WO2013054844A1 - Low temperature gas supply device, heat transfer medium-cooling device, and low temperature reaction control device - Google Patents

Low temperature gas supply device, heat transfer medium-cooling device, and low temperature reaction control device Download PDF

Info

Publication number
WO2013054844A1
WO2013054844A1 PCT/JP2012/076315 JP2012076315W WO2013054844A1 WO 2013054844 A1 WO2013054844 A1 WO 2013054844A1 JP 2012076315 W JP2012076315 W JP 2012076315W WO 2013054844 A1 WO2013054844 A1 WO 2013054844A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
gas
low
heat
heat medium
Prior art date
Application number
PCT/JP2012/076315
Other languages
French (fr)
Japanese (ja)
Inventor
成正 山住
米倉 正浩
武内 雅弘
Original Assignee
大陽日酸株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陽日酸株式会社 filed Critical 大陽日酸株式会社
Priority to SG11201400732RA priority Critical patent/SG11201400732RA/en
Priority to CN201280048779.3A priority patent/CN103874898B/en
Priority to JP2013538566A priority patent/JP5651246B2/en
Priority to US14/345,523 priority patent/US20140366575A1/en
Publication of WO2013054844A1 publication Critical patent/WO2013054844A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger

Definitions

  • the present invention relates to a low-temperature gas supply device, a heat medium cooling device, and a low-temperature reaction control device.
  • a low-temperature reaction apparatus may be used as shown in the patent document described later.
  • a double-structured container provided with an independent tank (jacket) through which the heat medium can flow is used outside the reaction tank, and the temperature-controlled heat medium is supplied to this jacket part.
  • the reaction liquid inside the reaction tank is cooled and adjusted to a constant temperature.
  • the heat medium supplied to the reaction tank is temperature controlled so that it is cooled below a predetermined temperature by heat exchange with a low-temperature liquefied gas (eg, liquefied nitrogen) having a temperature lower than the freezing point of the heat medium in the heat exchanger. Then, it is supplied to the jacket of the reaction vessel.
  • a low-temperature liquefied gas eg, liquefied nitrogen
  • the heat medium cooling temperature had to be set to a temperature sufficiently higher than the heat medium freezing point. In other words, the low temperature characteristics inherent to the heat medium could not be sufficiently exhibited.
  • Patent Document 1 is realized by providing means for cutting off the supply of the low-temperature liquefied gas by the heat medium differential pressure at the heat medium inlet / outlet part of the heat exchanger or the evaporating gas temperature at the low-temperature liquefied gas outlet part of the heat exchanger. It has become.
  • patent document 2 is implement
  • the temperature of the low-temperature liquefied gas supplied to the heat exchanger is adjusted. Specifically, heat exchange is performed with the temperature of the low-temperature liquefied gas raised. A method of supplying to the vessel is conceivable.
  • One method for raising the temperature of a low-temperature liquefied gas is to mix a low-temperature liquefied gas with a gas having a higher temperature, for example, the same kind of normal temperature gas.
  • a simple mixer has a problem that temperature unevenness and pulsation occur in the low-temperature gas after mixing.
  • the temperature difference between liquefied nitrogen and room temperature nitrogen gas is large, and liquefied nitrogen has a large amount of cold heat at a small flow rate.
  • an efficient or large mixer as disclosed in Patent Document 3 is required, resulting in an increase in equipment cost.
  • the present invention has been made in view of the above circumstances, and introduces a low-temperature gas supply device capable of supplying a low-temperature gas refrigerant accurately and stably controlled, and the low-temperature gas refrigerant, By heat exchange with it, the heat medium cooling device that can discharge the heat medium controlled accurately and stably without solidification, and stable control in a wide temperature range using the heat medium A low-temperature reaction control device that can be realized is provided.
  • the present invention employs the following means in order to solve the above problems.
  • a gas mixture obtained by mixing a vaporized gas obtained by vaporizing a low-temperature liquefied gas and a gas having a temperature higher than that of the low-temperature liquefied gas and the low-temperature liquefied gas are introduced into each other to exchange heat with each other.
  • a first heat exchanger that discharges as a gas refrigerant and discharges the low-temperature liquefied gas as the vaporized gas;
  • Mixing means for mixing the gas and the vaporized gas discharged from the first heat exchanger and discharging the mixed gas as the mixed gas; Based on the difference between the temperature detected for the low-temperature gas refrigerant and its target temperature, the respective amounts of the gas and the vaporized gas introduced into the mixing means are adjusted so that the temperature of the low-temperature gas refrigerant is And a first control means for controlling to a target temperature.
  • a first control means for adjusting the amount of the vaporized gas to control the temperature of the low-temperature gas refrigerant to the target temperature.
  • a low-temperature reaction control apparatus comprising: a low-temperature reaction tank configured to introduce the temperature-controlled heating medium that circulates in the circulation path and to cool and adjust the reaction liquid inside the reaction tank to a desired temperature.
  • a gas mixture obtained by mixing a vaporized gas obtained by vaporizing a low-temperature liquefied gas and a gas having a temperature higher than that of the low-temperature liquefied gas and the low-temperature liquefied gas are introduced into each other to exchange heat with each other.
  • a first heat exchanger that discharges as a gas refrigerant and discharges the low-temperature liquefied gas as the vaporized gas;
  • Mixing means for mixing the gas and the vaporized gas discharged from the first heat exchanger and discharging the mixed gas as the mixed gas;
  • the temperature of the low temperature gas refrigerant is controlled to the target temperature by adjusting the amount of the gas introduced into the mixing means based on the difference between the temperature detected for the low temperature gas refrigerant and the target temperature.
  • a control means for exchanging heat between the temperature-controlled low-temperature gas refrigerant discharged from the first heat exchanger and a heat medium circulating in a circulation path; Second control means for adjusting the amount of the gas based on the difference between the temperature detected for the heat medium and the heat medium target temperature, and controlling the temperature of the heat medium to the heat medium target temperature; Heat medium cooling device provided. (7) After heat exchange, which is a vaporized gas obtained by vaporizing the low-temperature liquefied gas and the gas after heat exchange by introducing a low-temperature liquefied gas and a gas having a temperature higher than that of the low-temperature liquefied gas and exchanging heat with each other.
  • a first heat exchanger that discharges as gas;
  • Mixing means for mixing the gas after heat exchange discharged from the first heat exchanger with the vaporized gas and discharging it as a low-temperature gas refrigerant; Based on the difference between the temperature detected for the low-temperature gas refrigerant and the target temperature, the amount of the vaporized gas introduced into the mixing means is adjusted to control the temperature of the low-temperature gas refrigerant to the target temperature.
  • First control means A second heat exchanger for exchanging heat between the temperature-controlled low-temperature gas refrigerant discharged from the first heat exchanger and a heat medium circulating in a circulation path; Second control means for adjusting the amount of the gas based on the difference between the temperature detected for the heat medium and the heat medium target temperature, and controlling the temperature of the heat medium to the heat medium target temperature; Heat medium cooling device provided.
  • the heat medium cooling device according to (6) or the heat medium cooling device according to (7), A low-temperature reaction control apparatus comprising: a low-temperature reaction tank configured to introduce the temperature-controlled heating medium that circulates through the circulation path and to cool and adjust the reaction liquid in the reaction tank to a desired temperature.
  • the low-temperature gas supply apparatus of the present invention mixes the low-temperature liquefied gas and the higher-temperature gas after reducing the temperature difference. Therefore, to achieve uniform mixing, the peculiarity of the mixing means can be avoided.
  • the range of choices expands. Moreover, since it mixes as two gas with near temperature, temperature control of the low temperature gas refrigerant
  • the mixing means when an ejector is selected as the mixing means, mixing is easy even when the pressures of two gases close to each other are different from each other. Further, the apparatus can be downsized as compared with the case of using a general mixer.
  • the heat medium cooling device of the present invention accurately and stably controls the temperature of the heat medium circulating in the circulation path by introducing a low-temperature gas refrigerant having a stable temperature into the second heat exchanger. Therefore, the target temperature of the heating medium can be set more ideally with the freezing point of the heating medium in mind. That is, the target temperature of the heat medium can be set close to its freezing point without causing the heat medium to freeze in the second heat exchanger. As a result, blockage of the circulation path due to freezing and pressure loss in the path due to freezing can be prevented, excessive heat intrusion can be suppressed, and the entire apparatus can be saved in labor.
  • the low-temperature reaction control apparatus of the present invention can control the reaction tank at low temperature using a heat medium accurately and stably controlled at a low temperature close to its freezing point, so that stable control in a wide temperature range is possible.
  • FIG. 1 is a system diagram showing a low-temperature gas supply device, a heat medium cooling device, and a low-temperature reaction control device according to a first embodiment to which the present invention is applied. It is a systematic diagram which shows the low temperature gas supply apparatus, the heat-medium cooling device, and low temperature reaction control apparatus which are 2nd Embodiment to which this invention is applied. It is a systematic diagram which shows the low temperature gas supply apparatus, the heat-medium cooling device, and low temperature reaction control apparatus which are 3rd Embodiment to which this invention is applied. It is a systematic diagram which shows the low temperature gas supply apparatus which is 4th Embodiment to which this invention is applied, a heat-medium cooling device, and a low temperature reaction control apparatus.
  • FIG. 1 is a system diagram of a first embodiment of the low-temperature gas supply device, the heat medium cooling device, and the low-temperature reaction control device of the present invention.
  • the low temperature gas supply apparatus 100A includes a normal temperature path 1A through which normal temperature nitrogen gas (GN 2 ) NNG is introduced from one end as a gas having a temperature higher than a low temperature liquefied gas described later.
  • GN 2 normal temperature nitrogen gas
  • a first temperature detector 6A that detects the temperature of the first temperature
  • a first temperature controller (first control means) 7A that outputs a first control signal CS1 based on the temperature detected by the first temperature detector 6A
  • a first control A flow rate adjusting valve 8A that adjusts the flow rate of the room temperature nitrogen gas NNG that flows in the room temperature path 1A based on the signal CS1, and a liquid nitrogen vaporization that flows downstream of the first heat exchanger 5A in the low temperature path 2A based on the first control signal CS1.
  • a first flow rate adjusting valve 9A that adjusts the flow rate of the gas LNG.
  • the low temperature path 2A and the mixing path 3A run side by side, and the liquefied nitrogen LN and the mixed gas CG flowing through each of them are configured to exchange heat with each other.
  • the low temperature path 2A and the mixing path 3A are arranged so that the liquefied nitrogen LN and the mixed gas CG flow in opposite directions, that is, in a counterflow.
  • the heat medium cooling device 200A includes a low-temperature gas supply device 100A having the above-described configuration, a heat medium circulation path 21 through which the heat medium HM circulates, and a mixing path. 3A and the heat medium circulation path 21 run side by side so that the low-temperature nitrogen gas refrigerant CNG and the heat medium HM flowing through each of the heat exchangers 2A and 22B exchange heat with each other, A heat medium circulation pump 23 that circulates the medium HM in the heat medium circulation path 21, a second temperature detector 24 that detects the temperature of the heat medium HM that circulates in the heat medium circulation path 21, and a second temperature detector 24.
  • a second temperature regulator 25 for outputting the second control signal CS2 based on the detected temperature by the second control valve CS, and a second flow rate adjusting valve for adjusting the flow rate of the low-temperature nitrogen gas refrigerant CNG flowing through the mixing path 3A based on the second control signal CS2.
  • a reserve tank 27 for absorbing shrinkage in constructed.
  • the low-temperature reaction control apparatus 300A includes the heat medium cooling apparatus 200A having the above-described configuration and the low-temperature reaction tank 31 in addition thereto.
  • the low temperature reaction tank 31 includes at least a jacket 31a through which the heat medium HM can flow and a stirring motor 31b for stirring the reaction solution.
  • Liquefied nitrogen (LN 2 ) LN is introduced from one end of the low temperature path 2A and introduced into the first heat exchanger 5A.
  • the liquefied nitrogen LNG becomes liquefied nitrogen vaporized gas LNG by heat exchange with the mixed gas CG in the mixing path 3A in the first heat exchanger 5A.
  • the liquefied nitrogen vaporized gas LNG discharged from the first heat exchanger 5A and the room temperature nitrogen gas NNG introduced from one end of the room temperature path 1A are introduced into the ejector 4A and mixed using the pressure difference between them. Is done.
  • the mixed gas CG discharged from the ejector 4A is introduced into the first heat exchanger 5A, and heat exchange with the liquefied nitrogen LN in the low temperature path 2A is performed, and the temperature is equalized by a turbulent flow effect. It is discharged as refrigerant CNG.
  • the first temperature detector 6A detects the temperature of the low-temperature nitrogen gas refrigerant CNG that flows downstream of the first heat exchanger 5A in the mixing path 3A.
  • the first temperature controller 7A outputs a first control signal CS1 corresponding to the difference between the temperature detected by the first temperature detector 6A and the desired temperature (target temperature) of the low-temperature nitrogen gas refrigerant CNG.
  • the flow rate adjusting valve 8A adjusts the flow rate of the room temperature nitrogen gas NNG flowing through the room temperature path 1A based on the first control signal CS1.
  • the first flow rate adjusting valve 9A adjusts the flow rate of the liquefied nitrogen vaporized gas LNG flowing downstream of the first heat exchanger 5A in the low temperature path 2A based on the first control signal CS1.
  • the low-temperature nitrogen gas refrigerant CNG is adjusted to a desired temperature by feedback control including the first temperature detector 6A, the first temperature controller 7A, the flow rate adjustment valve 8A, and the first flow rate adjustment valve 9A.
  • the flow rate of the liquefied nitrogen vaporized gas LNG introduced into the ejector 4A may be adjusted on the primary side of the first heat exchanger 5A, but in this way, on the secondary side of the first heat exchanger 5A, that is, Since it is configured to adjust the flow rate of the liquefied nitrogen vaporized gas LNG, that is, the gas as a vaporized single phase, the primary side of the first heat exchanger 5A, that is, the flow rate of the liquefied nitrogen NL accompanying phase change is adjusted. In comparison, precise flow rate adjustment is possible.
  • the low-temperature nitrogen gas refrigerant CNG adjusted to a desired temperature is supplied to the second heat exchanger 22 and cools the heat medium HM flowing through the heat medium circulation path 21 by heat exchange.
  • the second temperature detector 24 detects the temperature of the heat medium HM circulating in the heat medium circulation path 21.
  • the second temperature controller 25 outputs a second control signal CS2 corresponding to the difference between the temperature detected by the second temperature detector 24 and the desired temperature (target temperature) of the heating medium HM.
  • the second flow rate adjustment valve 26 adjusts the flow rate of the low-temperature nitrogen gas refrigerant CNG flowing through the mixing path 3A based on the second control signal CS2. In this way, the heating medium HM is adjusted to a desired temperature by feedback control including the second temperature detector 24, the second temperature regulator 25, and the second flow rate adjustment valve 26.
  • the heat medium HM adjusted to a desired temperature is supplied to the jacket 31 a of the low temperature reaction tank 31 by the operation of the heat medium circulation pump 23. Thereby, the reaction liquid inside the reaction tank is cooled and adjusted to a constant temperature.
  • the liquefied nitrogen LNG is converted into the liquefied nitrogen vaporized gas LNG having a temperature close to the room temperature nitrogen gas NNG by the first heat exchanger 5A, and they are mixed. Therefore, uniform mixing can be realized.
  • the ejector 4A is used for the mixing, the mixing can be easily realized even if the pressures are different from each other, and the apparatus is smaller than the case of using a general mixer. Can be
  • the liquefied nitrogen LNG is converted into the liquefied nitrogen vaporized gas LNG having a temperature close to the normal temperature nitrogen gas NNG by the first heat exchanger 5A and mixed, the flow rates of the normal temperature nitrogen gas NNG and the liquefied nitrogen vaporized gas LNG
  • the temperature control of the low-temperature nitrogen gas refrigerant CNG by adjustment is stabilized.
  • flow rate pulsation control caused by temperature pulsation changes due to poor mixing is avoided, control is stabilized.
  • the target temperature of the low-temperature nitrogen gas refrigerant CNG changes, the value can be appropriately followed.
  • the cold energy of the liquefied nitrogen LN can be efficiently used for generating the low temperature nitrogen gas refrigerant CNG.
  • the temperature of the heating medium HM circulating in the heating medium circulation path 21 is accurately and stably controlled.
  • the target temperature of the heating medium HM can be set more ideally with the freezing point of the medium HM in mind. That is, the target temperature of the heat medium HM can be set near its freezing point without causing the heat medium HM to freeze in the second heat exchanger 22. This can prevent the heat medium circulation path 21 from being blocked due to freezing and the resulting pressure loss in the path, suppress excessive heat penetration, and save labor as the entire apparatus.
  • the reaction tank 31 uses the heating medium HM that is accurately and stably controlled at a low temperature close to its freezing point, the reaction tank can be stably controlled at a lower temperature, and a wide range of temperature control is possible. .
  • FIG. 2 is a system diagram of a second embodiment of the low temperature gas supply device, the heat medium cooling device, and the low temperature reaction control device of the present invention.
