WO2013078844A1 - 一种密闭式循环水冷却装置和方法 - Google Patents

一种密闭式循环水冷却装置和方法 Download PDF

Info

Publication number
WO2013078844A1
WO2013078844A1 PCT/CN2012/076189 CN2012076189W WO2013078844A1 WO 2013078844 A1 WO2013078844 A1 WO 2013078844A1 CN 2012076189 W CN2012076189 W CN 2012076189W WO 2013078844 A1 WO2013078844 A1 WO 2013078844A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooled
circuit
cooling water
water
cooling
Prior art date
Application number
PCT/CN2012/076189
Other languages
English (en)
French (fr)
Inventor
丁一工
姚为正
张建
阮卫华
王大伟
Original Assignee
国家电网公司
许昌许继晶锐科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 许昌许继晶锐科技有限公司 filed Critical 国家电网公司
Priority to AP2014007682A priority Critical patent/AP2014007682A0/xx
Priority to US14/361,858 priority patent/US9596786B2/en
Priority to BR112014013288-7A priority patent/BR112014013288B1/pt
Publication of WO2013078844A1 publication Critical patent/WO2013078844A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20254Cold plates transferring heat from heat source to coolant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/02Devices using other cold materials; Devices using cold-storage bodies using ice, e.g. ice-boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/002Liquid coolers, e.g. beverage cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20281Thermal management, e.g. liquid flow control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20945Thermal management, e.g. inverter temperature control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to the field of cooling devices, and more particularly to a closed circulating water cooling apparatus and method for recooling cooling water passing through an air cooler through a plate heat exchanger. Background technique
  • one technique to be solved by the present invention provides a cooling device that improves the cooling capacity of the cooling device.
  • a closed circulating water cooling device comprising: an internal cooling device, a plate heat exchanger
  • an ice storage auxiliary cooling device wherein the internal cooling device comprises an internal cooling circulation pump 2 and an air cooler 3; the ice storage auxiliary cooling device comprises an external cooling circulation pump 8 and an ice storage device 9;
  • the internal cooling water in the internal cooling device of the device 7 exchanges heat with the external cooling water flowing through the ice storage auxiliary cooling device of the plate heat exchanger 7.
  • the internal cooling device further includes a first circuit valve 4 and a second circuit valve 5 or 6; in a state where the first circuit valve 4 is opened and the second circuit valves 5 and 6 are closed
  • the air cooler 3 and the cooled device 1 form a first loop, and the inner cooling water circulates in the first loop; in the state where the first loop valve 4 is closed, and the second loop valves 5 and 6 are opened, the cooled device 1.
  • the air cooler 3 and the plate heat exchanger 7 form a second circuit in which the inner cooling water circulates.
  • the ice cold storage auxiliary cooling device stops operating, the inner cooling water circulates in the first circuit, and the inner cooling water passes After the air cooler 3 is cooled, the cooled device 1 is cooled; when the ambient temperature is higher than 1 ⁇ and below the temperature threshold ⁇ 2 , the first circuit valve 4 is closed, and the second circuit valve 5, 6 is opened.
  • Cooling water is circulated in the second circuit, and the internal cooling water is cooled by the external cooling water through the heat exchanger 7, and then cooled by the cooling device 1; the ice storage device 9 is operated at night Cooling; when the ambient temperature is higher than T 2 and lower than the temperature threshold T 3 , closing the first circuit valve 4, and opening the second circuit valve 5, 6, the inner cooling water circulates in the second circuit, The internal cooling water is cooled by the air cooler 3, and then cooled by the cooling water through the plate heat exchanger 7, and the further cooled internal cooling water is cooled to cool the cooled device 1; the ice storage device 9 is operated at night. And cold storage; where, ⁇ is less than ⁇ 2 and ⁇ 2 is less than ⁇ 3 .
  • the internal cooling device further includes a water temperature sensor and/or an ambient temperature sensor, and an ambient temperature measured by the water temperature sensor and/or an ambient temperature measured by the ambient temperature sensor a control unit that controls opening and closing of the first circuit valve 4 and the second circuit valves 5, 6.
  • the plate heat exchanger 7 and the ice storage device 9 form a circulation loop for externally cooled circulating water.
  • the internal cooling circulation pump 2 and the external cooling circulation pump 8 are configured in a master-slave redundancy mode.
  • the device to be cooled 1 is a converter valve in a direct current power transmission device.
  • the cooling device of the present invention uses a plate heat exchanger in combination with an ice storage air conditioner to recool the internal cooling water passing through the air cooler, thereby improving the cooling capacity of the cooling device. It solves the problem that the air cooler can't cool the fluid below the ambient temperature and the ambient temperature, and there is no water loss during the operation of the equipment, which achieves the purpose of water saving.
  • One technique to be solved by the present invention provides a cooling method that increases the cooling capacity of the cooling device.
  • a closed circulating water cooling method comprising: cooling water to be cooled by an internal cooling water in an internal cooling device; the internal cooling water flowing through the plate heat exchanger 6, and ice cooling auxiliary cooling flowing through the plate heat exchanger 6.
  • the external cooling water in the device exchanges heat; wherein the internal cooling device comprises an internal cooling circulation pump 2 and an air cooler 3; the ice storage auxiliary cooling device comprises an external cooling circulation pump 8 and an ice storage device 9;
  • the first circuit valve 4 is opened, and the second circuit valves 5, 6 are closed, the air cooler 3 and the cooled device 1 form a first circuit, and the inner cooling water is in the first circuit
  • the first loop valve 4 is closed, and the second loop valves 5, 6 are opened, the second loop is formed by the cooling device 1, the air cooler 3 and the plate heat exchanger 7, and the inner cooling water is in the second loop Medium circulation; the heat exchanger 7 and the ice storage device 9 form a circulation loop of external cold circulating water, Circulate in the circulation loop of the cooling water.
  • the ice cold storage auxiliary cooling device stops operating, the internal cooling water circulates in the first circuit, and the internal cooling water passes After the air cooler 3 is cooled, the cooled device 1 is cooled; when the ambient temperature is higher than 1 ⁇ and below the temperature threshold ⁇ 2 , the first circuit valve 4 is closed, and the second circuit valve 5, 6 is opened.
  • Cooling water is circulated in the second circuit, and the internal cooling water is cooled by the external cooling water through the heat exchanger 7, and then cooled by the cooling device 1; the ice storage device 9 is operated at night Cooling; when the ambient temperature is higher than T 2 and lower than the temperature threshold T 3 , closing the first circuit valve 4, and opening the second circuit valve 5, 6, the inner cooling water circulates in the second circuit, The internal cooling water is cooled by the air cooler 3, and then cooled by the cooling water through the plate heat exchanger 7, and the further cooled internal cooling water is cooled to cool the cooled device 1; the ice storage device 9 is operated at night. And cold storage; where, ⁇ is less than ⁇ 2 and ⁇ 2 is less than ⁇ 3 .
  • the internal cooling device is further provided with a water temperature sensor and/or an ambient temperature sensor; the control unit measures the temperature of the internal cooling water measured by the water temperature sensor and/or the environment measured by the ambient temperature sensor The temperature controls the opening and closing of the first circuit valve 4 and the second circuit valves 5, 6.
  • the internal cooling circulation pump 2 and the external cooling circulation pump 8 are configured in a master-standby redundancy mode.
  • the cooled device 1 is a converter valve in a direct current power transmission device.
  • the method of the present invention uses a plate heat exchanger in combination with an ice storage air conditioner to re-cool the internal cooling water passing through the air cooler, thereby improving the cooling capacity of the cooling device.
  • the problem that the air cooler cannot cool the fluid to below the ambient temperature and the ambient temperature is solved, and the water consumption of the device is not lost during the operation of the device, thereby achieving the purpose of water saving.
  • FIG. 1 is a schematic view of an embodiment of a cooling device according to the present invention
  • FIG. 2 is a schematic view showing an operating state of an embodiment of a cooling device according to the present invention
  • FIG. 3 is a schematic illustration of another operational state of one embodiment of a cooling apparatus in accordance with the present invention. detailed description
  • the cooling apparatus and method of the present invention utilizes a plate heat exchanger in combination with an ice storage air conditioner to recool the internal cooling water passing through the air cooler, thereby improving the cooling capacity of the cooling device.
