JP7003775B2 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
JP7003775B2
JP7003775B2 JP2018056087A JP2018056087A JP7003775B2 JP 7003775 B2 JP7003775 B2 JP 7003775B2 JP 2018056087 A JP2018056087 A JP 2018056087A JP 2018056087 A JP2018056087 A JP 2018056087A JP 7003775 B2 JP7003775 B2 JP 7003775B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
material layer
electrode active
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018056087A
Other languages
English (en)
Other versions
JP2019169346A (ja
Inventor
一正 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2018056087A priority Critical patent/JP7003775B2/ja
Publication of JP2019169346A publication Critical patent/JP2019169346A/ja
Application granted granted Critical
Publication of JP7003775B2 publication Critical patent/JP7003775B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、リチウムイオン二次電池に関する。
近年、携帯電話やパソコン等の電子機器の小型化、コードレス化が急速に進んでおり、これらの駆動用電源として、小型、軽量で高エネルギー密度を有する二次電池への要求が高まっている。
リチウムイオン二次電池に求められる特性の一つとしてサイクル特性がある。サイクル特性が低下すると、安定な充放電を長期的に行うことができなくなる。充放電時における負極の膨張、収縮、電解液の枯渇等は、サイクル特性を劣化させる要因である。
特許文献1には、積層された複数の負極の最外層の負極の密度を低密度にした二次電池が記載されている。複数の負極のうち低密度な負極がクッションとなり、二次電池の膨張、収縮に伴い生じる応力が緩和される。
特許文献2には、電槽内の極板群と隣接する位置に電解液を吸収させた多孔体を配置した密閉式二次電池が記載されている。多孔体から電解液が供給されることで電解液の枯渇を抑制している。
特開2010-232011号公報 特開2003-17115号公報
しかしながら、特許文献1に記載の二次電池は、サイクル特性が十分とは言えなかった。最外層に位置する低密度な負極は、内部の負極の急激な膨張、収縮を緩和することはできるが、内部の負極の膨張、収縮自体を抑えるものではない。つまり、膨張、収縮により内部の負極に亀裂や剥離が生じる場合があり、サイクル特性が十分とは言えなかった。
また特許文献2に記載の密閉式二次電池は多孔体が外部に設けられているため、全体サイズが大きくなってしまう。すなわち、リチウムイオン二次電池のエネルギー密度が低下する。また電槽内の極板群のうち多孔体と隣接していない部分は、電解液が枯渇し、サイクル特性が低下してしまう。
本発明は上記問題に鑑みてなされたものであり、サイクル特性に優れたリチウムイオン二次電池を提供することを目的とする。
本発明者等は鋭意検討の結果、最外層の負極活物質層の密度を他の部分における負極活物質層の密度より高めることで、サイクル特性が向上することを見出した。すなわち、本発明は、上記課題を解決するため、以下の手段を提供する。
(1)第1の態様にかかるリチウムイオン二次電池は、正極集電体と前記正極集電体の少なくとも一面に位置する正極活物質層とを有する正極と、負極集電体と前記負極集電体の少なくとも一面に位置する負極活物質層とを有し、前記正極と対向する負極と、前記正極と前記負極との間に挟まれたセパレータと、を備える発電素子と、を備え、前記発電素子の最も外側に位置する負極において前記正極と対向しない側の面に位置する第1負極活物質層の密度は、前記第1負極活物質層より前記発電素子の内側に位置する第2負極活物質層の密度より高い。
(2)上記態様にかかるリチウムイオン二次電池において、前記第1負極活物質層の密度Dと前記第2負極活物質層の密度Dとが、1<D/D<1.7の関係を満たしてもよい。
(3)上記態様にかかるリチウムイオン二次電池において、前記第2負極活物質層の密度Dが1.0g/cm以上であってもよい。
上記態様にかかるリチウムイオン二次電池は、サイクル特性に優れる。
本実施形態にかかるリチウムイオン二次電池の断面模式図である。 本実施形態にかかるリチウムイオン二次電池の発電素子を拡大した模式図である。
以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
[リチウムイオン二次電池]
