WO2013086872A1 - 光源和照明装置 - Google Patents

光源和照明装置 Download PDF

Info

Publication number
WO2013086872A1
WO2013086872A1 PCT/CN2012/080735 CN2012080735W WO2013086872A1 WO 2013086872 A1 WO2013086872 A1 WO 2013086872A1 CN 2012080735 W CN2012080735 W CN 2012080735W WO 2013086872 A1 WO2013086872 A1 WO 2013086872A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
fly
eye lens
unit
emitting diode
Prior art date
Application number
PCT/CN2012/080735
Other languages
English (en)
French (fr)
Inventor
李屹
张权
杨毅
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Priority to EP12857395.3A priority Critical patent/EP2789897B1/en
Priority to US14/364,387 priority patent/US9791132B2/en
Publication of WO2013086872A1 publication Critical patent/WO2013086872A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/007Array of lenses or refractors for a cluster of light sources, e.g. for arrangement of multiple light sources in one plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/12Combinations of only three kinds of elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape

Definitions

  • the present invention relates to the field of optical technology, and in particular to a light source and a lighting device. Background technique
  • multi-color semiconductor light sources have been widely used in the fields of stage lighting and decorative lighting.
  • multi-color semiconductor light sources are often emitted by separate semiconductor chips for each color, so there is often a problem of uneven color mixing.
  • the optical structure of a multicolor semiconductor light source is disclosed in Japanese Patent No. JP2006155956, Chinese Patent No. 20081 0045644 and No. CN1021 5571, respectively.
  • LEDs of different colors form a planar array, and each LED has a collimating device for collimating the LEDs. The light from the LED is collimated by the collimating device and then incident on the fly-eye lens to uniformize the illumination of the LEDs of different colors.
  • a component light filter is used to combine light from different color LED arrays using wavelength differences, wherein the color of light emitted by each group of LEDs is the same.
  • this scheme has the advantage of a small amount of optical expansion, but the disadvantage is that the scheme can only combine monochromatic light whose spectrum does not overlap, and cannot combine broad spectrum light such as white light.
  • the reading scheme is costly due to the use of the spectroscopic filter.
  • the package structure of the existing LED chip is as shown in FIG.
  • the LED chip 1 101 is fixed on the heat conductive substrate 1102, and the silicone lens 1103 having an arc shape is used for sealing the LED chip 1101 and further improving the light extraction efficiency of the LED chip.
  • the silicone lens 1103 can increase the total luminous flux emitted by the LED by 20-30%, but also increases the optical expansion by 2-2. 5 times (refer to the following description) Equation (2)), therefore, the luminance of the LED, that is, the ratio of the total luminous flux to the optical expansion amount, is greatly reduced due to the presence of the silicone lens 1103.
  • the most commonly used collimating device is shown as 1201 in Fig. 12.
  • the collimating device is generally called a total reflection (TIR) lens, and the principle is to use the central curved surface 1201a to refract light and the surrounding side wall 1201b to totally reflect light to the LED.
  • the emitted light is collimated.
  • the advantage of such a collimating device is that light from all angles can be collected, but the disadvantage is that it causes the optical spread of the outgoing light to be much larger than the optical spread of the light source, thus greatly reducing the luminance of the light. Summary of the invention
  • the main technical problem solved by the present invention is the problem of large optical spread and low brightness of a multi-color uniform light source.
  • the invention provides a light source comprising an array of light emitting diodes comprising at least two light emitting diode units of different illuminating colors, each light emitting diode unit comprising a light emitting diode chip.
  • the transparent high refractive index medium having a refractive index lower than 1.1, or a transparent high refractive index medium having a refractive index higher than 1.3, the thickness of the high refractive index medium being smaller than the light emitting surface of the light emitting diode chip. 50% of the diameter of the circumscribed circle.
  • the light source of the present invention further includes an array of collimating devices, the array of read collimating devices comprising at least one collimating device unit; the collimating device unit corresponding to the at least one light emitting diode unit for collimating the at least one light emitting diode unit
  • the emitted light maintains the optical spread of the light emitted by the at least one light emitting diode unit substantially unchanged.
  • the light source proposed by the present invention further includes a light homogenizing means for homogenizing the light emitted from the array of collimating devices.
  • the invention provides a lighting device comprising the light source described above.
  • the present invention includes the following beneficial effects:
  • Both the light-emitting diode unit and the collimating device unit in the light source and illumination device of the present invention minimize the optical spread of the emitted light, thereby achieving the maximum brightness of the light.
  • Figure la is a schematic view of the optical structure of the first embodiment of the present invention.
  • FIGS. 3a and 3b are schematic structural views of two embodiments of the light-hooking device of the embodiment shown in FIG. 1; and FIGS. 3a and 3b are schematic views showing the assembly of an LED unit and its corresponding collimating device unit of the present invention;
  • FIG. 4a is a schematic view of the surface of the light emitting diode unit covered with a high refractive index medium in the present invention
  • FIG. 4b is a relationship between the brightness of the light emitting diode and the h/D when the surface of the light emitting diode unit is covered with a high refractive index medium;
  • Figure 5a is a schematic view showing the mixing of a wavelength converting material in a high refractive index medium covered by the surface of the light emitting diode unit of the present invention
  • FIG. 5b is a schematic view showing the presence of a filter between the light emitting diode unit and the collimating device unit in the present invention
  • FIG. 6 is a schematic view showing the presence of a filter on the optical path of the rear end of the collimating device unit in the present invention
  • Figure 7 is a schematic illustration of a second collimating device unit of the present invention.
  • FIG. 8a and 8b are schematic views of a second collimating device unit of the present invention corresponding to four light emitting diode units;
  • Figure 9 is a schematic structural view of a light-emitting device to which the first embodiment of the present invention is applied;
  • Figure 10 is a schematic structural view of a second embodiment of the present invention.
  • FIG. 11 is a schematic view showing a package structure of a conventional light emitting diode unit
  • Fig. 12 is a schematic structural view of a conventional collimating lens. detailed description A schematic diagram of the optical structure of the first embodiment of the present invention is shown in FIG.
  • the light source 100 of this embodiment includes an array of light emitting diodes 101 including at least two types of light emitting diode units 101a and 101b having different light emitting colors.
  • the light source 100 further includes a collimating device array 102 including at least one collimating device unit 102a corresponding to the light emitting diode unit 101a for collimating the light emitted by the light emitting diode unit 101a And the amount of optical spread of the light emitted from the light emitting diode unit 101a is kept substantially unchanged.
  • the etendue E of a light source or beam is defined as:
  • n is the refractive index of the medium where the light source or beam is located
  • 0 is the angle between the light emitted by one micro-element on the surface of the light source and the axis of illumination of the light source
  • dS is the area of the read micro-element, which is the light emitted by the read micro-element Solid angle.
  • S is the area of the light source or the cross-sectional area of the beam waist
  • 0 is the half angle of the light source or beam.
  • the brightness of the light source can be defined as the ratio of the total luminous flux of the light source to its etendue.
  • the law of conservation of optical spread tells us that the geometric optical system cannot reduce the optical spread of the light source or the beam, so the geometric optical system cannot increase the brightness of the light source or the beam, so the best case is that the geometric optical system maintains the light source or beam.