  • FIG. 1 is a schematic illustration of one embodiment of a cooling apparatus in accordance with the present invention. As shown in Fig.
  • the internal cooling device comprises: an internal cooling circulation pump 2, an air cooler 3, a first circuit valve 4, two second circuit valves 5 and a valve 6;
  • the auxiliary cooling device comprises: an external cooling circulation pump 8, ice The cold storage device 9; when the first circuit valve 4 is opened, the second circuit valve 5 and the valve 6 are closed, the air cooler 3 and the cooled device 1 form a circuit; the internal cooling circulation pump 2 provides power to circulate the inner cooling water in the circuit Wherein, the inner cooling water is cooled by the air cooler 3, and then the cooled device 1 is cooled.
  • the circuit is formed by the cooling device 1, the air cooler 3 and the plate heat exchanger 7; the internal cooling circulation pump 2 provides power to make the internal cooling water in the circuit The intermediate circulation; wherein, after the inner cooling water is cooled by the air cooler 3, the heat exchanger 7 is further cooled, and the cooled device 1 is cooled.
  • the external cooling circulation pump 8 supplies power to circulate the externally cooled circulating water in a circuit formed by the plate heat exchanger 7 and the ice thermal storage device 9, wherein the ice thermal storage device 9 externally circulates the water Line cooling.
  • the second circuit valve may have one water outlet or water inlet of the plate heat exchanger 7. There may also be two second circuit valves, which are installed in the water outlet and the water inlet of the plate heat exchanger 7, respectively.
  • the ice thermal storage device 9 performs electric cooling to perform ice making and stores ice.
  • the cooled device 1 is a converter valve in a DC power transmission device, and the internal cooling water is pure water.
  • the internal cooling water is heated and heated by the converter valve, it is driven by the internal cooling circulation pump 2, and the internal cooling water is cooled by the i ⁇ 1 ⁇ 4 heat exchanger 7, and the cooled cooling water is cooled. It is driven by the internal cooling circulation pump 2 and sent to the converter valve, and the internal cold water is cycled again and again.
  • the first circuit valve 4 When the ambient temperature is relatively high, the first circuit valve 4 is closed, the two second circuit valves 5 and the valve 6 are opened, and the internal cold water that has cooled part of the heat of the air cooler is further cooled to the industrial equipment by the plate heat exchanger 7. Allowable temperature range.
  • the plate heat exchanger 7 uses the ice storage device 9 to collect the collected heat «L out.
  • the first circuit valve 4 and the second circuit valve 5 and the valve 6 may be either automatic or manual valves.
  • the internal cooling device further includes a control unit, which is not shown in FIG. 1.
  • a control unit which is not shown in FIG. 1.
  • the control unit closes the first circuit valve 4, opens the second circuit valve 5 and Valve 6.
  • a water temperature sensor and/or an ambient temperature sensor are provided in the internal cooling device for measuring the water temperature and the ambient temperature of the internal cooling water.
  • the internal cooling circulation pump 2 and the external cooling circulation pump 8 can be configured in a master-standby redundancy manner, thereby improving the safety and reliability of the operation of the cooling device.
  • the internal cooling device includes: an internal cooling circulation pump 2, an air cooler 3, wherein the cooling device 1 and the air cooler 3 form a circuit; and the internal cooling circulation pump 2 provides power,
  • the inner cooling water is circulated in the circuit; wherein, the inner cooling water is cooled by the air cooler 3, and then the cooled device 1 is cooled, and the inner cold water is cycled again and again.
  • FIG. 3 is a schematic illustration of another operational state of one embodiment of a cooling apparatus in accordance with the present invention.
  • the internal cooling device comprises: an internal cooling circulation pump 2 and an air cooler 3;
  • the auxiliary cooling device comprises: an external cooling circulation pump 8 and an ice storage device 9; wherein the external cooling circulation pump 8 provides power to make the external cooling cycle
  • the water circulates in a circuit formed by the plate heat exchanger 7 and the ice thermal storage device 9, wherein the ice thermal storage device 9 cools the cold circulating water.
  • the cooled device 1, the air cooler 3 and the plate heat exchanger 7 form a circuit; the internal cooling circulation pump 2 provides power to circulate the inner cooling water in the circuit; wherein the inner cooling water is cooled by the air cooler 3, and then enters the plate type
  • the heater 7 is further cooled, and the cooled device 1 is cooled; the internal cooling water flowing through the plate heat exchanger 7 exchanges heat with the external cooling water flowing through the plate heat exchanger 7, and the internal cold water is recirculated as described above.
  • the value of ⁇ is determined by the design capacity of the air cooler 3, generally - 5 - 25 , and the cooling capacity requirement can be satisfied by using the air cooler 3.
  • the ice storage auxiliary cooling device is stopped, the first circuit valve 4 is opened, the second circuit valve 5 and the valve 6 are closed, the air cooler 3 and the cooled device 1 form a circuit, and the internal cooling water is circulated in the first circuit.
  • the cooled device 1 is cooled.
  • the internal cooling circulation pump 2 is in operation.
  • the typical cooling system has a maximum energy consumption of 2/3.
  • the air cooler 3 enters full speed operation (ie, the maximum energy consumption in this mode is 176kW).
  • the temperature setting of 1 ⁇ is consistent with the temperature of L in the above mode, ⁇ 2 is determined by the design margin of the air cooler, when the temperature is larger, ⁇ 2
  • the higher value of about ⁇ 2 substantially maximum ambient temperature is low than the extreme 3 - ( ⁇ 2 - is generally 30 - 38).
  • the ice storage device is activated at night for cold storage, The plate heat exchanger is activated during the day to dry the cold stored at night.
  • the first circuit valve 4 is closed, and the second circuit valve 5, 6 is opened, and the second circuit is formed by the cooling device 1, the air cooler 3 and the plate heat exchanger 7, and the inner cooling water circulates in the second circuit, and the inner cooling water passes through
  • the cooled device 1 is cooled.
  • the ice storage device 9 is operated at night and stored in cold.
  • the air cooler 3 may or may not operate. If the night temperature drops below the temperature threshold L, the first circuit valve 4 is opened, the second circuit valve 5 and the valve 6 are closed, the air cooler 3 and the cooled device 1 form a circuit, and the internal cooling water circulates in the circuit.
  • the maximum energy consumption of the external set of a typical converter valve cooling system is approximately equivalent to 2/3 of the air cooler's 3 ⁇ 4 ⁇ 4 ⁇ operating state.
  • the ambient temperature is higher than 2 and lower than the temperature Î ⁇ threshold when ⁇ 3, ⁇ temperature setpoint 2 Î ⁇ consistent with the temperature patterns 2, ⁇ 3 for the maximum temperature extreme environments, ⁇ 3 - generally from 38 - 45.
  • the ice storage air conditioning unit must be activated for cold storage at night, and the plate heat exchanger is activated during the day to dry the stored cooling capacity.
  • the air coolers 3 are all in operation, and the plate heat exchanger and the externally cooled main circulation pump are also in operation.
  • the first circuit valve 4 is closed, and the second circuit valve 5, 6 is opened, and the second circuit is formed by the cooling device 1, the air cooler 3 and the plate heat exchanger 7, and the inner cooling water circulates in the second circuit, and the inner cooling water passes through
  • the air cooler 3 is cooled, cooled by the outer cooling water through the plate heat exchanger 7, and the cooled cooling water is cooled by the further cooled inner cooling water 1.
  • the ice storage device 9 is operated at night and stored in the cold. In this mode of operation, a typical cooling system requires up to three energy savings.
  • the cooling apparatus and method of the present invention solves the problem that the air cooler cannot cool the fluid below ambient temperature and ambient temperature.
  • the ambient temperature is greater than or equal to the maximum influent temperature allowed by the process equipment, the air cooler cannot cool the primary cooling water, but instead heats the cooling water.
  • the cooling device of the present invention still has sufficient cooling capacity to meet the operational requirements of the process equipment.
  • the cooling device of the invention has no water loss during operation, achieves the purpose of water saving, and solves the disadvantage of large consumption of water when using the cooling tower.
  • the energy consumption of the cooling device is small at night, the ice storage air conditioning device is used for ice storage and energy storage, and the ice is used during the daytime. The energy of the savings is dry, and the power load is evenly distributed. And according to the ambient temperature, different operating modes can be selected to ensure that the energy consumption of the equipment is minimal during operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

