WO2013117780A1 - Procedimiento para la preparación de películas de grafeno ó materiales grafénicos sobre sustratos no metálicos - Google Patents

Procedimiento para la preparación de películas de grafeno ó materiales grafénicos sobre sustratos no metálicos Download PDF

Info

Publication number
WO2013117780A1
WO2013117780A1 PCT/ES2013/000026 ES2013000026W WO2013117780A1 WO 2013117780 A1 WO2013117780 A1 WO 2013117780A1 ES 2013000026 W ES2013000026 W ES 2013000026W WO 2013117780 A1 WO2013117780 A1 WO 2013117780A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
biopolymer
preparation
materials according
films
Prior art date
Application number
PCT/ES2013/000026
Other languages
English (en)
French (fr)
Inventor
José María DELGADO SÁNCHEZ
Emilio SÁNCHEZ CORTEZÓN
Pedro Atienzar Corvillo
Ana María PRIMO ARNAU
Hermenegildo GARCÍA GÓMEZ
Original Assignee
Abengoa Solar New Technologies, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abengoa Solar New Technologies, S.A. filed Critical Abengoa Solar New Technologies, S.A.
Priority to IN1654MUN2014 priority Critical patent/IN2014MN01654A/en
Priority to EP13746795.7A priority patent/EP2813469A4/en
Priority to CN201380008199.6A priority patent/CN104203814A/zh
Priority to MX2014009328A priority patent/MX2014009328A/es
Publication of WO2013117780A1 publication Critical patent/WO2013117780A1/es
Priority to ZA2014/05836A priority patent/ZA201405836B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the present invention relates to a process for the preparation of graphene films or graphene materials on non-metallic substrates from biopolymers, for application in the microelectronic and photovoltaic industry mainly.
  • Graphene is one of the most attractive materials for microelectronic applications due to its conductive properties, as well as its transparency and flexibility.
  • the formation of films of this material covering a surface or deposited on it can be used for the preparation of optoelectronic devices.
  • graphene films can be prepared by vapor deposition from methane and other organic compounds on metal surfaces. This type of process is characterized in that temperatures above 1000 ° C, typically 1500 ° C are required, and because the metal surface acts as a catalyst promoting the decomposition of the organic compound towards graphene, a process that would not take place under the same conditions on a surface that was not metallic.
  • the present invention describes the preparation of such graphene films or a material consisting of several layers of graphene on any substrate, and more specifically any non-metallic substrate, so that it is not necessary to transfer the graphene layer to another most suitable substrate, regardless of intermediate stages to remove the metal and, consequently, the cost of the heating and cooling process and the time spent in the graphene formation process.
  • the present invention describes a process for the preparation of graphene films or graphene materials from water-soluble biopolymers capable of gelling in water (forming hydrogels), without using a catalyst.
  • the ability to form hydrogel implies compatibility with water that allows the conformal coating of surfaces from aqueous solutions of adequate viscosity.
  • the biopolymers have an unexpected ease to form thin homogeneous films on some type of substrates without the appearance of defects such as holes (“pinholes”) or cuts (“cracks”) of a uniform thickness and in a manner conforming to the surface.
  • Suitable aqueous solutions at pH of functionalized biopolymers and biopolymers disposed on a surface can be converted into graphene or graphene multilayers by heating in the absence of oxygen.
  • a preferred application of this invention It uses biopolymers of non-crystallizable natural polysaccharide type, including alginate, chitosan, starch and carrageenans of any origin, natural or synthetic, as well as those derived from said polysaccharides.
  • the diversity of origin and nature of these polysaccharides, their nitrogen content and the ease with which they form derivatives are some of the advantages that derive from the use of these biopolymers.
  • it is possible to functionalize these materials by introducing some other heteroatom in a simple way whereby the resulting graphene is doped with that heteroatom.
  • biopolymers are of a protein nature such as gelatins of diverse origin and collagens.
  • non-crystallizable biopolymers capable of forming hydrogels have the ability to cover surfaces in a conformal manner, faithfully reproducing the roughness of the substrate surface.
  • the surfaces or substrates that can be coated by the process described in the present invention can be quartz, glass, ceramic, ceramic, plastic pastes, etc., and can be transparent or opaque, rigid or flexible, flat or non-flat, etc.
  • the process for preparing graphene films from biopolymers on non-metallic substrates comprises the following steps:
  • a sample of a biopolymer or a biopolymer derivative is dissolved in water at the appropriate pH.
  • chitosan can be dissolved first in concentrated acetic acid and then an aliquot of this acid solution is diluted with milliQ water to the required concentration.
  • the pH of this chitosan solution is acidic.
  • sodium alginate is used as the starting biopolymer and is dissolved in milliQ water at the desired concentration.
  • the pH value of this alginate solution is basic.
  • the aqueous solution of the biopolymer or its derivative is used to effect the coating of the substrate on which graphene is to be formed; said substrate has previously undergone a proper cleaning process.
  • This cleaning may consist of the use of a neutral surfactant, followed by rinsing with distilled water, drying and a final ozonation process.
  • quartz and special glass it is convenient to pre-treat them with hydrochloric acid in order to increase the hydrophilicity of the surfaces.
  • a convenient way of depositing the aqueous solution of the biopolymer on the substrate is by immersing the substrate in said solution or using the spin coating technique ("sp / n coating"). Controlling the concentration of the biopolymer and Other operating conditions such as spin speed, it is possible to control the thickness of the biopolymer layer that is deposited on the substrate. In some substrates, an additive or cosolvent can be added to facilitate the coating process.
  • the thickness of the deposited layers of biopolymer can vary between 1 and 1000 nanometers, preferably 1 nm.
  • the coating made with the biopolymer solution has very low roughness and faithfully reproduces the drawings and models presented by the coated surface. This fact is essential in the present invention and could not have been predicted based on the state of the art.
  • the profilometry image reveals the appearance of crystallites on the glass support, not achieving the formation of a uniform film .
  • These types of compounds are not usable for obtaining graphene according to the present process due to the fact that they do not form a continuous two-dimensional surface.
  • the biopolymers used do not crystallize, so they form a uniform film that covers the substrate, thus avoiding the drawbacks that would be generated by using crystallizing polymers.
  • the thin layer of the biopolymer or a suitable derivative can optionally proceed with hydrothermal processes so that the biopolymer chains are offered the opportunity for a certain rearrangement and reorientation after once they have been placed on the surface of the substrate.
  • This hydrothermal treatment consists in passing a flow of nitrogen saturated with water vapor on the coated surface at a temperature between 100 and 250 ° C for 30 minutes to several hours, preferably up to 3 hours.
  • thermal decomposition or carbonization of the biopolymer deposited on the surface of the substrate is carried out in the absence of oxygen (graphitization) at temperatures below 1200 ° C, preferably between 400 ° C and 650 ° C.
  • This temperature makes it possible to use a wide range of substrates and in particular glass where, after the heat treatment, the graphene layer is formed.
  • this procedure does not require a catalyst and, specifically, is carried out on non-metallic substrates.
  • the number of resulting graphene layers varies depending on the thickness of the biopolymer layer, with a reduction in film thickness observed during the carbonization process of around 50%.
  • the thermal decomposition stage can also be carried out in two stages, both in absence of oxygen, the first at a temperature below 300 ° C in the presence of moisture and the second at a temperature below 1200 ° C without moisture.
  • the first stage can be carried out by means of a heating system that is different from the second stage and thus it is possible to combine one stage of heating in an electric oven with another by microwave, among other combinations.
  • the decomposition of biopolymers results in the generation of sp2 carbons, together with sp3 carbon atoms attached to oxygen atoms.
  • sp2 carbons together with sp3 carbon atoms attached to oxygen atoms.
  • XPS X-ray photoelectronic spectra
  • the deposition of a metal layer on the surface of the substrate can be carried out, this metal layer having a thickness of less than 10 nm, so that it is transparent to radiation UV and visible.
  • This thin metallic layer catalyzes the thermal decomposition or graphitization stage and allows the substrate-graphene assembly to be transparent.
  • the coating is carried out with a biopolymer containing heteroatoms or with a biopolymer that has been modified by functionalization with heteroatoms, then the graphene resulting from chemical decomposition may have doping (heteroatoms) in its structure.
  • the biopolymer used for example, ammonium alginate, can be previously subjected to an N-type or P-type doping process in aqueous solution, to thereby obtain the N-type or P-type doped graphene.
  • the graphene film formed is doped with a variable percentage of nitrogen depending on the treatment and conditions (type N doping), since chitosan has nitrogen atoms in its structure.
