WO2013073526A1 - 蓄電デバイス用電極、蓄電デバイスおよび蓄電デバイス用電極の製造方法 - Google Patents

蓄電デバイス用電極、蓄電デバイスおよび蓄電デバイス用電極の製造方法 Download PDF

Info

Publication number
WO2013073526A1
WO2013073526A1 PCT/JP2012/079396 JP2012079396W WO2013073526A1 WO 2013073526 A1 WO2013073526 A1 WO 2013073526A1 JP 2012079396 W JP2012079396 W JP 2012079396W WO 2013073526 A1 WO2013073526 A1 WO 2013073526A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electricity storage
storage device
porous body
carbon
Prior art date
Application number
PCT/JP2012/079396
Other languages
English (en)
French (fr)
Inventor
奥野 一樹
細江 晃久
真嶋 正利
中井 由弘
卓孝 野口
大輔 小松
大祐 飯田
山本 雅史
倉元 政道
Original Assignee
住友電気工業株式会社
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 株式会社明電舎 filed Critical 住友電気工業株式会社
Priority to DE112012004734.6T priority Critical patent/DE112012004734T5/de
Priority to KR1020147001659A priority patent/KR20140097099A/ko
Priority to CN201280037609.5A priority patent/CN103733288A/zh
Publication of WO2013073526A1 publication Critical patent/WO2013073526A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/948Energy storage/generating using nanostructure, e.g. fuel cell, battery

