WO2013108841A1 - 捕捉体を含む非水電解質二次電池 - Google Patents

捕捉体を含む非水電解質二次電池 Download PDF

Info

Publication number
WO2013108841A1
WO2013108841A1 PCT/JP2013/050818 JP2013050818W WO2013108841A1 WO 2013108841 A1 WO2013108841 A1 WO 2013108841A1 JP 2013050818 W JP2013050818 W JP 2013050818W WO 2013108841 A1 WO2013108841 A1 WO 2013108841A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
secondary battery
electrolyte secondary
aqueous electrolyte
Prior art date
Application number
PCT/JP2013/050818
Other languages
English (en)
French (fr)
Inventor
充康 今▲崎▼
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2013108841A1 publication Critical patent/WO2013108841A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a nonaqueous electrolyte secondary battery, and more particularly to improvement of charge / discharge cycle characteristics of the nonaqueous electrolyte secondary battery.
  • lithium ion secondary batteries are now widely used as power sources for mobile devices.
  • lithium ion secondary batteries have higher energy density than existing nickel-cadmium storage batteries and nickel-hydrogen storage batteries, and are therefore expected to be used for large power supplies such as electric vehicles and power storage. Since a lithium ion secondary battery is discharged with use, it must be charged after discharging. In this way, the lithium ion secondary battery is repeatedly charged and discharged during use. There is a property that the battery capacity decreases with this charge / discharge cycle, which is referred to as deterioration of the “charge / discharge cycle characteristics”. This tendency is particularly remarkable at high temperatures.
  • Patent Document 1 in order to suppress deterioration of charge / discharge cycle characteristics at high temperatures, a trapping substance that captures impurity ions such as cations and fluoride ions other than lithium ions generated inside the battery is used as a separator. By holding on the surface, the surface of the positive electrode or the negative electrode or the inside thereof, the cation or fluoride ion causing the battery deterioration is prevented from adhering to the negative electrode active material particles.
  • the trapping substance Patent Document 1 mentions activated carbon having a specific surface area of 1000 m 2 / g or a pore volume of 0.1 cc / g or more, and also includes an alkaline earth metal oxide.
  • the electrode material has a higher potential than carbon (hereinafter, when the potential is “high, low”, it is called “high” when it increases in the positive potential direction, and in the negative potential direction.
  • a negative electrode active material that operates at a low level is called “low”, even if the aforementioned trapping material is used, the trapping material is used before impurity ions such as cations or fluoride ions reach the negative electrode. There is a problem that it is difficult to obtain the captured effect.
  • the present inventor has found that a non-aqueous electrolyte secondary battery excellent in charge / discharge cycle characteristics can be obtained by making a capture body made of metal that operates at a specific potential exist in the battery.
  • the present invention has been completed. Furthermore, the present invention has been completed by finding the effect of suppressing gas generation due to the presence of the trapping body.
  • the nonaqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, and a nonaqueous electrolyte layer interposed between the positive electrode and the negative electrode.
  • the positive electrode and the negative electrode are interposed between the positive electrode and the negative electrode.
  • a trapping body containing a metal, an intermetallic compound, or an alloy having a redox potential equal to or lower than the negative electrode operating potential in a state where it is not in contact with any of the above and in contact with a nonaqueous electrolyte is interposed.
  • an alkali metal, an alkali intermetallic compound, or an alloy is preferable to select an alkali metal, an alkali intermetallic compound, or an alloy as the metal contained in the capturing body.
  • the redox potential of the alkali metal is a large value of about ⁇ 3 V, and the above-described impurity ion trapping effect can be obtained efficiently.
  • the alkali metal may be lithium or sodium.
  • an alkaline earth metal, an alkaline earth intermetallic compound, or an alloy may be selected.
  • the redox potential of the alkaline earth metal is also a value close to ⁇ 3 V, and the impurity ion trapping effect described above is easily obtained.
  • the capturing body As a form in which the capturing body is disposed in the non-aqueous electrolyte secondary battery, it may be dispersed in the non-aqueous electrolyte solution. Further, when a porous film serving as a separator is interposed between the positive electrode and the negative electrode, the capturing body may be present in the porous film. You may arrange
  • the positive electrode current collector 2 and the negative electrode current collector 4 face each other and are arranged so as to overlap in plan view.
  • a positive electrode active material 5 is formed on a surface of the positive electrode current collector 2 facing the negative electrode current collector 4, and a negative electrode active material is formed on the surface of the negative electrode current collector 4 facing the positive electrode current collector 2.
  • Substance 6 is formed.
  • An aggregate of the positive electrode current collector 2 and the positive electrode active material 5 is referred to as a “positive electrode”
  • an aggregate of the negative electrode current collector 4 and the negative electrode active material 6 is referred to as a “negative electrode”.
  • porous membrane separators 7a and 7b are interposed in a two-stage configuration.
  • the inside of the separators 7a and 7b, the gap between the separator 7a and the positive electrode active material 5, and the gap between the separator 7b and the negative electrode active material 6 are impregnated with a non-aqueous electrolyte solution responsible for ion conduction such as lithium ions. is doing.
  • a frame is formed so as to close between the peripheral part of the positive electrode current collector 2 and the peripheral part of the negative electrode current collector 4. Insulating sealing material 8 is formed.
  • the positive electrode current collector 2 and the negative electrode current collector 4 are not in contact with either the positive electrode current collector 2 or the negative electrode current collector 4.
  • an alkali metal, an alkali intermetallic compound or alloy, or an alkaline earth metal, alkaline earth intermetallic compound or alkaline earth metal alloy is interposed in contact with the nonaqueous electrolyte.
  • This alkali metal, alkali metal intermetallic compound or alloy, or alkaline earth metal, alkaline earth intermetallic compound, or alkaline earth metal alloy is referred to as “capturing body” 9 in this specification.
  • the alkali metal include lithium, sodium, and potassium.
  • alkaline earth metals include magnesium and calcium.
  • the structure for providing the capturing body 9 of the present invention in the nonaqueous electrolyte secondary battery 1 is not limited.
  • the capturing body 9 may be formed as a plurality of particles and dispersed in the nonaqueous electrolyte solution. In this way, when the capturing body 9 is formed as a plurality of particles and dispersed in the nonaqueous electrolyte solution, one particle must not contact both electrodes simultaneously.
  • each particle may be a sphere, ellipsoid, cylinder, needle, cuboid, polyhedron, or the like. Since the dimensional ratio is not limited in the case of a rectangular parallelepiped, the shape may be a plate piece or a foil piece.
  • the volume density of the particles is preferably in the range of 2 to 20 parts by volume with respect to 100 parts by volume of the nonaqueous electrolyte solution. If it exceeds this range, the movement of the electrolyte solution and ions will be inhibited, and if it falls below this range, the function of trapping impurities will be reduced, which is not preferable.
  • FIG. 4 is a perspective view showing the structure of the capturing body 9 formed in a mesh shape.
  • the mesh shape in this case is not limited, and may be a mesh obtained by knitting a vertical capturing body 9 and a horizontal capturing body 9 at right angles as shown in FIG. It may be knitted.
  • the shape of each bar or elongated body constituting the lattice or mesh may be a circle, an ellipse, a rectangle, or a polygon. Since the dimensional ratio is not limited when the cross section is rectangular, it may be plate-shaped or foil-shaped. However, if the thickness t of the rod or the elongated body is too thick, further rolling of the battery occurs due to compression from above and below during battery formation. Therefore, in order to prevent this rolling, the thickness t is preferably 100 ⁇ m or less.
  • the material of the frame 10 needs to be a substance that does not react with the non-aqueous electrolyte solution, but the material is arbitrary as long as it is satisfied.
  • a frame made by molding a strong material such as stainless steel
  • a frame made by molding the alloy If stainless steel or the like is used, the strength can be easily secured and the handling becomes convenient. If produced using an alkali metal or alkaline earth metal, the frame itself can have the same trapping action as the trap 9.
  • an alkali metal, an alkali intermetallic compound or alloy, or an alkaline earth metal an alkaline earth intermetallic compound or alloy is formed into a plate having a thickness t.
  • a hole such as a circle, an ellipse, a triangle, a rectangle, or a polygon may be punched in the hole.
  • a binder may be used to facilitate the forming.
  • the binder is not particularly limited, and for example, at least one selected from the group consisting of polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber, polyimide, and derivatives thereof can be used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • styrene-butadiene rubber polyimide, and derivatives thereof can be used.
  • the capturing body 9 of the present invention may be a “single unit” of an alkali metal, an alkali intermetallic compound or alloy, or an alkaline earth metal, an alkaline earth intermetallic compound or alloy.
  • the following structure may be used. That is, particles, lattices, nets, plates before punching, etc. are composed of a substrate of a different metal or a different material, and on the surface of the different metal or different material substrate, an alkali metal, an alkali intermetallic compound or alloy, or An alkaline earth metal, an alkaline earth intermetallic compound or alloy may be formed into a thin film by a technique such as coating, plating, vapor deposition, or sputtering.
  • the nonaqueous electrolyte secondary battery 1 it is not always necessary to use the independent separators 7a and 7b unless the positive electrode and the negative electrode are in direct contact. That is, a structure without the separators 7a and 7b is also conceivable.
  • a gel-like material may be used as the nonaqueous electrolyte in order to prevent contact between the positive electrode and the negative electrode.
  • a gel-like nonaqueous electrolyte when using a gel-like nonaqueous electrolyte, when forming the capturing body 9 of the present invention as a plurality of particles, it is dispersedly arranged inside the gel-like nonaqueous electrolyte. Further, when the planar capturing body 9 is inserted and arranged, it is inserted and arranged in the gel-like nonaqueous electrolyte so as not to contact either the positive electrode or the negative electrode.
  • the negative electrode used in the nonaqueous electrolyte secondary battery of the present invention is composed of at least a negative electrode active material or a negative electrode active material and a current collector.
  • the negative electrode active material may contain a conductive additive and a binder as necessary. It is preferable to use a material that operates at ⁇ 2.7 V or more and ⁇ 1.0 V or less with respect to a standard hydrogen electrode as the negative electrode active material.
  • transition metal-containing oxides such as molybdenum oxide, niobium oxide, manganese oxide, lithium manganese oxide, titanium oxide, lithium titanium oxide, nickel nitride, manganese nitride, iron nitride, etc.
  • a binder may be used to form the negative electrode of the present invention.
  • the binder is not particularly limited, and for example, at least one selected from the group consisting of polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber, polyimide, and derivatives thereof can be used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • styrene-butadiene rubber polyimide, and derivatives thereof
  • the binder is preferably dissolved or dispersed in a non-aqueous solvent or water from the viewpoint of easy production of the negative electrode.
  • the amount of the binder contained in the negative electrode is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 1 part by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the negative electrode active material. If it is this range, the adhesiveness of a negative electrode active material and a conductive support material will be maintained, and adhesiveness with a collector can fully be acquired.
  • the negative electrode of the present invention may contain a conductive additive as necessary. Although it does not specifically limit as a conductive support material, A carbon material and / or a metal microparticle are preferable.
  • Examples of the carbon material include natural graphite, artificial graphite, vapor-grown carbon fiber, carbon nanotube, acetylene black, ketjen black, and furnace black.
  • Examples of the metal fine particles include copper, aluminum, nickel, and an alloy containing at least one of these. Further, the fine particles of inorganic material may be plated. These carbon materials and metal fine particles may be used alone or in combination of two or more.
  • the amount of the conductive additive contained in the negative electrode is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 1 part by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the negative electrode active material. . If it is a range, the electroconductivity of a negative electrode will be ensured.
  • the material of the current collector used for the negative electrode of the nonaqueous electrolyte secondary battery of the present invention include copper, aluminum, nickel, an alloy containing at least one of these, or a conductive polymer.
  • the shape include a foil shape, a mesh shape, a punching shape, an expanded shape, and a foam structure.
  • the mesh shape is a woven or unemployed cloth made of metal or conductive polymer fibers.
  • the thickness of the fiber is preferably 50 ⁇ m or more and 2000 ⁇ m or less. When the thickness is less than 50 ⁇ m, the strength of the current collector is weak. Therefore, when the active material mixture is supported on the current collector, the current collector tends to be easily broken. On the other hand, when a fiber thicker than 2000 ⁇ m is used, the opening becomes too large to make the porosity described later, and it tends to be difficult to hold the active material mixture by the mesh.
  • the punching shape is a plate in which holes such as a circle, a rectangle, or a hexagon are formed, and a metal made of metal is punching metal.