一种密闭式循环水冷却装置和方法。该冷却装置包括:内冷却装置、板式换热器(7)、冰蓄冷辅助冷却装置;内冷却装置包括空冷器(3);冰蓄冷辅助冷却装置包括冰蓄冷装置(9);流经所述板式换热器(7)的内冷却装置中的内冷却水与流经板式换热器(7)的冰蓄冷辅助冷却装置中的外冷却水交换热量。利用该密闭式循环水冷却装置和方法能够提高冷却装置的冷却能力,当环境温度大于等于工艺设备允许的最大进水温度时,冷却装置仍具有足够的冷却能力,并且设备运行过程中无任何水的损耗,达到节水的目的。

Description

一种密闭式循环水冷却装置和方法 技术领域
本发明涉及冷却装置领域, 尤其涉及通过板式换热器将经过空 气冷却器的冷却水再次冷却的密闭式循环水冷却装置和方法。 背景技术
目前国内有众多的发电、 输电站如换流站均建设在干旱缺水的 北方地区, 这些地区往往具有在夏季温度较高, 水份蒸发量大等特 点, 因此水资源比较珍贵。 而如果采用普通的水冷却方式对发电、 输电站如换流站等的设备进行冷却, 则有可能消耗掉当地的稀有的 水资源, 所以这些电站常用的冷却设备均采用空气冷却器。 由于换 流站所在地环境温度均相对较低, 使用空气冷却器即可满足电站工 艺设备一一换流阀的冷却需要, 并且冷却效果较好。
但部分地区的高温温度较高, 空冷器无法将流体冷却到环境温 度, 则会限制空冷器在干旱地区中的应用。 例如在国内西北某地极 端环境最高温度高达 44 , 而直流输电工程中的核心设备换流阀所 允许的最大进阀温度只有 在此情况下, 空冷器不仅无法将换 流阀所用的纯水冷却, 而且相反地, 是在将冷却水加热。 因此此时 仅适用空气冷却器是不合适的。
同时由于发电设备和电力输送设备往往在最炎热的夏季进行 最大规格的运行, 而此时正是环境温度最高、 最极端的时候, 在此 情况下空冷器往往不具有足够的冷却能力, 使得换流站不得不采取 降负荷、 降功率的形式, 带来极大的经济损失的同时也不利于国民 经济的健康 L L 发明内容 有鉴于此,本发明要解决的一个技术问 提供一种冷却装置, 提高冷却装置的冷却能力。
一种密闭式循环水冷却装置, 包括: 内冷却装置、 板式换热器
7 和冰蓄冷辅助冷却装置; 其中所述内冷却装置包括内冷循环泵 2 和空冷器 3; 所述冰蓄冷辅助冷却装置包括外冷循环泵 8和冰蓄冷 装置 9; 流经所 式换热器 7的所述内冷却装置中的内冷却水与 流经所述板式换热器 7的所述冰蓄冷辅助冷却装置中的外冷却水交 换热量。
根据本发明装置的一个实施例, 所述内冷却装置进一步包括第 一回路阀门 4和第二回路阀门 5或 6; 在第一回路阀门 4开启, 并 且第二回路阀门 5和 6关闭的状态下, 空冷器 3和被冷却器件 1形 成第一回路, 内冷却水在所述第一回路中循环; 在第一回路阀门 4 关闭, 并且第二回路阀门 5和 6开启的状态下, 被冷却器件 1、 空 冷器 3和板式换热器 7形成第二回路, 内冷却水在所述第二回路中 循环。
根据本发明装置的一个实施例,当环境温度低于温度阈值 Ί\时, 所述冰蓄冷辅助冷却装置停止运行, 所述内冷却水在所述第一回路 中循环, 所述内冷却水经过空冷器 3被冷却后, 再冷却被冷却器件 1;当环境温度高于1\并且低于温度阈值 Τ2时,关闭第一回路阀门 4, 并且开启第二回路阀门 5、 6,所述内冷却水在所述第二回路中循环, 所述内冷却水经 it^L式换热器 7被所述外冷却水冷却后, 再冷却被 冷却器件 1; 所述冰蓄冷装置 9在夜间运行、 蓄冷; 当环境温度高 于 T2并且低于温度阈值 T3时, 关闭第一回路阀门 4, 并且开启第二 回路阀门 5、 6, 所述内冷却水在所述第二回路中循环, 所述内冷却 水经过空冷器 3被冷却,再经过板式换热器 7被所^卜冷却水冷却, 进一步冷却后的内冷却水再冷却被冷却器件 1; 所述冰蓄冷装置 9 在夜间运行并蓄冷; 其中, Ί\小于 Τ2并且 Τ2小于 Τ3。 根据本发明装置的一个实施例, 所述内冷却装置还包括水温传 感器和 /或环境温度传感器,以及根据所述水温传感器测量的内冷却 水的水温和 /或所述环境温度传感器测量的环境温度,控制所述第一 回路阀门 4、 第二回路阀门 5、 6的开闭的控制单元。
根据本发明装置的一个实施例, 所述板式换热器 7和所述冰蓄 冷装置 9形成外冷循环水的循环回路。
根据本发明装置的一个实施例, 所述内冷循环泵 2和外冷循环 泵 8采用主 -备冗余方式配置。
根据本发明装置的一个实施例, 所述被冷却器件 1为直流输电 设备中的换流阀。
本发明的冷却装置利用板式换热器结合蓄冰空调设备, 对经过 空气冷却器的内冷却水进行再次冷却,提高了冷却装置的冷却能力。 解决了空气冷却器无法将流体冷却到环境温度及环境温度以下的问 题, 并且, 设备运行过程中无^ Γ水的损耗, 达到了节水的目的。
本发明要解决的一个技术问 ¾A提供一种冷却方法, 提高冷却 装置的冷却能力。
一种密闭式循环水冷却方法, 包括: 内冷却装置中的内冷却水 冷却被冷却器件 1; 所述内冷却水流经板式换热器 6, 与流经板式换 热器 6的冰蓄冷辅助冷却装置中的外冷却水交换热量; 其中, 所述 内冷却装置包括内冷循环泵 2和空冷器 3; 所述冰蓄冷辅助冷却装 置包括外冷循环泵 8和冰蓄冷装置 9;