  • the brightness does not change, and this corresponds to the amount of optical expansion.
  • the meaning that the collimating device unit 102a keeps the optical spread of the light emitted from the light emitting diode unit 101a substantially unchanged is:
  • Si is the area of the light-emitting surface of the light-emitting diode unit, which is the maximum half angle at which the light-emitting diode unit is collected
  • S 2 is the area of the exit surface from which the light is emitted by the collimating device unit 102a, and the light is emitted through the collimating device unit 102a.
  • S 2 is less than or equal to the cross-sectional area of the collimating device unit 102a along the direction perpendicular to the optical axis; and optimally, S 2 is equal to the collimating device unit The cross-sectional area of the 102a along the direction perpendicular to the optical axis, at which time the exiting light completely fills the light exit surface of the collimating device unit 102a. At this point, if the adjacent collimating device units are closely connected, the most compact array of collimating devices can be obtained.
  • the collimating device array 102 of the present invention by applying the collimating device array 102 of the present invention, it is ensured that the optical expansion of the LED array is not expanded, so that the brightness of the LED array is not reduced during the collimation process.
  • the light source 100 further includes a light homogenizing device 103 for homogenizing the light emitted from the collimating device array 102.
  • the light homogenizing device 103 is a compound eye lens pair 103 including a first fly eye lens 103a and a second fly eye lens 103b, as shown in FIG.
  • the first fly-eye lens 103a includes a first fly-eye lens unit 103al that is periodically arranged
  • the second fly-eye lens 103b includes a second fly-eye lens unit 103b1 that is periodically arranged
  • the first fly-eye lens unit 103a1 corresponds to the second fly-eye lens unit 103b1.
  • the collimated beam emerging from the array of collimating devices 102 is projected onto the first fly-eye lens.
  • the surface of the 103a surface, and the first compound eye lens unit periodically arranged by the surface of the first fly-eye lens 103a, is spatially divided into 4 ⁇ multi-sub-beams, each of which corresponds to one sub-beam.
  • the sub-beam is focused by its first first fly-eye lens unit on the surface of the second fly-eye lens unit corresponding thereto.
  • With the optical design of the back end it is possible to image the shape of each sub-beam on the first fly-eye lens unit to a specific position on the screen, and finally form an image superimposed by all sub-beams on the screen, thereby achieving uniformity of the light source.
  • the working principle of the compound eye lens is a well-known technique and will not be described here.
  • the first fly-eye lens unit 103a1 and the second fly-eye lens unit 103b1 shown in Fig. 1b are convex lenses of exactly the same shape.
  • the shape of the second fly-eye lens unit 103b1 is not necessarily the same as the shape and curvature of the first fly-eye lens unit 103a, and it is even possible that one of the second fly-eye lens unit 103b1 and the first fly-eye lens unit 103a is a convex lens and the other is an IHJ lens.
  • the shapes of the first and second fly-eye lens units are differently designed according to different applications, and as long as the two can correspond to each other, the function of collating the incident light can be realized.
  • the shape of the first fly-eye lens unit determines the spot shape ultimately on the screen, the shape of the first fly-eye lens unit tends to be a polygon, such as a square or a rectangle, depending on the needs of the application.
  • a preferred embodiment is that the shape of the first fly-eye lens unit is a regular hexagon, at which time the first fly-eye lens unit 103al on the first fly-eye lens 103a is The honeycomb arrangement is arranged; correspondingly, the second fly-eye lens unit 103b1 on the second fly-eye lens unit 103b is also arranged in a honeycomb shape.
  • the hook lighting device shown in FIG. 1b is the fly-eye lens pair 103a and 103b.
  • the two fly-eye lens pairs can be integrally formed into a single-piece fly-eye lens, as shown in FIG. .
  • the monolithic fly-eye lens 105 includes a first face 105a including a periodically arranged third fly-eye lens unit 105a1, and a second face 105b including a fourth fly-eye lens unit 105bl periodically arranged.
  • the third fly-eye lens unit 105a1 corresponds to the fourth fly-eye lens unit 105b1. It can be understood that the first face 105a and the second face 105b respectively correspond to the first fly-eye lens 103a and the second fly-eye lens 103b of the pair of fly-eye lenses and have the same hooking effect.
  • a preferred embodiment is that the shape of the third fly-eye lens unit is a regular hexagon, and the third fly-eye lens at this time
  • the third fly-eye lens unit 105a1 on the 105a is arranged in a honeycomb shape; correspondingly, the second fly-eye lens unit 105b1 on the fourth fly-eye lens unit 105b is also arranged in a honeycomb shape.
  • the light homogenizing device may also be a diffractive optical element (DOE).
  • DOE diffractive optical element
  • the diffractive optical element is specifically processed and designed on the surface of a transparent substrate to allow uniform incident light emitted from the array of collimating devices to form uniform spots of various shapes. This is a prior art and will not be described here.
  • the surface of the light emitting diode unit is covered with a transparent low refractive index medium having a refractive index lower than 1.1.
  • the low refractive index medium is air.
  • the transparent low refractive index medium may also be a chemically inert gas such as nitrogen or argon, which is advantageous for prolonging the working life of the light emitting diode unit.
  • the refractive index of the commonly used transparent protective layer material is higher than 1.3, and the present invention is called a high refractive index material, such as but not limited to a transparent silica gel or epoxy resin material, and the refractive index of the two materials is 1.4: Between 1.55.
  • the high refractive index material covering the light emitting surface greatly reduces the brightness of the light emitting diode unit. It has been experimentally confirmed that the degree of decrease in the brightness of the light-emitting diode unit is related to the thickness h of the read high-refractive-index material and the size of the light-emitting diode chip in the light-emitting diode unit. As shown in Figure 4b. The diameter of the circumcircle in which the light-emitting surface of the light-emitting diode chip (refer to FIG. 4a) is defined is D. As shown in FIG.
  • the brightness of the LED unit is higher than that of the LED chip.
  • the surface covers 70% of the low refractive index medium (such as air), which is often acceptable in practical applications.
  • the pattern presented in Figure 4b can be explained in the structural schematic of the LED unit shown in Figure 4a.
  • the LED chip 401 is fixed on the heat conductive substrate 402, and the surface of the LED chip 401 is covered with a high refractive index medium 403.
  • the small-angle light ray 412 emitted from the LED chip 401 can directly penetrate the interface between the high refractive index medium and the air above it; and the large angle light 413 is totally reflected after the interface between the high refractive index medium and the air above it, and is incident. Outside the range of the LED chip. Even if the area outside the LED chip is a reflecting surface, the light ray 413 can be reflected again and finally emitted.
  • This part of the light energy is outside the light-emitting range of the LED chip 401, which is stray light and cannot be finally utilized.
  • a ray 411 which, although fully emitted at the interface of the high refractive index medium and the air above it, can be reflected back to the surface of the OLED chip 401 and again and eventually Out of the light, this part of the light can be finally collected and utilized.
  • the high refractive index medium causes the total reflected light 401 and 403 to be generated, but as long as the proportion of h/D is small and the total reflected light is mostly reflected back to the light emitting diode chip itself, the proportion of the light 401 is higher. High, the proportion of stray light caused by the light 403 is small, and the luminance loss of the light emitting diode unit is not large at this time.
  • the brightness of the light source can be realized without using the high refractive index medium to cover the LED chip. maximize.
  • the LED array 101 includes two LED units 101a and 101b having different illumination colors, and each of the LED units is uniformly distributed in the LED array 101, which is represented as illumination in FIG.
  • the diode units 101a and 101b are staggered with each other.