図1は、本実施形態にかかるリチウムイオン二次電池100の断面模式図である。図1に示すように、リチウムイオン二次電池100は、発電素子40と外装体50とを備える。発電素子40には電解液が含浸されている。外装体50は、電解液が外部に漏洩すること、及び、外部の空気及び水分が発電素子40に至ることを防ぐ。
(発電素子)
発電素子40は、正極20と負極30とセパレータ10とを有する。図1に示す発電素子40は、一対の正極20と負極30とが、セパレータ10を挟んで対向配置されている。正極20及び負極30の積層数は問わない。また発電素子40は、捲回体でもよい。
「正極」
正極20は、正極集電体22と、正極集電体22の少なくも一面に位置する正極活物質層24とを有する。
正極集電体22は、導電性の板材であればよく、酸化電位側でリチウムとの反応性が低いアルミニウム箔、ニッケル箔などの金属薄板を用いることができる。特にアルミニウム箔を好適に用いることができる。
正極活物質層24は、正極活物質とバインダーとを有し、必要に応じて導電助剤を有する。
正極活物質は、イオンの吸蔵及び放出、イオンの脱離及び挿入(インターカレーション)、又は、イオンとイオンのカウンターアニオン(例えば、PF )とのドープ及び脱ドープを可逆的に進行させることが可能な電極活物質を用いることができる。
例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、リチウムマンガンスピネル(LiMn)、及び、一般式:LiNiCoMn(x+y+z+a=1、0≦x<1、0≦y<1、0≦z<1、0≦a<1、MはAl、Mg、Nb、Ti、Cu、Zn、Crより選ばれる1種類以上の元素)で表される複合金属酸化物、リチウムバナジウム化合物(LiV)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素又はVOを示す)、チタン酸リチウム(LiTi12)、LiNiCoAl(0.9<x+y+z<1.1)等の複合金属酸化物、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセンなどが挙げられる。
導電助剤は、例えば、カーボンブラック類等のカーボン粉末、カーボンナノチューブ、炭素材料、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。正極活物質のみで十分な導電性を確保できる場合は、リチウムイオン二次電池100は導電助剤を含んでいなくてもよい。
また正極活物質層は、バインダーを含む。バインダーは、公知のものを用いることができる。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン-テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、が挙げられる。
「負極」
負極30は、負極集電体32と、負極集電体32の少なくとも一面に位置する負極活物質層34とを有する。
負極集電体32は、導電性の板材であればよく、還元電位側でリチウムとの反応性の低い銅箔、ステンレス箔などを用いることができる。特に銅箔を好適に用いることができる。
負極活物質層34は、負極活物質とバインダーとを有し、必要に応じて導電助剤を有する。
負極活物質は、公知の負極活物質を使用できる。負極活物質としては、例えば、金属リチウム、リチウムイオンを吸蔵・放出可能な黒鉛(天然黒鉛、人造黒鉛)、カーボンナノチューブ、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、アルミニウム、シリコン、スズ等のリチウムと化合することのできる金属、SiO(0<x<2)、二酸化スズ等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。
これらの中でも負極活物質としてシリコン(Si)や酸化シリコン(SiO)を用いると、高容量なリチウムイオン二次電池を実現できる。リチウムイオン二次電池の容量は主に電極の活物質に依存する。シリコン(Si)や酸化シリコン(SiO)の理論容量は、黒鉛の理論容量(372mAh/g)に比べてはるかに大きい。
SiやSiOは充電時に大きな体積膨張を伴う。SiはLiと化合すると、最大で4倍、体積膨張する。本実施形態にかかるリチウムイオン二次電池100は、発電素子40の最外層に位置する負極活物質層34が、発電素子40の内部に位置する負極活物質層34の膨張を抑える。そのため、負極活物質としてSiやSiOを用いた場合でも、負極活物質層34と負極集電体32との剥離、負極活物質層34の亀裂等が抑制される。
また負極30において金属リチウムの析出、溶解反応を用いる場合(金属リチウム負極を用いる場合)、負極活物質層34は初期状態では無くてもよい。電解液中のリチウムイオンが負極集電体32の一面に金属リチウムとして析出するためである。また充放電に寄与するリチウム量が不足することに備えて、充放電前の初期状態から集電体の一面にリチウム箔を設けてもよい。
導電助剤及びバインダーは、正極と同様のものを用いることができる。負極30に用いるバインダーは正極20に挙げた他に、例えば、カルボキシメチルセルロース(CMC)、スチレン・ブタジエンゴム(SBR)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアクリル酸(PAA)等を用いてもよい。