根据本发明方法的一个实施例, 将第一回路阀门 4开启, 并且 将第二回路阀门 5、 6关闭,空冷器 3和被冷却器件 1形成第一回路, 内冷却水在所述第一回路中循环; 将第一回路阀门 4关闭, 并且将 第二回路阀门 5、 6开启, 被冷却器件 1、 空冷器 3和板式换热器 7 形成第二回路, 内冷却水在所述第二回路中循环; 所 式换热器 7和所述冰蓄冷装置 9形成外冷循环水的循环回路, 所^卜冷却水 在所^卜冷却水的循环回路中循环。
根据本发明方法的一个实施例,当环境温度低于温度阈值 Ί\时, 所述冰蓄冷辅助冷却装置停止运行, 所述内冷却水在所述第一回路 中循环, 所述内冷却水经过空冷器 3被冷却后, 再冷却被冷却器件 1;当环境温度高于1\并且低于温度阈值 Τ2时,关闭第一回路阀门 4, 并且开启第二回路阀门 5、 6,所述内冷却水在所述第二回路中循环, 所述内冷却水经 it^L式换热器 7被所述外冷却水冷却后, 再冷却被 冷却器件 1; 所述冰蓄冷装置 9在夜间运行、 蓄冷; 当环境温度高 于 T2并且低于温度阈值 T3时, 关闭第一回路阀门 4, 并且开启第二 回路阀门 5、 6, 所述内冷却水在所述第二回路中循环, 所述内冷却 水经过空冷器 3被冷却,再经过板式换热器 7被所^卜冷却水冷却, 进一步冷却后的内冷却水再冷却被冷却器件 1; 所述冰蓄冷装置 9 在夜间运行并蓄冷; 其中, Ί\小于 Τ2并且 Τ2小于 Τ3
根据本发明方法的一个实施例, 所述内冷却装置还设置水温传 感器和 /或环境温度传感器;控制单元根据所述水温传感器测量的内 冷却水的水温和 /或所述环境温度传感器测量的环境温度,控制所述 第一回路阀门 4和第二回路阀门 5、 6的开闭。
根据本发明方法的一个实施例, 所述内冷循环泵 2和外冷循环 泵 8采用主 -备冗余方式配置。
根据本发明方法的一个实施例, 所述被冷却器件 1为直流输电 设备中的换流阀。
本发明的方法利用板式换热器结合蓄冰空调 i殳备, 对经过空气 冷却器的内冷却水进行再次冷却, 提高了冷却装置的冷却能力。 解 决了空气冷却器无法将流体冷却到环境温度及环境温度以下的问 题, 并且, 设备运行过程中无^ Γ水的损耗, 达到了节水的目的。 附图说明 此处所说明的附图用来提供对本发明的进一步理解,构成本 申请的一部分,本发明的示意性实施例及其说明用于解幹本发明, 并不构成对本发明的不当限定。 在附图中:
图 1为根据本发明的冷却装置的一个实施例的示意图; 图 2为根据本发明的冷却装置的一个实施例的一种运行状态的 示意图;
图 3为根据本发明的冷却装置的一个实施例的另一种运行状态 的示意图。 具体实施方式
本发明的冷却装置和方法利用板式换热器结合蓄冰空调 i殳备, 对经过空气冷却器的内冷却水进行再次冷却, 提高了冷却装置的冷 却能力。
下面结合图和实施例对本发明的技术方案进行多方面的描述。 图 1为根据本发明的冷却装置的一个实施例的示意图。 如图 1 所示, 内冷却装置包括: 内冷循环泵 2、 空冷器 3、第一回路阀门 4、 两个第二回路阀门 5和阀门 6; 辅助冷却装置包括: 外冷循环泵 8、 冰蓄冷装置 9; 当第一回路阀门 4开启, 第二回路阀门 5和阀门 6 关闭时, 空冷器 3和被冷却器件 1形成回路; 内冷循环泵 2提供动 力, 使内冷却水在回路中循环; 其中, 内冷却水经过空冷器被 3冷 却后, 冷却被冷却器件 1。
当第一回路阀门 4关闭, 第二回路阀门 5和阀门 6开启时, 被 冷却器件 1、 空冷器 3和板式换热器 7形成回路; 内冷循环泵 2提 供动力, 使内冷却水在回路中循环; 其中, 内冷却水经过空冷器 3 被冷却后, 进 X¼式换热器 7被继续冷却, 再冷却被冷却器件 1。
外冷循环泵 8提供动力, 使外冷循环水在板式换热器 7和冰蓄 冷装置 9形成的回路中循环, 其中, 冰蓄冷装置 9对外冷循环水进 行冷却。
根据本发明的一个实施例, 第二回路阀门可以有 1个, 安 * 板式换热器 7的出水口或进水口。 第二回路阀门也可以有两个, 分 别安装在板式换热器 7的出水口和进水口。
根据本发明的一个实施例,冰蓄冷装置 9采用电制冷进行制冰, 并存储冰。 被冷却器件 1为直流输电设备中的换流阀, 内冷却水为 纯水。
根据本发明的一个实施例, 内冷却水在被换流阀加热升温后, 由内冷循环泵 2驱动, 经 i±¼ 换热器 7, 内冷却水将得到冷却, 降温后的内冷却水由内冷循环泵 2驱动再送至换流阀, 内冷水如此 周而复始地循环。
在环境温度相对较高时, 关闭第一回路阀门 4、 打开两个第二 回路阀门 5和阀门 6, 将空冷器已经冷却了部分热量的内冷水利用 板式换热器 7继续冷却到工业设备所允许的温度范围内。 板式换热 器 7利用冰蓄冷装置 9将收集获取到的热量 «L出去。
根据本发明的一个实施例, 第一回路阀门 4和第二回路阀门 5 和阀门 6可以采用自动或手动阀门。