  • the low temperature gas supply apparatus 100B includes a normal temperature path 1B through which normal temperature nitrogen gas (GN 2 ) NNG is introduced from one end, and liquefied nitrogen (LN 2 ) LN ( For example, -196 ° C) is introduced from one end, a low-temperature path 2B through which a low-temperature nitrogen gas refrigerant described later flows, a room-temperature nitrogen gas NNG introduced from the room-temperature path 1B, and a liquefaction introduced from the low-temperature path 2B.
  • GN 2 normal temperature nitrogen gas
  • LN 2 liquefied nitrogen
  • the first heat exchanger 5B is discharged as a gas LNG resulting from the vaporization of the nitrogen gas CNNG and the liquefied nitrogen LN (hereinafter referred to as “liquefied nitrogen vaporized gas”) LNG after heat exchange with the nitrogen LNG.
  • an ejector 4B that mixes the nitrogen gas CNNG after heat exchange discharged from the first heat exchanger 5B and the liquefied nitrogen vaporized gas LNG to generate a low-temperature nitrogen gas refrigerant CNG
  • a first temperature detector 6B that detects the temperature of the low-temperature nitrogen gas refrigerant CNG flowing through the mixing path 3B, and a first temperature controller 7B that outputs a first control signal CS1 based on the temperature detected by the first temperature detector 6B;
  • the flow rate adjusting valve 8B Based on the first control signal CS1, the flow rate adjusting valve 8B for adjusting the flow rate of the room temperature nitrogen gas NNG flowing in the room temperature path 1B, and on the downstream side of the first heat exchanger 5B in the low temperature path 2B based on the first control signal CS1.
  • a first flow rate adjusting valve 9B that adjusts the flow rate of the flowing liquefied nitrogen vaporized gas LNG.
  • route 2B are running in parallel, and it is comprised so that the normal temperature nitrogen gas NNG and liquefied nitrogen LN which flow through each may mutually heat-exchange.
  • the normal temperature path 1B and the low temperature path 2B are arranged so that the normal temperature nitrogen gas NNG and the liquefied nitrogen LN flow in the same direction.
  • the heat medium cooling device 200B according to the second embodiment of the present invention is the same as the heat medium cooling device 200A according to the first embodiment except that the heat medium cooling device 200B includes the low-temperature gas supply device 100B configured as described above. is there.
  • the low temperature reaction control apparatus 300B according to the second embodiment of the present invention is the same as the low temperature reaction control apparatus 300A according to the first embodiment except that the low temperature reaction control apparatus 300B includes the heat medium cooling device 200B having the above-described configuration. is there.
  • the room temperature nitrogen gas NNG is introduced from one end of the room temperature path 1B and is introduced into the first heat exchanger 5B. Further, liquefied nitrogen (LN 2 ) LN is introduced from one end of the low temperature path 2B and introduced into the first heat exchanger 5B.
  • the first heat exchanger 5B performs heat exchange between the room temperature nitrogen gas NNG introduced from the room temperature path 1B and the liquefied nitrogen LNG introduced from the low temperature path 2B, thereby reducing the temperature difference and the nitrogen gas after heat exchange.
  • CNNG and gas resulting from vaporization of liquefied nitrogen LN hereinafter referred to as “liquefied nitrogen vaporized gas” LNG are discharged.
  • the ejector 4B mixes the nitrogen gas CNNG after heat exchange discharged from the first heat exchanger 5B and the liquefied nitrogen vaporized gas LNG using their pressure difference to generate a low-temperature nitrogen gas refrigerant CNG.
  • the first temperature detector 6B detects the temperature of the low-temperature nitrogen gas refrigerant CNG flowing through the mixing path 3B.
  • the first temperature controller 7B outputs a first control signal CS1 corresponding to the difference between the temperature detected by the first temperature detector 6B and the desired temperature (target temperature) of the low-temperature nitrogen gas refrigerant CNG.
  • the flow rate adjusting valve 8B adjusts the flow rate of the room temperature nitrogen gas NNG flowing upstream of the first heat exchanger 5B in the room temperature path 1B based on the first control signal CS1.
  • the first flow rate adjusting valve 9B adjusts the flow rate of the liquefied nitrogen vaporized gas LNG flowing downstream of the first heat exchanger 5B in the low temperature path 2B based on the first control signal CS1.
  • the low-temperature nitrogen gas refrigerant CNG is adjusted to a desired temperature by feedback control including the first temperature detector 6B, the first temperature regulator 7B, the flow rate adjustment valve 8B, and the first flow rate adjustment valve 9B.
  • the flow rate of the vaporized gas introduced into the ejector 4B may be adjusted on the primary side of the first heat exchanger 5B.
  • the secondary side of the first heat exchanger 5B that is, the liquefied nitrogen vaporized gas is used.
  • the flow rate of the primary side of the first heat exchanger 5B that is, the liquefied nitrogen LN accompanying phase change
  • the low-temperature nitrogen gas refrigerant CNG adjusted to a desired temperature is supplied to the second heat exchanger 22 and cools the heat medium HM flowing through the heat medium circulation path 21 by heat exchange.
  • the second temperature detector 24 detects the temperature of the heat medium HM circulating in the heat medium circulation path 21.
  • the second temperature controller 25 outputs a second control signal CS2 corresponding to the difference between the temperature detected by the second temperature detector 24 and the desired temperature of the heating medium HM.
  • the second flow rate adjustment valve 26 adjusts the flow rate of the low-temperature nitrogen gas refrigerant CNG flowing through the mixing path 3B based on the second control signal CS2. In this way, the heating medium HM is adjusted to a desired temperature by feedback control including the second temperature detector 24, the second temperature regulator 25, and the second flow rate adjustment valve 26.
  • the heat medium HM adjusted to a desired temperature is supplied to the jacket 31 a of the low temperature reaction tank 31 by the operation of the heat medium circulation pump 23. Thereby, the reaction liquid inside the reaction tank is cooled and adjusted to a constant temperature.
  • the normal temperature nitrogen gas NNG and the liquefied nitrogen LNG are converted into the nitrogen gas CNNG and the liquefied nitrogen vaporized gas LNG after heat exchange with a reduced temperature difference by the first heat exchanger 5B, and they are mixed.
  • the temperature control of the low-temperature nitrogen gas refrigerant CNG by adjusting the flow rates of the nitrogen gas NNG and the liquefied nitrogen vaporized gas LNG is stabilized.
  • flow rate pulsation control caused by temperature pulsation changes due to poor mixing is avoided, control is stabilized.
  • the target temperature of the low-temperature nitrogen gas refrigerant CNG changes, the value can be appropriately followed.
  • the cold energy of the liquefied nitrogen LN can be efficiently used for generating the low temperature nitrogen gas refrigerant CNG.
  • the temperature of the heating medium HM circulating in the heating medium circulation path 21 is accurately and stably controlled.
  • the target temperature of the heating medium HM can be set more ideally with the freezing point of the medium HM in mind. That is, the target temperature of the heat medium HM can be set near its freezing point without causing the heat medium HM to freeze in the second heat exchanger 22. This can prevent the heat medium circulation path 21 from being blocked due to freezing and the resulting pressure loss in the path, suppress excessive heat penetration, and save labor as the entire apparatus.
  • the reaction tank 31 uses the heating medium HM that is accurately and stably controlled at a low temperature close to its freezing point, the reaction tank can be stably controlled at a lower temperature, and a wide range of temperature control is possible. .
  • FIG. 3 is a system diagram of a third embodiment of the low temperature gas supply device, the heat medium cooling device, and the low temperature reaction control device of the present invention.
  • the low temperature gas supply apparatus 100C has a normal temperature path 1C through which normal temperature nitrogen gas (GN 2 ) NNG is introduced from one end as a gas having a temperature higher than a low temperature liquefied gas described later.
  • GN 2 normal temperature nitrogen gas
  • the ejector (mixing means) 4C for generating the mixed gas CG and the low temperature path 2C penetrate to introduce the liquefied nitrogen LN and discharge it as the liquefied nitrogen vaporized gas LNG.
  • a first heat exchanger 5C that introduces the mixed gas CG and discharges it as a low-temperature nitrogen gas refrigerant CNG by passing through the path 3C, and a low-temperature nitrogen gas refrigerant CNG that flows downstream of the first heat exchanger 5C in the mixed path 3C.
  • a first temperature detector 6C that detects the temperature of the first temperature detector, a first temperature controller (first control means) 7C that outputs a first control signal CS1 based on the temperature detected by the first temperature detector 6C, and a first temperature detector to be described later.
  • the flow rate adjusting valve 8C that adjusts the flow rate of the room temperature nitrogen gas NNG that flows in the room temperature path 1C based on the second control signal CS2 output from the 2 temperature controller 25, and the first line in the low temperature path 2C based on the first control signal CS1.
  • a first flow rate adjusting valve 9C that adjusts the flow rate of the liquefied nitrogen vaporized gas LNG that flows downstream of the heat exchanger 5C.
  • the low-temperature path 2C and the mixing path 3C run side by side, and the liquefied nitrogen LN and the mixed gas CG flowing through each of the low-temperature path 2C and the mixed gas CG are configured to exchange heat with each other.
  • the low temperature path 2C and the mixing path 3C are arranged so that the liquefied nitrogen LN and the mixed gas CG flow in opposite directions, that is, in a counterflow.
  • the heat medium cooling device 200C includes a low-temperature gas supply device 100C having the above-described configuration, a heat medium circulation path 21 through which the heat medium HM circulates, and a mixing path.
  • the second heat exchanger 22 configured to exchange heat between the low-temperature nitrogen gas refrigerant CNG and the heat medium HM that flow through the 3C and the heat medium circulation path 21 in parallel with each other;
  • a heat medium circulation pump 23 that circulates the medium HM in the heat medium circulation path 21, a second temperature detector 24 that detects the temperature of the heat medium HM that circulates in the heat medium circulation path 21, and a second temperature detector 24.
  • the second temperature regulator 25 that outputs the second control signal CS2 on the basis of the detected temperature and the reserve tank 27 for absorbing the expansion and contraction accompanying the temperature change of the heating medium.
  • the low temperature reaction control device 300C according to the third embodiment includes the low temperature reaction control devices 300A and 300B according to the first and second embodiments, except that the low temperature reaction control device 300C includes the heat medium cooling device 200C having the above-described configuration. The same.
  • Liquefied nitrogen (LN 2 ) LN is introduced from one end of the low temperature path 2C and introduced into the first heat exchanger 5C.
  • the liquefied nitrogen LNG becomes liquefied nitrogen vaporized gas LNG by heat exchange with the mixed gas CG in the mixing path 3C in the first heat exchanger 5C.
  • the liquefied nitrogen vapor LNG discharged from the first heat exchanger 5C and the room temperature nitrogen gas NNG introduced from one end of the room temperature path 1C are introduced into the ejector 4C and mixed using the pressure difference between them. Is done.
  • the mixed gas CG discharged from the ejector 4C is introduced into the first heat exchanger 5C, and heat exchange with the liquefied nitrogen LN in the low temperature path 2C is performed, and the temperature is equalized by the turbulent flow effect. It is discharged as refrigerant CNG.
  • the first temperature detector 6C detects the temperature of the low-temperature nitrogen gas refrigerant CNG that flows downstream of the first heat exchanger 5C in the mixing path 3C.
  • the first temperature controller 7C outputs a first control signal CS1 corresponding to the difference between the temperature detected by the first temperature detector 6C and the desired temperature (target temperature) of the low-temperature nitrogen gas refrigerant CNG.
  • the flow rate adjusting valve 8C adjusts the flow rate of the room temperature nitrogen gas NNG flowing in the room temperature path 1C based on the second control signal CS2 output from the second temperature regulator 25.
  • the first flow rate adjusting valve 9C adjusts the flow rate of the liquefied nitrogen vaporized gas LNG that flows downstream of the first heat exchanger 5C in the low temperature path 2C based on the first control signal CS1.
  • the flow rate of the liquefied nitrogen vaporized gas LNG introduced into the ejector 4C may be adjusted on the primary side of the first heat exchanger 5C, but in this way, on the secondary side of the first heat exchanger 5C, that is, Since the flow rate of the liquefied nitrogen vaporized gas LNG, that is, the gas as a vaporized single phase, is adjusted, the primary side of the first heat exchanger 5C, that is, the flow rate of the liquefied nitrogen LNG accompanying phase change is adjusted. In comparison, precise flow rate adjustment is possible.
  • the low-temperature nitrogen gas refrigerant CNG derived from the heat exchanger 5C is supplied to the second heat exchanger 22 and cools the heat medium HM flowing through the heat medium circulation path 21 by heat exchange.
  • the second temperature detector 24 detects the temperature of the heat medium HM circulating in the heat medium circulation path 21.
  • the second temperature controller 25 outputs a second control signal CS2 corresponding to the difference between the temperature detected by the second temperature detector 24 and the desired temperature (target temperature) of the heating medium HM.
  • the first temperature detector 6C, the first temperature regulator 7C, the flow rate adjustment valve 8C, the first flow rate adjustment valve 9C, the second temperature detector 24, and the second temperature regulator 25 are configured as feedback.
  • the control the low-temperature nitrogen gas refrigerant CNG and the heat medium HM are adjusted to desired temperatures.
  • the heat medium HM adjusted to a desired temperature is supplied to the jacket 31 a of the low temperature reaction tank 31 by the operation of the heat medium circulation pump 23. Thereby, the reaction liquid inside the reaction tank is cooled and adjusted to a constant temperature.
  • liquefied nitrogen LNG is converted into liquefied nitrogen vaporized gas LNG having a temperature close to room temperature nitrogen gas NNG by the first heat exchanger 5C and mixed. Therefore, uniform mixing can be realized.
  • the ejector 4C is used for the mixing, even if the pressures are different from each other, the mixing can be easily realized, and the apparatus is smaller than the case of using a general mixer. Can be
  • the liquefied nitrogen LNG is converted into the liquefied nitrogen vaporized gas LNG having a temperature close to the normal temperature nitrogen gas NNG by the first heat exchanger 5C and mixed, the flow rates of the normal temperature nitrogen gas NNG and the liquefied nitrogen vaporized gas LNG
  • the temperature control of the low-temperature nitrogen gas refrigerant CNG by adjustment is stabilized.
  • flow rate pulsation control caused by temperature pulsation changes due to poor mixing is avoided, control is stabilized.
  • the target temperature of the low-temperature nitrogen gas refrigerant CNG changes, the value can be appropriately followed.
  • the cold energy of the liquefied nitrogen LN can be efficiently used for generating the low temperature nitrogen gas refrigerant CNG.
  • the temperature of the heat medium HM circulating in the heat medium circulation path 21 can be controlled accurately and stably. Therefore, the target temperature of the heating medium HM can be set more ideally with the freezing point of the heating medium HM in mind. That is, the target temperature of the heat medium HM can be set near its freezing point without causing the heat medium HM to freeze in the second heat exchanger 22. This can prevent the heat medium circulation path 21 from being blocked due to freezing and the resulting pressure loss in the path, suppress excessive heat penetration, and save labor as the entire apparatus.
  • the reaction tank 31 uses the heating medium HM that is accurately and stably controlled at a low temperature close to its freezing point, the reaction tank can be stably controlled at a lower temperature, and a wide range of temperature control is possible. .
  • the low-temperature gas supply device 100A, the heat medium cooling device 200A, and the low-temperature reaction control device 300A of the first embodiment described above are the temperatures of the low-temperature nitrogen gas refrigerant CNG detected by the temperature detector 6A (that is, in the mixing path 3A).
  • the flow rate of the low-temperature nitrogen gas refrigerant CNG derived from the heat exchanger 5A does not change and is stable. There is an advantage of doing.
  • the low-temperature nitrogen gas refrigerant CNG for heat exchange with the heating medium HM It may be necessary to increase the flow rate.
  • the flow rate of the low-temperature nitrogen gas refrigerant CNG becomes maximum when the flow rate adjustment valve 26 is maximized. .
  • the temperature of the heat medium HM detected by the second temperature detector 24 ie, heat Based on the temperature of the heat medium HM flowing downstream of the second heat exchanger 22 in the medium circulation path 21, the flow rate of the room temperature nitrogen gas NNG serving as a base flow rate for increasing or decreasing the flow rate of the low temperature nitrogen gas refrigerant CNG is adjusted. It has a configuration. For this reason, when the load in the low temperature reaction tank 31 increases, the cooling heat necessary for the heating medium HM increases, and it becomes necessary to increase the flow rate of the low temperature nitrogen gas refrigerant CNG for heat exchange with the heating medium HM.
  • the flow rate of the low-temperature nitrogen gas refrigerant CNG derived from the first heat exchanger 5C can be increased or decreased to a desired value according to the temperature of the heat medium HM. Therefore, both the temperature and flow rate of the low-temperature nitrogen gas refrigerant CNG are adjusted in order to obtain cold heat necessary for cooling the heat medium HM, and more stable temperature control of the heat medium HM can be realized.
  • the apparatus can be reduced in size and cost.