Definitions

  • the present invention relates to an electrode for an electricity storage device, an electricity storage device, and a method for producing an electrode for an electricity storage device.
  • capacitors are widely used in various electrical devices.
  • electric double layer capacitors and lithium ion capacitors have large capacities and have attracted particular attention in recent years.
  • An electric double layer capacitor is a power storage device including cells, a sealed container for securing electrical insulation between cells and preventing liquid leakage, a collecting electrode for taking out electricity, and lead wires.
  • the cell mainly includes a pair of opposed activated carbon electrodes, a separator that electrically separates the activated carbon electrodes, and an organic electrolyte that develops capacity.
  • a lithium ion capacitor is an electricity storage device that uses an electrode such as an activated carbon electrode that can electrostatically absorb and desorb ions as a positive electrode, and an electrode that can store lithium ions such as hard carbon as a negative electrode.
  • the energy stored in the electric double layer capacitor is represented by the following formula (1).
  • W (1/2) CU 2 (1)
  • W is the stored energy (capacity)
  • C is the electrostatic capacity (depending on the surface area of the electrode)
  • U is the cell voltage.
  • Japanese Patent No. 3924273 Japanese Patent Laid-Open No. 2005-07955
  • the carbon nanotube is subdivided by applying a shearing force in the presence of an ionic liquid.
  • An electrode material for an electric double layer capacitor characterized in that it is composed of a gel-like composition comprising carbon nanotubes and an ionic liquid obtained by this method.
  • Japanese Patent Application Laid-Open No. 2009-267340 discloses that a sheet on which a carbon nanotube having a specific surface area of 600 to 2600 m 2 / g is paper-formed constitutes a current collector and has a concavo-convex portion on the surface, and the concavo-convex portion An electrode for an electric double layer capacitor, which is characterized by being integrated by the above.
  • Japanese Patent Application Laid-Open No. 2009-267340 also describes a technique in which foamed nickel (a three-dimensional network nickel porous body) is used as a base material. There is a problem that it is difficult to disperse. Furthermore, gas such as CO is generated due to residual moisture and functional groups in the activated carbon, and there is a problem in increasing the cell voltage. It is also desired to increase the output in relation to the contact between the electrode material and the current collector.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an energy storage device capable of improving the energy density to be stored by improving the capacitance and cell voltage when used as an electrode of the energy storage device. Electrode, an electricity storage device using the electricity storage device electrode, and a method for producing the electricity storage device electrode.
  • the present invention relates to an electricity storage device comprising at least one active material selected from the group consisting of carbon nanotubes, activated carbon, hard carbon, graphite, graphene, and carbon nanohorn, an ionic liquid, and a three-dimensional network metal porous body Electrode.
  • the electrode for an electricity storage device of the present invention When used as an electrode of an electricity storage device, it can improve the electrostatic capacity and cell voltage of the electricity storage device and improve the energy density of the electricity stored.
  • the active material preferably contains carbon nanotubes.
  • the active material is preferably a carbon nanotube.
  • the metal of the three-dimensional network metal porous body preferably contains at least one selected from the group consisting of aluminum, nickel, copper, an aluminum alloy, and a nickel alloy.
  • the metal of the three-dimensional network metal porous body is aluminum.
  • the electrode for an electricity storage device using aluminum, nickel, copper, an aluminum alloy or a nickel alloy as the metal of the three-dimensional network metal porous body is also used in the operating voltage range of the electricity storage device (about 0 V or more and 5 V or less with respect to the lithium potential). Since it is hard to elute, the electrical storage device which can be charged stably also in long-term charging / discharging can be obtained. Particularly in the high voltage range (3.5 V or more with respect to the lithium potential), the metal of the three-dimensional network metal porous body preferably contains aluminum, an aluminum alloy or a nickel alloy, and more preferably aluminum.
  • the electricity storage device electrode of the present invention preferably, the electricity storage device electrode does not contain a binder component.
  • the active material can be held in the pores of the three-dimensional network metal porous body. For this reason, an electrode can be produced even if it does not use the binder component which is an insulator. Therefore, the electrode for an electricity storage device of the present invention can be loaded with an active material at a high content in the electrode unit volume, and further the internal resistance is reduced, so that the capacitance and cell voltage of the electricity storage device are improved. The energy density of stored electricity can be improved.
  • the ionic liquid preferably contains an organic solvent.
  • the viscosity of the ionic liquid decreases. Therefore, the electrode for an electricity storage device of the present invention can improve the low temperature characteristics of the electricity storage device.
  • the carbon nanotube has a shape in which both ends are open.
  • the electrode for an electricity storage device of the present invention can increase the capacitance of the electricity storage device.
  • the carbon nanotubes preferably have an average length in the range of 100 nm to 2000 ⁇ m. More preferably, it is the range of 500 nm or more and 100 ⁇ m or less.
  • the average length of the carbon nanotube is in the range of 100 nm to 2000 ⁇ m, more preferably in the range of 500 nm to 100 ⁇ m, the dispersibility of the carbon nanotube in the ionic liquid is good, and the carbon nanotube is three-dimensional. It becomes easy to be retained in the pores of the mesh metal porous body. Therefore, the contact area between the carbon nanotube and the ionic liquid is increased, and the capacitance of the electricity storage device can be increased.
  • the carbon nanotubes preferably have an average diameter in the range of 0.1 nm to 50 nm.
  • the ionic liquid or the electrolytic solution easily enters the carbon nanotubes, so that the contact area between the carbon nanotubes and the ionic liquid or the electrolytic solution increases. Therefore, the capacitance of the electricity storage device can be increased.
  • the carbon nanotubes preferably have a purity of 70% by mass or more, and more preferably 90% by mass or more.
  • the purity of the carbon nanotube is less than 70% by mass, there is a concern that the withstand voltage may be reduced or dendrite may be generated due to the influence of the catalyst metal.
  • the electrode for an electricity storage device of the present invention can improve the output of the electricity storage device.
  • the three-dimensional network metal porous body has an average pore diameter of 50 ⁇ m or more and 1000 ⁇ m or less.
  • the active material and the ionic liquid easily enter the pores of the three-dimensional network metal porous body, and the active material and the three-dimensional network metal porous body Good contactability. Therefore, the internal resistance of the electrode is reduced, and the energy density of the electricity storage device can be improved.
  • the average pore size of the three-dimensional network metal porous body is 1000 ⁇ m or less, the active material can be satisfactorily held in the pores without using a binder component, and a capacitor having sufficient strength can be obtained. Obtainable.
  • the present invention is an electricity storage device including an electrode for an electricity storage device. According to the electricity storage device of the present invention, the electrostatic capacity and the cell voltage can be improved, and the energy density of the electricity stored can be improved.
  • the electricity storage device is preferably an electric double layer capacitor or a lithium ion capacitor.
  • the electrode for an electricity storage device of the present invention is used as an electrode of an electric double layer capacitor or a lithium ion capacitor, the capacitance and cell voltage of the capacitor can be improved, and the energy density of electricity stored can be improved.
  • the present invention includes a step of kneading at least one active material selected from the group consisting of carbon nanotubes, activated carbon, hard carbon, graphite, graphene, and carbon nanohorns into an ionic liquid to form a kneaded product;
  • a method for producing an electrode for an electricity storage device comprising the step of including the original mesh metal porous body.
  • an electrode for an electricity storage device in which a kneaded product containing carbon nanotubes and an ionic liquid is contained in pores of a three-dimensional network metal porous body.
  • the electricity storage device electrode is used as an electrode of an electricity storage device, it can improve the electrostatic capacity and cell voltage of the electricity storage device and improve the energy density of the electricity stored.
  • the electricity storage device electrode capable of improving the electrostatic capacity and the cell voltage and improving the energy density of electricity stored, and the electricity storage using the electrode for the electricity storage device A device and a method for manufacturing the electrode for an electricity storage device can be provided.
  • (A) is a graph showing a Ragon plot per cell volume.
  • (B) is a graph showing a Lagon plot per cell weight.
  • (A) is a graph which shows the electrostatic capacitance of the electric double layer capacitor with respect to the hole diameter of a three-dimensional network-like aluminum porous body.
  • (B) is a graph which shows the internal resistance of the electric double layer capacitor with respect to the hole diameter of a three-dimensional network aluminum porous body. It is a graph which shows the temperature characteristic of an electric double layer capacitor. It is the schematic of the cell of the lithium ion capacitor in one embodiment of this invention.
  • the electrode for an electricity storage device is at least one active material selected from the group consisting of carbon nanotubes, activated carbon, hard carbon, graphite, graphene, and carbon nanohorn, an ionic liquid, and a three-dimensional network. And a porous metal porous body.
  • active material As the active material, at least one selected from the group consisting of carbon nanotubes, activated carbon, hard carbon, graphite, graphene, and carbon nanohorns can be used.
  • Examples of the carbon nanotube include a single-walled carbon nanotube (hereinafter also referred to as single-walled CNT) in which only one carbon layer (graphene) is cylindrical, or a cylindrical shape in which a plurality of carbon layers are stacked.
  • Nanotubes and the like are known.
  • the shape of the carbon nanotube is not particularly limited, and any one having a closed end or an open end can be used. Among them, it is preferable to use a carbon nanotube having a shape in which both ends are open. If both ends of the carbon nanotube are open, the ionic liquid or the electrolytic solution easily enters the inside of the carbon nanotube, so that the contact area between the carbon nanotube and the ionic liquid or the electrolytic solution increases. Therefore, the electrode for an electricity storage device using the carbon nanotube can increase the capacitance of the electricity storage device.
  • the average length of the carbon nanotubes is preferably in the range of 100 nm to 2000 ⁇ m, and more preferably in the range of 500 nm to 100 ⁇ m.
  • the average length of the carbon nanotubes is in the range of 100 nm to 2000 ⁇ m, the dispersibility of the carbon nanotubes in the ionic liquid is good and the carbon nanotubes are easily held in the pores of the three-dimensional network metal porous body. Become. Therefore, the contact area between the carbon nanotube and the ionic liquid is increased, and the capacitance of the electricity storage device can be increased.
  • the average length of the carbon nanotube is 500 nm or more and 100 ⁇ m or less, the effect of increasing the capacitance of the electricity storage device is significant.
  • the average diameter of the carbon nanotubes is preferably in the range of 0.1 nm to 50 nm, and more preferably in the range of 0.5 nm to 5 nm.
  • the average diameter of the carbon nanotubes is in the range of 0.1 nm to 50 nm, the ionic liquid or the electrolytic solution easily enters the carbon nanotubes, so that the contact area between the carbon nanotubes and the ionic liquid or the electrolytic solution increases.
  • the capacitance of the electricity storage device can be increased.
  • the purity of the carbon nanotube is preferably 70% by mass or more, and more preferably 90% by mass or more. If the purity of the carbon nanotube is less than 70% by mass, there is a concern that the withstand voltage may be lowered or dendrite may be generated due to the influence of the catalyst metal.
  • the electrode for an electricity storage device manufactured using the carbon nanotube can improve the output of the electricity storage device.
  • the activated carbon a commercially available product for an electricity storage device can be used.
  • the activated carbon material include wood, coconut husk, pulp waste liquid, coal, heavy petroleum oil, coal / petroleum pitch obtained by pyrolyzing them, and resins such as phenol resins.
  • the activation is generally performed after carbonization, and examples of the activation method include a gas activation method and a chemical activation method.
  • the gas activation method is a method in which activated carbon is obtained by contact reaction with water vapor, carbon dioxide gas, oxygen or the like at a high temperature.
  • the chemical activation method is a method in which activated carbon is obtained by impregnating a known activation chemical into the raw material and heating in an inert gas atmosphere to cause dehydration and oxidation reaction of the activation chemical.
  • the activation chemical include zinc chloride and sodium hydroxide.
  • the particle size of the activated carbon is not limited, but is preferably 20 ⁇ m or less, for example.
  • the specific surface area is not limited, the larger the surface area, the larger the capacitance of the electricity storage device. Therefore, for example, the specific surface area is preferably 2000 m 2 / g or more.
  • Hard carbon, graphite, and graphene may be those usually used as electrode materials.
  • Carbon nanohorn (hereinafter also referred to as CNH) has a shape in which graphene is rolled into a conical shape, and has a bottom surface diameter of about 2 nm to 10 nm and a cone height of about 10 nm to 5 ⁇ m. Since CNH has a large specific surface area, an electrode using CNH can increase the capacitance of the electricity storage device. Moreover, since CNH does not use a metal catalyst for production, CNH has very high purity and good electrical conductivity. Therefore, the electrode using CNH can improve the output of the electricity storage device.
  • Both CNH and carbon nanotubes can be used as the active material. Since CNH is shorter than carbon nanotubes, it is considered that CNH enters between carbon nanotubes when both are mixed. For this reason, when the three-dimensional network metal porous body containing CNH and carbon nanotubes is compressed in the electrode manufacturing process, the content of the active material in the three-dimensional network metal porous body can be increased.
  • An ionic liquid is a combination of an anion and a cation so as to have a melting point of about 100 ° C. or less.
  • hexafluorophosphate PF 6
  • tetrafluoroborate BF 4
  • bis (trifluoromethanesulfonyl) imide TFSI
  • trifluoromethanesulfonate TFS
  • bis (perfluoroethylsulfonyl) imide anion BETI
  • cations include imidazolium ions having an alkyl group having 1 to 8 carbon atoms, pyridinium ions having an alkyl group having 1 to 8 carbon atoms, piperidinium ions having an alkyl group having 1 to 8 carbon atoms, and those having 1 to 8 carbon atoms.
  • a pyrrolidinium ion having an alkyl group or a sulfonium ion having an alkyl group having 1 to 8 carbon atoms can be used.
  • ionic liquids include 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF 4 ), 1-ethyl-3-methylimidazolium-bis (fluorosulfonyl) imide (EMI-FSI), 1-ethyl -3-Methylimidazolium-bis (trifluoromethanesulfonyl) imide (EMI-TFSI), 1-butyl-3-methylimidazolium-bis (trifluoromethanesulfonyl) imide (BMI-TFSI), 1-hexyl-3-methyl Imidazolium tetrafluoroborate (HMI-BF 4 ), 1-hexyl-3-methylimidazolium-bis (trifluoromethanesulfonyl) imide (HMI-TFSI), 1-ethyl-3-methylimidazolium-fluorohydrogenate (EMI (FH) 2.3 F), N, - Diethyl-3
  • an ion containing a lithium salt such as lithium-bis (fluorosulfonyl) imide (LiFSI) or lithium-bis (trifluoromethanesulfonyl) imide (LiTFSI) as an ionic liquid Use liquid.
  • LiFSI lithium-bis (fluorosulfonyl) imide
  • LiTFSI lithium-bis (trifluoromethanesulfonyl) imide
  • the supporting salt examples include lithium-hexafluorophosphate (LiPF 6 ), lithium-tetrafluoroborate (LiBF 4 ), lithium-perchlorate (LiClO 4 ), lithium-bis (trifluoromethanesulfonyl) imide (LiN (SO 2 CF 3 ) 2 ), lithium-bis (pentafluoroethanesulfonyl) imide (LiN (SO 2 C 2 F 5 ) 2 ), lithium-bis (pentafluoroethanesulfonyl) imide (LiBETI), lithium-trifluoromethanesulfonate ( LiCF 3 SO 3 ), lithium-bis (oxalate) borate (LiBC 4 O 8 ), or the like can be used.
  • LiPF 6 lithium-hexafluorophosphate
  • LiBF 4 lithium-tetrafluoroborate
  • LiClO 4 lithium-perchlorate
  • LiClO 4 lithium-bis (
  • the concentration of the supporting salt in the ionic liquid is preferably from 0.1 mol / L to 5.0 mol / L, and more preferably from 1 mol / L to 3.0 mol / L.
  • the ionic liquid can contain an organic solvent.
  • the ionic liquid contains an organic solvent, the viscosity of the ionic liquid decreases. Therefore, the electrode for an electricity storage device of the present invention can improve the low temperature characteristics of the electricity storage device.
  • organic solvent for example, propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), ⁇ -butyrolactone (GBL), acetonitrile (AN), or the like can be used alone or in combination. Can be used.
  • PC propylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • GBL ⁇ -butyrolactone
  • AN acetonitrile
  • the three-dimensional network metal porous body has a three-dimensional network structure in which porous shapes are connected.
  • a metal nonwoven fabric entangled with a fibrous metal a metal foam obtained by foaming a metal, or a Celmet (registered trademark) (made by forming a metal layer on the surface of a foamed resin and then decomposing the foamed resin) Sumitomo Electric Industries, Ltd.) can be used.
  • the metal of the three-dimensional network metal porous body it is preferable to use aluminum, nickel, copper, an aluminum alloy or a nickel alloy. Since these metals or metal alloys are difficult to elute even within the operating voltage range of the electricity storage device (from 0 V to 5 V with respect to the lithium potential), an electricity storage device that can be stably charged even during long-term charge / discharge is obtained. Can do. Particularly in the high voltage range (3.5 V or more with respect to the lithium potential), the metal of the three-dimensional network metal porous body preferably contains aluminum, an aluminum alloy or a nickel alloy, and more preferably aluminum.
  • the three-dimensional network metal porous body preferably has an average pore diameter of 50 ⁇ m or more and 1000 ⁇ m or less.
  • the average pore diameter of the three-dimensional network metal porous body is 50 ⁇ m or more, the active material and the ionic liquid easily enter the pores of the three-dimensional network metal porous body, and the active material and the three-dimensional network metal porous body Good contactability. Therefore, the internal resistance of the electrode is reduced, and the energy density of the electricity storage device can be improved.
  • the average pore size of the three-dimensional network metal porous body is 1000 ⁇ m or less, the active material can be satisfactorily held in the pores without using a binder component, and a capacitor having sufficient strength can be obtained. Obtainable.
  • the pore size of the three-dimensional network metal porous body is more preferably 400 ⁇ m or more and 900 ⁇ m or less, and particularly preferably 450 ⁇ m or more and 850 ⁇ m or less.
  • the average pore diameter of the three-dimensional network metal porous body is such that the surface of the electrode for the electricity storage device is scraped to such an extent that the skeleton of the metal porous body can be observed, and the pore diameter of the metal porous body exposed on the surface is observed with a microscope. Can be confirmed.
  • the basis weight of the three-dimensional network metal porous body is preferably 500 g / m 2 or less from the viewpoint of strength as an electrode for an electricity storage device and reduction of electric resistance of the electricity storage device. Furthermore, 150 g / m 2 or less is preferable from the viewpoint of improving the energy density of the electricity storage device.
  • the porosity occupied by the volume of the internal space of the three-dimensional network metal porous body is not particularly limited, but is preferably about 80% to 98%.
  • binder The role of the binder is to bind the current collector and the active material in the electrode. However, since the binder resin typified by polyvinylidene fluoride (PVdF) is an insulator, the binder resin itself increases the internal resistance of the electricity storage device including the electrodes, which in turn reduces the charge / discharge efficiency of the electricity storage device. It becomes a factor to reduce.
  • the active material can be held in the pores of the three-dimensional network metal porous body that is a current collector without using a binder. Therefore, in one embodiment of the present invention, the electrode for an electricity storage device preferably does not contain a binder.
  • a binder may be used for the electrode for the electricity storage device.
  • the binder include polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP), polyethylene oxide-modified polymethacrylate crosslinked body (PEO-PMA), polyethylene oxide (PEO), polyethylene glycol diacrylate crosslinked body (PEO- PA), polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), polyacrylic acid (PAA), polyvinyl acetate, pyridinium-1,4-diylinocarbonyl-1,4- phenylenemethylene (PICPM) -BF 4, PICPM -PF 6, PICPM-TFSA, PICPM-SCN, such as PICPM-OTf It can be used.
  • PVdF-HFP polyvinylidene fluoride-hexafluoropropylene
  • the electrode for an electricity storage device may contain a conductive additive.
  • the conductive auxiliary agent can reduce the resistance of the electricity storage device.
  • the type of the conductive auxiliary agent is not particularly limited, and for example, acetylene black, ketjen black, carbon fiber, natural graphite (eg, flake graphite, earthy graphite), artificial graphite, ruthenium oxide and the like can be used.
  • the content of the conductive assistant is preferably, for example, 2 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the active material. If the amount is less than 2 parts by mass, the effect of improving the conductivity is small, and if it exceeds 20 parts by mass, the capacitance may decrease.
  • Method for producing electrode for power storage device A method for manufacturing an electrode for an electricity storage device according to an embodiment of the present invention will be described below.
  • an active material and an ionic liquid are kneaded to obtain a kneaded product.
  • a kneaded product in which an active material is uniformly dispersed in an ionic liquid can be obtained by kneading for about 10 minutes to 120 minutes using a mortar.
  • the active material is dispersed in the ionic liquid, the aggregation of the nanocarbon active materials is eliminated, and the specific surface area of the active material is increased. For this reason, when an electrode is produced using a kneaded material, a larger electrostatic capacity can be obtained.
  • the kneading ratio of the active material and the ionic liquid is not particularly limited.
  • the amount of the active material in the kneaded material is in the range of 3% to 70% by mass of the total amount of the kneaded material, This is preferable because it is easily contained in the original mesh metal porous body.
  • it can add in this kneading
  • the kneaded product is included in the three-dimensional network metal porous body.
  • a three-dimensional mesh metal porous body is installed on the top of a mesh or porous plate or membrane that is permeable or liquid-permeable, and the top surface of the three-dimensional mesh metal porous body is below the mesh plate installation surface.
  • the kneaded product is included so as to be rubbed with a squeegee or the like.
  • the thickness of the electrode is adjusted by (1) a method in which the thickness of the three-dimensional network metal porous body is adjusted in advance, and (2) after the kneaded material is included in the three-dimensional network metal porous body. This can be done by any of the methods.
  • a three-dimensional network metal porous body having a thickness of 300 ⁇ m or more and 3 mm or less is adjusted to an optimum thickness by a roll press.
  • the thickness of the three-dimensional network metal porous body is preferably 100 ⁇ m or more and 800 ⁇ m or less, for example.
  • an ionic liquid absorber is installed on both surfaces of the three-dimensional network metal porous body, and then a pressure of about 30 MPa to 450 MPa is used. Then, uniaxial rolling is performed in the thickness direction. At the time of rolling, excess ionic liquid is discharged from the kneaded material contained in the three-dimensional network metal porous body and absorbed by the ionic liquid absorber. Therefore, the concentration of the active material in the kneaded material remaining in the three-dimensional network metal porous body is increased. For this reason, in the electrical storage device using an electrode, the discharge capacity per unit area (mAh / cm 2 ) and the output per unit area (W / cm 2 ) can be increased.
  • the thickness of the electrode is preferably in the range of 0.2 mm to 1.0 mm from the viewpoint of the discharge capacity per unit area of the electrode. Moreover, it is preferable to set it as the range of 0.05 mm or more and 0.5 mm or less from a viewpoint of the output per unit area.
  • the physical properties and pore diameter of the ionic liquid absorber are not particularly limited, but hydrophilic ionic liquids (for example, EMI-BF 4 , DEME-BF 4 , C13-BF 4, etc.) have been subjected to hydrophilic treatment. Absorbers are used, and hydrophobic ionic liquids (for example, EMI-FSI, EMI-TFSI, DEME-TFSI, PP13-TFSI, P13-TFSI, P2228-TFSI, etc.) are subjected to hydrophobic treatment. It is preferable to use it.
  • EMI-FSI EMI-TFSI
  • DEME-TFSI DEME-TFSI
  • PP13-TFSI P13-TFSI, P2228-TFSI, etc.
  • a positive electrode 2 and a negative electrode 3 are arranged with a separator 1 in between.
  • the separator 1, the positive electrode 2, and the negative electrode 3 are sealed between an upper cell case 7 and a lower cell case 8 filled with the electrolytic solution 6.
  • the upper cell case 7 and the lower cell case 8 are provided with terminals 9 and 10. Terminals 9 and 10 are connected to a power source 20.
  • the electrode for the electricity storage device of the present invention can be used for the positive electrode and the negative electrode.
  • an ionic liquid used for an electrode for an electricity storage device can be used.
  • the separator of the electric double layer capacitor for example, a highly electrically insulating porous film made of polyolefin, polyethylene terephthalate, polyamide, polyimide, cellulose, glass fiber or the like can be used. (Method for manufacturing electric double layer capacitor) First, two electrodes for an electricity storage device of the present invention are punched out to an appropriate size, and are opposed to each other with a separator interposed therebetween. And it accommodates in a cell case and impregnates electrolyte solution. Finally, the electric double layer capacitor can be manufactured by sealing the case with a lid.
  • the structure of the lithium ion capacitor using the electrode for an electricity storage device of the present invention is basically the same as that of the electric double layer capacitor except that the lithium metal foil 16 is crimped to the surface of the negative electrode 3 facing the positive electrode 2. It is the same.