  • the LED array 101 may further include two or more light emitting diode units having different light emitting colors.
  • the light emitting diode array 101 includes white light, red light, green light, and blue light emitting diodes, and the top view thereof is as follows.
  • Figure 2 shows.
  • a square unit represents a light emitting diode unit
  • the letter designation in the square unit indicates the color of the light emitting diode unit, for example, R represents a red light emitting diode unit, G represents a green light emitting diode unit, and B represents a blue light emitting diode unit.
  • W stands for white LED unit.
  • the LED units are arranged in a square array; correspondingly, in the array of collimating devices, the collimating device units are also arranged in a square array, and the one-to-one correspondence (the collimating device unit is not in FIG. 2) Draw).
  • the light emitting diode units are arranged in a honeycomb shape, and in the array of collimating devices, the collimating device units are arranged in a honeycomb shape, and the light emitting diodes
  • the unit has a one-to-one correspondence with the collimating device unit.
  • each of the LED units in order to make the light of the light source mix more uniformly, each of the LED units is hooked in the LED array.
  • each of the red LED units represented by R is approximately uniformly distributed in the entire LED array. More preferably, the distribution of each of the light emitting diode units is approximately symmetrical about the center of the array of light emitting diodes, which results in a more uniform angular distribution of each of the color components of the light exiting the source.
  • the collimating device unit is a piece of convex lens, as shown in Figure 3a.
  • the LED chip 301 is fixed on a heat-conducting substrate 302, and a lens holder 305 is fixed around the LED chip for fixing the convex lens 307.
  • the light-emitting surface 301a of the light-emitting diode chip 301 is on the focal plane of the convex lens 307. According to basic optical knowledge, light emitted from the light-emitting surface of the light-emitting diode chip is refracted by the convex lens 307 to form an approximately parallel outgoing light beam.
  • the collimating device unit may also be a lens group.
  • a schematic of a preferred embodiment is shown in Figure 3b.
  • the collimating device unit shown in FIG. 3b adds a concave-convex lens to the LED chip, and the concave surface faces the LED chip to reduce the incidence of the LED chip on the concave surface. The angle of incidence and further reduces the reflection loss at the concave surface.
  • a light emitting diode unit that emits white light is required, which can be realized by a method of coating a yellow wavelength converting material on the surface of the blue light emitting diode chip, as shown in FIG. 5a.
  • the wavelength conversion material layer 504 covers the light emitting surface of the LED chip 501.
  • the wavelength converting material layer 504 is formed of a mixed wavelength converting material in a high refractive index medium having a refractive index higher than 1.3 for absorbing light emitted from the light emitting diode chip 501 and being stimulated to emit laser light.
  • the thickness of the wavelength converting material layer 504 needs to be less than 50% of the diameter of the circumscribed circle of the light emitting surface of the light emitting secondary optical chip 501, as in the principle of the embodiment shown in Fig. 4a.
  • the LED chip 501 emits blue light
  • the wavelength conversion material in the wavelength conversion material layer 504 is a yellow phosphor
  • the emitted light of the LED unit 500 includes the yellow light of the yellow phosphor stimulated emission. 522, also including remaining blue light 521 that is not absorbed by the wavelength converting material layer.
  • the filter can reflect the excitation light and transmit the laser, so that the secondary excitation of the solid color material can be obtained.
  • the filter can also adjust the color of the emitted light by transmitting a part of the laser while reflecting the other part of the laser. This is a well-known technique and will not be described here.
  • the filter 609 can also be placed between the collimating device unit and the optical path of the light homogenizing device, and can also function to filter the light emitted from the collimating device unit.
  • the filter 609 in this embodiment has a smaller angle of incident light, so that the design of the filter is more compact and the processing is easier to implement.
  • a single piece of convex lens or lens group is used to collect and collimate the light emitted by the light emitting diode unit.
  • the collimating device unit can also use a Compound Parabolic Concentrator (CPC), as shown in Figure 7.
  • CPC Compound Parabolic Concentrator
  • the compound parabolic concentrator 707 is an optical device designed to ensure the optical expansion amount according to the non-imaging optical principle, and includes a light entrance 707a and a light exit 707b, and the light entrance 707a is in close contact with the light emitting surface of the light emitting diode unit 701.
  • the light emitted from the light-emitting diode unit 701 is incident on the light entrance 707a, or directly exits the light exit 707b, or is reflected by the side wall of the compound parabolic concentrator 707 once and then exits from the light exit 707b.
  • the compound parabolic concentrator is a light collecting device for ensuring the conservation of optical expansion.
  • the area of the light exit is larger than the area of the light entrance. Therefore, according to formula (3), the light exit angle of the light exit must be smaller than the light entrance of the light entrance. The angle can therefore be used to achieve beam collimation.
  • the advantage of the compound parabolic concentrator over the lens or lens group is that the compound parabolic concentrator can collect all angles of light emitted by the LED unit, but the lens or lens group is not possible, so the collection efficiency of the compound parabolic concentrator Higher; at the same time the problem with compound parabolic concentrators is the high cost.
  • the collimating device unit and the LED unit are both corresponding to each other. In practical applications, one collimating device unit may correspond to a plurality of LED units, as shown in the figure.
  • 8a and 8b are shown. 8a differs from FIG. 7 in that the light entrance of the composite parabolic concentrator 807 corresponds to a plurality of light emitting diode units.
  • the plurality of light emitting diode units are read as four light emitting diode units, and the top view thereof is as shown in Fig. 8b.
  • the four light emitting diode units are a red light emitting diode unit 801R, a green light emitting diode unit 801G, a blue light emitting diode unit 801B, and a white light emitting diode unit 801W.
  • Such four different color LED units are arranged in a group, and mixing occurs during collection and collimation by the compound parabolic concentrator 807, which helps to improve the uniformity of the light emitted from the source.
  • a collimating device unit composed of a lens or a lens group may also correspond to a plurality of light emitting diode units.
  • the homogenizing device is a fly-eye lens pair.
  • the homogenizing means may also be an integrator rod as shown in Fig. 10 as a second embodiment of the invention.
  • a focusing lens 104 is disposed between the collimating device array 102 and the optical path of the integrator rod 120 for focusing the light emerging from the collimating device array 103 to the entrance of the integrator rod 120.
  • light rays of different colors can be uniformly mixed by continuous reflection on the inner side wall of the integrator rod 120.
  • the reading illumination device includes the light source described above.
  • the illumination device includes a light source 100 as shown in Fig. 1.
  • Light emitted by the light source 100 passes through a set of lenses 104 and 109 and is incident on the screen 105 to form a uniform spot.
  • a control device is further included for independently controlling the switching and input power of the LED unit of each color in the light source 100, thereby controlling the intensity of the mixed outgoing light of the illumination device. colour.
  • the amount of optical expansion of the light-emitting diode chip can be minimized by controlling the thickness of the medium and the medium covered by the surface of the light-emitting diode chip; and the light-emitting diode is controlled by controlling the design of the alignment device array unit.
  • the light emitted by the unit passes through the collimating device
  • the amount of optical expansion does not increase when the array unit is used; finally, the light emitted from the light-emitting diode units of two or more light-emitting colors can be uniformly mixed by the light-hooking device, and finally, the light-emitting spot with uniform color and maximum brightness can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