図2は、本実施形態にかかるリチウムイオン二次電池の発電素子を拡大した模式図である。発電素子40の最も外側に位置する負極30Aにおいて正極20と対向しない側の面に位置する第1負極活物質層301の密度Dは、第1負極活物質層301より発電素子40の内側に位置する第2負極活物質層302の密度Dより高い。第2負極活物質層302は、第1負極30Aより内側に位置する第2負極30Bのいずれの負極活物質層でもよい。
第2負極活物質層302の密度とは、第1負極活物質層301より発電素子40の内側に位置する負極活物質層のいずれかの密度を意味する。すなわち、第1負極活物質層301より発電素子40の内側に位置するすべての負極活物質層の平均密度を意味するものではない。
第1負極活物質層301の密度Dが高密度であると、第1負極活物質層301内に膨張できる隙間が少なくなる。膨張できる隙間が少ない第1負極活物質層301が発電素子40の最外層に位置すると、内部に位置する第2負極活物質層302の膨張が制限される。
リチウムイオン二次電池100のサイクル特性の低下の原因の一つに、電解液が分解することに伴う電解液の枯渇がある。電解液は、負極30に生じた新生面との副反応により枯渇する。新生面は、負極活物質層34と負極集電体32との間の剥離、負極活物質層34のクラックにより生じる。負極活物質層34と負極集電体32との間の剥離、負極活物質層34のクラックは、負極活物質層34の膨張、収縮により生じる。つまり、第1負極活物質層301が発電素子40の内部に位置する第2負極活物質層302の膨張、収縮を制限することで、リチウムイオン二次電池100のサイクル特性が向上する。
第1負極活物質層301の密度Dと第2負極活物質層302の密度Dとは、1<D/D<1.7の関係を満たすことが好ましく、1.1≦D/D<1.6の関係を満たすことがより好ましく、1.1≦D/D<1.4の関係を満たすことがさらに好ましい。
第1負極活物質層301及び第2負極活物質層302の密度は、作製時における圧延時に加える圧力により制御される。D/Dが1.7より大きくなるような発電素子40は、作製することが難しい。またD/Dが1.7より大きくなると、第1負極活物質層301の内部抵抗と第2負極活物質層302の内部抵抗との差が大きくなり、充放電反応が不均一になる。内部抵抗の低い反応しやすい負極に充放電反応が集中しやすくなり、サイクル特性が低下する。
第2負極活物質層302の密度Dは1.0g/cm以上であることが好ましく、1.2g/cm以上であることが好ましい。また第1負極活物質層301の密度Dは1.2g/cm以上であることが好ましく、1.4g/cm以上であることが好ましい。第1負極活物質層301及び第2負極活物質層302が上記関係であれば、それぞれの負極活物質層の密度関係を調整しやすい。また第2負極活物質層302の密度Dは1.0g/cm以上であれば、負極の体積膨張が大きくなりすぎることもない。
また発電素子40の最も外側に位置する負極30Aにおいて正極20と対向する面に位置する第3負極活物質層303の密度Dは、第1負極活物質層301の密度Dと第2負極活物質層302の密度Dの間であることが好ましい。負極活物質層34の密度は、負極活物質層34の膨張量と相関関係を有する。負極活物質層34の密度が、発電素子40の内側から外側に向かって段階的に変化することで、負極活物質層34の膨張、収縮に伴い、局所的に大きな応力が加わることを抑制できる。
また発電素子40の最も外側に位置する負極30Aにおける負極活物質層34の平均密度は、発電素子40の内側に位置する負極30Bにおける負極活物質層34の平均密度より高いことが好ましい。ここで、負極における負極活物質層の平均密度とは、負極集電体32を挟んで両面に位置する負極活物質層34の平均密度を意味する。
負極における負極活物質層の平均密度及び各負極活物質層の平均密度は以下のようにして求める。まず発電素子40から負極30、正極20及びセパレータ10を分離する。そして負極30を所定の大きさ(例えば3cm×5cm)で打ち抜き、打ち抜き部分の重量と厚みを計測する(測定1)。次いで、負極の打ち抜き部分の一面に位置する負極活物質層を剥離する。一面の負極活物質層を剥離すると、負極集電体とその片面に形成された負極活物質層が残る。残存した負極集電体及び活物質層の重量と厚みを計測する(測定2)。最後に、打ち抜き部分の反対側の面の負極活物質層を剥離する。剥離により負極集電体のみが残り、負極集電体の重量と厚みを計測する(測定3)。測定1から測定3の結果を基に逆算することで、負極における負極活物質層の平均密度及び各負極活物質層の平均密度が求められる。
「セパレータ」
セパレータ10は、電気絶縁性の多孔質構造から形成されていればよく、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いはセルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。
(電解液)
電解液は、発電素子40内に含浸される。電解液には、リチウム塩等を含む電解質溶液(電解質水溶液、有機溶媒を使用する非水系電解質溶液)を使用することができる。
非水電解質溶液は、非水溶媒に電解質が溶解されており、非水溶媒として環状カーボネートと、鎖状カーボネートと、を含有してもよい。
環状カーボネートとしては、電解質を溶媒和することができるものを用いることができる。例えば、エチレンカーボネート、プロピレンカーボネート及びブチレンカーボネートなどを用いることができる。