  • the electrode for the electricity storage device of the present invention can be used for the positive electrode and the negative electrode.
  • the negative electrode is not particularly limited, and a conventional negative electrode using a metal foil can also be used.
  • an ionic liquid containing a lithium salt used for an electrode for an electricity storage device is used as the electrolytic solution.
  • a lithium metal foil for lithium doping is pressure bonded to the negative electrode.
  • the lithium ion capacitor preferably has a negative electrode capacity larger than the positive electrode capacity, and the amount of occlusion of lithium ions in the negative electrode is 90% or less of the difference between the positive electrode capacity and the negative electrode capacity.
  • the amount of occlusion of lithium ions can be adjusted by the thickness of the lithium metal foil that is pressure-bonded to the negative electrode.
  • the negative electrode is disposed so that the surface on which the lithium metal foil is pressure-bonded faces the positive electrode. And it accommodates in a cell case and impregnates electrolyte solution. Finally, a lithium ion capacitor can be produced by sealing the case with a lid.
  • Example 1-2 “NC1100” manufactured by Nanosil (purity: 92.4% by mass, shape: Single-walled CNT, average diameter: 2 nm),
  • Example 1-3 (Purity: 73.6% by mass, shape: single-walled CNT, average diameter: 2 nm),
  • Example 1-4 (Purity: 69.3 mass) %, Shape: single-walled CNT, average diameter: 2 nm).
  • Example 1-1, 1-2, 1-3, 1-4 Preparation of kneaded product
  • the amount of single-walled CNT was prepared to be 7% by mass of the total weight of single-walled CNT and EMI-BF 4 .
  • the single-walled CNT and EMI-BF 4 were kneaded for 10 minutes using a mortar to obtain a kneaded product.
  • a three-dimensional network-like aluminum porous body (average pore diameter: 550 ⁇ m, thickness: 1.0 mm) was prepared, and adjusted to a thickness of 300 ⁇ m in advance by a roll press.
  • the kneaded material of each example was placed on the top surface of the three-dimensional network-like aluminum porous body having an adjusted thickness, and squeezed into the porous body using a squeegee.
  • Two electrodes for an electricity storage device of the present invention were punched out into a circular shape having a diameter of 15 mm (electrode area: 1.77 cm 2 ) to form a positive electrode and a negative electrode, respectively.
  • Cellulose fiber separators (“TF4035” manufactured by Nippon Kogyo Paper Industries Co., Ltd., thickness 35 ⁇ m) were placed facing each other and stored in an R2032-type coin cell case.
  • EMI-BF 4 was injected as an electrolyte into the coin cell case, and then the case was sealed to produce a coin-type electric double layer capacitor.
  • TG-DTA TGA-60AH manufactured by Shimadzu Corporation. The measurement was performed under air (flow rate: 50 L / min) and the rate of temperature increase: 5 ° C./min, and the purity was calculated from the mass decrease before and after the measurement. Further, the metal impurity species contained in the carbon nanotube and the mass% thereof were evaluated using ICP-AES (ICPS-8100CL manufactured by Shimadzu Corporation).
  • ⁇ Performance evaluation test> The battery was charged to 2.3 V at a constant current of 1 A / g (current amount per mass of active material contained in a single electrode) at an environmental temperature of 25 ° C., and then 2.3 V constant voltage charging was performed for 5 minutes. Thereafter, the voltage holding ratio was evaluated by switching to an open circuit state and examining the voltage after 1 minute. Thereafter, the battery was discharged to 0 V at a constant current of 1 A / g (amount of current per mass of active material contained in a single electrode). The charge / discharge efficiency was evaluated by dividing the discharge capacity by the charge capacity. The evaluation results are shown in Table 1. Furthermore, for each of the examples, the relationship between the capacitance and voltage of the capacitor during charging and discharging is shown in FIGS.
  • Examples 1-1 and 1-2 the carbon purity of the single-walled CNT is as high as 90% by mass. As shown in Table 1, the charge / discharge efficiency and voltage holding ratio of the capacitors produced using these CNTs are high. On the other hand, in the single-walled CNTs shown in Examples 1-3 and 1-4, metal impurities such as Ni, Ca, Mg, Fe, and Zn remain in the sample, and Examples 1-1, 1- Compared with 2, the purity is low. The reason why the charge / discharge efficiency and voltage holding ratio of Examples 1-3 and 1-4 were lower than those of Examples 1-1 and 1-2 was that the charge stored in the electrochemical reaction of metal impurities was consumed. I can guess that.
  • These metal elements such as Ni, Ca, Mg, Fe, and Zn can be dendrites in which metal is deposited in a needle shape on the electrode by an electrochemical reaction.
  • the generation of dendrite causes an electrical short circuit of the capacitor.
  • FIGS. 2 to 4 it was confirmed that when the purity of the carbon nanotube is 70% by mass or more, the carbon nanotube operates stably as an electric double layer capacitor.
  • the single-walled carbon nanotube purity is 90% by mass or more from the viewpoint of charge / discharge efficiency, voltage maintenance ratio, and the risk of dendrite generation.
  • the content of the active material (single-walled CNT) in the kneaded material was changed to change the content of the active material in the single electrode.
  • the performance of the electric double layer capacitor was evaluated (Examples 2-1 to 2-3).
  • an electric double layer capacitor using an activated carbon sheet electrode was evaluated as a comparative example (Comparative Example 1).
  • the performance of the electric double layer capacitor was evaluated when activated carbon was used as the active material (Comparative Example 2).
  • Example 2-1 to 2-3 (Preparation of kneaded product) Single-walled CNT and EMI-BF 4 were mixed in such a manner that the amount of single-walled CNT was 7% by mass (Example 2-1) or 17% by mass (Example 2-2) of the total amount of single-walled CNT and EMI-BF 4. ), 27 mass% (Example 2-3). Next, the single-walled CNT and EMI-BF 4 were kneaded for 10 minutes using a mortar to obtain a kneaded product. (Production of electrodes for power storage devices) An electrode was obtained in the same manner as in Example 1 except that the kneaded materials having different mass% were used.
  • the energy density W D (Wh / L) at this time is also shown.
  • the energy density was calculated using the following formula (2).
  • W D W / V (2)
  • W represents energy stored in the capacitor, and V represents volume.
  • the volume V is a capacitor volume that ignores the coin cell case.
  • a multilayer capacitor was obtained.
  • As the electrolytic solution a solution in which triethylmethylammonium tetrafluoroborate (TEMA-BF 4 ) salt was dissolved in propylene carbonate (PC) so as to be 1.0 mol / L was used.
  • TEMA-BF 4 triethylmethylammonium tetrafluoroborate
  • PC propylene carbonate
  • ⁇ Performance evaluation test> At an environmental temperature of 25 ° C., charging was performed at a constant current of 1 A / g (the amount of current per mass of active material contained in a single electrode) up to 2.3 V, and then 2.3 V constant voltage charging was performed for 5 minutes. . Thereafter, the electrostatic capacity when discharged to 0 V with a constant current of 1 A / g (current amount per active material mass contained in the single electrode) was evaluated.
  • the capacitance (F / g) is shown as the capacitance per mass of the active material contained in the single electrode.
  • a carbon black-based conductive layer was mounted on the surface of a three-dimensional network aluminum porous body (average pore diameter 550 ⁇ m, thickness 1 mm).
  • the three-dimensional network aluminum porous body is immersed in a solution dispersed in water so that the ratio of the mixture is 20% by mass, defoamed under reduced pressure, and then pulled up and dried to obtain a filler. It was.
  • the filler was compressed by a roll press to obtain an electrode having a thickness of 700 ⁇ m.
  • a coin (R2032) type electric double layer capacitor was obtained in the same manner as in Example 1.
  • As the electrolytic solution a solution in which TEMA-BF 4 salt was dissolved in PC so as to be 1.0 mol / L was used.
  • ⁇ Performance evaluation test> The operating voltage range, capacitance and energy density were evaluated in the same manner as in Comparative Example 1.
  • Example 2-1 SBR: “BM-400B” (styrene butadiene rubber) manufactured by Zeon Corporation.
  • CB “Denka Black” (carbon black) manufactured by Denki Kagaku Kogyo.
  • ⁇ Evaluation results> Further, for Example 2-1 and Comparative Example 1, the discharge with respect to the change in the current density (A / g) with the discharge capacity (mAh / g) when discharged at 1 A / g as the reference (100%) The capacity maintenance rate (%) was also examined. The evaluation results are shown in FIG.
  • FIG. 6 indicates that the electric double layer capacitor of Example 2-1 does not decrease the discharge capacity even when the discharge current density is increased.
  • Example 3-1, 3-2, 3-4 average pore diameter 550 ⁇ m, thickness 1.0 mm
  • Example 3-3 average (The hole diameter was 850 ⁇ m and the thickness was 1.0 mm).
  • a polytetrafluoroethylene membrane filter (“Omnipore membrane” manufactured by Millipore) was installed on both sides of the electrode, and then 30 MPa (Example 3-1) or 300 MPa (Examples 3-2, 3-3).
  • Example 3-4 after the membrane filter was installed on an electrode having a thickness of 1 mm, rolling was performed while increasing the pressure stepwise in the range of 30 to 450 MPa, and finally the membrane filter was removed and rolled at 450 MPa. An electrode having a thickness of 140 ⁇ m was obtained.
  • the coin (R2032) type electric double layer capacitor was obtained by the same method as Example 1. ⁇ Performance evaluation test> In the same manner as in Example 2, the capacitance, internal resistance per unit area, and energy density were evaluated.
  • Table 3 shows the evaluation results of capacitance and internal resistance.
  • Table 3 shows the evaluation results of capacitance and internal resistance.
  • the cell volume is the capacitor volume ignoring the coin cell case
  • the cell weight is the capacitor weight ignoring the coin cell case.
  • the charging voltage of Examples 3-1 to 3-4 is 3.5V
  • the charging voltage of Comparative Example 1 is 2.3V.
  • Aluminum porous body three-dimensional network aluminum porous body, average pore diameter 850 ⁇ m, porosity: 97%, thickness: 1.0 mm, basis weight: 90 g / m 2 .
  • the energy density increased as compared with the capacitor of Example 2-1 produced using the kneaded material having the same composition.
  • the ratio of the single-walled CNT to the total amount of the active material and the ionic liquid (active material mass density in the single electrode) is 42% by mass, 62% by mass, 67% by mass, and 73% by mass, respectively, and the carbon nanotubes in the kneaded product It is thought that it originates from having increased from the ratio (7 mass%).
  • FIG. 7A shows that the energy density per cell volume is improved by increasing the CNT density in the electrode.
  • FIG. 7B shows that the energy density per cell weight is improved by increasing the CNT density in the electrode.
  • Example 4-1 to 4-3 (Preparation of kneaded product) A kneaded material was obtained in the same manner as in Example 1 using bilayer CNT and EMI-BF 4 .
  • the amount of bilayer CNT is 7 wt% of the total amount of bilayer CNT and EMI-BF 4 (Example 4-1), 17 wt% (Example 4-2), 27 wt% (Example 4 -3).
  • Example 2 (Production of electrodes for power storage devices) For each example, an electrode having a thickness of 300 ⁇ m was obtained in the same manner as in Example 1. (Production of electric double layer capacitor) About each Example, the coin (R2032) type electric double layer capacitor was obtained by the same method as Example 1. ⁇ Performance evaluation test> The operating voltage range, capacitance and energy density were evaluated in the same manner as in Example 2.
  • Table 4 shows the evaluation results.
  • EMI-BF 4 “1-ethyl-3-methylimidazolium tetrafluoroborate” manufactured by Kishida Chemical Co., Ltd.
  • Porous aluminum body three-dimensional network aluminum porous body, average pore diameter 550 ⁇ m, porosity: 95%, thickness: 1.0 mm, basis weight: 140 g / m 2 .
  • Double-walled CNT “NC2100” manufactured by Nanosil Corporation (shape: double-walled CNT, average length: 5 ⁇ m, average diameter: 3.5 nm, specific surface area: 500 m 2 / g, purity: 90% by mass) ⁇ Evaluation results> From Table 4, the specific surface area of the double-walled CNT is 1.3 times as large as that of the single-walled CNT, but the degree of fragmentation of the CNT by shear force is small compared to the single-walled CNT per unit mass. It can be judged from the result of the electrostatic capacity. However, it has been found that even if double-walled CNTs are used, a kneaded material similar to single-walled CNTs can be produced and functions as an electrode.
  • the performance of the electric double layer capacitor was evaluated when carbon nanohorn (CNH) and open carbon nanohorn (hereinafter also referred to as open CNH) were used as the active material in the kneaded product.
  • CNH carbon nanohorn
  • open CNH open carbon nanohorn
  • a kneaded material was obtained in the same manner as in Example 1 using CNH or open-hole CNH and EMI-BF 4 .
  • the amount of CNH or open-hole CNH is 7% by mass (Examples 5-1 and 5-5) or 17% by mass (Examples 5-2 and 5-5) of the total amount of CNH or open-hole CNH and EMI-BF 4 .
  • Example 5-6 and 27 mass% Examples 5-3 and 5-7.
  • Example 5-6 an electrode having a thickness of 300 ⁇ m was obtained in the same manner as in Example 1.
  • the coin (R2032) type electric double layer capacitor was obtained by the same method as Example 1.
  • Examples 5-4 and 5-8 An electrode was obtained in the same manner as in Example 3-2 except that CNH or open-hole CNH was used as the active material, to produce an electric double layer capacitor.
  • ⁇ Performance evaluation test> In the same manner as in Example 2, the operating voltage range, capacitance, energy density, and internal resistance were evaluated.
  • Examples 5-1 to 5-4 the energy density increased as the content ratio of CNH in the electrode increased. This is presumably because the contact area between CNHs and the contact area between CNH and the three-dimensional network metal porous body increase with an increase in the content ratio of CNH in the electrode.
  • Examples 5-5 to 5-8 the energy density of the capacitor increased as the content ratio of the open hole CNH in the electrode increased. Furthermore, the capacitors using the open CNHs of Examples 5-5 to 5-8 had higher capacitance and energy density than the capacitors using CNH of Examples 5-1 to 5-4. This is presumably because the surface area of CNH that contributes to the capacitance was increased by the hole opening treatment.
  • Example 6-4 the upper limit temperature was set to 550 ° C., and the temperature was held for 1 hour after reaching 550 ° C.
  • a kneaded material was obtained in the same manner as in Example 1 using both-end-opened carbon nanotubes and EMI-BF 4 in each Example.
  • the amount of carbon nanotubes was prepared to be 7% by mass of the total amount of carbon nanotubes and EMI-BF 4 .
  • an electrode having a thickness of 300 ⁇ m was obtained in the same manner as in Example 1.
  • the coin (R2032) type electric double layer capacitor was obtained by the same method as Example 1.
  • Example 6-1 the yield of carbon nanotubes with both ends open is as low as 11%, and 650 ° C. is considered to reach the combustion temperature of the carbon nanotubes themselves. On the other hand, since the increase in specific surface area was slight compared with Example 6-2, it was determined that the heat treatment conditions for the carbon nanotubes of Example 6-1 were inappropriate.
  • Example 6-1 From the specific surface area calculated by the t-plot method, it can be confirmed that the internal specific surface area increases as the heat treatment temperature increases. However, in Example 6-1, the yield decreased sharply while the specific surface area increased only slightly. In Example 6-4, the specific surface area did not increase even when the temperature was maintained after the temperature was raised. Therefore, it was determined that the heat treatment conditions of Example 6-2 were appropriate conditions for increasing the specific surface area.
  • Example 6-2 showed a capacitance approximately 1.5 times that of Example 6-5 using untreated carbon nanotubes.
  • Example 7-1 to 7-4 (Preparation of kneaded product) A kneaded product was obtained in the same manner as in Example 1 using single-walled CNT and EMI-BF 4 .
  • the amount of single-walled CNTs was prepared to be 7% by mass of the total amount of single-walled CNTs and EMI-BF 4 .
  • Three-dimensional network-like aluminum porous body (average pore diameter 450 ⁇ m (Example 7-1), 550 ⁇ m (Example 7-2), 650 ⁇ m (Example 7-3), 850 ⁇ m (Example 7-4), each having a thickness of 1 0.0 mm) was prepared, and the kneaded material was rubbed in the same manner as in Example 1 to obtain an electrode having a thickness of 1 mm.
  • Example 7-1 the thicknesses were 199 ⁇ m (Example 7-1), 191 ⁇ m (Example 7-2), 219 ⁇ m (Example 7-3), and 196 ⁇ m (Example 7), respectively. -4) was obtained.
  • the pressing pressure at this time was 150 MPa.
  • the coin (R2032) type electric double layer capacitor was obtained by the same method as Example 1.
  • ⁇ Performance evaluation test> In the same manner as in Example 2, the operating voltage range, capacitance, and internal resistance were evaluated. The volume used as a reference for the capacitance (F / cm 3 ) was a capacitor volume ignoring the coin cell case.
  • the internal resistance of the capacitor is constant, but when the average pore diameter of the three-dimensional network aluminum porous body is less than 550 ⁇ m, the average pore diameter decreases. As a result, it was found that the internal resistance increased.
  • Example 8-1 to 8-3 (Preparation of kneaded product) A kneaded material was obtained in the same manner as in Example 1 using single-walled CNT, graphene, and EMI-BF 4 . Note that the ratio of graphene and the ratio of single-walled CNT to the total amount of single-walled CNT, graphene, and EMI-BF 4 are 0.7 mass% and 6.3 mass% in Example 8-1, respectively.
  • Example 8-3 was prepared to be 0.7% by mass and 6.3% by mass, respectively. (Production of electrodes for power storage devices) In Examples 8-1 and 8-2, an electrode having a thickness of 300 ⁇ m was obtained in the same manner as in Example 1.
  • Example 8-3 an electrode having a thickness of 188 ⁇ m was obtained in the same manner as in Example 3-2.
  • the active material content of the electrode indicates the ratio of single-walled CNT and the ratio of graphene to the total amount of single-walled CNT, graphene, and EMI-BF 4 .
  • the coin (R2032) type electric double layer capacitor was obtained by the same method as Example 1. ⁇ Performance evaluation> The operating voltage range, capacitance, and energy density were evaluated in the same manner as in Example 1.
  • Table 8 shows the evaluation results.
  • Examples 8-1 and 8-2 are capacitors using single-walled CNT and graphene as the active material, and at an energy density of 90% of the capacitor of Example 2-1 using only single-walled CNT as the active material. there were. This is considered to be derived from the proportion of graphene and carbon nanotubes in the kneaded product (0.7 mass%, 6.3 mass%).
  • Example 8-3 the energy density increased as compared with the capacitor of Example 8-1 produced using the kneaded material having the same composition. This is because only the ionic liquid in the kneaded material filled in the three-dimensional network aluminum porous body during the rolling of the electrode was extruded from the three-dimensional network aluminum porous body.
  • the ratio of graphene to the total amount of graphene and ionic liquid and the ratio of single-walled CNT are 6% by mass and 60% by mass, respectively, the ratio of graphene in the kneaded product (0.7% by mass), the ratio of carbon nanotubes (6. 3% by mass).
  • Example 9-1 to 9-3 (Preparation of kneaded product) EMI-BF 4 , PC, and PVdF-HFP were mixed at a mass% of 76: 15: 8 (Example 9-1) or 62: 31: 7 (Example 9-2) to obtain a mixed solution. It was.
  • EMI-BF 4 and PVdF-HFP were mixed at a mass ratio of 90:10 to obtain a mixed solution (Example 9-3).
  • the electrolyte used was a mixture of EMI-BF 4 and PC at the same blending ratio as in the preparation of the kneaded materials of each example.
  • ⁇ Performance evaluation> The environmental temperature was changed in the range of ⁇ 40 ° C. to 80 ° C., and the electrostatic capacity was evaluated at each temperature in the same manner as in Example 1. The operating voltage range was 0V to 3.5V. As a control, the same evaluation was performed for the capacitor of Example 2-1. The evaluation results are shown in FIG. In FIG. 9, the electrostatic capacity (F / g) is shown as the electrostatic capacity per mass of the active material contained in the single electrode.
  • Example 9 shows the evaluation results.
  • capacitance (F / g) is shown as capacitance per mass of active material contained in a single electrode.
  • PVdF-HFP “Kynar Flex 2801” (polyvinylidene fluoride-hexafluoropropylene copolymer) manufactured by Arkema.
  • the electric double layer capacitors of Examples 9-1 and 9-2 produced using a kneaded material containing PC were able to suppress a decrease in capacitance even in a low temperature region, and improved low temperature characteristics. This is considered to be derived from the fact that the organic solvent decreased the viscosity of the ionic liquid.
  • Examples 9-1 and 9-2 using the kneaded material containing the carbon nanotube, the ionic liquid, the organic solvent, and the binder had a capacitance per active material mass of the capacitor of only the active material and the ionic liquid. It was equivalent to the capacitor produced in Example 2 and Example 3 using the active material containing.
  • Example 10 (Preparation of positive electrode) Single-walled CNT and 1-ethyl-3-methylimidazolium fluoromethanesulfonylimide (EMI-FSI) so that the amount of single-walled CNT is 7% by mass of the total amount of single-walled CNT and EMI-FSI. Got ready. Next, single-walled CNT and EMI-FSI were kneaded for 10 minutes using a mortar to obtain a kneaded product for a positive electrode.
  • EMI-FSI 1-ethyl-3-methylimidazolium fluoromethanesulfonylimide
  • a three-dimensional mesh-like aluminum porous body (average pore diameter: 550 ⁇ m, thickness: 1.0 mm) was prepared and compressed to a thickness of 500 ⁇ m by a roll press.
  • the kneaded material for a positive electrode was placed on the upper surface of the three-dimensional network aluminum porous body, and squeezed in the lower surface direction using a squeegee to produce a positive electrode.
  • Preparation of negative electrode Prepare hard carbon and EMI-FSI so that the amount of hard carbon is 7% by mass of the total amount of hard carbon and EMI-FSI, and kneaded for negative electrode in the same manner as the kneaded product for positive electrode Got.
  • a three-dimensional network nickel porous body (average pore diameter 480 ⁇ m, porosity 95%, thickness 1.4 mm) was prepared, and compressed to a thickness of 200 ⁇ m by a roll press. Next, the kneaded material for a negative electrode was placed on the upper surface of the three-dimensional network nickel porous body, and a negative electrode was produced in the same manner as the positive electrode.
  • Each of the positive electrode and the negative electrode is punched out in a circular shape having a diameter of 15 mm, and is placed opposite to each other across a cellulose fiber separator (“TF4035” manufactured by Nippon Kogyo Paper Industries Co., Ltd., thickness 35 ⁇ m). Stored in a coin cell case.
  • the lithium metal foil was crimped
  • a coin cell case was injected with EMI-FSI dissolved in lithium-bis (trifluoromethanesulfonyl) imide (LiTFSI) at a concentration of 1.0 mol / L as an electrolyte.
  • LiTFSI lithium-bis (trifluoromethanesulfonyl) imide
  • a solution obtained by dispersing the obtained mixture in water so that the solid content is 30% by mass is applied to a copper foil having a thickness of 10 ⁇ m, and after drying, the thickness is adjusted by a roll press to have a thickness of 110 ⁇ m.
  • a negative electrode was prepared.
  • a lithium ion capacitor was produced in the same manner as in Example 10 using the obtained positive electrode and negative electrode.
  • As the electrolytic solution a solution obtained by dissolving LiPF 6 at a concentration of 1.0 mol / L in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 was used.
  • ⁇ Performance evaluation test> The discharge capacity and energy density were evaluated in the same manner as in Example 10.
  • a carbon black-based conductive layer was mounted on the surface of a three-dimensional network aluminum porous body (average pore diameter 550 ⁇ m, thickness 1 mm).
  • the three-dimensional network aluminum porous body is immersed in a solution dispersed in water so that the ratio of the mixture for the positive electrode becomes 20% by mass, defoamed under reduced pressure, then pulled up, dried and filled. Got the body.
  • the filler was compressed by a roll press to obtain a positive electrode having a thickness of 580 ⁇ m.
  • a negative electrode mixture was obtained in the same manner as the positive electrode mixture except that the activated carbon was changed to hard carbon.
  • a carbon black-based conductive layer was mounted on the surface of a three-dimensional network nickel porous body (average pore diameter 480 ⁇ m, porosity 95%, thickness 1.4 mm).
  • the three-dimensional network nickel porous body adjusted to a thickness of 0.4 mm is immersed in a solution dispersed in water so that the ratio of the negative electrode electrode mixture is 20% by mass, and defoamed under reduced pressure. After the treatment, it was pulled up and dried to obtain a filler. The filler was compressed by a roll press to obtain a negative electrode having a thickness of 220 ⁇ m.
  • a lithium ion capacitor was produced in the same manner as in Example 10 using the positive electrode and the negative electrode.
  • Example 11-1 to 11-8 (Preparation of kneaded product) A kneaded material was obtained in the same manner as in Example 1 using CNH, single-walled CNT, and EMI-BF 4 .
  • the ratio of CNH and single-walled CNT to the total amount of CNH, single-walled CNT and EMI-BF 4 is 0% by mass and 17% by mass in Example 11-1 and Example 11-7, respectively.
  • Example 11-6 are 3.4% by mass and 13.6% by mass, respectively, Example 11-3 is 8.5% by mass and 8.5% by mass, and Example 11-4 is, respectively. In 13.6% by mass and 3.4% by mass, respectively, in Examples 11-5 and 11-8, 17% by mass and 0% by mass were prepared. (Production of electrodes for power storage devices) In Examples 11-1 to 11-5, an electrode having a thickness of 300 ⁇ m was obtained in the same manner as in Example 1.
  • Examples 11-6 to 11-8 electrodes having a thickness of 280 ⁇ m to 310 ⁇ m were obtained in the same manner as in Example 3-2.
  • the active material ratio (% by mass) in the single electrode indicates the ratio of CNH and the ratio of single-walled CNT to the total amount of single-walled CNT, CNH, and EMI-BF 4 .
  • the coin (R2032) type electric double layer capacitor was obtained by the same method as Example 1. ⁇ Performance evaluation> For each example, the capacitance, energy density, and internal resistance were evaluated in the same manner as in Example 2.
  • Table 11 shows the evaluation results.
  • the capacitors of Example 11-2 and Example 11-4 had larger capacitance and energy density than the capacitor of Example 11-1 using only single-walled CNTs.
  • Example 11-6 using a mixture of CNH and single-walled CNT is the same as that of Example 11-7 using only single-walled CNT and Example 11-8 using only CNH. Capacitance and energy density were larger than the capacitor, and the internal resistance was smaller.
  • Example 11-8 using only CNH had a larger energy density and lower internal resistance than Example 11-7 using only single-walled CNTs. This is presumably because the length of CNH is shorter than that of single-walled CNT, and the proportion of active material in the single electrode after the compression treatment is larger in CNH.
  • the paste made of CNH alone had a lower viscosity than the paste made of single-walled CNT alone. This is considered to be due to the fact that the contact area between CNHs is small because the length of CNH is generally shorter than the length of single-walled CNTs. Therefore, it was found that CNH can be more stably held in the three-dimensional network aluminum porous body by mixing with single-walled CNT. Furthermore, it has been found that a capacitor manufactured using this mixed paste exhibits higher capacity and energy density than a capacitor manufactured using single-walled CNT and CNH alone.
  • An electricity storage device using the electrode for an electricity storage device of the present invention can be used for various applications including transportation equipment such as automobiles and railways.