一种光源,包括发光二极管阵列(101)和准直器件阵列(102)。发光二极管阵列(101)包括至少两种发光颜色不同的发光二极管单元(101a,101b),准直器件阵列(102)用于准直发光二极管单元(101a,101b)发出的光且保持发光二极管单元(101a,101b)发出的光的光学扩展量基本不变。该光源还包括匀光装置(103),用于将从准直器件阵列(102)出射的光做均匀化处理。另有一种照明装置,包括上述的光源。该光源和照明装置中的发光二极管单元(101a,101b)和准直器件单元(102a)使出射光的光学扩展量达到最小值,进而实现发光亮度的最大化。

Description

光源和照明装置 技术领域
本发明涉及光学技术领域, 特别是涉及一种光源和照明装置。 背景技术
目前, 多色半导体光源已经在舞台灯光、 装饰照明等领域得到了越来越广 泛的应用。 然而在实际的产品中, 多色半导体光源由于每种颜色都是分别单独 的半导体芯片发出的, 因此往往存在颜色混合不均匀的问题。
日本专利 JP2006155956 ,中国专利 20081 0045644和 CN1021 5571 3分别公开 了一种多色半导体光源的光学结构。 在这种光学机构中, 不同颜色的发光二极 管(LED , Light Emi t t ing Di ode, )芯片共同形成一个平面阵列, 每一颗 LED上 方对应一个用于准直 LED发光的准直装置。 LED发出的光经过准直装置准直后入 射于复眼透镜使不同颜色的发光二极管的发光均匀化。
在中国专利 CN1 01988631提出的另一个方案中, 使用一组分光滤光片利用 波长的差别将不同颜色的 LED阵列发出的光组合在一起, 其中每一组 LED发出 的光的颜色是相同的。 与上一种方案相比, 该方案具有光学扩展量小的优点, 但缺点在于该方案只能组合光谱没有交叠的单色光, 而不能组合如白光这样的 宽谱光。 另一方面, 读方案由于分光滤光片的使用而成本较高。
在不同颜色的 LED共同形成一个平面阵列的方案中, 如何使光源的光学扩 展量达到最小成为制约该光源方案亮度的关键。 然而在现有技术中, 光源的光 学扩展量并没有得到最大程度的优化。
现有的 LED芯片的封装结构如图 11所示。 其中 LED芯片 1 101 固定于导热 基板 1102上, 具有弧形外形的硅胶透镜 1103用于密封 LED芯片 1101并进一步 的提高 LED芯片的光提取效率。 硅胶透镜 1103可以将 LED发出的总光通量提高 20-30%, 但是同时也使得其光学扩展量提高了 2-2. 5倍(参考下面说明中的公 式(2) ), 因此 LED 的发光亮度, 即总光通量与光学扩展量的比值, 由于硅胶透 镜 1103的存在是大幅下降的。 对于对光学扩展量没有要求的应用场合, 例如通 用照明, 使用如图 11所示的封装结构是合适的, 因为这样可以得到更大的光通 量输出; 然而对于投射灯、 具有特定光斑尺寸要求的舞台灯这样的对光学扩展 量有明确限制的应用来说, 这样的封装结构会造成最终发光亮度的大幅度降低。
另一方面, 现有的最常用的准直装置如图 12 中的 1201所示。 该准直装置 一般被称为全反射(TIR, Tota l Interna l Ref l ec t ion)透镜, 其原理是利用中 部的曲面 1201a对光线的折射和四周的侧壁 1201b对光线的全反射对 LED发出 的光线进行准直。 这种准直装置的优点在于可以收集到所有角度发出的光, 但 是缺点在于它会使出射光的光学扩展量远远大于光源的光学扩展量, 因此大大 降低了发光亮度。 发明内容
本发明解决的主要技术问题是多色均匀光源的光学扩展量大、 亮度低的问 题。
本发明提出一种光源, 包括发光二极管阵列, 该发光二极管阵列包括至少 两种发光颜色不同的发光二极管单元, 每个发光二极管单元包括一个发光二极 管芯片。 该发光二极管芯片的表面覆盖有折射率低于 1. 1的透明低折射率介质, 或折射率高于 1. 3 的透明高折射率介质, 该高折射率介质的厚度小于发光二极 管芯片发光面的外接圆直径的 50%。
本发明提出的光源还包括准直器件阵列, 读准直器件阵列包括至少一个准 直器件单元; 该准直器件单元与至少一颗发光二极管单元对应, 用于准直该至 少一颗发光二极管单元发出的光且保持该至少一颗发光二极管单元发出的光的 光学扩展量基本不变。
本发明提出的光源还包括匀光装置, 用于将从准直器件阵列出射的光做均 匀化处理。 本发明 提出一种照明装置, 包括上述的光源。
与现有技术相比, 本发明包括如下有益效果:
在本发明的光源和照明装置中的发光二极管单元和准直器件单元都使出射 光的光学扩展量达到最小值, 进而实现发光的最大亮度。 附图说明
图 la是本实用新型第一实施例的光学结构示意图;
图 lb、 图 lc分别是图 1所示实施例的勾光装置的两个实施例的结构示意图; 图 3a和 3b是本发明的一个发光二极管单元及其对应的准直器件单元的组装示意 图;
图 4a是本发明中发光二极管单元表面覆盖有高折射率介质的示意图; 图 4b是本发明中发光二极管单元表面覆盖有高折射率介质时发光亮度与 h/D的 关系;
图 5a是本发明中发光二极管单元表面覆盖的高折射率介质中混合有波长转换材 料的示意图;
图 5b是本发明中发光二极管单元与准直器件单元之间存在滤光片的示意图; 图 6是本发明中在准直器件单元的后端光路上存在滤光片的示意图;
图 7是本发明的第二种准直器件单元的示意图;
图 8a和 8b是本发明的第二种准直器件单元对应于四颗发光二极管单元的示意 图;
图 9是应用本发明的第一实施例的发光装置的结构示意图;
图 10是本发明第二实施例的结构示意图;
图 11是现有的发光二极管单元的封装结构示意图;
图 12是现有的准直透镜的结构示意图。 具体实施方式 本发明的第一个实施例的光学结构示意图如图 la所示。在该实施例的光源 100中包括发光二极管阵列 101, 读发光二极管阵列 101包括至少两种发光颜色 不同的发光二极管单元 101 a和 101b。
光源 100还包括准直器件阵列 102, 该准直器件阵列 102包括至少一个准 直器件单元 102a, 该准直器件单元 102a与发光二极管单元 101a对应, 用于准 直发光二极管单元 101a发出的光且保持发光二极管单元 101 a发出的光的光学扩 展量基本不变。
一个光源或光束的光学扩展量 E定义为:
E = n2 jj co& 9 - dS - dn ( 1 )
其中 n是光源或光束所在的介质的折射率, 0是光源表面一个微元发出的 光线与光源发光光轴的夹角, dS是读微元的面积, 则是读微元发射的光线所 在微立体角。 对于发光表面均匀的光源, 当其发光的强度在已经角度范围内各 向同性时, 光学扩展量 Ε可以简化表示为:
Ε = πη1 - S - sin2 φ ( 2 )
其中 S为光源面积或光束束腰的截面面积, 0为光源或光束的发光半角。 光源的亮度可以定义为光源发光的总光通量与其光学扩展量的比值。 而光 学扩展量守恒定律告诉我们, 几何光学***不能减小光源或光束的光学扩展量, 因此几何光学***不可能增大光源或光束的亮度, 因此最佳的情况是几何光学 ***保持光源或光束的亮度不变, 而这时对应于光学扩展量不变。
应用以上公式(2 ), 在本发明中, 准直器件单元 102a保持发光二极管单元 101a发出的光的光学扩展量基本不变的含义是:
S1 sin2 φ1二 S2 sin2 φ2 ( 3 )
其中 Si是发光二极管单元的发光面的面积, 是发光二极管单元被收集的 最大半角, 而 S2是光线经过准直器件单元 102a出射的出射面的面积, 光线经 过准直器件单元 102a出射的发光半角。在实际应用中 S2小于等于准直器件单元 102a 的沿垂直于光轴方向的截面面积; 而最优的情况是 S2等于准直器件单元 102a的沿垂直于光轴方向的截面面积, 此时出射光线完全填充满准直器件单元 102a的光出射面。 此时如果相邻的准直器件单元紧密相连, 则可以得到最为紧 凑的准直器件阵列。