  • the porosity corresponds to the hole area ratio, which is determined by the hole diameter and bone ratio, hole shape, and hole arrangement.
  • the shape of the hole is not particularly limited, but from the viewpoint of increasing the open area ratio, a round hole 60 ° staggered type and a square hole staggered / parallel type are preferable.
  • the expanded shape is a staggered cut made on a plate and stretched to form a mesh. Expanded metal is made of metal.
  • the porosity corresponds to the hole area ratio, which is determined by the hole diameter and bone ratio, the hole shape, and the hole arrangement.
  • the foam structure has a three-dimensional network structure like a sponge and has continuous pores.
  • the structure is determined by the pore size and porosity.
  • the shape and diameter of the continuous holes are not particularly limited, but a structure having a high specific surface area is preferable.
  • the metal used in the current collector of the present invention may be stable between negative electrode operating voltages, preferably copper and its alloys when the operating potential is ⁇ 2.3 V or lower, and aluminum and its alloys when ⁇ 2.3 V or higher. Is preferred.
  • the negative electrode of the present invention is produced by, for example, supporting a negative electrode mixture comprising a negative electrode active material, a conductive additive, and a binder on a current collector. It is preferable to prepare a negative electrode by preparing a slurry with a binder and a solvent, filling and applying the obtained slurry to the pores of the current collector and the outer surface thereof, and then removing the solvent. Alternatively, the mixture of the negative electrode active material, the conductive additive and the binder may be supported on the current collector as it is without being dispersed in the solvent.
  • the slurry is not particularly limited, but it is preferable to use a ball mill, a planetary mixer, a jet mill, or a thin film swirling mixer because the negative electrode active material, the conductive additive, the binder, and the solvent can be mixed uniformly.
  • the production of the slurry is not particularly limited, it may be produced by mixing the negative electrode active material, the conductive additive, and the binder and then adding a solvent, or the negative electrode active material, the conductive additive, the binder, and the solvent together. You may mix and produce.
  • the solid content concentration of the slurry is preferably 30 wt% or more and 80 wt% or less. If it is less than 30 wt%, the viscosity of the slurry tends to be too low, whereas if it is higher than 80 wt%, the viscosity of the slurry tends to be too high, and it may be difficult to form an electrode described later.
  • the solvent used for the slurry is preferably a non-aqueous solvent or water.
  • the non-aqueous solvent is not particularly limited, and examples thereof include N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, ethyl acetate, and tetrahydrofuran. Moreover, you may add a dispersing agent and a thickener to these.
  • the method for supporting the negative electrode mixture on the current collector is not particularly limited, but for example, a method of removing the solvent after applying the slurry with a doctor blade, die coater, comma coater or the like, or a method of removing the solvent after adhering to the current collector by spraying.
  • a removal method and a method of removing the solvent after impregnating the current collector in the slurry are preferable.
  • the method for removing the solvent is preferable because it is easy to dry using an oven or a vacuum oven. Examples of the atmosphere include room temperature or high temperature air, an inert gas, and a vacuum state.
  • the negative electrode may be formed before or after forming the positive electrode described later.
  • the negative electrode active material, conductive additive and binder When the negative electrode active material, conductive additive and binder are not dispersed in the solvent, the negative electrode active material, conductive additive and binder can be mixed uniformly, so use a ball mill, planetary mixer, jet mill, or thin film swirl mixer. After preparing the mixture, it is preferable to carry the mixture on the current collector.
  • the method of supporting the mixture on the current collector is not particularly limited, and a method of pressing the mixture after it is packed on the current collector is preferable.
  • the press may be heated.
  • the electrode may be compressed before or after the above-described positive electrode is formed.
  • the positive electrode used in the nonaqueous electrolyte secondary battery of the present invention is composed of at least a positive electrode mixture, or a positive electrode mixture and a current collector.
  • a positive electrode mixture contains a positive electrode active material and a binder at least, and a conductive support material as needed.
  • the positive electrode active material is not particularly limited, but a composite oxide, composite nitride, composite containing an alkali metal and / or an alkaline earth metal having an operating potential of ⁇ 0.2 V to 2.2 V with respect to a standard hydrogen electrode. At least one selected from the group consisting of fluoride, composite sulfide, composite selenide and the like can be used.
  • a binder may be used for the positive electrode active material. What was illustrated by the binder used for the negative electrode mixture mentioned above is applicable similarly.
  • the binder is preferably dissolved or dispersed in a non-aqueous solvent or water from the viewpoint of easy production of the positive electrode.
  • a non-aqueous solvent those exemplified above for the non-aqueous solvent can be similarly applied. You may add a dispersing agent and a thickener to these.
  • the positive electrode of the present invention may contain a conductive additive as necessary. Although it does not specifically limit as a conductive support material, A carbon material or a metal microparticle is preferable. Examples of the carbon material include the same carbon materials that can be contained in the negative electrode. Examples of the metal fine particles include aluminum and aluminum alloys. Further, the fine particles of inorganic material may be plated. These carbon materials and metal fine particles may be used alone or in combination of two or more.
  • the amount of the conductive additive contained in the positive electrode is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 1 part by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the positive electrode active material. . If it is a range, the electroconductivity of a positive electrode will be ensured. Moreover, adhesiveness with a binder is maintained and sufficient adhesiveness with a collector can be obtained. On the other hand, when a larger amount of conductive aid than 30 parts by weight is used, the volume occupied by the conductive aid increases and the energy density tends to decrease.
  • A shows the electric capacity per 1 cm ⁇ 2> of positive electrodes
  • B shows the electric capacity per 1 cm ⁇ 2> of negative electrodes.
  • B / A is less than 0.7
  • the potential of the negative electrode may become the deposition potential of alkali metal and / or alkaline earth metal during overcharge, while B / A is greater than 1.3.
  • Side reactions may occur because there are many negative electrode active materials not involved in the battery reaction.
  • control of the area of a positive electrode and a negative electrode is not specifically limited, For example, in the case of slurry coating, it can carry out by controlling the coating width.
  • the thickness of the separator is preferably 1 to 500 ⁇ m. If it is less than 1 ⁇ m, it tends to break due to insufficient mechanical strength of the separator and cause an internal short circuit. On the other hand, when it is thicker than 500 ⁇ m, the load characteristics of the battery tend to be reduced due to the increase in the internal resistance of the battery and the distance between the positive and negative electrodes. A more preferred thickness is 10 to 50 ⁇ m.
  • the area ratio between the separator and the negative electrode used in the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, but preferably satisfies the following formula (3).
  • dimethyl carbonate, methyl ethyl carbonate, dimethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethylene carbonate, fluoroethylene carbonate, propylene carbonate, butylene carbonate, tetrahydrofuran, ⁇ -butyrolactone, 1,2-dimethoxyethane, Sulfolane, dioxolane, methyl propionate and the like can be used.
  • These solvents may be used alone or as a mixture of two or more. However, in view of the ease of dissolving the solute described below and the high conductivity of lithium ions, a mixture of two or more of these solvents. Is preferably used.
  • a gel electrolyte in which an electrolyte is impregnated in a polymer can also be used.
  • the solute is not particularly limited.
  • lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiBOB (Lithium Bis (Oxalato) Borate), LiN (SO 2 CF 3 ) 2
  • Sodium salts such as NaClO 4 , NaBF 4 and NaPF 6 and magnesium salts such as Mg [AlCl 2 (C 4 H 9 ) (C 2 H 5 )] 2 , C 6 H 5 MgCl and C 6 H 5 MgBr are used as solvents. It is preferable because it is easily dissolved.
  • the concentration of the solute contained in the electrolytic solution is preferably 0.5 mol / L or more and 2.0 mol / L or less. If it is less than 0.5 mol / L, the desired ionic conductivity may not be exhibited. On the other hand, if it is higher than 2.0 mol / L, the solute may not be dissolved any more, and the viscosity increases and the load characteristic decreases. To do.
  • the non-aqueous electrolyte solution may contain a trace amount of a flame retardant, a stabilizer and the like.
  • Li 4 Ti 5 O 12 / Li 1.1 Al 0.1 Mn 1.8 O 4 battery was produced as follows. (Preparation of negative electrode)
  • the negative electrode active material Li 4 Ti 5 O 12 can be found in the literature ("Zero-Strain Insertion Material of Li [Li1 / 3Ti5 / 3] O4 for Rechargeable Lithium Cells" J. Electrochem. Soc., Volume 142, Issue 5, pp. 1431-1435 (1995)).
  • Example 3 A non-aqueous electrolyte secondary battery (Li 4 Ti 5 O 12 / NaNi 0.5 Mn 0.5 O 2 ) was used in the same manner as in Example 5 except that the trapping body (lithium metal pressed onto the stainless steel frame) was not inserted in Example 5. Battery).
  • the constant current I was set to a current value at which discharge was completed in just one hour by discharging the cell having the capacity measured in the above ⁇ Measurement of negative electrode and positive electrode capacities> (referred to as “1 hour Rate current value)). In this way, charge / discharge was repeated a predetermined number of times to measure how much the battery capacity had decreased.
  • Battery capacity refers to a value “TI” obtained by multiplying current I by time T from the start of discharge of the battery to the end of discharge. At the beginning of the cycle, the internal resistance of the cell is small and the battery capacity (TI value) is large, but when the cycle is repeated, the battery capacity decreases and the discharge ends in a short time. Since the value of the current I is constant, the battery capacity may be considered to be proportional to the discharge time T.
  • Example 6 Comparative Examples 1 to 2, and Comparative Example 4
  • the battery capacity retention rate after repeating charge / discharge 250 times using a charge / discharge test apparatus HJ1005SD8; manufactured by Hokuto Denko Co., Ltd.
  • HJ1005SD8 a charge / discharge test apparatus
  • Example 5 since the battery capacity maintenance factor after repeating charging / discharging 100 times was measured, it shows in Table 1.
  • the “battery capacity maintenance rate” is a numerical value (unit%) obtained by dividing “battery capacity after repeated charging / discharging a predetermined number of times” by “battery capacity in the first cycle of charging / discharging cycle test”.
  • the cell was immersed in ethylene carbonate before and after the measurement, and the increased volume difference was measured, and this was taken as the gas generation amount.
  • the measurement results of the gas generation amount are listed together in Table 1 (unit: mL).
  • the nonaqueous electrolyte secondary battery (Li 4 Ti 5 O 12 / Li 1.1 Al 0.1 Mn 1.8 O 4 battery) of Comparative Example 1 has a current value of 60 ° C., upper limit voltage 3.4 V, lower limit voltage 0 V, and 1 hour rate.
  • a 250 cycle test was conducted. The battery capacity gradually decreased with each cycle, and the capacity retention rate at 250 cycles was 89% of the initial stage. The amount of gas generated depending on the charge / discharge cycle was 8.76 mL.
  • a 250 cycle test was conducted at a lower limit voltage of 0 V and a current value of 1 hour rate.
  • the battery capacity gradually decreased with each cycle, and the capacity retention rates at 250 cycles were 94% and 92% of the initial values, respectively.
  • the amounts of gas generated depending on the charge / discharge cycle were 4.30 mL and 5.44 mL, respectively.
  • the non-aqueous electrolyte secondary battery of Example 3 (Li 4 Ti 5 O 12 / Li 1.1 Al 0.1 Mn 1.8 O 4 battery, magnesium metal frame) is also 60 ° C., upper limit voltage 3.4 V, lower limit voltage 0 V, 1 hour rate
  • a 250 cycle test was conducted at a current value of. The capacity gradually decreased with each cycle, and the capacity retention rate at 250 cycles was 91% of the initial stage. The amount of gas generated due to the charge / discharge cycle was 6.22 mL. From this, it can be seen that by arranging the alkaline earth metal in the cell, the charge / discharge cycle characteristics are improved and gas generation is suppressed.
  • the nonaqueous electrolyte secondary battery (TiO 2 (B) / Li 1.1 Al 0.1 Mn 1.8 O4 battery) of Comparative Example 2 is 250 cycles at 60 ° C., upper limit voltage 3.4 V, lower limit voltage 0 V, and current value of 1 hour rate. A test was conducted. The capacity decreased with each cycle, and the capacity retention rate at 250 cycles was 66% of the initial stage. Moreover, the gas generation amount resulting from a charging / discharging cycle was 10.78 mL.
  • the nonaqueous electrolyte secondary battery (Li 4 Ti 5 O 12 / NaNi 0.5 Mn 0.5 O 2 battery) of Comparative Example 3 is 100 cycles at 25 ° C., upper limit voltage 3.4 V, lower limit voltage 0 V, and current value of 1 hour rate. A test was conducted. The capacity retention rate at 100 cycles was 61% of the initial value. Moreover, the gas generation amount resulting from a charging / discharging cycle was 17.78 mL.
  • Example 6 Li 4 Ti 5 O 12 / captured dispersion PEO / Li 1.1 Al 0.1 Mn 1.8 O 4 battery
  • 60 ° C. upper limit voltage 3.4 V
  • lower limit voltage 0 V 1
  • a 250 cycle test was conducted at the current value of the time rate.
  • the capacity retention rate at 250 cycles was 89% of the initial stage, and the amount of gas generated due to the charge / discharge cycle was 2.26 mL. Therefore, the charge / discharge cycle characteristics were improved by dispersing the trap in the solid electrolyte. It can be seen that the generation of gas due to the charge / discharge cycle is suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、特定の電位で作動する金属からなる捕捉体を電池中に存在させることによって、充放電サイクル特性に優れ、かつガス発生が抑制された非水電解質二次電池を提供する。非水電解質二次電池は、正極と、負極と、正極と負極との間に介在する非水電解質層とを有し、正極と負極との間に、正極と負極のいずれにも接触しない状態でかつ非水電解質と接触する状態で、アルカリ金属、アルカリ土類金属などの酸化還元電位が負極作動電位以下の金属、金属間化合物若しくは合金を含む捕捉体が存在している。