  • FIG. 4 is a system diagram of a fourth embodiment of the low-temperature gas supply device, the heat medium cooling device, and the low-temperature reaction control device of the present invention.
  • a low temperature gas supply apparatus 100D includes a normal temperature path 1D through which normal temperature nitrogen gas (GN 2 ) NNG is introduced from one end, and liquefied nitrogen (LN 2 ) LN ( For example, -196 ° C.) is introduced from one end, a low-temperature path 2D through which a low-temperature nitrogen gas refrigerant described later flows, a room-temperature nitrogen gas NNG introduced from the room-temperature path 1D, and a liquefaction introduced from the low-temperature path 2D.
  • GN 2 normal temperature nitrogen gas
  • LN 2 liquefied nitrogen
  • the first heat exchanger 5D is discharged as a gas LNG resulting from the vaporization of the nitrogen gas CNNG and the liquefied nitrogen LN (hereinafter referred to as “liquefied nitrogen vaporized gas”) LNG after heat exchange with the nitrogen LNG, respectively.
  • an ejector 4D that mixes the nitrogen gas CNNG after heat exchange discharged from the first heat exchanger 5D and the liquefied nitrogen vaporized gas LNG to generate a low-temperature nitrogen gas refrigerant CNG
  • a first temperature detector 6D that detects the temperature of the low-temperature nitrogen gas refrigerant CNG flowing through the mixing path 3D, and a first temperature controller 7D that outputs a first control signal CS1 based on the temperature detected by the first temperature detector 6D;
  • the flow rate adjusting valve 8D for adjusting the flow rate of the normal temperature nitrogen gas NNG flowing in the normal temperature path 1D based on a second control signal CS2 to be described later, and the first heat exchanger 5D in the low temperature path 2D based on the first control signal CS1.
  • a first flow rate adjusting valve 9D that adjusts the flow rate of the liquefied nitrogen vaporized gas LNG that flows downstream.
  • route 2D are running in parallel, and it is comprised so that the normal temperature nitrogen gas NNG and liquefied nitrogen LN which flow through each may mutually heat-exchange.
  • the normal temperature path 1D and the low temperature path 2D are arranged so that the normal temperature nitrogen gas NNG and the liquefied nitrogen LN flow in the same direction.
  • the heat medium cooling device 200D includes a low-temperature gas supply device 100D configured as described above, a heat medium circulation path 21 through which the heat medium HM circulates, and a mixing path. 3A and the heat medium circulation path 21 run side by side so that the low-temperature nitrogen gas refrigerant CNG and the heat medium HM flowing through each of the heat exchangers 2A and 22B exchange heat with each other, A heat medium circulation pump 23 that circulates the medium HM in the heat medium circulation path 21, a second temperature detector 24 that detects the temperature of the heat medium HM that circulates in the heat medium circulation path 21, and a second temperature detector 24.
  • the second temperature regulator 25 that outputs the second control signal CS2 on the basis of the detected temperature and the reserve tank 27 for absorbing the expansion and contraction accompanying the temperature change of the heating medium.
  • the low temperature reaction control apparatus 300D includes a heat medium cooling apparatus 200D having the above-described configuration, except that the low temperature reaction control apparatus 300A according to the first to third embodiments. , 300B, 300C.
  • the room temperature nitrogen gas NNG is introduced from one end of the room temperature path 1D and introduced into the first heat exchanger 5D. Further, liquefied nitrogen (LN 2 ) LN is introduced from one end of the low-temperature path 2D and introduced into the first heat exchanger 5D.
  • the first heat exchanger 5D performs heat exchange between the room temperature nitrogen gas NNG introduced from the room temperature path 1D and the liquefied nitrogen LN introduced from the low temperature path 2D, thereby reducing the temperature difference and the nitrogen gas after heat exchange.
  • CNNG and gas resulting from vaporization of liquefied nitrogen LN hereinafter referred to as “liquefied nitrogen vaporized gas”) LNG are discharged.
  • the ejector 4D mixes the nitrogen gas CNNG after heat exchange discharged from the first heat exchanger 5D and the liquefied nitrogen vaporized gas LNG using their pressure difference to generate a low-temperature nitrogen gas refrigerant CNG.
  • the first temperature detector 6D detects the temperature of the low-temperature nitrogen gas refrigerant CNG flowing through the mixing path 3D.
  • the first temperature controller 7D outputs a first control signal CS1 corresponding to the difference between the temperature detected by the first temperature detector 6D and the desired temperature (target temperature) of the low-temperature nitrogen gas refrigerant CNG.
  • the flow rate adjusting valve 8D adjusts the flow rate of the room temperature nitrogen gas NNG flowing upstream of the first heat exchanger 5D in the room temperature path 1D based on the second control signal CS2 output from the second temperature regulator 25.
  • the first flow rate adjusting valve 9D adjusts the flow rate of the liquefied nitrogen vaporized gas LNG flowing downstream of the first heat exchanger 5D in the low temperature path 2D based on the first control signal CS1.
  • the flow rate of the vaporized gas introduced into the ejector 4D may be adjusted on the primary side of the first heat exchanger 5D.
  • the secondary side of the first heat exchanger 5D that is, the liquefied nitrogen vaporized gas is used. Since the flow rate of LNG, that is, gas as a vaporized single phase, is adjusted, the flow rate of the primary side of the first heat exchanger 5D, that is, liquefied nitrogen LN accompanying phase change, is adjusted. Therefore, precise flow rate adjustment is possible.
  • the low-temperature nitrogen gas refrigerant CNG derived from the ejector 4D is supplied to the second heat exchanger 22 and cools the heat medium HM flowing through the heat medium circulation path 21 by heat exchange.
  • the second temperature detector 24 detects the temperature of the heat medium HM circulating in the heat medium circulation path 21.
  • the second temperature controller 25 outputs a second control signal CS2 corresponding to the difference between the temperature detected by the second temperature detector 24 and the desired temperature of the heating medium HM.
  • the feedback includes the first temperature detector 6D, the first temperature regulator 7D, the flow rate adjustment valve 8D, the first flow rate adjustment valve 9D, the second temperature detector 24, and the second temperature regulator 25.
  • the low-temperature nitrogen gas refrigerant CNG and the heat medium HM are adjusted to desired temperatures.
  • the heat medium HM adjusted to a desired temperature is supplied to the jacket 31 a of the low temperature reaction tank 31 by the operation of the heat medium circulation pump 23. Thereby, the reaction liquid inside the reaction tank is cooled and adjusted to a constant temperature.
  • the temperature of the heat medium HM circulating in the heat medium circulation path 21 can be controlled accurately and stably. Therefore, the target temperature of the heating medium HM can be set more ideally with the freezing point of the heating medium HM in mind. That is, the target temperature of the heat medium HM can be set near its freezing point without causing the heat medium HM to freeze in the second heat exchanger 22. This can prevent the heat medium circulation path 21 from being blocked due to freezing and the resulting pressure loss in the path, suppress excessive heat penetration, and save labor as the entire apparatus.
  • the reaction tank 31 uses the heating medium HM that is accurately and stably controlled at a low temperature close to its freezing point, the reaction tank can be stably controlled at a lower temperature, and a wide range of temperature control is possible. .
  • the low-temperature gas supply device 100B, the heat medium cooling device 200B, and the low-temperature reaction control device 300B of the second embodiment described above have the temperature of the low-temperature nitrogen gas refrigerant CNG detected by the temperature detector 6B (that is, in the mixing path 3B). Based on the temperature of the low-temperature nitrogen gas refrigerant CNG flowing downstream of the ejector 4B), the flow rates of the normal-temperature nitrogen gas NNG introduced into the normal-temperature path 1B and the liquefied nitrogen vaporized gas LNG introduced into the low-temperature path 2B are adjusted. .
  • the flow rate of the low-temperature nitrogen gas refrigerant CNG derived from the ejector 4B is stable without fluctuation.
  • the low-temperature nitrogen gas refrigerant CNG for heat exchange with the heating medium HM It may be necessary to increase the flow rate.
  • the flow rate of the low temperature nitrogen gas refrigerant CNG becomes maximum when the flow rate adjustment valve 26 is maximized. .
  • the temperature of the heat medium HM detected by the second temperature detector 24 (that is, Based on the temperature of the heat medium HM flowing downstream of the second heat exchanger 22 in the heat medium circulation path 21), the flow rate of the room temperature nitrogen gas NNG serving as a base flow rate for increasing or decreasing the flow rate of the low temperature nitrogen gas refrigerant CNG is adjusted. It is the composition to do. For this reason, when the load in the low temperature reaction tank 31 increases, the cooling heat necessary for the heating medium HM increases, and it becomes necessary to increase the flow rate of the low temperature nitrogen gas refrigerant CNG for heat exchange with the heating medium HM.
  • the flow rate of the low-temperature nitrogen gas refrigerant CNG derived from the ejector 4D can be increased or decreased to a desired value according to the temperature of the heating medium HM. Therefore, both the temperature and flow rate of the low-temperature nitrogen gas refrigerant CNG are adjusted in order to obtain cold heat necessary for cooling the heat medium HM, and more stable temperature control of the heat medium HM can be realized.
  • the apparatus can be reduced in size and cost.
  • the low-temperature gas supply devices 100A to 100D according to the first to fourth embodiments described above can be applied to the following devices in addition to the heat medium cooling devices 200A to 200D.
  • the object can be uniformly cooled without the need for a stirring fan or the like.
  • it has a reaction tank that stores the reaction liquid, a jacket around the reaction tank or a heat exchanger installed in the reaction tank, and can be applied to a low-temperature reaction control device that supplies low-temperature gas to the jacket or the heat exchanger.
  • a low-temperature reaction control device that supplies low-temperature gas to the jacket or the heat exchanger.
  • the flow rate adjusting valve is shown as the flow rate adjusting means for the room temperature nitrogen gas NNG and the flow rate adjusting means for the liquefied nitrogen vaporized gas LNG.
  • the present invention is not limited to this.
  • other flow rate adjusting means such as a mass flow controller can be used as appropriate.
  • the second heat exchanger 22 for example, a double tube heat exchanger, a plate heat exchanger, a plate fin heat exchanger, a shell & tube heat exchanger, a tank & coil heat exchanger, or the like. Can be adopted.
  • a plate heat exchanger is desirable. This is because it is highly efficient and contributes to downsizing of the apparatus.
  • a highly efficient heat exchanger like a plate type is desirable. This is because the warm-end temperature difference is small, so that mixing is easy and miniaturization is possible.
  • the room temperature nitrogen gas NNG and the liquefied nitrogen LN are employed, but they are not necessarily the same type, and different gases may be mixed.
  • the target gas in addition to nitrogen, oxygen, argon, carbon dioxide, LNG, fluorine-based refrigerants such as chlorofluorocarbon and hydrofluorocarbon, and the like can be used.
  • the temperature is higher than that of the low-temperature liquefied gas, not only normal temperature but also any temperature gas can be mixed with the low-temperature liquefied gas.
  • the low-temperature gas supply device, heat medium cooling device, and low-temperature reaction control device of the present invention can be used for temperature control in chemical reaction processes such as organic synthesis and crystallization.
  • Low temperature gas supply devices 1A, 1B, 1C, 1D ... Normal temperature paths 2A, 2B, 2C, 2D ... Low temperature paths 3A, 3B, 3C, 3D ...
  • First regulating valves 200A, 200B, 200C, 200D ... Heat medium cooling device 21 ... Heat medium circulation path 22 2nd heat exchanger 23 ... Heat medium circulation pump 24 ... 2nd temperature detector 25 ... 2nd temperature controller 26 ... 2nd control valve 27 ... Reserve tank 300A, 300B, 300C, 300D ... low temperature reaction control device 31 ... low temperature reaction tank 31a ... jacket 31b ... stirring motor

Abstract

This low temperature gas supply device is provided with: a first heat exchanger; a mixing means; and a first control means. The first heat exchanger discharges a mixed gas as a low temperature gas coolant and discharges a low temperature-liquefied gas as a vaporized gas by introducing said low temperature-liquefied gas and the mixed gas, which is the vaporized gas of the low temperature-liquefied gas mixed with a gas of a temperature higher than the low temperature-liquefied gas, and causing same to exchange heat with each other. The mixing means mixes the gas with the vaporized gas discharged from the first heat exchanger and discharges same as a mixed gas. Based on the difference between the temperature detected for the low temperature gas coolant and the intended temperature, the first control means adjusts the respective amounts of the gas and the vaporized gas introduced into the mixing means and regulates the temperature of the low temperature gas coolant to the intended temperature.

Description

低温ガス供給装置、熱媒冷却装置、及び低温反応制御装置Low temperature gas supply device, heat medium cooling device, and low temperature reaction control device
 本発明は、低温ガス供給装置、熱媒冷却装置、及び低温反応制御装置に関するものである。
 本願は、2011年10月11日に、日本に出願された特願2011-223716号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a low-temperature gas supply device, a heat medium cooling device, and a low-temperature reaction control device.
This application claims priority based on Japanese Patent Application No. 2011-223716 filed in Japan on October 11, 2011, the contents of which are incorporated herein by reference.
 有機合成や晶析等の化学反応プロセスにおいては、低温域での精度の高い温度制御が要求される。そのため、後述の特許文献に示すように低温反応装置を用いることがある。かかる低温反応装置においては、反応槽の外側に熱媒が流通可能な独立した槽(ジャケット)を設けた二重構造の容器が使用され、このジャケット部に低温に温度制御された熱媒を供給し、反応槽内部の反応液を一定温度に冷却調整している。 In chemical reaction processes such as organic synthesis and crystallization, high-precision temperature control at low temperatures is required. Therefore, a low-temperature reaction apparatus may be used as shown in the patent document described later. In such a low-temperature reactor, a double-structured container provided with an independent tank (jacket) through which the heat medium can flow is used outside the reaction tank, and the temperature-controlled heat medium is supplied to this jacket part. The reaction liquid inside the reaction tank is cooled and adjusted to a constant temperature.
 反応槽へ供給する熱媒は、熱交換器において、熱媒の凝固点よりも低温の低温液化ガス(例えば液化窒素)等と熱交換させることにより、所定の温度以下に冷却されるよう温度制御されてから、反応槽のジャケットに供給される。 The heat medium supplied to the reaction tank is temperature controlled so that it is cooled below a predetermined temperature by heat exchange with a low-temperature liquefied gas (eg, liquefied nitrogen) having a temperature lower than the freezing point of the heat medium in the heat exchanger. Then, it is supplied to the jacket of the reaction vessel.
 このような冷却装置においては、熱交換器内での熱媒凍結を防止する必要がある。つまり熱交換器内で熱媒が凍結すると、流路を閉塞するため、熱媒循環ができなくなる場合があるからである。また、熱媒凍結により流路が閉塞すると、熱交換器の圧力損失が大きくなることにより設計上オーバースペックのポンプが必要となり、ポンプの熱侵入が増加するため、冷却用の低温液化ガスの使用量が増加するからである。 In such a cooling device, it is necessary to prevent the heat medium from freezing in the heat exchanger. That is, if the heat medium freezes in the heat exchanger, the flow path is closed, and the heat medium may not be circulated. In addition, if the flow path is blocked due to freezing of the heat medium, the pressure loss of the heat exchanger increases, so an over-spec pump is required by design, and heat penetration of the pump increases, so the use of low-temperature liquefied gas for cooling This is because the amount increases.
 従来は、熱媒凍結の進行を防止するため、熱媒冷却温度を熱媒凝固点よりも充分に高い温度に設定しなければならなかった。すなわち、熱媒の本来持つ低温特性を充分に発揮できていなかった。 Conventionally, in order to prevent the heat medium freezing from proceeding, the heat medium cooling temperature had to be set to a temperature sufficiently higher than the heat medium freezing point. In other words, the low temperature characteristics inherent to the heat medium could not be sufficiently exhibited.
 上述のような熱媒凍結を回避するための技術は既にいくつか開示されている。例えば、特許文献1は、熱交換器の熱媒出入り口部の熱媒差圧、或いは熱交換器の低温液化ガス出口部の蒸発ガス温度により、低温液化ガスの供給を遮断する手段を設けて実現化している。また、特許文献2は、熱交換器伝熱面の温度を検知して低温液化ガス供給量を制御することで実現化している。 Several techniques for avoiding freezing of the heat medium as described above have already been disclosed. For example, Patent Document 1 is realized by providing means for cutting off the supply of the low-temperature liquefied gas by the heat medium differential pressure at the heat medium inlet / outlet part of the heat exchanger or the evaporating gas temperature at the low-temperature liquefied gas outlet part of the heat exchanger. It has become. Moreover, patent document 2 is implement | achieved by detecting the temperature of a heat exchanger heat exchanger surface, and controlling the supply amount of low temperature liquefied gas.
 上述の特許文献に開示された技術により、低温液化ガスの過剰供給による熱交換器内部での熱媒凝固の進行を防ぐことが可能となるものの、熱媒の凝固は少なからず発生してしまう。 Although the technique disclosed in the above-mentioned patent document can prevent the progress of the solidification of the heat medium inside the heat exchanger due to the excessive supply of the low-temperature liquefied gas, the solidification of the heat medium occurs not a little.