综上, 应用本发明的准直器件阵列 102, 可以保证发光二极管阵列的光学 扩展量不扩大, 进而使发光二极管阵列的亮度不会在准直过程中减小。
在本实施例中, 光源 100 中还包括匀光装置 103, 用于将从准直器件阵列 102出射的光做均匀化处理。 具体来说, 在本实施例中, 匀光装置 103为复眼透 镜对, 该复眼透镜对 103 包括第一复眼透镜 103a和第二复眼透镜 103b, 如图 lb所示。 第一复眼透镜 103a包括周期性排列的第一复眼透镜单元 103al , 第二 复眼透镜 103b包括周期性排列的第二复眼透镜单元 103bl , 第一复眼透镜单元 103al与第二复眼透镜单元 103bl——对应。
在本实施例中, 从准直器件阵列 102出射的准直光束投射到第一复眼透镜
103a表面,并被第一复眼透镜 103a表面的周期性排列的第一复眼透镜单元在空 间上分割成 4艮多子光束, 每一个第一复眼透镜单元对应一个子光束。 该子光束 被与其对应的第一复眼透镜单元聚焦于与之对应的第二复眼透镜单元表面。 配 合后端的光学设计, 可以实现将每一个子光束在第一复眼透镜单元上的形状都 成像到一个特定位置的屏幕上, 最终在屏幕上形成由所有子光束叠加的像, 进 而实现光源的均匀化输出。 复眼透镜的工作原理属于公知技术, 此处不再赘述。
如图 lb所示的第一复眼透镜单元 103al和第二复眼透镜单元 103bl是形状 完全相同的凸透镜。 实际上, 第二复眼透镜单元 103bl 的形状与第一复眼透镜 单元 103a的形状和曲率不一定相同, 甚至有可能第二复眼透镜单元 103bl和第 一复眼透镜单元 103a中一个是凸透镜一个是 IHJ透镜。 第一和第二复眼透镜单元 的形状依照不同的应用而存在不同的设计, 只要两者可以——对应, 就可以实 现对入射光均勾化的功能。
由于第一复眼透镜单元的形状决定了最终在屏幕上的光斑形状, 因此根据 应用的需要, 第一复眼透镜单元的形状往往是多边形, 例如正方形或长方形。 在照明灯具的应用中, 为了匹配圆形的光斑形状, 一个优选的实施例是, 第一 复眼透镜单元的形状是正六边形, 此时第一复眼透镜 103a上的第一复眼透镜单 元 103al以蜂窝状排列; 与之对应的, 第二复眼透镜单元 103b上得第二复眼透 镜单元 103bl也以蜂窝状排列。
如图 lb所示的勾光装置是复眼透镜对 103a和 103b, 在实际应用中, 为了 简化设计和降低成本, 可以使两个复眼透镜对一体成型为单片式复眼透镜, 如 图 lc所示。该单片式复眼透镜 105包括第一面 105a和第二面 105b,第一面 105a 包括周期性排列的第三复眼透镜单元 105al , 第二面 105b包括周期性排列的第 四复眼透镜单元 105bl ,第三复眼透镜单元 105al与第四复眼透镜单元 105bl ― 一对应。 可以理解的是, 第一面 105a和第二面 105b分别对应于复眼透镜对中 的第一复眼透镜 103a和第二复眼透镜 103b并起到相同的勾光效果。
与上述复眼透镜对的描述相同的, 在照明灯具的应用中, 为了匹配圓形的 光斑形状, 一个优选的实施例是, 第三复眼透镜单元的形状是正六边形, 此时 第三复眼透镜 105a上的第三复眼透镜单元 105al以蜂窝状排列; 与之对应的, 第四复眼透镜单元 105b上得第二复眼透镜单元 105bl也以蜂窝状排列。
在本实施例的光源中, 匀光装置还可以是衍射光学元件 (DOE , Diffraction Optical Element,;)。 衍射光学元件具体来说就是在一个透明衬底的表面加工细微 算和设计, 可以使从准直器件阵列发射的准直入射光形成均匀的各种形状的光 斑。 这属于现有技术, 此处不再赘述。
在本实施例中, 发光二极管单元的表面覆盖有折射率低于 1.1 的透明低折 射率介质。 由前述的公式 2 可以看出, 发光光源所在的介质的折射率越低, 则 光源的光学扩展量越小。 因此在一个优化的实施例中, 低折射率介质为空气。 当然该透明低折射率介质还可以是氮气、 氩气等化学性质不活泼的气体, 这有 利于发光二极管单元的工作寿命的延长。
在实际应用中, 尤其是极端的工作环境下, 例如高温高湿的工作环境中, 裸露在空气中的发光二极管单元由于缺乏保护, 寿命可能受到影响; 而使用惰 性气体保护的成本较高。 因此在发光二极管单元中的发光二极管芯片表面涂覆 一层透明保护层是常用的技术手段, 如图 4a所示。 常用的透明保护层的材料的 折射率均高于 1.3, 本发明称之为高折射率材料, 例如但不限于透明硅胶或环氧 树脂材料, 这两种材料的折射率一^:在 1.4〜1.55之间。
然而, 如前所述, 覆盖于发光表面的高折射率材料会大幅度降低发光二极 管单元的亮度。 经实验证实, 发光二极管单元亮度的降低程度与读高折射率材 料的厚度 h与发光二极管单元中的发光二极管芯片的尺寸有关。 如图 4b所示。 其中定义发光二极管芯片的发光面 (参考图 4a ) 的外接圓的直径为 D。 如图 4b 所示, 随着 h/D的值增大, 发光二极管单元的亮度快速衰减; 当 h/D=0.5时, 发 光二极管单元的亮度衰减为不覆盖高折射率材料(即 h/D=0 ) 时的 70%。
由此可见, 发光二极管单元的亮度与其可靠性存在一定的矛盾; 而当高折 射率介质的厚度小于发光二极管芯片的发光面外接圓直径的 50%时, 发光二极 管单元的亮度高于发光二极管芯片表面覆盖低折射率介质(如空气)时的 70%, 这在实际应用中往往是可以接受的。
图 4b所呈现的规律可以在图 4a所示的发光二极管单元的结构示意图中得 到解释。 其中, 发光二极管芯片 401 固定于导热衬底 402上, 在发光二极管芯 片 401表面覆盖一层高折射率介质 403。从发光二极管芯片 401出射的小角度光 线 412, 可以直接穿透高折射率介质与其上方空气的界面而出射; 而大角度光线 413则在高折射率介质与其上方空气的界面发生全反射后,入射到发光二极管芯 片的范围以外。 即使发光二极管芯片外的区域是反射面, 使光线 413 可以被再 次反射并最终得到出射, 这部分光线能量也处于发光二极管芯片 401 发光范围 以外, 属于杂散光而不能最终得到利用。 介于光线 412与 413的情况之间的是 光线 411, 这部分光线虽然在高折射率介质与其上方空气的界面发生全发射, 但 是由于可以反射回到发光二极管芯片 401 表面并再次 ¾ 射并最终出射, 这部 分光线是可以被最终收集并利用的。 由此可见, 高折射率介质会导致全反射光线 401和 403的产生, 但是只要 h/D的比例较小, 全反射的光线大部分被反射回到发光二极管芯片本身, 则光线 401的比例较高, 光线 403所造成的杂散光的比例很小, 此时发光二极管单元的 亮度损失并不大。
当然, 随着发光二极管芯片的制作工艺的改善和可靠性的提升, 在光源可 靠性可以保证或对于可靠性要求不高的应用场合, 不使用高折射率介质覆盖发 光二极管芯片可以实现光源亮度的最大化。
在本实施例中, 发光二极管阵列 101 包括两种发光颜色不同的发光二极管 单元 101a和 101b,每一种发光二极管单元都均勾分布于发光二极管阵列 101中, 这在图 1 a中表示为发光二极管单元 101a和 101b相互交错排列。
在实际应用中, 发光二极管阵列 101还可以包括两种以上的发光颜色不同 的发光二极管单元, 一个最常用的例子是发光二极管阵列 101包括白光、 红光、 绿光、 蓝光发光二极管, 其俯视图如图 2所示。 在图 2中一个正方形单元代表 一个发光二极管单元, 正方形单元中的字母标识表示这个发光二极管单元的颜 色, 例如 R代表红色发光二极管单元, G代表绿光发光二极管单元, B代表蓝 色发光二极管单元, W代表白色发光二极管单元。