Description

捕捉体を含む非水電解質二次電池
 本発明は、非水電解質二次電池(nonaqueous electrolyte secondary battery)に関し、特に非水電解質二次電池の充放電サイクル特性の改善に関するものである。本出願は日本国特許出願:特願2012-009346号に基づく優先権を主張する。
 リチウムイオン二次電池などの二次電池はモバイル機器用電源として現在幅広く使用されている。特にリチウムイオン二次電池は、既存のニッケル-カドミウム蓄電池やニッケル-水素蓄電池と比較して高エネルギー密度であるために、電気自動車や電力貯蔵などの大型電源用途としても期待されている。
 リチウムイオン二次電池は使用に伴って放電していくので、放電後に充電をしなければならない。このようにリチウムイオン二次電池は使用中充放電が繰り返えされる。この充放電サイクルに伴って電池容量が減少していくという性質があり、これを「充放電サイクル特性」の劣化という。特に高温時にその傾向が顕著である。
 そこで、例えば特許文献1では、高温時における充放電サイクル特性の劣化を抑制するため、電池内部で発生したリチウムイオン以外の陽イオンやフッ化物イオンなどの不純物イオンを捕捉する捕捉物質を、セパレータの表面、正極又は負極の表面又は内部に保持させることによって、電池劣化の原因となる陽イオン又はフッ化物イオンが負極活物質粒子へ付着することを抑制するようにしている。その捕捉物質の例として、特許文献1では、比表面積が1000m2/gあるいは細孔容積が0.1cc/g以上の活性炭が挙げられており、アルカリ土類金属の酸化物も挙げられている。
特開2000-77103号公報
 しかし特許文献1記載の構造では、電極材料として、炭素より高い電位(以下電位が「高い、低い」というときは、正電位の方向に大きくなるときを「高い」といい、負電位の方向に大きくなるときを「低い」という)で作動する負極活物質を選んだ場合、前述の捕捉物質を使用しても、陽イオン又はフッ化物イオンなどの不純物イオンが負極へ到達する前に捕捉物質により捕捉される効果が得られにくいという問題がある。
 また特許文献1記載のように比表面積の大きな活性炭を使用すれば、電極活物質、活性炭、溶媒を含む混練物を集電体に塗布する際に、活性炭の溶媒吸収量の増大に伴って混練物の粘度が上昇しやすくなり塗布作業性が低下する。またアルカリ土類金属の酸化物を負極に保持させる場合は、酸化物は絶縁体であるので負極活物質の導電性能を低下させ、電極の単位重量あたりの電池容量が低下するおそれがある。
 前述の事情に鑑み、本発明者は、特定の電位で作動する、金属からなる捕捉体を電池中に存在させることによって、充放電サイクル特性に優れる非水電解質二次電池が得られることを見出し、本発明を完成するに至った。さらに捕捉体の存在により、ガス発生を抑制する効果を見出し、本発明を完成するに至った。
 本発明の非水電解質二次電池は、正極と、負極と、正極と負極との間に介在する非水電解質層とを有するものであり、正極と負極との間に、前記正極、前記負極のいずれにも接触しない状態でかつ非水電解質と接触する状態で、酸化還元電位が負極作動電位以下の金属、金属間化合物若しくは合金を含む捕捉体を介在させたものである。
 この構造によれば、捕捉体の酸化還元電位が負極の作動電位以下であるので、正極から負極へ移動中の不純物イオンは負極へ到達する前に捕捉体に捕捉されやすくなり、充放電サイクルを繰り返しても電池特性の劣化を低減することができる非水電解質二次電池を得ることができる。なお「前記正極、前記負極のいずれにも接触しない状態」を要件としたのは、電池内で捕捉体を介した電極どうしの短絡を防止するとともに、前記補足体と前記正極、もしくは前記補足体と前記負極との間で形成される局部電池の生成を防止するためである。
 捕捉体に含まれる金属として、アルカリ金属、アルカリ金属間化合物若しくは合金を選定することが好ましい。アルカリ金属の酸化還元電位は-3V前後の大きな値であり、前述の不純物イオン捕捉効果が効率よく得られる。
 アルカリ金属は、リチウム又はナトリウムであってもよい。
 捕捉体に含まれる金属として、アルカリ土類金属、アルカリ土類金属間化合物若しくは合金を選定しても良い。アルカリ土類金属の酸化還元電位も-3Vに近い値であり、前述の不純物イオン捕捉効果が得られやすい。
 捕捉体を非水電解質二次電池の中に配置する形態として、非水電解質溶液の中に分散配置させてもよい。また、正極と負極との間にセパレータとなる多孔質膜が介在されている場合は、捕捉体を多孔質膜に存在させても良い。捕捉体を、ゲル状の非水電解質の中に配置してもよい。いずれの場合も、捕捉体によって正極から負極に移動する不純物イオンを効率よく補足することができ充放電サイクル特性を向上させ、かつガスの発生を抑制することができる。
 負極には、標準水素電極基準で-2.7V以上-1.0V以下で作動する負極活物質を用いることが好ましい。このような負極活物質を用いれば、例えば捕捉体としてリチウム金属を用いた場合、リチウム金属の酸化還元電位(-3V)に対し0.3V以上2.0V以下の電位差で作動させることができる。
 負極を構成する負極活物質には、特にリチウムチタン酸化物又はチタン酸化物を用いることが好ましい。
 また正極を構成する正極活物質には、リチウムマンガン酸化物又はリチウムマンガン酸化物のマンガンの一部を異種金属若しくは異種物質で置換した材料を用いることが好ましい。
 本発明における上述の、又はさらに他の利点、特徴及び効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
本発明の実施の形態に係る非水電解質二次電池1の構造を示す断面図である。 図1の非水電解質二次電池1の分解斜視図である。 捕捉体9を複数の細長い箔状に形成し、枠10の内部に格子状にはめ込んだ例を示す斜視図である。 捕捉体9を複数の細長い箔状に形成し、枠10の内部に網状に織り込んだ例を示す平面図である。 充放電サイクル試験を実施する装置の概略回路図である。 実施例1と比較例1の電池容量維持率を、充放電サイクル数に対してプロットしたグラフを示す。
 以下、本発明の実施の形態を説明する。なお、本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図されている。
 <非水電解質二次電池の構造>
 図1は、本発明の実施の形態に係る非水電解質二次電池1の内部構造を示す断面図であり、図2は分解斜視図である。非水電解質二次電池1は、正極用集電体2と、負極用集電体4と、正極と負極との間に介在する非水電解質層3とを有する。正極用集電体2と負極用集電体4とは互いに対向し、平面視して重なるように配置されている。正極用集電体2の、負極用集電体4に対向する面には正極活物質5が形成され、負極用集電体4の、正極用集電体2に対向する面には負極活物質6が形成されている。正極用集電体2と正極活物質5との集合体を「正極」と言い、負極用集電体4と負極活物質6との集合体を「負極」と言う。
 正極活物質5と負極活物質6との間には、多孔質膜状のセパレータ7a,7bが2段構成で介在される。セパレータ7a,7bの内部、セパレータ7aと正極活物質5との間の空隙、及びセパレータ7bと負極活物質6との間の空隙には、リチウムイオンなどのイオン伝導を担う非水電解質溶液が含浸している。
 また、隣り合う電極同士の接触、外部からの水分、酸素などの浸透を防ぐため、正極用集電体2の周辺部と負極用集電体4の周辺部との間を閉じるように、枠状の絶縁封止材8が形成されている。
 この非水電解質二次電池1において、正極用集電体2と負極用集電体4との間に、正極用集電体2と負極用集電体4のいずれにも接触しない状態で、かつ非水電解質と接触する状態で、アルカリ金属、アルカリ金属間化合物若しくは合金、又はアルカリ土類金属、アルカリ土類金属間化合物若しくはアルカリ土類金属の合金を介在させた構造を有する。このアルカリ金属、アルカリ金属間化合物若しくは合金、又はアルカリ土類金属、アルカリ土類金属間化合物若しくはアルカリ土類金属の合金を、本明細書では「捕捉体」9という。アルカリ金属の例として、リチウム、ナトリウム、カリウムが挙げられる。アルカリ土類金属の例としてマグネシウム、カルシウムが挙げられる。
 以下、本発明の非水電解質二次電池1を構成する各要素について詳細に説明する。
 <捕捉体>
 本発明の捕捉体9を非水電解質二次電池1の中に備えるための構造は限定されないが、例えば捕捉体9を複数の粒子として形成し、非水電解質溶液に分散配置しても良い。このように捕捉体9を複数の粒子として形成し、非水電解質溶液に分散配置した場合、1つの粒子は両方の電極に同時に接触してはならない。
 個々の粒子の形状は球、楕円体、円柱体、針状体、直方体、多面体などであってもよい。直方体の場合その寸法比は限定されないので、板片、箔片の形状であっても良い。粒子を非水電解質溶液に分散配置する場合の、粒子の体積密度は、非水電解質溶液が100体積部に対して、好ましくは2体積部以上20体積部以下の範囲であることが好ましい。この範囲よりも増加すると、電解質溶液及びイオンの動きを阻害し、この範囲を下回ると、不純物を捕捉する機能が低下することとなりいずれも好ましくない。
 また捕捉体9は、図2、図3に示すように枠10を用意し、捕捉体9を複数の細長い箔状に形成し、枠10の内部に、同方向に配列するようにして格子状にはめ込み、枠10ごと、複数のセパレータ7a,7bの間に挿入して配置した構造であっても良い。セパレータ7a,7bの段数は2以上であれば限定されない。例えば2段のセパレータ7a,7bの間に面状の捕捉体9を1段挿入しても良く、3段のセパレータの間に面状の捕捉体9を2段それぞれ挿入しても良い。
 捕捉体9の形状は、平面視して格子状、網目状など隙間のある形状とすることが好ましい。しかし隙間のないベタ平面状に形成すれば電荷を運ぶ物質の輸送を妨げることとなり好ましくない。
 図3は格子状に形成した捕捉体9の構造を示す斜視図である。格子の形状は限定されず、縦横2方向に延びた格子であってもよく、図3に示すように一方向にのみ配列した格子であってもよい。
 図4は網目状に形成した捕捉体9の構造を示す斜視図である。この場合の網目の形状も限定されず、図4に示すような、縦の捕捉体9と横の捕捉体9とを直角に編んだ網目であってもよく、直角以外の角度をなすようにして編んだものであってもよい。
 格子又は網目を構成する各棒若しくは長尺体の形状は、断面が円、楕円、長方形、多角形であってもよい。断面が長方形の場合その寸法比は限定されないので、板状若しくは箔状であっても良い。しかし棒若しくは長尺体の厚さtが厚すぎると電池形成時に上下からの圧縮により電池のさらなる圧延が起こるので、この圧延を防ぐために、厚さtは100μm以下とすることが好ましい。
 棒若しくは長尺体を平面視したとき全体に対する空隙の面積比を、捕捉体9の開孔率Sと定義する。
 棒若しくは長尺体を平面視したときの幅をw、配列ピッチをpとすると、捕捉体9の開孔率Sは、図3の縦格子の場合、S=(p-w)/pで計算できる。図4の網目の場合、S=(p-w)2/p2で計算できる。例えば図3の縦格子の場合、幅w=1mm、配列ピッチp=10mmとすれば、開孔率S=0.9となる。
 開孔率Sは、0.7~0.98の範囲になるように選定することが好ましい。これ以上開孔率Sが小さければ、電荷を運ぶ物質の輸送を妨げとなり、これ以上開孔率Sが大きければ、不純物を捕捉する機能が低下することとなり、いずれも好ましくない。
 これらの棒状若しくは長尺状の捕捉体9を、枠10の中に網目状又は格子状に配列する。捕捉体9を枠10に取り付けることによって捕捉体9の取り扱いが便利になり、電池の組立が容易になる。
