WO2013069642A1 - 位相差フィルム及びそれを備える液晶表示装置 - Google Patents

位相差フィルム及びそれを備える液晶表示装置 Download PDF

Info

Publication number
WO2013069642A1
WO2013069642A1 PCT/JP2012/078740 JP2012078740W WO2013069642A1 WO 2013069642 A1 WO2013069642 A1 WO 2013069642A1 JP 2012078740 W JP2012078740 W JP 2012078740W WO 2013069642 A1 WO2013069642 A1 WO 2013069642A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
retardation film
structural unit
copolymer
group
Prior art date
Application number
PCT/JP2012/078740
Other languages
English (en)
French (fr)
Inventor
彰 松尾
裕司 高橋
彰 高木
央司 曾禰
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to US14/357,073 priority Critical patent/US20140309373A1/en
Priority to KR1020147007262A priority patent/KR20140064886A/ko
Priority to JP2013542988A priority patent/JP5756863B2/ja
Priority to CN201280045696.9A priority patent/CN103842859A/zh
Priority to EP12847721.3A priority patent/EP2778726A4/en
Publication of WO2013069642A1 publication Critical patent/WO2013069642A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0063Optical properties, e.g. absorption, reflection or birefringence
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/32Monomers containing only one unsaturated aliphatic radical containing two or more rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/32Monomers containing only one unsaturated aliphatic radical containing two or more rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n