 一方、熱交換器内部での熱媒凝固をより確実に抑える方法として、熱交換器に供給する低温液化ガスの温度を調整する、具体的には低温液化ガスを昇温させた状態で熱交換器に供給する手法が考えられる。 On the other hand, as a method of more reliably suppressing the heat medium coagulation inside the heat exchanger, the temperature of the low-temperature liquefied gas supplied to the heat exchanger is adjusted. Specifically, heat exchange is performed with the temperature of the low-temperature liquefied gas raised. A method of supplying to the vessel is conceivable.
 低温液化ガスを昇温させる手法の1つに、低温液化ガスとそれより温度の高いガス、例えば同種の常温のガスとを混合することがある。しかし、単純な混合器では混合後の低温ガスに温度ムラや脈動が発生する問題があった。例えば液化窒素と常温窒素ガスとの温度差は大きく、液化窒素は少ない流量で大きな冷熱を持っているため、微小流量の制御が難しく、混合後の低温窒素ガスの流量の脈動や混合不良による温度ムラが発生する問題があった。これを解決するには、例えば特許文献3に開示されているような、効率の良い又は大きな混合器が必要になり、設備のコストアップを招いてしまう。 One method for raising the temperature of a low-temperature liquefied gas is to mix a low-temperature liquefied gas with a gas having a higher temperature, for example, the same kind of normal temperature gas. However, a simple mixer has a problem that temperature unevenness and pulsation occur in the low-temperature gas after mixing. For example, the temperature difference between liquefied nitrogen and room temperature nitrogen gas is large, and liquefied nitrogen has a large amount of cold heat at a small flow rate. There was a problem of unevenness. In order to solve this, for example, an efficient or large mixer as disclosed in Patent Document 3 is required, resulting in an increase in equipment cost.
特開平11-037623号公報Japanese Patent Laid-Open No. 11-037623 特開2009-287822号公報JP 2009-287822 A 特開平09-287883号公報Japanese Patent Laid-Open No. 09-287883
 本発明は、上記事情に鑑みてなされたものであって、正確に、かつ安定的に制御された低温ガス冷媒を供給することができる低温ガス供給装置と、その低温ガス冷媒を導入して、それとの熱交換により、凝固することなく、正確に、かつ安定的に制御された熱媒を排出することができる熱媒冷却装置と、その熱媒を利用して、幅広い温度域で安定制御を実現できる低温反応制御装置を提供する。 The present invention has been made in view of the above circumstances, and introduces a low-temperature gas supply device capable of supplying a low-temperature gas refrigerant accurately and stably controlled, and the low-temperature gas refrigerant, By heat exchange with it, the heat medium cooling device that can discharge the heat medium controlled accurately and stably without solidification, and stable control in a wide temperature range using the heat medium A low-temperature reaction control device that can be realized is provided.
 本発明は、上記課題を解決するため、以下の手段を採用する。
(1)低温液化ガスが気化した気化ガス及び前記低温液化ガスよりも温度の高いガスが混合された混合ガスと前記低温液化ガスとを導入して互いに熱交換させることにより、前記混合ガスを低温ガス冷媒として排出するとともに、前記低温液化ガスを前記気化ガスとして排出する第一熱交換器と、
 前記ガスと、前記第一熱交換器から排出された前記気化ガスとを混合して、前記混合ガスとして排出する混合手段と、
 前記低温ガス冷媒について検出された温度と、その目標温度との差異に基づき、前記混合手段に導入される前記ガス及び前記気化ガスのそれぞれの量を調整して、前記低温ガス冷媒の温度を前記目標温度に制御する第一制御手段と、を備える低温ガス供給装置。
(2)低温液化ガス及び前記低温液化ガスよりも温度の高いガスを導入して互いに熱交換させることにより、それぞれ前記低温液化ガスが気化した気化ガス及び熱交換後の前記ガスである熱交換後ガスとして排出する第一熱交換器と、
 前記第一熱交換器から排出された前記熱交換後ガスと前記気化ガスとを混合して、低温ガス冷媒として排出する混合手段と、
 前記低温ガス冷媒について検出された温度と、その目標温度との差異に基づき、前記第一熱交換器に導入される前記低温液化ガスよりも温度の高いガスの量と、前記混合手段に導入される前記気化ガスの量を調整して、前記低温ガス冷媒の温度を前記目標温度に制御する第一制御手段と、を備える低温ガス供給装置。
(3)前記混合手段は、エゼクタである(1)又は(2)に記載の低温ガス供給装置。
(4)(1)に記載の低温ガス供給装置又は(2)に記載の低温ガス供給装置と、
 前記低温ガス供給装置から排出される、前記温度制御された前記低温ガス冷媒と、循環経路を巡廻する熱媒とを互いに熱交換させる第二熱交換器と、
 前記熱媒について検出された温度と、その熱媒目標温度との差異に基づき、前記第二熱交換器に導入される前記低温ガス冷媒の量を調整して、前記熱媒の温度を前記熱媒目標温度に制御する第二制御手段と、を備える熱媒冷却装置。
(5)(4)に記載の熱媒冷却装置と、
 前記循環経路を循環する、前記温度制御された前記熱媒を導入して、反応槽内部の反応液を所望温度に冷却調整するように構成された低温反応槽と、を備える低温反応制御装置。
(6)低温液化ガスが気化した気化ガス及び前記低温液化ガスよりも温度の高いガスが混合された混合ガスと前記低温液化ガスとを導入して互いに熱交換させることにより、前記混合ガスを低温ガス冷媒として排出するとともに、前記低温液化ガスを前記気化ガスとして排出する第一熱交換器と、
 前記ガスと、前記第一熱交換器から排出された前記気化ガスとを混合して、前記混合ガスとして排出する混合手段と、
 前記低温ガス冷媒について検出された温度と、その目標温度との差異に基づき、前記混合手段に導入される前記ガスの量を調整して、前記低温ガス冷媒の温度を前記目標温度に制御する第一制御手段と、
 前記第一熱交換器から排出される、前記温度制御された前記低温ガス冷媒と、循環経路を巡廻する熱媒とを互いに熱交換させる第二熱交換器と、
 前記熱媒について検出された温度と、その熱媒目標温度との差異に基づき、前記ガスの量を調整して、前記熱媒の温度を前記熱媒目標温度に制御する第二制御手段とを備える熱媒冷却装置。
(7)低温液化ガス及び前記低温液化ガスよりも温度の高いガスを導入して互いに熱交換させることにより、それぞれ前記低温液化ガスが気化した気化ガス及び熱交換後の前記ガスである熱交換後ガスとして排出する第一熱交換器と、
 前記第一熱交換器から排出された前記熱交換後ガスと前記気化ガスとを混合して、低温ガス冷媒として排出する混合手段と、
 前記低温ガス冷媒について検出された温度と、その目標温度との差異に基づき、前記混合手段に導入される前記気化ガスの量を調整して、前記低温ガス冷媒の温度を前記目標温度に制御する第一制御手段と、
 前記第一熱交換器から排出される、前記温度制御された前記低温ガス冷媒と、循環経路を巡廻する熱媒とを互いに熱交換させる第二熱交換器と、
 前記熱媒について検出された温度と、その熱媒目標温度との差異に基づき、前記ガスの量を調整して、前記熱媒の温度を前記熱媒目標温度に制御する第二制御手段とを備える熱媒冷却装置。
(8)(6)に記載の熱媒冷却装置又は(7)に記載の熱媒冷却装置と、
 前記循環経路を循環する、前記温度制御された前記熱媒を導入して、反応槽内部の反応液を所望温度に冷却調整するように構成された低温反応槽と、を備える低温反応制御装置。
The present invention employs the following means in order to solve the above problems.
(1) A gas mixture obtained by mixing a vaporized gas obtained by vaporizing a low-temperature liquefied gas and a gas having a temperature higher than that of the low-temperature liquefied gas and the low-temperature liquefied gas are introduced into each other to exchange heat with each other. A first heat exchanger that discharges as a gas refrigerant and discharges the low-temperature liquefied gas as the vaporized gas;
Mixing means for mixing the gas and the vaporized gas discharged from the first heat exchanger and discharging the mixed gas as the mixed gas;
Based on the difference between the temperature detected for the low-temperature gas refrigerant and its target temperature, the respective amounts of the gas and the vaporized gas introduced into the mixing means are adjusted so that the temperature of the low-temperature gas refrigerant is And a first control means for controlling to a target temperature.
(2) After the heat exchange, which is the vaporized gas obtained by vaporizing the low-temperature liquefied gas and the gas after the heat exchange by introducing a low-temperature liquefied gas and a gas having a temperature higher than that of the low-temperature liquefied gas and exchanging heat with each other. A first heat exchanger that discharges as gas;
Mixing means for mixing the gas after heat exchange discharged from the first heat exchanger with the vaporized gas and discharging it as a low-temperature gas refrigerant;
Based on the difference between the temperature detected for the low-temperature gas refrigerant and its target temperature, the amount of gas having a temperature higher than that of the low-temperature liquefied gas introduced into the first heat exchanger and the mixing means are introduced. A first control means for adjusting the amount of the vaporized gas to control the temperature of the low-temperature gas refrigerant to the target temperature.
(3) The low temperature gas supply device according to (1) or (2), wherein the mixing means is an ejector.
(4) The low-temperature gas supply device according to (1) or the low-temperature gas supply device according to (2),
A second heat exchanger for exchanging heat between the temperature-controlled low-temperature gas refrigerant discharged from the low-temperature gas supply device and a heat medium circulating in a circulation path;
Based on the difference between the detected temperature of the heat medium and the target temperature of the heat medium, the amount of the low-temperature gas refrigerant introduced into the second heat exchanger is adjusted to control the temperature of the heat medium. And a second control means for controlling to the medium target temperature.
(5) The heat medium cooling device according to (4),
A low-temperature reaction control apparatus comprising: a low-temperature reaction tank configured to introduce the temperature-controlled heating medium that circulates in the circulation path and to cool and adjust the reaction liquid inside the reaction tank to a desired temperature.
(6) A gas mixture obtained by mixing a vaporized gas obtained by vaporizing a low-temperature liquefied gas and a gas having a temperature higher than that of the low-temperature liquefied gas and the low-temperature liquefied gas are introduced into each other to exchange heat with each other. A first heat exchanger that discharges as a gas refrigerant and discharges the low-temperature liquefied gas as the vaporized gas;
Mixing means for mixing the gas and the vaporized gas discharged from the first heat exchanger and discharging the mixed gas as the mixed gas;
The temperature of the low temperature gas refrigerant is controlled to the target temperature by adjusting the amount of the gas introduced into the mixing means based on the difference between the temperature detected for the low temperature gas refrigerant and the target temperature. A control means;
A second heat exchanger for exchanging heat between the temperature-controlled low-temperature gas refrigerant discharged from the first heat exchanger and a heat medium circulating in a circulation path;
Second control means for adjusting the amount of the gas based on the difference between the temperature detected for the heat medium and the heat medium target temperature, and controlling the temperature of the heat medium to the heat medium target temperature; Heat medium cooling device provided.
(7) After heat exchange, which is a vaporized gas obtained by vaporizing the low-temperature liquefied gas and the gas after heat exchange by introducing a low-temperature liquefied gas and a gas having a temperature higher than that of the low-temperature liquefied gas and exchanging heat with each other. A first heat exchanger that discharges as gas;
Mixing means for mixing the gas after heat exchange discharged from the first heat exchanger with the vaporized gas and discharging it as a low-temperature gas refrigerant;
Based on the difference between the temperature detected for the low-temperature gas refrigerant and the target temperature, the amount of the vaporized gas introduced into the mixing means is adjusted to control the temperature of the low-temperature gas refrigerant to the target temperature. First control means;
A second heat exchanger for exchanging heat between the temperature-controlled low-temperature gas refrigerant discharged from the first heat exchanger and a heat medium circulating in a circulation path;
Second control means for adjusting the amount of the gas based on the difference between the temperature detected for the heat medium and the heat medium target temperature, and controlling the temperature of the heat medium to the heat medium target temperature; Heat medium cooling device provided.
(8) The heat medium cooling device according to (6) or the heat medium cooling device according to (7),
A low-temperature reaction control apparatus comprising: a low-temperature reaction tank configured to introduce the temperature-controlled heating medium that circulates through the circulation path and to cool and adjust the reaction liquid in the reaction tank to a desired temperature.
 本発明の低温ガス供給装置は、低温液化ガスとそれより高温のガスとを温度差を減らしてから混合しているので、均一な混合を実現するのに、混合手段の特殊性を回避でき、その選択の幅が広がる。また、温度の近い2つのガスとして混合しているので、混合前の各ガスの流量調整による低温ガス冷媒の温度制御が安定する。特に混合不良による温度の脈動的変化に起因する流量の脈動制御が回避されるので、制御が安定化する。また、低温ガス冷媒の目標温度が変わっても、適切にその値に追従できる。一方、低温液化ガスの冷熱を、効率よく低温ガス冷媒の生成に利用できる。 The low-temperature gas supply apparatus of the present invention mixes the low-temperature liquefied gas and the higher-temperature gas after reducing the temperature difference. Therefore, to achieve uniform mixing, the peculiarity of the mixing means can be avoided. The range of choices expands. Moreover, since it mixes as two gas with near temperature, temperature control of the low temperature gas refrigerant | coolant by the flow volume adjustment of each gas before mixing is stabilized. In particular, since flow rate pulsation control caused by temperature pulsation changes due to poor mixing is avoided, control is stabilized. Moreover, even if the target temperature of the low-temperature gas refrigerant changes, the value can be appropriately followed. On the other hand, the cold heat of the low-temperature liquefied gas can be efficiently used for generating the low-temperature gas refrigerant.
 また、混合手段としてエゼクタを選択した場合には、温度の近い2つのガスの圧力が互いに異なる場合でも混合が容易となる。また、一般の混合器を使用する場合と比較して装置を小型化できる。 Also, when an ejector is selected as the mixing means, mixing is easy even when the pressures of two gases close to each other are different from each other. Further, the apparatus can be downsized as compared with the case of using a general mixer.
 本発明の熱媒冷却装置は、温度が安定している低温ガス冷媒を第二熱交換器に導入することにより、循環経路を巡廻する熱媒の温度を正確に、かつ安定的に制御しているので、熱媒の凝固点を念頭においた熱媒の目標温度をより理想的に設定できる。つまり、第二熱交換器内で熱媒の凍結を発生させることなく、熱媒の目標温度をその凝固点近くに設定することができる。これにより、凍結による循環経路の閉塞とそれによる経路内の圧力損失を防止でき、過度の熱侵入を抑え、装置全体として省力化できる。 The heat medium cooling device of the present invention accurately and stably controls the temperature of the heat medium circulating in the circulation path by introducing a low-temperature gas refrigerant having a stable temperature into the second heat exchanger. Therefore, the target temperature of the heating medium can be set more ideally with the freezing point of the heating medium in mind. That is, the target temperature of the heat medium can be set close to its freezing point without causing the heat medium to freeze in the second heat exchanger. As a result, blockage of the circulation path due to freezing and pressure loss in the path due to freezing can be prevented, excessive heat intrusion can be suppressed, and the entire apparatus can be saved in labor.
 本発明の低温反応制御装置は、その凝固点に近い低温に正確に安定的に制御された熱媒を使用して、反応槽を低温制御できるので、幅広い温度域での安定制御が可能となる。 The low-temperature reaction control apparatus of the present invention can control the reaction tank at low temperature using a heat medium accurately and stably controlled at a low temperature close to its freezing point, so that stable control in a wide temperature range is possible.
本発明を適用した第1の実施形態である低温ガス供給装置、熱媒冷却装置、及び低温反応制御装置を示す系統図である。1 is a system diagram showing a low-temperature gas supply device, a heat medium cooling device, and a low-temperature reaction control device according to a first embodiment to which the present invention is applied. 本発明を適用した第2の実施形態である低温ガス供給装置、熱媒冷却装置、及び低温反応制御装置を示す系統図である。It is a systematic diagram which shows the low temperature gas supply apparatus, the heat-medium cooling device, and low temperature reaction control apparatus which are 2nd Embodiment to which this invention is applied. 本発明を適用した第3の実施形態である低温ガス供給装置、熱媒冷却装置、及び低温反応制御装置を示す系統図である。It is a systematic diagram which shows the low temperature gas supply apparatus, the heat-medium cooling device, and low temperature reaction control apparatus which are 3rd Embodiment to which this invention is applied. 本発明を適用した第4の実施形態である低温ガス供給装置、熱媒冷却装置、及び低温反応制御装置を示す系統図である。It is a systematic diagram which shows the low temperature gas supply apparatus which is 4th Embodiment to which this invention is applied, a heat-medium cooling device, and a low temperature reaction control apparatus.