在该发光二极管阵列中, 发光二极管单元呈方阵排列; 与之对应的, 准直 器件阵列中, 准直器件单元也呈方阵排列, 且一一对应 (准直器件单元在图 2 中未画出)。 在更优选的实施例中, 为了使发光二极管阵列中的发光二极管单元 的排列更紧凑, 发光二极管单元呈蜂窝状排列, 同时准直器件阵列中, 准直器 件单元呈蜂窝状排列, 且发光二极管单元与准直器件单元一一对应。
作为一个优选的实施例, 在图 2显示的发光二极管阵列中, 为了使光源的 出射光混合更均勾, 每一种发光二极管单元都均勾分布于发光二极管阵列中。 例如 R所代表的各红色发光二极管单元就近似的均勾分布于整个发光二极管阵 列中。 更加优选的, 每一种发光二极管单元的分布都近似的关于发光二极管阵 列的中心对称, 这会使光源出射光中每一个种颜色成分在角分布上更加均匀。 在本实施例中, 准直器件单元是一片凸透镜, 如图 3a所示。 在该发光二极 管单元 300中, 发光二极管芯片 301 固定在一个导热衬底 302上, 在发光二极 管芯片四周固定有透镜支架 305, 用于固定凸透镜 307。 该发光二极管芯片 301 的发光面 301a处于该凸透镜 307的焦平面上, 根据基本的光学知识可知从发光 二极管芯片的发光面发出的光经过凸透镜 307 的折射后会形成近似于平行的出 射光束。
在本实施例中, 单片凸透镜的光收集能力有限, 因此为了增加发光二极管 单元的收光角度, 准直器件单元还可以是一个透镜组。 一个优选的实施例的示 意图如图 3b所示。 与图 3a所示的准直器件单元相比, 图 3b所示的准直器件单 元在发光二极管芯片上增加了一片凹-凸透镜, 凹面朝向发光二极管芯片的目的 是减少发光二极管芯片入射到该凹面的入射角并进一步的减少在该凹面的反射 损失。 通过对透镜或透镜组的良好的光学设计, 可以实现光线在准直过程中保 持光学扩展量不变。
在本实施例的光源中, 例如图 2所示的发光二极管阵列中, 需要发射白光 的发光二极管单元, 这可以由在蓝光发光二极管芯片表面涂覆黄色波长转换材 料的方法来实现, 如图 5a所示。 其中, 波长转换材料层 504覆盖于发光二极管 芯片 501的发光面上。该波长转换材料层 504是由折射率高于 1.3的高折射率介 质中混合波长转换材料形成的, 用于吸收发光二极管芯片 501 发射的光并受激 发射受激光。 与图 4a表示的实施例原理相同, 该波长转换材料层 504的厚度需 要小于发光二级光芯片 501的发光面外接圆的直径的 50%。
在本实施例中, 发光二极管芯片 501发射蓝光, 而波长转换材料层 504中 的波长转换材料为黄色荧光粉, 则该发光二极管单元 500 的出射光中包括该黄 色荧光粉受激发射的黄光 522,同时还包括没有被波长转换材料层吸收的剩余的 蓝光 521。
值得说明的是, 使用蓝光发光二极管芯片激发黄色波长转换材料来产生白 光只是举例, 并不限制其它波长转换材料的使用。 在实际应用中, 为了满足一些特殊的颜色光的需求, 有时还需要一个位于 来的光, 例如该滤光片可以反射激发光并透射受激光, 这样就可以得到纯色的 料的二次激发, 如图 5b示意的发光二极管单元, 其中 509为反射激发光并透射 受激光的滤光片。 另外, 滤光片也可以通过透射一部分受激光同时反射另一部 分受激光来调整出射光的颜色。 这是公知技术, 此处不赘述。
值得说明的是, 如图 6所示, 滤光片 609还可以被放置于准直器件单元与 匀光装置的光路之间, 同样可以起到过滤从该准直器件单元出射的光的作用。 与图 5b的实施例相比, 该实施例中的滤光片 609的入射光的角度更小, 所以滤 光片的设计更筒单, 加工也更容易实现。
在本实施例中, 如图 3a和 3b所示, 使用单片凸透镜或透镜组来收集和准 直发光二极管单元发出的光。 在实际应用中, 准直器件单元还可以使用复合抛 物面集光器 (CPC, Compound Parabolic Concentrator), 如图 7所示。 复合抛物面 集光器 707是按照非成像光学原理设计的能够保证光学扩展量不变的光学器件, 其包括光入口 707a和光出口 707b, 光入口 707a紧贴在发光二极管单元 701的 发光表面上。 发光二极管单元 701所发出的光线入射到光入口 707a后, 或直接 出射于光出口 707b, 或经过复合抛物面集光器 707的侧壁反射一次后由光出口 707b出射。
复合抛物面集光器是一个保证光学扩展量守恒的光收集器件, 其光出口的 面积大于光入口的面积, 因此根据公式(3 )可知, 其光出口的光出射角一定小 于光入口的光入射角, 因此可以用来实现光束的准直。
复合抛物面集光器相对于透镜或透镜组的优势在于, 复合抛物面集光器可 以收集到发光二极管单元发出的所有角度的光线, 而透镜或透镜组不可以, 因 此复合抛物面集光器的收集效率更高; 同时复合抛物面集光器的问题在于成本 高昂。 在本实施例前面的描述中, 准直器件单元与发光二极管单元都是——对应 的, 在实际应用中, 一个准直器件单元可以对应于多个发光二极管单元, 如图
8a和 8b所示。 图 8a与图 7的不同点在于, 其复合抛物面集光器 807的入光口 对应于多颗发光二极管单元。 在本实施例中, 读多颗发光二极管单元为四颗发 光二极管单元, 其俯视图如图 8b所示。 在本实施例中, 该四颗发光二极管单元 分别是红光发光二极管单元 801R、绿光发光二极管单元 801G、蓝光发光二极管 单元 801B和白光发光二极管单元 801W。 这样四颗不同颜色的发光二极管单元 排列成一组, 在被复合抛物面集光器 807收集和准直过程中也会发生混合, 有 助于提高光源出射光的均匀性。
需要指出的是,此处的举例并不限制其它的发光二极管单元的组合的使用。 同样的, 透镜或透镜组构成的准直器件单元也可以对应于多颗发光二极管单元。
在本实施例中, 匀光装置是复眼透镜对。 在实际应用中, 匀光装置还可以 是积分棒, 这作为本发明的第二实施例如图 10所示。
在本实施例的光源中, 还包括放置于准直器件阵列 102和积分棒 120的光 路之间的聚焦透镜 104, 用于将从准直器件阵列 103出射的光聚焦于积分棒 120 的入口。 在本实施例中, 通过在积分棒 120 内侧壁的不断反射, 不同颜色的光 线可以得到均匀的混合。
本实用 i£提出一种照明装置, 如图 9所示。 读照明装置包括上述的光源。 具体来说, 该照明装置包括如图一所示的光源 100, 光源 100发出的光经过一组 透镜 104和 109后入射于屏幕 105上, 形成均匀的光斑。
在本实施例中, 还包括控制装置, 用于分别独立的对光源 100中的每一种 颜色的发光二极管单元的开关和输入功率进行控制, 进而控制该照明装置的混 合的出射光的强度和颜色。
在本发明的光源和照明装置中, 通过控制发光二极管芯片表面覆盖的介质 和介质的厚度, 可以使发光二极管芯片发光的光学扩展量达到最小; 同时通过 控制准直器件阵列单元的设计使得发光二极管单元发出的光线通过该准直器件 阵列单元时光学扩展量不会扩大; 最后再通过勾光装置使得两种或以上发光颜 色的发光二极管单元发出的光可以实现均匀混合, 并最终实现颜色均匀、 亮度 最大化的出射光斑。
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利 用本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运 用在其他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

