于
所述定位设备还包括: 第二判断单元和选取定位单元;
所述第二判断单元用于在所述选取单元触发之后,判断所述 UE的端对 端通信范围是否小于预置范围;
所述选取定位单元用于当所述第二判断单元的判断结果为是时, 将所 述辅助 UE集合中的所有辅助 UE的位置坐标取质心,将得到的质心坐标作 为所述 UE的有效位置信息;
所述获取单元和所述计算单元在所述第二判断单元的判断结果为否时 才触发。
27、 根据权利要求 23至 26任一项所述的定位设备, 其特征在于, 所述定位设备还包括:
发送单元,用于在所述获取单元获取所述 UE的测量结果之前,将定位 信号配置信息发送给所述 UE和所述至少三个定位节点中的辅助 UE, 以便 所述至少三个定位节点中的辅助 UE根据所述定位信号配置信息规定的发 送时间和发送格式, 向所述 UE发送定位信号。
28、 一种定位设备, 其特征在于, 包括:
获取单元, 用于获取至少三个定位节点的测量结果, 所述测量结果由 所述至少三个定位节点分别对用户设备 UE发送的定位信号进行测量得到 , 所述测量结果包含所述至少三个定位节点各自接收到所述 UE 的定位信号 的时间, 其中, 所述至少三个定位节点中包含至少一个辅助 UE, 所述辅助 UE位于所述 UE的端对端通信范围内且当前存在所述辅助 UE的有效位置 信息;
计算单元, 用于根据所述获取单元获取的测量结果和所述至少三个定 位节点的有效位置信息, 计算所述 UE的当前位置。
29、 根据权利要求 28所述的定位设备, 其特征在于,
所述定位设备还包括: 第一判断单元和选取单元;
所述第一判断单元用于判断所述 UE 的端对端通信范围内的所有其它 UE是否都不存在有效位置信息;
所述选取单元用于当所述第一判断单元的判断结果为否时, 选取存在 有效位置信息的所述其它 UE作为辅助 UE集合。
30、 根据权利要求 29所述的定位设备, 其特征在于,
所述定位设备还包括: 第二判断单元和选取定位单元;
所述第二判断单元用于在所述选取单元触发之后,判断所述 UE的端对 端通信范围是否小于预置范围;
所述选取定位单元用于当所述第二判断单元的判断结果为是时, 从所 述辅助 UE集合选取一个所述辅助 UE, 将所述选取的所述辅助 UE的有效 位置信息作为所述 UE的有效位置信息;
所述获取单元和所述计算单元在所述第二判断单元的判断结果为否时 才触发。
31、 根据权利要求 29所述的定位设备, 其特征在于, 所述定位设备还包括: 第二判断单元和选取定位单元; 所述第二判断单元用于在所述选取单元触发之后,判断所述 UE的端对 端通信范围是否小于预置范围;
所述选取定位单元用于当所述第二判断单元的判断结果为是时, 将所 述辅助 UE集合中的所有辅助 UE的位置坐标取质心,将得到的质心坐标作 为所述 UE的有效位置信息;
所述获取单元和所述计算单元在所述第二判断单元的判断结果为否时 才触发。
32、 根据权利要求 28至 31任一项所述的定位设备, 其特征在于, 所述定位设备还包括:
发送单元, 用于当所述获取单元获取至少三个定位节点的测量结果之后 , 将所述 UE的定位信号配置信息发送给所述至少三个定位节点中的辅助
UE, 以便所述至少三个定位节点中的辅助 UE根据所述定位信号配置信息 规定的发送时间和发送格式, 接收所述 UE发送的定位信号。
PCT/CN2013/071693 2012-02-20 2013-02-20 一种网络定位方法和相关设备 WO2013123874A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13751537.5A EP2818886B1 (en) 2012-02-20 2013-02-20 Network positioning method and related equipment
US14/463,295 US9888348B2 (en) 2012-02-20 2014-08-19 UE-assisted network positioning method and related equipment
US15/854,552 US10667084B2 (en) 2012-02-20 2017-12-26 Network positioning method and related equipment
US16/863,881 US11178510B2 (en) 2012-02-20 2020-04-30 Network positioning method and related equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210038267.0A CN103260237B (zh) 2012-02-20 2012-02-20 一种网络定位方法和相关设备
CN201210038267.0 2012-02-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/463,295 Continuation US9888348B2 (en) 2012-02-20 2014-08-19 UE-assisted network positioning method and related equipment

Publications (1)

Publication Number Publication Date
WO2013123874A1 true WO2013123874A1 (zh) 2013-08-29