  • Pretreatment of the biopolymer by means of a boration process with sodium borate in aqueous solution would result in the biopolymer doped with boron and the resulting graphene after the thermal decomposition treatment would contain boron (doping type P).
  • the resistance of graphene formed following the process of the present invention is 10-20 ohm / square when the thin metal layer is included and derives from the ability of these biopolymers to cover surfaces in a conformal manner with thicknesses equal to or greater than 1 nm and with roughness of the order of 1 nm, as well as the tendency of biopolymers to form graphene materials.
  • the resulting graphene layers can be characterized by a wide variety of spectroscopy and imaging techniques. Raman spectra obtained by means of a focused beam demonstrate the homogeneity of the graphene layer formed for films of dimensions 1 x 1 cm "2 .
  • the electrical conductivity of graphene films or a few layers of graphene depends on the nature of the substrate and the measurement form. Measures between 500 and 10,000 Ohms / square are obtained on glass substrates (without metal layer) by measuring with a four-pointed head. These values are significantly reduced when conductivity measurements are carried out by depositing gold as contacts on the graphene layer and measuring the conductivity through said contacts. On substrates that include the thin metallic layer and measuring through gold contacts, resistance of between 10-20 ohm / square Ohm / square is determined. In contrast, the precursor before being converted into graphene is shown as an insulator on any surface on which it is deposited.
  • Figure 1 a) graph that measures the thickness (Z) of the graphene layer formed from chitosan by measuring with a mechanical tip that scans the surface separating different distances (X) from it, and in b) graph showing the thickness (Z) of said graphene layer.
  • Figure 2 shows an XPS spectrum of a representative sample of these graphene materials obtained from chitosan. (a) the XPS of Carbon 1s is represented and (b) the XPS of Nitogen 1s.
  • Figure 3 shows photographs of transmission electron spectroscopy of a 10 nm thick graphitized chitosan film at different resolutions.
  • Figure a) shows the graphitized chitosan film with a resolution of 10 nm.
  • Figure b) shows the edges of the film with a higher resolution (2 nm) where the different graphene layers can be clearly distinguished.
  • a higher resolution gives rise to figure c) where the carbon hexagons characteristic of a graffiti structure are distinguished.
  • Example 1 Preparation of a graphene coating by carbonization of ammonium alginate on a glass surface.
  • an ammonium alginate solution is prepared by suspending commercial alginic acid (Sigma, CAS: 9005-32-7, reference A7003-250G, 0.2 g) in 10 ml of H 2 0 MilliQ and adding a saturated NH 4 OH solution until reaching a constant pH value equal to 8, thus achieving solubilization of the polysaccharide.
  • the resulting solution is filtered on a Nylon filter and placed in a spin coating apparatus.
  • a piece of 1 x 1 cm 2 glass is washed thoroughly with isopropanol, Alconox detergent and finally with MilliQ water.
  • the glass is subjected to an ozonator for fifteen minutes before being placed in the spinning coating apparatus.
  • Film formation is carried out at 2000 rpm for fifty seconds.
  • the film is allowed to dry and introduced into an oven where it is heated at 200 ° C for 2 h under a stream of argon saturated with water vapor. After that time, the graphitization is carried out by gradual heating at 5 ° C to 600 ° C, maintaining this temperature for 6 h.
  • the resulting sample is characterized by Raman spectroscopy, performing several spectra at points equally distributed along the surface. Standardization of the spectra reveals that the film is homogeneous and that it corresponds to a graphene material. The thickness of this layer was determined by optical profilometry proving to be 1 nm. X-ray photoelectronic spectroscopy indicates that the Carbon present in the sample corresponds mostly to sp 2 carbons. The layer strength of the resulting material turns out to be 3,500 Ohms / square
  • Example 2 Preparation of a nitrogen-doped graphene coating by chitosan carbonization.
  • aqueous solution is prepared by dissolving commercial chitosan (Aldrich ref. 448869-50G, CAS: 9012-76-4) in concentrated acetic acid (56 mg of chitosan in 0.225 ml of acetic acid) followed by dilution of this acetic solution in MilliQ water (15 mi).
  • the resulting aqueous solution is placed in the tank of a spin coating apparatus and a glass surface is coated as indicated in Example 1.
  • the graphitization procedure followed for chitosan is also identical to that described in the example 1.
  • the sample of graphene material obtained from chitosan shows uniform Raman spectra throughout the surface and indistinguishable from those recorded for the graphene sample obtained from alginate.
  • the XPS spectrum reveals the presence of 7% of N corresponding to N sp2 and N sp2 with positive charge.
  • the thickness of the film was 20 nm and its conductivity was 4500 Ohms / square.
  • Example 3 Preparation of a graphene coating from chitosan on a glass surface on which a nanometric layer of nickel metal has been deposited.
  • the preparation of the glass substrate with a nanometric layer of nickel is carried out prior to the deposition of the chitosan layer in a vapor deposition chamber of the sublimation metal operating at a temperature of 1500 ° C and a vacuum of 10 ⁇ 5 mbar
  • the thickness of the nickel layer is controlled by the vapor deposition time and turns out to be 5 nm.
  • the nickel coated glass support has a transparency greater than 90%.
  • a thin film of chitosan is deposited operating with a solution such as that described in example 2 and using a spin coating apparatus operating at 3000 rpm.
  • the thickness of the resulting chitosan film is 2 nm and its conductivity is high and in any case greater than 1 megaohm / square.
  • the substrate with the nanometric layers of nickel and chitosan is subjected to carbonization as described in example 2.
  • graphene films can be obtained on a transparent substrate with a high conductivity without the need to proceed to a graphene transfer stage from one surface to another.
  • the layer resistance values obtained are 10-20 Ohms / frame.
  • Example 4 Preparation of a graphene coating from chitosan on a glass surface by microwave heating.
  • a chitosan solution such as that indicated in example 2 is prepared and a clean glass substrate coating is carried out according to the procedure also described in example 2.
  • the difference with the example 2 is the carbonization method.
  • the chitosan film is treated at 200 ° C for 2h in order to initiate a chitosan transformation derived from its partial dehydration. Subsequently, the material to be charred is transferred to a microwave oven and heated to a power of 1000 W for 20 min in an inert atmosphere.
  • Example 5 Preparation of a doped graphene boron coating from an embroidered ammonium alginate derivative.
  • the procedure of this example is identical to that described in example 1, but using a derivative alginate derivative instead of a commercial sample.
  • This derivative is prepared beforehand by reacting a solution (5 ml) of sodium alginate (10 mg) with sodium borate (1 mg) at room temperature for 2 h. After this time, the coating is prepared using the spin coating apparatus, followed by carbonization at a temperature of 600 ° C. Analysis by EDX by microscopy reveals the presence of boron as a graphene doping agent in a percentage. The conductivity of the doped film is 250 kiloohms / square.
  • Example 6 Preparation of a multilayer graphene coating each with a different heteroatom.
  • the present example consists in the preparation of a coating containing two layers of graphene each with a different heteroatom. To do this, first proceed to the realization of Example 3. Next, on the resulting surface that already contains a graphene film arranged on a transparent glass with a nickel film, a layer of embroidered ammonium alginate prepared as described in Example 5 and its thermal treatment is graphitized. The end result is a substrate on which a thin layer of nickel 10 nm thick and two layers of graphene are deposited, the first of which contains nitrogen in its composition and the second boron.
  • the square piece of quartz of 2X2 cm 2 is immersed in a solution 0.5 M aqueous hydrochloric acid. This treatment is prolonged for one week at room temperature. After this time the quartz piece is recovered, washed with MilliQ water and subjected to ozonation.
  • a thin film of naturally occurring commercial starch that has been dissolved in MilliQ water (100 mg / L) is then placed on the surface by the spin coating technique at a speed of 2000 rpm.
  • the surface is allowed to dry in a clean environment and is heat treated at 250 ° C for 1 h under a constant flow of nitrogen saturated with water vapor. After that time, the starch layer is graphitized at 850 ° C for 5 h under nitrogen atmosphere, by gradual heating at 10 ° C / min from 250 ° C to 850 ° C.
  • the resulting material shows a conductivity of 1100 Ohms / square.
  • Example 8 Preparation of a graphene-coated ceramic by carbonization of a layer of ammonium alginate deposited on pressed ceramic precursor.
  • a layer of an ammonium alginate solution prepared as indicated in example 1 is deposited.
  • the deposition is conveniently carried out by passing on a conveyor belt at a speed of 500 cm per minute a curtain of the solution containing ammonium alginate. Then the ceramic element is introduced into a usual baking oven in ceramic installations and the pressing containing the alginate layer. Heat at a temperature of 1200 ° C for 1 h in total absence of oxygen.
  • X-ray and Raman photoelectronic spectroscopy data indicate the presence of graphene on the surface of the ceramic element after cooking. The surface resistance was 1,500 Ohms / square.