Definitions

  • the present invention relates to a retardation film and a liquid crystal display device including the same.
  • a liquid crystal display device such as a liquid crystal display (LCD) uses a retardation film with controlled optical anisotropy for the purpose of optical compensation. Conventionally, it has positive birefringence such as polycarbonate and cyclic polyolefin. A retardation film made of a material having been used has been used (see, for example, Patent Document 1).
  • Patent Document 2 discloses a retardation film made of polystyrene.
  • Patent Document 3 discloses a retardation film having a reverse wavelength dispersion characteristic, which includes a polystyrene resin having a syndiotactic structure and poly (2,6-dimethyl-1,4-phenylene oxide).
  • the material having negative optical anisotropy is a refractive index in the stretching direction when the film of this material is uniaxially stretched, a refractive index in the stretched direction so that the degree of orientation is increased when biaxially stretched, That is, it refers to a material having a chemical structure that has a minimum refractive index in the orientation direction of the polymer main chain.
  • the material having positive optical anisotropy refers to a material having the maximum refractive index in the orientation direction of the polymer main chain in terms of chemical structure.
  • a retardation film obtained by stretching a resin having negative birefringence becomes a “negative retardation film” having a negative retardation Rth in the thickness direction.
  • the phase difference Rth is Nx as the refractive index in the x axis direction
  • Ny as the refractive index in the y axis direction perpendicular to the x axis in the film plane
  • the refractive index in the direction orthogonal to each of the x-axis and the y-axis direction is Nz and the thickness of the film is d, it is given by the equation ⁇ (Nx + Ny) / 2 ⁇ Nz ⁇ ⁇ d.
  • the chromatic dispersion value D is the ratio of the birefringence ⁇ n_450 at a wavelength of 450 nm to the birefringence ⁇ n_550 at a wavelength of 550 nm, and is given by the equation ⁇ n_450 / ⁇ n_550.
  • the negative retardation film is expected to be used as a viewing angle compensation film in IPS, FFS mode, circularly polarized VA mode, etc.
  • the retardation film described in Patent Document 2 has a problem of low heat resistance. There is.
  • the optical film described in Patent Document 3 is a blend of polystyrene and poly (2,6-dimethyl-1,4-phenylene oxide), although it is not described in the document.
  • the glass transition temperature is estimated to be about 115 ° C. and cannot be said to have sufficient heat resistance as a retardation film.
  • an object of the present invention is to provide a negative retardation film excellent in heat resistance and optical characteristics. Another object of the present invention is to provide a liquid crystal display device comprising the retardation film.
  • One aspect of the present invention is a resin comprising a resin composition containing a copolymer having a first structural unit represented by the following formula (1) and a second structural unit represented by the following formula (2).
  • a retardation film formed by stretching a film at least in a uniaxial direction, wherein the content ratio of the first structural unit in the copolymer is the sum of the first structural unit and the second structural unit. It relates to a retardation film that is 3 to 50 mol% as a standard.
  • a and b each independently represent an integer of 0 to 5
  • R 1 and R 2 each independently represent a hydrogen atom or an organic residue having 1 to 12 carbon atoms.
  • a or b is an integer of 2 or more, a plurality of R 1 or R 2 may be the same or different from each other.
  • R 3 represents a hydrogen atom or an organic residue having 1 to 4 carbon atoms
  • R 4 represents a hydrogen atom or an organic residue having 1 to 12 carbon atoms.
  • c is an integer of 2 or more, a plurality of R 4 may be the same or different from each other.
  • Such a retardation film can be suitably used as a negative retardation film having excellent heat resistance and optical properties.
  • a copolymer having a first structural unit represented by the following formula (1) and a second structural unit represented by the following formula (2) and poly (2,6- A retardation film obtained by stretching a resin film comprising a resin composition containing dimethyl-1,4-phenylene oxide) in at least a uniaxial direction, wherein the poly (2,6-dimethyl) in the resin composition is -1,4-phenylene oxide) is a retardation film having a content ratio of 5 to 30% by mass based on the total amount of the resin composition.
  • a and b each independently represent an integer of 0 to 5
  • R 1 and R 2 each independently represent a hydrogen atom or an organic residue having 1 to 12 carbon atoms.
  • a or b is an integer of 2 or more, a plurality of R 1 or R 2 may be the same or different from each other.
  • R 3 represents a hydrogen atom or an organic residue having 1 to 4 carbon atoms
  • R 4 represents a hydrogen atom or an organic residue having 1 to 12 carbon atoms.
  • c is an integer of 2 or more, a plurality of R 4 may be the same or different from each other.
  • Such a retardation film can be suitably used as a negative retardation film having excellent heat resistance and optical properties.
  • the content ratio of the first structural unit in the copolymer is 3 to 50 mol% based on the total of the first structural unit and the second structural unit. It may be. Thereby, the optical characteristics of the retardation film are further improved.
  • the glass transition temperature of the copolymer may be 105 to 170 ° C.
  • Such a retardation film is further excellent in heat resistance.
  • the retardation film may have an absolute value of a photoelastic coefficient of 5.0 ⁇ 10 ⁇ 12 (/ Pa) or less.
  • the absolute value of the photoelastic coefficient can be made sufficiently small.
  • a retardation film having an absolute value of a photoelastic coefficient of 5.0 ⁇ 10 ⁇ 12 (/ Pa) or less can be applied with an external force. Since the change in birefringence due to is small, when it is used in a large liquid crystal display device or the like, the contrast and the uniformity of the screen are excellent.
  • the glass transition temperature of the resin composition may be 120 ° C. or higher.
  • Such a retardation film is further excellent in heat resistance.
  • the retardation film can achieve sufficiently small wavelength dispersion characteristics, for example, the wavelength dispersion value D can be less than 1.06, and 0.70 ⁇ D ⁇ 1. .06 can also be used.
  • a retardation film having a chromatic dispersion value D of 0.70 ⁇ D ⁇ 1.06 is used as a compensation film, contrast and color tone are compared with the case of using a retardation film of 1.06 ⁇ D. Excellent viewing angle characteristics.
  • the wavelength dispersion value D can be controlled by, for example, the blend ratio of the copolymer and poly (2,6-dimethyl-1,4-phenylene oxide).
  • stretching direction of the said retardation film is an x-axis direction
  • the direction orthogonal to the said x-axis direction in the surface of the said retardation film is a y-axis direction, the said x-axis direction, and the said y-axis direction
  • the refractive index Nx in the x-axis direction, the refractive index Ny in the y-axis direction, and the refractive index Nz in the z-axis direction satisfy the relationship Nz ⁇ Ny> Nx. It is preferable.
  • the main stretching direction refers to a stretching direction in the case of uniaxial stretching, and a direction in which the degree of orientation is increased in the case of biaxial stretching.
  • a retardation film is light in an oblique direction in black display of a liquid crystal panel (liquid crystal display device) caused by a retardation value of a polarizing plate or a component disposed between the polarizing plate and the liquid crystal cell. Effective in reducing leakage.
  • Another aspect of the present invention also relates to a liquid crystal display device including the retardation film.
  • a retardation film having negative birefringence excellent in heat resistance and optical characteristics there is provided a retardation film having negative birefringence excellent in heat resistance and optical characteristics. Moreover, according to this invention, a liquid crystal display device provided with this retardation film is provided.
  • FIG. 1 is a perspective view showing a first embodiment of a retardation film of the present invention.
  • the retardation film 10 is a retardation film formed by stretching a resin film in a uniaxial direction, and the resin film is represented by a first structural unit represented by the following formula (1) and the following formula (2). It consists of the resin composition containing the copolymer which has a 2nd structural unit. The content ratio of the first structural unit in the copolymer is 3 to 50 mol% based on the sum of the first structural unit and the second structural unit.
  • a and b each independently represent an integer of 0 to 5
  • R 1 and R 2 each independently represent a hydrogen atom or an organic residue having 1 to 12 carbon atoms.
  • a or b is an integer of 2 or more, a plurality of R 1 or R 2 may be the same or different from each other.
  • c represents an integer of 0 to 5
  • R 3 represents a hydrogen atom or a hydrogen atom or an organic residue having 1 to 4 carbon atoms
  • R 4 represents a hydrogen atom or an organic residue having 1 to 12 carbon atoms. Show. When c is an integer of 2 or more, a plurality of R 4 may be the same or different from each other.
  • Such a retardation film 10 is a negative retardation film excellent in heat resistance and optical characteristics.
  • the copolymer, the resin film, and the retardation film 10 will be described in order.
  • the copolymer has the first structural unit represented by the formula (1) and the second structural unit represented by the formula (2).
  • the content ratio is 3 to 50 mol% based on the total of the first structural unit and the second structural unit.
  • the retardation film 10 can achieve both excellent heat resistance and a small absolute value of the photoelastic coefficient by setting the content ratio of the first structural unit of the copolymer to 3 to 50 mol%. it can.
  • R 1 and R 2 are organic residues having 1 to 12 carbon atoms.
  • the organic residue is preferably a group consisting of a carbon atom and a hydrogen atom, or a group consisting of a carbon atom, a hydrogen atom and an oxygen atom.
  • the organic residue is preferably an alkyl group, a hydroxyalkyl group or an alkoxyalkyl group, more preferably an alkyl group.
  • the organic residue in R 1 and R 2 may be linear or branched.
  • Examples of the organic residue in R 1 and R 2 include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, 2- Examples thereof include a pentyl group, n-hexyl group, 2-hexyl group, n-heptyl group, 2-heptyl group, 3-heptyl group, n-octyl group, 2-octyl group and 3-octyl group.
  • a and b are preferably integers of 0 to 3, and more preferably 0 from the viewpoint of heat resistance.
  • R 3 is a hydrogen atom or an organic residue having 1 to 4 carbon atoms.
  • the organic residue is preferably a group consisting of a carbon atom and a hydrogen atom, or a group consisting of a carbon atom, a hydrogen atom and an oxygen atom.
  • Such an organic residue is preferably an alkyl group, a hydroxyalkyl group, or an alkoxyalkyl group.
  • the organic residue in R 3 may be linear or branched.
  • Examples of the organic residue in R 3 include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, sec-butyl group, tert-butyl group, hydroxymethyl group, hydroxyethyl group, methoxymethyl Group, methoxyethyl group, ethoxymethyl group, ethoxyethyl group and the like.
  • R 4 is an organic residue having 1 to 12 carbon atoms.
  • the organic residue is preferably a group consisting of a carbon atom and a hydrogen atom, or a group consisting of a carbon atom, a hydrogen atom and an oxygen atom.
  • the organic residue is preferably an alkyl group, a hydroxyalkyl group or an alkoxyalkyl group, more preferably an alkyl group.
  • the organic residue in R 4 may be linear or branched.
  • Examples of the organic residue in R 4 include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, 2-pentyl group, Examples thereof include n-hexyl group, 2-hexyl group, n-heptyl group, 2-heptyl group, 3-heptyl group, n-octyl group, 2-octyl group and 3-octyl group.
  • c is preferably an integer of 0 to 3, and more preferably 0 from the viewpoint of ease of polymerization.
  • the content ratio of the first structural unit in the copolymer is preferably 5 to 35 mol%, based on the total of the first structural unit and the second structural unit, and preferably 10 to 30 mol%. Is more preferable.
  • the glass transition temperature is 110 ° C. or more and the photoelastic constant is 5.0 ⁇ 10 ⁇ 12 / Pa. It can also have an elastic constant. The effect that the brittleness of the film is further improved when it is 35 mol% or less.
  • the content ratio of the first structural unit is determined by measuring the 1 H-NMR of the copolymer, and the peak area of the peak derived from the first structural unit and the peak area of the peak derived from the second structural unit. And can be calculated from
  • the weight average molecular weight Mw of the copolymer is preferably 50,000 to 500,000, and more preferably 100,000 to 350,000.
  • Mw is 500,000 or less, sufficient fluidity for extrusion stretching can be obtained, and melt extrusion and stretching film formation can be performed without any major trouble.
  • Mw is 50,000 or more, a sufficient degree of orientation can be imparted to the stretching stability and the film.
  • the weight average molecular weight Mw, number average molecular weight Mn, and molecular weight distribution Mw / Mn of the copolymer are gel permeation chromatography (GPC) in which three columns (TSKgel SuperHM-M) are connected and equipped with an RI detector.
  • GPC gel permeation chromatography
  • HLC-8020 manufactured by Tosoh Corporation and tetrahydrofuran as a solvent, and values measured as polystyrene-equivalent weight average molecular weight Mw, number average molecular weight Mn, and molecular weight distribution Mw / Mn are shown.
  • the glass transition temperature of the copolymer is preferably 105 to 170 ° C, more preferably 110 ° C or higher.
  • a retardation film containing such a copolymer is more excellent in heat resistance.
  • the copolymer may further have a structural unit other than the first structural unit and the second structural unit as long as a negative retardation film is obtained.
  • the copolymer includes a (meth) methyl acrylate unit, a (meth) acryl ethyl unit, a (meth) acrylic acid n-butyl unit, a (meth) acrylic acid isobutyl unit, a (meth) acrylic acid t-butyl unit, (Meth) acrylic acid cyclohexyl unit, (meth) acrylic acid 2-ethylhexyl unit, acrylonitrile unit, vinylnaphthalene unit, vinylanthracene unit, N-vinylpyrrolidone unit, acrylonitrile unit, N-vinylimidazole unit, N-vinylacetamide unit, Saturated aliphatics obtained by hydrogenation of N-vinylformaldehyde units, N-vinylcaprolactam units, N-vinylc
  • the total amount of the first structural unit and the second structural unit with respect to the total amount of the copolymer is preferably 80 to 100% by mass, and more preferably 90 to 100% by mass. According to such a copolymer, the effect of the present invention is more remarkably exhibited.
  • the copolymer can be obtained, for example, by a copolymerization reaction between a first monomer represented by the following formula (3) and a second monomer represented by the following formula (4).
  • a, b, c, R 1 , R 2 , R 3 and R 4 are as defined above.
  • the copolymerization reaction can be performed, for example, by adding an anionic polymerization initiator to a reaction solution containing the first monomer and the second monomer.
  • an organic alkali metal compound is used as the anionic polymerization initiator.
  • the organic alkali metal include alkyl lithium, aryl lithium, alkyl sodium, and aryl sodium.
  • Specific examples of the anionic polymerization initiator include organic lithium compounds such as n-butyl lithium, s-butyl lithium and t-butyl lithium, and organic sodium compounds such as sodium naphthalene.
  • preferred anionic polymerization initiators are organic lithium compounds such as n-butyllithium and s-butyllithium.
  • the number average molecular weight Mn and the weight average molecular weight Mw of the copolymer can be adjusted by appropriately changing the addition amount of the anionic polymerization initiator.
  • the addition amount of the anionic polymerization initiator is preferably 0.02 to 0.5 mol%, and preferably 0.04 to 0.1 mol%, based on the total amount of the first monomer and the second monomer. It is more preferable. By setting it as such addition amount, the copolymer which has the number average molecular weight Mn and the weight average molecular weight Mw of the suitable range becomes easy to be obtained.
  • the reaction temperature for the copolymerization reaction is preferably 0 to 130 ° C, more preferably 50 to 90 ° C.
  • the reaction temperature is lowered, the value of the molecular weight distribution Mw / Mn of the copolymer tends to decrease, and when the reaction temperature is increased, the value of the molecular weight distribution Mw / Mn of the copolymer tends to increase.
  • the reaction time for the copolymerization reaction is preferably 0.5 to 12 hours, more preferably 1 to 6 hours.
  • the copolymerization reaction is preferably performed in a solvent, and the polymerization solvent is preferably a solvent that does not react with the organic alkali metal compound.
  • the solvent cyclohexane, methylcyclohexane, benzene, toluene, xylene, ethylbenzene, t-butylbenzene or the like is preferably used.
  • a resin film is a film which consists of a resin composition containing the said copolymer.
  • the method for producing the resin film is not particularly limited. For example, a known method such as a casting method, a melt extrusion method, a calendar method, or a compression molding method may be used.
  • a drum type casting machine As a molding apparatus used in the casting method, a drum type casting machine, a band type casting machine, a spin coater method, or the like can be used.
  • the melt extrusion method include a T-die method and an inflation method.
  • a resin film can be produced using a film-forming solution containing the copolymer.
  • the solvent for the film formation solution include aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, and cumene; halogenated alkanes such as methylene chloride, dichloroethane, chlorobenzene, dichlorobenzene, chloroform, and tetrachloroethylene; cyclohexane, deca And cyclic aliphatic solvents such as hydronaphthalene; cyclic ethers such as tetrahydrofuran and 1,4-dioxane; methyl ethyl ketone and cyclohexanone.
  • the resin composition constituting the resin film may contain components other than the copolymer.
  • the resin composition may contain the solvent.
  • the content of the solvent is preferably 5000 ppm or less, and more preferably 1000 ppm or less, from the viewpoint of heat resistance and expression of retardation in the stretching operation.
  • the resin composition constituting the resin film is within the range not exceeding the gist of the present invention, a polymer other than the copolymer, a surfactant, a polymer electrolyte, a conductive complex, silica, alumina, a dye material, It may contain a heat stabilizer, an ultraviolet absorber, an antistatic agent, an antiblocking agent, a lubricant, a plasticizer, an oil and the like.
  • the content of the copolymer in the resin composition constituting the resin film is preferably 50 to 100% by mass, more preferably 90 to 100% by mass based on the total amount of the resin composition.
  • the content of the copolymer is within the above range, the effect of the present invention is more remarkably exhibited.
  • the retardation film 10 is a film obtained by stretching a resin film.
  • the stretching method of the film is generally classified into a flat method stretching that stretches in the film in-plane direction and a tubular method stretching that swells and stretches in a tube shape, but the flat method stretching with a high accuracy of thickness and stretch ratio is particularly preferable. preferable.
  • the flat method stretching is classified into a uniaxial stretching method and a biaxial stretching method.