 枠10の材質は非水電解質溶液と反応しない物質であることが必要であるが、それが満たされていれば材質は任意である。例えばステンレス鋼などの強度のある材料を成形して作製した枠、アルカリ金属、アルカリ金属間化合物若しくは合金を成形して作製した枠、アルカリ土類金属、アルカリ土類金属間化合物若しくはアルカリ土類金属の合金を成形して作製した枠が挙げられる。ステンレス鋼などを用いれば強度が容易に確保でき取り扱いが便利になる。アルカリ金属やアルカリ土類金属を用いて作製すれば、その枠自体に捕捉体9と同様の捕捉作用を持たせることができる。
 枠10の幅は3mm~5mmが好ましい。3mmより小さいと取り扱いが困難となり、5mmよりも大きいと、枠10自体が正極又は負極に覆い被さって、電荷を運ぶ物質の輸送を阻害するおそれがある。またセパレータ7a,7bが大きくなりすぎる可能性がある。なお、枠10の形状は図3、図4のような四角の枠に限定されるものではなく、捕捉体9を支持する何らかの構造を有する部材であれば、その形状は任意である。例えば円環状の枠であってもよい。また「U」「C」の字状など一部が開いた構造を有する部材であっても良い。
 また、捕捉体9を枠10に設ける代わりに、捕捉体9として、アルカリ金属、アルカリ金属間化合物若しくは合金、又はアルカリ土類金属、アルカリ土類金属間化合物若しくは合金を厚さtの板状に形成し、所定の開孔率Sが得られるように、それに円形、楕円形、三角形、四角形、又は多角形などの孔をパンチングで孔あけしてもよい。
 捕捉体9を粒子から成形する場合、成形を容易にするためにバインダーを使用してもよい。バインダーとしては特に限定されないが、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム、ポリイミド及びそれらの誘導体からなる群から選ばれる少なくとも1種を用いることができる。
 また、本発明の捕捉体9は、前述したようにアルカリ金属、アルカリ金属間化合物若しくは合金、又はアルカリ土類金属、アルカリ土類金属間化合物若しくは合金の「単体」であっても良いが、単体以外に次のような構造であっても良い。すなわち、粒子、格子、網、パンチング前の板などを、異種金属若しくは異種物質の基材で構成し、この異種金属若しくは異種物質基材の表面に、アルカリ金属、アルカリ金属間化合物若しくは合金、又はアルカリ土類金属、アルカリ土類金属間化合物若しくは合金を塗布、めっき、蒸着、スパッタリングなどの手法により薄膜状に形成したものであってもよい。めっきの方法は電解めっき、無電解めっきなど限定されない。ここで異種金属若しくは異種物質とは、アルカリ金属、アルカリ金属間化合物若しくは合金、又はアルカリ土類金属、アルカリ土類金属間化合物若しくは合金、以外の金属又は物質を言う。
 なお、本発明の実施の形態に係る非水電解質二次電池1の構造の変更例として、正極・負極間が直接接触していなければ、必ずしも独立したセパレータ7a,7bを使用する必要はない。すなわちセパレータ7a,7bのない構造も考えられる。この場合、非水電解質として、正極、負極の接触を防止するためゲル状のものを使用すればよい。このようにゲル状の非水電解質を使用する場合は、本発明の捕捉体9を、複数の粒子として形成する場合は、ゲル状の非水電解質の内部に分散配置されることになる。また面状の捕捉体9を挿入配置する場合は、ゲル状の非水電解質の内部に、正極、負極のいずれにも接触しないようにして挿入配置することになる。
 <負極>
 本発明の非水電解質二次電池に用いられる負極は、少なくとも負極活物質又は負極活物質と集電体とで構成される。負極活物質は、必要に応じて導電助材及びバインダーを含んでよい。
 負極活物質として標準水素電極基準で-2.7V以上-1.0V以下で作動する材料を使用することが好ましい。このような材料は特に限定されないが、例えば、酸化モリブデン、酸化ニオブ、酸化マンガン、リチウムマンガン酸化物、酸化チタン、リチウムチタン酸化物などの遷移金属含有酸化物、窒化ニッケル、窒化マンガン、窒化鉄などの遷移金属窒化物、硫化ニッケル、硫化マンガンなどの遷移金属硫化物、リン化ニッケル、リン化マンガン、リン化鉄などのリン化物及びリン単体、フッ化鉄、フッ化ニッケルなどフッ化物、アルカリ金属及び/又はアルカリ土類金属と合金を作る金属からなる群から選ばれる少なくとも1種を用いることができる。
 本発明の負極を形成するにはバインダーを使用してよい。バインダーは、特に限定されないが、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム、ポリイミド及びそれらの誘導体からなる群から選ばれる少なくとも1種を用いることができる。バインダーは負極の作製しやすさから、非水溶媒又は水に、溶解又は分散されていることが好ましい。非水溶媒は、特に限定されないが、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、酢酸エチル、及びテトラヒドロフランなどを挙げることができる。これらに分散剤、増粘剤を加えてもよい。
 本発明において、負極に含まれるバインダーの量は、負極活物質100重量部に対して、好ましくは1重量部以上30重量部以下、より好ましくは1重量部以上15重量部以下である。この範囲であれば、負極活物質と導電助材との接着性が維持され、集電体との接着性を十分に得ることができる。
 本発明の負極は必要に応じて導電助材を含有してもよい。導電助材としては、特に限定されないが、炭素材料及び/又は金属微粒子が好ましい。炭素材料として、例えば、天然黒鉛、人造黒鉛、気相成長炭素繊維、カーボンナノチューブ、アセチレンブラック、ケッチェンブラック、及びファーネスブラックなどが挙げられる。金属微粒子として、例えば、銅、アルミニウム、ニッケル及びこれら少なくとも1種を含む合金が挙げられる。また、無機材料の微粒子にめっきを施したものでもよい。これら炭素材料及び金属微粒子は1種類でもよいし、2種類以上用いてもよい。
 本発明において、負極に含まれる導電助材の量は、負極活物質を100重量部に対して、好ましくは1重量部以上30重量部以下、より好ましくは1重量部以上15重量部以下である。範囲であれば、負極の導電性が確保される。
 本発明の非水電解質二次電池の負極に用いられる集電体の材料は、例えば、銅、アルミニウム、ニッケル及びこれら少なくとも1種を含む合金又は導電性を有する高分子が挙げられる。形状としては、例えば、箔状、メッシュ状、パンチング状、エキスパンド状、又は発泡構造体が挙げられる。
 ここで、メッシュ状とは、金属又は導電性高分子の繊維を織布あるいは不職布にしたものである。繊維の太さは50μm以上2000μm以下であることが好ましい。50μm未満の場合は集電体の強度が弱いために、活物質混合物を集電体に担持させた際、集電体が破壊されやすい傾向がある。一方、2000μmより太い繊維を用いた場合、後述の空隙度とするには目開きが大きくなりすぎ、メッシュによる活物質混合物の保持が困難になる傾向がある。
 パンチング状とは、板に円形、四角形、又は六角形などの穴を開けたものであり、金属からなるものがパンチングメタルである。空隙度は、開孔率に対応し、開孔率は穴径と骨の比率、穴の形状、及び穴の配列によって決定される。穴の形状は特に限定されないが、開孔率上昇の観点から、丸穴60°千鳥型、角穴千鳥・並列型が好ましい。
 エキスパンド状とは、板に千鳥状の切れ目を入れ、引き伸ばして網目状にしたもので、金属からなるものがエキスパンドメタルである。空隙度は開孔率に対応し、開孔率は穴径と骨の比率、穴の形状、及び穴の配列によって決定される。
 発泡構造体とは、骨格がスポンジのように3次元の網目状になっているもので、その孔は連続している。構造は孔径及び気孔率で決定される。連続孔の形状や孔径は特に限定されないが、高比表面積を有する構造が好ましい。
 本発明の集電体に用いられる金属は、負極作動電圧間で安定であればよく、作動電位が-2.3V以下では、銅及びその合金が好ましく、-2.3V以上ではアルミニウム及びその合金が好ましい。
 本発明の負極は、例えば、負極活物質、導電助材、及びバインダーからなる負極混合物を集電体に担持することによって作製されるが、作製方法の容易さから、負極活物質、導電助材、バインダー及び溶媒でスラリーを作製し、得られたスラリーを集電体の空孔部及びその外面に充填及び塗布した後に、溶媒を除去することによって負極を作製する方法が好ましい。また、負極活物質、導電助材及びバインダーの混合物を溶媒に分散させず、そのまま集電体に担持させても良い。
 スラリーを作製する場合は、特に限定されないが、負極活物質、導電助材、バインダー、及び溶媒を均一に混合できることから、ボールミル、プラネタリミキサ、ジェットミル、薄膜旋回型ミキサーを用いることが好ましい。スラリーの作製は、特に限定されないが、負極活物質、導電助材、及びバインダーを混合した後に溶媒を加えて作製してもよいし、負極活物質、導電助材、バインダー、及び溶媒を一緒に混合して作製してもよい。
 スラリーの固形分濃度は、30wt%以上80wt%以下であることが好ましい。30wt%未満の場合、スラリーの粘度が低すぎる傾向があり、一方、80wt%より高い場合は、スラリーの粘度が高すぎる傾向があるため、後述の電極の形成が困難となる場合がある。
 スラリーに用いられる溶媒は、非水溶媒、あるいは水であることが好ましい。非水溶媒は、特に限定されないが、例えば、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、酢酸エチル、及びテトラヒドロフランなどを挙げることができる。また、これらに分散剤、増粘剤を加えてもよい。
 集電体上への負極混合物の担持方法は、特に限定されないが、例えばスラリーをドクターブレード、ダイコータ、コンマコータ等により塗布した後に溶媒を除去する方法、スプレーにより集電体に付着させた後に溶媒を除去する方法、スラリーに集電体を含浸させた後に溶媒を除去する方法が好ましい。溶媒を除去する方法は、オーブンや真空オーブンを用いた乾燥が簡単であり好ましい。雰囲気としては室温、あるいは高温とした空気、不活性ガス、真空状態などが挙げられる。負極の形成は、後述の正極を形成する前でも、後でもよい。負極活物質、導電助材及びバインダーの混合物を溶媒に分散させない場合は、負極活物質、導電助材、及びバインダーを均一に混合できることから、ボールミル、プラネタリミキサ、ジェットミル、薄膜旋回型ミキサーを用いて混合物を作製したのちに、集電体に担持することが好ましい。混合物を集電体に担持する方法としては、特に限定されず、混合物を集電体につめた後にプレスする方法が好ましい。プレスは、加熱させても良い。また、負極作製後、ロールプレス機などを用いて負極を圧縮させてもよい。電極の圧縮は、前述の正極を形成する前でも、後でもよい。
 <正極>
 本発明の非水電解質二次電池に用いられる正極は、少なくとも正極混合物、又は正極混合物と集電体とで構成される。正極混合物は、少なくとも、正極活物質及びバインダーを含み、必要に応じて導電助材を含む。
 正極活物質は、特に限定されないが、作動電位が標準水素電極基準で-0.2V以上2.2V以下の、アルカリ金属及び/又はアルカリ土類金属を含有する複合酸化物、複合窒化物、複合フッ化物、複合硫化物、複合セレン化物等からなる群から選ばれる少なくとも1種を用いることができる。
 正極活物質にはバインダーを使用してよい。前述した負極混合物に使用されるバインダーで例示されたものを同様に適用できる。バインダーは正極の作製しやすさから、非水溶媒又は水に、溶解又は分散されていることが好ましい。非水溶媒は、前述した非水溶媒で例示されたものを同様に適用できる。これらに分散剤、増粘剤を加えてもよい。