Abstract

La presente invención describe un procedimiento para la preparación de películas de grafeno o de un material grafénico mediante la carbonización de biopolímeros. El procedimiento comprende las siguientes etapas: - preparación de una disolución acuosa de un biopolímero no cristalizable o un derivado de dicho biopolímero al pH adecuado, - recubrimiento del sustrato con las disolución acuosa de los biopolímero preparada en la etapa anterior mediante inmersión del sustrato en dicha disolución o empleando la técnica de recubrimiento por giro, - acondicionamiento de la disolución acuosa del biopolímero mediante un proceso hidrotermal consistente en someter la superficie recubierta a un flujo de nitrógeno o árgon saturado con vapor de agua a la temperatura de entre 100 y 250 °C por un tiempo de entre 30 min a varias horas. - descomposición térmica del biopolímero depositado sobre el sustrato en ausencia de oxígeno a temperaturas inferiores a 1200 °C. Entre los biopolímeros preferidos en la presente invención se encuentran los polisacáridos tales como el alginato, quitosán, almidón y carragenatos y sus derivados. Debido a las propiedades del grafeno, los sustratos recubiertos mediante este proceso tienen aplicación en la industria microelectrónica, fotovoltaica, como componentes de células solares, etc.

Description

PROCEDIMIENTO PARA LA PREPARACIÓN DE PELÍCULAS DE GRAFENO Ó MATERIALES GRAFÉNICOS SOBRE SUSTRATOS NO METÁLICOS
Campo de la invención
La presente invención se refiere a un procedimiento para la preparación de películas de grafeno ó materiales grafénicos sobre sustratos no metálicos a partir de biopolímeros, para su aplicación en la industria microelectrónica y fotovoltaica principalmente.
Estado de la técnica
El grafeno constituye uno de los materiales más atractivos para aplicaciones en microelectrónica debido a sus propiedades conductoras, asi como a su transparencia y flexibilidad. La formación de películas de este material recubriendo una superficie o depositada sobre ella puede servir para la preparación de dispositivos optoelectrónicos. Convencionalmente, las películas de grafeno pueden prepararse por deposición de vapor a partir de metano y otros compuestos orgánicos sobre superficies metálicas. Este tipo de proceso se caracteriza porque se requieren temperaturas superiores a los 1000°C, típicamente 1500°C, y porque la superficie de metal actúa como catalizador promoviendo la descomposición del compuesto orgánico hacia grafeno, un proceso que no tendría lugar en las mismas condiciones sobre una superficie que no fuese metálica. Una alternativa descrita a la deposición de vapor consiste en el recubrimiento de la superficie metálica por algún compuesto orgánico y su pirólisis en ausencia de oxígeno para formar grafeno. También este proceso requiere que el tratamiento térmico se lleve a cabo sobre una superficie metálica donde los átomos de metal actúan como agentes plantilla generando los anillos de benceno. El níquel es uno de los metales preferidos para la preparación de grafeno por tratamiento térmico de compuestos orgánicos. Una vez obtenido el grafeno sobre una superficie, éste se puede transferir a cualquier otra de varias maneras entre las que se incluye el uso de una cinta adhesiva que se adhiere al grafeno y lo elimina del sustrato metálico y lo permite colocar sobre otra superficie ó mediante disolución de la capa metálica por ataque con reactivos químicos con lo que la lámina de grafeno puede pasar a la disolución. De esta manera aunque la formación del grafeno según el procedimiento descrito en el estado del arte requiere de una superficie metálica, con posterioridad es posible colocar el grafeno en cualquier otro tipo de superficie mediante etapas adicionales.
Estos precedentes requieren necesariamente el empleo de superficies metálicas para la preparación de las capas de grafeno, ya que se necesitan altas temperaturas para la grafitización del precursor del grafeno. Por ello, estos procedimientos están limitados a una serie de sustratos donde se sintetiza la película de grafeno y no es aplicable a superficies de vidrio ó de plástico entre otras. Sin embargo, el uso de sustratos metálicos tiene el inconveniente de que no son transparentes y, por tanto, hay que eliminarlos empleando procesos adicionales, costos y requieren tiempo, especialmente si se emplean en industria solar fotovoltaica que requiere sustratos transparentes. Sería de interés el poder preparar capas de grafeno sobre cualquier tipo de superficie para su aplicación directa, por ejemplo en sustratos transparentes para su aplicación en células solares.
En el documento US2011/0033677 se describe un procedimiento para preparar un sustrato grafénico, pudiendo ser el sustrato metálico o no metálico, pero este procedimiento requiere necesariamente la colocación de una capa de catalizador sobre el compuesto precursor del grafeno antes de llevar a cabo la grafitización del mismo. Dentro de las distintas formas de llevar a cabo la reacción de carbonización/grafitización de precursores de carbón destacan los hornos en atmosfera inerte y ausencia de humedad, otras formas de llevar a cabo la reacción de carbonización/grafitización son los hornos de microondas, etc. La presente invención describe la preparación de este tipo de películas de grafeno o de un material constituido por varias capas de grafeno sobre cualquier sustrato, y más concretamente cualquier sustrato que no sea metálico, de forma que no es necesario transferir la capa de grafeno a otro sustrato más adecuado, prescindiendo de etapas intermedias para eliminar el metal y por consiguiente, el coste del proceso de calentamiento y enfriamiento y tiempo empleado en el proceso de formación de grafeno.
Descripción de la invención
La presente invención describe un procedimiento para la preparación de películas de grafeno o materiales grafénicos a partir de biopolímeros hidrosolubles capaces de gelificar en agua (formar hidrogeles), sin necesidad de utilizar un catalizador. La capacidad de formar hidrogel implica una compatibilidad con el agua que permiten el recubrimiento conformal de superficies a partir de disoluciones acuosas de viscosidad adecuada. Los biopolímeros presentan una facilidad inesperada para formar películas homogéneas delgadas sobre algún tipo de sustratos sin que aparezcan defectos tales como agujeros ("pinholes') ó cortes ("cracks") de un espesor uniforme y de manera conformal con la superficie.