  • the uniaxial stretching method there are a free width uniaxial stretching method and a constant width uniaxial stretching method.
  • the biaxial stretching method includes a two-stage free width biaxial stretching method, a sequential biaxial stretching method, and a simultaneous biaxial stretching method
  • the sequential biaxial stretching includes an all tenter method and a roll tenter method. Any of the above stretching methods may be used as the stretching method for producing the retardation film from the transparent resin composition of the present invention, and the most suitable method depending on the required three-dimensional refractive index and retardation amount. Just choose.
  • the temperature during stretching is preferably Tg + 5 ° C. to Tg + 40 ° C., more preferably Tg + 5 ° C. to Tg + 25 ° C., where Tg is the glass transition temperature of the copolymer.
  • the thickness of the retardation film 10 is not particularly limited, but is preferably 10 to 500 ⁇ m, and more preferably 10 to 200 ⁇ m. When the thickness of the retardation film is 10 ⁇ m or more, mechanical properties and handling properties during secondary processing tend to be further improved, and when the thickness is 500 ⁇ m or less, flexibility tends to be further improved.
  • the absolute value of the photoelastic coefficient of the retardation film 10 is sufficiently small.
  • the absolute value of the photoelastic coefficient of the retardation film 10 is preferably 5.0 ⁇ 10 ⁇ 12 (/ Pa) or less, and more preferably 3.0 ⁇ 10 ⁇ 12 (/ Pa) or less.
  • Such a retardation film 10 has a sufficiently small change in birefringence due to an external force, and can be more suitably used for applications such as a liquid crystal display device.
  • the main stretching direction of the retardation film 10 is in the x-axis direction
  • the direction orthogonal to the x-axis direction in the plane of the retardation film 10 is orthogonal to the y-axis direction, the x-axis direction, and the y-axis direction.
  • the direction (direction orthogonal to the main surface of the retardation film 10) is the z-axis direction
  • the refractive index Nx in the x-axis direction, the refractive index Ny in the y-axis direction, and the refractive index Nz in the z-axis direction are Nz ⁇ Ny It is preferable to satisfy the relationship> Nx.
  • the main stretching direction refers to a stretching direction when uniaxially stretched, and a stretched direction so that the degree of orientation increases when biaxially stretched.
  • a retardation film is light in an oblique direction in black display of a liquid crystal panel (liquid crystal display device) caused by a retardation value of a polarizing plate or a component disposed between the polarizing plate and the liquid crystal cell. Effective in reducing leakage.
  • the retardation film 10 satisfying the above relationship can be easily obtained by stretching a resin film formed of a resin composition containing the copolymer.
  • the retardation film 10 may have a thin film formed on at least one surface for the purpose of imparting functions such as gas barrier properties, scratch resistance, chemical resistance, and antiglare properties.
  • a resin solution for forming a thin film is obtained by using a gravure roll coating method, a Meyer bar coating method, a reverse roll coating method, a dip coating method, an air knife coating method, a calendar coating method, a skiing method.
  • the method include coating on one surface of the retardation film 10 by methods such as a coating method, a kiss coating method, a phantom coating method, a spray coating method, and a spin coating method.
  • the resin solution for forming a thin film includes a thermoplastic resin; a thermosetting resin having an amino group, an imino group, an epoxy group, a silyl group, etc .; a mixture of these resins; It is done.
  • a polymerization inhibitor, waxes, a dispersant, a dye material, a solvent, a plasticizer, an ultraviolet absorber, an inorganic filler, and the like may be added to the resin solution.
  • the thin film may be formed into a cured thin film layer by performing curing by irradiation or heat curing by heating as necessary after the coating.
  • a gravure method an offset method, a flexo method, a silk screen method, or the like can be used.
  • a metal oxide layer mainly composed of aluminum, silicon, magnesium, zinc, or the like may be formed on at least one surface of the retardation film 10 for the purpose of imparting gas sealability and the like.
  • a metal oxide layer can be formed by a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or the like.
  • the retardation film 10 can be used by being laminated with other films.
  • a lamination method a conventionally known method can be appropriately employed.
  • a heat sealing method such as a heat sealing method, an impulse sealing method, an ultrasonic bonding method, a high frequency bonding method, an extrusion laminating method, a hot melt laminating method, a dry method.
  • the laminating method include a laminating method, a wet laminating method, a solventless adhesive laminating method, a thermal laminating method, and a coextrusion method.
  • polyester resin film for example, polyester resin film, polyvinyl alcohol resin film, cellulose resin film, polyvinyl fluoride resin film, polyvinylidene chloride resin film, polyacrylonitrile resin film, nylon resin film, polyethylene Resin film, polypropylene resin film, acetate resin film, polyimide resin film, polycarbonate resin film, polyacrylate resin film, and the like.
  • FIG. 2 is a perspective view showing a second embodiment of the retardation film of the present invention.
  • the retardation film 20 is a retardation film obtained by stretching a resin film in at least a uniaxial direction.
  • the resin film is represented by a first structural unit represented by the following formula (1) and the following formula (2).
  • the content ratio of poly (2,6-dimethyl-1,4-phenylene oxide) in the resin composition is 5 to 30% by mass based on the total amount of the resin composition.
  • a and b each independently represent an integer of 0 to 5
  • R 1 and R 2 each independently represent a hydrogen atom or an organic residue having 1 to 12 carbon atoms.
  • a or b is an integer of 2 or more, a plurality of R 1 or R 2 may be the same or different from each other.
  • c represents an integer of 0 to 5
  • R 3 represents a hydrogen atom or a hydrogen atom or an organic residue having 1 to 4 carbon atoms
  • R 4 represents a hydrogen atom or an organic residue having 1 to 12 carbon atoms. Show. When c is an integer of 2 or more, a plurality of R 4 may be the same or different from each other.
  • Such a retardation film 20 is a negative retardation film excellent in heat resistance and optical characteristics.
  • the copolymer, the resin film, and the retardation film 20 will be described in order.
  • the copolymer has a first structural unit represented by the formula (1) and a second structural unit represented by the formula (2).
  • R 1 and R 2 are organic residues having 1 to 12 carbon atoms.
  • the organic residue is preferably a group consisting of a carbon atom and a hydrogen atom, or a group consisting of a carbon atom, a hydrogen atom and an oxygen atom.
  • the organic residue is preferably an alkyl group, a hydroxyalkyl group or an alkoxyalkyl group, more preferably an alkyl group.
  • the organic residue in R 1 and R 2 may be linear or branched.
  • Examples of the organic residue in R 1 and R 2 include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, 2- Examples thereof include a pentyl group, n-hexyl group, 2-hexyl group, n-heptyl group, 2-heptyl group, 3-heptyl group, n-octyl group, 2-octyl group and 3-octyl group.
  • a and b are preferably integers of 0 to 3, and more preferably 0 from the viewpoint of heat resistance.
  • R 3 is a hydrogen atom or an organic residue having 1 to 4 carbon atoms.
  • the organic residue is preferably a group consisting of a carbon atom and a hydrogen atom, or a group consisting of a carbon atom, a hydrogen atom and an oxygen atom.
  • Such an organic residue is preferably an alkyl group, a hydroxyalkyl group, or an alkoxyalkyl group.
  • the organic residue in R 3 may be linear or branched.
  • Examples of the organic residue in R 3 include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, sec-butyl group, tert-butyl group, hydroxymethyl group, hydroxyethyl group, methoxymethyl Group, methoxyethyl group, ethoxymethyl group, ethoxyethyl group and the like.
  • R 4 is an organic residue having 1 to 12 carbon atoms.
  • the organic residue is preferably a group consisting of a carbon atom and a hydrogen atom, or a group consisting of a carbon atom, a hydrogen atom and an oxygen atom.
  • the organic residue is preferably an alkyl group, a hydroxyalkyl group or an alkoxyalkyl group, more preferably an alkyl group.
  • the organic residue in R 4 may be linear or branched.
  • Examples of the organic residue in R 4 include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, 2-pentyl group, Examples thereof include n-hexyl group, 2-hexyl group, n-heptyl group, 2-heptyl group, 3-heptyl group, n-octyl group, 2-octyl group and 3-octyl group.
  • c is preferably an integer of 0 to 3, and more preferably 0 from the viewpoint of ease of polymerization.
  • the content ratio of the first structural unit in the copolymer is preferably 3 to 50 mol%, preferably 5 to 35 mol%, based on the total of the first structural unit and the second structural unit. Is more preferably 10 to 30 mol%.
  • the glass transition temperature tends to be a suitable value of 110 ° C. or more, and the heat resistance of the retardation film tends to be further improved. The effect that the brittleness of the film is further improved when it is 50 mol% or less.
  • the content ratio of the first structural unit is determined by measuring the 1 H-NMR of the copolymer, and the peak area of the peak derived from the first structural unit and the peak area of the peak derived from the second structural unit. And can be calculated from
  • the weight average molecular weight Mw of the copolymer is preferably 50,000 to 500,000, and more preferably 100,000 to 350,000.
  • Mw is 500,000 or less, sufficient fluidity for extrusion stretching can be obtained, and melt extrusion and stretching film formation can be performed without any major trouble.
  • Mw is 50,000 or more, a sufficient degree of orientation can be imparted to the stretching stability and the film.
  • the weight average molecular weight Mw, number average molecular weight Mn, and molecular weight distribution Mw / Mn of the copolymer are gel permeation chromatography (GPC) in which three columns (TSKgel SuperHM-M) are connected and equipped with an RI detector.
  • GPC gel permeation chromatography
  • HLC-8020 manufactured by Tosoh Corporation and tetrahydrofuran as a solvent, and values measured as polystyrene-equivalent weight average molecular weight Mw, number average molecular weight Mn, and molecular weight distribution Mw / Mn are shown.
  • the glass transition temperature of the copolymer is preferably 105 to 170 ° C, more preferably 110 ° C or higher.
  • the copolymer may further have a structural unit other than the first structural unit and the second structural unit as long as a negative retardation film is obtained.
  • the copolymer includes a (meth) methyl acrylate unit, a (meth) acryl ethyl unit, a (meth) acrylic acid n-butyl unit, a (meth) acrylic acid isobutyl unit, a (meth) acrylic acid t-butyl unit, (Meth) acrylic acid cyclohexyl unit, (meth) acrylic acid 2-ethylhexyl unit, acrylonitrile unit, vinylnaphthalene unit, vinylanthracene unit, N-vinylpyrrolidone unit, acrylonitrile unit, N-vinylimidazole unit, N-vinylacetamide unit, Saturated aliphatics obtained by hydrogenation of N-vinylformaldehyde units, N-vinylcaprolactam units, N-vinylc
  • the total amount of the first structural unit and the second structural unit with respect to the total amount of the copolymer is preferably 80 to 100% by mass, and more preferably 90 to 100% by mass. According to such a copolymer, the effect of the present invention is more remarkably exhibited.
  • the copolymer can be obtained, for example, by a copolymerization reaction between a first monomer represented by the following formula (3) and a second monomer represented by the following formula (4).
  • a, b, c, R 1 , R 2 , R 3 and R 4 are as defined above.
  • the copolymerization reaction can be performed, for example, by adding an anionic polymerization initiator to a reaction solution containing the first monomer and the second monomer.
  • an organic alkali metal compound is used as the anionic polymerization initiator.
  • the organic alkali metal include alkyl lithium, aryl lithium, alkyl sodium, and aryl sodium.
  • Specific examples of the anionic polymerization initiator include organic lithium compounds such as n-butyl lithium, s-butyl lithium and t-butyl lithium, and organic sodium compounds such as sodium naphthalene.
  • preferred anionic polymerization initiators are organic lithium compounds such as n-butyllithium and s-butyllithium.
  • the number average molecular weight Mn and the weight average molecular weight Mw of the copolymer can be adjusted by appropriately changing the addition amount of the anionic polymerization initiator.
  • the addition amount of the anionic polymerization initiator is preferably 0.02 to 0.5 mol%, and preferably 0.04 to 0.1 mol%, based on the total amount of the first monomer and the second monomer. It is more preferable. By setting it as such addition amount, the copolymer which has the number average molecular weight Mn and the weight average molecular weight Mw of the suitable range becomes easy to be obtained.
  • the reaction temperature for the copolymerization reaction is preferably 0 to 130 ° C, more preferably 50 to 90 ° C.
  • the reaction temperature is lowered, the value of the molecular weight distribution Mw / Mn of the copolymer tends to decrease, and when the reaction temperature is increased, the value of the molecular weight distribution Mw / Mn of the copolymer tends to increase.
  • the reaction time for the copolymerization reaction is preferably 0.5 to 12 hours, more preferably 1 to 6 hours.
  • the copolymerization reaction is preferably performed in a solvent, and the polymerization solvent is preferably a solvent that does not react with the organic alkali metal compound.
  • the solvent cyclohexane, methylcyclohexane, benzene, toluene, xylene, ethylbenzene, t-butylbenzene or the like is preferably used.
  • the resin film is a film made of a resin composition containing the copolymer and poly (2,6-dimethyl-1,4-phenylene oxide).
  • the method for producing the resin film is not particularly limited. For example, a known method such as a casting method, a melt extrusion method, a calendar method, or a compression molding method may be used.
  • a drum type casting machine As a molding apparatus used in the casting method, a drum type casting machine, a band type casting machine, a spin coater method, or the like can be used.
  • the melt extrusion method include a T-die method and an inflation method.
  • a resin film can be produced using a film-forming solution containing the copolymer.
  • the solvent for the film formation solution include aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, and cumene; halogenated alkanes such as methylene chloride, dichloroethane, chlorobenzene, dichlorobenzene, chloroform, and tetrachloroethylene; tetrahydrofuran, 1 Cyclic ethers such as 1,4-dioxane; methyl ethyl ketone and cyclohexanone.
  • the resin composition constituting the resin film contains the above copolymer and poly (2,6-dimethyl-1,4-phenylene oxide).
  • the content ratio of poly (2,6-dimethyl-1,4-phenylene oxide) in the resin composition is 5 to 30% by mass based on the total amount of the resin composition.
  • the copolymer and poly (2,6-dimethyl-1,4-phenylene oxide) are blended, and the content ratio of poly (2,6-dimethyl-1,4-phenylene oxide) is further increased.
  • the glass transition temperature Tg of the resin composition is preferably 120 ° C. or higher and more preferably 130 ° C. or higher from the viewpoint of heat resistance.
  • Tg is 120 ° C. or higher, fluctuations in phase difference values, dimensional changes, and the like when exposed to a high temperature environment or the like are sufficiently suppressed.
  • the resin composition constituting the resin film may contain components other than the copolymer and poly (2,6-dimethyl-1,4-phenylene oxide).
  • the resin composition may contain the solvent.
  • the content of the solvent is preferably 5000 ppm or less, and more preferably 1000 ppm or less, from the viewpoint of heat resistance and expression of retardation in the stretching operation.
  • the resin composition constituting the resin film is a polymer other than the above, a surfactant, a polymer electrolyte, a conductive complex, silica, alumina, a dye material, and a heat stabilizer within the range not exceeding the gist of the present invention.
  • UV absorbers, antistatic agents, antiblocking agents, lubricants, plasticizers, oils and the like may be contained.
  • the total amount of the copolymer and poly (2,6-dimethyl-1,4-phenylene oxide) is 50 to 100% by mass based on the total amount of the resin composition. It is preferably 90 to 100% by mass.
  • the effect of this invention is show
  • the retardation film 20 is a film obtained by stretching a resin film.
  • the stretching method of the film is generally classified into a flat method stretching that stretches in the film in-plane direction and a tubular method stretching that swells and stretches in a tube shape, but the flat method stretching with a high accuracy of thickness and stretch ratio is particularly preferable.
  • the flat method stretching is classified into a uniaxial stretching method and a biaxial stretching method.
  • the uniaxial stretching method there are a free width uniaxial stretching method and a constant width uniaxial stretching method.
  • the biaxial stretching method includes a two-stage free width biaxial stretching method, a sequential biaxial stretching method, and a simultaneous biaxial stretching method
  • the sequential biaxial stretching includes an all tenter method and a roll tenter method. Any of the above stretching methods may be used as the stretching method for producing the retardation film from the transparent resin composition of the present invention, and the most suitable method depending on the required three-dimensional refractive index and retardation amount. Just choose.
  • the temperature during stretching is preferably Tg + 5 ° C. to Tg + 40 ° C., more preferably Tg + 5 ° C. to Tg + 25 ° C., where Tg is the glass transition temperature of the copolymer.
  • the thickness of the retardation film 20 is not particularly limited, but is preferably 10 to 500 ⁇ m, and more preferably 10 to 200 ⁇ m. When the thickness of the retardation film is 10 ⁇ m or more, mechanical properties and handling properties during secondary processing tend to be further improved, and when the thickness is 500 ⁇ m or less, flexibility tends to be further improved.
  • the wavelength dispersion value D of the retardation film 20 is preferably less than 1.06.
  • the viewing angle characteristics of contrast and color are excellent as compared with the case where a retardation film having a wavelength dispersion value D of 1.06 or more is used.
  • the wavelength dispersion value D of the retardation film 20 may be less than 1.00.
  • a film having a wavelength dispersion value D of less than 1.00 is referred to as an inverse wavelength dispersion film, and when used as a compensation film, the viewing angle characteristics of contrast and color can be further improved.
  • the retardation film 20 has a main stretching direction of the retardation film 20 in the x-axis direction, and a direction orthogonal to the x-axis direction in the plane of the retardation film 20 is orthogonal to the y-axis direction, the x-axis direction, and the y-axis direction.
  • the direction (direction orthogonal to the main surface of the retardation film 20) is the z-axis direction
  • the refractive index Nx in the x-axis direction, the refractive index Ny in the y-axis direction, and the refractive index Nz in the z-axis direction are Nz ⁇ Ny It is preferable to satisfy the relationship> Nx.
  • the main stretching direction refers to a stretching direction when uniaxially stretched, and a stretched direction so that the degree of orientation increases when biaxially stretched.