Family

ID=48963865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071693 WO2013123874A1 (zh) 2012-02-20 2013-02-20 一种网络定位方法和相关设备

Country Status (4)

Country Link
US (3) US9888348B2 (zh)
EP (1) EP2818886B1 (zh)
CN (1) CN103260237B (zh)
WO (1) WO2013123874A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3145223A1 (en) * 2014-06-12 2017-03-22 ZTE Corporation Positioning method, device, positioning center, terminal and computer storage medium
WO2017219283A1 (zh) * 2016-06-22 2017-12-28 华为技术有限公司 定位基站确定方法、定位服务器、服务基站以及网络***

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104519566B (zh) * 2013-09-26 2019-01-04 中兴通讯股份有限公司 一种终端辅助无线定位方法及装置
CN104754734A (zh) * 2013-12-31 2015-07-01 电信科学技术研究院 一种定位方法、装置及***
EP3139676A4 (en) * 2014-05-30 2017-06-07 Huawei Technologies Co. Ltd. Positioning method, network side device, positioning node, and positioning system
CN105451168A (zh) * 2014-06-27 2016-03-30 联想(北京)有限公司 一种定位方法及装置
CN104039011B (zh) * 2014-07-02 2017-11-07 保定市天河电子技术有限公司 一种定位方法及装置
WO2016076576A1 (en) * 2014-11-10 2016-05-19 Lg Electronics Inc. Method and apparatus for triggering detach or power saving mode based on proximity with device in wireless communication system
US10219279B2 (en) * 2015-01-14 2019-02-26 Qualcomm Incorporated Signaling to request increased transmission power limit in an emergency
TWI602462B (zh) * 2015-01-30 2017-10-11 財團法人資訊工業策進會 使用者裝置、裝置對裝置使用者裝置、後端裝置及其定位方法
US10531512B2 (en) 2015-04-01 2020-01-07 Huawei Technologies Co., Ltd. System and method for a tracking channel
CN106162511B (zh) * 2015-04-08 2020-01-24 电信科学技术研究院 一种d2d中继节点的确定、使用方法及装置
CN107211387A (zh) * 2015-07-23 2017-09-26 华为技术有限公司 一种定位方法及其装置
KR102430874B1 (ko) * 2015-11-25 2022-08-09 삼성전자주식회사 위치를 측정하기 위한 장치 및 방법
CN107708065B (zh) * 2016-08-08 2020-08-14 华为技术有限公司 一种定位***、方法和装置
CN106714299A (zh) * 2016-12-13 2017-05-24 上海华为技术有限公司 一种定位方法、辅助站点及***
KR20190092548A (ko) 2016-12-14 2019-08-07 후아웨이 테크놀러지 컴퍼니 리미티드 포지셔닝 방법 및 시스템, 및 관련 디바이스
US11044693B1 (en) * 2020-05-08 2021-06-22 Qualcomm Incorporated Efficient positioning enhancement for dynamic spectrum sharing
WO2022000196A1 (zh) * 2020-06-29 2022-01-06 北京小米移动软件有限公司 用户设备定位方法及装置、用户设备、存储介质
US12000944B2 (en) 2020-10-13 2024-06-04 Samsung Electronics Co., Ltd. Positioning system with NLOS identification and multipath mitigation
CN116614875A (zh) * 2022-02-08 2023-08-18 维沃移动通信有限公司 组定位方法、装置、用户设备及存储介质
CN117528767A (zh) * 2022-07-30 2024-02-06 华为技术有限公司 定位方法和相关产品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1486577A (zh) * 2000-12-14 2004-03-31 ���廥�����޹�˾ 使用第三方超宽频带设备建立地理位置数据
CN1688892A (zh) * 2002-07-15 2005-10-26 高通股份有限公司 使用来自第二移动设备的信息确定第一移动设备的位置的装置和方法
US20100029302A1 (en) * 2008-08-04 2010-02-04 Lee Michael M Device-to-device location awareness