鎖状カーボネートは、環状カーボネートの粘性を低下させることができる。例えば、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートが挙げられる。その他、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン、1,2-ジメトキシエタン、1,2-ジエトキシエタンなどを混合して使用してもよい。
非水溶媒中の環状カーボネートと鎖状カーボネートの割合は体積にして1:9~1:1にすることが好ましい。
電解質としては、例えば、LiPF、LiClO、LiBF、LiCFSO、LiCFCFSO、LiC(CFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiN(CFCFCO)、LiBOB等のリチウム塩が使用できる。なお、これらのリチウム塩は1種を単独で使用してもよく、2種以上を併用してもよい。特に、電離度の観点から、LiPFを含むことが好ましい。
LiPFを非水溶媒に溶解する際は、非水電解質溶液中の電解質の濃度を、0.5~2.0mol/Lに調整することが好ましい。電解質の濃度が0.5mol/L以上であると、非水電解液のリチウムイオン濃度を充分に確保することができ、充放電時に十分な容量が得られやすい。また、電解質の濃度が2.0mol/L以内に抑えることで、非水電解液の粘度上昇を抑え、リチウムイオンの移動度を充分に確保することができ、充放電時に十分な容量が得られやすくなる。
LiPFをその他の電解質と混合する場合にも、非水電解液中のリチウムイオン濃度が0.5~2.0mol/Lに調整することが好ましく、LiPFからのリチウムイオン濃度がその50mol%以上含まれることがさらに好ましい。
(外装体)
外装体50は、その内部に発電素子40及び電解液を密封するものである。外装体50は、電解液の外部への漏出や、外部からの電池内部への水分等の侵入等を抑止するものである。
図1に示すように、外装体50は、発電素子40から順に、熱融着樹脂層52と、金属層54と、耐熱樹脂層56と、を有する。熱融着樹脂層52の材料としては、ポリエチレン、ポリプロピレン等のポリオレフィンを使用できる。金属層54の材料としては、アルミニウム、ステンレス等を使用できる。耐熱樹脂層56の材料としては、融点の高い高分子、例えば、ポリエチレンテレフタレート(PET)、ポリアミド(PA)等を使用できる。
(端子)
端子60は、アルミニウム、ニッケルなどの導電材料から形成されている。端子は、一方が負極端子61、他方が正極端子62である。端子60の一端(内側端部)は発電素子40に接続され、他端(外側端部)は外装体50の外部に延出する。2つの端子60は、それぞれ同じ方向に延出してもよいし、異なる方向に延出してもよい。負極端子61は負極集電体32に接続され、正極端子62は正極集電体22に接続される。接続方法は特に問わず、溶接、ネジ止め等を用いることができる。
[リチウムイオン二次電池の作製方法]
本実施形態にかかるリチウムイオン二次電池100は、例えば以下のような方法で製造することができる。
まず、正極20及び負極30を作製する。正極20と負極30とは、活物質となる物質が異なるだけであり、同様の製造方法で作製できる。
正極活物質、バインダー及び溶媒を混合して塗料を作製する。必要に応じ導電助剤を更に加えても良い。溶媒としては例えば、水、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等を用いることができる。正極活物質、導電助剤、バインダーの構成比率は、重量比で80wt%~90wt%:0.1wt%~10wt%:0.1wt%~10wt%であることが好ましい。これらの重量比は、全体で100wt%となるように調整される。
塗料を構成するこれらの成分の混合方法は特に制限されず、混合順序もまた特に制限されない。上記塗料を、正極集電体22に塗布する。塗布方法としては、特に制限はなく、通常電極を作製する場合に採用される方法を用いることができる。例えば、スリットダイコート法、ドクターブレード法が挙げられる。負極についても、同様に負極集電体32に塗料を塗布する。
続いて、正極集電体22及び負極集電体32上に塗布された塗料中の溶媒を除去する。除去方法は特に限定されない。例えば、塗料が塗布された正極集電体22及び負極集電体32を、80℃~150℃の雰囲気下で乾燥させる。最後に必要に応じて圧延し、正極20及び負極30が完成する。負極活物質層34の密度の違いは、圧延処理時に加える圧力を変えることで変更できる。
発電素子40が積層体の場合は、正極20、負極30及びセパレータ10を積層する。また発電素子40が捲回体の場合は、正極20、負極30及びセパレータ10の一端側を軸として、これらを捲回する。いずれの場合でも、セパレータ10は、正極20と負極30と間に配設する。
最後に、作製した発電素子40を外装体50に封入し、電解液を外装体50内に注入することで、本実施形態にかかるリチウムイオン二次電池100が完成する。
以上、本実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。
「実施例1」
(負極の作製)
負極集電体として厚さ10μmの銅箔を用意した。
負極活物質としては平均粒径が2.5μmのシリコン粉末を用いた。この平均粒径は複数の負極活物質の粒径の平均値であり、粒度分布測定で得られた分布曲線における積算値が50%である粒子の直径(D50)である。粒子の粒度分布は、レーザ回折・散乱法(マイクロトラック法)を用いた粒度分布測定装置により測定した。