  • a retardation film is light in an oblique direction in black display of a liquid crystal panel (liquid crystal display device) caused by a retardation value of a polarizing plate or a component disposed between the polarizing plate and the liquid crystal cell. Effective in reducing leakage.
  • the retardation film 20 satisfying the above relationship can be easily obtained by stretching a resin film formed of the resin composition containing the copolymer.
  • the retardation film 20 may have a thin film formed on at least one surface for the purpose of imparting functions such as gas barrier properties, scratch resistance, chemical resistance, and antiglare properties.
  • a resin solution for forming a thin film is obtained by using a gravure roll coating method, a Meyer bar coating method, a reverse roll coating method, a dip coating method, an air knife coating method, a calendar coating method, a skiing method.
  • the method include coating on one surface of the retardation film 20 by methods such as a coating method, a kiss coating method, a phantom coating method, a spray coating method, and a spin coating method.
  • the resin solution for forming a thin film includes a thermoplastic resin; a thermosetting resin having an amino group, an imino group, an epoxy group, a silyl group, etc .; a mixture of these resins; It is done.
  • a polymerization inhibitor, waxes, a dispersant, a dye material, a solvent, a plasticizer, an ultraviolet absorber, an inorganic filler, and the like may be added to the resin solution.
  • the thin film may be formed into a cured thin film layer by performing curing by irradiation or heat curing by heating as necessary after the coating.
  • a gravure method an offset method, a flexo method, a silk screen method, or the like can be used.
  • the retardation film 20 may be provided with a metal oxide layer mainly composed of aluminum, silicon, magnesium, zinc or the like on at least one surface for the purpose of imparting gas sealability or the like.
  • a metal oxide layer can be formed by a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or the like.
  • the retardation film 20 can be used by being laminated with other films.
  • a lamination method a conventionally known method can be appropriately employed.
  • a heat sealing method such as a heat sealing method, an impulse sealing method, an ultrasonic bonding method, a high frequency bonding method, an extrusion laminating method, a hot melt laminating method, a dry method.
  • the laminating method include a laminating method, a wet laminating method, a solventless adhesive laminating method, a thermal laminating method, and a coextrusion method.
  • polyester resin film for example, polyester resin film, polyvinyl alcohol resin film, cellulose resin film, polyvinyl fluoride resin film, polyvinylidene chloride resin film, polyacrylonitrile resin film, nylon resin film, polyethylene Resin film, polypropylene resin film, acetate resin film, polyimide resin film, polycarbonate resin film, polyacrylate resin film, and the like.
  • the liquid crystal display device includes a retardation film 10.
  • the retardation film 10 can be suitably used as a retardation film in a liquid crystal display device. More specifically, the retardation film 10 is formed of a 1 / 4 ⁇ plate in a reflective liquid crystal display device, a 1 / 4 ⁇ plate in a transmissive liquid crystal display device, a 1 / 2 ⁇ plate or a 1 / 4 ⁇ plate in a liquid crystal projector device, and a liquid crystal display. It can use suitably for uses, such as a protective film of a polarizing film in a device, or an antireflection film.
  • the liquid crystal display device preferably includes the retardation film 10 as a 1 ⁇ 4 ⁇ plate, a 1 ⁇ 2 ⁇ plate, a protective film, or an antireflection film.
  • the configuration other than the retardation film 10 of the liquid crystal display device is not particularly limited, and may be the same as a conventionally known liquid crystal display film.
  • the retardation film 10 is formed in a liquid crystal display device such as a touch panel after a ceramic thin film such as indium tin oxide or indium zinc oxide is formed on at least one surface by a plasma process using DC or glow discharge. It can also be used as a transparent electrode film.
  • the liquid crystal display device is characterized by including a retardation film 20.
  • the retardation film 20 can be suitably used as a retardation film in a liquid crystal display device. More specifically, the retardation film 20 can be suitably used for viewing angle compensation film applications such as IPS, FFS mode, and circularly polarized VA mode.
  • the liquid crystal display device preferably includes the retardation film 20 as a viewing angle compensation film.
  • the configuration other than the retardation film 20 of the liquid crystal display device is not particularly limited, and may be the same as a conventionally known liquid crystal display film.
  • the retardation film 20 is formed on a ceramic thin film such as indium tin oxide or indium zinc oxide on at least one surface by a plasma process using DC or glow discharge, and then in a liquid crystal display device such as a touch panel. It can also be used as a transparent electrode film.
  • the content ratio, molecular weight, molecular weight distribution, and glass transition temperature (Tg) of the first structural unit and the second structural unit were measured by the following method. The measurement results were as shown in Table 1.
  • Tg glass transition temperature
  • Synthesis Example 1-2 Synthesis of Copolymer 1-2
  • Styrene was used in the same manner as in Synthesis Example 1-1 except that the amount of styrene used was 5.33 g (51.3 mmol) and the amount of 1,1-diphenylethylene was 2.29 g (12.7 mmol). / 1,1-diphenylethylene copolymer was obtained (hereinafter referred to as “Copolymer 1-2”).
  • the content ratio, molecular weight, molecular weight distribution, and glass transition temperature (Tg) of the first structural unit and the second structural unit were measured by the above method.
  • the measurement results were as shown in Table 1.
  • Synthesis Example 1-3 Synthesis of Copolymer 1-3
  • Styrene was used in the same manner as in Synthesis Example 1-1 except that 4.61 g (44.3 mmol) of styrene was used and 3.45 g (19.2 mmol) of 1,1-diphenylethylene was used. / 1,1-diphenylethylene copolymer was obtained (hereinafter referred to as “Copolymer 1-3”).
  • the content ratio, molecular weight, molecular weight distribution, and glass transition temperature (Tg) of the first structural unit and the second structural unit were measured by the above method.
  • the measurement results were as shown in Table 1.
  • Example 1-1 A chlorobenzene solution containing 10% by mass of the copolymer 1-1 obtained in Synthesis Example 1-1 was prepared, supplied onto a glass plate by a casting method, and air-dried for 72 hours. The obtained film was peeled from the glass plate, and then dried under reduced pressure at 120 ° C. until the chlorobenzene concentration became 500 massppm or less to obtain an unstretched film 1-1. The obtained unstretched film 1-1 had high transparency and the film thickness was 36 ⁇ m.
  • the obtained unstretched film 1-1 was cut into 7 ⁇ 7 cm, and the temperature of Tg + 12 ° C. (134 ° C.) of the copolymer 1-1 was determined using a biaxial stretching apparatus (IMC-190A type, Imoto Seisakusho). Under the conditions, 120 mm / min. The film was uniaxially stretched at a magnification of 2.0 with a tensile speed of 25 ⁇ m to obtain a retardation film 1-1 having a thickness of 25 ⁇ m.
  • a biaxial stretching apparatus IMC-190A type, Imoto Seisakusho
  • Example 1-2 An unstretched film 1-2 was obtained in the same manner as in Example 1-1 except that the copolymer 1-2 was used instead of the copolymer 1-1.
  • the obtained unstretched film 1-2 had high transparency and a film thickness of 42 ⁇ m.
  • the obtained unstretched film 1-2 was cut into 7 ⁇ 7 cm, and the temperature of Tg + 12 ° C. (148 ° C.) of the copolymer 1-2 was determined using a biaxial stretching apparatus (IMC-190A type, Imoto Seisakusho). Under the conditions, 120 mm / min. The film was uniaxially stretched at a magnification of 2.0 with a tensile speed of 30 ⁇ m to obtain a retardation film 1-2 having a thickness of 30 ⁇ m.
  • a biaxial stretching apparatus IMC-190A type, Imoto Seisakusho
  • Example 1-3 An unstretched film 1-3 was obtained in the same manner as in Example 1-1 except that the copolymer 1-3 was used instead of the copolymer 1-1.
  • the obtained unstretched film 1-3 had high transparency, and the film thickness was 53 ⁇ m.
  • the obtained unstretched film 1-3 was cut into 7 ⁇ 7 cm, and the temperature of Tg + 12 ° C. (167 ° C.) of the copolymer 1-3 was determined using a biaxial stretching apparatus (IMC-190A type, Imoto Seisakusho). Under the conditions, 120 mm / min. The film was uniaxially stretched at a magnification of 2.0 with a tensile speed of 37 ⁇ m to obtain a retardation film 1-3 having a thickness of 37 ⁇ m.
  • a biaxial stretching apparatus IMC-190A type, Imoto Seisakusho
  • Example 1-4 By a method similar to Example 1-2, a highly transparent unstretched film 1-4 having a thickness of 42 ⁇ m was obtained.
  • the obtained unstretched film 1-4 was cut into 7 ⁇ 7 cm, and the temperature of Tg + 12 ° C. (148 ° C.) of the copolymer 1-2 was determined using a biaxial stretching apparatus (IMC-190A type, Imoto Seisakusho). Under the conditions, 120 mm / min. The film was simultaneously biaxially stretched at a pulling rate of 1.4 times to obtain a retardation film 1-4 having a thickness of 29 ⁇ m.
  • a biaxial stretching apparatus IMC-190A type, Imoto Seisakusho
  • Example 1-5 By a method similar to that of Example 1-2, a highly transparent unstretched film 1-5 having a film thickness of 51 ⁇ m was obtained.
  • the obtained unstretched film 1-5 was cut into 7 ⁇ 7 cm, and the temperature of Tg + 12 ° C. (148 ° C.) of the copolymer 1-2 was determined using a biaxial stretching apparatus (IMC-190A, Imoto Seisakusho). Under the conditions, 120 mm / min. The film was simultaneously biaxially stretched at a magnification of 1.7 times with a tensile speed of 24 to obtain a retardation film 1-5 having a thickness of 24 ⁇ m.
  • a biaxial stretching apparatus IMC-190A, Imoto Seisakusho
  • the obtained unstretched film 1-6 was cut into a size of 7 ⁇ 7 cm, and 120 mm under a temperature condition of polystyrene Tg + 12 ° C. (112 ° C.) using a biaxial stretching apparatus (IMC-190A type, Imoto Seisakusho). / Min.
  • the film was uniaxially stretched at a magnification of 2.0 with a tensile speed of 25 ⁇ m to obtain a retardation film 1-6 having a thickness of 25 ⁇ m.
  • the retardation, refractive index, and photoelastic coefficient of the retardation films obtained in Examples 1-1 to 1-5 and Comparative Example 1-1 were measured by the following methods, respectively. The measurement results were as shown in Table 2.
  • Re
  • ⁇ d Rth
  • the retardation films obtained in the examples have a small absolute value of the photoelastic coefficient and a high glass transition temperature of the copolymer, so that both excellent heat resistance and optical performance can be achieved. confirmed.
  • the film of Comparative Example 1-1 had a large absolute value of the photoelastic coefficient and was not suitable for a retardation film.
  • FIG. 3 shows the glass transition temperature Tg of the polymers (copolymers 1-1 to 1-3 and polystyrene) contained in the retardation films of Examples 1-1 to 1-3 and Comparative Example 1-1. It is a figure which shows the relationship with the content rate of one structural unit.
  • FIG. 4 shows the contents of the first structural unit in the polymers (copolymers 1-1 to 1-3 and polystyrene) included in the retardation films of Examples 1-1 to 1-3 and Comparative Example 1-1. It is a figure which shows the relationship between a ratio and a photoelastic coefficient.
  • the absolute value of the photoelastic coefficient can be sufficiently reduced while obtaining a high glass transition temperature.
  • the content ratio, molecular weight, molecular weight distribution, and glass transition temperature (Tg) of the first structural unit and the second structural unit were measured by the following method.
  • the measurement results were as shown in Table 3.
  • Tg glass transition temperature
  • Example 2-1 Copolymer 2-1 obtained in Synthesis Example 2-1 and poly (2,6-dimethyl-1,4-phenylene oxide) [manufactured by Aldrich, catalog No. 25134-01-4, weight average molecular weight 244000, glass
  • the obtained film was peeled off from the glass plate and then dried under reduced pressure at 140 ° C. until the chloroform concentration became 500 massppm or less to obtain an unstretched film 2-1.
  • the obtained unstretched film 2-1 had high transparency and a film thickness of 83 ⁇ m.
  • the resin composition 2-1 constituting the unstretched film 1 had a Tg of 136 ° C.
  • the obtained unstretched film 2-1 was cut into 7 ⁇ 7 cm, and the temperature of the resin composition 2-1 was Tg + 12 ° C. (148 ° C.) using a biaxial stretching apparatus (IMC-190A, Imoto Seisakusho). Under the conditions, 120 mm / min. The film was uniaxially stretched at a magnification of 2.0 times at a tension speed of 59 ⁇ m to obtain a retardation film 2-1 having a thickness of 59 ⁇ m.
  • a biaxial stretching apparatus IMC-190A, Imoto Seisakusho
  • Example 2-2 The resin mixture 2-1 was changed to a resin mixture 2-2 in which the copolymer 2-1 and poly (2,6-dimethyl-1,4-phenylene oxide) were blended at a mass ratio of 80:20.
  • An unstretched film 2-2 was obtained in the same manner as in Example 2-1.
  • the obtained unstretched film 2-2 had high transparency and a film thickness of 74 ⁇ m.
  • the resin composition 2-2 constituting the unstretched film 2-2 had a Tg of 143 ° C.
  • the obtained unstretched film 2-2 was cut into 7 ⁇ 7 cm, and the temperature of the resin composition 2-2 was Tg + 12 ° C. (155 ° C.) using a biaxial stretching apparatus (IMC-190A type, Imoto Seisakusho). Under the conditions, 120 mm / min. The film was uniaxially stretched at a magnification of 2.0 times at a tension speed of 52 mm to obtain a retardation film 2-2 having a thickness of 52 ⁇ m.
  • a biaxial stretching apparatus IMC-190A type, Imoto Seisakusho
  • Example 2-3 The resin mixture 2-1 was changed to a resin mixture 2-3 in which the copolymer 2-1 and poly (2,6-dimethyl-1,4-phenylene oxide) were blended at a mass ratio of 78:22.
  • An unstretched film 2-3 was obtained in the same manner as in Example 2-1.
  • the obtained unstretched film 2-3 had high transparency and a film thickness of 79 ⁇ m.
  • the resin composition 2-3 constituting the unstretched film 2-3 had a Tg of 145 ° C.
  • the obtained unstretched film 2-3 was cut into 7 ⁇ 7 cm, and the temperature of the resin composition 2-3 was Tg + 12 ° C. (157 ° C.) using a biaxial stretching apparatus (IMC-190A type, Imoto Seisakusho). Under the conditions, 120 mm / min. The film was uniaxially stretched at a magnification of 2.0 with a tensile speed of 56 to obtain a retardation film 2-3 having a thickness of 56 ⁇ m.
  • a biaxial stretching apparatus IMC-190A type, Imoto Seisakusho
  • Example 2-4 The resin mixture 2-1 was changed to a resin mixture 2-4 obtained by blending the copolymer 2-1 and poly (2,6-dimethyl-1,4-phenylene oxide) at a mass ratio of 75:25.
  • An unstretched film 2-4 was obtained in the same manner as in Example 2-1.
  • the obtained unstretched film 2-4 had high transparency and a film thickness of 85 ⁇ m.
  • the resin composition 2-4 constituting the unstretched film 2-4 had a Tg of 147 ° C.
  • the obtained unstretched film 2-4 was cut into 7 ⁇ 7 cm, and the temperature of Tg + 12 ° C. (159 ° C.) of the resin composition 2-4 using a biaxial stretching apparatus (IMC-190A type, Imoto Seisakusho). Under the conditions, 120 mm / min. The film was uniaxially stretched at a magnification of 2.0 with a tensile speed of 60 ⁇ m to obtain a retardation film 2-4 having a thickness of 60 ⁇ m.
  • a biaxial stretching apparatus IMC-190A type, Imoto Seisakusho
  • Example 2-5 The resin mixture 2-1 was changed to a resin mixture 2-5 in which the copolymer 2-1 and poly (2,6-dimethyl-1,4-phenylene oxide) were blended at a mass ratio of 72:28.
  • An unstretched film 2-5 was obtained in the same manner as in Example 2-1.
  • the obtained unstretched film 2-5 had high transparency and a film thickness of 83 ⁇ m.
  • the resin composition 2-5 constituting the unstretched film 2-5 had a Tg of 149 ° C.
  • the obtained unstretched film 2-5 was cut into 7 ⁇ 7 cm, and the temperature of Tg + 12 ° C. (161 ° C.) of the resin composition 2-5 was obtained using a biaxial stretching apparatus (IMC-190A type, Imoto Seisakusho). Under the conditions, 120 mm / min. The film was uniaxially stretched at a magnification of 2.0 with a tensile speed of 5 to obtain a retardation film 2-5 having a thickness of 59 ⁇ m.
  • a biaxial stretching apparatus IMC-190A type, Imoto Seisakusho
  • Example 2-6 By the same method as in Example 2-4, a highly transparent unstretched film 2-6 having a film thickness of 77 ⁇ m was obtained.
  • the obtained unstretched film 2-6 was cut into 7 ⁇ 7 cm, and using a biaxial stretching apparatus (IMC-190A type, Imoto Seisakusho), the temperature of Tg + 12 ° C. (159 ° C.) of the resin composition 2-4 Under the conditions, 120 mm / min.
  • the film was simultaneously biaxially stretched at a magnification of 1.4 and a retardation film 2-6 having a thickness of 55 ⁇ m.
  • Example 2--7 By a method similar to that of Example 2-4, a highly transparent unstretched film 2-7 having a thickness of 76 ⁇ m was obtained.
  • the obtained unstretched film 2-7 was cut into a size of 7 ⁇ 7 cm, and a temperature of Tg + 12 ° C. (159 ° C.) of the resin composition 2-4 using a biaxial stretching apparatus (IMC-190A type, Imoto Seisakusho). Under the conditions, 120 mm / min. The film was simultaneously biaxially stretched at a rate of 1.8 times and a retardation film 2-7 having a thickness of 33 ⁇ m.
  • a biaxial stretching apparatus IMC-190A type, Imoto Seisakusho
  • the obtained unstretched film 2-8 was cut into 7 ⁇ 7 cm, and the temperature of Tg + 12 ° C. (145 ° C.) of the resin composition 2-8 using a biaxial stretching apparatus (IMC-190A type, Imoto Seisakusho) Under the conditions, 120 mm / min.
  • the film was uniaxially stretched at a magnification of 2.0 with a tensile speed of 30 ⁇ m to obtain a retardation film 2-8 having a thickness of 30 ⁇ m.
  • Example 2-2 The resin mixture 2-1 was changed to a resin mixture 2-9 in which the copolymer 2-1 and poly (2,6-dimethyl-1,4-phenylene oxide) were blended at a mass ratio of 60:40.
  • An unstretched film 2-9 was obtained in the same manner as in Example 2-1.
  • the obtained unstretched film 2-9 had high transparency and a film thickness of 82 ⁇ m.
  • the resin composition 2-9 constituting the unstretched film 2-9 had a Tg of 158 ° C.
  • the obtained unstretched film 2-9 was cut into 7 ⁇ 7 cm, and the temperature of Tg + 12 ° C. (170 ° C.) of the resin composition 2-9 using a biaxial stretching apparatus (IMC-190A type, Imoto Seisakusho) Under the conditions, 120 mm / min.
  • the film was uniaxially stretched at a magnification of 2.0 with a tensile speed of 5 to obtain a retardation film 2-9 having a thickness of 58 ⁇ m.
  • the obtained unstretched film 2-10 was cut into 7 ⁇ 7 cm, and the temperature of Tg + 12 ° C. (127 ° C.) of the resin composition 2-10 using a biaxial stretching apparatus (IMC-190A type, Imoto Seisakusho). Under the conditions, 120 mm / min. The film was uniaxially stretched at a magnification of 2.0 with a tensile speed of 56 ⁇ m to obtain a retardation film 2-10 having a thickness of 56 ⁇ m.
  • a biaxial stretching apparatus IMC-190A type, Imoto Seisakusho
  • Re
  • ⁇ d Rth
  • the stretched films obtained in the examples show negative birefringence with the smallest refractive index in the main stretching direction, and the chromatic dispersion value D also satisfies 0.70 ⁇ D ⁇ 1.06. From this, it was confirmed that the film functions well as a retardation film.
  • the retardation films obtained in Comparative Examples 2-1 and 2-2 had a wavelength dispersion value D of 1.06 or more. Further, the film obtained in Comparative Example 2-3 had a low Tg of 115 ° C. and could not obtain heat resistance suitable for a retardation film.
  • a negative retardation film excellent in heat resistance and optical characteristics and a liquid crystal display device including the same are provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Liquid Crystal (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 下記式(1)で表される第一の構造単位及び下記式(2)で表される第二の構造単位を有する共重合体を含有する樹脂組成物からなる樹脂フィルムを、少なくとも一軸方向に延伸してなる位相差フィルムであって、上記共重合体における第一の構造単位の含有比率が、第一の構造単位及び第二の構造単位の合計を基準として、3~50モル%である、位相差フィルム。 