内冷却装置还包括控制单元, 在图 1中没有画出, 当内冷却水 的温度高于阈值, 或环境温度高于阈值时, 控制单元关闭第一回路 阀门 4, 开启第二回路阀门 5和阀门 6。 内冷却装置中设置了水温传 感器和 /或环境温度传感器, 用于测量内冷却水的水温和环境温度。
根据本发明的一个实施例, 内冷循环泵 2和外冷循环泵 8可以 采用主 -备冗余方式配置, 从而提高冷却装置运行的安全性和可靠 性。
图 2为根据本发明的冷却装置的一个实施例的一种运行状态的 示意图。 如图 2所示, 内冷却装置包括: 内冷循环泵 2、 空冷器 3、 其中, 被冷却器件 1、 空冷器 3形成回路; 内冷循环泵 2提供动力, 使内冷却水在回路中循环; 其中, 内冷却水经过空冷器 3被冷却后, 再冷却被冷却器件 1, 内冷水如此周而复始地循环。
图 3为根据本发明的冷却装置的一个实施例的另一种运行状态 的示意图。如图 3所示, 内冷却装置包括: 内冷循环泵 2、空冷器 3; 辅助冷却装置包括: 外冷循环泵 8、冰蓄冷装置 9; 其中外冷循环泵 8提供动力, 使外冷循环水在板式换热器 7和冰蓄冷装置 9形成的 回路中循环, 其中, 冰蓄冷装置 9对外冷循环水进行冷却。
被冷却器件 1、 空冷器 3和板式换热器 7形成回路; 内冷循环 泵 2提供动力, 使内冷却水在回路中循环; 其中, 内冷却水经过空 冷器 3被冷却后, 进入板式换热器 7被继续冷却, 再冷却被冷却器 件 1; 流经所述板式换热器 7的内冷却水与流经所述板式换热器 7 的外冷却水交换热量, 内冷水如此周而复始 环。
由以上可知, 所有水均在设备内部做密闭式循环, 没有任何水 的损失与浪费, 体现了无水耗的特点。
根据本发明的一个实施例, 当环境温度低于温度阈值 L时, 其 中 Ί\的值由空冷器 3的设计容量确定, 一般为 - 5 - 25 , 使用空冷 器 3即可满足冷却容量要求。 在此模式中, 冰蓄冷辅助冷却装置停 止运行, 第一回路阀门 4开启, 第二回路阀门 5和阀门 6关闭, 空 冷器 3和被冷却器件 1形成回路, 内冷却水在第一回路中循环, 内 冷却水经过空冷器 3被冷却后,再冷却被冷却器件 1。 内冷循环泵 2 处于运行状态, 在此运行模式下, 典型的一套冷却***的最大能耗 为 2/3的空冷器 3风机进入全速运转状态(即此种模式下的最大能 耗为 176kW X
当环境温度高于 Ί\并且低于温度阈值 T2时, 1\的温度定值与上 述的模式中 L的温度一致, Τ2由空冷器设计裕度确定, 当裕 大, Τ2温度值越高, 基本上 Τ2值约比极端环境最高温度低 3 - ( Τ2— 般为 30 - 38 )。 在 式中, 在夜间启动冰蓄冷装置进行蓄冷, 白天启动板式换热器将夜间储存的冷量幹放。 关闭第一回路阀门 4, 并且开启第二回路阀门 5、 6, 被冷却器件 1、 空冷器 3和板式换热 器 7形成第二回路, 内冷却水在第二回路中循环, 内冷却水经 i±¼ 式换热器 7被外冷却水冷却后,再冷却被冷却器件 1。冰蓄冷装置 9 在夜间运行、 蓄冷。 空冷器 3可以运行也可以不运行。 如果晚间的 温度下降到低于温度阈值 L时, 第一回路阀门 4开启, 第二回路阀 门 5和阀门 6关闭, 空冷器 3和被冷却器件 1形成回路, 内冷却水 在回路中循环。 在此运行模式下, 典型的一套换流阀冷却***的外 殳备最大能耗约相当于 2/3的空冷器 ¾\4^运转状态。 当环境温度高于 Τ2并且低于温度阈值 Τ3时, Τ2的温度定值与上 个模式中 Τ2的温度一致, Τ3为极端环境最高温度, Τ3—般为 38 - 45 。 在此模式中, 夜间必须启动蓄冰空调设备进行蓄冷, 在白天 启动板式换热器将储存的冷量幹放。 空冷器 3白^ 均处于 运转状态, 板式换热器及外冷主循环泵也处于运转状态。 关闭第一 回路阀门 4, 并且开启第二回路阀门 5、 6, 被冷却器件 1、 空冷器 3 和板式换热器 7形成第二回路, 内冷却水在第二回路中循环, 内冷 却水经过空冷器 3被冷却, 再经过板式换热器 7被外冷却水冷却, 被进一步冷却的内冷却水冷却被冷却器件 1。 冰蓄冷装置 9在夜间 运行、 蓄冷。 在此运行模式下, 典型的一套冷却***的能耗最大需 要 3簡。
本发明的冷却装置和方法解决了空气冷却器无法将流体冷却到 环境温度及环境温度以下的问题。 当环境温度大于等于工艺设备允 许的最大进水温度时, 空冷器无法将一次冷却水冷却, 反而将冷却 水加热, 本发明的冷却装置仍具有足够的冷却能力, 满足工艺设备 运行需要。 本发明的冷却装置在运行过程中无任何水的损耗, 达到 了节水的目的, 解决了使用冷却塔时消耗水量大的缺点。 在夜间冷 却装置能耗较小时, 利用蓄冰空调设备进行蓄冰储能, 在白天将冰 储蓄的能量幹放, 均匀分配了电力负荷。 并且可根据环境温度, 选 取不同的运转模式, 从而确保设备运行时能耗最小。
最后应当说明的是:以上实施例仅用以说明本发明的技术方 案而非对其限制; 尽管参照较佳实施例对本发明进行了详细的说 明, 所属领域的普通技术人员应当理解: 依然可以对本发明的具 体实施方式进行修改或者对部分技术特征进行等同替换; 而不脱 离本发明技术方案的精神, 其均应涵盖在本发明请求保护的技术 方案范围当中。