 本発明の正極には必要に応じて導電助材を含有してもよい。導電助材としては、特に限定されないが、炭素材料もしくは金属微粒子が好ましい。炭素材料としては、前述の負極に含有されうる炭素材料と同一のものが例示される。金属微粒子として、例えば、アルミニウム及びアルミニウム合金が挙げられる。また、無機材料の微粒子にめっきを施したものでもよい。これら炭素材料及び金属微粒子は1種類でもよいし、2種類以上用いてもよい。
 本発明において、正極に含まれる導電助材の量は、正極活物質の100重量部に対して、好ましくは1重量部以上30重量部以下、より好ましくは1重量部以上15重量部以下である。範囲であれば、正極の導電性が確保される。また、バインダーとの接着性が維持され、集電体との接着性が十分に得ることができる。一方、30重量部よりも多量の導電助材を使用した場合、導電助材の占める体積が増大し、エネルギー密度が低下する傾向がある。
 本発明の非水電解質二次電池の正極に用いられる集電体は前述した負極活物質に使用される集電体で例示されたもの及び箔状のものを同様に適用できる。
 本発明の正極は、例えば、正極活物質、導電助材、及びバインダーの正極活物質を集電体に担持することによって作製されるが、作製方法の容易さから、正極活物質、導電助材、バインダー及び溶媒でスラリーを作製し、得られたスラリーを集電体の空孔部及びその外面に充填及び塗布した後に、溶媒を除去することによって正極を作製する方法が好ましい。また、正極活物質、導電助材及びバインダーの混合物を溶媒に分散させず、そのまま集電体に担持させても良い。
 前述した負極の作製における、スラリーの作製法、スラリーの固形分濃度、スラリーに用いる溶媒、集電体上への活物質層の担持方法、電極の圧縮は、正極の作製においても同様に適用できる。
 <負極と正極の容量比及び面積比>
 本発明の非水電解質二次電池における正極の電気容量と負極の電気容量との比は、下記式(1)を満たすことが好ましい。
 0.7≦B/A≦1.3         (1)
但し、式(1)中、Aは正極1cm2あたりの電気容量を示し、Bは負極1cm2あたりの電気容量を示す。
 B/Aが0.7未満である場合は、過充電時に負極の電位がアルカリ金属及び/又はアルカリ土類金属の析出電位になる場合があり、一方、B/Aが1.3より大きい場合は電池反応に関与しない負極活物質多いために副反応が起こる場合がある。
 本発明の非水電解質二次電池における正極と負極との面積比は、特に限定されないが、下記式(2)を満たすことが好ましい。
 1≦D/C≦1.2          (2)
(但し、Cは正極の面積、Dは負極の面積を示す。)
 D/Cが1未満である場合は、例えば先述のB/A=1の場合、負極の容量が正極よりも小さくなるため、過充電時に負極の電位がアルカリ金属及び/又はアルカリ土類金属の析出電位になる恐れがある。一方、D/Cが1.2より大きい場合は、正極と接していない部分の負極が大きいため、電池反応に関与しない負極活物質が副反応を起こす場合がある。正極及び負極の面積の制御は特に限定されないが、例えば、スラリー塗工の際、塗工幅を制御することによって行うことができる。
 <セパレータ>
 本発明の非水電解質二次電池に用いるセパレータとしては、多孔質材料又は不織布等が挙げられる。セパレータの材質としては、電解液を構成する有機溶媒に対して溶解しないものが好ましく、具体的にはポリエチレンやポリプロピレンのようなポリオレフィン系ポリマー、ポリエチレンテレフタレートのようなポリエステル系ポリマー、セルロースや変性セルロース、ガラスのような無機材料が挙げられる。
 セパレータの厚みは1~500μmが好ましい。1μm未満であるとセパレータの機械的強度の不足により破断し、内部短絡する傾向がある。一方、500μmより厚い場合、電池の内部抵抗と、正極負極の電極間距離が増大することにより、電池の負荷特性が低下する傾向がある。より好ましい厚みは、10~50μmである。
 本発明の非水電解質二次電池に用いるセパレータと負極との面積比は特に限定されないが、下記式(3)を満たすことが好ましい。
 1≦F/E≦1.5         (3)
(但し、Eは負極の面積、Fはセパレータの面積を示す。)
 F/Eが1未満である場合は、正極と負極とが接触し、1.5より大きい場合は外装に要する体積が大きくなり、電池のエネルギー密度が低下する場合がある。
 <非水電解質溶液>
 本発明の非水電解質二次電池に用いる非水電解質溶液は、特に限定されないが、非水溶媒に溶質を溶解させた電解液、非水溶媒に溶質を溶解させた電解液を高分子に含浸させたゲル電解質などを用いることができる。
 非水溶媒としては、環状の非プロトン性溶媒及び/又は鎖状の非プロトン性溶媒を含むことが好ましい。環状の非プロトン性溶媒としては、環状カーボネート、環状エステル、環状スルホン及び環状エーテルなどが例示される。鎖状の非プロトン性溶媒としては、鎖状カーボネート、鎖状カルボン酸エステル及び鎖状エーテルなどが例示される。また、これらに加えアセトニトリルなどの一般的に非水電解質溶液の溶媒として用いられる溶媒を用いても良い。より具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジメチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート、エチレンカーボネート、フルオロエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、テトラヒドロフラン、γ-ブチロラクトン、1,2-ジメトキシエタン、スルホラン、ジオキソラン、プロピオン酸メチルなどを用いることができる。これら溶媒は1種類で用いてもよいし、2種類以上混合しても用いてもよいが、後述の溶質を溶解させやすさ、リチウムイオンの伝導性の高さから、2種類以上混合した溶媒を用いることが好ましい。また、高分子に電解液をしみこませたゲル状電解質も用いることができる。
 溶質は、特に限定されないが、例えば、LiClO4、LiBF4、LiPF6、LiAsF6、LiCF3SO3、LiBOB(Lithium Bis (Oxalato) Borate)、LiN(SO2CF32などのリチウム塩、NaClO4、NaBF4、NaPF6などのナトリウム塩、Mg[AlCl2(C49)(C25)]2、C65MgCl、C65MgBrなどのマグネシウム塩は溶媒に溶解しやすいことから好ましい。電解液に含まれる溶質の濃度は、0.5mol/L以上2.0mol/L以下であることが好ましい。0.5mol/L未満では所望のイオン伝導性が発現しない場合があり、一方、2.0mol/Lより高いと、溶質がそれ以上溶解しない場合があり、また、粘度が増大し負荷特性が低下する。非水電解質溶液には、難燃剤、安定化剤などが微量含まれてもよい。
 非水電解質溶液の量は、特に限定されないが、電池容量1Ahあたり、0.1mL以上であることが好ましい。0.1mL未満の場合、電極反応に伴うリチウムイオンの伝導が追いつかず、所望の電池性能が発現しない場合がある。非水電解質溶液は、あらかじめ正極、負極及びセパレータに含ませてもよいし、正極側と負極側との間にセパレータを配置したものを倦回、あるいは積層した後に添加してもよい。
 なお、前述したように、非水電解質として、正極、負極の接触を防止することができれば、非水電解質溶液に限定されるものではない。ゲル状の非水電解質を使用してもよい。ゲル状のものを使用する場合は、電解質が正極及び負極に含浸していてもよく、正極・負極間のみにある状態でもよい。
 <その他の構造>
 本発明の非水電解質二次電池の正極及び負極は、電池の接続構成に応じて、板状の集電体の両面に同じ電極を形成させた形態であってもよく、集電体の片面に正極、一方の面に負極を形成させた形態、すなわち、バイポーラ電極であってもよい。バイポーラ型とする場合、集電体を介した正極と負極の液絡を防止するため、導電材料及び/又は絶縁材料が正極と負極間に配置されている。また、バイポーラ電極である場合は、隣り合うバイポーラ電極の正極側と負極側との間にセパレータを配置し、各正極側と負極側とが対向した層内は、液絡を防止するため正極及び負極の周辺部に絶縁封止材が配置されている。
 本発明の非水電解質二次電池は、積層体を倦回、あるいは複数積層した後にラミネートフィルムで外装してもよいし、角形、楕円形、円筒形、コイン形、ボタン形、シート形の金属缶で外装してもよい。外装には発生したガス等を放出するための機構が備わっていてもよい。また、劣化した当該非水電解質二次電池の機能を回復させるための捕捉体9を電池外部から注入する機構が備わっていてもよい。積層体の積層数は、所望の電池容量を発現するまで積層させることができる。
 本発明の非水電解質二次電池は、複数接続することによって組電池とすることができる。本発明の組電池は、所望の大きさ、容量、電圧によって適宜直列、並列に接続することによって作製することができる。また、各電池の充電状態の確認、安全性向上のため、組電池に制御回路が付属されていることが好ましい。
 <実施例1>
 Li4Ti512/Li1.1Al0.1Mn1.84電池を次のとおり作製した。
 (負極の作製)
 負極活物質のLi4Ti512を、文献("Zero-Strain Insertion Material of Li [Li1/3Ti5/3] O4 for Rechargeable Lithium Cells" J. Electrochem. Soc., Volume 142, Issue 5, pp. 1431-1435 (1995))に記載されている方法で作製した。
 すなわち、まず二酸化チタンと水酸化リチウムを、チタンとリチウムとのモル比を5:4となるように混合し、次にこの混合物を窒素雰囲気下800℃で12時間加熱することによって負極活物質を作製した。
 この負極活物質を100重量部、導電助材(アセチレンブラック)を3.2重量部、及びPVdFバインダー(KF7305、クレハ化学社製)(固形分濃度5wt%、NMP溶液)を固形分3.2重量部、混合してスラリーを作製した。このスラリーをアルミニウムエキスパンドメタル(LW×SW=8×4)に塗工した後に、150℃で真空乾燥することによって負極を作製した。 前記LWは"long way of mesh"を、SWは"short way of mesh"を表す。
 (正極の作製)
 正極活物質のLi1.1Al0.1Mn1.84を、文献("Lithium Aluminum Manganese Oxide Having Spinel-Framework Structure for Long-Life Lithium-Ion Batteries" Electrochemical and Solid-State Letters Volume9, Issue12, Pages A557 (2006))に記載されている方法で作製した。
 すなわち、二酸化マンガン、炭酸リチウム、水酸化アルミニウム、及びホウ酸の水分散液を調製し、スプレードライ法で混合粉末を作製した。このとき、二酸化マンガン、炭酸リチウム及び水酸化アルミニウムの量は、リチウム、アルミニウム及びマンガンのモル比が1.1:0.1:1.8となるように調製した。次に、この混合粉末を空気雰囲気下900℃で12時間加熱した後、再度650℃で24時間加熱した。最後に、この粉末を95℃の水で洗浄後、乾燥させることによって正極活物質を作製した。
 この正極活物質を100重量部、導電助材(アセチレンブラック)を3.2重量部、及びポリフッ化ビニリデン(PVdF)バインダー(KF7305、クレハ化学社製)(固形分濃度5wt%、NMP溶液)を固形分3.2重量部混合してスラリーを作製した。このスラリーをアルミニウムエキスパンドメタル(LW×SW=8×4)に塗工した後に、150℃で真空乾燥することによって正極を作製した。