Description

位相差フィルム及びそれを備える液晶表示装置
 本発明は、位相差フィルム及びそれを備える液晶表示装置に関する。
 液晶ディスプレイ(LCD)等の液晶表示装置には、光学補償を目的として光学異方性が制御された位相差フィルムが利用されており、従来は主にポリカーボネートや環状ポリオレフィンといった正の複屈折性を有する材料からなる位相差フィルムが利用されてきた(例えば、特許文献1を参照)。
 一方、負の複屈折性を有する材料からなる位相差フィルムとしては、特許文献2にポリスチレンからなる位相差フィルムが開示されている。
 また、特許文献3にはシンジオタクチック構造を有するポリスチレン樹脂とポリ(2,6-ジメチル-1,4-フェニレンオキサイド)を含む、逆波長分散特性を有する位相差フィルムが開示されている。
特開2003-255102号公報 米国特許第5612801号公報 特開2010-78905号公報
 負の光学異方性を有する材料とは、この材料のフィルムを一軸延伸した場合には延伸方向の屈折率、二軸延伸した場合にはより配向度が上がるように延伸した方向の屈折率、すなわち化学構造的に高分子主鎖の配向方向の屈折率が最小となる材料を言う。なお、正の光学異方性を有する材料とは、化学構造的に高分子主鎖の配向方向の屈折率が最大となる材料を言う。
 負の複屈折性を有する樹脂の延伸によって得られる位相差フィルムは、厚さ方向の位相差Rthが負である「負の位相差フィルム」となる。位相差Rthは、主延伸方向をフィルム面内のx軸とするとき、上記x軸方向における屈折率をNx、フィルム面内にて上記x軸と直交するy軸方向の屈折率をNy、上記x軸および上記y軸方向のそれぞれと直交する方向における屈折率をNz、フィルムの厚さをdとしたときに、式{(Nx+Ny)/2-Nz}×dにより与えられる。
 逆波長分散特性を有する位相差フィルムとは、複屈折Δn=|Nx-Ny|が短波長ほど小さく、長波長ほど大きくなる位相差フィルムのことであり、波長分散値Dが1未満となる位相差フィルムである。ここで波長分散値Dは波長450nmにおける複屈折Δn_450と波長550nmにおける複屈折Δn_550との比であり、式Δn_450/Δn_550により与えられる。
 負の位相差フィルムは、IPSやFFSモード、円偏光型VAモード等における視野角補償フィルムとしての利用が期待されるが、特許文献2に記載の位相差フィルムには、耐熱性が低いという問題がある。
 同様に特許文献3に記載の光学フィルムについても、文献中に記載は無いがポリスチレンとポリ(2,6-ジメチル-1,4-フェニレンオキサイド)のブレンドであることから実施例に記載のフィルムのガラス転移温度は115℃程度と推測され、位相差フィルムとして十分な耐熱性を備えているとは言えない。
 そこで本発明は、耐熱性及び光学特性に優れた、負の位相差フィルムを提供することを目的とする。また本発明は、該位相差フィルムを備える液晶表示装置を提供することを目的とする。
 本発明の一側面は、下記式(1)で表される第一の構造単位及び下記式(2)で表される第二の構造単位を有する共重合体を含有する樹脂組成物からなる樹脂フィルムを、少なくとも一軸方向に延伸してなる位相差フィルムであって、上記共重合体における上記第一の構造単位の含有比率が、上記第一の構造単位及び上記第二の構造単位の合計を基準として、3~50モル%である、位相差フィルムに関する。
Figure JPOXMLDOC01-appb-C000005
[式中、a及びbはそれぞれ独立に0~5の整数を示し、R及びRはそれぞれ独立に水素原子又は炭素数1~12の有機残基を示す。a又はbが2以上の整数であるとき、複数存在するR又はRはそれぞれ互いに同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000006
[式中、cは0~5の整数を示し、Rは水素原子又は炭素数1~4の有機残基を示し、Rは水素原子又は炭素数1~12の有機残基を示す。cが2以上の整数であるとき、複数存在するRは互いに同一でも異なっていてもよい。]
 このような位相差フィルムは、耐熱性及び光学特性に優れた負の位相差フィルムとして好適に用いることができる。
 また本発明の他の側面は、下記式(1)で表される第一の構造単位及び下記式(2)で表される第二の構造単位を有する共重合体とポリ(2,6-ジメチル-1,4-フェニレンオキサイド)とを含有する樹脂組成物からなる樹脂フィルムを、少なくとも一軸方向に延伸してなる位相差フィルムであって、上記樹脂組成物における上記ポリ(2,6-ジメチル-1,4-フェニレンオキサイド)の含有比率が、前記樹脂組成物の総量基準で5~30質量%である、位相差フィルムに関する。
Figure JPOXMLDOC01-appb-C000007
[式中、a及びbはそれぞれ独立に0~5の整数を示し、R及びRはそれぞれ独立に水素原子又は炭素数1~12の有機残基を示す。a又はbが2以上の整数であるとき、複数存在するR又はRはそれぞれ互いに同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000008
[式中、cは0~5の整数を示し、Rは水素原子又は炭素数1~4の有機残基を示し、Rは水素原子又は炭素数1~12の有機残基を示す。cが2以上の整数であるとき、複数存在するRは互いに同一でも異なっていてもよい。]
 このような位相差フィルムは、耐熱性及び光学特性に優れた負の位相差フィルムとして好適に用いることができる。
 また、このような位相差フィルムにおいて、上記共重合体における上記第一の構造単位の含有比率は、上記第一の構造単位及び上記第二の構造単位の合計を基準として、3~50モル%であってよい。これにより、位相差フィルムの光学特性が一層優れる。
 本発明の一態様において、上記共重合体のガラス転移温度は、105~170℃であってよい。このような位相差フィルムは、耐熱性に一層優れる。
 本発明の一態様において、上記位相差フィルムは、光弾性係数の絶対値が5.0×10-12(/Pa)以下であってよい。本発明によれば、光弾性係数の絶対値を十分に小さくすることができ、例えば、光弾性係数の絶対値が5.0×10-12(/Pa)以下である位相差フィルムは、外力による複屈折の変化が小さいため、これを大型の液晶表示装置等に使用した場合にコントラストや画面の均一性に優れる。
 本発明の一態様において、上記樹脂組成物のガラス転移温度は120℃以上であってよい。このような位相差フィルムは、耐熱性に一層優れる。
 本発明の一態様においては、上記位相差フィルムについて、十分に小さな波長分散特性を達成することができ、例えば波長分散値Dは1.06未満とすることができ、0.70<D<1.06とすることもできる。波長分散値Dが0.70<D<1.06である位相差フィルムは、補償フィルムとして用いた際に、1.06<Dである位相差フィルムを用いた場合に比べてコントラストや色味の視野角特性が優れる。なお、波長分散値Dは、例えば、上記共重合体及びポリ(2,6-ジメチル-1,4-フェニレンオキサイド)のブレンド比により制御することができる。
 本発明の一態様において、上記位相差フィルムの主延伸方向をx軸方向、上記位相差フィルムの面内において上記x軸方向と直交する方向をy軸方向、上記x軸方向及び上記y軸方向とそれぞれ直交する方向をz軸方向としたとき、上記x軸方向における屈折率Nx、上記y軸方向における屈折率Ny及び上記z軸方向における屈折率Nzは、Nz≧Ny>Nxの関係を満たすことが好ましい。なお、本明細書において、主延伸方向は、一軸延伸した場合は延伸方向、二軸延伸した場合にはより配向度が上がるように延伸した方向を言う。このような位相差フィルムは、偏光板や、偏光板と液晶セルの間に配置される構成部材の位相差値に起因して生じる、液晶パネル(液晶表示装置)の黒表示における斜め方向の光漏れを小さくする効果がある。
 本発明の他の側面はまた、上記位相差フィルムを備える、液晶表示装置に関する。
 本発明によれば、耐熱性及び光学特性に優れた負の複屈折性を有する位相差フィルムが提供される。また、本発明によれば、該位相差フィルムを備える液晶表示装置が提供される。
本発明の位相差フィルムの第一実施形態を示す斜視図である。 本発明の位相差フィルムの第二実施形態を示す斜視図である。 位相差フィルムに含まれる共重合体のガラス転移温度と第一の構造単位の含有比率との関係を示す図である。 位相差フィルムに含まれる共重合体の光弾性係数と第一の構造単位の含有比率との関係を示す図である。
 本発明の好適な実施形態について以下に説明する。
 図1は、本発明の位相差フィルムの第一実施形態を示す斜視図である。位相差フィルム10は、樹脂フィルムを一軸方向に延伸してなる位相差フィルムであり、樹脂フィルムは、下記式(1)で表される第一の構造単位及び下記式(2)で表される第二の構造単位を有する共重合体を含有する樹脂組成物からなる。また、共重合体における第一の構造単位の含有比率は、第一の構造単位及び第二の構造単位の合計を基準として、3~50モル%である。
Figure JPOXMLDOC01-appb-C000009
 式中、a及びbはそれぞれ独立に0~5の整数を示し、R及びRはそれぞれ独立に水素原子又は炭素数1~12の有機残基を示す。a又はbが2以上の整数であるとき、複数存在するR又はRはそれぞれ互いに同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000010
 式中、cは0~5の整数を示し、Rは水素原子又は水素原子又は炭素数1~4の有機残基を示し、Rは水素原子又は炭素数1~12の有機残基を示す。cが2以上の整数であるとき、複数存在するRは互いに同一でも異なっていてもよい。
 このような位相差フィルム10は、耐熱性及び光学特性に優れた負の位相差フィルムである。以下、共重合体、樹脂フィルム及び位相差フィルム10について順に説明する。
(共重合体)
 上述したとおり、共重合体は、式(1)で表される第一の構造単位及び式(2)で表される第二の構造単位を有し、共重合体における第一の構造単位の含有比率は、第一の構造単位及び第二の構造単位の合計を基準として、3~50モル%である。位相差フィルム10は、共重合体の第一の構造単位の含有比率を3~50モル%とすることで、優れた耐熱性と、光弾性係数の絶対値の小ささとを両立することができる。
 式(1)において、R及びRは、炭素数1~12の有機残基である。有機残基は、好ましくは、炭素原子及び水素原子からなる基、又は、炭素原子、水素原子及び酸素原子からなる基である。また、有機残基は、アルキル基、ヒドロキシアルキル基又はアルコキシアルキル基であることが好ましく、アルキル基であることがより好ましい。
 R及びRにおける有機残基は、直鎖状であっても分岐状であってもよい。R及びRにおける有機残基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-ペンチル基、n-ヘキシル基、2-ヘキシル基、n-ヘプチル基、2-ヘプチル基、3-ヘプチル基、n-オクチル基、2-オクチル基、3-オクチル基等が挙げられる。
 式(1)において、a及びbは、0~3の整数であることが好ましく、耐熱性の点からは0であることがより好ましい。
 式(2)において、Rは、水素原子又は炭素数1~4の有機残基である。有機残基としては、炭素原子及び水素原子からなる基、又は、炭素原子、水素原子及び酸素原子からなる基が好ましい。このような有機残基としては、アルキル基、ヒドロキシアルキル基、アルコキシアルキル基が好ましい。
 Rにおける有機残基は、直鎖状であっても分岐状であってもよい。Rにおける有機残基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ヒドロキシメチル基、ヒドロキシエチル基、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基等が挙げられる。
 式(2)において、Rは、炭素数1~12の有機残基である。有機残基は、好ましくは、炭素原子及び水素原子からなる基、又は、炭素原子、水素原子及び酸素原子からなる基である。また、有機残基は、アルキル基、ヒドロキシアルキル基又はアルコキシアルキル基であることが好ましく、アルキル基であることがより好ましい。
 Rにおける有機残基は、直鎖状であっても分岐状であってもよい。Rにおける有機残基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-ペンチル基、n-ヘキシル基、2-ヘキシル基、n-ヘプチル基、2-ヘプチル基、3-ヘプチル基、n-オクチル基、2-オクチル基、3-オクチル基等が挙げられる。
 式(2)において、cは、0~3の整数であることが好ましく、重合のしやすさの点からは0であることがより好ましい。
 共重合体における第一の構造単位の含有比率は、第一の構造単位及び第二の構造単位の合計を基準として、5~35モル%であることが好ましく、10~30モル%であることがより好ましい。第一の構造単位の含有比率が5モル%以上であると、ガラス転移温度が110℃以上かつ光弾性定数が5.0×10-12/Paとなり、位相差フィルムとして一層好ましい耐熱性と光弾性定数を兼ね備えることが出来る。35モル%以下であると、フィルムのもろさが一層改善されるという効果が奏される。
 なお、第一の構造単位の含有比率は、共重合体のH-NMRを測定して、第一の構造単位に由来するピークのピーク面積と第二の構造単位に由来するピークのピーク面積とから算出することができる。
 共重合体の重量平均分子量Mwは、5万~50万であることが好ましく、10万~35万であることがより好ましい。Mwが50万以下であると、押し出し延伸加工に十分な流動性が得られ、溶融押し出し、延伸成膜が大きな支障なく行える。また、Mwが5万以上であると、延伸安定性とフィルムに十分な配向度を与えることが出来る。
 なお、共重合体の重量平均分子量Mw、数平均分子量Mn及び分子量分布Mw/Mnは、カラム(TSKgel SuperHM-M)が3本接続され、RI検出器が備えられたゲルパーミエーションクロマトグラフィー(GPC、東ソー株式会社製 HLC-8020)を用い、溶媒としてテトラヒドロフランを用いて、ポリスチレン換算の重量平均分子量Mw、数平均分子量Mn及び分子量分布Mw/Mnとして測定される値を示す。
 共重合体のガラス転移温度は、105~170℃であることが好ましく、110℃以上であることがより好ましい。このような共重合体を含有する位相差フィルムは、耐熱性に一層優れるものとなる。
 共重合体は、負の位相差フィルムが得られる限り第一の構造単位及び第二の構造単位以外の構造単位をさらに有していてもよい。例えば、共重合体は、(メタ)アクリル酸メチル単位、(メタ)アクリルエチル単位、(メタ)アクリル酸n-ブチル単位、(メタ)アクリル酸イソブチル単位、(メタ)アクリル酸t-ブチル単位、(メタ)アクリル酸シクロヘキシル単位、(メタ)アクリル酸2-エチルヘキシル単位、アクリロニトリル単位、ビニルナフタレン単位、ビニルアントラセン単位、N-ビニルピロリドン単位、アクリロニトリル単位、N-ビニルイミダゾール単位、N-ビニルアセトアミド単位、N-ビニルホルムアルデヒド単位、N-ビニルカプロラクタム単位、N-ビニルカルバゾール単位、N-フェニルマレイミド単位、2-ビニルピリジン単位、4-ビニルピリジン単位、ブタジエン単位およびブタジエン単位の水添によって得られる飽和脂肪族構造単位、イソプレン単位およびイソプレン単位の水添によって得られる飽和脂肪族構造単位、等の構造単位を有していてもよい。
 共重合体の総量に対する第一の構造単位及び第二の構造単位の総量は、80~100質量%であることが好ましく、90~100質量%であることがより好ましい。このような共重合体によれば、本発明の効果が一層顕著に奏される。
 共重合体は、例えば、下記式(3)で表される第一のモノマーと下記式(4)で表される第二のモノマーとの共重合反応により、得ることができる。なお、式中、a、b、c、R、R、R及びRは上記と同義である。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 共重合反応は、例えば、第一のモノマーと第二のモノマーとを含有する反応溶液に、アニオン重合開始剤を添加して行うことができる。
 アニオン重合開始剤としては、例えば、有機アルカリ金属化合物が用いられる。有機アルカリ金属としては、例えば、アルキルリチウム、アリールリチウム、アルキルナトリウム、アリールナトリウム等が挙げられる。具体的なアニオン重合開始剤としては、例えば、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム等の有機リチウム化合物や、ナフタレンナトリウム等の有機ナトリウム化合物が用いられる。この中で好ましいアニオン重合開始剤はn-ブチルリチウム、s-ブチルリチウム等の有機リチウム化合物である。
 アニオン重合開始剤の添加量を適宜変更することで、共重合体の数平均分子量Mn及び重量平均分子量Mwを調整することができる。アニオン重合開始剤の添加量は、第一のモノマー及び第二のモノマーの総量を基準として、0.02~0.5モル%であることが好ましく、0.04~0.1モル%であることがより好ましい。このような添加量とすることで、好適な範囲の数平均分子量Mn及び重量平均分子量Mwを有する共重合体が得られやすくなる。
 共重合反応の反応温度は、0~130℃とすることが好ましく、50~90℃とすることがより好ましい。反応温度を低くすると、共重合体の分子量分布Mw/Mnの値が小さくなる傾向があり、反応温度を高くすると、共重合体の分子量分布Mw/Mnの値が大きくなる傾向がある。
 共重合反応の反応時間は、0.5~12時間とすることが好ましく、1~6時間とすることがより好ましい。
 共重合反応は、溶媒中で行うことが好ましく、重合溶媒は有機アルカリ金属化合物と反応しない溶媒が好ましい。当該溶媒としては、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン、キシレン、エチルベンゼン、t-ブチルベンゼン等を用いることが好ましい。
(樹脂フィルム)
 樹脂フィルムは、上記共重合体を含有する樹脂組成物からなるフィルムである。樹脂フィルムの製造方法は特に限定されず、例えば、キャスティング法、溶融押出法、カレンダー法、圧縮成形法等の公知の方法を用いればよい。
 キャスティング法で用いられる成形装置としては、ドラム式キャスティングマシン、バンド式キャスティングマシン、スピンコーター法等が使用できる。また、溶融押出法としては、Tダイ法、インフレーション法等が挙げられる。
 キャスティング法では、上記共重合体を含有する成膜溶液を用いて樹脂フィルムを作製することができる。ここで成膜溶液の溶媒としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素;塩化メチレン、ジクロロエタン、クロロベンゼン、ジクロロベンゼン、クロロホルム、テトラクロロエチレン等のハロゲン化アルカン;シクロヘキサン、デカヒドロナフタレン等の環状脂肪族溶媒;テトラヒドロフラン、1,4-ジオキサンなどの環状エーテル類;メチルエチルケトン、シクロヘキサノンが挙げられる。
 樹脂フィルムを構成する樹脂組成物は、上記共重合体以外の成分を含有していてもよい。例えば、樹脂組成物には、上記溶媒が含まれていてもよい。溶媒の含有量は、耐熱性および延伸操作における位相差発現の観点から、5000ppm以下であることが好ましく、1000ppm以下であることがより好ましい。
 また、樹脂フィルムを構成する樹脂組成物は、本発明の主旨を超えない範囲で、上記共重合体以外の高分子、界面活性剤、高分子電解質、導電性錯体、シリカ、アルミナ、色素材料、熱安定剤、紫外線吸収剤、帯電防止剤、アンチブロッキング剤、滑剤、可塑剤、オイル等を含有していてもよい。
 樹脂フィルムを構成する樹脂組成物における、上記共重合体の含有量は、樹脂組成物の総量を基準として50~100質量%であることが好ましく、90~100質量%であることがより好ましい。共重合体の含有量が上記範囲であると、本発明の効果が一層顕著に奏される。
(位相差フィルム10)
 位相差フィルム10は、樹脂フィルムを延伸して得られるフィルムである。フィルムの延伸方法は、一般的にフィルム面内方向に延伸するフラット法延伸とチューブ状に膨らませて延伸するチューブラ法延伸に大分類されるが、厚み及び延伸倍率の精度の高いフラット法延伸が特に好ましい。またフラット法延伸は、一軸延伸法と二軸延伸法に分類され、一軸延伸法としては、自由幅一軸延伸法と一定幅一軸延伸法がある。一方、二軸延伸法としては、二段階自由幅二軸延伸法、逐次二軸延伸法、同時二軸延伸法があり、さらに逐次二軸延伸には全テンター方式とロールテンター方式がある。本発明の透明性樹脂組成物から位相差フィルムを製造するための延伸方法は、上記延伸方法のいずれを用いても良く、要求される3次元屈折率および位相差量により適宜最も適した方法を選択すればよい。
 延伸時の温度は、共重合体のガラス転移温度をTgとして、Tg+5℃~Tg+40℃であることが好ましく、Tg+5℃~Tg+25℃であることがより好ましい。このような延伸温度で延伸を行うことで、位相差フィルムの機械特性及び光学特性が一層向上する。
 位相差フィルム10の厚みは特に限定されないが、10~500μmであることが好ましく、10~200μmであることがより好ましい。位相差フィルムの厚みを10μm以上とすることで、機械特性及び2次加工時におけるハンドリング性が一層向上する傾向があり、500μm以下とすることで可とう性が一層向上する傾向がある。
 位相差フィルム10は、上記特定の共重合体を用いて作製されているため、光弾性係数の絶対値が十分に小さい。位相差フィルム10の光弾性係数の絶対値は、5.0×10-12(/Pa)以下であることが好ましく、3.0×10-12(/Pa)以下であることがより好ましい。このような位相差フィルム10は、外力による複屈折の変化が十分に小さく、液晶表示装置等の用途に一層好適に用いることができる。
 位相差フィルム10は、位相差フィルム10の主延伸方向をx軸方向、位相差フィルム10の面内においてx軸方向と直交する方向をy軸方向、x軸方向及びy軸方向とそれぞれ直交する方向(位相差フィルム10の主面と直交する方向)をz軸方向としたとき、x軸方向における屈折率Nx、y軸方向における屈折率Ny及びz軸方向における屈折率Nzが、Nz≧Ny>Nxの関係を満たすことが好ましい。