Claims

1. 一种密闭式循环水冷却装置, 其特征在于, 包括: 内冷却 装置、 板式换热器(7 )和冰蓄冷辅助冷却装置; 其中所述内冷却装 置包括内冷循环泵( 2 )和空冷器( 3 ); 所述冰蓄冷辅助冷却装置包 括外冷循环泵( 8 )和冰蓄冷装置 ( 9 ); 流经所述板式换热器( 7 ) 的所述内冷却装置中的内冷却水与流经所 式换热器( 7 )的所述 冰蓄冷辅助冷却装置中的外冷却水交换热量。
2. 如权利要求 1所述的装置, 其特 于: 所述内冷却装置 进一步包括第一回路阀门 (4 )和第二回路阀门 (5、 6 ); 在第一回 路阀门 (4 )开启, 并且第二回路阀门 (5、 6 )关闭的状态下, 空冷 器( 3 )和被冷却器件( 1 )形成第一回路, 内冷却水在所述第一回 路中循环; 在第一回路阀门 (4 )关闭, 并且第二回路阀门 (5、 6 ) 开启的状态下, 被冷却器件( 1 )、 空冷器( 3 )和板式换热器( 7 ) 形成第二回路, 内冷却水在所述第二回路中循环; 所 式换热器
( 7 )和所述冰蓄冷装置 ( 9 )形成所 ^卜冷却水的循环回路。
3. 如权利要求 2所述的装置, 其特征在于: 当环境温度低于 温度阈值1\时, 所述冰蓄冷辅助冷却装置停止运行, 所述内冷却水 在所述第一回路中循环, 所述内冷却水经过空冷器(3 )被冷却后, 再冷却被冷却器件( 1 ); 当环境温度高于 Ί\并且低于温度阈值 Τ2时, 关闭第一回路阀门(4 ), 并且开启第二回路阀门 (5、 6 ), 所述内冷 却水在所述第二回路中循环, 所述内冷却水经过板式换热器( 7 )被 所述外冷却水冷却后,再冷却被冷却器件( 1 ); 所述冰蓄冷装置 ( 9 ) 在夜间运行并蓄冷; 当环境温度高于 Τ2并且低于温度阈值 Τ3时, 关 闭第一回路阀门 (4 ), 并且开启第二回路阀门(5、 6 ), 所述内冷却 水在所述第二回路中循环, 所述内冷却水经过空冷器(3 )被冷却, 再经 ^¼式换热器( 7 )被所述外冷却水冷却后, 所述内冷却水冷却 被冷却器件( 1 ); 所述冰蓄冷装置 ( 9 )在夜间运行并蓄冷; 其中, Ί\小于 T2 , 并且 Τ2小于 Τ3
4. 如权利要求 2 所述的装置, 其特 于: 所述内冷却装置 还包括水温传感器和 /或环境温度传感器,以及根据所述水温传感器 测量的内冷却水的水温和 /或所述环境温度传感器测量的环境温度, 控制所述第一回路阀门 (4 )和第二回路阀门 (5、 6 )的开闭的控制 单元。
5. 如权利要求 1所述的装置,其特征在于:所述内冷循环泵( 2 ) 和外冷循环泵(8 )采用主 -备冗余方式配置。
6. 如权利要求 2 所述的装置, 其特征在于: 所述被冷却器件 ( 1 )为直流输电设备中的换流阀。
7. 一种密闭式循环水冷却方法, 其特征在于, 包括: 内冷却 装置中的内冷却水冷却被冷却器件( 1 ); 所述内冷却水流经板式换 热器( 6 ), 与流经板式换热器( 6 )的冰蓄冷辅助冷却装置中的外冷 却水交换热量; 其中, 所述内冷却装置包括内冷循环泵(2 )和空冷 器( 3 ); 所述冰蓄冷辅助冷却装置包括外冷循环泵( 8 )和冰蓄冷装 置(9 )。
8. 如权利要求 7 所述的方法, 其特征在于: 将第一回路阀门 ( 4 )开启, 并且将第二回路阀门 (5、 6 )关闭, 空冷器(3 )和被 冷却器件( 1 )形成第一回路, 内冷却水在所述第一回路中循环; 将第一回路阀门 (4 )关闭, 并且将第二回路阀门 (5、 6 )开启, 被 冷却器件 ( 1 )、 空冷器( 3 )和板式换热器( 7 )形成第二回路, 内 冷却水在所述第二回路中循环; 所述板式换热器( 7 )和所述冰蓄冷 装置( 9 )形成外冷循环水的循环回路, 所^卜冷却水在所述外冷循 环水的循环回路中循环。
9. 如权利要求 8 所述的方法, 其特 于: 当环境温度低于 温度阈值1\时, 所述冰蓄冷辅助冷却装置停止运行, 所述内冷却水 在所述第一回路中循环, 所述内冷却水经过空冷器(3 )被冷却后, 再冷却被冷却器件( 1 ); 当环境温度高于 Ί\并且低于温度阈值 Τ2时, 关闭第一回路阀门(4 ), 并且开启第二回路阀门 (5、 6 ), 所述内冷 却水在所述第二回路中循环, 所述内冷却水经过板式换热器( 7 )被 所述外冷却水冷却后,再冷却被冷却器件( 1 ); 所述冰蓄冷装置 ( 9 ) 在夜间运行并蓄冷; 当环境温度高于 Τ2并且低于温度阈值 Τ3时, 关 闭第一回路阀门 (4 ), 并且开启第二回路阀门(5、 6 ), 所述内冷却 水在所述第二回路中循环, 所述内冷却水经过空冷器(3 )被冷却, 再经 ^¼式换热器( 7 )被所述外冷却水冷却后, 所述内冷却水冷却 被冷却器件( 1 ); 所述冰蓄冷装置 ( 9 )在夜间运行并蓄冷; 其中, Ί\小于 Τ2, 且 Τ2小于 Τ3
10. 如权利要求 8所述的方法, 其特征在于: 所述内冷却装置 还设置水温传感器和 /或环境温度传感器;控制单元根据所述水温传 感器测量的内冷却水的水温和 /或所述环境温度传感器测量的环境 温度,控制所述第一回路阀门(4 )和第二回路阀门(5、 6 )的开闭。
11. 如权利要求 7所述的方法, 其特征在于: 所述内冷循环泵 ( 2 )和外冷循环泵( 8 )采用主 -备冗余方式配置。
12. 如权利要求 8所述的方法, 其特征在于: 所述被冷却器件 ( 1 )为直流输电设备中的换流阀。
PCT/CN2012/076189 2011-12-01 2012-05-29 一种密闭式循环水冷却装置和方法 WO2013078844A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AP2014007682A AP2014007682A0 (en) 2011-12-01 2012-05-29 Closed circulating water cooling apparatus and method
US14/361,858 US9596786B2 (en) 2011-12-01 2012-05-29 Closed circulating water cooling apparatus and method
BR112014013288-7A BR112014013288B1 (pt) 2011-12-01 2012-05-29 Aparelho e método de resfriamento de água em circulação fechada