1.一种光源, 其特征在于, 包括:
发光二极管阵列, 该发光二极管阵列包括至少两种发光颜色不同的发光二 极管单元, 每个发光二极管单元包括一个发光二极管芯片;
所述发光二极管芯片的表面覆盖有折射率低于 1. 1的透明低折射率介质, 或折射率高于 1. 3的透明高折射率介质, 该高折射率介质的厚度小于所述发光 二极管芯片发光面的外接圓直径的 50%;
准直器件阵列, 读准直器件阵列包括至少一个准直器件单元, 读准直器件 单元与至少一颗发光二极管单元对应, 用于准直读至少一颗发光二极管单元发 出的光且保持读至少一颗发光二极管单元发出的光的光学扩展量基本不变; 匀光装置, 用于将从准直器件阵列出射的光做均匀化处理。
2.根据权利要求 1所述的一种光源, 其特征在于, 所述低折射率介质为空
3.根据权利要求 1所述的一种光源, 其特征在于, 所述的每一种发光颜色 的发光二极管单元都均勾分布于所述发光二极管阵列中。
4.根据权利要求 3所述的一种光源, 其特征在于, 所述的每一种发光颜色 的发光二极管单元的分布都近似的关于所述发光二极管阵列的中心对称。
5.根据权利要求 1所述的一种光源, 其特征在于, 所述发光二极管芯片的 表面覆盖有折射率高于 1. 3的透明高折射率介质, 该透明高折射率介质中混合 有波长转换材料。
6.根据权利要求 1或 5所述的一种光源, 其特征在于, 还包括位于所述发 光二极管单元与所述准直器件单元的光路之间的滤光片, 用于过滤该发光二极 管单元发出的光。
7.根据权利要求 1或 5所述的一种光源, 其特征在于, 还包括位于所述准 直器件单元与所述匀光装置的光路之间的滤光片, 用于过滤从该准直器件单元 出射的光。
8.根据权利要求 1所述的一种光源, 其特征在于:
所述发光二极管阵列中, 所述发光二极管单元呈方阵排列;
所述准直器件阵列中, 所述准直器件单元呈方阵排列。
9.根据权利要求 1所述的一种光源, 其特征在于:
所述发光二极管阵列中, 所述发光二极管单元呈蜂窝状排列;
所述准直器件阵列中, 所述准直器件单元呈蜂窝状排列
10. 根据权利要求 1所述的一种光源, 其特征在于:
所述勾光装置为复眼透镜对, 所述复眼透镜对包括第一复眼透镜和第二复 眼透镜;
所述第一复眼透镜包括周期性排列的第一复眼透镜单元;
所述第二复眼透镜包括周期性排列的第二复眼透镜单元;
所述第一复眼透镜单元与所述第二复眼透镜单元——对应。
11. 根据权利要求 10所述的一种光源, 其特征在于, 所述第一复眼透镜 单元以蜂窝状排列; 所述第二复眼透镜单元以蜂窝状排列。
12. 根据权利要求 1所述的一种光源, 其特征在于:
所述勾光装置为单片式复眼透镜, 所述单片式复眼透镜包括第一面和第二 面;
所述第一面包括周期性排列的第三复眼透镜单元;
所述第二面包括周期性排列的第四复眼透镜单元;
所述第三复眼透镜单元与所述第四复眼透镜单元——对应。
13. 根据权利要求 12所述的一种光源, 其特征在于, 所述第三复眼透镜 单元以蜂窝状排列; 所述第四复眼透镜单元以蜂窝状排列。
14. 根据权利要求 1所述的一种光源, 其特征在于, 还包括:
放置于所述准直器件阵列和所述匀光装置的光路之间的聚焦透镜, 用于将 从准直器件阵列出射的光聚焦于所述勾光装置;
所述勾光装置是积分棒。
15. 根据权利要求 1所述的一种光源, 其特征在于, 所述匀光装置是衍射 光学元件。
16. 一种照明装置, 其特征在于, 包括如权利要求 1至 15中任意一项所 述的光源。
17. 根据权利要求 16所述的一种照明装置, 其特征在于, 还包括控制装 置, 用于分别独立的对所述光源中每一种颜色的发光二极管单元的开关和输入 功率进行控制。
PCT/CN2012/080735 2011-12-11 2012-08-29 光源和照明装置 WO2013086872A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12857395.3A EP2789897B1 (en) 2011-12-11 2012-08-29 Light source and illuminating device
US14/364,387 US9791132B2 (en) 2011-12-11 2012-08-29 Light source and illuminating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011104098999A CN102518964A (zh) 2011-12-11 2011-12-11 光源和照明装置
CN201110409899.9 2011-12-11