 なお、本明細書において、主延伸方向は、一軸延伸した場合は延伸方向、二軸延伸した場合にはより配向度が上がるように延伸した方向を言う。このような位相差フィルムは、偏光板や、偏光板と液晶セルの間に配置される構成部材の位相差値に起因して生じる、液晶パネル(液晶表示装置)の黒表示における斜め方向の光漏れを小さくする効果がある。
 本実施形態においては、上記共重合体を含む樹脂組成物により形成された樹脂フィルムを延伸することで、上記関係を満たす位相差フィルム10を容易に得ることができる。
 位相差フィルム10には、ガスバリヤー性、耐傷つき性、耐薬品性、防眩性等の機能を付与する目的で、少なくとも一方面上に薄膜が形成されていてもよい。このような薄膜を形成する方法としては、薄膜を形成するための樹脂溶液を、グラビアロールコーティング法、マイヤーバーコーティング法、リバースロールコーティング法、ディップコーティング法、エアーナイフコーティング法、カレンダーコーティング法、スキーズコーティング法、キスコーティング法、ファンテンコーティング法、スプレーコーティング法、スピンコーティング法等の方法により、位相差フィルム10の一面上に塗工する方法が挙げられる。
 なお、薄膜を形成するための樹脂溶液としては、熱可塑性樹脂;アミノ基、イミノ基、エポキシ基、シリル基等を有する熱硬化性樹脂;これらの樹脂の混合物;等を含有する樹脂溶液が挙げられる。また、当該樹脂溶液には、重合禁止剤、ワックス類、分散剤、色素材料、溶剤、可塑剤、紫外線吸収剤、無機フィラー等が添加されていてもよい。
 上記薄膜は、上記塗工後、必要に応じて放射線照射による硬化又は加熱による熱硬化を行い、硬化薄膜層としたものであってもよい。また、このような薄膜を形成する際に印刷を行う場合には、グラビア方式、オフセット方式、フレキソ方式、シルクスクリーン方式等の方法を用いることができる。
 また、位相差フィルム10には、ガスシール性等を付与する目的から、少なくとも一方面上に、アルミニウム、ケイ素、マグネシウム、亜鉛等を主成分とする金属酸化物層が形成されていてもよい。このような金属酸化物層は真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法等により形成することができる。
 位相差フィルム10は、他のフィルムと積層化して用いることができる。積層化の方法としては、従来公知の方法が適宜採用でき、例えば、ヒートシール法、インパルスシール法、超音波接合法、高周波接合法等の熱接合方法、押出ラミネート法、ホットメルトラミネート法、ドライラミネート法、ウェットラミネート法、無溶剤接着ラミネート法、サーマルラミネート法、共押出法等のラミネート加工方法等が挙げられる。
 また、積層化させるフィルムとしては、例えば、ポリエステル系樹脂フィルム、ポリビニルアルコール系樹脂フィルム、セルロース系樹脂フィルム、ポリフッ化ビニル樹脂フィルム、ポリ塩化ビニリデン樹脂フィルム、ポリアクリロニトリル樹脂フィルム、ナイロン系樹脂フィルム、ポリエチレン系樹脂フィルム、ポリプロピレン系樹脂フィルム、アセテート樹脂フィルム、ポリイミド樹脂フィルム、ポリカーボネート樹脂フィルム、ポリアクリレート系樹脂フィルム等が挙げられる。
 次いで、本発明の第二実施形態について説明する。図2は、本発明の位相差フィルムの第二実施形態を示す斜視図である。位相差フィルム20は、樹脂フィルムを少なくとも一軸方向に延伸してなる位相差フィルムであり、樹脂フィルムは、下記式(1)で表される第一の構造単位及び下記式(2)で表される第二の構造単位を有する共重合体とポリ(2,6-ジメチル-1,4-フェニレンオキサイド)とを含有する樹脂組成物からなる。また、樹脂組成物におけるポリ(2,6-ジメチル-1,4-フェニレンオキサイド)の含有比率は、樹脂組成物の総量基準で5~30質量%である。
Figure JPOXMLDOC01-appb-C000013
 式中、a及びbはそれぞれ独立に0~5の整数を示し、R及びRはそれぞれ独立に水素原子又は炭素数1~12の有機残基を示す。a又はbが2以上の整数であるとき、複数存在するR又はRはそれぞれ互いに同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000014
 式中、cは0~5の整数を示し、Rは水素原子又は水素原子又は炭素数1~4の有機残基を示し、Rは水素原子又は炭素数1~12の有機残基を示す。cが2以上の整数であるとき、複数存在するRは互いに同一でも異なっていてもよい。
 このような位相差フィルム20は、耐熱性及び光学特性に優れた負の位相差フィルムである。以下、共重合体、樹脂フィルム及び位相差フィルム20について順に説明する。
(共重合体)
 上述したとおり、共重合体は、式(1)で表される第一の構造単位及び式(2)で表される第二の構造単位を有する。
 式(1)において、R及びRは、炭素数1~12の有機残基である。有機残基は、好ましくは、炭素原子及び水素原子からなる基、又は、炭素原子、水素原子及び酸素原子からなる基である。また、有機残基は、アルキル基、ヒドロキシアルキル基又はアルコキシアルキル基であることが好ましく、アルキル基であることがより好ましい。
 R及びRにおける有機残基は、直鎖状であっても分岐状であってもよい。R及びRにおける有機残基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-ペンチル基、n-ヘキシル基、2-ヘキシル基、n-ヘプチル基、2-ヘプチル基、3-ヘプチル基、n-オクチル基、2-オクチル基、3-オクチル基等が挙げられる。
 式(1)において、a及びbは、0~3の整数であることが好ましく、耐熱性の点からは0であることがより好ましい。
 式(2)において、Rは、水素原子又は炭素数1~4の有機残基である。有機残基としては、炭素原子及び水素原子からなる基、又は、炭素原子、水素原子及び酸素原子からなる基が好ましい。このような有機残基としては、アルキル基、ヒドロキシアルキル基、アルコキシアルキル基が好ましい。
 Rにおける有機残基は、直鎖状であっても分岐状であってもよい。Rにおける有機残基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ヒドロキシメチル基、ヒドロキシエチル基、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基等が挙げられる。
 式(2)において、Rは、炭素数1~12の有機残基である。有機残基は、好ましくは、炭素原子及び水素原子からなる基、又は、炭素原子、水素原子及び酸素原子からなる基である。また、有機残基は、アルキル基、ヒドロキシアルキル基又はアルコキシアルキル基であることが好ましく、アルキル基であることがより好ましい。
 Rにおける有機残基は、直鎖状であっても分岐状であってもよい。Rにおける有機残基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-ペンチル基、n-ヘキシル基、2-ヘキシル基、n-ヘプチル基、2-ヘプチル基、3-ヘプチル基、n-オクチル基、2-オクチル基、3-オクチル基等が挙げられる。
 式(2)において、cは、0~3の整数であることが好ましく、重合のしやすさの点からは0であることがより好ましい。
 共重合体における第一の構造単位の含有比率は、第一の構造単位及び第二の構造単位の合計を基準として、3~50モル%であることが好ましく、5~35モル%であることがより好ましく、10~30モル%であることが更に好ましい。第一の構造単位が3モル%以上であるとガラス転移温度が110℃以上の好適な値となり易く、位相差フィルムにおける耐熱性が一層向上する傾向にある。50モル%以下であると、フィルムのもろさが一層改善されるという効果が奏される。
 なお、第一の構造単位の含有比率は、共重合体のH-NMRを測定して、第一の構造単位に由来するピークのピーク面積と第二の構造単位に由来するピークのピーク面積とから算出することができる。
 共重合体の重量平均分子量Mwは、5万~50万であることが好ましく、10万~35万であることがより好ましい。Mwが50万以下であると、押し出し延伸加工に十分な流動性が得られ、溶融押し出し、延伸成膜が大きな支障なく行える。また、Mwが5万以上であると、延伸安定性とフィルムに十分な配向度を与えることが出来る。
 なお、共重合体の重量平均分子量Mw、数平均分子量Mn及び分子量分布Mw/Mnは、カラム(TSKgel SuperHM-M)が3本接続され、RI検出器が備えられたゲルパーミエーションクロマトグラフィー(GPC、東ソー株式会社製 HLC-8020)を用い、溶媒としてテトラヒドロフランを用いて、ポリスチレン換算の重量平均分子量Mw、数平均分子量Mn及び分子量分布Mw/Mnとして測定される値を示す。
 共重合体のガラス転移温度は、105~170℃であることが好ましく、110℃以上であることがより好ましい。このような共重合体をポリ(2,6-ジメチル-1,4-フェニレンオキサイド)とブレンドすることで、位相差フィルムの耐熱性が一層向上する傾向にある。
 共重合体は、負の位相差フィルムが得られる限り第一の構造単位及び第二の構造単位以外の構造単位をさらに有していてもよい。例えば、共重合体は、(メタ)アクリル酸メチル単位、(メタ)アクリルエチル単位、(メタ)アクリル酸n-ブチル単位、(メタ)アクリル酸イソブチル単位、(メタ)アクリル酸t-ブチル単位、(メタ)アクリル酸シクロヘキシル単位、(メタ)アクリル酸2-エチルヘキシル単位、アクリロニトリル単位、ビニルナフタレン単位、ビニルアントラセン単位、N-ビニルピロリドン単位、アクリロニトリル単位、N-ビニルイミダゾール単位、N-ビニルアセトアミド単位、N-ビニルホルムアルデヒド単位、N-ビニルカプロラクタム単位、N-ビニルカルバゾール単位、N-フェニルマレイミド単位、2-ビニルピリジン単位、4-ビニルピリジン単位、ブタジエン単位およびブタジエン単位の水添によって得られる飽和脂肪族構造単位、イソプレン単位およびイソプレン単位の水添によって得られる飽和脂肪族構造単位、等の構造単位を有していてもよい。
 共重合体の総量に対する第一の構造単位及び第二の構造単位の総量は、80~100質量%であることが好ましく、90~100質量%であることがより好ましい。このような共重合体によれば、本発明の効果が一層顕著に奏される。
 共重合体は、例えば、下記式(3)で表される第一のモノマーと下記式(4)で表される第二のモノマーとの共重合反応により、得ることができる。なお、式中、a、b、c、R、R、R及びRは上記と同義である。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 共重合反応は、例えば、第一のモノマーと第二のモノマーとを含有する反応溶液に、アニオン重合開始剤を添加して行うことができる。
 アニオン重合開始剤としては、例えば、有機アルカリ金属化合物が用いられる。有機アルカリ金属としては、例えば、アルキルリチウム、アリールリチウム、アルキルナトリウム、アリールナトリウム等が挙げられる。具体的なアニオン重合開始剤としては、例えば、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム等の有機リチウム化合物や、ナフタレンナトリウム等の有機ナトリウム化合物が用いられる。この中で好ましいアニオン重合開始剤はn-ブチルリチウム、s-ブチルリチウム等の有機リチウム化合物である。
 アニオン重合開始剤の添加量を適宜変更することで、共重合体の数平均分子量Mn及び重量平均分子量Mwを調整することができる。アニオン重合開始剤の添加量は、第一のモノマー及び第二のモノマーの総量を基準として、0.02~0.5モル%であることが好ましく、0.04~0.1モル%であることがより好ましい。このような添加量とすることで、好適な範囲の数平均分子量Mn及び重量平均分子量Mwを有する共重合体が得られやすくなる。
 共重合反応の反応温度は、0~130℃とすることが好ましく、50~90℃とすることがより好ましい。反応温度を低くすると、共重合体の分子量分布Mw/Mnの値が小さくなる傾向があり、反応温度を高くすると、共重合体の分子量分布Mw/Mnの値が大きくなる傾向がある。
 共重合反応の反応時間は、0.5~12時間とすることが好ましく、1~6時間とすることがより好ましい。
 共重合反応は、溶媒中で行うことが好ましく、重合溶媒は有機アルカリ金属化合物と反応しない溶媒が好ましい。当該溶媒としては、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン、キシレン、エチルベンゼン、t-ブチルベンゼン等を用いることが好ましい。
(樹脂フィルム)
 樹脂フィルムは、上記共重合体とポリ(2,6-ジメチル-1,4-フェニレンオキサイド)とを含有する樹脂組成物からなるフィルムである。樹脂フィルムの製造方法は特に限定されず、例えば、キャスティング法、溶融押出法、カレンダー法、圧縮成形法等の公知の方法を用いればよい。
 キャスティング法で用いられる成形装置としては、ドラム式キャスティングマシン、バンド式キャスティングマシン、スピンコーター法等が使用できる。また、溶融押出法としては、Tダイ法、インフレーション法等が挙げられる。
 キャスティング法では、上記共重合体を含有する成膜溶液を用いて樹脂フィルムを作製することができる。ここで成膜溶液の溶媒としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素;塩化メチレン、ジクロロエタン、クロロベンゼン、ジクロロベンゼン、クロロホルム、テトラクロロエチレン等のハロゲン化アルカン;テトラヒドロフラン、1,4-ジオキサンなどの環状エーテル類;メチルエチルケトン、シクロヘキサノンが挙げられる。
 樹脂フィルムを構成する樹脂組成物は、上記共重合体とポリ(2,6-ジメチル-1,4-フェニレンオキサイド)とを含有する。
 樹脂組成物におけるポリ(2,6-ジメチル-1,4-フェニレンオキサイド)の含有比率は、樹脂組成物の総量基準で5~30質量%である。本実施形態においては、上記共重合体及びポリ(2,6-ジメチル-1,4-フェニレンオキサイド)をブレンドし、更にポリ(2,6-ジメチル-1,4-フェニレンオキサイド)の含有比率を上記範囲内とすることで、位相差フィルム20における優れた耐熱性と優れた光学特性との両立が達成される。
 樹脂組成物のガラス転移温度Tgは、耐熱性の観点から120℃以上であることが好ましく、130℃以上であることがより好ましい。Tgが120℃以上であると、高温環境等に曝された場合の位相差値の変動や寸法変化等が十分に抑制される。
 樹脂フィルムを構成する樹脂組成物は、上記共重合体及びポリ(2,6-ジメチル-1,4-フェニレンオキサイド)以外の成分を含有していてもよい。例えば、樹脂組成物には、上記溶媒が含まれていてもよい。溶媒の含有量は、耐熱性および延伸操作における位相差発現の観点から、5000ppm以下であることが好ましく、1000ppm以下であることがより好ましい。
 また、樹脂フィルムを構成する樹脂組成物は、本発明の主旨を超えない範囲で、上記以外の高分子、界面活性剤、高分子電解質、導電性錯体、シリカ、アルミナ、色素材料、熱安定剤、紫外線吸収剤、帯電防止剤、アンチブロッキング剤、滑剤、可塑剤、オイル等を含有していてもよい。
 樹脂フィルムを構成する樹脂組成物において、上記共重合体及びポリ(2,6-ジメチル-1,4-フェニレンオキサイド)の合計量は、樹脂組成物の総量基準で、50~100質量%であることが好ましく、90~100質量%であることがより好ましい。上記合計量が上記範囲内であると、本発明の効果が一層顕著に奏される。
(位相差フィルム20)
 位相差フィルム20は、樹脂フィルムを延伸して得られるフィルムである。フィルムの延伸方法は、一般的にフィルム面内方向に延伸するフラット法延伸とチューブ状に膨らませて延伸するチューブラ法延伸に大分類されるが、厚み及び延伸倍率の精度の高いフラット法延伸が特に好ましい。またフラット法延伸は、一軸延伸法と二軸延伸法に分類され、一軸延伸法としては、自由幅一軸延伸法と一定幅一軸延伸法がある。一方、二軸延伸法としては、二段階自由幅二軸延伸法、逐次二軸延伸法、同時二軸延伸法があり、さらに逐次二軸延伸には全テンター方式とロールテンター方式がある。本発明の透明性樹脂組成物から位相差フィルムを製造するための延伸方法は、上記延伸方法のいずれを用いても良く、要求される3次元屈折率および位相差量により適宜最も適した方法を選択すればよい。
 延伸時の温度は、共重合体のガラス転移温度をTgとして、Tg+5℃~Tg+40℃であることが好ましく、Tg+5℃~Tg+25℃であることがより好ましい。このような延伸温度で延伸を行うことで、位相差フィルムの機械特性及び光学特性が一層向上する。
 位相差フィルム20の厚みは特に限定されないが、10~500μmであることが好ましく、10~200μmであることがより好ましい。位相差フィルムの厚みを10μm以上とすることで、機械特性及び2次加工時におけるハンドリング性が一層向上する傾向があり、500μm以下とすることで可とう性が一層向上する傾向がある。
 位相差フィルム20の波長分散値Dは1.06未満であることが好ましい。このような位相差フィルム20は、補償フィルムとして用いた際に、波長分散値Dが1.06以上である位相差フィルムを用いた場合に比べてコントラストや色味の視野角特性が優れる。また、位相差フィルム20の波長分散値Dは、1.00未満であってもよい。波長分散値Dが1.00未満のフィルムは逆波長分散フィルムと呼ばれ、補償フィルムとして用いた際にコントラストや色味の視野角特性を一層大きく改善することができる。
 位相差フィルム20は、位相差フィルム20の主延伸方向をx軸方向、位相差フィルム20の面内においてx軸方向と直交する方向をy軸方向、x軸方向及びy軸方向とそれぞれ直交する方向(位相差フィルム20の主面と直交する方向)をz軸方向としたとき、x軸方向における屈折率Nx、y軸方向における屈折率Ny及びz軸方向における屈折率Nzが、Nz≧Ny>Nxの関係を満たすことが好ましい。
 なお、本明細書において、主延伸方向は、一軸延伸した場合は延伸方向、二軸延伸した場合にはより配向度が上がるように延伸した方向を言う。このような位相差フィルムは、偏光板や、偏光板と液晶セルの間に配置される構成部材の位相差値に起因して生じる、液晶パネル(液晶表示装置)の黒表示における斜め方向の光漏れを小さくする効果がある。
 本実施形態においては、上記共重合体を含む樹脂組成物により形成された樹脂フィルムを延伸することで、上記関係を満たす位相差フィルム20を容易に得ることができる。
 位相差フィルム20には、ガスバリヤー性、耐傷つき性、耐薬品性、防眩性等の機能を付与する目的で、少なくとも一方面上に薄膜が形成されていてもよい。このような薄膜を形成する方法としては、薄膜を形成するための樹脂溶液を、グラビアロールコーティング法、マイヤーバーコーティング法、リバースロールコーティング法、ディップコーティング法、エアーナイフコーティング法、カレンダーコーティング法、スキーズコーティング法、キスコーティング法、ファンテンコーティング法、スプレーコーティング法、スピンコーティング法等の方法により、位相差フィルム20の一面上に塗工する方法が挙げられる。
 なお、薄膜を形成するための樹脂溶液としては、熱可塑性樹脂;アミノ基、イミノ基、エポキシ基、シリル基等を有する熱硬化性樹脂;これらの樹脂の混合物;等を含有する樹脂溶液が挙げられる。また、当該樹脂溶液には、重合禁止剤、ワックス類、分散剤、色素材料、溶剤、可塑剤、紫外線吸収剤、無機フィラー等が添加されていてもよい。
 上記薄膜は、上記塗工後、必要に応じて放射線照射による硬化又は加熱による熱硬化を行い、硬化薄膜層としたものであってもよい。また、このような薄膜を形成する際に印刷を行う場合には、グラビア方式、オフセット方式、フレキソ方式、シルクスクリーン方式等の方法を用いることができる。
 また、位相差フィルム20には、ガスシール性等を付与する目的から、少なくとも一方面上に、アルミニウム、ケイ素、マグネシウム、亜鉛等を主成分とする金属酸化物層が形成されていてもよい。このような金属酸化物層は真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法等により形成することができる。
 位相差フィルム20は、他のフィルムと積層化して用いることができる。積層化の方法としては、従来公知の方法が適宜採用でき、例えば、ヒートシール法、インパルスシール法、超音波接合法、高周波接合法等の熱接合方法、押出ラミネート法、ホットメルトラミネート法、ドライラミネート法、ウェットラミネート法、無溶剤接着ラミネート法、サーマルラミネート法、共押出法等のラミネート加工方法等が挙げられる。
 また、積層化させるフィルムとしては、例えば、ポリエステル系樹脂フィルム、ポリビニルアルコール系樹脂フィルム、セルロース系樹脂フィルム、ポリフッ化ビニル樹脂フィルム、ポリ塩化ビニリデン樹脂フィルム、ポリアクリロニトリル樹脂フィルム、ナイロン系樹脂フィルム、ポリエチレン系樹脂フィルム、ポリプロピレン系樹脂フィルム、アセテート樹脂フィルム、ポリイミド樹脂フィルム、ポリカーボネート樹脂フィルム、ポリアクリレート系樹脂フィルム等が挙げられる。
 次に、本発明の液晶表示装置の好適な実施形態について説明する。
 第一実施形態に係る液晶表示装置は、位相差フィルム10を備えることを特徴とする。位相差フィルム10は、液晶表示装置における位相差フィルムとして好適に用いることができる。より具体的には、位相差フィルム10は、反射型液晶表示装置における1/4λ板、透過型液晶表示装置における1/4λ板、液晶プロジェクタ装置における1/2λ板又は1/4λ板、液晶表示装置中の偏光フィルムの保護フィルム又は反射防止フィルム、等の用途に好適に用いることができる。
 すなわち、液晶表示装置は、1/4λ板、1/2λ板、保護フィルム又は反射防止フィルムとして位相差フィルム10を備えることが好ましい。液晶表示装置の位相差フィルム10以外の構成は、特に制限されず、従来公知の液晶表示フィルムと同様のものでよい。