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110393314.9A CN102435032B (zh) 2011-12-01 2011-12-01 一种密闭式循环水冷却装置和方法
CN201110393314.9 2011-12-01

Publications (1)

Publication Number Publication Date
WO2013078844A1 true WO2013078844A1 (zh) 2013-06-06

Family

ID=45983244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076189 WO2013078844A1 (zh) 2011-12-01 2012-05-29 一种密闭式循环水冷却装置和方法

Country Status (5)

Country Link
US (1) US9596786B2 (zh)
CN (1) CN102435032B (zh)
AP (1) AP2014007682A0 (zh)
BR (1) BR112014013288B1 (zh)
WO (1) WO2013078844A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106091287A (zh) * 2016-06-29 2016-11-09 马耀东 一种利用室外气温变化的室内气温调节装置
CN115178726A (zh) * 2022-08-29 2022-10-14 衡阳市华鹏铁路器材有限公司 一种轨道交通用铸件加工冷却装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435032B (zh) * 2011-12-01 2014-05-14 国家电网公司 一种密闭式循环水冷却装置和方法
CN102435033B (zh) * 2011-12-01 2014-05-14 国家电网公司 密闭式循环水冷却装置及其方法
CN102545546B (zh) 2011-12-01 2014-05-14 国家电网公司 循环冷却***及控制循环冷却***的方法
CN102776033A (zh) * 2012-08-07 2012-11-14 中冶焦耐工程技术有限公司 使用闭路空冷循环水冷却高温介质的焦炉煤气净化工艺
CN102912420B (zh) * 2012-10-24 2015-03-18 浙江晶盛机电股份有限公司 一种用于区熔单晶炉高频电源的闭式冷却水循环***
DE102012223069A1 (de) * 2012-12-13 2014-06-18 Bayerische Motoren Werke Aktiengesellschaft Kühlmittelkreislauf für eine Brennkraftmaschine
CN103582396B (zh) * 2013-11-06 2016-09-21 国家电网公司 一种直流换流阀用带蓄冷的外冷却***及其操作方法
CN104390412A (zh) * 2014-10-29 2015-03-04 常州协鑫光伏科技有限公司 用于切片机工艺水的冷却***
CN104362834B (zh) * 2014-11-06 2019-03-22 许昌许继晶锐科技有限公司 用于直流输电工程的换流阀与阀厅的综合换热***
CN104501447B (zh) * 2014-12-03 2018-11-23 许昌许继晶锐科技有限公司 一种制冷***
CN106123223A (zh) * 2016-06-29 2016-11-16 马耀东 一种利用室外气温变化的室内气温调节装置
CN106288578A (zh) * 2016-08-23 2017-01-04 苏州必信空调有限公司 具有垂直低阻力冷却***的循环水冷却装置
KR20180075124A (ko) * 2016-12-26 2018-07-04 엘지전자 주식회사 정수기의 제어 방법
CN109217632A (zh) * 2017-06-29 2019-01-15 许昌许继晶锐科技有限公司 一种直流输电换流阀用空气冷却器串冷却塔冷却***
CN108738282B (zh) * 2018-06-13 2020-03-03 北京百度网讯科技有限公司 服务器机柜
CN111328252A (zh) * 2020-04-01 2020-06-23 云南电网有限责任公司楚雄供电局 一种换流站阀外冷却***节温装置
US11639824B2 (en) * 2020-04-30 2023-05-02 Air Products And Chemicals, Inc. Process for enhanced closed-circuit cooling system
CN111721141B (zh) * 2020-06-15 2024-05-28 河钢股份有限公司 一种蓄冷防冻的干湿联合空冷集成设备及冷却方法
CN114345092A (zh) * 2022-01-11 2022-04-15 眉山金豆智能科技有限公司 一种微波等离子废气净化方法及装置
CN117996602A (zh) * 2023-12-11 2024-05-07 国网湖北省电力有限公司直流公司 一种基于柔性直流换流站阀外冷水***的能源管理方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05136587A (ja) * 1991-11-12 1993-06-01 Hitachi Ltd 水冷却装置
JPH07218075A (ja) * 1994-02-02 1995-08-18 Hitachi Ltd コンピュータ冷却装置
CN2294433Y (zh) * 1997-03-28 1998-10-14 荣秀惠 一种冰蓄冷器
JP2001010595A (ja) * 1999-06-30 2001-01-16 Shimadzu Corp 冷却システム
CN101473709A (zh) * 2006-06-22 2009-07-01 Abb技术有限公司 用于冷却的设备和方法
US20100071881A1 (en) * 2008-08-21 2010-03-25 Airbus Operations Cooling system for aircraft electric or electronic devices
CN201878485U (zh) * 2010-11-25 2011-06-22 广州智网信息技术有限公司 一种具有在线检修功能的水冷却***
CN102368615A (zh) * 2011-09-30 2012-03-07 广州高澜节能技术股份有限公司 一种svc密闭式循环纯水冷却***
CN102435033A (zh) * 2011-12-01 2012-05-02 国家电网公司 密闭式循环水冷却装置及其方法
CN102435032A (zh) * 2011-12-01 2012-05-02 国家电网公司 一种密闭式循环水冷却装置和方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146444A (en) 1978-05-08 1979-11-15 Hitachi Ltd Heat pump type air conditioner employing solar heat
JPS59119750A (ja) * 1982-12-24 1984-07-11 Toshiba Corp 水冷式サイリスタ変換器
JPS6373879A (ja) * 1986-09-12 1988-04-04 Toshiba Corp 水冷式サイリスタ変換装置
JP2694515B2 (ja) * 1995-03-01 1997-12-24 エス・ティエス株式会社 冷却装置