上述の負極活物質と、導電助剤として用意したアセチレンブラックと、バインダーとして用意したポリアミドイミド(PAI)とを混合し負極合剤とした。負極活物質と、導電助剤と、バインダーは重量比で80:5:15とした。この負極合剤を、N-メチル-2-ピロリドンに分散させて負極合剤塗料を作製した。そして、厚さ10μmの銅箔の一面に、所定の塗布量で負極合剤塗料を塗布した。なお負極合剤塗料の塗布量は、正極の充電容量に対して1.05~1.2倍の充電容量比となるように調整した。そして塗布後に、100℃で乾燥させ、溶媒を除去して負極活物質層を形成した。その後、負極活物質層をロールプレスにより加圧成形した。なお発電素子の内部に位置する負極と、発電素子の最外層に位置する負極とで、印加する圧力を変えて、各部分における負極活物質層の密度を制御した。最後に、バインダーであるポリアミドイミドをより強固に結着させるために、真空下にて350℃で3時間熱処理し、これを実施例1に係る負極とした。
(正極の作製)
正極活物質として用意したLiCoOと、導電助剤として用意したアセチレンブラックと、バインダーとして用意したポリフッ化ビニリデン(PVDF)とを混合し、正極合剤とした。正極活物質と、導電助剤と、バインダーは重量比で90:5:5とした。この正極合剤を、N-メチル-2-ピロリドンに分散させて正極合剤塗料を作製した。そして、厚さ20μmのアルミニウム箔の一面に、所定の塗布量で正極合剤を塗布した。そして塗布後に、100℃で乾燥させ、溶媒を除去して正極活物質層を形成した。その後、正極活物質層をロールプレスにより加圧成形し、実施例1に係る正極を作製した。
(評価用リチウムイオン二次電池の作製 フルセル)
作製した負極と正極とを、厚さ16μmのポリプロピレン製のセパレータを介して交互に積層し、負極4枚と正極3枚とを積層することで積層体を作製した。最外層に位置する負極活物質層(第1負極活物質層)の密度は1.1g/cmであり、最外層から2枚目の負極の内側の負極活物質層(第2負極活物質層)の密度は1.0g/cmであった。
積層体の負極において、負極活物質層を設けていない銅箔の突起端部にニッケル製の負極端子を取り付けた。また積層体の正極においては、正極活物質層を設けていないアルミニウム箔の突起端部にアルミニウム製の正極端子を超音波溶接機によって取り付けた。
そしてこの積層体を、ラミネートフィルムの外装体内に挿入して周囲の1箇所を除いてヒートシールすることにより閉口部を形成した。外装体内には、FECとDECとが体積比3:7の割合で配合された溶媒と、リチウム塩として1.5M(mol/L)のLiPFが添加された非水電解液と、を注入した。そして、残りの1箇所を真空シール機によって減圧しながらヒートシールで密封し、リチウムイオン二次電池(フルセル)を作製した。
「実施例2~5及び比較例1、2」
第2負極活物質層の密度を1.0g/cmに固定し、第1負極活物質層の密度を変更した点が実施例1に係るリチウムイオン二次電池と異なる。その他の条件は、実施例1と同様とした。
「実施例6~10及び比較例3、4」
第2負極活物質層の密度を1.2g/cmに変更して固定し、第1負極活物質層の密度を変更した点が実施例1に係るリチウムイオン二次電池と異なる。その他の条件は、実施例1と同様とした。
「実施例11~13及び比較例5、6」
第2負極活物質層の密度を1.4g/cmに変更して固定し、第1負極活物質層の密度を変更した点が実施例1に係るリチウムイオン二次電池と異なる。その他の条件は、実施例1と同様とした。
「実施例14、15及び比較例7、8」
第2負極活物質層の密度を1.6g/cmに変更して固定し、第1負極活物質層の密度を変更した点が実施例1に係るリチウムイオン二次電池と異なる。その他の条件は、実施例1と同様とした。
「実施例16~20及び比較例9」
第2負極活物質層の密度を0.95g/cmに変更して固定し、第1負極活物質層の密度を変更した点が実施例1に係るリチウムイオン二次電池と異なる。その他の条件は、実施例1と同様とした。
(容量維持率測定試験)
実施例及び比較例で作製したリチウムイオン二次電池について、二次電池充放電試験装置(北斗電工株式会社製)を用い、25℃の環境下でサイクル特性の測定を行った。0.5Cで4.3Vまで定電流定電圧充電し、1Cで3.0Vまで定電流放電する充放電サイクルを100サイクル繰り返し、100サイクル後の容量維持率を測定し、サイクル特性をサイクル維持率(単位:%)として評価した。なお、評価値は、5サンプルの平均値とした。その結果を表1に示す。
(セルの膨張率)
実施例及び比較例で作製したリチウムイオン二次電池について、セルの膨張率を測定した。セル膨張率は、(「1サイクル後のリチウムイオン二次電池の厚み」-「動作前のリチウムイオン二次電池の厚み」)/(「動作前のリチウムイオン二次電池の厚み」)で求められる。リチウムイオン二次電池の厚みは、発電素子の積層方向におけるリチウムイオン二次電池の厚みを外装体の外から測定する。
Figure 0007003775000001
10 セパレータ
20 正極
22 正極集電体
24 正極活物質層
30 負極
32 負極集電体
34 負極活物質層
40 発電素子
50 外装体
52 熱融着樹脂層
54 金属層
56 耐熱樹脂層
60 端子
61 負極端子
62 正極端子
100 リチウムイオン二次電池