Abstract

 蓄電デバイス用電極は、カーボンナノチューブ、活性炭、ハードカーボン、グラファイト、グラフェンおよびカーボンナノホーンからなる群より選択される少なくとも1種の活物質と、イオン液体と、三次元網目状金属多孔体とを含む。

Description

蓄電デバイス用電極、蓄電デバイスおよび蓄電デバイス用電極の製造方法
 本発明は、蓄電デバイス用電極、蓄電デバイスおよび蓄電デバイス用電極の製造方法に関する。
 蓄電デバイスのうち、キャパシタは各種の電気機器等に広く用いられている。多くの種類があるキャパシタの中でも電気二重層キャパシタおよびリチウムイオンキャパシタは容量が大きく、近年とくに注目を集めている。
 電気二重層キャパシタは、セル、セル間の電気的絶縁の確保と液漏れを防ぐための密閉容器、電気を外に取り出すための集電極、およびリード線を備える蓄電デバイスである。前記セルは、主に対向する一対の活性炭電極とそれを電気的に分離するセパレータ、および容量発現を行う有機系電解液を含む。
 また、リチウムイオンキャパシタは、正極電極に活性炭電極などのイオンが静電的に吸脱着可能な電極を用い、負極電極にハードカーボンなどのリチウムイオンを吸蔵可能な電極を用いる蓄電デバイスである。
 電気二重層キャパシタで蓄電されるエネルギーは、下記式(1)で示される。
 W=(1/2)CU2    …(1)
 Wは、蓄電されるエネルギー(容量)、Cは静電容量(電極の表面積に依存)、Uはセル電圧をそれぞれ示す。
 上記式(1)から、蓄電されるエネルギーの向上には、静電容量の向上が寄与すると考えられる。
 特許第3924273号公報(特開2005-079505号公報)には、電気二重層キャパシタにおいて、静電容量を向上させるべく、「イオン性液体の存在下にカーボンナノチューブにせん断力を加えて細分化することによって得られるカーボンナノチューブとイオン性液体とから成るゲル状組成物から構成されることを特徴とする電気二重層キャパシタの電極材料。」が開示されている。
 特開2009-267340号公報には、「比表面積が600~2600m2/gであるカーボンナノチューブを抄紙成型したシートが、集電体を構成し表面に凹凸部のある基材と、その凹凸部により一体化されていることを特徴とする電気二重層キャパシタ用電極。」が開示されている。
特許第3924273号公報 特開2009-267340号公報
 しかし、特許第3924273号公報に記載のゲル状組成物は変形しやすく、固体化していないので、電極材料としては取り扱いに不都合がある。さらに、ゲル状組成物を集電箔上に厚みを厚く装着することが困難であることから、電極単位面積あたりの静電容量を大きくすることにも課題がある。
 また、特開2009-267340号公報には、基材として発泡ニッケル(三次元網目状ニッケル多孔体)を使用した技術も記載されているが、カーボンナノチューブが凹凸部のある基材に対して均一に分散しにくいという課題がある。さらに、活性炭中の残留水分および官能基に起因したCO等のガス発生があり、セル電圧を高くする事にも課題がある。また、電極材料と集電体との接触性に関係して、出力を上げることも望まれている。
 本発明は、上記課題に鑑みてなされたものであり、その目的は、蓄電デバイスの電極として用いた場合に、静電容量およびセル電圧を向上させて、蓄電されるエネルギー密度を向上できる蓄電デバイス用電極、ならびに該蓄電デバイス用電極を用いた蓄電デバイスおよび該蓄電デバイス用電極の製造方法を提供することである。
 本発明は、カーボンナノチューブ、活性炭、ハードカーボン、グラファイト、グラフェンおよびカーボンナノホーンからなる群より選択される少なくとも1種の活物質と、イオン液体と、三次元網目状金属多孔体とを含む、蓄電デバイス用電極である。
 本発明の蓄電デバイス用電極は、蓄電デバイスの電極として用いると、蓄電デバイスの静電容量およびセル電圧を向上させて、蓄電されるエネルギー密度を向上させることができる。
 本発明の蓄電デバイス用電極において好ましくは、活物質がカーボンナノチューブを含む。
 本発明の蓄電デバイス用電極において好ましくは、活物質がカーボンナノチューブである。
 カーボンナノチューブは繊維状であるため、活物質がカーボンナノチューブを含むと、活物質同士の接触性が向上し、電気伝導性が向上する。このため活物質としてカーボンナノチューブを用いた蓄電デバイス用電極を蓄電デバイスの電極として用いると、蓄電デバイスの出力を向上させることができる。
 本発明の蓄電デバイス用電極において好ましくは、三次元網目状金属多孔体の金属が、アルミニウム、ニッケル、銅、アルミニウム合金およびニッケル合金からなる群より選択される少なくとも1種を含む。
 本発明の蓄電デバイス用電極において好ましくは、三次元網目状金属多孔体の金属がアルミニウムである。
 三次元網目状金属多孔体の金属としてアルミニウム、ニッケル、銅、アルミニウム合金またはニッケル合金を用いた蓄電デバイス用電極は、蓄電デバイスの使用電圧範囲(リチウム電位に対して0V以上5V以下程度)においても溶出し難いため、長期の充放電においても安定した充電が可能な蓄電デバイスを得ることができる。とくに高電圧(リチウム電位に対して3.5V以上)範囲においては、三次元網目状金属多孔体の金属がアルミニウム、アルミニウム合金またはニッケル合金を含むことが好ましく、中でもアルミニウムであることがさらに好ましい。
 本発明の蓄電デバイス用電極において好ましくは、蓄電デバイス用電極がバインダー成分を含まない。
 本発明の蓄電デバイス用電極によれば、三次元網目状金属多孔体の孔中に活物質を保持することができる。このため、絶縁体であるバインダー成分を使用しなくても電極を作製することができる。したがって、本発明の蓄電デバイス用電極は、電極単位体積中に高い含有率で活物質を装着できることになり、さらに内部抵抗も低減されるため、蓄電デバイスの静電容量およびセル電圧を向上させて、蓄電されるエネルギー密度を向上させることができる。
 本発明の蓄電デバイス用電極において好ましくは、イオン液体が有機溶媒を含む。
 イオン液体が有機溶媒を含むと、イオン液体の粘度が低下する。したがって、本発明の蓄電デバイス用電極は、蓄電デバイスの低温特性を向上させることができる。
 本発明の蓄電デバイス用電極において好ましくは、カーボンナノチューブは、両端が開孔している形状を有する。
 カーボンナノチューブの両端が開孔していると、カーボンナノチューブ内部へイオン液体や電解液が侵入しやすくなるため、カーボンナノチューブとイオン液体や電解液との接触面積が増加する。したがって、本発明の蓄電デバイス用電極は、蓄電デバイスの静電容量を増加させることができる。
 本発明の蓄電デバイス用電極において好ましくは、カーボンナノチューブは、平均長さが100nm以上2000μm以下の範囲である。より好ましくは500nm以上100μm以下の範囲である。
 カーボンナノチューブの平均長さが100nm以上2000μm以下の範囲であり、より好ましくは500nm以上100μm以下の範囲であると、イオン液体中でのカーボンナノチューブの分散性が良好であり、かつカーボンナノチューブが三次元網目状金属多孔体の孔中に保持されやすくなる。したがって、カーボンナノチューブとイオン液体との接触面積が増加し、蓄電デバイスの静電容量を増加させることができる。
 本発明の蓄電デバイス用電極において好ましくは、カーボンナノチューブは、平均直径が0.1nm以上50nm以下の範囲である。
 カーボンナノチューブの平均直径が0.1nm以上50nm以下の範囲であると、カーボンナノチューブ内部へイオン液体や電解液が侵入しやすくなるため、カーボンナノチューブとイオン液体や電解液との接触面積が増加する。したがって、蓄電デバイスの静電容量を増加させることができる。
 本発明の蓄電デバイス用電極において、カーボンナノチューブは、純度が70質量%以上が好ましく、90質量%以上がさらに好ましい。カーボンナノチューブの純度が70質量%未満であると、触媒金属による影響で耐電圧の減少やデンドライトの生成が懸念される。
 カーボンナノチューブの純度が90質量%以上であると、電気伝導性が良好である。したがって、本発明の蓄電デバイス用電極は、蓄電デバイスの出力を向上させることができる。
 本発明の蓄電デバイス用電極において好ましくは、三次元網目状金属多孔体は、平均孔径が50μm以上1000μm以下である。
 三次元網目状金属多孔体の平均孔径が50μm以上であると、活物質およびイオン液体が三次元網目状金属多孔体の孔中に入り込みやすくなり、活物質と三次元網目状金属多孔体との接触性が良好となる。したがって、電極の内部抵抗が低減され、蓄電デバイスのエネルギー密度を向上させることができる。一方、三次元網目状金属多孔体の平均孔径が1000μm以下であると、バインダー成分を使用しなくても、孔中に活物質を良好に保持することができ、さらに十分な強度を有するキャパシタを得ることができる。
 本発明は、蓄電デバイス用電極を備える蓄電デバイスである。
 本発明の蓄電デバイスによれば、静電容量およびセル電圧が向上し、蓄電されるエネルギー密度を向上することができる。
 本発明の蓄電デバイスにおいて好ましくは、蓄電デバイスが、電気二重層キャパシタまたはリチウムイオンキャパシタである。
 本発明の蓄電デバイス用電極を電気二重層キャパシタまたはリチウムイオンキャパシタの電極として用いると、キャパシタの静電容量およびセル電圧が向上し、蓄電されるエネルギー密度を向上することができる。
 本発明は、カーボンナノチューブ、活性炭、ハードカーボン、グラファイト、グラフェンおよびカーボンナノホーンからなる群より選択される少なくとも1種の活物質をイオン液体に混練して混練物を生成する工程と、混練物を三次元網目状金属多孔体に含ませる工程とを備える、蓄電デバイス用電極の製造方法である。
 本発明によれば、カーボンナノチューブとイオン液体とを含む混練物が三次元網目状金属多孔体の孔中に含まれている蓄電デバイス用電極を得ることができる。該蓄電デバイス用電極は、蓄電デバイスの電極として用いると、蓄電デバイスの静電容量およびセル電圧を向上させて、蓄電されるエネルギー密度を向上させることができる。
 本発明によれば、蓄電デバイスの電極として用いた場合に、静電容量およびセル電圧を向上させて、蓄電されるエネルギー密度を向上できる蓄電デバイス用電極、ならびに該蓄電デバイス用電極を用いた蓄電デバイスおよび該蓄電デバイス用電極の製造方法を提供することができる。
本発明の一実施の形態における電気二重層キャパシタのセルの概略図である。 実施例1-1の充電時および放電時における電気二重層キャパシタの容量と電圧の関係を示すグラフである。 実施例1-2の充電時および放電時における電気二重層キャパシタの容量と電圧の関係を示すグラフである。 実施例1-3の充電時および放電時における電気二重層キャパシタの容量と電圧の関係を示すグラフである。 実施例1-4の充電時および放電時における電気二重層キャパシタの容量と電圧の関係を示すグラフである。 電気二重層キャパシタの放電電流と容量維持率との関係を示したグラフである。 (A)はセル体積あたりのラゴンプロットを示すグラフである。(B)はセル重量あたりのラゴンプロットを示すグラフである。 (A)は三次元網目状アルミニウム多孔体の孔径に対する電気二重層キャパシタの静電容量を示すグラフである。(B)は三次元網目状アルミニウム多孔体の孔径に対する電気二重層キャパシタの内部抵抗を示すグラフである。 電気二重層キャパシタの温度特性を示すグラフである。 本発明の一実施の形態におけるリチウムイオンキャパシタのセルの概略図である。
 以下、本発明を実施の形態に基づいて説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。
[実施の形態1]
(蓄電デバイス用電極)
 本発明の一実施の形態において、蓄電デバイス用電極はカーボンナノチューブ、活性炭、ハードカーボン、グラファイト、グラフェンおよびカーボンナノホーンからなる群より選択される少なくとも1種の活物質と、イオン液体と、三次元網目状金属多孔体とを含む。
(活物質)
 活物質としては、カーボンナノチューブ、活性炭、ハードカーボン、グラファイト、グラフェンおよびカーボンナノホーンからなる群より選択される少なくとも1種を用いることができる。
 カーボンナノチューブとしては、たとえば、炭素の層(グラフェン)が1層だけ筒状になっている単層カーボンナノチューブ(以下、単層CNTともいう)や、炭素の層が複数層積層した状態で筒状になっている二層カーボンナノチューブ(以下、二層CNTともいう)または多層カーボンナノチューブ(以下、多層CNTともいう)、底が抜けた紙コップの形をしたグラフェンが積層をした構造のカップスタック型ナノチューブなどが知られている。
 カーボンナノチューブの形状はとくに限定されず、先端が閉じているものまたは先端が開孔しているもののいずれも用いることができる。中でも、両端が開孔している形状のカーボンナノチューブを用いることが好ましい。カーボンナノチューブの両端が開孔していると、カーボンナノチューブ内部へイオン液体や電解液が侵入しやすくなるため、カーボンナノチューブとイオン液体や電解液との接触面積が増加する。したがって、該カーボンナノチューブを用いた蓄電デバイス用電極は、蓄電デバイスの静電容量を増加させることができる。
 カーボンナノチューブの平均長さは、100nm以上2000μm以下の範囲が好ましく、500nm以上100μm以下の範囲がさらに好ましい。カーボンナノチューブの平均長さが100nm以上2000μm以下の範囲であると、イオン液体中でのカーボンナノチューブの分散性が良好であり、かつカーボンナノチューブが三次元網目状金属多孔体の孔中に保持されやすくなる。したがって、カーボンナノチューブとイオン液体との接触面積が増加し、蓄電デバイスの静電容量を増加させることができる。さらにカーボンナノチューブの平均長さが500nm以上100μm以下であると、蓄電デバイスの静電容量の増大効果が顕著である。
 カーボンナノチューブの平均直径は、0.1nm以上50nm以下の範囲が好ましく、0.5nm以上5nm以下の範囲がさらに好ましい。カーボンナノチューブの平均直径が0.1nm以上50nm以下の範囲であると、カーボンナノチューブ内部へイオン液体や電解液が侵入しやすくなるため、カーボンナノチューブとイオン液体や電解液との接触面積が増加し、蓄電デバイスの静電容量を増加させることができる。
 カーボンナノチューブの純度は、70質量%以上が好ましく、90質量%以上がさらに好ましい。カーボンナノチューブの純度が70質量%未満であると、触媒金属による影響で耐電圧の低下やデンドライトの生成が懸念される。
 カーボンナノチューブの純度が90質量%以上であると、電気伝導性が良好である。したがって、該カーボンナノチューブを用いて作製された蓄電デバイス用電極は、蓄電デバイスの出力を向上させることができる。
 活性炭は蓄電デバイス用に一般的に市販されているものを用いることができる。活性炭の原料としては、たとえば、木材、ヤシ殻、パルプ廃液、石炭、石油重質油、またはそれらを熱分解した石炭・石油系ピッチのほか、フェノール樹脂などの樹脂などが挙げられる。炭化後に賦活するのが一般的であり、賦活法は、ガス賦活法および薬品賦活法が挙げられる。ガス賦活法は、高温下で水蒸気、炭酸ガス、酸素等と接触反応させることにより活性炭を得る方法である。薬品賦活法は、上記原料に公知の賦活薬品を含浸させ、不活性ガス雰囲気中で加熱することにより、賦活薬品の脱水および酸化反応を生じさせて活性炭を得る方法である。賦活薬品としては、たとえば、塩化亜鉛、水酸化ナトリウム等が挙げられる。
 活性炭の粒径は限定的でないが、たとえば、20μm以下であることが好ましい。比表面積も限定的ではないが、表面積が大きい方が蓄電デバイスの静電容量が大きくなるため、たとえば、2000m2/g以上あることが好ましい。
 ハードカーボン、グラファイト、グラフェンは、電極材料として通常使用されているものを用いることができる。
 カーボンナノホーン(以下、CNHともいう)とは、グラフェンを円錐状に丸めた形状を有しており、底面の直径が約2nm以上10nm以下、円錐高さが約10nm以上5μm以下のものである。CNHは比表面積が大きいため、CNHを用いた電極は、蓄電デバイスの静電容量を増加させることができる。また、CNHは、製造に金属触媒を使用しないため、非常に純度が高く電気伝導性が良好である。したがって、CNHを用いた電極は、蓄電デバイスの出力を向上させることができる。
 活物質としてCNHとカーボンナノチューブの両方を用いることができる。CNHはカーボンナノチューブよりも長さが短いため、両者を混合すると、カーボンナノチューブ間にCNHが入り込むと考えられる。このため、電極作製の工程において、CNHとカーボンナノチューブとを含む三次元網目状金属多孔体を圧縮した場合、三次元網目状金属多孔体中の活物質の含有量を増加させることができる。
(イオン液体)
 イオン液体とは、アニオンとカチオンとを約100℃以下の融点を持つように組み合わせたものである。たとえば、アニオンとしてはヘキサフルオロホスフェイト(PF6)、テトラフルオロボレート(BF4)、ビス(トリフルオロメタンスルホニル)イミド(TFSI)、トリフルオロメタンスルホナート(TFS)またはビス(パーフルオロエチルスルホニル)イミド(BETI)を用いることができる。カチオンとしては炭素数1~8のアルキル基を持つイミダゾリウムイオン、炭素数1~8のアルキル基を持つピリジニウムイオン、炭素数1~8のアルキル基を持つピペリジニウムイオン、炭素数1~8のアルキル基を持つピロリジニウムイオンまたは炭素数1~8のアルキル基を持つスルホニウムイオンを用いることができる。