Disoluciones acuosas a pH adecuados de biopolímeros y biopolímeros funcionalizados dispuestos sobre una superficie pueden convertirse en grafeno o multicapas de grafeno por calentamiento en ausencia de oxígeno. Una aplicación preferente de esta invención emplea biopolímeros de tipo polisacárido natural no cristalizable entre los que se encuentran el alginato, quitosán, almidón y los carragenatos de cualquier origen, natural o sintético, así como los derivados de dichos polisacáridos. La diversidad de origen y naturaleza de estos polisacáridos, su contenido en nitrógeno y la facilidad con la que forman derivados son algunas de las ventajas que derivan del empleo de estos biopolímeros. Así pues, es posible funcionalizar estos materiales introduciendo algún otro heteroátomo de una forma simple con lo que el grafeno que resulta se encuentra dopado con ese heteroátomo.
Otros biopolímeros preferentes son de naturaleza proteica tales como gelatinas de origen diverso y colágenos.
Estos biopolímeros no cristalizables y capaces de formar hidrogeles tienen la habilidad de recubrir superficies de manera conformal, reproduciendo fielmente la rugosidad de la superficie del sustrato.
Las superficies o sustratos que se pueden recubrir mediante el proceso descrito en la presente invención pueden ser cuarzos, vidrios, cerámicas, pastas cerámicas, plásticos, etc, y pueden ser transparentes u opacas, rígidas o flexibles, planas o no planas, etc. El procedimiento para preparar películas de grafeno a partir de biopolímeros sobre sustratos no metálicos comprende las siguientes etapas:
• En primer lugar se disuelve una muestra de un biopolímero o un derivado del biopolímero en agua al pH adecuado. A modo de ejemplo no excluyente, el quitosán se puede disolver en primer lugar en ácido acético concentrado y después una alícuota de esta disolución ácida se diluye con agua miliQ hasta la concentración requerida. El pH de esta disolución de quitosán es ácido. En otro ejemplo de la presente invención se emplea alginato sódico como biopolímero de partida y se disuelve en agua miliQ a la concentración deseada. El valor del pH de esta disolución de alginato es básico.
* En una segunda etapa, la disolución acuosa del biopolímero o de su derivado se emplea para efectuar el recubrimiento del sustrato sobre el que se va a formar el grafeno; dicho sustrato previamente ha sido sometido a un proceso de limpieza adecuado. Esta limpieza puede consistir en el empleo de un surfactante neutro, seguido de enjuagues con agua destilada, secado y un proceso final de ozonización. En el caso de cuarzos y vidrios especiales es conveniente el pretratamiento de los mismos con ácido clorhídrico a fin de aumentar la hidrofilia de las superficies.
Una forma conveniente de depositar la disolución acuosa del biopolímero sobre el sustrato es por inmersión del sustrato en dicha disolución o empleando la técnica de recubrimiento por giro ("sp/n coating'). Controlando la concentración del biopolímero y otras condiciones de operación tales como la velocidad del giro, es posible controlar el espesor de la capa de biopolímero que se deposita sobre el sustrato. En algunos sustratos, se puede añadir un aditivo o cosolvente para facilitar el proceso de recubrimiento.
El espesor de las capas depositadas de biopolímero puede variar entre 1 y 1000 nanómetros, preferiblemente de 1 nm.
El recubrimiento efectuado con la disolución de biopolímero presenta muy baja rugosidad y reproduce fielmente los dibujos y modelos que presenta la superficie recubierta. Este hecho es esencial en la presente invención y no podía haber sido predicho en base al estado del arte. Así, cuando se lleva a cabo un recubrimiento de un sustrato de vidrio con una disolución de biopolímeros cristalizables como la sacarosa ó de almidón, la imagen de profilometría revela la aparición de cristalitos sobre el soporte de vidrio, no consiguiéndose la formación de una película uniforme. Este tipo de compuestos no son utilizables para la obtención de grafeno según el presente procedimiento debido al hecho de que no forman una superficie bidimensional continua. En la presente invención, los biopolímeros utilizados no cristalizan, por lo que forman una película uniforme que recubre al sustrato, evitando así los inconvenientes que generaría utilizar polímeros que cristalizan.
• Una vez formada la capa delgada del biopolímero ó de un derivado adecuado, se puede proceder opcionalmente a su acondicionamiento mediante procesos hidrotermales de manera que se ofrezca la oportunidad a las cadenas del biopolímero de un cierto reordenamiento y reorientación tras una vez se han dispuesto sobre la superficie del sustrato. Este tratamiento hidrotermal consiste en hacer pasar sobre la superficie recubierta un flujo de nitrógeno saturado con vapor de agua a la temperatura de entre 100 y 250 °C durante 30 min a varias horas, preferiblemente hasta 3 horas.
• Finalmente se lleva a cabo una descomposición térmica o carbonización del biopolímero depositado sobre la superficie del sustrato en ausencia de oxígeno (grafitización) a temperaturas inferiores a 1200 °C, preferiblemente entre 400°C y 650°C. Esta temperatura permite usar un amplio rango de sustratos y en particular de vidrios donde, tras el tratamiento térmico, se forma la capa de grafeno. De manera sorpresiva este procedimiento no requiere catalizador y, específicamente, se lleva a cabo sobre sustratos no metálicos. El número de capas de grafeno resultantes varía en función del espesor de la capa de biopolímero, observándose una reducción en el espesor de la película durante el proceso de carbonización de alrededor el 50 %. La etapa de descomposición térmica también puede llevarse a cabo en dos etapas, ambas en ausencia de oxígeno, la primera a temperatura inferior a 300 °C en presencia de humedad y la segunda a temperatura inferior a 1200 °C sin humedad. Igualmente la primera etapa puede llevarse mediante un sistema de calentamiento que sea diferente de la segunda y así es posible combinar una etapa de calentamiento en horno eléctrico con otra por microondas, entre otras combinaciones.
La descomposición de los biopolímeros da lugar a la generación de carbonos sp2, junto con átomos de carbono sp3 unidos a átomos de oxígeno. En el caso de las películas de grafeno obtenidas por descomposición de quitosán se observa además de la presencia de átomos de C, la presencia de átomos de nitrógeno sp2 soportando o no carga positiva, tal y como confirman los espectros fotoelectrónicos de rayos X (XPS).
Opcionalmente y antes de efectuar el recubrimiento del sustrato con disolución del biopolímero, se puede llevar a cabo la deposición de una capa metálica sobre la superficie del sustrato, teniendo esta capa metálica un espesor inferior a 10 nm, de forma que sea transparente a las radiaciones UV y visibles. Esta fina capa metálica cataliza la etapa de descomposición térmica o grafitización y permite que el conjunto sustrato-grafeno sea transparente.