 以下、本発明を適用した一実施形態である低温ガス供給装置、熱媒冷却装置、及び低温反応制御装置について、図面を用いて詳細に説明する。
 なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
Hereinafter, a low-temperature gas supply device, a heat medium cooling device, and a low-temperature reaction control device, which are embodiments to which the present invention is applied, will be described in detail with reference to the drawings.
In addition, in the drawings used in the following description, in order to make the features easy to understand, there are cases where the portions that become the features are enlarged for the sake of convenience, and the dimensional ratios of the respective components are not always the same as the actual ones. Absent.
<第1実施形態>
 先ず、本発明を適用した第1実施形態に係る低温ガス供給装置100A、熱媒冷却装置200A、及び低温反応制御装置300Aの構成について説明する。図1は、本発明の低温ガス供給装置、熱媒冷却装置、及び低温反応制御装置における第1実施形態の系統図である。
<First Embodiment>
First, the configuration of the low-temperature gas supply device 100A, the heat medium cooling device 200A, and the low-temperature reaction control device 300A according to the first embodiment to which the present invention is applied will be described. FIG. 1 is a system diagram of a first embodiment of the low-temperature gas supply device, the heat medium cooling device, and the low-temperature reaction control device of the present invention.
 図1に示すように、本発明の第1実施形態に係る低温ガス供給装置100Aは、後述する低温液化ガスより高温のガスとして常温窒素ガス(GN)NNGが一端から導入される常温経路1Aと、低温液化ガスとして液化窒素(LN)LN(例えば-196℃)が一端から導入される低温経路2Aと、後述する混合ガス及び低温窒素ガス冷媒が流れる混合経路3Aと、常温経路1Aの他端から導入される常温窒素ガスNNGと、低温経路2Aの他端から導入される、液化窒素LNが気化した結果のガス(以下、「液化窒素気化ガス」と称す)LNGとを混合して、混合ガスCGを生成するエゼクタ(混合手段)4Aと、低温経路2Aが貫通することにより上記液化窒素LNを導入して液化窒素気化ガスLNGとして排出する一方で、混合経路3Aが貫通することにより上記混合ガスCGを導入して低温窒素ガス冷媒CNGとして排出する第1熱交換器5Aと、混合経路3Aにおける第1熱交換器5Aの下流を流れる低温窒素ガス冷媒CNGの温度を検出する第1温度検出器6Aと、第1温度検出器6Aによる検出温度に基づき、第1制御信号CS1を出力する第1温度調節器(第一制御手段)7Aと、第1制御信号CS1に基づき、常温経路1Aに流れる常温窒素ガスNNGの流量を調整する流量調整弁8Aと、第1制御信号CS1に基づき、低温経路2Aにおける第1熱交換器5Aの下流を流れる液化窒素気化ガスLNGの流量を調整する第1流量調整弁9Aと、を備えている。 As shown in FIG. 1, the low temperature gas supply apparatus 100A according to the first embodiment of the present invention includes a normal temperature path 1A through which normal temperature nitrogen gas (GN 2 ) NNG is introduced from one end as a gas having a temperature higher than a low temperature liquefied gas described later. A low-temperature path 2A through which liquefied nitrogen (LN 2 ) LN (for example, −196 ° C.) is introduced from one end as a low-temperature liquefied gas, a mixing path 3A through which a mixed gas and a low-temperature nitrogen gas refrigerant described later flow, Mix the room temperature nitrogen gas NNG introduced from the other end with the gas LNG introduced from the other end of the low temperature path 2A as a result of vaporization of the liquefied nitrogen LNG (hereinafter referred to as “liquefied nitrogen vaporized gas”). The ejector (mixing means) 4A that generates the mixed gas CG and the low temperature path 2A penetrate the liquefied nitrogen LN and discharge it as the liquefied nitrogen vaporized gas LNG. The first heat exchanger 5A that introduces the mixed gas CG and discharges it as the low-temperature nitrogen gas refrigerant CNG through the passage 3A, and the low-temperature nitrogen gas refrigerant CNG that flows downstream of the first heat exchanger 5A in the mixing path 3A. A first temperature detector 6A that detects the temperature of the first temperature, a first temperature controller (first control means) 7A that outputs a first control signal CS1 based on the temperature detected by the first temperature detector 6A, and a first control A flow rate adjusting valve 8A that adjusts the flow rate of the room temperature nitrogen gas NNG that flows in the room temperature path 1A based on the signal CS1, and a liquid nitrogen vaporization that flows downstream of the first heat exchanger 5A in the low temperature path 2A based on the first control signal CS1. And a first flow rate adjusting valve 9A that adjusts the flow rate of the gas LNG.
 なお、第1熱交換器5A内において、低温経路2Aと混合経路3Aとは並走しており、それぞれに流れる液化窒素LNと混合ガスCGとが互いに熱交換するように構成されている。特に、それらの液化窒素LNと混合ガスCGとが互いに逆方向に流れるように、つまり対向流となるように、低温経路2A及び混合経路3Aが配設されている。 Note that, in the first heat exchanger 5A, the low temperature path 2A and the mixing path 3A run side by side, and the liquefied nitrogen LN and the mixed gas CG flowing through each of them are configured to exchange heat with each other. In particular, the low temperature path 2A and the mixing path 3A are arranged so that the liquefied nitrogen LN and the mixed gas CG flow in opposite directions, that is, in a counterflow.
 また、本発明の第1実施形態に係る熱媒冷却装置200Aは、上述のような構成の低温ガス供給装置100Aと、それに加えて、熱媒HMが循環する熱媒循環経路21と、混合経路3Aと熱媒循環経路21とが並走して貫通することにより、それぞれに流れる低温窒素ガス冷媒CNGと熱媒HMとが互いに熱交換するように構成された第2熱交換器22と、熱媒HMを熱媒循環経路21内で循環させる熱媒循環ポンプ23と、熱媒循環経路21内を循環する熱媒HMの温度を検出する第2温度検出器24と、第2温度検出器24による検出温度に基づき、第2制御信号CS2を出力する第2温度調節器25と、第2制御信号CS2に基づき、混合経路3Aを流れる低温窒素ガス冷媒CNGの流量を調整する第2流量調整弁26と、熱媒の温度変化に伴う膨張、収縮を吸収するためのリザーブタンク27と、で構成される。 Further, the heat medium cooling device 200A according to the first embodiment of the present invention includes a low-temperature gas supply device 100A having the above-described configuration, a heat medium circulation path 21 through which the heat medium HM circulates, and a mixing path. 3A and the heat medium circulation path 21 run side by side so that the low-temperature nitrogen gas refrigerant CNG and the heat medium HM flowing through each of the heat exchangers 2A and 22B exchange heat with each other, A heat medium circulation pump 23 that circulates the medium HM in the heat medium circulation path 21, a second temperature detector 24 that detects the temperature of the heat medium HM that circulates in the heat medium circulation path 21, and a second temperature detector 24. A second temperature regulator 25 for outputting the second control signal CS2 based on the detected temperature by the second control valve CS, and a second flow rate adjusting valve for adjusting the flow rate of the low-temperature nitrogen gas refrigerant CNG flowing through the mixing path 3A based on the second control signal CS2. 26 and the temperature of the heating medium Expansion due to the change, a reserve tank 27 for absorbing shrinkage in constructed.
 また、本発明の第1実施形態に係る低温反応制御装置300Aは、上述のような構成の熱媒冷却装置200Aと、それに加えて、低温反応槽31とで構成されている。ここで、低温反応槽31は、少なくとも、熱媒HMが流通可能なジャケット31aと、反応液を攪拌するための攪拌モータ31bとを備えている。 Moreover, the low-temperature reaction control apparatus 300A according to the first embodiment of the present invention includes the heat medium cooling apparatus 200A having the above-described configuration and the low-temperature reaction tank 31 in addition thereto. Here, the low temperature reaction tank 31 includes at least a jacket 31a through which the heat medium HM can flow and a stirring motor 31b for stirring the reaction solution.
 次に、上述のように構成された第1実施形態に係る低温ガス供給装置100A、熱媒冷却装置200A、及び低温反応制御装置300Aの動作とその作用について説明する。 Next, the operation and operation of the low temperature gas supply device 100A, the heat medium cooling device 200A, and the low temperature reaction control device 300A according to the first embodiment configured as described above will be described.
 液化窒素(LN)LNが低温経路2Aの一端から導入されて、第1熱交換器5Aに導入される。液化窒素LNは、第1熱交換器5A内における、混合経路3A内の混合ガスCGとの熱交換により、液化窒素気化ガスLNGとなる。第1熱交換器5Aから排出された液化窒素気化ガスLNGと、一方、常温経路1Aの一端から導入された常温窒素ガスNNGとは、エゼクタ4Aに導入され、それらの圧力差を利用されて混合される。エゼクタ4Aから排出された混合ガスCGは、第1熱交換器5Aに導入され、低温経路2A内の液化窒素LNとの熱交換が行われると共に、乱流効果により均温化され、低温窒素ガス冷媒CNGとして排出される。 Liquefied nitrogen (LN 2 ) LN is introduced from one end of the low temperature path 2A and introduced into the first heat exchanger 5A. The liquefied nitrogen LNG becomes liquefied nitrogen vaporized gas LNG by heat exchange with the mixed gas CG in the mixing path 3A in the first heat exchanger 5A. The liquefied nitrogen vaporized gas LNG discharged from the first heat exchanger 5A and the room temperature nitrogen gas NNG introduced from one end of the room temperature path 1A are introduced into the ejector 4A and mixed using the pressure difference between them. Is done. The mixed gas CG discharged from the ejector 4A is introduced into the first heat exchanger 5A, and heat exchange with the liquefied nitrogen LN in the low temperature path 2A is performed, and the temperature is equalized by a turbulent flow effect. It is discharged as refrigerant CNG.
 第1温度検出器6Aは、混合経路3Aにおける第1熱交換器5Aの下流を流れる低温窒素ガス冷媒CNGの温度を検出する。第1温度調節器7Aは、第1温度検出器6Aによる検出温度と低温窒素ガス冷媒CNGの所望の温度(目標温度)との差異に応じた第1制御信号CS1を出力する。流量調整弁8Aは、第1制御信号CS1に基づき、常温経路1Aに流れる常温窒素ガスNNGの流量を調整する。第1流量調整弁9Aは、第1制御信号CS1に基づき、低温経路2Aにおける第1熱交換器5Aの下流を流れる液化窒素気化ガスLNGの流量を調整する。このように、第1温度検出器6A、第1温度調節器7A、流量調整弁8A、及び第1流量調整弁9Aを構成としたフィードバック制御により、低温窒素ガス冷媒CNGは所望の温度に調整される。 The first temperature detector 6A detects the temperature of the low-temperature nitrogen gas refrigerant CNG that flows downstream of the first heat exchanger 5A in the mixing path 3A. The first temperature controller 7A outputs a first control signal CS1 corresponding to the difference between the temperature detected by the first temperature detector 6A and the desired temperature (target temperature) of the low-temperature nitrogen gas refrigerant CNG. The flow rate adjusting valve 8A adjusts the flow rate of the room temperature nitrogen gas NNG flowing through the room temperature path 1A based on the first control signal CS1. The first flow rate adjusting valve 9A adjusts the flow rate of the liquefied nitrogen vaporized gas LNG flowing downstream of the first heat exchanger 5A in the low temperature path 2A based on the first control signal CS1. As described above, the low-temperature nitrogen gas refrigerant CNG is adjusted to a desired temperature by feedback control including the first temperature detector 6A, the first temperature controller 7A, the flow rate adjustment valve 8A, and the first flow rate adjustment valve 9A. The
 なお、エゼクタ4Aに導入される液化窒素気化ガスLNGの流量は第1熱交換器5Aの一次側で調整してもよいが、このように、第1熱交換器5Aの二次側、すなわち、液化窒素気化ガスLNG、すなわち気化した単一相としてのガスの流量を調整する構成としているので、第1熱交換器5Aの一次側、すなわち相変化を伴う液化窒素LNの流量を調節する場合と比較して、精密な流量調節が可能である。 The flow rate of the liquefied nitrogen vaporized gas LNG introduced into the ejector 4A may be adjusted on the primary side of the first heat exchanger 5A, but in this way, on the secondary side of the first heat exchanger 5A, that is, Since it is configured to adjust the flow rate of the liquefied nitrogen vaporized gas LNG, that is, the gas as a vaporized single phase, the primary side of the first heat exchanger 5A, that is, the flow rate of the liquefied nitrogen NL accompanying phase change is adjusted. In comparison, precise flow rate adjustment is possible.
 以上のように、所望の温度に調整された低温窒素ガス冷媒CNGは、第2熱交換器22に供給され、熱媒循環経路21を流れる熱媒HMを熱交換により冷却する。ここで、第2温度検出器24は、熱媒循環経路21内を循環する熱媒HMの温度を検出する。第2温度調節器25は、第2温度検出器24による検出温度と熱媒HMの所望の温度(目標温度)との差異に応じた第2制御信号CS2を出力する。第2流量調整弁26は、第2制御信号CS2に基づき、混合経路3Aを流れる低温窒素ガス冷媒CNGの流量を調整する。このように、第2温度検出器24、第2温度調節器25、及び第2流量調整弁26を構成としたフィードバック制御により、熱媒HMは所望の温度に調整される。 As described above, the low-temperature nitrogen gas refrigerant CNG adjusted to a desired temperature is supplied to the second heat exchanger 22 and cools the heat medium HM flowing through the heat medium circulation path 21 by heat exchange. Here, the second temperature detector 24 detects the temperature of the heat medium HM circulating in the heat medium circulation path 21. The second temperature controller 25 outputs a second control signal CS2 corresponding to the difference between the temperature detected by the second temperature detector 24 and the desired temperature (target temperature) of the heating medium HM. The second flow rate adjustment valve 26 adjusts the flow rate of the low-temperature nitrogen gas refrigerant CNG flowing through the mixing path 3A based on the second control signal CS2. In this way, the heating medium HM is adjusted to a desired temperature by feedback control including the second temperature detector 24, the second temperature regulator 25, and the second flow rate adjustment valve 26.
 以上のように、所望の温度に調整された熱媒HMは、熱媒循環ポンプ23の動作により、低温反応槽31のジャケット31aに供給される。これにより反応槽内部の反応液が一定温度に冷却調整される。 As described above, the heat medium HM adjusted to a desired temperature is supplied to the jacket 31 a of the low temperature reaction tank 31 by the operation of the heat medium circulation pump 23. Thereby, the reaction liquid inside the reaction tank is cooled and adjusted to a constant temperature.
 以上のように、本発明の第1実施形態によれば、液化窒素LNを第1熱交換器5Aにより常温窒素ガスNNGに近い温度の液化窒素気化ガスLNGに変換し、それらを混合しているので、均一な混合が実現できる。また、その混合に、エゼクタ4Aを採用しているので、それらの圧力が互いに異なっていても、容易に混合が実現できるし、また、一般の混合器を使用する場合と比較して装置を小型化できる。 As described above, according to the first embodiment of the present invention, the liquefied nitrogen LNG is converted into the liquefied nitrogen vaporized gas LNG having a temperature close to the room temperature nitrogen gas NNG by the first heat exchanger 5A, and they are mixed. Therefore, uniform mixing can be realized. In addition, since the ejector 4A is used for the mixing, the mixing can be easily realized even if the pressures are different from each other, and the apparatus is smaller than the case of using a general mixer. Can be
 また、液化窒素LNを第1熱交換器5Aにより常温窒素ガスNNGに近い温度の液化窒素気化ガスLNGに変換し、それらを混合しているので、常温窒素ガスNNG及び液化窒素気化ガスLNGの流量調整による低温窒素ガス冷媒CNGの温度制御が安定する。特に混合不良による温度の脈動的変化に起因する流量の脈動制御が回避されるので、制御が安定化する。また、低温窒素ガス冷媒CNGの目標温度が変わっても、適切にその値に追従できる。一方、液化窒素LNの冷熱を、効率よく低温窒素ガス冷媒CNGの生成に利用できる。 Moreover, since the liquefied nitrogen LNG is converted into the liquefied nitrogen vaporized gas LNG having a temperature close to the normal temperature nitrogen gas NNG by the first heat exchanger 5A and mixed, the flow rates of the normal temperature nitrogen gas NNG and the liquefied nitrogen vaporized gas LNG The temperature control of the low-temperature nitrogen gas refrigerant CNG by adjustment is stabilized. In particular, since flow rate pulsation control caused by temperature pulsation changes due to poor mixing is avoided, control is stabilized. Moreover, even if the target temperature of the low-temperature nitrogen gas refrigerant CNG changes, the value can be appropriately followed. On the other hand, the cold energy of the liquefied nitrogen LN can be efficiently used for generating the low temperature nitrogen gas refrigerant CNG.