 イオン液体は、たとえば、1-エチル-3-メチルイミダゾリウムテトラフルオロボレート(EMI-BF4)、1-エチル-3-メチルイミダゾリウム-ビス(フルオロスルホニル)イミド(EMI-FSI)、1-エチル-3-メチルイミダゾリウム-ビス(トリフルオロメタンスルホニル)イミド(EMI-TFSI)、1-ブチル-3-メチルイミダゾリウム-ビス(トリフルオロメタンスルホニル)イミド(BMI-TFSI)、1-ヘキシル-3-メチルイミダゾリウムテトラフルオロボレート(HMI-BF4)、1-ヘキシル-3-メチルイミダゾリウム-ビス(トリフルオロメタンスルホニル)イミド(HMI-TFSI)、1-エチル-3-メチルイミダゾリウム-フルオロハイドロジェネート(EMI(FH)2.3F)、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)-テトラフルオロボレート(DEME-BF4)、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)-ビス(トリフルオロメタンスルホニル)イミド(DEME-TFSI)、N-メチル-N-プロピルピペリジニウム-ビス(トリフルオロメタンスルホニル)イミド(PP13-TFSI)、トリエチルスルホニウム-ビス(トリフルオロメタンスルホニル)イミド(TES-TFSI)、N-メチル-Nプロピルピロリジニウム-ビス(トリフルオロメタンスルホニル)イミド(P13-TFSI)、トリエチルオクチルホスホニウム-ビス(トリフルオロメタンスルホニル)イミド(P2228-TFSI)、N-メチル-メトキシメチルピロリジニウム-テトラフルオロボレート(C13-BF4)を用いることができる。また、これらイオン液体は単独で用いても良いし、適宜組み合わせて使用することもできる。さらに、イオン液体は支持塩を含んでも良い。
 蓄電デバイス用電極をリチウムイオンキャパシタに用いる場合は、イオン液体として、たとえば、リチウム-ビス(フルオロスルホニル)イミド(LiFSI)やリチウム-ビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などのリチウム塩を含むイオン液体を用いる。
 蓄電デバイス用電極をリチウムイオンキャパシタに用いる場合は、イオン液体に支持塩が溶解されている溶液を用いる。
 支持塩としては、たとえば、リチウム-ヘキサフルオロホスフェイト(LiPF6)、リチウム-テトラフルオロボレート(LiBF4)、リチウム-パークロレート(LiClO4)、リチウム-ビス(トリフルオロメタンスルホニル)イミド(LiN(SO2CF32)、リチウム-ビス(ペンタフルオロエタンスルホニル)イミド(LiN(SO2252)、リチウム-ビス(ペンタフルオロエタンスルホニル)イミド(LiBETI)、リチウム-トリフルオロメタンスルホネート(LiCF3SO3)、リチウム-ビス(オキサレート)ボレート(LiBC48)などを用いることができる。
 支持塩のイオン液体中の濃度は0.1mol/L以上5.0mol/L以下が好ましく、1mol/L以上3.0mol/L以下がより好ましい。
 イオン液体は有機溶媒を含むことができる。イオン液体が有機溶媒を含むと、イオン液体の粘度が低下する。したがって、本発明の蓄電デバイス用電極は、蓄電デバイスの低温特性を向上させることができる。
 有機溶媒としては、たとえば、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ-ブチロラクトン(GBL)、アセトニトリル(AN)などを単一または混合して用いることができる。
(三次元網目状金属多孔体)
 三次元網目状金属多孔体は、蓄電デバイス用電極において集電体の役割を担っている。
 三次元網目状金属多孔体は、多孔形状が連なった三次元の網目構造を有している。たとえば、繊維状の金属を絡み合わせた金属不織布や、金属を発泡させた金属発泡体、発泡樹脂の表面に金属層を形成させた後、発泡樹脂を分解させて作製したセルメット(登録商標)(住友電気工業(株))などを用いることができる。
 三次元網目状金属多孔体の金属としては、アルミニウム、ニッケル、銅、アルミニウム合金またはニッケル合金を用いることが好ましい。これらの金属または金属合金は、蓄電デバイスの使用電圧範囲(リチウム電位に対して0V以上5V以下程度)においても溶出し難いため、長期の充放電においても安定した充電が可能な蓄電デバイスを得ることができる。とくに高電圧(リチウム電位に対して3.5V以上)範囲においては、三次元網目状金属多孔体の金属がアルミニウム、アルミニウム合金またはニッケル合金を含むことが好ましく、中でもアルミニウムであることがさらに好ましい。
 三次元網目状金属多孔体は、平均孔径が50μm以上1000μm以下であることが好ましい。三次元網目状金属多孔体の平均孔径が50μm以上であると、活物質およびイオン液体が三次元網目状金属多孔体の孔中に入り込みやすくなり、活物質と三次元網目状金属多孔体との接触性が良好となる。したがって、電極の内部抵抗が低減され、蓄電デバイスのエネルギー密度を向上させることができる。一方、三次元網目状金属多孔体の平均孔径が1000μm以下であると、バインダー成分を使用しなくても、孔中に活物質を良好に保持することができ、さらに十分な強度を有するキャパシタを得ることができる。三次元網目状金属多孔体の孔径は400μm以上900μm以下がさらに好ましく、450μm以上850μm以下がとくに好ましい。
 なお、三次元網目状金属多孔体の平均孔径は、蓄電デバイス用電極の表面を金属多孔体の骨格が観察できる程度に削り、表面に露出した金属多孔体の孔径を、顕微鏡にて観察して確認することができる。
 三次元網目状金属多孔体の目付け量は、蓄電デバイス用電極としての強度および蓄電デバイスの電気抵抗の低減の観点から、500g/m2以下が好ましい。さらに、蓄電デバイスのエネルギー密度向上の観点から150g/m2以下が好ましい。
 三次元網目状金属多孔体の内部空間の体積が占める気孔率はとくに限定されるものではないが、80%~98%程度とするのが好ましい。
(バインダー)
 バインダーの役割は、電極において集電体と活物質とを結着させることである。しかし、ポリフッ化ビニリデン(PVdF)に代表されるバインダー樹脂は絶縁体であるため、バインダー樹脂そのものは、電極を含む蓄電デバイスの内部抵抗を増加させる要因となり、引いては蓄電デバイスの充放電効率を低下させる要因となる。
 本発明の蓄電デバイス用電極によれば、バインダーを用いなくても、活物質を集電体である三次元網目状金属多孔体の孔中に保持することができる。したがって、本発明の一実施の形態において蓄電デバイス用電極はバインダーを含まないことが好ましい。
 なお、本発明の他の実施の形態において、蓄電デバイス用電極はバインダーを用いることもできる。バインダーとしては、たとえば、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVdF-HFP)、ポリエチレンオキシド修飾ポリメタクリレート架橋体(PEO-PMA)、ポリエチレンオキシド(PEO)、ポリエチレングリコールジアクリレート架橋体(PEO-PA)、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PMMA)、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、ポリアクリル酸(PAA)、ポリビニルアセテート、pyridinium-1,4-diyliminocarbonyl-1,4-phenylenemethylene(PICPM)-BF4、PICPM-PF6、PICPM-TFSA、PICPM-SCN、PICPM-OTfなどを用いることができる。なかでも、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVdF-HFP)、ポリメチルメタクリレート(PMMA)、ポリエチレンオキシド修飾ポリメタクリレート架橋体(PEO-PMA)を用いることが好ましい。
(導電助剤)
 蓄電デバイス用電極は導電助剤を含んでいても良い。導電助剤は、蓄電デバイスの抵抗を低減することができる。導電助剤の種類はとくに制限はなく、たとえば、アセチレンブラック、ケッチェンブラック、炭素繊維、天然黒鉛(鱗片状黒鉛、土状黒鉛など)、人造黒鉛、酸化ルテニウムなどを用いることができる。導電助剤の含有量は、たとえば、活物質100質量部に対して2質量部以上20質量部以下が好ましい。2質量部未満では導電性を向上させる効果が小さく、20質量部を超えると静電容量が低下するおそれがある。
(蓄電デバイス用電極の製造方法)
 本発明の一実施の形態における蓄電デバイス用電極の製造方法を以下に説明する。
 まず、活物質とイオン液体とを混練して混練物を得る。たとえば、乳鉢を用いて10分以上120分程度混練することによって、イオン液体中に活物質が均一に分散した混練物を得ることができる。活物質をイオン液体中に分散させると、ナノカーボン系活物質同士の凝集が解消し、活物質の比表面積が増加する。このため、混練物を用いて電極を作製すると、より大きな静電容量を得ることができる。
 活物質とイオン液体との混練比はとくに限定されるものではないが、たとえば、混練物中の活物質の量が混練物の合計量の3質量%~70質量%の範囲であると、三次元網目状金属多孔体に含ませやすいため好ましい。なお、支持塩やバインダーを添加する場合は、該混練工程において添加することができる。
 次に、混練物を三次元網目状金属多孔体に含ませる。たとえば、通気または通液性のあるメッシュまたは多孔質の板や膜の上部に三次元網目状金属多孔体を設置し、三次元網目状金属多孔体の上面から下面(メッシュ板設置面側)方向に向かって、混練物をスキージなどにより摺りこむように含ませる。
 電極の厚さの調整は、(1)三次元網目状金属多孔体の厚さを予め調整しておく方法、および(2)三次元網目状金属多孔体に混練物を含ませた後に調整する方法のいずれによっても行うことができる。
 (1)の方法は、たとえば、厚さ300μm以上3mm以下の三次元網目状金属多孔体を、ロールプレスで最適な厚さに調整する。三次元網目状金属多孔体の厚さは、たとえば、100μm以上800μm以下とすることが好ましい。
 (2)の方法は、たとえば、三次元網目状金属多孔体に混練物を含ませた後に、三次元網目状金属多孔体の両面にイオン液体吸収体を設置した後、約30MPa~450MPaの圧力で、厚さ方向に一軸圧延する。圧延時、三次元網目状金属多孔体に含まれている混練物から、余剰なイオン液体が排出され、イオン液体吸収体に吸収される。したがって、三次元網目状金属多孔体に残存した混練物中の活物質の濃度が増加する。このため、電極を用いた蓄電デバイスにおいて、電極の単位面積あたりの放電容量(mAh/cm2)および単位面積あたりの出力(W/cm2)を増加させることができる。
 電極の厚さは、電極の単位面積あたりの放電容量の観点からは、0.2mm以上1.0mm以下の範囲とすることが好ましい。また、単位面積あたりの出力の観点からは、0.05mm以上0.5mm以下の範囲とすることが好ましい。
 イオン液体吸収体の物性や孔径はとくに限定されるものではないが、親水性のイオン液体(たとえば、EMI-BF4、DEME-BF4、C13-BF4など)には親水化処理を施した吸収体を使用し、疎水性のイオン液体(たとえば、EMI-FSI、EMI-TFSI、DEME-TFSI、PP13-TFSI、P13-TFSI、P2228-TFSIなど)には疎水化処理を施した吸収体を使用することが好ましい。
[実施の形態2]
(電気二重層キャパシタ)
 本発明の蓄電デバイス用電極を用いた電気二重層キャパシタについて、図1を用いて説明する。
 本発明の蓄電デバイス用電極を用いた電気二重層キャパシタは、セパレータ1を間に挟んで正極電極2と負極電極3が配置されている。セパレータ1、正極電極2および負極電極3は、電解液6で満たされた上部セルケース7と下部セルケース8との間に密閉されている。上部セルケース7および下部セルケース8には端子9および10が設けられる。端子9および10は、電源20に接続されている。
 電気二重層キャパシタでは、正極電極および負極電極に、本発明の蓄電デバイス用電極を用いることができる。
 電解液は、蓄電デバイス用電極に用いるイオン液体を用いることができる。
 電気二重層キャパシタのセパレータとしては、たとえば、ポリオレフィン、ポリエチレンテレフタレート、ポリアミド、ポリイミド、セルロース、ガラス繊維などからなる電気的絶縁性の高い多孔質膜を用いることができる。
(電気二重層キャパシタの製造方法)
 まず、本発明の蓄電デバイス用電極を適当な大きさに打ち抜いて2枚用意し、セパレータを挟んで対向させる。そして、セルケースに収納し、電解液を含浸させる。最後にケースに蓋をして封口することにより電気二重層キャパシタを作製することができる。キャパシタ内の水分を限りなく少なくするため、キャパシタの作製は水分の少ない環境下で行い、封口は減圧環境下で行う。なお、本発明の蓄電デバイス用電極を用いていれば、これ以外の方法により作製されるものでも構わない。
[実施の形態3]
(リチウムイオンキャパシタ)
 本発明の蓄電デバイス用電極を用いたリチウムイオンキャパシタについて、図10を用いて説明する。
 本発明の蓄電デバイス用電極を用いたリチウムイオンキャパシタの構造は、負極電極3の正極電極2と対向する面にリチウム金属箔16が圧着されている点以外は、基本的に電気二重層キャパシタと同様である。
 リチウムイオンキャパシタでは、正極電極および負極電極に、本発明の蓄電デバイス用電極を用いることができる。また、負極電極はとくに限定されず、金属箔を用いた従来の負極電極も使用可能である。
 電解液には、蓄電デバイス用電極に用いるリチウム塩を含むイオン液体を用いる。
 負極電極にはリチウムドープ用のリチウム金属箔を圧着する。
 リチウムイオンキャパシタは、負極電極容量が正極電極容量よりも大きく、負極電極のリチウムイオンの吸蔵量が、正極電極容量と負極電極容量の差の90%以下であることが好ましい。リチウムイオンの吸蔵量は、負極電極に圧着するリチウム金属箔の厚さによって調整することができる。
(リチウムイオンキャパシタの製造方法)
 まず、本発明の蓄電デバイス用電極を適当な大きさに打ち抜いて正極電極および負極電極を準備し、負極電極にリチウム金属箔を圧着する。つぎに、正極電極および負極電極をセパレータを挟んで対向させる。この時、負極電極は、リチウム金属箔を圧着した面が正極電極に対向するように配置する。そして、セルケースに収納し、電解液を含浸させる。最後にケースに蓋をして封口することによりリチウムイオンキャパシタを作製することができる。
 なお、リチウムドープのため、電解液を注入した状態で環境温度0℃~60℃にて0.5時間~100時間放置する。正負極電極の電位差が2V以下になったことをもって、リチウムドープ完了と判断することができる。
[規則91に基づく訂正 22.03.2013] 
 本実施例では、本発明の電極を用いた電気二重層キャパシタにおいて、活物質として純度の異なる単層カーボンナノチューブ(実施例1-1:名城ナノカーボン社製の「SO-P」(純度:98.3質量%、形状:単層CNT、長さ:1-5μm、平均直径:1.4nm)、実施例1-2:ナノシル社製の「NC1100」(純度:92.4質量%、形状:単層CNT、平均直径:2nm)、実施例1-3:(純度:73.6質量%、形状:単層CNT、平均直径:2nm)、実施例1-4:(純度:69.3質量%、形状:単層CNT、平均直径:2nm)を用いて性能を評価した。
[実施例1-1、1-2、1-3、1-4]
(混練物の作製)
 単層CNTとEMI-BF4とを用いて、単層CNTの量が、単層CNTとEMI-BF4の合計質量の7質量%となるように準備した。次に、単層CNTとEMI-BF4とを乳鉢を用いて10分間混練して混練物を得た。
(蓄電デバイス用電極の作製)
 三次元網目状アルミニウム多孔体(平均孔径550μm、厚さ1.0mm)を準備し、予めロールプレスにより厚さ300μmに調整した。次に、厚さを調整した三次元網目状アルミニウム多孔体の上面に各実施例の混練物を置き、スキージを使用して多孔体内部に摺りこんだ。
(電気二重層キャパシタの作製)
 本発明の蓄電デバイス用電極を直径15mm(電極面積1.77cm2)の円状に2枚打ち抜き、それぞれ正極電極、負極電極とした。セルロース繊維製セパレータ(ニッポン高度紙工業社製の「TF4035」、厚さ35μm)を挟んで対向して配置させ、R2032型のコインセルケースに収納した。次にコインセルケース内に電解液としてEMI-BF4を注入し、その後ケースを封口して、コイン型の電気二重層キャパシタを作製した。
<物性評価試験>
 カーボンナノチューブの純度をTG-DTA(島津製作所製 TGA-60AH)を用いて評価した。測定は空気下(流量:50L/min)、昇温速度:5℃/minで測定を行い、測定前後の質量減少から純度を算出した。また、カーボンナノチューブに含まれる金属不純物種およびその質量%をICP-AES(島津製作所製 ICPS-8100CL)を用いて評価した。
<性能評価試験>
 環境温度25℃で、1A/g(単極中に含まれる活物質質量あたりの電流量)の一定電流で2.3Vまで充電し、その後、2.3V定電圧充電を5分間行った。その後開回路状態にし、1分後の電圧を調べることで、電圧保持率を評価した。その後、1A/g(単極中に含まれる活物質質量あたりの電流量)の一定電流で0Vまで放電した。放電容量を充電容量で除することで充放電効率を評価した。評価結果を表1に示す。さらに、各実施例について、充電時および放電時のキャパシタの容量と電圧との関係を図2~図5に示す。
Figure JPOXMLDOC01-appb-T000001
<評価結果>
 実施例1-1、1-2は単層CNTの炭素純度が90質量%と高い。これらのCNTを用いて作製したキャパシタの充放電効率、電圧保持率は表1に示したように高い。一方で、実施例1-3、1-4に示した単層CNTは、試料内にNi、Ca、Mg、Fe、Znなどの金属不純物が残留しており、実施例1-1、1-2と比較して純度が低い。実施例1-3、1-4の充放電効率、電圧保持率が実施例1-1、1-2に対して低くなった原因には、金属不純物の電気化学反応に貯蔵された電荷が消費されたことが推測できる。Ni、Ca、Mg、Fe、Znなどのこれら金属元素は、電気化学反応によって電極上に金属が針状に析出するデンドライトとなり得る。このデンドライトの発生は、キャパシタの電気的短絡の要因となる。図2~図4に示すように、カーボンナノチューブの純度が70質量%以上であれば電気二重層キャパシタとして安定に動作することを確認した。しかし、充放電効率、電圧維持率、デンドライト発生の危険性から、より好ましくは、単層カーボンナノチューブ純度が90質量%以上であることが望ましい。