 (負極及び正極の容量測定)
 作製された負極又は正極を作用極とした。その対極として、リチウム金属の板状のものを作用極と同じ面積に打ち抜いた。作用極/セパレータ(Celgard#2500, Celgard社製)/対極の順にラミネートセル内に積層し、エチレンカーボネート/ジメチルカーボネート=3/7体積%の非水溶媒中に、LiPF4を1mol/L溶解させたものを0.5mL入れ、半電池を作製した。この半電池を25°Cで一日放置した後、充放電試験装置(HJ1005SD8;北斗電工社製)に接続した。この半電池を25°C、1mAで定電流放電を5回繰り返し、5回目の結果を負極又は正極の容量とした。
 (非水電解質二次電池の製造)
 最初に、得られた正極/セパレータ/得られた負極の順に積層した。セパレータには、セルロース不織布(25μm、55cm2)を2枚用いた。2枚のセルロース不織布の間に捕捉体として、セパレータの外縁と同型のステンレス鋼枠(枠幅5mm、厚み0.3mm)にリチウム金属を圧着させたものを配置した。リチウム金属の形状は、幅1mmの細長いリチウム金属の薄板を、ステンレス鋼枠に5mmのピッチで縦格子状に配列したものである。次に、電池の両端の正極及び負極にアルミニウムタブを振動溶着させた後に、袋状のアルミラミネートシートに入れた。乾燥雰囲気下で非水電解液(エチレンカーボネート/ジメチルカーボネート=3/7vol%、LiPF6 1mol/L)を4mL注入した後に、減圧しながら封止することによって非水電解質二次電池を作製した。このように作製した非水電解質二次電池を「セル」という(以下の実施例、比較例において同じ)。
 <実施例2>
 実施例1においてステンレス鋼枠の代わりに、リチウム金属とポリフッ化ビニリデン(PVdF)とを混合したのちに成形し、ステンレス鋼枠と同型にしたものを使用した以外は、実施例1と同様に非水電解質二次電池(Li4Ti512/Li1.1Al0.1Mn1.84電池)を作製した。
 <実施例3>
 実施例1においてステンレス鋼枠の代わりに、マグネシウム金属枠を使用し、捕捉体の材質をマグネシウム金属にした以外は、実施例1と同様に非水電解質二次電池(Li4Ti512/Li1.1Al0.1Mn1.84電池)を作製した。
 <実施例4>
 実施例1において負極活物質としてTiO2(B)を使用した以外は、実施例1と同様に非水電解質二次電池(TiO2(B)/Li1.1Al0.1Mn1.84電池)を作製した。負極材料のTiO2(B)は、文献(Materials  Research  Bulletin, Vol.15, pp.1129 - 1133(1980))に記載されている方法で作製した。
 <実施例5>
 実施例1において正極活物質としてNaNi0.5Mn0.52、ステンレス鋼枠に圧着する金属としてナトリウム金属、ナトリウムイオン含有電解液(PC、NaPF6、1.0mol/L)を使用した以外は、実施例1と同様に非水電解質二次電池(Li4Ti512/NaNi0.5Mn0.52電池)を作製した。正極材料のNaNi0.5Mn0.52は、文献(ECS  Transactions, volume 16, issue 42, pp. 43 - 55(2009))に記載されている方法で作製した。
 <実施例6>
 実施例1において得られた正極及び負極に、ポリエチレンオキサイド(PEO)の固体電解質とLiPF6のプロピレンカーボネート溶液からなる電解液の混合物を浸漬し、熱プレスにより硬化し、正極板及び負極板とした。前記電解液の混合物に捕捉体としてリチウム金属微粒子(直径900nm)を分散させ、熱硬化により電解質層とした。これらを正極板/電解質層/負極板の順に貼り合せることにより電極群を構成し、この電極群を実施例1と同様にアルミラミネートシートに封入することにより非水電解質二次電池(Li4Ti512/捕捉体分散PEO/Li1.1Al0.1Mn1.84電池)を作製した。
 <比較例1>
 実施例1において捕捉体(ステンレス鋼枠に圧着されたリチウム金属)を挿入しないこと以外は、実施例1と同様に非水電解質二次電池(Li4Ti512/Li1.1Al0.1Mn1.84電池)を作製した。
 <比較例2>
 実施例4において捕捉体(ステンレス鋼枠に圧着されたリチウム金属)を挿入しないこと以外は、実施例4と同様に非水電解質二次電池(TiO2(B)/Li1.1Al0.1Mn1.84電池)を作製した。
 <比較例3>
 実施例5において捕捉体(ステンレス鋼枠に圧着されたリチウム金属)を挿入しないこと以外は実施例5と同様にして非水電解質二次電池(Li4Ti512/NaNi0.5Mn0.52電池)を作製した。
 <比較例4>
 実施例6においてリチウム金属微粒子を分散させないこと以外は、実施例6と同様に非水電解質二次電池(Li4Ti512/PEO/Li1.1Al0.1Mn1.84電池)を得た。
 (充放電サイクル試験)
 図5に概略を示すように、定電流駆動源21と、セルの端子電圧Vを検出する電圧検出部23と、リレースイッチ22を駆動する充放電制御部24とを設け、電圧検出部23で検出した端子電圧Vに応じて、充放電制御部24によってリレースイッチ22を駆動して、セルに流す一定の電流Iの方向を切り替えるようにした。すなわち端子電圧Vが上限電圧V1を下回るとセルを充電する方向に電流を流し、下限電圧V2を超えると電流の方向を切り換えて放電させる。ただしV2>V1とする。前記一定の電流Iは、前述した<負極及び正極の容量測定>で測定した容量を有するセルを定電流放電して、ちょうど1時間で放電終了となる電流値に設定した(これを「1時間率の電流値」という)。このようにして充放電を所定回数繰り返して、電池容量がどの程度減少しているかを測定した。「電池容量」とは、電池の放電を開始してから放電が終了するまでの時間Tに電流Iをかけた値"TI"を言う。サイクル初期はセルの内部抵抗が小さく電池容量(TI値)は大きいが、サイクルを繰り返すと電池容量が小さくなっていき短時間で放電を終えてしまう。電流Iの値は一定であるから、電池容量は放電時間Tに比例すると考えてよい。
Figure JPOXMLDOC01-appb-T000001
 実施例1~4、実施例6、比較例1~2、比較例4について、充放電試験装置(HJ1005SD8;北斗電工社製)を用いて充放電を250回繰り返した後の電池容量維持率をそれぞれ測定したので表1に示す。また実施例5、比較例3について、充放電を100回繰り返した後の電池容量維持率をそれぞれ測定したので表1に示す。ここで「電池容量維持率」とは、「所定回充放電を繰り返した後の電池容量」を「充放電サイクル試験1サイクル目の電池容量」で割った数値(単位%)である。また電池容量維持率の測定に加えて、当該測定の前後において、セルをエチレンカーボネート中に浸漬し、増加した体積の差を測定し、これをガス発生量とした。ガス発生量の測定結果を、表1に併せて掲載した(単位mL)。
 比較例1の非水電解質二次電池(Li4Ti512/Li1.1Al0.1Mn1.84電池)は、60℃、上限電圧3.4V、下限電圧0V、1時間率の電流値で250サイクル試験を行った。サイクルごとになだらかに電池容量が減少し、250サイクル時の容量維持率は初期の89%であった。充放電サイクルに依るガス発生量は8.76mLであった。
 また、実施例1及び実施例2の非水電解質二次電池(Li4Ti512/Li1.1Al0.1Mn1.84電池、捕捉体=リチウム金属)も、60℃、上限電圧3.4V、下限電圧0V、1時間率の電流値で250サイクル試験を行った。サイクルごとになだらかに電池容量が減少し、250サイクル時の容量維持率は、それぞれ初期の94%、92%であった。充放電サイクルに依るガス発生量はそれぞれ4.30mL、5.44mLであった。
 図6に、実施例1と比較例1の各電池容量維持率を、充放電サイクル数に対してプロットしたグラフを示す。充放電サイクル数が増えていくほど、電池容量維持率が減少しているが、実施例1のほうが比較例1と比べて電池容量維持率の低下率が低いことが分かる。このことから、アルカリ金属の捕捉体をセル内に配置することにより、充放電サイクル特性が向上していることが分かる。また、表1に示す結果により、充放電サイクルに依るガス発生を抑制していることが分かる。
 実施例3の非水電解質二次電池(Li4Ti512/Li1.1Al0.1Mn1.84電池、マグネシウム金属枠)も、60℃、上限電圧3.4V、下限電圧0V、1時間率の電流値で250サイクル試験を行った。サイクルごとになだらかに容量が減少し、250サイクル時の容量維持率は、初期の91%であった。また充放電サイクルに起因するガス発生量は6.22mLであった。このことから、アルカリ土類金属をセル内に配置することにより、充放電サイクル特性を向上させ、かつガス発生を抑制していることが分かる。
 比較例2の非水電解質二次電池(TiO2(B)/Li1.1Al0.1Mn1.8O4電池)は、60℃、上限電圧3.4V、下限電圧0V、1時間率の電流値で250サイクル試験を行った。サイクルごとに容量が減少し、250サイクル時の容量維持率は初期の66%であった。また、充放電サイクルに起因するガス発生量は10.78mLであった。
 また、実施例4の非水電解質二次電池(TiO2(B)/Li1.1Al0.1Mn1.84電池、捕捉体=リチウム金属)も、60℃、上限電圧3.4V、下限電圧0V、1時間率の電流値で250サイクル試験を行った。サイクルごとに容量が減少し、250サイクル時の容量維持率は初期の75%であった。また、充放電サイクルに起因するガス発生量は5.60mLであった。このことから、アルカリ金属をセル内に配置することにより、充放電サイクル特性を向上させ、かつガス発生を抑制していることが分かる。
 比較例3の非水電解質二次電池(Li4Ti512/NaNi0.5Mn0.52電池)は、25℃、上限電圧3.4V、下限電圧0V、1時間率の電流値で100サイクル試験を行った。100サイクル時の容量維持率は初期の61%であった。また、充放電サイクルに起因するガス発生量は17.78mLであった。
 実施例5の非水電解質二次電池(Li4Ti512/NaNi0.5Mn0.52電池、捕捉体=ナトリウム金属)も、25℃、上限電圧3.4V、下限電圧0V、1時間率の電流値で100サイクル試験を行った。100サイクル時の容量維持率は初期の71%、充放電サイクルに起因するガス発生量は10.32mLであったことから、アルカリ金属をセル内に配置することにより、充放電サイクル特性を向上させ、かつガス発生を抑制していることが分かる。
 比較例4の非水電解質二次電池(Li4Ti512/PEO/Li1.1Al0.1Mn1.84電池)について、60℃、上限電圧3.4V、下限電圧0V、1時間率の電流値で250サイクル試験を行った。250サイクル時の容量維持率は初期の85%であった。また、充放電サイクルに起因するガス発生量は4.12mLであった。
 実施例6の非水電解質二次電池(Li4Ti512/捕捉体分散PEO/Li1.1Al0.1Mn1.84電池)についても、60℃、上限電圧3.4V、下限電圧0V、1時間率の電流値で250サイクル試験を行った。250サイクル時の容量維持率は初期の89%であり、充放電サイクルに起因するガス発生量は2.26mLであったことから、固体電解質中に捕捉体を分散させることにより充放電サイクル特性を向上させ、かつ充放電サイクルに起因するガス発生を抑制していることがわかる。
1 非水電解質二次電池
2 正極用集電体
4 負極用集電体
3 非水電解質層
5 正極活物質
6 負極活物質
7,7a,7b セパレータ
8 絶縁封止材
9 捕捉体
10 枠