Al tratarse de una capa metálica transparente puede quedar integrada en la estructura que directamente tendrá aplicaciones en la industria microelectrónica, electrónica, opto- electrónica o fotovoltaica (electrónica en general), sin necesidad de etapas adicionales para eliminar dicha capa.
Si el recubrimiento se lleva a cabo con un biopolímero que contiene heteroátomos ó con un biopolímero que ha sido modificado por funcionalización con heteroátomos, entonces el grafeno resultante de la descomposición química puede presentar dopaje (heteroátomos) en su estructura.
El biopolímero empleado, por ejemplo, alginato amónico, puede someterse previamente a un proceso de dopado de tipo N o bien de tipo P en disolución acuosa, para obtener de esta manera el grafeno dopado tipo N o tipo P.
Cuando el biopolímero es quitosán, la película grafénica formada está dopada con un porcentaje variable de nitrógeno dependiendo del tratamiento y de las condiciones (dopaje tipo N), dado que el quitosán presenta átomos de nitrógeno en su estructura.
El tratamiento previo del biopolímero mediante un proceso de boración con borato sódico en disolución acuosa daría lugar al biopolímero dopado con boro y el grafeno resultante después del tratamiento de descomposición térmica contendría boro (dopaje tipo P). Una vez formada la primera película de grafeno sobre el sustrato, es posible repetir el procedimiento depositando una segunda capa de biopolímero (puede ser el mismo polímero o diferente que el utilizado en la primera deposición) que será sometido a un proceso de descomposición térmica o carbonización, de esta forma se pueden formar varias películas de grafeno sobre el sustrato. Si se repite el procedimiento dos veces se formarán dos películas grafénicas, de forma que, dependiendo de los biopolímeros que se utilicen (iguales, distintos, dopados o sin dopar) se obtendrán láminas grafénicas prístinas (sin dopaje), de dopaje similar P-P, N-N o de dopaje distinto P-N y N-P.
La resistencia del grafeno formado siguiendo el procedimiento de la presente invención es de 10-20 ohm/cuadrado cuando se incluye la fina capa metálica y deriva de la habilidad de estos biopolímeros de recubrir superficies de manera conformal con espesores igual o superior a 1 nm y con rugosidades del orden de 1 nm, así como de la tendencia de los biopolímeros a formar materiales grafénicos.
Las capas de grafeno resultante pueden ser caracterizadas por una gran variedad de técnicas espectroscopias y de imagen. Los espectros Raman obtenidos mediante haz focalizado demuestran la homogeneidad de la capa de grafeno formada para películas de dimensiones 1 x1 cm"2.
La conductividad eléctrica de las películas de grafeno ó de unas pocas capas de grafeno depende de la naturaleza del sustrato y de la forma de medida. Sobre sustratos de vidrio (sin capa metálica) midiendo mediante un cabezal de cuatro puntas se obtienen medidas entre 500 y 10.000 Ohmios/cuadrado. Estos valores se reducen significativamente cuando las medidas de conductividad se llevan a cabo depositando oro como contactos sobre la capa de grafeno y midiendo la conductividad a través de dichos contactos. Sobre sustratos que incluyen la fina capa metálica y midiendo a través de contactos de oro se determinan resistencias de entre 10-20 ohm/cuadrado Ohmios/cuadrado. En contraste el precursor antes de ser convertido en grafeno se muestra como aislante en cualquier superficie sobre la que se deposite.
Descripción de las figuras
Para complementar la descripción que antecede, se acompañan a esta memoria descriptiva un juego de figuras donde con carácter meramente ilustrativo y no limitativo se ha representado lo siguiente:
La Figura 1 a) gráfica que mide la espesor (Z) de la capa de grafeno formado a partir de quitosán midiendo con una punta mecánica que escanea la superficie separándose diferentes distancias (X) de la misma, y en b) gráfica que muestra el espesor (Z) de dicha capa de grafeno. La Figura 2 muestra un espectro de XPS de una muestra representativa de estos materiales grafénicos obtenidos a partir del quitosán. (a) se representa el XPS de Carbono 1s y (b) el XPS del Nitógeno 1s.
La figura 3 muestra fotografías de espectroscopia electrónica de transmisión de una película de quitosán grafitizado de 10 nm de espesor a diferentes resoluciones. En la figura a) se observa el film de quitosán grafitizado con resolución de 10 nm. La figura b) muestra los bordes del film con mayor resolución (2 nm) donde se pueden distinguir claramente las distintas capas de grafeno. Una mayor resolución da lugar a la figura c) donde se distinguen los hexágonos de carbono característicos de una estructura grafitica.
Realización preferente de la invención
Para facilitar la comprensión de la invención a continuación de forma ilustrativa y no limitativa, se describen unos ejemplos para la preparación de los recubrimientos de grafeno basados en la presente invención.
Ejemplo 1 Preparación de un recubrimiento de grafeno por carbonización de alginato amónico sobre una superficie de vidrio.
Se prepara en primer lugar una disolución de alginato amónico suspendiendo ácido algínico comercial (Sigma, CAS: 9005-32-7, referencia A7003-250G, 0.2 g) en 10 mi de H20 MilliQ y añadiendo una disolución saturada de NH4OH hasta alcanzar un valor constante de pH igual a 8, consiguiendo así la solubilización del polisacárido.
La disolución resultante se filtra sobre un filtro de Nylon y se dispone en un aparato de recubrimiento por giro. Por otra parte, se lava una pieza de vidrio de 1 x 1 cm2 exhaustivamente con isopropanol, detergente Alconox y finalmente con agua MilliQ. El vidrio se somete a un ozonizador durante quince minutos antes de colocarse en el aparato de recubrimiento por giro. La formación de la película se lleva a cabo a 2000 rpm durante cincuenta segundos. La película se deja secar y se introduce en un horno donde se caliente a 200 °C durante 2 h bajo corriente de argón saturado con vapor de agua. Transcurrido ese tiempo la grafitización se lleva a cabo por calentamiento gradual a 5 °C hasta 600 °C, manteniendo esta temperatura durante 6 h. La muestra resultante se caracteriza por espectroscopia Raman, realizando varios espectros en puntos igualmente distribuidos a lo largo y ancho de la superficie. Normalización de los espectros revela que la película es homogénea y que corresponde a un material grafénico. El espesor de esta capa se determinó mediante profilometría óptica resultando ser de 1 nm. Espectroscopia fotoelectrónica de rayos X indica que el carbono presente en la muestra corresponde mayoritariamente a carbonos sp2. La resistencia de capa del material resultante resulta ser de 3.500 Ohmios/cuadrado
Ejemplo 2. Preparación de un recubrimiento de grafeno dopado con nitrógeno por carbonización de quitosán.