CN2561099Y (zh) * 2002-08-05 2003-07-16 广州市高澜水技术有限公司 密闭式循环水冷却装置
CN1632430A (zh) * 2004-12-28 2005-06-29 包军婷 冷库水冷式冷凝器蓄能型循环冷却技术
CN100494650C (zh) 2006-05-10 2009-06-03 潍柴动力股份有限公司 发动机双循环强制冷却***
CN201053795Y (zh) * 2007-02-15 2008-04-30 韩广 一种保鲜冷库用的冰蓄冷恒温恒湿装置
CN201043863Y (zh) * 2007-05-30 2008-04-02 王利品 一种电石炉密闭式循环水冷却装置
CN201352745Y (zh) * 2009-02-09 2009-11-25 广州市高澜水技术有限公司 一种应用于风力发电的密闭式循环水冷却装置
CN201491453U (zh) 2009-09-09 2010-05-26 深圳市同洲电子股份有限公司 一种led显示屏温控***
CN101694357A (zh) 2009-10-20 2010-04-14 南京工业大学 一种双循环可高浓缩倍数运行的工业循环冷却水装置
CN201774788U (zh) 2010-07-19 2011-03-23 深圳市中兴新通讯设备有限公司 通讯机房冷却***
CN201804282U (zh) * 2010-08-20 2011-04-20 中国西电电气股份有限公司 一种换流阀运行试验用循环冷却水入口水温漂移控制装置
CN201852343U (zh) 2010-11-16 2011-06-01 重庆微松环境设备有限公司 精密高温冷却压缩机制冷***
CN202403477U (zh) * 2011-12-01 2012-08-29 国家电网公司 一种密闭式循环水冷却装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05136587A (ja) * 1991-11-12 1993-06-01 Hitachi Ltd 水冷却装置
JPH07218075A (ja) * 1994-02-02 1995-08-18 Hitachi Ltd コンピュータ冷却装置
CN2294433Y (zh) * 1997-03-28 1998-10-14 荣秀惠 一种冰蓄冷器
JP2001010595A (ja) * 1999-06-30 2001-01-16 Shimadzu Corp 冷却システム
CN101473709A (zh) * 2006-06-22 2009-07-01 Abb技术有限公司 用于冷却的设备和方法
US20100071881A1 (en) * 2008-08-21 2010-03-25 Airbus Operations Cooling system for aircraft electric or electronic devices
CN201878485U (zh) * 2010-11-25 2011-06-22 广州智网信息技术有限公司 一种具有在线检修功能的水冷却***
CN102368615A (zh) * 2011-09-30 2012-03-07 广州高澜节能技术股份有限公司 一种svc密闭式循环纯水冷却***
CN102435033A (zh) * 2011-12-01 2012-05-02 国家电网公司 密闭式循环水冷却装置及其方法
CN102435032A (zh) * 2011-12-01 2012-05-02 国家电网公司 一种密闭式循环水冷却装置和方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106091287A (zh) * 2016-06-29 2016-11-09 马耀东 一种利用室外气温变化的室内气温调节装置
WO2018001285A1 (zh) * 2016-06-29 2018-01-04 马耀东 一种利用室外气温变化的室内气温调节装置
CN115178726A (zh) * 2022-08-29 2022-10-14 衡阳市华鹏铁路器材有限公司 一种轨道交通用铸件加工冷却装置
CN115178726B (zh) * 2022-08-29 2024-03-15 山东金鼎实业股份有限公司 一种轨道交通用铸件加工冷却装置

Also Published As

Publication number Publication date
US20150237766A1 (en) 2015-08-20
CN102435032B (zh) 2014-05-14
BR112014013288B1 (pt) 2021-08-24
CN102435032A (zh) 2012-05-02
AP2014007682A0 (en) 2014-06-30
BR112014013288A2 (pt) 2017-06-13
US9596786B2 (en) 2017-03-14

Similar Documents

Publication Publication Date Title
WO2013078844A1 (zh) 一种密闭式循环水冷却装置和方法
WO2013078843A1 (zh) 密闭式循环水冷却装置及其方法
CN110422082B (zh) 一种混合动力汽车集成式热管理***及其控制方法
WO2018028299A1 (zh) 纯电动汽车冷却***及汽车
WO2015067132A1 (zh) 一种直流换流阀用带蓄冷的外冷却***及其操作方法
CN209487668U (zh) 电动汽车的电池冷却***
CN208576388U (zh) 集成电池温度控制的电动车热管理***
CN107196461B (zh) 复合冷却***
CN112339614B (zh) 一种适用于燃料电池汽车热***的协同管理方法
CN203580560U (zh) 一种电动汽车热管理***
TW504562B (en) Chilling system
CN204535192U (zh) 一种直流输电换流阀用冷却***
CN202403477U (zh) 一种密闭式循环水冷却装置
CN113581013A (zh) 一种混合动力汽车电池包热管理控制***及控制方法
CN207441867U (zh) 一种燃料电池堆的热管理***
CN208817826U (zh) 全自动智能调节节能型供冷***
KR101001293B1 (ko) 축·방냉 펌프를 분리한 에너지 절약형 빙축열 시스템
CN213636112U (zh) 冷水机组与储能***
CN204130664U (zh) 电动汽车液冷电池包热管理装置
CN109458311B (zh) 一种水冷***及其水温控制方法、三通阀及其控制方法
US20220053671A1 (en) Data center heat recovery system
CN102980346A (zh) 一种工业设备冷却***及其控制方法
CN207398279U (zh) 一种轮胎吊的电池模组
CN107462084B (zh) 一种主机冷却***与辅机冷却***的组合结构
CN111121356B (zh) 一种基于中央冷却***的工业循环冷却水节能***及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014013288

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 14361858

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12852588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112014013288

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140530