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195556B1 (en) * 1997-07-15 2001-02-27 Metawave Communications Corporation System and method of determining a mobile station's position using directable beams
US7177652B1 (en) 2000-07-11 2007-02-13 Motorola, Inc. Method and apparatus for determining a pro-active region of a mobile ad hoc network
US20030217150A1 (en) 2002-03-01 2003-11-20 Roese John J. Location based enhanced routing
US8054226B2 (en) * 2009-03-31 2011-11-08 Mitsubishi Electric Research Laboratories, Inc. Method for estimating location of nodes in wireless networks
US8417264B1 (en) * 2009-05-14 2013-04-09 Spring Spectrum L.P. Method and apparatus for determining location of a mobile station based on locations of multiple nearby mobile stations
US8433334B2 (en) * 2010-01-15 2013-04-30 Apple Inc. Managing a location database for network-based positioning system
US8350755B2 (en) 2010-02-19 2013-01-08 Broadcom Corporation Method and system for propagating GNSS assistance data among communication devices in a GNSS group
US8447327B2 (en) * 2010-08-16 2013-05-21 Nokia Corporation Method and apparatus for a buffering scheme for OTDOA based location positioning
US8621056B2 (en) * 2010-12-02 2013-12-31 Microsoft Corporation Enabling plural computing devices to communicate using a master account
US20140122607A1 (en) * 2011-06-17 2014-05-01 Telefonaktiebolaget L M Ericsson (Publ) Method and Radio Base Station in a Cellular Communications Network for Device-to-Device Communications
US8831629B2 (en) * 2011-11-30 2014-09-09 At&T Intellectual Properties I, L.P. System and method for identifying mobile communication devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1486577A (zh) * 2000-12-14 2004-03-31 ���廥�����޹�˾ 使用第三方超宽频带设备建立地理位置数据
CN1688892A (zh) * 2002-07-15 2005-10-26 高通股份有限公司 使用来自第二移动设备的信息确定第一移动设备的位置的装置和方法
US20100029302A1 (en) * 2008-08-04 2010-02-04 Lee Michael M Device-to-device location awareness

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2818886A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3145223A1 (en) * 2014-06-12 2017-03-22 ZTE Corporation Positioning method, device, positioning center, terminal and computer storage medium
EP3145223A4 (en) * 2014-06-12 2017-05-03 ZTE Corporation Positioning method, device, positioning center, terminal and computer storage medium
US10306398B2 (en) 2014-06-12 2019-05-28 Zte Corporation Method, system, positioning center for locating a terminal and non-transitory computer storage medium
WO2017219283A1 (zh) * 2016-06-22 2017-12-28 华为技术有限公司 定位基站确定方法、定位服务器、服务基站以及网络***
US10588109B2 (en) 2016-06-22 2020-03-10 Huawei Technologies Co., Ltd. Positioning base station determining method, positioning server, serving base station, and network system

Also Published As

Publication number Publication date
US10667084B2 (en) 2020-05-26
US9888348B2 (en) 2018-02-06
CN103260237A (zh) 2013-08-21
EP2818886B1 (en) 2024-04-17
US20200260220A1 (en) 2020-08-13
EP2818886A1 (en) 2014-12-31
CN103260237B (zh) 2016-08-10
US11178510B2 (en) 2021-11-16
US20150011240A1 (en) 2015-01-08
US20180139578A1 (en) 2018-05-17
EP2818886A4 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
US11178510B2 (en) Network positioning method and related equipment
JP7284815B2 (ja) ワイヤレスネットワークにおいてアップリンクおよびダウンリンクのポジショニング手順をサポートするシステムおよび方法
TWI786148B (zh) 藉由一定位參考信號之波束成形以促進位置制定之系統及方法
EP3198897B1 (en) Device-to-device assisted positioning in wireless cellular technologies
US9374662B2 (en) Enhancing positioning in multi-PLMN deployments
WO2018107380A1 (zh) 一种定位方法、***及相关设备
EP3198894B1 (en) Resource allocation and use for device-to-device assisted positioning in wireless cellular technologies
US11889336B2 (en) System and methods for rapid round-trip-time measurement
US10101434B2 (en) Positioning method, control device, and mobile communications system
US20170006575A1 (en) Positioning method and apparatus
CN103139905A (zh) 对用户设备进行定位的方法和装置
US9229094B2 (en) Method and device using observed time difference of arrival for positioning mobile station
WO2014056172A1 (zh) 定位方法和装置
EP3548914A1 (en) Intercepting an uplink signal to assist in timing or positioning calculations
CN111885706A (zh) 基于信号相关函数特性反馈进行定位的方法和装置
US9883341B2 (en) Wireless device, a radio network node, a network node and methods therein
WO2017071136A1 (zh) 辅助定位的方法及装置
WO2015100578A1 (zh) 基于小基站的定位用户终端的方法和小基站控制器
WO2024075088A1 (en) Combined one-to-many and many-to-one sidelink positioning
WO2024083356A1 (en) Providing and supporting location services via direct device-to-device connections
TW202306398A (zh) 報告潛在的虛擬錨位置以改善定位
WO2024110947A1 (en) Carrier phase positioning reporting
CN115997431A (zh) 用于定位确定的方法、装置、***和产品
WO2024151350A1 (en) Techniques for joint sidelink positioning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013751537

Country of ref document: EP