Se prepara una disolución acuosa por disolución de quitosán comercial (Aldrich ref. 448869-50G, CAS: 9012-76-4) en ácido acético concentrado (56 mg de quitosán en 0.225 mi de ácido acético) seguido de dilución de esta solución acética en agua MilliQ (15 mi). La disolución acuosa resultante se coloca en el depósito de un aparato de recubrimiento por giro y se procede al recubrimiento de una superficie de vidrio como se indicó en el Ejemplo 1. El procedimiento de grafitización seguido para el quitosán es asimismo idéntico al descrito en el ejemplo 1. La muestra de material grafénico obtenido a partir del quitosán muestra espectros de Raman uniformes en toda la superficie e indistinguibles a los registrados para la muestra de grafeno obtenida a partir de alginato. El espectro de XPS revela la presencia de un 7 % de N que se corresponde con N sp2 y N sp2 con carga positiva. El espesor de la película fue de 20 nm y la conductividad de la misma fue de 4500 Ohmios/cuadrado.
Ejemplo 3. Preparación de un recubrimiento de grafeno a partir de quitosán sobre una superficie de vidrio sobre el que se ha depositado una capa nanométrica de metal níquel.
La preparación del sustrato de vidrio con una capa nanométrica de níquel se lleva a cabo con anterioridad a la deposición de la capa de quitosán en una cámara de deposición de vapor del metal por sublimación operando a una temperatura de 1500 °C y un vacío de 10~5 mbar. El espesor de la capa de níquel se controla mediante el tiempo de deposición del vapor y resulta ser de 5 nm. El soporte de vidrio recubierto con níquel presenta una transparencia superior al 90 %.
Sobre este soporte transparente se deposita una película fina de quitosán operando con una disolución tal como la descrita en el ejemplo 2 y empleando un aparato de recubrimiento por giro operando a 3000 rpm. El espesor de la película quitosán resultante es de 2 nm y su conductividad elevada y en todo caso mayor que 1 megaohmio/cuadrado.
El sustrato con las capas nanométricas de níquel y quitosán se somete a carbonización como se describe en el ejemplo 2. De esta manera se pueden obtener películas de grafeno sobre un sustrato transparente con una elevada conductividad sin necesidad de proceder a una etapa de transferencia de grafeno de una superficie a otra. Los valores de resistencia de capa obtenidos son 10-20 Ohmnios/cuadro. Ejemplo 4. Preparación de un recubrimiento de grafeno a partir de quitosán sobre una superficie de vidrio mediante calentamiento por microondas.
Para la realización de este ejemplo se prepara una disolución de quitosán como la que se indica en el ejemplo 2 y se procede a un recubrimiento de un sustrato limpio de vidrio de acuerdo con el procedimiento igualmente descrito en el ejemplo 2. La diferencia con el ejemplo 2 es el método de carbonización.
La película de quitosán se trata a 200 °C durante 2h a fin de iniciar una transformación del quitosán derivada de su deshidratación parcial. Seguidamente, el material a carbonizar se transfiere a un horno de microondas y se calienta a una potencia de 1000 W durante 20 min en atmosfera inerte.
Ejemplo 5. Preparación de un recubrimiento de grafeno dopado con boro a partir de un derivado boronado de alginato amónico.
El procedimiento de este ejemplo es idéntico al descrito en el ejemplo 1 , pero empleando un derivado boronado del alginato en lugar de una muestra comercial. Este derivado se prepara con anterioridad por reacción de una disolución (5 mi) de alginato sódico (10 mg) con borato sódico (1 mg) a temperatura ambiente durante 2 h. Transcurrido este tiempo se procede a la preparación del recubrimiento mediante el aparato de recubrimiento por giro, seguido de carbonización a una temperatura de 600°C. Análisis mediante EDX por microscopía revela la presencia de boro como agente dopante del grafeno en un porcentaje. La conductividad de la película dopada es de 250 kiloohmios/cuadrado.
Ejemplo 6. Preparación de un recubrimiento de grafeno multicapa cada una con un heteroátomo diferente.
El presente ejemplo consiste en la preparación de un recubrimiento que contiene dos capas de grafeno cada una con un heteroátomo diferente. Para ello se procede en primer lugar a la realización del ejemplo 3. A continuación sobre la superficie resultante que ya contiene una película de grafeno dispuesta sobre un vidrio transparente con una película de níquel se dispone una capa de alginato amónico boronado preparado como se describe en el ejemplo 5 y se procede a su grafitización por tratamiento térmico. El resultado final es un sustrato sobre el que se encuentra depositado una fina capa de níquel de 10 nm de espesor y dos capas de grafeno, la primera de las cuales contiene nitrógeno en su composición y la segunda boro.
Ejemplo 7. Preparación de grafeno sobre cuarzo a partir de almidón.
Antes de proceder al recubrimiento por giro y depositar la capa nanométrica de almidón se procede a sumergir la pieza cuadrada de cuarzo de 2X2 cm2 en una disolución acuosa de ácido clorhídrico 0.5 M. Este tratamiento se prolonga durante una semana a temperatura ambiente. Transcurrido este tiempo la pieza de cuarzo se recupera, se lava con agua MilliQ y se somete a ozonización.
A continuación se dispone sobre la superficie mediante la técnica de recubrimiento por giro a una velocidad de 2000 rpm una película delgada de almidón comercial de origen natural que se ha disuelto en agua MilliQ (100 mg/L).
La superficie se deja secar en un ambiente limpio y se trata térmicamente a 250 °C durante 1 h bajo un flujo constante de nitrógeno saturado con vapor de agua. Transcurrido ese tiempo, la capa de almidón se grafitiza a 850 °C durante 5 h bajo atmósfera de nitrógeno, por calentamiento gradual a 10 °C/min desde 250 °C hasta 850 °C. El material resultante muestra una conductividad de 1100 Ohmios/cuadrado.
Ejemplo 8: Preparación de una cerámica con recubrimiento de grafeno por carbonización de una capa de alginato amónico depositada sobre precursor cerámico prensado.
Sobre un elemento de precursor cerámico prensado de dimensiones de baldosa y antes de introducir en un horno se deposita una capa de una disolución de alginato amónico preparada como se indica en el ejemplo 1. La deposición se lleva a cabo convenientemente haciendo pasar en una cinta transportadora a una velocidad de 500 cm por minuto una cortina de la disolución conteniendo alginato amónico. Seguidamente el elemento cerámico se introduce en un horno de cocción habitual en instalaciones cerámicas y el prensado conteniendo la capa de alginato. Se caliente a temperatura de 1200 °C durante 1 h en ausencia total de oxígeno. Datos de espectroscopia fotoelectrónica de rayos X y Raman indican la presencia del grafeno en la superficie del elemento cerámico tras la cocción. La resistencia de la superficie fue de 1.500 Ohmios/cuadrado.