 本実施例では、本発明の電極を用いた電気二重層キャパシタにおいて、混練物中の活物質(単層CNT)の含有量を変化させることにより、単極中の活物質含有量を変化させた場合の、電気二重層キャパシタの性能を評価した(実施例2-1~2-3)。また、比較例として活性炭シート電極を用いた電気二重層キャパシタを評価した(比較例1)。さらに、活物質として活性炭を用いた場合の、電気二重層キャパシタの性能を評価した(比較例2)。
[実施例2-1~2-3]
(混練物の作製)
 単層CNTとEMI-BF4とを、単層CNTの量が、単層CNTとEMI-BF4の合計量の7質量%(実施例2-1)、17質量%(実施例2-2)、27質量%(実施例2-3)となるように準備した。次に、単層CNTとEMI-BF4とを乳鉢を用いて10分間混練して混練物を得た。
(蓄電デバイス用電極の作製)
 上記質量%の異なる混練物をそれぞれ使用した以外は、実施例1と同様の方法で電極を得た。
(電気二重層キャパシタの作製)
 各実施例について、実施例1と同様の方法でコイン(R2032)型の電気二重層キャパシタを得た。
<性能評価試験>
 環境温度25℃で、1A/g(単極中に含まれる活物質質量あたりの電流量)の一定電流で3.5Vまで充電し、その後、3.5V定電圧充電を5分間行った。その後1A/g(単極中に含まれる活物質質量あたりの電流量)の一定電流で0Vまで放電したときの静電容量を評価した。表2中、静電容量(F/g)は単極中に含まれる活物質質量あたりの静電容量として示した。また、このときのエネルギー密度W(Wh/L)を併記した。エネルギー密度は、下記式(2)を用いて算出した。
=W/V・・・(2)
 Wはキャパシタで蓄電されるエネルギー、Vは体積を示す。なお、体積Vは、コインセルケースを無視したキャパシタ体積である。
 評価結果を表2に示す。
[比較例1]
(電極の作製)
 椰子殻由来の活性炭(表面積:約2000m2/g)とカーボンブラック(導電助剤成分、CB)とポリテトラフルオロエチレン(バインダー成分、PTFE)とを、それぞれ80質量%、10質量%、10質量%の割合で混合した後に圧延し、厚さ0.18mmの活性炭シート電極を得た。
(電気二重層キャパシタの作製)
 電極を直径15mmの円状で2枚打ち抜き、それぞれの電極の一方の表面に、厚さ50μmのアルミニウム集電箔を装着した後に、実施例1と同様の方法でコイン(R2032)型の電気二重層キャパシタを得た。なお、電解液は、トリエチルメチルアンモニウム-テトラフルオロボレート(TEMA-BF4)塩をプロピレンカーボネート(PC)中に1.0mol/Lとなるように溶解した溶液を用いた。
<性能評価試験>
 環境温度25℃で、充電を1A/g(単極中に含まれる活物質質量あたりの電流量)の一定電流で2.3Vまで充電し、その後、2.3V定電圧充電を5分間行った。その後1A/g(単極中に含まれる活物質質量あたりの電流量)の一定電流で0Vまで放電したときの静電容量を評価した。表2中、静電容量(F/g)は単極中に含まれる活物質質量あたりの静電容量として示した。また、このときのエネルギー密度W(Wh/L)を併記した。なお、エネルギー密度の算出は、上記式(2)を用いた。
 評価結果を表2に示す。
[比較例2]
(蓄電デバイス用電極の作製)
 椰子殻由来の活性炭(表面積:約2000m2/g)とカルボキシメチルセルロース(CMC)とスチレンブタジエンゴム(SBR)とCBとを、それぞれ87.0質量%、1.7質量%、2.6質量%、8.7質量%の割合で混合して混合物を得た。
 三次元網目状アルミニウム多孔体(平均孔径550μm、厚さ1mm)の多孔体表面に、カーボンブラック系の導電層を装着した。次に、混合物の割合が20質量%となるように水に分散させた溶液中へ三次元網目状アルミニウム多孔体を浸漬させ、減圧下で脱泡処理した後に引き上げて乾燥し、充填体を得た。充填体をロールプレスにより圧縮し、厚さ700μmの電極を得た。
(電気二重層キャパシタの作製)
 実施例1と同様の方法でコイン(R2032)型の電気二重層キャパシタを得た。なお、電解液は、TEMA-BF4塩をPC中に1.0mol/Lとなるように溶解した溶液を用いた。
<性能評価試験>
 比較例1と同様の方法で、作動電圧範囲、静電容量およびエネルギー密度を評価した。
 評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(1)単層CNT:名城ナノカーボン社製の「SO-P」(形状:単層CNT、平均長さ:1~5μm、平均直径:1.4nm、純度:98.3質量%)。
(2)EMI-BF4:キシダ化学社製の「1-エチル-3-メチルイミダゾリウムテトラフルオロボレート」。
(3)アルミニウム多孔体:三次元網目状アルミニウム多孔体、平均孔径550μm、気孔率:95%、厚さ:1.0mm、目付量:140g/m2
(4)CMC:ダイセルファインケム社製の「CMCダイセル1240」(カルボキシメチルセルロース)。
(5)SBR:日本ゼオン社製の「BM-400B」(スチレンブタジエンゴム)。
(6)CB:電気化学工業社製の「デンカブラック」(カーボンブラック)。
<評価結果>
 さらに、実施例2-1および比較例1については、放電を1A/gで行った時の放電容量(mAh/g)を基準(100%)として、電流密度(A/g)の変化に対する放電容量維持率(%)も調べた。評価結果を図6に示す。
 表2から、活物質単位質量あたりの静電容量は、CNTの配合比率に依存せず一定であることがわかった。
 図6から、実施例2-1の電気二重層キャパシタは、放電電流密度を増加させても、放電容量の低下が生じないことが分かった。
[規則91に基づく訂正 22.03.2013] 
 本実施例では、電極の厚さを変化させることにより、電極の単位体積中に存在する活物質(単層CNT)濃度を変化させた場合の、電気二重層キャパシタの性能を評価した。
[実施例3-1~3-4]
(混練物の作製)
 単層CNTとEMI-BF4とを用いて、実施例1と同様の方法で混練物を得た。なお、単層CNTの量が、単層CNTとEMI-BF4の合計量の7質量%となるように準備した。
(蓄電デバイス用電極の作製)
 実施例1と同様の方法で混練物を三次元網目状アルミニウム多孔体(実施例3-1、3-2、3-4:平均孔径550μm、厚さ1.0mm、実施例3-3:平均孔径850μm、厚さ1.0mm)中に摺りこんだ。次に、電極の両面にポリテトラフルオロエチレン製メンブレンフィルタ(ミリポア社製の「オムニポアメンブレン」)を設置した後、30MPa(実施例3-1)または300MPa(実施例3-2、3-3)の圧力で一軸圧延して、それぞれ厚さ285μm(実施例3-1)、198μm(実施例3-2)、158μm(実施例3-3)の電極を得た。
 実施例3-4は、厚さ1mmの電極に前記メンブレンフィルタを設置した後、30~450MPaの範囲で段階的に昇圧しつつ圧延した後、最後にメンブレンフィルタを外して450MPaで圧延し、厚さ140μmの電極を得た。
(電気二重層キャパシタの作製)
 各実施例について、実施例1と同様の方法でコイン(R2032)型の電気二重層キャパシタを得た。
<性能評価試験>
 実施例2と同様の方法で、静電容量、単位面積あたりの内部抵抗およびエネルギー密度を評価した。
 静電容量および内部抵抗の評価結果を表3に示す。
 実施例3-1~3-4、比較例1の電気二重層キャパシタについて、充放電試験で得られたラゴンプロット(セル体積あたり、セル重量あたり)を図4(A)および(B)に示す。ここで、セル体積はコインセルケースを無視したキャパシタ体積、セル重量はコインセルケースを無視したキャパシタ重量とする。実施例3-1~3-4の充電電圧は3.5V、比較例1の充電電圧は2.3Vである。
Figure JPOXMLDOC01-appb-T000003
(1)単層CNT:名城ナノカーボン社製の「SO-P」(形状:単層CNT、平均長さ:1~5μm、平均直径:1.4nm、純度:98.3質量%)。
(2)EMI-BF4:キシダ化学社製の「1-エチル-3-メチルイミダゾリウムテトラフルオロボレート」。
(3)アルミニウム多孔体:三次元網目状アルミニウム多孔体、平均孔径550μm、気孔率:95%、厚さ:1.0mm、目付量:140g/m2
(7)アルミニウム多孔体:三次元網目状アルミニウム多孔体、平均孔径850μm、気孔率:97%、厚さ:1.0mm、目付量:90g/m2
<評価結果>
 実施例3-1~3-4は、同一組成の混練物を用いて作製された実施例2-1のキャパシタよりも、エネルギー密度が増加した。これは、電極の圧延時に三次元網目状アルミニウム多孔体に充填した混練物中のイオン液体のみが三次元網目状アルミニウム多孔体から押し出されたため、三次元網目状アルミニウム多孔体中の単層CNT(活物質)とイオン液体の合計量に対する単層CNTの割合(単極中の活物質質量密度)がそれぞれ42質量%、62質量%、67質量%、73質量%となり、混練物中のカーボンナノチューブの割合(7質量%)よりも増加していたことに由来すると考えられる。
 図7(A)から、電極中のCNT密度を増加させたことで、セル体積あたりのエネルギー密度が向上していることが分かる。
 図7(B)から、電極中のCNT密度を増加させたことで、セル重量あたりのエネルギー密度が向上していることが分かる。
 本実施例では、混練物中の活物質として二層カーボンナノチューブ(二層CNT)を用いた場合の電気二重層キャパシタの性能を評価した。
[実施例4-1~4-3]
(混練物の作製)
 二層CNTとEMI-BF4とを用いて、実施例1と同様の方法で混練物を得た。なお、二層CNTの量が、二層CNTとEMI-BF4の合計量の7質量%(実施例4-1)、17質量%(実施例4-2)、27質量%(実施例4-3)となるように準備した。
(蓄電デバイス用電極の作製)
 各実施例について、実施例1と同様の方法で、厚さ300μmの電極を得た。
(電気二重層キャパシタの作製)
 各実施例について、実施例1と同様の方法でコイン(R2032)型の電気二重層キャパシタを得た。
<性能評価試験>
 実施例2と同様の方法で、作動電圧範囲、静電容量およびエネルギー密度を評価した。
 評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
(2)EMI-BF4:キシダ化学社製の「1-エチル-3-メチルイミダゾリウムテトラフルオロボレート」
(3)アルミニウム多孔体:三次元網目状アルミニウム多孔体、平均孔径550μm、気孔率:95%、厚さ:1.0mm、目付量:140g/m2
(9)二層CNT:ナノシル社製の「NC2100」(形状:二層CNT、平均長さ:5μm、平均直径:3.5nm、比表面積:500m2/g、純度:90質量%)
<評価結果>
 表4から、二層CNTの比表面積は、単層CNTに比較して1.3倍と大きいが、せん断力によるCNTの細分化の度合いが単層CNTと比較して小さいことが単位質量あたりの静電容量の結果から判断できる。しかし、二層CNTを用いても単層CNTと同様の混錬物が作製可能であり電極として機能することが判明した。
 本実施例では、混練物中の活物質としてカーボンナノホーン(CNH)および開孔カーボンナノホーン(以下、開孔CNHともいう)を用いた場合の電気二重層キャパシタの性能を評価した。
[実施例5-1~5-3、5-5~5-7]
(混練物の作製)
 CNHまたは開孔CNHとEMI-BF4とを用いて、実施例1と同様の方法で混練物を得た。なお、CNHまたは開孔CNHの量が、CNHまたは開孔CNHとEMI-BF4の合計量の7質量%(実施例5-1、5-5)、17質量%(実施例5-2、5-6)、27質量%(実施例5-3、5-7)となるように準備した。
(蓄電デバイス用電極の作製)
 各実施例について、実施例1と同様の方法で、厚さ300μmの電極を得た。
(電気二重層キャパシタの作製)
 各実施例について、実施例1と同様の方法でコイン(R2032)型の電気二重層キャパシタを得た。
[実施例5-4、5-8]
 活物質としてCNHまたは開孔CNHを用いた以外は、実施例3-2と同様の方法で電極を得、電気二重層キャパシタを作製した。
<性能評価試験>
 実施例2と同様の方法で、作動電圧範囲、静電容量、エネルギー密度および内部抵抗を評価した。
 評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
(2)EMI-BF4:キシダ化学社製の「1-エチル-3-メチルイミダゾリウムテトラフルオロボレート」
(3)アルミニウム多孔体:三次元網目状アルミニウム多孔体、平均孔径550μm、気孔率:95%、厚さ:1.0mm、目付量:140g/m2
(14)CNH:カーボンナノホーン、日本電気株式会社製の「CNH」
(15)開孔CNH:開孔カーボンナノホーン、日本電気株式会社製の「CNHox」
<評価結果>
 実施例5-1の電気二重層キャパシタは、CNH本来の静電容量が発現せず、内部抵抗が大きかった。一方、実施例5-1~5-4は、電極中のCNHの含有割合が増加するにしたがって、エネルギー密度が増加した。これは、電極中のCNHの含有割合の増加に伴い、CNH同士の接触面積、およびCNHと三次元網目状金属多孔体との接触面積が増加するためと考えられる。
 実施例5-5~5-8は、電極中の開孔CNHの含有割合が増加するにしたがって、キャパシタのエネルギー密度が増加した。さらに、実施例5-5~5-8の開孔CNHを用いたキャパシタは、実施例5-1~5-4のCNHを用いたキャパシタよりも、静電容量およびエネルギー密度が増加した。これは、開孔処理により、静電容量に寄与するCNHの表面積が増加したためと考えられる。
 本実施例では、活物質として両端開孔カーボンナノチューブを用いた場合の電気二重層キャパシタの性能を評価した。
[実施例6-1~6-4]
(両端開孔カーボンナノチューブの作製)
 管状炉を用いて単層CNT(名城ナノカーボン社製の「SO-P」)に対して熱処理を行い両端開孔カーボンナノチューブを作製した。熱処理は純空気を1L/minの流量で流入した環境で行った。昇温速度は1℃/minとし、上限温度は650℃(実施例6-1)、600℃(実施例6-2)、550℃(実施例6-3)とした。実施例6-4では、上限温度を550℃とし、550℃到達後に1時間の温度保持を行った。
(混練物の作製)
 各実施例の両端開孔カーボンナノチューブとEMI-BF4とを用いて、実施例1と同様の方法で混練物を得た。なお、カーボンナノチューブの量が、カーボンナノチューブとEMI-BF4の合計量の7質量%となるように準備した。
(蓄電デバイス用電極の作製)
 各実施例について、実施例1と同様の方法で、厚さ300μmの電極を得た。
(電気二重層キャパシタの作製)
 各実施例について、実施例1と同様の方法でコイン(R2032)型の電気二重層キャパシタを得た。
<評価試験>
 得られた両端開孔カーボンナノチューブについて、収率、比表面積を評価した。比表面積の評価は、株式会社日本ベル社製のBELSORP-maxを用いた窒素吸収脱着測定で行った。この測定から得られる吸脱着等温線からBrunauer,Emmett,Teller法(BET法)およびt-plot法を用いて比表面積を評価した。
 電気二重層キャパシタについて、実施例2と同様の方法で、静電容量を評価した。
 評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
(1)単層CNT:名城ナノカーボン社製の「SO-P」(形状:単層CNT、平均長さ:1~5μm、平均直径:1.4nm、純度:98.3質量%)。
(2)EMI-BF4:キシダ化学社製の「1-エチル-3-メチルイミダゾリウムテトラフルオロボレート」。
(3)アルミニウム多孔体:三次元網目状アルミニウム多孔体、平均孔径550μm、気孔率:95%、厚さ:1.0mm、目付量:140g/m2
<評価結果>
 実施例6-1は両端開孔カーボンナノチューブの収率が11%と低く、650℃はカーボンナノチューブ自体の燃焼温度に達していると考えられる。一方、比表面積の増加は実施例6-2と比べてわずかであることから、実施例6-1のカーボンナノチューブの熱処理条件は不適であると判断した。
 t-plot法により算出される比表面積から、熱処理温度の上昇に伴う内部比表面積の増加が確認できる。しかしながら、実施例6-1では収率が急激に減少する一方、比表面積の増加がわずかであった。実施例6-4では昇温後に温度保持を行っても比表面積が増加しなかった。したがって、実施例6-2の熱処理条件が、比表面積を増加させるために適切な条件であると判断した。
 カーボンナノチューブの比表面積の増加にともない、電気二重層キャパシタの静電容量が増加した。中でも、実施例6-2は、未処理のカーボンナノチューブを用いた実施例6-5の約1.5倍の静電容量を示した。
 本実施例では、三次元網目状金属多孔体の平均孔径を変化させた場合の電気二重層キャパシタの性能を評価した。
[実施例7-1~7-4]
(混練物の作製)
 単層CNTとEMI-BF4とを用いて、実施例1と同様の方法で混練物を得た。なお、単層CNTの量が、単層CNTとEMI-BF4の合計量の7質量%となるように準備した。
(蓄電デバイス用電極の作製)
 三次元網目状アルミニウム多孔体(平均孔径450μm(実施例7-1)、550μm(実施例7-2)、650μm(実施例7-3)、850μm(実施例7-4)、それぞれ厚さ1.0mm)を準備し、実施例1と同様の方法で混練物を摺りこみ、厚さ1mmの電極を得た。次に、実施例3と同様にして一軸圧延して、それぞれ厚さ199μm(実施例7-1)、191μm(実施例7-2)、219μm(実施例7-3)、196μm(実施例7-4)の電極を得た。なお、このときのプレス圧力は150MPaの圧力とした。
(電気二重層キャパシタの作製)
 各実施例について、実施例1と同様の方法でコイン(R2032)型の電気二重層キャパシタを得た。
<性能評価試験>
 実施例2と同様の方法で、作動電圧範囲、静電容量および内部抵抗を評価した。なお、静電容量(F/cm3)の基準とする体積は、コインセルケースを無視したキャパシタ体積とした。
 評価結果を表7および図8に示す。