 また、位相差フィルム10は、少なくとも一方面上に、インジウムスズオキサイド、インジウムジンクオキサイド等のセラミック薄膜を、DC又はグロー放電を用いたプラズマプロセスにより成膜した上で、タッチパネル等の液晶表示装置における透明電極フィルムとして、使用することもできる。
 また、第二実施形態に係る液晶表示装置は、位相差フィルム20を備えることを特徴とする。位相差フィルム20は、液晶表示装置における位相差フィルムとして好適に用いることができる。より具体的には、位相差フィルム20は、IPS、FFSモードや円偏光型VAモード等の視野角補償フィルム用途に好適に用いることができる。
 すなわち、液晶表示装置は、視野角補償フィルムとして位相差フィルム20を備えることが好ましい。液晶表示装置の位相差フィルム20以外の構成は、特に制限されず、従来公知の液晶表示フィルムと同様のものでよい。
 また、位相差フィルム20は、少なくとも一方面上に、インジウムスズオキサイド、インジウムジンクオキサイド等のセラミック薄膜を、DC又はグロー放電を用いたプラズマプロセスにより成膜した上で、タッチパネル等の液晶表示装置における透明電極フィルムとして、使用することもできる。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
 以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。
 まず、第一実施形態に係る位相差フィルムに係る実施例について説明する。
(合成例1-1:共重合体1-1の合成)
 100mL容積のガラス製反応器に、窒素雰囲気下にてスチレン6.33g(60.9mmol)と1,1-ジフェニルエチレン1.26g(7.00mmol)とを計り取り、シクロヘキサン20mLで希釈した。この溶液を氷浴にて冷却した後、0.10Mのs-ブチルリチウム/シクロヘキサン溶液を少量ずつ、系が淡黄色を呈するまで滴下し残存水分を取り除いた。
 ついで0.10Mのs-ブチルリチウム/シクロヘキサン溶液0.25mL(s-ブチルリチウムとして0.025mmol)を加えた。この溶液を撹拌しながら50℃のオイルバスにて加熱すると濃赤色に変化し、重合反応の進行に伴う粘度の上昇が観察された。そのまま4時間加熱撹拌を続けた後、メタノール5mLを加えて反応を停止した。反応溶液を2Lのメタノール中へ注ぎ、白色沈殿を濾別した。得られた沈殿を沸騰メタノールで洗浄した後、120℃、減圧下で12時間乾燥し、スチレン/1,1-ジフェニルエチレン共重合体を得た(以下、「共重合体1-1」と称する。)。
 得られた共重合体1-1について、下記の方法で、第一の構造単位及び第二の構造単位の含有比率、分子量、分子量分布及びガラス転移温度(Tg)を測定した。測定結果は、表1に示すとおりであった。
(含有比率の測定)
 超伝導核磁気共鳴吸収装置(NMR、Varian社製 INOVA600)を用い、で得られた共重合体のH-NMRを測定し、芳香族プロトン、メチル、メチレン、メチンのピーク面積比から、第一の構造単位及び第二の構造単位の含有比率を算出した。
(分子量及び分子量分布の測定)
 カラム(TSKgel SuperHM-M)を3本接続し、RI検出器を備えたゲルパーミエーションクロマトグラフィー(GPC、東ソー株式会社製 HLC-8020)を用いて測定した。溶媒としてテトラヒドロフランを用い、得られた共重合体のポリスチレン換算の数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)を求めた。
(ガラス転移温度(Tg)の測定)
 示差走査熱量計(DSC、エスアイアイ・ナノテクノロジー社製 DSC7020)を用いて測定した。具体的には、窒素下、20℃/minで室温(25℃)から230℃まで昇温し、その後20℃/minで室温まで戻し、再び10℃/minで230℃まで昇温した。2度目の昇温過程で測定されるガラス転移温度をTgとした。なお、測定には、得られた共重合体を再沈殿精製して得られたパウダーを用いた。
(合成例1-2:共重合体1-2の合成)
 スチレンの使用量を5.33g(51.3mmol)とし、1,1-ジフェニルエチレンの使用量を2.29g(12.7mmol)としたこと以外は、合成例1-1と同様にして、スチレン/1,1-ジフェニルエチレン共重合体を得た(以下、「共重合体1-2」と称する。)。
 得られた共重合体1-2について、上記の方法で、第一の構造単位及び第二の構造単位の含有比率、分子量、分子量分布及びガラス転移温度(Tg)を測定した。測定結果は、表1に示すとおりであった。
(合成例1-3:共重合体1-3の合成)
 スチレンの使用量を4.61g(44.3mmol)とし、1,1-ジフェニルエチレンの使用量を3.45g(19.2mmol)としたこと以外は、合成例1-1と同様にして、スチレン/1,1-ジフェニルエチレン共重合体を得た(以下、「共重合体1-3」と称する。)。
 得られた共重合体1-3について、上記の方法で、第一の構造単位及び第二の構造単位の含有比率、分子量、分子量分布及びガラス転移温度(Tg)を測定した。測定結果は、表1に示すとおりであった。
Figure JPOXMLDOC01-appb-T000017
(実施例1-1)
 合成例1-1で得られた共重合体1-1を10質量%含むクロロベンゼン溶液を調製し、ガラス板上にキャスト法によってフィルム状に供給し、72時間自然乾燥させた。得られたフィルムをガラス板から剥離した後、減圧下、120℃でクロロベンゼン濃度が500massppm以下になるまで乾燥し、未延伸フィルム1-1を得た。得られた未延伸フィルム1-1の透明性は高く、膜厚は36μmであった。
 次に、得られた未延伸フィルム1-1を7×7cmに切り出し、二軸延伸装置(井元製作所 IMC-190A型)を用いて、共重合体1-1のTg+12℃(134℃)の温度条件下で、120mm/min.の引張速度で倍率2.0倍の一軸延伸を行い、厚み25μmの位相差フィルム1-1を得た。
(実施例1-2)
 共重合体1-1にかえて共重合体1-2を用いたこと以外は実施例1-1と同様の方法により、未延伸フィルム1-2を得た。得られた未延伸フィルム1-2の透明性は高く、膜厚は42μmであった。
 次に、得られた未延伸フィルム1-2を7×7cmに切り出し、二軸延伸装置(井元製作所 IMC-190A型)を用いて、共重合体1-2のTg+12℃(148℃)の温度条件下で、120mm/min.の引張速度で倍率2.0倍の一軸延伸を行い、厚み30μmの位相差フィルム1-2を得た。
(実施例1-3)
 共重合体1-1にかえて共重合体1-3を用いたこと以外は実施例1-1と同様の方法により、未延伸フィルム1-3を得た。得られた未延伸フィルム1-3の透明性は高く、膜厚は53μmであった。
 次に、得られた未延伸フィルム1-3を7×7cmに切り出し、二軸延伸装置(井元製作所 IMC-190A型)を用いて、共重合体1-3のTg+12℃(167℃)の温度条件下で、120mm/min.の引張速度で倍率2.0倍の一軸延伸を行い、厚み37μmの位相差フィルム1-3を得た。
(実施例1-4)
 実施例1-2と同様の方法により、透明性の高い膜厚42μmの未延伸フィルム1-4を得た。
 次に、得られた未延伸フィルム1-4を7×7cmに切り出し、二軸延伸装置(井元製作所 IMC-190A型)を用いて、共重合体1-2のTg+12℃(148℃)の温度条件下で、120mm/min.の引張速度で倍率1.4倍の同時二軸延伸を行い、厚み29μmの位相差フィルム1-4を得た。
(実施例1-5)
 実施例1-2と同様の方法により、透明性の高い膜厚51μmの未延伸フィルム1-5を得た。
 次に、得られた未延伸フィルム1-5を7×7cmに切り出し、二軸延伸装置(井元製作所 IMC-190A型)を用いて、共重合体1-2のTg+12℃(148℃)の温度条件下で、120mm/min.の引張速度で倍率1.7倍の同時二軸延伸を行い、厚み24μmの位相差フィルム1-5を得た。
(比較例1-1)
 共重合体1-1にかえて、市販のポリスチレン(和光純薬、ガラス転移温度:100℃、重量平均分子量Mw:165×10、分子量分布Mw/Mn:2.0)を用いたこと以外は実施例1-1と同様の方法により、未延伸フィルム1-6を得た。得られた未延伸フィルム1-6の透明性は高く、膜厚は35μmであった。
 次に、得られた未延伸フィルム1-6を7×7cmに切り出し、二軸延伸装置(井元製作所 IMC-190A型)を用いて、ポリスチレンのTg+12℃(112℃)の温度条件下で、120mm/min.の引張速度で倍率2.0倍の一軸延伸を行い、厚み25μmの位相差フィルム1-6を得た。
 実施例1-1~1-5及び比較例1-1で得られた位相差フィルムについて、それぞれ下記の方法でレターデーション、屈折率及び光弾性係数を測定した。測定結果は表2に示すとおりであった。
(屈折率及びレターデーションの測定)
 レターデーション測定器(王子計測社製 KOBRA-21ADH)を用いて、下記式により定義されるレターデーション(Re、Rth)を測定した。
Re=|Nx-Ny|×d
Rth=|Nz-(Nx+Ny)/2|×d
(Nx:主延伸方向の屈折率、Ny:主延伸方向に対して垂直方向の面内屈折率、Nz:面に対して垂直(Nx及びNyに対して垂直)方向の屈折率、d:フィルムの厚み(μm))
(光弾性係数の測定)
 光弾性係数測定装置(ユニオプト社製 PHEL-20A)を用い、実施例及び比較例でそれぞれ得られたフィルムから切り出した9mm×80mmの試験片に22℃で0.1mm/minの速度で圧縮荷重をかけて測定した。
Figure JPOXMLDOC01-appb-T000018
 表2に示すように、実施例で得られた延伸フィルムは、位相差フィルムとして良好に機能するものであることが確認された。また、実施例の位相差フィルムは、下記式(I)を満たし、いわゆる負の位相差フィルムとして機能するものであることが確認された。
  Nz≧Ny>Nx  (I)
 また、実施例で得られた位相差フィルムは、光弾性係数の絶対値が小さく、共重合体のガラス転移温度が高いことから、優れた耐熱性と光学性能とを両立するものであることが確認された。これに対して、比較例1-1のフィルムは、光弾性係数の絶対値が大きく、位相差フィルムに適するものではなかった。
 図3は、実施例1-1~1-3及び比較例1-1の位相差フィルムに含まれる重合体(共重合体1-1~1-3及びポリスチレン)のガラス転移温度Tgと、第一の構造単位の含有比率と、の関係を示す図である。
 図4は、実施例1-1~1-3及び比較例1-1の位相差フィルムに含まれる重合体(共重合体1-1~1-3及びポリスチレン)における第一の構造単位の含有比率と、光弾性係数と、の関係を示す図である。
 図3及び図4に示すように、第一の構造単位の含有比率を所定の範囲とすることで、高いガラス転移温度を得つつ、光弾性係数の絶対値を十分に小さくすることができる。
 次いで、第二実施形態に係る位相差フィルムに係る実施例について説明する。
(合成例2-1:共重合体1の合成)
 100mL容積のガラス製反応器に、窒素雰囲気下にてスチレン5.33g(51.3mmol)と1,1-ジフェニルエチレン2.29g(12.7mmol)とを計り取り、シクロヘキサン20mLで希釈した。この溶液を氷浴にて冷却した後、0.10Mのs-ブチルリチウム/シクロヘキサン溶液を少量ずつ、系が淡黄色を呈するまで滴下し残存水分を取り除いた。
 ついで0.10Mのs-ブチルリチウム/シクロヘキサン溶液0.25mL(s-ブチルリチウムとして0.025mmol)を加えた。この溶液を撹拌しながら50℃のオイルバスにて加熱すると濃赤色に変化し、重合反応の進行に伴う粘度の上昇が観察された。そのまま4時間加熱撹拌を続けた後、メタノール5mLを加えて反応を停止した。反応溶液を2Lのメタノール中へ注ぎ、白色沈殿を濾別した。得られた沈殿を沸騰メタノールで洗浄した後、120℃、減圧下で12時間乾燥し、スチレン/1,1-ジフェニルエチレン共重合体を得た(以下、「共重合体2-1」と称する。)。
 得られた共重合体2-1について、下記の方法で、第一の構造単位及び第二の構造単位の含有比率、分子量、分子量分布及びガラス転移温度(Tg)を測定した。測定結果は、表3に示すとおりであった。
(含有比率の測定)
 超伝導核磁気共鳴吸収装置(NMR、Varian社製 INOVA600)を用い、で得られた共重合体のH-NMRを測定し、芳香族プロトン、メチル、メチレン、メチンのピーク面積比から、第一の構造単位及び第二の構造単位の含有比率を算出した。
(分子量及び分子量分布の測定)
 カラム(TSKgel SuperHM-M)を3本接続し、RI検出器を備えたゲルパーミエーションクロマトグラフィー(GPC、東ソー株式会社製 HLC-8020)を用いて測定した。溶媒としてテトラヒドロフランを用い、得られた共重合体のポリスチレン換算の数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)を求めた。
(ガラス転移温度(Tg)の測定)
 示差走査熱量計(DSC、エスアイアイ・ナノテクノロジー社製 DSC7020)を用いて測定した。具体的には、窒素下、20℃/minで室温(25℃)から230℃まで昇温し、その後20℃/minで室温まで戻し、再び10℃/minで230℃まで昇温した。2度目の昇温過程で測定されるガラス転移温度をTgとした。なお、測定には、得られた共重合体を再沈殿精製して得られたパウダーを用いた。
Figure JPOXMLDOC01-appb-T000019
(実施例2-1)
 合成例2-1で得られた共重合体2-1とポリ(2,6-ジメチル-1,4-フェニレンオキサイド)[アルドリッチ社製、カタログNo25134-01-4、重量平均分子量=244000、ガラス転移温度=211℃]を90:10の質量比でブレンドした樹脂混合物2-1を10質量%含むクロロホルム溶液を調製し、ガラス板上にキャスト法によってフィルム状に供給し、72時間自然乾燥させた。得られたフィルムをガラス板から剥離した後、減圧下、140℃でクロロホルム濃度が500massppm以下になるまで乾燥し、未延伸フィルム2-1を得た。得られた未延伸フィルム2-1の透明性は高く、膜厚は83μmであり、未延伸フィルム1を構成する樹脂組成物2-1のTgは136℃であった。
 次に、得られた未延伸フィルム2-1を7×7cmに切り出し、二軸延伸装置(井元製作所 IMC-190A型)を用いて、樹脂組成物2-1のTg+12℃(148℃)の温度条件下で、120mm/min.の引張速度で倍率2.0倍の一軸延伸を行い、厚み59μmの位相差フィルム2-1を得た。
(実施例2-2)
 樹脂混合物2-1を、共重合体2-1とポリ(2,6-ジメチル-1,4-フェニレンオキサイド)を80:20の質量比でブレンドした樹脂混合物2-2に変更したこと以外は実施例2-1と同様の方法により、未延伸フィルム2-2を得た。得られた未延伸フィルム2-2の透明性は高く、膜厚は74μmであり、未延伸フィルム2-2を構成する樹脂組成物2-2のTgは143℃であった。
 次に、得られた未延伸フィルム2-2を7×7cmに切り出し、二軸延伸装置(井元製作所 IMC-190A型)を用いて、樹脂組成物2-2のTg+12℃(155℃)の温度条件下で、120mm/min.の引張速度で倍率2.0倍の一軸延伸を行い、厚み52μmの位相差フィルム2-2を得た。
(実施例2-3)
 樹脂混合物2-1を、共重合体2-1とポリ(2,6-ジメチル-1,4-フェニレンオキサイド)を78:22の質量比でブレンドした樹脂混合物2-3に変更したこと以外は実施例2-1と同様の方法により、未延伸フィルム2-3を得た。得られた未延伸フィルム2-3の透明性は高く、膜厚は79μmであり、未延伸フィルム2-3を構成する樹脂組成物2-3のTgは145℃であった。
 次に、得られた未延伸フィルム2-3を7×7cmに切り出し、二軸延伸装置(井元製作所 IMC-190A型)を用いて、樹脂組成物2-3のTg+12℃(157℃)の温度条件下で、120mm/min.の引張速度で倍率2.0倍の一軸延伸を行い、厚み56μmの位相差フィルム2-3を得た。
(実施例2-4)
 樹脂混合物2-1を、共重合体2-1とポリ(2,6-ジメチル-1,4-フェニレンオキサイド)を75:25の質量比でブレンドした樹脂混合物2-4に変更したこと以外は実施例2-1と同様の方法により、未延伸フィルム2-4を得た。得られた未延伸フィルム2-4の透明性は高く、膜厚は85μmであり、未延伸フィルム2-4を構成する樹脂組成物2-4のTgは147℃であった。
 次に、得られた未延伸フィルム2-4を7×7cmに切り出し、二軸延伸装置(井元製作所 IMC-190A型)を用いて、樹脂組成物2-4のTg+12℃(159℃)の温度条件下で、120mm/min.の引張速度で倍率2.0倍の一軸延伸を行い、厚み60μmの位相差フィルム2-4を得た。
(実施例2-5)
 樹脂混合物2-1を、共重合体2-1とポリ(2,6-ジメチル-1,4-フェニレンオキサイド)を72:28の質量比でブレンドした樹脂混合物2-5に変更したこと以外は実施例2-1と同様の方法により、未延伸フィルム2-5を得た。得られた未延伸フィルム2-5の透明性は高く、膜厚は83μmであり、未延伸フィルム2-5を構成する樹脂組成物2-5のTgは149℃であった。
 次に、得られた未延伸フィルム2-5を7×7cmに切り出し、二軸延伸装置(井元製作所 IMC-190A型)を用いて、樹脂組成物2-5のTg+12℃(161℃)の温度条件下で、120mm/min.の引張速度で倍率2.0倍の一軸延伸を行い、厚み59μmの位相差フィルム2-5を得た。
(実施例2-6)
 実施例2-4と同様の方法により、透明性の高い膜厚77μmの未延伸フィルム2-6を得た。
 次に、得られた未延伸フィルム2-6を7×7cmに切り出し、二軸延伸装置(井元製作所 IMC-190A型)を用いて、樹脂組成物2-4のTg+12℃(159℃)の温度条件下で、120mm/min.の引張速度で倍率1.4倍の同時二軸延伸を行い、厚み55μmの位相差フィルム2-6を得た。
(実施例2-7)
 実施例2-4と同様の方法により、透明性の高い膜厚76μmの未延伸フィルム2-7を得た。
 次に、得られた未延伸フィルム2-7を7×7cmに切り出し、二軸延伸装置(井元製作所 IMC-190A型)を用いて、樹脂組成物2-4のTg+12℃(159℃)の温度条件下で、120mm/min.の引張速度で倍率1.8倍の同時二軸延伸を行い、厚み33μmの位相差フィルム2-7を得た。
(比較例2-1)
 樹脂混合物2-1を共重合体2-1に変更した(共重合体2-1とポリ(2,6-ジメチル-1,4-フェニレンオキサイド)の質量比を100:0とした)こと以外は、実施例2-1と同様の方法により、未延伸フィルム2-8を得た。得られた未延伸フィルム2-8の透明性は高く、膜厚は42μmであり、未延伸フィルム2-8を構成する樹脂組成物2-8のTgは133℃であった。
 次に、得られた未延伸フィルム2-8を7×7cmに切り出し、二軸延伸装置(井元製作所 IMC-190A型)を用いて、樹脂組成物2-8のTg+12℃(145℃)の温度条件下で、120mm/min.の引張速度で倍率2.0倍の一軸延伸を行い、厚み30μmの位相差フィルム2-8を得た。
(比較例2-2)
 樹脂混合物2-1を、共重合体2-1とポリ(2,6-ジメチル-1,4-フェニレンオキサイド)を60:40の質量比でブレンドした樹脂混合物2-9に変更したこと以外は実施例2-1と同様の方法により、未延伸フィルム2-9を得た。得られた未延伸フィルム2-9の透明性は高く、膜厚は82μmであり、未延伸フィルム2-9を構成する樹脂組成物2-9のTgは158℃であった。
 次に、得られた未延伸フィルム2-9を7×7cmに切り出し、二軸延伸装置(井元製作所 IMC-190A型)を用いて、樹脂組成物2-9のTg+12℃(170℃)の温度条件下で、120mm/min.の引張速度で倍率2.0倍の一軸延伸を行い、厚み58μmの位相差フィルム2-9を得た。
(比較例2-3)
 共重合体2-1にかえて、市販のポリスチレン(和光純薬、ガラス転移温度:91℃、重量平均分子量Mw:165×10、分子量分布Mw/Mn:2.0)を用いたこと以外は実施例2-4と同様の方法により、未延伸フィルム2-10を得た。得られた未延伸フィルム2-10の透明性は高く、膜厚は79μmであり、未延伸フィルム2-10を構成する樹脂組成物2-10のTgは115℃であった。
 次に、得られた未延伸フィルム2-10を7×7cmに切り出し、二軸延伸装置(井元製作所 IMC-190A型)を用いて、樹脂組成物2-10のTg+12℃(127℃)の温度条件下で、120mm/min.の引張速度で倍率2.0倍の一軸延伸を行い、厚み56μmの位相差フィルム2-10を得た。
 実施例2-1~2-7及び比較例2-1~2-3で得られた位相差フィルムについて、それぞれ下記の方法でレターデーション及び屈折率を測定した。測定結果は表4に示すとおりであった。
(屈折率及びレターデーションの測定)
 レターデーション測定器(王子計測社製 KOBRA-21ADH)を用いて、下記式により定義されるレターデーション(Re、Rth)を測定した。
Re=|Nx-Ny|×d
Rth=|Nz-(Nx+Ny)/2|×d
(Nx:主延伸方向の屈折率、Ny:主延伸方向に対して垂直方向の面内屈折率、Nz:面に対して垂直(Nx及びNyに対して垂直)方向の屈折率、d:フィルムの厚み(μm))
Figure JPOXMLDOC01-appb-T000020
 表4に示すように、実施例で得られた延伸フィルムは、主延伸方向の屈折率が最も小さい負の複屈折性を示し、波長分散値Dも0.70<D<1.06を満たすことから位相差フィルムとして良好に機能するものであることが確認された。
 比較例2-1及び2-2で得られた位相差フィルムは波長分散値Dが1.06以上であった。また比較例2-3で得られたフィルムはTgが115℃と低く位相差フィルムに適する耐熱性が得られなかった。
 本発明によれば、耐熱性及び光学特性に優れた負の位相差フィルム、並びにそれを備える液晶表示装置が提供される。
 10,11…位相差フィルム。