 また、温度が安定している低温窒素ガス冷媒CNGの流量を制御することにより、熱媒循環経路21を巡廻する熱媒HMの温度を正確に、かつ安定的に制御しているので、熱媒HMの凝固点を念頭においた熱媒HMの目標温度をより理想的に設定できる。つまり、第2熱交換器22内で熱媒HMの凍結を発生させることなく、熱媒HMの目標温度をその凝固点近くに設定することができる。これにより、凍結による熱媒循環経路21の閉塞とそれによる経路内の圧力損失を防止でき、過度の熱侵入を抑え、装置全体として省力化できる。 Further, by controlling the flow rate of the low-temperature nitrogen gas refrigerant CNG whose temperature is stable, the temperature of the heating medium HM circulating in the heating medium circulation path 21 is accurately and stably controlled. The target temperature of the heating medium HM can be set more ideally with the freezing point of the medium HM in mind. That is, the target temperature of the heat medium HM can be set near its freezing point without causing the heat medium HM to freeze in the second heat exchanger 22. This can prevent the heat medium circulation path 21 from being blocked due to freezing and the resulting pressure loss in the path, suppress excessive heat penetration, and save labor as the entire apparatus.
 また、その凝固点に近いまでの低温に正確に安定的に制御された熱媒HMを、低温反応槽31が使用すれば、反応槽をより低温で安定に制御でき、幅広い温度制御が可能となる。 Moreover, if the low-temperature reaction tank 31 uses the heating medium HM that is accurately and stably controlled at a low temperature close to its freezing point, the reaction tank can be stably controlled at a lower temperature, and a wide range of temperature control is possible. .
<第2実施形態>
 次に、本発明における第2実施形態を説明する。図2は、本発明の低温ガス供給装置、熱媒冷却装置、及び低温反応制御装置における第2実施形態の系統図である。
<Second Embodiment>
Next, a second embodiment of the present invention will be described. FIG. 2 is a system diagram of a second embodiment of the low temperature gas supply device, the heat medium cooling device, and the low temperature reaction control device of the present invention.
 図2に示すように、本発明の第2実施形態に係る低温ガス供給装置100Bは、常温窒素ガス(GN)NNGが一端から導入される常温経路1Bと、液化窒素(LN)LN(例えば-196℃)が一端から導入される低温経路2Bと、後述する低温窒素ガス冷媒が流れる混合経路3Bと、常温経路1Bから導入される常温窒素ガスNNGと、低温経路2Bから導入される液化窒素LNとを互いに熱交換させることにより、それぞれ熱交換後窒素ガスCNNGと液化窒素LNが気化した結果のガス(以下、「液化窒素気化ガス」と称す)LNGとして排出する第1熱交換器5Bと、第1熱交換器5Bから排出された熱交換後窒素ガスCNNGと液化窒素気化ガスLNGとを混合して、低温窒素ガス冷媒CNGを生成するエゼクタ4Bと、混合経路3Bを流れる低温窒素ガス冷媒CNGの温度を検出する第1温度検出器6Bと、第1温度検出器6Bによる検出温度に基づき、第1制御信号CS1を出力する第1温度調節器7Bと、第1制御信号CS1に基づき、常温経路1Bに流れる常温窒素ガスNNGの流量を調整する流量調整弁8Bと、第1制御信号CS1に基づき、低温経路2Bにおける第1熱交換器5Bの下流を流れる液化窒素気化ガスLNGの流量を調整する第1流量調整弁9Bと、を備えている。 As shown in FIG. 2, the low temperature gas supply apparatus 100B according to the second embodiment of the present invention includes a normal temperature path 1B through which normal temperature nitrogen gas (GN 2 ) NNG is introduced from one end, and liquefied nitrogen (LN 2 ) LN ( For example, -196 ° C) is introduced from one end, a low-temperature path 2B through which a low-temperature nitrogen gas refrigerant described later flows, a room-temperature nitrogen gas NNG introduced from the room-temperature path 1B, and a liquefaction introduced from the low-temperature path 2B. The first heat exchanger 5B is discharged as a gas LNG resulting from the vaporization of the nitrogen gas CNNG and the liquefied nitrogen LN (hereinafter referred to as “liquefied nitrogen vaporized gas”) LNG after heat exchange with the nitrogen LNG. And an ejector 4B that mixes the nitrogen gas CNNG after heat exchange discharged from the first heat exchanger 5B and the liquefied nitrogen vaporized gas LNG to generate a low-temperature nitrogen gas refrigerant CNG, A first temperature detector 6B that detects the temperature of the low-temperature nitrogen gas refrigerant CNG flowing through the mixing path 3B, and a first temperature controller 7B that outputs a first control signal CS1 based on the temperature detected by the first temperature detector 6B; Based on the first control signal CS1, the flow rate adjusting valve 8B for adjusting the flow rate of the room temperature nitrogen gas NNG flowing in the room temperature path 1B, and on the downstream side of the first heat exchanger 5B in the low temperature path 2B based on the first control signal CS1. And a first flow rate adjusting valve 9B that adjusts the flow rate of the flowing liquefied nitrogen vaporized gas LNG.
 なお、第1熱交換器5B内において、常温経路1Bと低温経路2Bとは並走しており、それぞれに流れる常温窒素ガスNNGと液化窒素LNとが互いに熱交換するように構成されている。特に、それらの常温窒素ガスNNGと液化窒素LNとが同方向に流れるように、常温経路1Bと低温経路2Bが配設されている。 In addition, in the 1st heat exchanger 5B, the normal temperature path | route 1B and the low temperature path | route 2B are running in parallel, and it is comprised so that the normal temperature nitrogen gas NNG and liquefied nitrogen LN which flow through each may mutually heat-exchange. In particular, the normal temperature path 1B and the low temperature path 2B are arranged so that the normal temperature nitrogen gas NNG and the liquefied nitrogen LN flow in the same direction.
 また、本発明の第2実施形態に係る熱媒冷却装置200Bは、上述のような構成の低温ガス供給装置100Bを含んでいる以外は、第1実施形態に係る熱媒冷却装置200Aと同じである。 Further, the heat medium cooling device 200B according to the second embodiment of the present invention is the same as the heat medium cooling device 200A according to the first embodiment except that the heat medium cooling device 200B includes the low-temperature gas supply device 100B configured as described above. is there.
 また、本発明の第2実施形態に係る低温反応制御装置300Bは、上述のような構成の熱媒冷却装置200Bを含んでいる以外は、第1実施形態に係る低温反応制御装置300Aと同じである。 The low temperature reaction control apparatus 300B according to the second embodiment of the present invention is the same as the low temperature reaction control apparatus 300A according to the first embodiment except that the low temperature reaction control apparatus 300B includes the heat medium cooling device 200B having the above-described configuration. is there.
 次に、上述のように構成された第1実施形態に係る低温ガス供給装置100B、熱媒冷却装置200B、及び低温反応制御装置300Bの動作とその作用について説明する。 Next, operations and actions of the low temperature gas supply device 100B, the heat medium cooling device 200B, and the low temperature reaction control device 300B according to the first embodiment configured as described above will be described.
 常温窒素ガスNNGが常温経路1Bの一端から導入されて、第1熱交換器5Bに導入される。また、液化窒素(LN)LNが低温経路2Bの一端から導入されて、第1熱交換器5Bに導入される。第1熱交換器5Bは、常温経路1Bから導入される常温窒素ガスNNGと、低温経路2Bから導入される液化窒素LNとを互いに熱交換させることにより、温度差の減少した熱交換後窒素ガスCNNGと、液化窒素LNが気化した結果のガス(以下、「液化窒素気化ガス」と称す)LNGとして排出する。エゼクタ4Bは、第1熱交換器5Bから排出された熱交換後窒素ガスCNNGと液化窒素気化ガスLNGとをそれらの圧力差を利用して混合し、低温窒素ガス冷媒CNGを生成する。 The room temperature nitrogen gas NNG is introduced from one end of the room temperature path 1B and is introduced into the first heat exchanger 5B. Further, liquefied nitrogen (LN 2 ) LN is introduced from one end of the low temperature path 2B and introduced into the first heat exchanger 5B. The first heat exchanger 5B performs heat exchange between the room temperature nitrogen gas NNG introduced from the room temperature path 1B and the liquefied nitrogen LNG introduced from the low temperature path 2B, thereby reducing the temperature difference and the nitrogen gas after heat exchange. CNNG and gas resulting from vaporization of liquefied nitrogen LN (hereinafter referred to as “liquefied nitrogen vaporized gas”) LNG are discharged. The ejector 4B mixes the nitrogen gas CNNG after heat exchange discharged from the first heat exchanger 5B and the liquefied nitrogen vaporized gas LNG using their pressure difference to generate a low-temperature nitrogen gas refrigerant CNG.
 第1温度検出器6Bは、混合経路3Bを流れる低温窒素ガス冷媒CNGの温度を検出する。第1温度調節器7Bは、第1温度検出器6Bによる検出温度と低温窒素ガス冷媒CNGの所望の温度(目標温度)との差異に応じた第1制御信号CS1を出力する。流量調整弁8Bは、第1制御信号CS1に基づき、常温経路1Bにおける第1熱交換器5Bの上流を流れる常温窒素ガスNNGの流量を調整する。第1流量調整弁9Bは、第1制御信号CS1に基づき、低温経路2Bにおける第1熱交換器5Bの下流を流れる液化窒素気化ガスLNGの流量を調整する。このように、第1温度検出器6B、第1温度調節器7B、流量調整弁8B、及び第1流量調整弁9Bを構成としたフィードバック制御により、低温窒素ガス冷媒CNGは所望の温度に調整される。 The first temperature detector 6B detects the temperature of the low-temperature nitrogen gas refrigerant CNG flowing through the mixing path 3B. The first temperature controller 7B outputs a first control signal CS1 corresponding to the difference between the temperature detected by the first temperature detector 6B and the desired temperature (target temperature) of the low-temperature nitrogen gas refrigerant CNG. The flow rate adjusting valve 8B adjusts the flow rate of the room temperature nitrogen gas NNG flowing upstream of the first heat exchanger 5B in the room temperature path 1B based on the first control signal CS1. The first flow rate adjusting valve 9B adjusts the flow rate of the liquefied nitrogen vaporized gas LNG flowing downstream of the first heat exchanger 5B in the low temperature path 2B based on the first control signal CS1. As described above, the low-temperature nitrogen gas refrigerant CNG is adjusted to a desired temperature by feedback control including the first temperature detector 6B, the first temperature regulator 7B, the flow rate adjustment valve 8B, and the first flow rate adjustment valve 9B. The
 なお、エゼクタ4Bに導入される気化ガス流量は第1熱交換器5Bの一次側で調整してもよいが、このように、第1熱交換器5Bの二次側、すなわち、液化窒素気化ガスLNG、すなわち気化した単一相としてのガス、の流量を調整する構成としているので、第1熱交換器5Bの一次側、すなわち相変化を伴う液化窒素LN、の流量を調節する場合と比較して、精密な流量調節が可能である。 The flow rate of the vaporized gas introduced into the ejector 4B may be adjusted on the primary side of the first heat exchanger 5B. Thus, the secondary side of the first heat exchanger 5B, that is, the liquefied nitrogen vaporized gas is used. Compared with the case where the flow rate of the primary side of the first heat exchanger 5B, that is, the liquefied nitrogen LN accompanying phase change, is adjusted because the flow rate of LNG, that is, the gas as a vaporized single phase, is adjusted. Therefore, precise flow rate adjustment is possible.
 以上のように、所望の温度に調整された低温窒素ガス冷媒CNGは、第2熱交換器22に供給され、熱媒循環経路21を流れる熱媒HMを熱交換により冷却する。ここで、第2温度検出器24は、熱媒循環経路21内を循環する熱媒HMの温度を検出する。第2温度調節器25は、第2温度検出器24による検出温度と熱媒HMの所望の温度との差異に応じた第2制御信号CS2を出力する。第2流量調整弁26は、第2制御信号CS2に基づき、混合経路3Bを流れる低温窒素ガス冷媒CNGの流量を調整する。このように、第2温度検出器24、第2温度調節器25、及び第2流量調整弁26を構成としたフィードバック制御により、熱媒HMは所望の温度に調整される。 As described above, the low-temperature nitrogen gas refrigerant CNG adjusted to a desired temperature is supplied to the second heat exchanger 22 and cools the heat medium HM flowing through the heat medium circulation path 21 by heat exchange. Here, the second temperature detector 24 detects the temperature of the heat medium HM circulating in the heat medium circulation path 21. The second temperature controller 25 outputs a second control signal CS2 corresponding to the difference between the temperature detected by the second temperature detector 24 and the desired temperature of the heating medium HM. The second flow rate adjustment valve 26 adjusts the flow rate of the low-temperature nitrogen gas refrigerant CNG flowing through the mixing path 3B based on the second control signal CS2. In this way, the heating medium HM is adjusted to a desired temperature by feedback control including the second temperature detector 24, the second temperature regulator 25, and the second flow rate adjustment valve 26.
 以上のように、所望の温度に調整された熱媒HMは、熱媒循環ポンプ23の動作により、低温反応槽31のジャケット31aに供給される。これにより反応槽内部の反応液が一定温度に冷却調整される。 As described above, the heat medium HM adjusted to a desired temperature is supplied to the jacket 31 a of the low temperature reaction tank 31 by the operation of the heat medium circulation pump 23. Thereby, the reaction liquid inside the reaction tank is cooled and adjusted to a constant temperature.
 以上のように、本発明の第2実施形態によれば、それらを混合しているので、均一な混合が実現できる。また、その混合に、エゼクタ4Bを採用しているので、それらの圧力が互いに異なっていても、容易に混合が実現できるし、また、一般の混合器を使用する場合と比較して装置を小型化できる。 As described above, according to the second embodiment of the present invention, since they are mixed, uniform mixing can be realized. In addition, since the ejector 4B is used for the mixing, the mixing can be easily realized even if the pressures are different from each other, and the apparatus is smaller than the case of using a general mixer. Can be
 また、常温窒素ガスNNGと液化窒素LNを、第1熱交換器5Bにより、温度差の減少した熱交換後窒素ガスCNNGと液化窒素気化ガスLNGに変換し、それらを混合しているので、常温窒素ガスNNG及び液化窒素気化ガスLNGの流量調整による低温窒素ガス冷媒CNGの温度制御が安定する。特に混合不良による温度の脈動的変化に起因する流量の脈動制御が回避されるので、制御が安定化する。また、低温窒素ガス冷媒CNGの目標温度が変わっても、適切にその値に追従できる。一方、液化窒素LNの冷熱を、効率よく低温窒素ガス冷媒CNGの生成に利用できる。 Moreover, since the normal temperature nitrogen gas NNG and the liquefied nitrogen LNG are converted into the nitrogen gas CNNG and the liquefied nitrogen vaporized gas LNG after heat exchange with a reduced temperature difference by the first heat exchanger 5B, and they are mixed, The temperature control of the low-temperature nitrogen gas refrigerant CNG by adjusting the flow rates of the nitrogen gas NNG and the liquefied nitrogen vaporized gas LNG is stabilized. In particular, since flow rate pulsation control caused by temperature pulsation changes due to poor mixing is avoided, control is stabilized. Moreover, even if the target temperature of the low-temperature nitrogen gas refrigerant CNG changes, the value can be appropriately followed. On the other hand, the cold energy of the liquefied nitrogen LN can be efficiently used for generating the low temperature nitrogen gas refrigerant CNG.
 また、温度が安定している低温窒素ガス冷媒CNGの流量を制御することにより、熱媒循環経路21を巡廻する熱媒HMの温度を正確に、かつ安定的に制御しているので、熱媒HMの凝固点を念頭においた熱媒HMの目標温度をより理想的に設定できる。つまり、第2熱交換器22内で熱媒HMの凍結を発生させることなく、熱媒HMの目標温度をその凝固点近くに設定することができる。これにより、凍結による熱媒循環経路21の閉塞とそれによる経路内の圧力損失を防止でき、過度の熱侵入を抑え、装置全体として省力化できる。 Further, by controlling the flow rate of the low-temperature nitrogen gas refrigerant CNG whose temperature is stable, the temperature of the heating medium HM circulating in the heating medium circulation path 21 is accurately and stably controlled. The target temperature of the heating medium HM can be set more ideally with the freezing point of the medium HM in mind. That is, the target temperature of the heat medium HM can be set near its freezing point without causing the heat medium HM to freeze in the second heat exchanger 22. This can prevent the heat medium circulation path 21 from being blocked due to freezing and the resulting pressure loss in the path, suppress excessive heat penetration, and save labor as the entire apparatus.
 また、その凝固点に近いまでの低温に正確に安定的に制御された熱媒HMを、低温反応槽31が使用すれば、反応槽をより低温で安定に制御でき、幅広い温度制御が可能となる。 Moreover, if the low-temperature reaction tank 31 uses the heating medium HM that is accurately and stably controlled at a low temperature close to its freezing point, the reaction tank can be stably controlled at a lower temperature, and a wide range of temperature control is possible. .
<第3実施形態>
 次に、本発明における第3実施形態を説明する。図3は、本発明の低温ガス供給装置、熱媒冷却装置、及び低温反応制御装置における第3実施形態の系統図である。
<Third Embodiment>
Next, a third embodiment of the present invention will be described. FIG. 3 is a system diagram of a third embodiment of the low temperature gas supply device, the heat medium cooling device, and the low temperature reaction control device of the present invention.