Figure JPOXMLDOC01-appb-T000007
(1)単層CNT:名城ナノカーボン社製の「SO-P」(形状:単層CNT、平均長さ:1~5μm、平均直径:1.4nm、純度:98.3質量%)。
(2)EMI-BF4:キシダ化学社製の「1-エチル-3-メチルイミダゾリウムテトラフルオロボレート」。
<評価結果>
 図8より、三次元網目状アルミニウム多孔体の平均孔径が450μm以上850μm以下の範囲では、平均孔径の増加に伴いキャパシタの静電容量が微増することが分かった。さらに、三次元網目状アルミニウム多孔体の平均孔径が550μm以上であると、キャパシタの内部抵抗が一定であるが、三次元網目状アルミニウム多孔体の平均孔径が550μm未満の範囲では、平均孔径の減少に伴い内部抵抗が増大することが分かった。
 本実施例では、混練物中の活物質としてグラフェンおよび単層CNTを用いた場合の電気二重層キャパシタの性能を評価した。
[実施例8-1~8-3]
(混練物の作製)
 単層CNTとグラフェンとEMI-BF4とを用いて、実施例1と同様の方法で混練物を得た。なお、単層CNTとグラフェンとEMI-BF4の合計量に対するグラフェンの割合と単層CNTの割合が、実施例8-1では、それぞれ0.7質量%と6.3質量%、実施例8-2では、それぞれ3.5質量%と3.5質量%、実施例8-3では、それぞれ0.7質量%と6.3質量%となるように準備した。
(蓄電デバイス用電極の作製)
 実施例8-1、8-2は、実施例1と同様の方法で、厚さ300μmの電極を得た。
 実施例8-3は、実施例3-2と同様の方法で、厚さ188μmの電極を得た。なお、表8中、電極の活物質含有量は、単層CNTとグラフェンとEMI-BF4との合計量に対する単層CNTの割合、グラフェンの割合を示している。
(電気二重層キャパシタの作製)
 各実施例について、実施例1と同様の方法でコイン(R2032)型の電気二重層キャパシタを得た。
<性能評価>
 実施例1と同様の方法で、作動電圧範囲、静電容量およびエネルギー密度を評価した。
 評価結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
(1)単層CNT:名城ナノカーボン社製の「SO-P」(形状:単層CNT、平均長さ:1~5μm、平均直径:1.4nm、純度:98.3質量%)。
(2)EMI-BF4:キシダ化学社製の「1-エチル-3-メチルイミダゾリウムテトラフルオロボレート」。
(3)アルミニウム多孔体:三次元網目状アルミニウム多孔体、平均孔径550μm、気孔率:95%、厚さ:1.0mm、目付量:140g/m2
(7)アルミニウム多孔体:三次元網目状アルミニウム多孔体、平均孔径850μm、気孔率:97%、厚さ:1.0mm、目付量:90g/m2
(10)グラフェン:インキュベーション・アライアンス社製の「グラフェンフラワー」。
<評価結果>
 実施例8-1および8-2は、活物質として単層CNTおよびグラフェンを用いたキャパシタであり、活物質として単層CNTのみを用いた実施例2-1のキャパシタの90%のエネルギー密度であった。これは、混練物中のグラフェンとカーボンナノチューブの割合(0.7質量%、6.3質量%)に由来すると考えられる。
 実施例8-3は、同一組成の混練物を用いて作製された実施例8-1のキャパシタよりもエネルギー密度が増加した。これは、電極の圧延時に三次元網目状アルミニウム多孔体に充填した混練物中のイオン液体のみが三次元網目状アルミニウム多孔体から押し出されたため、三次元網目状アルミニウム多孔体中の単層CNTとグラフェンとイオン液体の合計量に対するグラフェンの割合、単層CNTの割合がそれぞれ6質量%、60質量%となり、混練物中のグラフェンの割合(0.7質量%)、カーボンナノチューブの割合(6.3質量%)よりも増加していたことに由来すると考えられる。
 本実施例では、混練物中に有機溶媒、バインダーが含まれる場合の電気二重層キャパシタの性能を評価した。
[実施例9-1~9-3]
(混練物の作製)
 EMI-BF4とPCとPVdF-HFPとを、76:15:8(実施例9-1)または62:31:7(実施例9-2)の質量%で混合して、混合液を得た。
 また、EMI-BF4とPVdF-HFPとを90:10の質量%で混合して混合液を得た(実施例9-3)。
 それぞれの混合液に、単層CNTを、単層CNTの量が、単層CNTとEMI-BF4もしくは単層CNTとEMI-BF4とPCの合計量の7質量%となるように添加して、乳鉢を用いて10分間混練して混練物を得た。
(蓄電デバイス用電極の作製)
 各実施例の混練物を用いて、実施例1と同様の方法で、厚さ300μmの電極を作製した。
(電気二重層キャパシタの作製)
 各実施例について、実施例1と同様の方法でコイン(R2032)型の電気二重層キャパシタを得た。なお、電解液にはEMI-BF4とPCを各実施例の混練物作製時と同一の配合比で混合したものを用いた。
<性能評価>
 環境温度を-40℃~80℃の範囲で変化させ、それぞれの温度において、実施例1と同様の方法で、静電容量を評価した。なお、作動電圧範囲は0V~3.5Vであった。なお、対照として実施例2-1のキャパシタでも同様の評価を行った。評価結果を図9に示す。図9中、静電容量(F/g)は単極中に含まれる活物質質量あたりの静電容量として示した。
 次に、環境温度25℃で、実施例1と同様の方法で、静電容量を評価した。なお、対照として実施例2-1のキャパシタでも同様の評価を行った。評価結果を表9に示す。表9中、静電容量(F/g)は単極中に含まれる活物質質量あたりの静電容量として示した。
Figure JPOXMLDOC01-appb-T000009
(1)単層CNT:名城ナノカーボン社製の「SO-P」(形状:単層CNT、平均長さ:1~5μm、平均直径:1.4nm、純度:98.3質量%)。
(2)EMI-BF4:キシダ化学社製の「1-エチル-3-メチルイミダゾリウムテトラフルオロボレート」。
(3)アルミニウム多孔体:三次元網目状アルミニウム多孔体、平均孔径550μm、気孔率:95%、厚さ:1.0mm、目付量:140g/m2
(11)PC:キシダ化学社製の「プロピレンカーボネート」。
(12)PVdF-HFP:アルケマ社製の「Kynar Flex 2801」(ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体)。
<評価結果>
 図9から、PCを含む混練物を用いて作製した実施例9-1、9-2の電気二重層キャパシタは、低温領域でも静電容量の減少が抑えられ、低温特性が向上していた。これは、有機溶媒がイオン液体の粘度を減少させたことに由来すると考えられる。
 表9から、カーボンナノチューブ、イオン液体、有機溶媒およびバインダーを含む混練物を用いた実施例9-1および9-2は、キャパシタの活物質質量あたりの静電容量が、活物質およびイオン液体のみを含む活物質を用いた実施例2および実施例3で作製したキャパシタと同等であった。
 本実施例では、本発明の電極を用いたリチウムイオンキャパシタの性能を評価した。
[実施例10]
(正極電極の作製)
 単層CNTと1-エチル-3-メチルイミダゾリウムフルオロメタンスルホニルイミド(EMI-FSI)とを、単層CNTの量が、単層CNTとEMI-FSIの合計量の7質量%となるように準備した。次に、単層CNTとEMI-FSIとを乳鉢を用いて10分間混練して正極電極用混練物を得た。
 三次元網目状アルミニウム多孔体(平均孔径550μm、厚さ1.0mm)を準備し、ロールプレスにより厚さ500μmに圧縮した。次に、三次元網目状アルミニウム多孔体の上面に正極電極用混練物を置き、スキージを使用して下面方向に摺りこみ、正極電極を作製した。
(負極電極の作製)
 ハードカーボンとEMI-FSIとを、ハードカーボンの量が、ハードカーボンとEMI-FSIの合計量の7質量%となるように準備し、正極電極用混練物と同様の方法で負極電極用混練物を得た。
[規則91に基づく訂正 22.03.2013] 
 三次元網目状ニッケル多孔体(平均孔径480μm、気孔率95%、厚さ1.4mm)を準備し、ロールプレスにより厚さ200μmに圧縮した。次に、三次元網目状ニッケル多孔体の上面に負極電極用混練物を置き、正極電極と同様の方法で負極電極を作製した。
(リチウムイオンキャパシタの作製)
 正極電極および負極電極のそれぞれを直径15mmの円状で2枚打ち抜き、セルロース繊維製セパレータ(ニッポン高度紙工業社製の「TF4035」、厚さ35μm)を挟んで対向して配置させ、R2032型のコインセルケースに収納した。なお、負極電極の正極電極と対向する面には、予めリチウム金属箔を圧着した。リチウム金属箔の厚さは、三次元網目状アルミニウム多孔体に充填された単層CNT量から求めた正極電極容量と、ニッケル多孔体に充填されたハードカーボン量から求めた負極電極容量の差(=負極電極容量-正極電極容量)の90%の容量を有するように設定した。
 次にコインセルケース内に電解液としてEMI-FSIにリチウム-ビス(トリフルオロメタンスルホニル)イミド(LiTFSI)を1.0mol/Lの濃度で溶解したものを注入し、その後ケースを封口して、コイン型の電気二重層キャパシタを作製した。
 次にリチウムドープのために、リチウムイオンキャパシタを環境温度60℃で40時間放置した。正極電極および負極電極間の電位差が2V以上になった時点で、リチウムドープ完了と判断した。
<性能評価試験>
 環境温度25℃で、表10に示す電圧範囲で充電を1A/g(正極電極中の活物質質量あたりの電流量)で、放電を1A/g(正極電極中の活物質質量あたりの電流量)で行い、放電容量およびエネルギー密度を評価した。表10中、放電容量(mAh/g)は正極電極中に含まれる活物質質量あたりの放電容量として示した。なお、エネルギー密度W(Wh/L)の算出は、上記式(2)を用いた。評価結果を表10に示す。
[比較例3-1]
(正極電極の作製)
 椰子殻由来の活性炭(表面積:約2000m2/g)とカーボンブラック(導電助剤成分)とポリテトラフルオロエチレン(バインダー成分)とを、質量%で80:10:10の割合で混合した後に圧延し、厚さ0.18mmの活性炭シートからなる正極電極を作製した。
(負極電極の作製)
 ハードカーボンとカルボキシメチルセルロース(CMC)とスチレンブタジエンゴム(SBR)とカーボンブラック(CB)とを、それぞれ87質量%、2質量%、3質量%、8質量%の割合で混合して混合物を得た。得られた混合物を、固形分の割合が30質量%となるように水に分散させた溶液を厚さ10μmの銅箔に塗布し、乾燥後にロールプレスにて厚さを調整して厚さ110μmの負極電極を作製した。
(リチウムイオンキャパシタの作製)
 得られた正極電極および負極電極を用いて実施例10と同様の方法でリチウムイオンキャパシタを作製した。なお電解液は、エチレンカーボネートとジエチルカーボネートを体積比1:1で混合した溶媒に、LiPF6を1.0mol/Lの濃度で溶解したものを用いた。
<性能評価試験>
 実施例10と同様の方法で、放電容量およびエネルギー密度を評価した。評価結果を表10に示す。
[比較例3-2]
(正極電極の作製)
 椰子殻由来の活性炭(表面積:約2000m2/g)とカルボキシメチルセルロース(CMC)とスチレンブタジエンゴム(SBR)とカーボンブラック(CB)とを、それぞれで87質量%、2質量%、3質量%、8質量%の割合で混合して正極電極用混合物を得た。
 三次元網目状アルミニウム多孔体(平均孔径550μm、厚さ1mm)の多孔体表面に、カーボンブラック系の導電層を装着した。次に、正極電極用混合物の割合が20質量%となるように水に分散させた溶液中へ三次元網目状アルミニウム多孔体を浸漬させ、減圧下で脱泡処理した後に引き上げて乾燥して充填体を得た。充填体をロールプレスにより圧縮し、厚さ580μmの正極電極を得た。
(負極電極の作製)
 活性炭をハードカーボンに変更した以外は、正極電極用混合物と同様の方法で負極電極用混合物を得た。
 三次元網目状ニッケル多孔体(平均孔径480μm、気孔率95%、厚さ1.4mm)の多孔体表面に、カーボンブラック系の導電層を装着した。次に、負極電極用混合物の割合が20質量%となるように水に分散させた溶液中へ厚さを0.4mmに調整した三次元網目状ニッケル多孔体を浸漬させ、減圧下で脱泡処理した後に引き上げて乾燥して充填体を得た。充填体をロールプレスにより圧縮し、厚さ220μmの負極電極を得た。
(リチウムイオンキャパシタの作製)
 正極電極および負極電極を用いて、実施例10と同様の方法でリチウムイオンキャパシタを作製した。なお電解液は、エチレンカーボネートとジエチルカーボネートを体積比1:1で混合した溶媒に、LiPF6を1.0mol/Lの濃度で溶解したものを用いた。
<性能評価試験>
 実施例10と同様の方法で、放電容量およびエネルギー密度を評価した。評価結果を表10に示す。
[比較例3-3]
(リチウムイオンキャパシタを作製)
 比較例3-2の負極電極に用いるハードカーボンをグラファイトに変更した以外は、比較例3-2と同様の方法でリチウムイオンキャパシタを作製した。
<性能評価試験>
 実施例10と同様の方法で、放電容量およびエネルギー密度を評価した。評価結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
(1)単層CNT:名城ナノカーボン社製の「SO-P」(形状:単層CNT、平均長さ:1~5μm、平均直径:1.4nm、純度:98.3質量%)。
(2)EMI-BF4:キシダ化学社製の「1-エチル-3-メチルイミダゾリウムテトラフルオロボレート」。
(3)アルミニウム多孔体:三次元網目状アルミニウム多孔体、平均孔径550μm、気孔率:95%、厚さ:1.0mm、目付量:140g/m2
(12)ニッケル多孔体:住友電気工業(株)製の「セルメット(登録商標)」。
(13)ハードカーボン:平均粒径3μm。
 本実施例では、混練物中の活物質としてCNH、単層CNT、CNHと単層CNTの混合物をそれぞれ用いた場合の電気二重層キャパシタの性能を評価した。
[実施例11-1~11-8]
(混練物の作製)
 CNHと単層CNTとEMI-BF4とを用いて、実施例1と同様の方法で混練物を得た。なお、CNHと単層CNTとEMI-BF4の合計量に対するCNHと単層CNTの割合は、実施例11-1および実施例11-7では、それぞれ0質量%と17質量%、実施例11-2および実施例11-6では、それぞれ3.4質量%と13.6質量%、実施例11-3では、それぞれ8.5質量%と8.5質量%、実施例11-4では、それぞれ13.6質量%と3.4質量%、実施例11-5および実施例11-8では、それぞれ17質量%、0質量%となるように準備した。
(蓄電デバイス用電極の作製)
 実施例11-1~11-5は、実施例1と同様の方法で、厚さ300μmの電極を得た。
 実施例11-6~11-8は、実施例3-2と同様の方法で、厚さ280μm~310μmの電極を得た。なお、表11中、単極中の活物質割合(質量%)は、単層CNTとCNHとEMI-BF4との合計量に対するCNHの割合、単層CNTの割合を示している。
(電気二重層キャパシタの作製)
 各実施例について、実施例1と同様の方法でコイン(R2032)型の電気二重層キャパシタを得た。
<性能評価>
 各実施例について、実施例2と同様の方法で、静電容量、エネルギー密度および内部抵抗を評価した。
 評価結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
(1)単層CNT:名城ナノカーボン社製の「SO-P」(形状:単層CNT、平均長さ:1~5μm、平均直径:1.4nm、純度:98.3質量%)。
(2)EMI-BF4:キシダ化学社製の「1-エチル-3-メチルイミダゾリウムテトラフルオロボレート」。
(3)アルミニウム多孔体:三次元網目状アルミニウム多孔体、平均孔径550μm、気孔率:95%、厚さ:1.0mm、目付量:140g/m2
(14)CNH:カーボンナノホーン、日本電気株式会社製の「CNH」
<評価結果>
 CNHと単層CNTとを混合して用いた実施例11-2~11-4の電気二重層キャパシタは、CNHのみを用いた実施例11-5のキャパシタよりも静電容量が大きく、内部抵抗が小さかった。
 実施例11-2および実施例11-4のキャパシタは、単層CNTのみを用いた実施例11-1のキャパシタよりも静電容量およびエネルギー密度が大きかった。
 CNHと単層CNTとを混合して用いた実施例11-6の電気二重層キャパシタは、単層CNTのみを用いた実施例11-7のキャパシタおよびCNHのみを用いた実施例11-8のキャパシタよりも静電容量およびエネルギー密度が大きく、内部抵抗が小さかった。
 これらの結果は、CNHと単層CNTとを用いると、長さの短いCNHが単層CNT間に入り込み、CNHと単層CNTとの接触面積が増加し、容量に寄与する表面積が増加したためと考えられる。
 CNHのみを用いた実施例11-8は、単層CNTのみを用いた実施例11-7よりもエネルギー密度が大きく、内部抵抗が小さかった。これは、CNHの長さは単層CNTよりも短いため、圧縮処理後の単極中の活物質割合が、CNHの方が大きくなったためと考えられる。
 また、CNH単体で作製したペーストは単層CNT単体で作製したペーストよりも粘度が低くなった。これは一般にCNHの長さは単層CNTの長さよりも短いため、CNH同士の接触面積が少ないことによるものと考えられる。そのため、CNHは単層CNTと混合することで、三次元網目状アルミニウム多孔体に、より安定して保持できることが分かった。さらにこの混合ペーストを用いて作製したキャパシタは単層CNT、CNH単体で作製したキャパシタよりも高い容量、エネルギー密度を示すことが分かった。これはCNHと単層CNTを混合することでCNHと単層CNTと三次元網目状アルミニウム多孔体との接触面積が増加し、CNH単体よりも静電容量に寄与する表面積が増加したためと考えられる。
 本発明の蓄電デバイス用電極を用いた蓄電デバイスは、たとえば、自動車や鉄道などの輸送機器を始め、様々な用途に用いることができる。
 1 セパレータ、2 正極電極、3 負極電極、6 電解液、7 上部セルケース、8 下部セルケース、9,10 端子、20 電源。