Claims (5)

  1. 正極集電体と前記正極集電体の少なくとも一面に位置する正極活物質層とを有する正極と、
    負極集電体と前記負極集電体の少なくとも一面に位置する負極活物質層とを有し、前記正極と対向する負極と、
    前記正極と前記負極との間に挟まれたセパレータと、を備える発電素子と、を備え、
    前記発電素子は、前記正極と前記負極とが前記セパレータを挟んで交互に積層された積層体であり、
    前記発電素子の最も外側に位置する負極において前記正極と対向しない側の面に位置する第1負極活物質層の密度は、前記第1負極活物質層より前記発電素子の内側に位置する第2負極活物質層の密度より高い、リチウムイオン二次電池。
  2. 前記第1負極活物質層の密度Dと前記第2負極活物質層の密度Dとが、1<D/D<1.7の関係を満たす、請求項1に記載のリチウムイオン二次電池。
  3. 前記第2負極活物質層の密度Dが1.0g/cm以上である、請求項1または2に記載のリチウムイオン二次電池。
  4. 前記第1活物質層の密度は、前記第1負極活物質層より前記発電素子の内側に位置するいずれの負極活物質層の密度より高い、請求項1~3のいずれか一項に記載のリチウムイオン二次電池。
  5. 前記発電素子の最も外側に位置する負極において前記正極と対向する側の面に位置する第3負極活物質層の密度は、前記第1負極活物質層の密度と前記第2負極活物質層の密度との間である、請求項1~4のいずれか一項に記載のリチウムイオン二次電池。
JP2018056087A 2018-03-23 2018-03-23 リチウムイオン二次電池 Active JP7003775B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018056087A JP7003775B2 (ja) 2018-03-23 2018-03-23 リチウムイオン二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018056087A JP7003775B2 (ja) 2018-03-23 2018-03-23 リチウムイオン二次電池