Claims

Reivindicaciones
1. Procedimiento para la preparación de películas de grafeno ó materiales grafénicos sobre sustratos no metálicos que comprende las siguientes etapas:
- preparación de una disolución acuosa de un biopolímero hidrosoluble no cristalizable capaz de formar hidrogeles, o un derivado de dicho biopolímero al pH adecuado,
- recubrimiento del sustrato con la disolución acuosa del biopolímero preparada en la etapa anterior,
- acondicionamiento de la disolución acuosa del biopolímero mediante un proceso hidrotermal consistente en someter la superficie recubierta a un flujo de nitrógeno o árgon saturado con vapor de agua a la temperatura de entre 100 y 250 °C por un tiempo de entre 30 min a varias horas.
- descomposición térmica del biopolímero depositado sobre el sustrato en ausencia de oxígeno a temperaturas iguales o inferiores a 1200 °C.
2. Procedimiento para la preparación de películas de grafeno ó materiales grafénicos según reivindicación 1 caracterizado porque el recubrimiento del sustrato con la disolución acuosa del biopolímero se lleva a cabo mediante inmersión del sustrato en dicha disolución o empleando la técnica de recubrimiento por giro ("sp/n coating).
3. Procedimiento para la preparación de películas de grafeno ó materiales grafénicos según reivindicación 1 donde el biopolímero es un alginato de cualquier origen o un derivado del alginato.
4. Procedimiento para la preparación de películas de grafeno ó materiales grafénicos según reivindicación 3 donde el biopolímero es un alginato amónico.
5. Procedimiento para la preparación de películas de grafeno ó materiales grafénicos según reivindicación 3 donde el biopolímero es un alginato amónico que ha sido sometido previamente a un proceso de dopado de tipo N en disolución acuosa, resultando en una película de grafeno ó materiales grafénicos dopada con nitrógenos sp2 y/o nitrógenos sp2 con carga positiva.
6. Procedimiento para la preparación de películas de grafeno ó materiales grafénicos según reivindicación 3 donde el biopolímero es un alginato amónico que ha sido sometido previamente a un proceso de dopado de tipo P en disolución acuosa, resultando en una película de grafeno ó materiales grafénicos dopada de tipo P.
7. Procedimiento para la preparación de películas de grafeno ó materiales grafénicos según reivindicación 6 donde el biopolímero es un alginato amónico sometido a un proceso de boración (dopado de tipo P ) con borato sódico en disolución acuosa.
8. Procedimiento para la preparación de películas de grafeno ó materiales grafénicos según reivindicación 1 donde el biopolímero es quitosán de cualquier origen, dando lugar a una película de grafeno ó material grafénico dopada con nitrógeno.
9. Procedimiento para la preparación de películas de grafeno ó materiales grafénicos según reivindicación 1 donde el biopolímero es un carragenato de cualquier origen.
10. Procedimiento para la preparación de películas de grafeno ó materiales grafénicos según reivindicación 1 donde el biopolímero es un almidón de origen natural.
11. Procedimiento para la preparación de películas de grafeno ó materiales grafénicos según reivindicación 1 donde el sustrato no metálico es cuarzo, vidrio, cerámica, pasta cerámica o plástico.
12. Procedimiento para la preparación de películas de grafeno ó materiales grafénicos según reivindicación 1 donde la descomposición térmica del biopolímero se efectúa a una temperatura entre 400°C y 650°C.
13. Procedimiento para la preparación de películas de grafeno ó materiales grafénicos según reivindicación 1 donde el tratamiento térmico es llevado a cabo en dos etapas, ambas en ausencia de oxígeno, la primera etapa a temperatura inferior a 300 °C en presencia de humedad y la segunda etapa a temperatura inferior a 650 °C.
14. Procedimiento para la preparación de películas de grafeno ó materiales grafénicos según reivindicación 1 caracterizado porque incluye una etapa adicional antes de la efectuar el recubrimiento del sustrato con disolución del biopolímero consistente en la deposición de una capa metálica de espesor inferior a 10 nm sobre la superficie del sustrato.
15. Procedimiento para la preparación de películas de grafeno ó materiales grafénicos según reivindicación 1 donde el espesor de la película de disolución de biopolímero depositada tiene un espesor de 1 a 1000 nm, dependiendo de la concentración del biopolímero en la disolución.
16. Procedimiento para la preparación de películas de grafeno ó materiales grafénicos según reivindicación 1 donde, una vez formada la primera capa de grafeno o material grafénico, se procede al recubrimiento con una segunda capa de disolución de biopolímero o derivado de biopolímero que se somete a un segundo tratamiento de descomposición térmica.
17. Procedimiento para la preparación de películas de grafeno ó materiales grafénicos según reivindicación 16 donde las dos capas grafénicas formadas son capas grafenicas prístinas (sin dopaje), o dopaje similar P-P o N-N, o de dopaje distinto P-N o N-P, dependiendo de los biopolímeros o derivados de biopolímeros utilizados para la formación de cada capa grafénica.
18. Procedimiento para la preparación de películas de grafeno ó materiales grafénicos según reivindicación 1 donde la superficie es cuarzo y la descomposición térmica del biopolímero se lleva a cabo a 850 °C.
19. Procedimiento para la preparación de películas de grafeno ó materiales grafénicos según reivindicación 1 donde la superficie es una pasta cerámica y la descomposición térmica del biopolímero se lleva a temperaturas de 1200 °C.
20. Procedimiento para la preparación de películas de grafeno ó materiales grafénicos según reivindicación 8 donde se ha utilizado quitosán, resultando en una película de grafeno ó materiales grafénicos dopada con nitrógenos sp2 y/o nitrógenos sp2 con carga positiva.
21. Sustrato grafénico preparado mediante el procedimiento descrito en la reivindicación 1 caracterizado porque comprende una capa de sustrato no metálico seleccionado del grupo que comprende cuarzo, vidrio, cerámica, pasta cerámica, y plástico, y una o varias capas de grafeno con una resitencia de 500 a 10000 Ohmnios/cuadrado.
22. Sustrato grafénico según reivindicación 21 caracterizado porque incluye una capa metálica de espesor inferior a 10 nm entre el sustrato y la capa de grafeno cuya resistencia de capa es de 10-20 Ohmnios/cuadrado.
PCT/ES2013/000026 2012-02-06 2013-02-05 Procedimiento para la preparación de películas de grafeno ó materiales grafénicos sobre sustratos no metálicos WO2013117780A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
IN1654MUN2014 IN2014MN01654A (es) 2012-02-06 2013-02-05
EP13746795.7A EP2813469A4 (en) 2012-02-06 2013-02-05 METHOD FOR PRODUCING FILMS FROM GRAPHS OR GRAPHIC MATERIALS ON NON-METALLIC SUBSTRATES
CN201380008199.6A CN104203814A (zh) 2012-02-06 2013-02-05 在非金属基底上制备石墨烯或石墨烯材料的膜的方法
MX2014009328A MX2014009328A (es) 2012-02-06 2013-02-05 Procedimiento para la preparacion de peliculas de grafeno o materiales grafenicos sobre sustratos no metalicos.
ZA2014/05836A ZA201405836B (en) 2012-02-06 2014-08-08 Method for preparing films of graphene or graphene materials on non-metallic substrates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201200100 2012-02-06
ES201200100A ES2383356B1 (es) 2012-02-06 2012-02-06 Procedimiento para la preparación de películas de grafeno ó materiales grafénicos sobre sustratos no metálicos

Publications (1)

Publication Number Publication Date
WO2013117780A1 true WO2013117780A1 (es) 2013-08-15

Family

ID=46173009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/000026 WO2013117780A1 (es) 2012-02-06 2013-02-05 Procedimiento para la preparación de películas de grafeno ó materiales grafénicos sobre sustratos no metálicos

Country Status (9)