Claims (15)

  1.  カーボンナノチューブ、活性炭、ハードカーボン、グラファイト、グラフェンおよびカーボンナノホーンからなる群より選択される少なくとも1種の活物質と、
     イオン液体と、
     三次元網目状金属多孔体とを含む、
     蓄電デバイス用電極。
  2.  前記活物質がカーボンナノチューブを含む、請求項1に記載の蓄電デバイス用電極。
  3.  前記活物質がカーボンナノチューブである、請求項1または2に記載の蓄電デバイス用電極。
  4.  前記三次元網目状金属多孔体の金属が、アルミニウム、ニッケル、銅、アルミニウム合金およびニッケル合金からなる群より選択される少なくとも1種を含む、請求項1~3のいずれか1項に記載の蓄電デバイス用電極。
  5.  前記三次元網目状金属多孔体の金属がアルミニウムである、請求項1~4のいずれか1項に記載の蓄電デバイス用電極。
  6.  前記蓄電デバイス用電極がバインダー成分を含まない、請求項1~5のいずれか1項に記載の蓄電デバイス用電極。
  7.  前記イオン液体が有機溶媒を含む、請求項1~6のいずれか1項に記載の蓄電デバイス用電極。
  8.  前記カーボンナノチューブは、両端が開口している形状を有する、請求項1~7のいずれか1項に記載の蓄電デバイス用電極。
  9.  前記カーボンナノチューブは、平均長さが100nm以上2000μm以下の範囲である、請求項1~8のいずれか1項に記載の蓄電デバイス用電極。
  10.  前記カーボンナノチューブは、平均直径が0.1nm以上50nm以下の範囲である、請求項1~9のいずれか1項に記載の蓄電デバイス用電極。
  11.  前記カーボンナノチューブは、純度が70質量%以上である、請求項1~10のいずれか1項に記載の蓄電デバイス用電極。
  12.  前記三次元網目状金属多孔体は、平均孔径が50μm以上1000μm以下である、請求項1~11のいずれか1項に記載の蓄電デバイス用電極。
  13.  請求項1~12のいずれか1項に記載の蓄電デバイス用電極を備える蓄電デバイス。
  14.  前記蓄電デバイスが、電気二重層キャパシタまたはリチウムイオンキャパシタである、請求項13に記載の蓄電デバイス。
  15.  カーボンナノチューブ、活性炭、ハードカーボン、グラファイト、グラフェンおよびカーボンナノホーンからなる群より選択される少なくとも1種の活物質をイオン液体に混練して混練物を生成する工程と、
     前記混練物を三次元網目状金属多孔体に含ませる工程とを備える、
     蓄電デバイス用電極の製造方法。
PCT/JP2012/079396 2011-11-14 2012-11-13 蓄電デバイス用電極、蓄電デバイスおよび蓄電デバイス用電極の製造方法 WO2013073526A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112012004734.6T DE112012004734T5 (de) 2011-11-14 2012-11-13 Elektrode für eine elektrische Speichervorrichtung, elektrische Speichervorrichtung und Herstellungsverfahren einer Elektrode für eine elektrische Speichervorrichtung
KR1020147001659A KR20140097099A (ko) 2011-11-14 2012-11-13 축전 디바이스용 전극, 축전 디바이스 및 축전 디바이스용 전극의 제조 방법
CN201280037609.5A CN103733288A (zh) 2011-11-14 2012-11-13 蓄电装置用电极、蓄电装置以及蓄电装置用电极的制造方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011248520 2011-11-14
JP2011-248520 2011-11-14
JP2012073293 2012-03-28
JP2012-073293 2012-03-28
JP2012-122389 2012-05-29
JP2012122389 2012-05-29
US201261652989P 2012-05-30 2012-05-30
US61/652,989 2012-05-30

Publications (1)

Publication Number Publication Date
WO2013073526A1 true WO2013073526A1 (ja) 2013-05-23

Family

ID=48429583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079396 WO2013073526A1 (ja) 2011-11-14 2012-11-13 蓄電デバイス用電極、蓄電デバイスおよび蓄電デバイス用電極の製造方法

Country Status (6)

Country Link
US (1) US9048025B2 (ja)
JP (1) JPWO2013073526A1 (ja)
KR (1) KR20140097099A (ja)
CN (1) CN103733288A (ja)
DE (1) DE112012004734T5 (ja)
WO (1) WO2013073526A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015035511A (ja) * 2013-08-09 2015-02-19 株式会社明電舎 電気二重層キャパシタ
WO2015129820A1 (ja) * 2014-02-28 2015-09-03 独立行政法人物質・材料研究機構 グラフェン/CNT複合体電極装備Liイオン・スーパーキャパシター及びその製造方法
JP2015159229A (ja) * 2014-02-25 2015-09-03 住友電気工業株式会社 電気化学デバイス用外装および電気二重層キャパシタ
JP2015167184A (ja) * 2014-03-04 2015-09-24 住友電気工業株式会社 電気化学デバイス用外装および電気二重層キャパシタ
JP2019500745A (ja) * 2015-11-23 2019-01-10 ナノテク インスツルメンツ インク 高い活性質量装填量を有するスーパーキャパシタ電極およびセル
JP2019517130A (ja) * 2016-04-01 2019-06-20 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 柔軟性があり高性能なスーパーキャパシタのための炭素布上でのポリアニリンナノチューブの直接的成長
JP2021106489A (ja) * 2014-11-13 2021-07-26 ソリューションズ フォー スタート アップ ベンチャーズ リミテッド 充電器
KR20230029985A (ko) 2020-10-21 2023-03-03 아사히 가세이 가부시키가이샤 비수계 알칼리 금속 축전 소자 및 정극 도공액
JP7425983B2 (ja) 2019-07-31 2024-02-01 Tdk株式会社 電気二重層キャパシタ用電極および電気二重層キャパシタ

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012378149B2 (en) 2011-12-21 2016-10-20 The Regents Of The University Of California Interconnected corrugated carbon-based network
AU2013230195B2 (en) 2012-03-05 2017-04-20 The Regents Of The University Of California Capacitor with electrodes made of an interconnected corrugated carbon-based network
US9552930B2 (en) 2015-01-30 2017-01-24 Corning Incorporated Anode for lithium ion capacitor
EP3014643A4 (en) * 2013-04-30 2017-11-01 ZapGo Ltd Rechargeable power source for mobile devices which includes an ultracapacitor
JP2017522725A (ja) 2014-06-16 2017-08-10 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア ハイブリッド電気化学セル
CN113257582A (zh) 2014-11-18 2021-08-13 加利福尼亚大学董事会 多孔互连波纹状碳基网络(iccn)复合材料
US9672992B2 (en) 2015-01-30 2017-06-06 Corning Incorporated Coke sourced anode for lithium ion capacitor
US9911545B2 (en) 2015-01-30 2018-03-06 Corning Incorporated Phenolic resin sourced carbon anode in a lithium ion capacitor
US9607778B2 (en) 2015-01-30 2017-03-28 Corning Incorporated Poly-vinylidene difluoride anode binder in a lithium ion capacitor
US9679704B2 (en) 2015-01-30 2017-06-13 Corning Incorporated Cathode for a lithium ion capacitor
CN105181599B (zh) * 2015-09-01 2018-06-26 无锡华虹信息科技有限公司 一种基于光电转换技术的红外sf6气体检测装置
AU2016378400B2 (en) 2015-12-22 2021-08-12 The Regents Of The University Of California Cellular graphene films
KR102645603B1 (ko) 2016-01-22 2024-03-07 더 리전트 오브 더 유니버시티 오브 캘리포니아 고-전압 장치
US11062855B2 (en) 2016-03-23 2021-07-13 The Regents Of The University Of California Devices and methods for high voltage and solar applications
WO2018044786A1 (en) 2016-08-31 2018-03-08 The Regents Of The University Of California Devices comprising carbon-based material and fabrication thereof
GB2561253B (en) * 2017-04-07 2022-10-12 Zapgo Ltd Self-supporting carbon electrode
JP6851606B2 (ja) * 2017-09-27 2021-03-31 国立研究開発法人物質・材料研究機構 グラフェンを含有する電極、その製造方法およびそれを用いた蓄電デバイス
EP3998656A4 (en) * 2019-07-10 2023-08-09 Sekisui Chemical Co., Ltd. SHEET METAL WITH CARBON MATERIAL, ELECTRODE FOR ELECTRICITY STORAGE DEVICE, AS WELL AS ELECTRICITY STORAGE DEVICE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139815A (ja) * 1989-10-25 1991-06-14 Isuzu Motors Ltd 分極性電極の製造方法
JP2005353568A (ja) * 2004-05-10 2005-12-22 Nippon Shokubai Co Ltd 電解液材料
WO2007013693A2 (ja) * 2005-07-29 2007-02-01 Koei Chemical Company, Limited 電気化学素子
JP2008010613A (ja) * 2006-06-29 2008-01-17 Nisshinbo Ind Inc 電気二重層キャパシタ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532347A (en) * 1978-08-28 1980-03-07 Hitachi Maxell Ltd Electrode
JP2952381B2 (ja) * 1992-06-30 1999-09-27 日本電池株式会社 非水電解液二次電池
JPH07176301A (ja) * 1993-12-20 1995-07-14 Ricoh Co Ltd 二次電池用電極および該電極の製造法
JPH10302752A (ja) * 1997-04-30 1998-11-13 Sony Corp 非水電解液二次電池
JP3924273B2 (ja) 2003-09-03 2007-06-06 独立行政法人科学技術振興機構 カーボンナノチューブを用いる電気二重層キャパシタ用材料
TW200606970A (en) 2004-05-10 2006-02-16 Nippon Catalytic Chem Ind Material for electrolytic solution, ionic material-containing composition and use thereof
KR101005754B1 (ko) * 2004-07-27 2011-01-06 도꾸리쯔교세이호진 상교기쥬쯔 소고겡뀨죠 단층 카본 나노튜브 및 배향 단층 카본 나노튜브·벌크구조체 및 그들의 제조방법·장치 및 용도
EP1990814A4 (en) * 2006-05-29 2015-03-04 Panasonic Corp DOUBLE-LAYER ELECTRICAL CAPACITOR AND METHOD OF MANUFACTURING THE SAME
WO2009091002A1 (ja) * 2008-01-17 2009-07-23 Showa Denko K.K. 電気二重層キャパシタ
JP5142264B2 (ja) * 2008-01-23 2013-02-13 住友電気工業株式会社 非水電解質二次電池用の集電体及びその製造方法並びに非水電解質二次電池用の正極及びその製造方法
JP5303235B2 (ja) 2008-03-31 2013-10-02 日本ケミコン株式会社 電気二重層キャパシタ用電極及びその製造方法
JP2010010094A (ja) * 2008-06-30 2010-01-14 Panasonic Corp 非水電解質二次電池用電極の製造方法および非水電解質二次電池用電極群の製造方法
JP5402381B2 (ja) * 2009-08-11 2014-01-29 三菱マテリアル株式会社 アルミニウム多孔質焼結体の製造方法
US8373971B2 (en) * 2010-01-13 2013-02-12 Karl S. YOUNG Supercapacitors using nanotube fibers and methods of making the same
JP2013521656A (ja) * 2010-03-02 2013-06-10 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー カーボン・ナノチューブ浸出電極材料を含む螺旋に巻き付けられた電気機器及びその生産方法並びに生産装置
EP2579284A4 (en) * 2010-05-31 2018-04-04 Sumitomo Electric Industries, Ltd. Capacitor and process for producing same
JP2012243924A (ja) * 2011-05-19 2012-12-10 Sumitomo Electric Ind Ltd キャパシタ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139815A (ja) * 1989-10-25 1991-06-14 Isuzu Motors Ltd 分極性電極の製造方法
JP2005353568A (ja) * 2004-05-10 2005-12-22 Nippon Shokubai Co Ltd 電解液材料
WO2007013693A2 (ja) * 2005-07-29 2007-02-01 Koei Chemical Company, Limited 電気化学素子
JP2008010613A (ja) * 2006-06-29 2008-01-17 Nisshinbo Ind Inc 電気二重層キャパシタ

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015035511A (ja) * 2013-08-09 2015-02-19 株式会社明電舎 電気二重層キャパシタ
JP2015159229A (ja) * 2014-02-25 2015-09-03 住友電気工業株式会社 電気化学デバイス用外装および電気二重層キャパシタ
WO2015129820A1 (ja) * 2014-02-28 2015-09-03 独立行政法人物質・材料研究機構 グラフェン/CNT複合体電極装備Liイオン・スーパーキャパシター及びその製造方法
JPWO2015129820A1 (ja) * 2014-02-28 2017-03-30 国立研究開発法人物質・材料研究機構 グラフェン/CNT複合体電極装備Liイオン・スーパーキャパシター及びその製造方法
US10014126B2 (en) 2014-02-28 2018-07-03 National Institute For Materials Science Lithium-ion supercapacitor using graphene-CNT composite electrode and method for manufacturing the same
JP2015167184A (ja) * 2014-03-04 2015-09-24 住友電気工業株式会社 電気化学デバイス用外装および電気二重層キャパシタ
JP2021106489A (ja) * 2014-11-13 2021-07-26 ソリューションズ フォー スタート アップ ベンチャーズ リミテッド 充電器
JP2019500745A (ja) * 2015-11-23 2019-01-10 ナノテク インスツルメンツ インク 高い活性質量装填量を有するスーパーキャパシタ電極およびセル
JP7019571B2 (ja) 2015-11-23 2022-02-15 ナノテク インスツルメンツ インク 高い活性質量装填量を有するスーパーキャパシタ電極およびセル
JP2019517130A (ja) * 2016-04-01 2019-06-20 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 柔軟性があり高性能なスーパーキャパシタのための炭素布上でのポリアニリンナノチューブの直接的成長
JP2022043313A (ja) * 2016-04-01 2022-03-15 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 柔軟性があり高性能なスーパーキャパシタのための炭素布上でのポリアニリンナノチューブの直接的成長
JP7417300B2 (ja) 2016-04-01 2024-01-18 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 柔軟性があり高性能なスーパーキャパシタのための炭素布上でのポリアニリンナノチューブの直接的成長
JP7425983B2 (ja) 2019-07-31 2024-02-01 Tdk株式会社 電気二重層キャパシタ用電極および電気二重層キャパシタ
KR20230029985A (ko) 2020-10-21 2023-03-03 아사히 가세이 가부시키가이샤 비수계 알칼리 금속 축전 소자 및 정극 도공액

Also Published As

Publication number Publication date
JPWO2013073526A1 (ja) 2015-04-02
US20130148265A1 (en) 2013-06-13
KR20140097099A (ko) 2014-08-06
CN103733288A (zh) 2014-04-16
DE112012004734T5 (de) 2014-09-11
US9048025B2 (en) 2015-06-02

Similar Documents

Publication Publication Date Title
WO2013073526A1 (ja) 蓄電デバイス用電極、蓄電デバイスおよび蓄電デバイス用電極の製造方法
US9972446B2 (en) Electrode for power storage device, power storage device, and method for manufacturing electrode for power storage device
JP4705566B2 (ja) 電極材及びその製造方法
JP5322435B2 (ja) 蓄電デバイス用負極活物質
JP5228531B2 (ja) 蓄電デバイス
JP2008066053A (ja) 蓄電デバイス用負極活物質およびその製造方法
JP2007280803A (ja) ハイブリッド型積層電極、それを用いたハイブリッド二次電源
KR101138562B1 (ko) 전극 구조체 및 그 제조 방법, 그리고 상기 전극 구조체를 구비하는 에너지 저장 장치
JP2008311363A (ja) リチウムイオンのプレドープ方法およびリチウムイオン・キャパシタ蓄電素子の製造方法
JP2013157603A (ja) リチウムイオンキャパシタ用活性炭、これを活物質として含む電極、及び前記電極を用いるリチウムイオンキャパシタ
JP2014107550A (ja) 電極構造体及びその製造方法、並びに前記電極構造体を具備するエネルギー格納装置
JP2013135223A (ja) 電極活物質/導電材の複合体及びその製造方法並びにこれを含む電気化学キャパシタ
WO2009123031A1 (ja) 電気化学素子用電極の製造方法
JP2013098575A (ja) 電極活物質組成物、その製造方法、及びこれを用いた電気化学キャパシタ
JP2007294539A (ja) リチウムイオンハイブリッドキャパシタ
JP2013143422A (ja) リチウムイオンキャパシタ
JP2006303118A (ja) リチウムイオンキャパシタ
KR102188242B1 (ko) 전극밀도를 개선할 수 있는 슈퍼커패시터 전극용 조성물, 이를 이용한 슈퍼커패시터 전극의 제조방법 및 상기 제조방법을 이용하여 제조된 슈퍼커패시터
JP2006310412A (ja) リチウムイオンキャパシタ
KR102348929B1 (ko) 전극 재료, 전기 이중층 커패시터 및 이의 제조 방법
JP2017050465A (ja) 蓄電デバイス用電極、蓄電デバイスおよび蓄電デバイス用電極の製造方法
JP6326632B2 (ja) キャパシタ用電極およびそれを用いたキャパシタ
WO2024024810A1 (ja) 多孔質炭素材料、その製造方法、及びこれを用いた蓄電デバイス
JP2014220327A (ja) 蓄電デバイス用電極、蓄電デバイスおよび蓄電デバイス用電極の製造方法
JP2020516063A (ja) 自己支持炭素電極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013544269

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147001659

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120120047346

Country of ref document: DE

Ref document number: 112012004734

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12848970

Country of ref document: EP

Kind code of ref document: A1