 図3に示すように、本発明の第3実施形態に係る低温ガス供給装置100Cは、後述する低温液化ガスより高温のガスとして常温窒素ガス(GN)NNGが一端から導入される常温経路1Cと、低温液化ガスとして液化窒素(LN)LN(例えば-196℃)が一端から導入される低温経路2Cと、後述する混合ガス及び低温窒素ガス冷媒が流れる混合経路3Cと、常温経路1Cの他端から導入される常温窒素ガスNNGと、低温経路2Cの他端から導入される、液化窒素LNが気化した結果のガス(以下、「液化窒素気化ガス」と称す)LNGとを混合して、混合ガスCGを生成するエゼクタ(混合手段)4Cと、低温経路2Cが貫通することにより上記液化窒素LNを導入して液化窒素気化ガスLNGとして排出する一方で、混合経路3Cが貫通することにより上記混合ガスCGを導入して低温窒素ガス冷媒CNGとして排出する第1熱交換器5Cと、混合経路3Cにおける第1熱交換器5Cの下流を流れる低温窒素ガス冷媒CNGの温度を検出する第1温度検出器6Cと、第1温度検出器6Cによる検出温度に基づき、第1制御信号CS1を出力する第1温度調節器(第一制御手段)7Cと、後述する第2温度調節器25から出力された第2制御信号CS2に基づき常温経路1Cに流れる常温窒素ガスNNGの流量を調整する流量調整弁8Cと、第1制御信号CS1に基づき、低温経路2Cにおける第1熱交換器5Cの下流を流れる液化窒素気化ガスLNGの流量を調整する第1流量調整弁9Cと、を備えている。 As shown in FIG. 3, the low temperature gas supply apparatus 100C according to the third embodiment of the present invention has a normal temperature path 1C through which normal temperature nitrogen gas (GN 2 ) NNG is introduced from one end as a gas having a temperature higher than a low temperature liquefied gas described later. A low-temperature path 2C through which liquefied nitrogen (LN 2 ) LN (for example, −196 ° C.) is introduced from one end as a low-temperature liquefied gas, a mixing path 3C through which a mixed gas and a low-temperature nitrogen gas refrigerant described later flow, Mixing room temperature nitrogen gas NNG introduced from the other end with gas LNG introduced from the other end of the low temperature path 2C as a result of vaporization of liquefied nitrogen LNG (hereinafter referred to as “liquefied nitrogen vaporized gas”) , The ejector (mixing means) 4C for generating the mixed gas CG and the low temperature path 2C penetrate to introduce the liquefied nitrogen LN and discharge it as the liquefied nitrogen vaporized gas LNG. A first heat exchanger 5C that introduces the mixed gas CG and discharges it as a low-temperature nitrogen gas refrigerant CNG by passing through the path 3C, and a low-temperature nitrogen gas refrigerant CNG that flows downstream of the first heat exchanger 5C in the mixed path 3C. A first temperature detector 6C that detects the temperature of the first temperature detector, a first temperature controller (first control means) 7C that outputs a first control signal CS1 based on the temperature detected by the first temperature detector 6C, and a first temperature detector to be described later. The flow rate adjusting valve 8C that adjusts the flow rate of the room temperature nitrogen gas NNG that flows in the room temperature path 1C based on the second control signal CS2 output from the 2 temperature controller 25, and the first line in the low temperature path 2C based on the first control signal CS1. And a first flow rate adjusting valve 9C that adjusts the flow rate of the liquefied nitrogen vaporized gas LNG that flows downstream of the heat exchanger 5C.
 なお、第1熱交換器5C内において、低温経路2Cと混合経路3Cとは並走しており、それぞれに流れる液化窒素LNと混合ガスCGとが互いに熱交換するように構成されている。特に、それらの液化窒素LNと混合ガスCGとが互いに逆方向に流れるように、つまり対向流となるように、低温経路2C及び混合経路3Cが配設されている。 In the first heat exchanger 5C, the low-temperature path 2C and the mixing path 3C run side by side, and the liquefied nitrogen LN and the mixed gas CG flowing through each of the low-temperature path 2C and the mixed gas CG are configured to exchange heat with each other. In particular, the low temperature path 2C and the mixing path 3C are arranged so that the liquefied nitrogen LN and the mixed gas CG flow in opposite directions, that is, in a counterflow.
 また、本発明の第3実施形態に係る熱媒冷却装置200Cは、上述のような構成の低温ガス供給装置100Cと、それに加えて、熱媒HMが循環する熱媒循環経路21と、混合経路3Cと熱媒循環経路21とが並走して貫通することにより、それぞれに流れる低温窒素ガス冷媒CNGと熱媒HMとが互いに熱交換するように構成された第2熱交換器22と、熱媒HMを熱媒循環経路21内で循環させる熱媒循環ポンプ23と、熱媒循環経路21内を循環する熱媒HMの温度を検出する第2温度検出器24と、第2温度検出器24による検出温度に基づき、第2制御信号CS2を出力する第2温度調節器25と、熱媒の温度変化に伴う膨張、収縮を吸収するためのリザーブタンク27と、で構成される。 Moreover, the heat medium cooling device 200C according to the third embodiment of the present invention includes a low-temperature gas supply device 100C having the above-described configuration, a heat medium circulation path 21 through which the heat medium HM circulates, and a mixing path. The second heat exchanger 22 configured to exchange heat between the low-temperature nitrogen gas refrigerant CNG and the heat medium HM that flow through the 3C and the heat medium circulation path 21 in parallel with each other; A heat medium circulation pump 23 that circulates the medium HM in the heat medium circulation path 21, a second temperature detector 24 that detects the temperature of the heat medium HM that circulates in the heat medium circulation path 21, and a second temperature detector 24. The second temperature regulator 25 that outputs the second control signal CS2 on the basis of the detected temperature and the reserve tank 27 for absorbing the expansion and contraction accompanying the temperature change of the heating medium.
 また、第3実施形態に係る低温反応制御装置300Cは、上述のような構成の熱媒冷却装置200Cを含んでいる以外は、第1及び第2実施形態に係る低温反応制御装置300A,300Bと同じである。 The low temperature reaction control device 300C according to the third embodiment includes the low temperature reaction control devices 300A and 300B according to the first and second embodiments, except that the low temperature reaction control device 300C includes the heat medium cooling device 200C having the above-described configuration. The same.
 次に、上述のように構成された第3実施形態に係る低温ガス供給装置100C、熱媒冷却装置200C、及び低温反応制御装置300Cの動作とその作用について説明する。 Next, operations and actions of the low temperature gas supply device 100C, the heat medium cooling device 200C, and the low temperature reaction control device 300C according to the third embodiment configured as described above will be described.
 液化窒素(LN)LNが低温経路2Cの一端から導入されて、第1熱交換器5Cに導入される。液化窒素LNは、第1熱交換器5C内における、混合経路3C内の混合ガスCGとの熱交換により、液化窒素気化ガスLNGとなる。第1熱交換器5Cから排出された液化窒素気化ガスLNGと、一方、常温経路1Cの一端から導入された常温窒素ガスNNGとは、エゼクタ4Cに導入され、それらの圧力差を利用されて混合される。エゼクタ4Cから排出された混合ガスCGは、第1熱交換器5Cに導入され、低温経路2C内の液化窒素LNとの熱交換が行われると共に、乱流効果により均温化され、低温窒素ガス冷媒CNGとして排出される。 Liquefied nitrogen (LN 2 ) LN is introduced from one end of the low temperature path 2C and introduced into the first heat exchanger 5C. The liquefied nitrogen LNG becomes liquefied nitrogen vaporized gas LNG by heat exchange with the mixed gas CG in the mixing path 3C in the first heat exchanger 5C. The liquefied nitrogen vapor LNG discharged from the first heat exchanger 5C and the room temperature nitrogen gas NNG introduced from one end of the room temperature path 1C are introduced into the ejector 4C and mixed using the pressure difference between them. Is done. The mixed gas CG discharged from the ejector 4C is introduced into the first heat exchanger 5C, and heat exchange with the liquefied nitrogen LN in the low temperature path 2C is performed, and the temperature is equalized by the turbulent flow effect. It is discharged as refrigerant CNG.
 第1温度検出器6Cは、混合経路3Cにおける第1熱交換器5Cの下流を流れる低温窒素ガス冷媒CNGの温度を検出する。第1温度調節器7Cは、第1温度検出器6Cによる検出温度と低温窒素ガス冷媒CNGの所望の温度(目標温度)との差異に応じた第1制御信号CS1を出力する。流量調整弁8Cは、第2温度調節器25から出力された第2制御信号CS2に基づき、常温経路1Cに流れる常温窒素ガスNNGの流量を調整する。第1流量調整弁9Cは、第1制御信号CS1に基づき、低温経路2Cにおける第1熱交換器5Cの下流を流れる液化窒素気化ガスLNGの流量を調整する。 The first temperature detector 6C detects the temperature of the low-temperature nitrogen gas refrigerant CNG that flows downstream of the first heat exchanger 5C in the mixing path 3C. The first temperature controller 7C outputs a first control signal CS1 corresponding to the difference between the temperature detected by the first temperature detector 6C and the desired temperature (target temperature) of the low-temperature nitrogen gas refrigerant CNG. The flow rate adjusting valve 8C adjusts the flow rate of the room temperature nitrogen gas NNG flowing in the room temperature path 1C based on the second control signal CS2 output from the second temperature regulator 25. The first flow rate adjusting valve 9C adjusts the flow rate of the liquefied nitrogen vaporized gas LNG that flows downstream of the first heat exchanger 5C in the low temperature path 2C based on the first control signal CS1.
 なお、エゼクタ4Cに導入される液化窒素気化ガスLNGの流量は第1熱交換器5Cの一次側で調整してもよいが、このように、第1熱交換器5Cの二次側、すなわち、液化窒素気化ガスLNG、すなわち気化した単一相としてのガスの流量を調整する構成としているので、第1熱交換器5Cの一次側、すなわち相変化を伴う液化窒素LNの流量を調節する場合と比較して、精密な流量調節が可能である。 The flow rate of the liquefied nitrogen vaporized gas LNG introduced into the ejector 4C may be adjusted on the primary side of the first heat exchanger 5C, but in this way, on the secondary side of the first heat exchanger 5C, that is, Since the flow rate of the liquefied nitrogen vaporized gas LNG, that is, the gas as a vaporized single phase, is adjusted, the primary side of the first heat exchanger 5C, that is, the flow rate of the liquefied nitrogen LNG accompanying phase change is adjusted. In comparison, precise flow rate adjustment is possible.
 熱交換器5Cから導出された低温窒素ガス冷媒CNGは、第2熱交換器22に供給され、熱媒循環経路21を流れる熱媒HMを熱交換により冷却する。ここで、第2温度検出器24は、熱媒循環経路21内を循環する熱媒HMの温度を検出する。第2温度調節器25は、第2温度検出器24による検出温度と熱媒HMの所望の温度(目標温度)との差異に応じた第2制御信号CS2を出力する。 The low-temperature nitrogen gas refrigerant CNG derived from the heat exchanger 5C is supplied to the second heat exchanger 22 and cools the heat medium HM flowing through the heat medium circulation path 21 by heat exchange. Here, the second temperature detector 24 detects the temperature of the heat medium HM circulating in the heat medium circulation path 21. The second temperature controller 25 outputs a second control signal CS2 corresponding to the difference between the temperature detected by the second temperature detector 24 and the desired temperature (target temperature) of the heating medium HM.
 以上のように、第1温度検出器6C、第1温度調節器7C、流量調整弁8C、第1流量調整弁9C、第2温度検出器24、及び第2温度調節器25を構成としたフィードバック制御により、低温窒素ガス冷媒CNG及び熱媒HMは所望の温度に調整される。 As described above, the first temperature detector 6C, the first temperature regulator 7C, the flow rate adjustment valve 8C, the first flow rate adjustment valve 9C, the second temperature detector 24, and the second temperature regulator 25 are configured as feedback. By the control, the low-temperature nitrogen gas refrigerant CNG and the heat medium HM are adjusted to desired temperatures.
 所望の温度に調整された熱媒HMは、熱媒循環ポンプ23の動作により、低温反応槽31のジャケット31aに供給される。これにより反応槽内部の反応液が一定温度に冷却調整される。 The heat medium HM adjusted to a desired temperature is supplied to the jacket 31 a of the low temperature reaction tank 31 by the operation of the heat medium circulation pump 23. Thereby, the reaction liquid inside the reaction tank is cooled and adjusted to a constant temperature.
 以上のように、本発明の第3実施形態によれば、液化窒素LNを第1熱交換器5Cにより常温窒素ガスNNGに近い温度の液化窒素気化ガスLNGに変換し、それらを混合しているので、均一な混合が実現できる。また、その混合に、エゼクタ4Cを採用しているので、それらの圧力が互いに異なっていても、容易に混合が実現できるし、また、一般の混合器を使用する場合と比較して装置を小型化できる。 As described above, according to the third embodiment of the present invention, liquefied nitrogen LNG is converted into liquefied nitrogen vaporized gas LNG having a temperature close to room temperature nitrogen gas NNG by the first heat exchanger 5C and mixed. Therefore, uniform mixing can be realized. In addition, since the ejector 4C is used for the mixing, even if the pressures are different from each other, the mixing can be easily realized, and the apparatus is smaller than the case of using a general mixer. Can be
 また、液化窒素LNを第1熱交換器5Cにより常温窒素ガスNNGに近い温度の液化窒素気化ガスLNGに変換し、それらを混合しているので、常温窒素ガスNNG及び液化窒素気化ガスLNGの流量調整による低温窒素ガス冷媒CNGの温度制御が安定する。特に混合不良による温度の脈動的変化に起因する流量の脈動制御が回避されるので、制御が安定化する。また、低温窒素ガス冷媒CNGの目標温度が変わっても、適切にその値に追従できる。一方、液化窒素LNの冷熱を、効率よく低温窒素ガス冷媒CNGの生成に利用できる。 Further, since the liquefied nitrogen LNG is converted into the liquefied nitrogen vaporized gas LNG having a temperature close to the normal temperature nitrogen gas NNG by the first heat exchanger 5C and mixed, the flow rates of the normal temperature nitrogen gas NNG and the liquefied nitrogen vaporized gas LNG The temperature control of the low-temperature nitrogen gas refrigerant CNG by adjustment is stabilized. In particular, since flow rate pulsation control caused by temperature pulsation changes due to poor mixing is avoided, control is stabilized. Moreover, even if the target temperature of the low-temperature nitrogen gas refrigerant CNG changes, the value can be appropriately followed. On the other hand, the cold energy of the liquefied nitrogen LN can be efficiently used for generating the low temperature nitrogen gas refrigerant CNG.
 また、温度が安定している低温窒素ガス冷媒CNGを第2熱交換器22に導入することにより、熱媒循環経路21を巡廻する熱媒HMの温度を正確に、かつ安定的に制御しているので、熱媒HMの凝固点を念頭においた熱媒HMの目標温度をより理想的に設定できる。つまり、第2熱交換器22内で熱媒HMの凍結を発生させることなく、熱媒HMの目標温度をその凝固点近くに設定することができる。これにより、凍結による熱媒循環経路21の閉塞とそれによる経路内の圧力損失を防止でき、過度の熱侵入を抑え、装置全体として省力化できる。 Further, by introducing the low-temperature nitrogen gas refrigerant CNG having a stable temperature into the second heat exchanger 22, the temperature of the heat medium HM circulating in the heat medium circulation path 21 can be controlled accurately and stably. Therefore, the target temperature of the heating medium HM can be set more ideally with the freezing point of the heating medium HM in mind. That is, the target temperature of the heat medium HM can be set near its freezing point without causing the heat medium HM to freeze in the second heat exchanger 22. This can prevent the heat medium circulation path 21 from being blocked due to freezing and the resulting pressure loss in the path, suppress excessive heat penetration, and save labor as the entire apparatus.
 また、その凝固点に近いまでの低温に正確に安定的に制御された熱媒HMを、低温反応槽31が使用すれば、反応槽をより低温で安定に制御でき、幅広い温度制御が可能となる。 Moreover, if the low-temperature reaction tank 31 uses the heating medium HM that is accurately and stably controlled at a low temperature close to its freezing point, the reaction tank can be stably controlled at a lower temperature, and a wide range of temperature control is possible. .