Claims (10)

  1.  正極と、負極と、前記正極と前記負極との間に介在する非水電解質層とを有し、
     前記正極と前記負極との間に、前記正極、前記負極のいずれにも接触しない状態でかつ前記非水電解質と接触する状態で、酸化還元電位が負極作動電位以下の金属、金属間化合物若しくは合金を含む捕捉体を介在させた、非水電解質二次電池。
  2.  前記捕捉体に含まれる金属は、アルカリ金属、アルカリ金属間化合物若しくは合金である、請求項1に記載の非水電解質二次電池。
  3.  前記アルカリ金属は、リチウム又はナトリウムである、請求項2に記載の非水電解質二次電池。
  4.  前記捕捉体に含まれる金属は、アルカリ土類金属、アルカリ土類金属間化合物若しくは合金である、請求項1に記載の非水電解質二次電池。
  5.  前記捕捉体は、前記非水電解質溶液の中に分散配置されている、請求項1~請求項4の何れか1項に記載の非水電解質二次電池。
  6.  前記正極と前記負極との間にセパレータとなる多孔質膜が介在され、前記捕捉体は、前記多孔質膜に存在する、請求項1~請求項4の何れか1項に記載の非水電解質二次電池。
  7.  前記捕捉体は、ゲル状の非水電解質の中に配置されている、請求項1~請求項4の何れか1項に記載の非水電解質二次電池。
  8.  前記負極に、標準水素電極基準で-2.7V以上-1.0V以下で作動する負極活物質を用いた、請求項1~請求項4の何れか1項に記載の非水電解質二次電池。
  9.  前記負極を構成する負極活物質に、リチウムチタン酸化物又はチタン酸化物を用いた、請求項1~請求項4の何れか1項に記載の非水電解質二次電池。
  10.  前記正極を構成する正極活物質に、リチウムマンガン酸化物又はリチウムマンガン酸化物のマンガンの一部を異種金属若しくは異種物質で置換した材料を用いた、請求項1~請求項4の何れか1項に記載の非水電解質二次電池。
PCT/JP2013/050818 2012-01-19 2013-01-17 捕捉体を含む非水電解質二次電池 WO2013108841A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-009346 2012-01-19
JP2012009346 2012-01-19