Claims (9)

  1.  下記式(1)で表される第一の構造単位及び下記式(2)で表される第二の構造単位を有する共重合体を含有する樹脂組成物からなる樹脂フィルムを、少なくとも一軸方向に延伸してなる位相差フィルムであって、
     前記共重合体における前記第一の構造単位の含有比率が、前記第一の構造単位及び前記第二の構造単位の合計を基準として、3~50モル%である、位相差フィルム。
    Figure JPOXMLDOC01-appb-C000001
    [式中、a及びbはそれぞれ独立に0~5の整数を示し、R及びRはそれぞれ独立に水素原子又は炭素数1~12の有機残基を示す。a又はbが2以上の整数であるとき、複数存在するR又はRはそれぞれ互いに同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000002
    [式中、cは0~5の整数を示し、Rは水素原子又は炭素数1~4の有機残基を示し、Rは水素原子又は炭素数1~12の有機残基を示す。cが2以上の整数であるとき、複数存在するRは互いに同一でも異なっていてもよい。]
  2.  下記式(1)で表される第一の構造単位及び下記式(2)で表される第二の構造単位を有する共重合体とポリ(2,6-ジメチル-1,4-フェニレンオキサイド)とを含有する樹脂組成物からなる樹脂フィルムを、少なくとも一軸方向に延伸してなる位相差フィルムであって、
     前記樹脂組成物における前記ポリ(2,6-ジメチル-1,4-フェニレンオキサイド)の含有比率が、前記樹脂組成物の総量基準で5~30質量%である、位相差フィルム。
    Figure JPOXMLDOC01-appb-C000003
    [式中、a及びbはそれぞれ独立に0~5の整数を示し、R及びRはそれぞれ独立に水素原子又は炭素数1~12の有機残基を示す。a又はbが2以上の整数であるとき、複数存在するR又はRはそれぞれ互いに同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000004
    [式中、cは0~5の整数を示し、Rは水素原子又は炭素数1~4の有機残基を示し、Rは水素原子又は炭素数1~12の有機残基を示す。cが2以上の整数であるとき、複数存在するRは互いに同一でも異なっていてもよい。]
  3.  前記共重合体における前記第一の構造単位の含有比率が、前記第一の構造単位及び前記第二の構造単位の合計を基準として、3~50モル%である、請求項2に記載の位相差フィルム。
  4.  前記共重合体のガラス転移温度が105~170℃である、請求項1~3のいずれか一項に記載の位相差フィルム。
  5.  光弾性係数の絶対値が5.0×10-12(/Pa)以下である、請求項1~4のいずれか一項に記載の位相差フィルム。
  6.  波長分散値Dが0.70<D<1.06である、請求項1~4のいずれか一項に記載の位相差フィルム。
  7.  前記樹脂組成物のガラス転移温度が120℃以上である、請求項1~6のいずれか一項に記載の位相差フィルム。
  8.  前記位相差フィルムの主延伸方向をx軸方向、前記位相差フィルムの面内において前記x軸方向と直交する方向をy軸方向、前記x軸方向及び前記y軸方向とそれぞれ直交する方向をz軸方向としたとき、前記x軸方向における屈折率Nx、前記y軸方向における屈折率Ny及び前記z軸方向における屈折率Nzが、Nz≧Ny>Nxの関係を満たす、請求項1~7のいずれか一項に記載の位相差フィルム。
  9.  請求項1~8のいずれか一項に記載の位相差フィルムを備える、液晶表示装置。
PCT/JP2012/078740 2011-11-10 2012-11-06 位相差フィルム及びそれを備える液晶表示装置 WO2013069642A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/357,073 US20140309373A1 (en) 2011-11-10 2012-11-06 Phase difference film and liquid crystal display device provided with same
KR1020147007262A KR20140064886A (ko) 2011-11-10 2012-11-06 위상차 필름 및 이를 구비한 액정 표시 장치
JP2013542988A JP5756863B2 (ja) 2011-11-10 2012-11-06 位相差フィルム及びそれを備える液晶表示装置
CN201280045696.9A CN103842859A (zh) 2011-11-10 2012-11-06 相位差膜及具备其的液晶显示装置
EP12847721.3A EP2778726A4 (en) 2011-11-10 2012-11-06 PHASE DIFFERENCE FILM AND LIQUID CRYSTAL DISPLAY DEVICE THEREWITH

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-246612 2011-11-10
JP2011246610 2011-11-10
JP2011-246610 2011-11-10
JP2011246612 2011-11-10

Publications (1)

Publication Number Publication Date
WO2013069642A1 true WO2013069642A1 (ja) 2013-05-16

Family

ID=48290016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078740 WO2013069642A1 (ja) 2011-11-10 2012-11-06 位相差フィルム及びそれを備える液晶表示装置

Country Status (7)

Country Link
US (1) US20140309373A1 (ja)
EP (1) EP2778726A4 (ja)
JP (1) JP5756863B2 (ja)
KR (1) KR20140064886A (ja)
CN (1) CN103842859A (ja)
TW (1) TW201329537A (ja)
WO (1) WO2013069642A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015026115A1 (ko) * 2013-08-19 2015-02-26 주식회사 엘지화학 역 파장 분산을 갖는 광학 필름 및 이를 포함하는 표시 장치
US20160200851A1 (en) * 2013-08-19 2016-07-14 Lg Chem, Ltd. Optical Film Having Reverse Wavelength Dispersion and Display Device Including the Same (As Amended)
JP2017524760A (ja) * 2014-06-11 2017-08-31 アルケマ フランス スチレン及びメチルメタクリレートに基づくナノ構造化ブロック共重合体フィルムの周期をコントロールする方法、及びナノ構造化ブロック共重合体フィルム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017049536A (ja) * 2015-09-04 2017-03-09 日東電工株式会社 偏光板、反射防止積層体及び画像表示システム
CN106354341B (zh) * 2016-11-11 2019-07-09 上海天马微电子有限公司 一种触控显示面板

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0391517A (ja) * 1989-09-05 1991-04-17 Nippon Soda Co Ltd 高屈折率透明樹脂及びその製造方法
US5612801A (en) 1994-04-04 1997-03-18 Rockwell Science Center, Inc. Monolithic optical compensation device for improved viewing angle in liquid crystal displays
JPH10501831A (ja) * 1994-06-16 1998-02-17 ビーエーエスエフ アクチェンゲゼルシャフト 熱可塑性成形材料
WO1999041312A1 (de) * 1998-02-12 1999-08-19 Basf Aktiengesellschaft Transparente thermoplastische formmassen auf basis von styrol/diphenylethylen-copolymeren
JP2003255102A (ja) 2001-12-25 2003-09-10 Jsr Corp 熱可塑性ノルボルネン系樹脂系光学用フィルム
JP2008144006A (ja) * 2006-12-08 2008-06-26 Denki Kagaku Kogyo Kk (メタ)アクリル酸エステルを用いたブロック共重合体
JP2010078905A (ja) 2008-09-26 2010-04-08 Nippon Zeon Co Ltd 光学フィルムおよび液晶表示装置
JP2011118137A (ja) * 2009-12-03 2011-06-16 Nippon Zeon Co Ltd 輝度向上フィルム、製造方法及び液晶表示装置
JP2012226996A (ja) * 2011-04-20 2012-11-15 Nippon Zeon Co Ltd 有機el表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68923929T2 (de) * 1988-11-04 1996-03-07 Fuji Photo Film Co Ltd Flüssigkristall-Anzeige.
DE69016349T2 (de) * 1989-10-27 1995-06-29 Fuji Photo Film Co Ltd Flüssigkristallanzeige.
JP4308553B2 (ja) * 2003-03-07 2009-08-05 株式会社 日立ディスプレイズ 液晶表示装置
US7733448B2 (en) * 2004-10-29 2010-06-08 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
CN100432784C (zh) * 2004-12-20 2008-11-12 日东电工株式会社 液晶面板和液晶显示装置
JP4440817B2 (ja) * 2005-03-31 2010-03-24 富士フイルム株式会社 光学異方性膜、輝度向上フィルムおよび積層光学フィルムならびにこれらを用いた画像表示装置。
KR20090038911A (ko) * 2006-07-21 2009-04-21 도레이 카부시키가이샤 위상차 박막용 수지 조성물, 액정 표시 장치용 컬러 필터 기판, 및 액정 표시 장치, 및 위상차 박막 부착 액정 표시 장치용 컬러 필터 기판의 제조 방법
JP5640745B2 (ja) * 2008-12-26 2014-12-17 日本ゼオン株式会社 光学フィルム、製造方法及び輝度向上フィルム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0391517A (ja) * 1989-09-05 1991-04-17 Nippon Soda Co Ltd 高屈折率透明樹脂及びその製造方法
US5612801A (en) 1994-04-04 1997-03-18 Rockwell Science Center, Inc. Monolithic optical compensation device for improved viewing angle in liquid crystal displays
JPH10501831A (ja) * 1994-06-16 1998-02-17 ビーエーエスエフ アクチェンゲゼルシャフト 熱可塑性成形材料
WO1999041312A1 (de) * 1998-02-12 1999-08-19 Basf Aktiengesellschaft Transparente thermoplastische formmassen auf basis von styrol/diphenylethylen-copolymeren
JP2003255102A (ja) 2001-12-25 2003-09-10 Jsr Corp 熱可塑性ノルボルネン系樹脂系光学用フィルム
JP2008144006A (ja) * 2006-12-08 2008-06-26 Denki Kagaku Kogyo Kk (メタ)アクリル酸エステルを用いたブロック共重合体
JP2010078905A (ja) 2008-09-26 2010-04-08 Nippon Zeon Co Ltd 光学フィルムおよび液晶表示装置
JP2011118137A (ja) * 2009-12-03 2011-06-16 Nippon Zeon Co Ltd 輝度向上フィルム、製造方法及び液晶表示装置
JP2012226996A (ja) * 2011-04-20 2012-11-15 Nippon Zeon Co Ltd 有機el表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2778726A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015026115A1 (ko) * 2013-08-19 2015-02-26 주식회사 엘지화학 역 파장 분산을 갖는 광학 필름 및 이를 포함하는 표시 장치
US20160200851A1 (en) * 2013-08-19 2016-07-14 Lg Chem, Ltd. Optical Film Having Reverse Wavelength Dispersion and Display Device Including the Same (As Amended)
JP2017524760A (ja) * 2014-06-11 2017-08-31 アルケマ フランス スチレン及びメチルメタクリレートに基づくナノ構造化ブロック共重合体フィルムの周期をコントロールする方法、及びナノ構造化ブロック共重合体フィルム

Also Published As

Publication number Publication date
JPWO2013069642A1 (ja) 2015-04-02
EP2778726A4 (en) 2015-04-01
JP5756863B2 (ja) 2015-07-29
CN103842859A (zh) 2014-06-04
US20140309373A1 (en) 2014-10-16
TW201329537A (zh) 2013-07-16
EP2778726A1 (en) 2014-09-17
KR20140064886A (ko) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5830949B2 (ja) 位相差フィルム用フマル酸ジエステル系樹脂及びそれよりなる位相差フィルム
KR101065200B1 (ko) 광학 필름, 편광자 보호 필름, 이를 이용한 편광판, 및 이를 이용한 화상 표시 장치
JP5245109B2 (ja) 光学フィルム
JP5407786B2 (ja) 光学補償フィルム
JP5770374B2 (ja) 樹脂組成物、これを用いて形成された光学フィルム、これを含む偏光板及び液晶表示装置
JP5756863B2 (ja) 位相差フィルム及びそれを備える液晶表示装置
KR102086326B1 (ko) 푸마르산디이소프로필-계피산 유도체계 공중합체 및 그것을 사용한 위상차 필름
JP5600843B2 (ja) 光学フィルム用樹脂組成物、それを含む偏光子保護フィルム及び液晶表示装置
JP5888571B2 (ja) 光学フィルム
JP2009227868A (ja) 樹脂組成物およびフィルム
JP5821159B2 (ja) 樹脂組成物及びこれを含む逆波長分散性を有する光学フィルム
US7390864B2 (en) Norbornene-based polymer, film, polarizing plate and liquid crystal display device
JP2010007036A (ja) ノルボルネン系重合体混合物およびその製造方法、並びにノルボルネン系重合体混合物を用いた光学材料
JP2018163291A (ja) 光学フィルムの製造方法
JP5412211B2 (ja) 光学用延伸フィルムを備える偏光板および画像表示装置
KR101606534B1 (ko) 역 파장 분산을 갖는 광학 필름 및 이를 포함하는 표시 장치
JP5343360B2 (ja) 光学補償フィルム
JP6372319B2 (ja) trans−スチルベン−N−置換マレイミド−ケイ皮酸エステル共重合体及びそれを用いた位相差フィルム
JP2020105260A (ja) 重合体及びそれを用いた光学フィルム
JP2005010294A (ja) 積層体
JP5664736B2 (ja) 光学補償フィルム
KR101674244B1 (ko) 위상차 필름 및 이를 포함하는 액정표시장치
JP6213135B2 (ja) trans−スチルベン−N−置換マレイミド共重合体及びそれを用いた位相差フィルム
JP2014170068A (ja) 位相差フィルム、偏光板および画像表示装置
JP2015074759A (ja) trans−スチルベン−無水マレイン酸共重合体及びそれを用いた位相差フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847721

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013542988

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147007262

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14357073

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012847721

Country of ref document: EP