Publications (2)

Publication Number Publication Date
JP2019169346A JP2019169346A (ja) 2019-10-03
JP7003775B2 true JP7003775B2 (ja) 2022-02-10

Family

ID=68108414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018056087A Active JP7003775B2 (ja) 2018-03-23 2018-03-23 リチウムイオン二次電池

Country Status (1)

Country Link
JP (1) JP7003775B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113258031B (zh) * 2020-02-11 2022-11-18 宁德新能源科技有限公司 电池
US20230238583A1 (en) * 2020-05-22 2023-07-27 Semiconductor Energy Laboratory Co., Ltd. Secondary battery, and vehicle including secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017130317A (ja) 2016-01-19 2017-07-27 トヨタ自動車株式会社 捲回電極体を有する非水電解液二次電池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017130317A (ja) 2016-01-19 2017-07-27 トヨタ自動車株式会社 捲回電極体を有する非水電解液二次電池

Also Published As

Publication number Publication date
JP2019169346A (ja) 2019-10-03

Similar Documents

Publication Publication Date Title
KR102309192B1 (ko) 비수전해질 이차 전지용 부극재 및 부극 활물질 입자의 제조 방법
JP5246747B2 (ja) リチウムイオン二次電池用負極、およびそれを用いたリチウムイオン二次電池
JP4988169B2 (ja) リチウム二次電池
JP7115296B2 (ja) 負極及びリチウムイオン二次電池
JP2019164967A (ja) 負極活物質、負極およびリチウムイオン二次電池
JP6656370B2 (ja) リチウムイオン二次電池および組電池
JP6981027B2 (ja) リチウムイオン二次電池用負極活物質、負極及びリチウムイオン二次電池
JP2019164965A (ja) リチウムイオン二次電池
JP6897228B2 (ja) 活物質、電極及びリチウムイオン二次電池
JP7003775B2 (ja) リチウムイオン二次電池
JP2019164964A (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2018170142A (ja) リチウムイオン二次電池
JP7020167B2 (ja) 非水電解液二次電池
JP6962231B2 (ja) 非水電解液二次電池
JP7064709B2 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6855882B2 (ja) 正極、及びリチウムイオン二次電池
WO2015046394A1 (ja) 負極活物質、それを用いた負極、及びリチウムイオン二次電池
JP7243381B2 (ja) 電極及び非水電解液二次電池
JP7017108B2 (ja) 活物質、電極及びリチウムイオン二次電池
JP2021096901A (ja) リチウムイオン二次電池
WO2023243013A1 (ja) 負極活物質層、負極及びリチウムイオン二次電池
US20220311007A1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP7322684B2 (ja) リチウムイオン二次電池
US20220393167A1 (en) Lithium ion secondary battery
WO2021010185A1 (ja) 正極及びリチウムイオン二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211213

R150 Certificate of patent or registration of utility model

Ref document number: 7003775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150