Publications (1)

Publication Number Publication Date
WO2013108841A1 true WO2013108841A1 (ja) 2013-07-25

Family

ID=48799264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050818 WO2013108841A1 (ja) 2012-01-19 2013-01-17 捕捉体を含む非水電解質二次電池

Country Status (3)

Country Link
JP (1) JPWO2013108841A1 (ja)
TW (1) TW201336145A (ja)
WO (1) WO2013108841A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017204452A (ja) * 2016-05-13 2017-11-16 株式会社東芝 非水電解質電池、組電池及びバッテリーシステム
CN108172895A (zh) * 2016-12-07 2018-06-15 松下知识产权经营株式会社 二次电池
US10847774B2 (en) 2016-09-21 2020-11-24 Kabushiki Kaisha Toshiba Assembled battery, battery pack and vehicle
CN112635926A (zh) * 2019-10-07 2021-04-09 株式会社杰士汤浅国际 铅蓄电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121032A (ja) * 1997-10-13 1999-04-30 Mitsubishi Chemical Corp 非水系電解液二次電池
WO2001063687A1 (fr) * 2000-02-24 2001-08-30 Japan Storage Battery Co., Ltd. Element secondaire a electrolyte non-aqueux
JP2002093463A (ja) * 2000-09-11 2002-03-29 Japan Storage Battery Co Ltd 非水電解質電池
JP2005317551A (ja) * 2004-04-29 2005-11-10 Samsung Sdi Co Ltd リチウム二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121032A (ja) * 1997-10-13 1999-04-30 Mitsubishi Chemical Corp 非水系電解液二次電池
WO2001063687A1 (fr) * 2000-02-24 2001-08-30 Japan Storage Battery Co., Ltd. Element secondaire a electrolyte non-aqueux
JP2002093463A (ja) * 2000-09-11 2002-03-29 Japan Storage Battery Co Ltd 非水電解質電池
JP2005317551A (ja) * 2004-04-29 2005-11-10 Samsung Sdi Co Ltd リチウム二次電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017204452A (ja) * 2016-05-13 2017-11-16 株式会社東芝 非水電解質電池、組電池及びバッテリーシステム
US10847774B2 (en) 2016-09-21 2020-11-24 Kabushiki Kaisha Toshiba Assembled battery, battery pack and vehicle
CN108172895A (zh) * 2016-12-07 2018-06-15 松下知识产权经营株式会社 二次电池
CN108172895B (zh) * 2016-12-07 2022-08-09 松下知识产权经营株式会社 二次电池
CN112635926A (zh) * 2019-10-07 2021-04-09 株式会社杰士汤浅国际 铅蓄电池

Also Published As

Publication number Publication date
TW201336145A (zh) 2013-09-01
JPWO2013108841A1 (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5158193B2 (ja) リチウム空気電池
JP6746506B2 (ja) 非水電解液二次電池
WO2013176130A1 (ja) 非水電解質二次電池
JP6581981B2 (ja) 非水電解質二次電池およびこれを複数個接続してなる組電池
KR20160027088A (ko) 비수 전해액 이차 전지 및 그 제조 방법
JP6163613B2 (ja) リチウム二次電池
WO2013108841A1 (ja) 捕捉体を含む非水電解質二次電池
JP2014006971A (ja) 非水電解質二次電池及びそれを用いた組電池
JP6136057B2 (ja) 非水電解質二次電池及び二次電池モジュール
TWI600195B (zh) 非水電解質二次電池及使用其之組電池
JP2014022321A (ja) 捕捉剤を含む非水電解質二次電池
JP7003775B2 (ja) リチウムイオン二次電池
JP2013191484A (ja) 負極活物質層、その製造方法及び非水電解質二次電池
JP6331246B2 (ja) 非水電解質二次電池用電極及びそれを用いた電池
JP2015187929A (ja) 非水電解質二次電池
JP2015225761A (ja) 電極活物質混合物、それを用いて作製した電極及び非水電解質二次電池
JP2014093272A (ja) 電極活物質混合物、それを用いて作成した電極及び非水電解質二次電池
JP2019021563A (ja) リチウムイオン二次電池およびその製造方法
JP2015049984A (ja) 非水電解質二次電池の電極作製用スラリー、それを用いて作製した電極、及びその電極を用いた非水電解質二次電池
JP2017016944A (ja) リチウムイオン二次電池
JP4264805B2 (ja) 非水電解質電池
JP2016181459A (ja) 二次電池電極用のシート状活物質粒子含有成形体、それを用いた二次電池、および二次電池電極の製造方法
JP6111806B2 (ja) 非水電解質二次電池の製造方法
JP2014075238A (ja) 非水電解質二次電池用負極活物質及びその製造方法並びに非水電解質二次電池
JP2016207611A (ja) 非水電解質二次電池及びこれを複数個接続してなる組電池及びその製造方法。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013554342

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13738290

Country of ref document: EP

Kind code of ref document: A1