Publications (1)

Publication Number Publication Date
WO2013086872A1 true WO2013086872A1 (zh) 2013-06-20

Family

ID=46289986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080735 WO2013086872A1 (zh) 2011-12-11 2012-08-29 光源和照明装置

Country Status (4)

Country Link
US (1) US9791132B2 (zh)
EP (1) EP2789897B1 (zh)
CN (1) CN102518964A (zh)
WO (1) WO2013086872A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014201526A1 (en) * 2013-06-20 2014-12-24 Orica International Pte Ltd A method of producing an explosive emulsion composition

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102518964A (zh) * 2011-12-11 2012-06-27 深圳市光峰光电技术有限公司 光源和照明装置
KR101991334B1 (ko) 2012-11-14 2019-06-21 코에룩스 에스알엘 자연광을 생성하는 인공 조명 장치
WO2014076218A1 (en) * 2012-11-14 2014-05-22 Light In Light S.R.L. Illumination device synthesizing light from an object at virtually infinite distance
CN102966872A (zh) * 2012-12-04 2013-03-13 杨菊芳 Led照明器件
CN102937252A (zh) * 2012-12-04 2013-02-20 杨菊芳 Led照明设备
US9885461B2 (en) 2015-04-09 2018-02-06 Robe Lighting S.R.O. Homogenization system for an LED luminaire
WO2014110588A2 (en) * 2013-01-14 2014-07-17 Robe Lighting, Inc. Improved homogenization system for an led luminaire
CN203464053U (zh) * 2013-01-21 2014-03-05 深圳市光峰光电技术有限公司 照明***及发光装置
CN103968268B (zh) * 2013-01-31 2016-09-21 深圳市光峰光电技术有限公司 一种led光源***和led照明装置
WO2014117702A1 (zh) * 2013-02-04 2014-08-07 深圳市光峰光电技术有限公司 一种发光装置和灯具
CN203258423U (zh) * 2013-04-11 2013-10-30 深圳市绎立锐光科技开发有限公司 Led单元模组、发光装置以及光源***
CN104834095B (zh) * 2014-10-17 2017-05-17 深圳市科曼医疗设备有限公司 基于多颜色光束的匀光装置及光学***
CN104503103A (zh) * 2014-12-12 2015-04-08 常州市武进区半导体照明应用技术研究院 用于调节激光照明的方法及激光照明装置
JP6435526B2 (ja) * 2015-08-05 2018-12-12 パナソニックIpマネジメント株式会社 イヤホン
EP3430308A1 (en) 2016-03-15 2019-01-23 Philips Lighting Holding B.V. Compound parabolic collimator array for high intensity lighting
AU2016412623B2 (en) * 2016-06-28 2019-10-31 Siemens Mobility Inc. Optical system for a LED signal and wayside LED signal
DE102016113942A1 (de) * 2016-07-28 2018-02-15 HELLA GmbH & Co. KGaA Lichtquelle mit einer Primäroptik aus Silikon und Verfahren zur Herstellung der Lichtquelle
CN106200237A (zh) * 2016-09-09 2016-12-07 合肥鑫晟光电科技有限公司 荧光轮及投影仪
CN106504650B (zh) * 2016-11-23 2020-03-06 京东方科技集团股份有限公司 一种光源结构及显示装置
JP6852441B2 (ja) * 2017-02-14 2021-03-31 セイコーエプソン株式会社 光源装置及びプロジェクター
US10837619B2 (en) 2018-03-20 2020-11-17 Ledengin, Inc. Optical system for multi-emitter LED-based lighting devices
CN110955104B (zh) * 2018-09-26 2023-03-24 深圳光峰科技股份有限公司 光源***及投影***
CN111288410A (zh) * 2018-12-07 2020-06-16 深圳市绎立锐光科技开发有限公司 一种照明装置及应用其的汽车
WO2020148242A1 (en) * 2019-01-15 2020-07-23 Signify Holding B.V. Optical system and lighting device
WO2020152667A1 (en) * 2019-01-22 2020-07-30 Tatiana Kosoburd Lighting module for indoor farming
IT201900004783A1 (it) * 2019-03-29 2020-09-29 Coelux Srl Generatore di luce diretta per sistemi di illuminazione a imitazione cielo - sole
US10883704B2 (en) 2019-03-29 2021-01-05 Robe Lighting S.R.O. Homogenization system for an LED luminaire
CN112147836B (zh) * 2019-06-28 2023-08-04 深圳光峰科技股份有限公司 一种光源***及显示设备
KR20210053024A (ko) * 2019-11-01 2021-05-11 에스엘 주식회사 차량용 램프
CN112815272B (zh) 2019-11-18 2023-10-10 深圳市绎立锐光科技开发有限公司 光源***和发光设备
CN212391676U (zh) * 2020-07-16 2021-01-22 歌尔光学科技有限公司 光学***及投影设备
KR20220043782A (ko) * 2020-09-29 2022-04-05 에스엘 주식회사 차량용 램프
CN114002900B (zh) * 2021-12-24 2022-05-03 宁波舜宇车载光学技术有限公司 图像投射装置及制造图像投射装置的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006155956A (ja) 2004-11-25 2006-06-15 Harison Toshiba Lighting Corp 照明装置
CN101027579A (zh) * 2004-09-24 2007-08-29 皇家飞利浦电子股份有限公司 照明***
CN101067663A (zh) * 2007-06-15 2007-11-07 清华大学 一种用于led光源的透镜
CN101373046A (zh) * 2008-09-12 2009-02-25 上海大学 Led定向投射器
CN101770150A (zh) * 2010-01-20 2010-07-07 宁波市科技园区华域电子有限公司 一种p、s光分时工作的光学引擎
CN101988631A (zh) 2009-07-31 2011-03-23 深圳市光峰光电技术有限公司 Led舞台灯光照明设备及其改善颜色均匀性的方法
CN102074637A (zh) * 2009-11-19 2011-05-25 深圳市光峰光电技术有限公司 封装固态发光芯片的方法、结构及使用该封装结构的光源装置
CN102142511A (zh) * 2010-02-01 2011-08-03 深圳市光峰光电技术有限公司 基于光波长转换的固态光源及其封装方法
CN102155713A (zh) 2010-04-08 2011-08-17 深圳市光峰光电技术有限公司 混光灯具
CN102518964A (zh) * 2011-12-11 2012-06-27 深圳市光峰光电技术有限公司 光源和照明装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3448670B2 (ja) * 1993-09-02 2003-09-22 株式会社ニコン 露光装置及び素子製造方法
US5813753A (en) * 1997-05-27 1998-09-29 Philips Electronics North America Corporation UV/blue led-phosphor device with efficient conversion of UV/blues light to visible light
CN2743678Y (zh) * 2004-07-30 2005-11-30 朱献忠 一种多光源照明灯头
KR100638876B1 (ko) * 2005-07-22 2006-10-27 삼성전기주식회사 보호 소자의 배치 구성을 개선한 측면형 발광 다이오드
JP4799341B2 (ja) * 2005-10-14 2011-10-26 株式会社東芝 照明装置
JP4805026B2 (ja) * 2006-05-29 2011-11-02 シャープ株式会社 発光装置、表示装置及び発光装置の制御方法
JP2010532104A (ja) * 2007-06-27 2010-09-30 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 高効率白色発光ダイオードのための光学設計
CN201142145Y (zh) * 2007-08-06 2008-10-29 重庆市易博数字技术有限公司 一种led交通信号灯
CN101634754A (zh) 2008-07-25 2010-01-27 成都欧恒光电科技有限公司 采用led光源的lcd投影光学引擎及其投影装置
JP2010231938A (ja) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Led照明装置
CN101561087A (zh) * 2009-05-07 2009-10-21 董学文 一种led平面光源结构
EP2454626B1 (en) 2009-07-13 2017-04-19 Martin Professional ApS Color-combining illumination device
CN201487708U (zh) 2009-07-31 2010-05-26 深圳市光峰光电技术有限公司 改善颜色均匀性的led舞台灯光照明设备
TW201126114A (en) * 2009-08-20 2011-08-01 Illumitex Inc System and method for a phosphor coated lens
JP5443959B2 (ja) * 2009-11-25 2014-03-19 パナソニック株式会社 照明装置
CN102142510B (zh) * 2010-02-01 2013-02-27 深圳市光峰光电技术有限公司 基于光波长转换的固态光源及其应用
CN101916805A (zh) * 2010-07-13 2010-12-15 东南大学 增加发光二极管外发光效率的同心光子晶体结构
JP5581958B2 (ja) * 2010-10-12 2014-09-03 ソニー株式会社 照明装置、投影型表示装置、直視型表示装置
JP5854530B2 (ja) * 2010-10-21 2016-02-09 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Ledアレイのための低コスト多機能ヒートシンク
JP2012113223A (ja) * 2010-11-26 2012-06-14 Sony Corp 照明装置、投影型表示装置および直視型表示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101027579A (zh) * 2004-09-24 2007-08-29 皇家飞利浦电子股份有限公司 照明***
JP2006155956A (ja) 2004-11-25 2006-06-15 Harison Toshiba Lighting Corp 照明装置
CN101067663A (zh) * 2007-06-15 2007-11-07 清华大学 一种用于led光源的透镜
CN101373046A (zh) * 2008-09-12 2009-02-25 上海大学 Led定向投射器
CN101988631A (zh) 2009-07-31 2011-03-23 深圳市光峰光电技术有限公司 Led舞台灯光照明设备及其改善颜色均匀性的方法
CN102074637A (zh) * 2009-11-19 2011-05-25 深圳市光峰光电技术有限公司 封装固态发光芯片的方法、结构及使用该封装结构的光源装置
CN101770150A (zh) * 2010-01-20 2010-07-07 宁波市科技园区华域电子有限公司 一种p、s光分时工作的光学引擎
CN102142511A (zh) * 2010-02-01 2011-08-03 深圳市光峰光电技术有限公司 基于光波长转换的固态光源及其封装方法
CN102155713A (zh) 2010-04-08 2011-08-17 深圳市光峰光电技术有限公司 混光灯具
CN102518964A (zh) * 2011-12-11 2012-06-27 深圳市光峰光电技术有限公司 光源和照明装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2789897A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014201526A1 (en) * 2013-06-20 2014-12-24 Orica International Pte Ltd A method of producing an explosive emulsion composition

Also Published As

Publication number Publication date
EP2789897A4 (en) 2015-08-26
US9791132B2 (en) 2017-10-17
US20150109773A1 (en) 2015-04-23
CN102518964A (zh) 2012-06-27
EP2789897A1 (en) 2014-10-15
EP2789897B1 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
WO2013086872A1 (zh) 光源和照明装置
US9075293B2 (en) Illumination device, projecting device and lighting device
US20120217519A1 (en) Method and structure for encapsulating solid-state light emitting chip and light sources using the encapsulation structure
JP7123231B2 (ja) 光源装置
WO2011011979A1 (zh) 舞台灯光照明***及其提供高亮度白光的方法
JP2015508551A (ja) 発光デバイスおよびこれを用いた投影システム
KR20150143656A (ko) 발광 장치 및 프로젝션 시스템
CN203587953U (zh) 光源、投影显示装置和光纤照明装置
WO2011011980A1 (zh) 高效合光的舞台灯光照明装置
CN201851899U (zh) 高均匀性混光灯具
CN202756929U (zh) 光源和照明装置
CN103672501B (zh) 光源
CN208901099U (zh) 一种光源装置及照明***
CN106950785B (zh) 一种光源装置及照明装置
CN212986806U (zh) 一种消色差发光装置
CN113900336B (zh) 光源组件和投影设备
CN110360482B (zh) 具有扩散器和蜂窝状聚光器的光学***和探照灯
CN203585861U (zh) 光源
CN112628617A (zh) 一种折反式激光发光装置
WO2020078185A1 (zh) 照明装置及照明***
KR101837431B1 (ko) 광품질 개선구조를 갖는 엘이디 조명기구
CN114216078A (zh) 照明灯具
CN113900339A (zh) 光源组件和投影设备
US9052418B2 (en) Light source module
WO2020119354A1 (zh) 激光照明灯具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012857395

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14364387

Country of ref document: US