Country Link
US (1) US9216435B2 (es)
EP (1) EP2813469A4 (es)
CN (1) CN104203814A (es)
CL (1) CL2014002066A1 (es)
ES (1) ES2383356B1 (es)
IN (1) IN2014MN01654A (es)
MX (1) MX2014009328A (es)
WO (1) WO2013117780A1 (es)
ZA (1) ZA201405836B (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022183717A1 (zh) * 2021-03-04 2022-09-09 四川大学 一种具有原位石墨烯膜的磷酸钙陶瓷及其制备方法和应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103626158B (zh) * 2012-08-23 2016-04-06 中国科学院宁波材料技术与工程研究所 氮掺杂石墨烯的制备方法及其应用
ES2471318B1 (es) * 2012-11-22 2015-04-24 Abengoa Solar New Technologies S.A. Procedimiento de obtención de suspensiones o muestras sólidas de grafeno
CN103839695A (zh) * 2012-11-23 2014-06-04 海洋王照明科技股份有限公司 石墨烯电极片及其制备方法和应用
JP6201801B2 (ja) * 2014-02-14 2017-09-27 株式会社デンソー グラファイト薄膜の製造方法
CN103803542B (zh) * 2014-02-24 2016-01-20 南京理工大学 一种微生物燃料电池混合细菌氮掺杂石墨烯的制备方法
CN103922328A (zh) * 2014-04-18 2014-07-16 山东大学 一种利用壳聚糖制备含氮多级孔三维石墨烯的方法
CN104759253B (zh) * 2015-04-14 2017-10-20 中国广州分析测试中心 一种用于重金属富集或去除水中的污染物的石墨烯海绵及其制备方法
EP3374087A4 (en) 2015-11-12 2019-11-06 Cornell University MANUFACTURE BY ELECTRON-BULGULATION WITH AIR REGULATION AND PRODUCTS OBTAINED
CN110139896B (zh) * 2016-09-12 2021-12-31 阿德莱德大学 多用途石墨烯系复合材料
WO2019010561A1 (en) * 2017-07-11 2019-01-17 Tofigh Rayhani Mohammad GRAPHENE-COATED GLASS MATERIAL AND USES THEREOF
ES2843743B2 (es) * 2020-01-20 2022-02-15 Primalchit Solutions S L Esmalte anticorrosivo de material carbonoso, su procedimiento de obtencion y su uso

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110033677A1 (en) 2009-08-05 2011-02-10 Samsung Electronics Co., Ltd. Graphene base and method of preparing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2149853A1 (en) * 1995-05-19 1996-11-20 Jiayu Simon Xue Pre-graphitic carbonaceous insertion compounds and use as anodes in rechargeable batteries
EP2456716A2 (en) * 2009-07-22 2012-05-30 Wisys Technology Foundation, Inc. Carbon microbeads with hierarchical structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110033677A1 (en) 2009-08-05 2011-02-10 Samsung Electronics Co., Ltd. Graphene base and method of preparing the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
EDUARDO RUIZ-HITZKY ET AL.: "Supported Graphene from Natural Resources: Easy Preparations and Applications", ADVANCED MATERIALS, vol. 23, no. 44, 23 November 2011 (2011-11-23), pages 5250 - 5255, XP055078974 *
GEORGE TING-KUO FEY ET AL.: "Synthesis and Characterization of pyrolyzed sugar carbons under nitrogen or argon atmospheres as anode materials for lithium -ion batteries", MATERIALS CHEMISTRY AND PHYSICS, vol. 73, 2002, pages 37 - 46, XP055161092 *
GOMEZ-AVILES. A. ET AL.: "Multifunctional materials based on graphene-like/sepiolite nanocomposites", APPLIED CLAY SCIENCE, vol. 47, 2009, pages 203 - 211, XP026885453 *
See also references of EP2813469A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022183717A1 (zh) * 2021-03-04 2022-09-09 四川大学 一种具有原位石墨烯膜的磷酸钙陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
CN104203814A (zh) 2014-12-10
ZA201405836B (en) 2015-10-28
EP2813469A1 (en) 2014-12-17
US9216435B2 (en) 2015-12-22
EP2813469A4 (en) 2015-09-16
IN2014MN01654A (es) 2015-05-29
MX2014009328A (es) 2015-02-24
CL2014002066A1 (es) 2015-03-13
US20130209793A1 (en) 2013-08-15
ES2383356A1 (es) 2012-06-20
ES2383356B1 (es) 2013-04-04

Similar Documents

Publication Publication Date Title
ES2383356B1 (es) Procedimiento para la preparación de películas de grafeno ó materiales grafénicos sobre sustratos no metálicos
Zhu et al. Trap state passivation by rational ligand molecule engineering toward efficient and stable perovskite solar cells exceeding 23% efficiency
Yang et al. Adjusting the anisotropy of 1D Sb2Se3 nanostructures for highly efficient photoelectrochemical water splitting
Kim et al. Self-oriented Sb 2 Se 3 nanoneedle photocathodes for water splitting obtained by a simple spin-coating method
Das et al. Amplifying charge‐transfer characteristics of graphene for triiodide reduction in dye‐sensitized solar cells
Lam et al. A stable, efficient textile-based flexible perovskite solar cell with improved washable and deployable capabilities for wearable device applications
Umeyama et al. Preparation and photophysical and photoelectrochemical properties of a covalently fixed porphyrin–chemically converted graphene composite
Smazna et al. Buckminsterfullerene hybridized zinc oxide tetrapods: defects and charge transfer induced optical and electrical response
JP6164617B2 (ja) 導電性薄膜の製造方法及び該方法により製造された導電性薄膜
Wang et al. Spontaneous formation of Cu 2 O–gC 3 N 4 core–shell nanowires for photocurrent and humidity responses
EP2857550A1 (en) Amine precursors for depositing graphene
JP2013112604A (ja) グラフェンナノシートおよびこれを製造する方法
Zhou et al. Efficient ambient-air-stable HTM-free carbon-based perovskite solar cells with hybrid 2D–3D lead halide photoabsorbers
Kong et al. Fabricating High‐Efficient Blade‐Coated Perovskite Solar Cells under Ambient Condition Using Lead Acetate Trihydrate
Hu et al. High-efficiency and stable silicon heterojunction solar cells with lightly fluorinated single-wall carbon nanotube films
KR20130095662A (ko) 반도체 박막소자용 투명전극
Wang et al. Periodic FTO IOs/CdS NRs/CdSe clusters with superior light scattering ability for improved photoelectrochemical performance
WO2014133183A1 (ja) 密な部分及び疎な部分を有する単層カーボンナノチューブを有する膜及びその製造方法、並びに該膜を有する材料及びその製造方法
Chu et al. Facile synthesis, characterization of ZnO nanotubes and nanoflowers in an aqueous solution
Kondrashov et al. Controlled graphene synthesis from solid carbon sources
Liang et al. Chemi‐Mechanically Peeling the Unstable Surface States of α‐FAPbI3
Kundu et al. An in situ synthesis of polyaniline/reduced graphene oxide nanocomposite flexible thin film on PET for the room temperature detection of trace level ammonia at ppb level
Bissett et al. Comparison of carbon nanotube modified electrodes for photovoltaic devices
Li et al. NH4Br‐Assisted Two‐Step‐Processing of Guanidinium‐Rich Perovskite Films for Extremely Stable Carbon‐Based Perovskite Solar Cells in Ambient Air
Li et al. Highly efficient and stable perovskite solar cells based on E‐beam evaporated SnO2 and rational interface defects passivation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746795

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/009328

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013746795

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013746795

Country of ref document: EP