 ところで、上述した第1実施形態の低温ガス供給装置100A、熱媒冷却装置200A、及び低温反応制御装置300Aは、温度検出器6Aで検出した低温窒素ガス冷媒CNGの温度(すなわち、混合経路3Aにおける第1熱交換器5Aの下流を流れる低温窒素ガス冷媒CNGの温度)に基づいて、常温経路1Aに導入する常温窒素ガスNNG及び低温経路2Aに導入する液化窒素気化ガスLNGの流量を調整する構成となっている。このため、温度検出器6Aで検出した低温窒素ガス冷媒CNGの温度が所望の範囲内となった後は、熱交換器5Aから導出される低温窒素ガス冷媒CNGの流量は変動することはなく安定するという利点がある。 By the way, the low-temperature gas supply device 100A, the heat medium cooling device 200A, and the low-temperature reaction control device 300A of the first embodiment described above are the temperatures of the low-temperature nitrogen gas refrigerant CNG detected by the temperature detector 6A (that is, in the mixing path 3A). Configuration for adjusting the flow rates of the normal temperature nitrogen gas NNG introduced into the normal temperature path 1A and the liquefied nitrogen vaporized gas LNG introduced into the low temperature path 2A based on the temperature of the low temperature nitrogen gas refrigerant CNG flowing downstream of the first heat exchanger 5A) It has become. For this reason, after the temperature of the low-temperature nitrogen gas refrigerant CNG detected by the temperature detector 6A falls within a desired range, the flow rate of the low-temperature nitrogen gas refrigerant CNG derived from the heat exchanger 5A does not change and is stable. There is an advantage of doing.
 一方、低温反応制御装置300Aにおいて、低温反応槽31での負荷が増大することによって熱媒HMで必要な冷熱が増大した場合には、熱媒HMと熱交換させるための低温窒素ガス冷媒CNGの流量を増やす必要が生じる場合がある。第1実施形態の低温ガス供給装置100A、熱媒冷却装置200A、及び低温反応制御装置300Aでは、流量調整弁26の開度を最大にした場合に、低温窒素ガス冷媒CNGの流量が最大となる。 On the other hand, in the low-temperature reaction control apparatus 300A, when the required cold heat in the heating medium HM increases due to an increase in the load in the low-temperature reaction tank 31, the low-temperature nitrogen gas refrigerant CNG for heat exchange with the heating medium HM It may be necessary to increase the flow rate. In the low-temperature gas supply device 100A, the heat medium cooling device 200A, and the low-temperature reaction control device 300A according to the first embodiment, the flow rate of the low-temperature nitrogen gas refrigerant CNG becomes maximum when the flow rate adjustment valve 26 is maximized. .
 これに対して、第3実施形態の低温ガス供給装置100C、熱媒冷却装置200C、及び低温反応制御装置300Cによれば、第2温度検出器24で検出した熱媒HMの温度(すなわち、熱媒循環経路21における第2熱交換器22の下流を流れる熱媒HMの温度)に基づいて、低温窒素ガス冷媒CNGの流量を増減させるためのベース流量となる常温窒素ガスNNGの流量を調整する構成となっている。このため、低温反応槽31での負荷が増大することによって熱媒HMで必要な冷熱が増大し、熱媒HMと熱交換させるための低温窒素ガス冷媒CNGの流量を増やす必要が生じる場合に、第1熱交換器5Cから導出される低温窒素ガス冷媒CNGの流量を、熱媒HMの温度に応じて所望の値に増減させることができる。したがって、熱媒HMの冷却に必要な冷熱を得るために低温窒素ガス冷媒CNGの温度及び流量の両方を調整し、熱媒HMのより安定な温度制御を実現できる。 In contrast, according to the low temperature gas supply device 100C, the heat medium cooling device 200C, and the low temperature reaction control device 300C of the third embodiment, the temperature of the heat medium HM detected by the second temperature detector 24 (ie, heat Based on the temperature of the heat medium HM flowing downstream of the second heat exchanger 22 in the medium circulation path 21, the flow rate of the room temperature nitrogen gas NNG serving as a base flow rate for increasing or decreasing the flow rate of the low temperature nitrogen gas refrigerant CNG is adjusted. It has a configuration. For this reason, when the load in the low temperature reaction tank 31 increases, the cooling heat necessary for the heating medium HM increases, and it becomes necessary to increase the flow rate of the low temperature nitrogen gas refrigerant CNG for heat exchange with the heating medium HM. The flow rate of the low-temperature nitrogen gas refrigerant CNG derived from the first heat exchanger 5C can be increased or decreased to a desired value according to the temperature of the heat medium HM. Therefore, both the temperature and flow rate of the low-temperature nitrogen gas refrigerant CNG are adjusted in order to obtain cold heat necessary for cooling the heat medium HM, and more stable temperature control of the heat medium HM can be realized.
 さらに、第1の実施形態で用いた流量調整弁26を省略することができるため、装置の小型化及び低コスト化が可能となる。 Furthermore, since the flow rate adjustment valve 26 used in the first embodiment can be omitted, the apparatus can be reduced in size and cost.
<第4実施形態>
 次に、本発明における第4実施形態を説明する。図4は、本発明の低温ガス供給装置、熱媒冷却装置、及び低温反応制御装置における第4実施形態の系統図である。
<Fourth embodiment>
Next, a fourth embodiment of the present invention will be described. FIG. 4 is a system diagram of a fourth embodiment of the low-temperature gas supply device, the heat medium cooling device, and the low-temperature reaction control device of the present invention.
 図4に示すように、本発明の第4実施形態に係る低温ガス供給装置100Dは、常温窒素ガス(GN)NNGが一端から導入される常温経路1Dと、液化窒素(LN)LN(例えば-196℃)が一端から導入される低温経路2Dと、後述する低温窒素ガス冷媒が流れる混合経路3Dと、常温経路1Dから導入される常温窒素ガスNNGと、低温経路2Dから導入される液化窒素LNとを互いに熱交換させることにより、それぞれ熱交換後窒素ガスCNNGと液化窒素LNが気化した結果のガス(以下、「液化窒素気化ガス」と称す)LNGとして排出する第1熱交換器5Dと、第1熱交換器5Dから排出された熱交換後窒素ガスCNNGと液化窒素気化ガスLNGとを混合して、低温窒素ガス冷媒CNGを生成するエゼクタ4Dと、混合経路3Dを流れる低温窒素ガス冷媒CNGの温度を検出する第1温度検出器6Dと、第1温度検出器6Dによる検出温度に基づき、第1制御信号CS1を出力する第1温度調節器7Dと、後述する第2制御信号CS2に基づき、常温経路1Dに流れる常温窒素ガスNNGの流量を調整する流量調整弁8Dと、第1制御信号CS1に基づき、低温経路2Dにおける第1熱交換器5Dの下流を流れる液化窒素気化ガスLNGの流量を調整する第1流量調整弁9Dと、を備えている。 As shown in FIG. 4, a low temperature gas supply apparatus 100D according to a fourth embodiment of the present invention includes a normal temperature path 1D through which normal temperature nitrogen gas (GN 2 ) NNG is introduced from one end, and liquefied nitrogen (LN 2 ) LN ( For example, -196 ° C.) is introduced from one end, a low-temperature path 2D through which a low-temperature nitrogen gas refrigerant described later flows, a room-temperature nitrogen gas NNG introduced from the room-temperature path 1D, and a liquefaction introduced from the low-temperature path 2D. The first heat exchanger 5D is discharged as a gas LNG resulting from the vaporization of the nitrogen gas CNNG and the liquefied nitrogen LN (hereinafter referred to as “liquefied nitrogen vaporized gas”) LNG after heat exchange with the nitrogen LNG, respectively. And an ejector 4D that mixes the nitrogen gas CNNG after heat exchange discharged from the first heat exchanger 5D and the liquefied nitrogen vaporized gas LNG to generate a low-temperature nitrogen gas refrigerant CNG, A first temperature detector 6D that detects the temperature of the low-temperature nitrogen gas refrigerant CNG flowing through the mixing path 3D, and a first temperature controller 7D that outputs a first control signal CS1 based on the temperature detected by the first temperature detector 6D; The flow rate adjusting valve 8D for adjusting the flow rate of the normal temperature nitrogen gas NNG flowing in the normal temperature path 1D based on a second control signal CS2 to be described later, and the first heat exchanger 5D in the low temperature path 2D based on the first control signal CS1. And a first flow rate adjusting valve 9D that adjusts the flow rate of the liquefied nitrogen vaporized gas LNG that flows downstream.
 なお、第1熱交換器5B内において、常温経路1Dと低温経路2Dとは並走しており、それぞれに流れる常温窒素ガスNNGと液化窒素LNとが互いに熱交換するように構成されている。特に、それらの常温窒素ガスNNGと液化窒素LNとが同方向に流れるように、常温経路1Dと低温経路2Dが配設されている。 In addition, in the 1st heat exchanger 5B, the normal temperature path | route 1D and the low temperature path | route 2D are running in parallel, and it is comprised so that the normal temperature nitrogen gas NNG and liquefied nitrogen LN which flow through each may mutually heat-exchange. In particular, the normal temperature path 1D and the low temperature path 2D are arranged so that the normal temperature nitrogen gas NNG and the liquefied nitrogen LN flow in the same direction.
 また、本発明の第4実施形態に係る熱媒冷却装置200Dは、上述のような構成の低温ガス供給装置100Dと、それに加えて、熱媒HMが循環する熱媒循環経路21と、混合経路3Aと熱媒循環経路21とが並走して貫通することにより、それぞれに流れる低温窒素ガス冷媒CNGと熱媒HMとが互いに熱交換するように構成された第2熱交換器22と、熱媒HMを熱媒循環経路21内で循環させる熱媒循環ポンプ23と、熱媒循環経路21内を循環する熱媒HMの温度を検出する第2温度検出器24と、第2温度検出器24による検出温度に基づき、第2制御信号CS2を出力する第2温度調節器25と、熱媒の温度変化に伴う膨張、収縮を吸収するためのリザーブタンク27と、で構成される。 Further, the heat medium cooling device 200D according to the fourth embodiment of the present invention includes a low-temperature gas supply device 100D configured as described above, a heat medium circulation path 21 through which the heat medium HM circulates, and a mixing path. 3A and the heat medium circulation path 21 run side by side so that the low-temperature nitrogen gas refrigerant CNG and the heat medium HM flowing through each of the heat exchangers 2A and 22B exchange heat with each other, A heat medium circulation pump 23 that circulates the medium HM in the heat medium circulation path 21, a second temperature detector 24 that detects the temperature of the heat medium HM that circulates in the heat medium circulation path 21, and a second temperature detector 24. The second temperature regulator 25 that outputs the second control signal CS2 on the basis of the detected temperature and the reserve tank 27 for absorbing the expansion and contraction accompanying the temperature change of the heating medium.
 また、本発明の第4実施形態に係る低温反応制御装置300Dは、上述のような構成の熱媒冷却装置200Dを含んでいる以外は、第1乃至第3実施形態に係る低温反応制御装置300A,300B,300Cと同じである。 The low temperature reaction control apparatus 300D according to the fourth embodiment of the present invention includes a heat medium cooling apparatus 200D having the above-described configuration, except that the low temperature reaction control apparatus 300A according to the first to third embodiments. , 300B, 300C.
 次に、上述のように構成された第4実施形態に係る低温ガス供給装置100D、熱媒冷却装置200D、及び低温反応制御装置300Dの動作とその作用について説明する。 Next, operations and actions of the low-temperature gas supply device 100D, the heat medium cooling device 200D, and the low-temperature reaction control device 300D according to the fourth embodiment configured as described above will be described.
 常温窒素ガスNNGが常温経路1Dの一端から導入されて、第1熱交換器5Dに導入される。また、液化窒素(LN)LNが低温経路2Dの一端から導入されて、第1熱交換器5Dに導入される。第1熱交換器5Dは、常温経路1Dから導入される常温窒素ガスNNGと、低温経路2Dから導入される液化窒素LNとを互いに熱交換させることにより、温度差の減少した熱交換後窒素ガスCNNGと、液化窒素LNが気化した結果のガス(以下、「液化窒素気化ガス」と称す)LNGとして排出する。エゼクタ4Dは、第1熱交換器5Dから排出された熱交換後窒素ガスCNNGと液化窒素気化ガスLNGとをそれらの圧力差を利用して混合し、低温窒素ガス冷媒CNGを生成する。 The room temperature nitrogen gas NNG is introduced from one end of the room temperature path 1D and introduced into the first heat exchanger 5D. Further, liquefied nitrogen (LN 2 ) LN is introduced from one end of the low-temperature path 2D and introduced into the first heat exchanger 5D. The first heat exchanger 5D performs heat exchange between the room temperature nitrogen gas NNG introduced from the room temperature path 1D and the liquefied nitrogen LN introduced from the low temperature path 2D, thereby reducing the temperature difference and the nitrogen gas after heat exchange. CNNG and gas resulting from vaporization of liquefied nitrogen LN (hereinafter referred to as “liquefied nitrogen vaporized gas”) LNG are discharged. The ejector 4D mixes the nitrogen gas CNNG after heat exchange discharged from the first heat exchanger 5D and the liquefied nitrogen vaporized gas LNG using their pressure difference to generate a low-temperature nitrogen gas refrigerant CNG.
 第1温度検出器6Dは、混合経路3Dを流れる低温窒素ガス冷媒CNGの温度を検出する。第1温度調節器7Dは、第1温度検出器6Dによる検出温度と低温窒素ガス冷媒CNGの所望の温度(目標温度)との差異に応じた第1制御信号CS1を出力する。流量調整弁8Dは、第2温度調節器25から出力された第2制御信号CS2に基づき、常温経路1Dにおける第1熱交換器5Dの上流を流れる常温窒素ガスNNGの流量を調整する。第1流量調整弁9Dは、第1制御信号CS1に基づき、低温経路2Dにおける第1熱交換器5Dの下流を流れる液化窒素気化ガスLNGの流量を調整する。 The first temperature detector 6D detects the temperature of the low-temperature nitrogen gas refrigerant CNG flowing through the mixing path 3D. The first temperature controller 7D outputs a first control signal CS1 corresponding to the difference between the temperature detected by the first temperature detector 6D and the desired temperature (target temperature) of the low-temperature nitrogen gas refrigerant CNG. The flow rate adjusting valve 8D adjusts the flow rate of the room temperature nitrogen gas NNG flowing upstream of the first heat exchanger 5D in the room temperature path 1D based on the second control signal CS2 output from the second temperature regulator 25. The first flow rate adjusting valve 9D adjusts the flow rate of the liquefied nitrogen vaporized gas LNG flowing downstream of the first heat exchanger 5D in the low temperature path 2D based on the first control signal CS1.
 なお、エゼクタ4Dに導入される気化ガス流量は第1熱交換器5Dの一次側で調整してもよいが、このように、第1熱交換器5Dの二次側、すなわち、液化窒素気化ガスLNG、すなわち気化した単一相としてのガス、の流量を調整する構成としているので、第1熱交換器5Dの一次側、すなわち相変化を伴う液化窒素LN、の流量を調節する場合と比較して、精密な流量調節が可能である。 The flow rate of the vaporized gas introduced into the ejector 4D may be adjusted on the primary side of the first heat exchanger 5D. In this way, the secondary side of the first heat exchanger 5D, that is, the liquefied nitrogen vaporized gas is used. Since the flow rate of LNG, that is, gas as a vaporized single phase, is adjusted, the flow rate of the primary side of the first heat exchanger 5D, that is, liquefied nitrogen LN accompanying phase change, is adjusted. Therefore, precise flow rate adjustment is possible.
 エゼクタ4Dから導出された低温窒素ガス冷媒CNGは、第2熱交換器22に供給され、熱媒循環経路21を流れる熱媒HMを熱交換により冷却する。ここで、第2温度検出器24は、熱媒循環経路21内を循環する熱媒HMの温度を検出する。第2温度調節器25は、第2温度検出器24による検出温度と熱媒HMの所望の温度との差異に応じた第2制御信号CS2を出力する。 The low-temperature nitrogen gas refrigerant CNG derived from the ejector 4D is supplied to the second heat exchanger 22 and cools the heat medium HM flowing through the heat medium circulation path 21 by heat exchange. Here, the second temperature detector 24 detects the temperature of the heat medium HM circulating in the heat medium circulation path 21. The second temperature controller 25 outputs a second control signal CS2 corresponding to the difference between the temperature detected by the second temperature detector 24 and the desired temperature of the heating medium HM.
 以上のように、第1温度検出器6D、第1温度調節器7D、流量調整弁8D、第1流量調整弁9D、第2温度検出器24、及び第2温度調節器25を構成としたフィードバック制御により、低温窒素ガス冷媒CNG及び熱媒HMは所望の温度に調整される。 As described above, the feedback includes the first temperature detector 6D, the first temperature regulator 7D, the flow rate adjustment valve 8D, the first flow rate adjustment valve 9D, the second temperature detector 24, and the second temperature regulator 25. By the control, the low-temperature nitrogen gas refrigerant CNG and the heat medium HM are adjusted to desired temperatures.
 所望の温度に調整された熱媒HMは、熱媒循環ポンプ23の動作により、低温反応槽31のジャケット31aに供給される。これにより反応槽内部の反応液が一定温度に冷却調整される。 The heat medium HM adjusted to a desired temperature is supplied to the jacket 31 a of the low temperature reaction tank 31 by the operation of the heat medium circulation pump 23. Thereby, the reaction liquid inside the reaction tank is cooled and adjusted to a constant temperature.
 以上のように、本発明の第4実施形態によれば、それらを混合しているので、均一な混合が実現できる。また、その混合に、エゼクタ4Dを採用しているので、それらの圧力が互いに異なっていても、容易に混合が実現できるし、また、一般の混合器を使用する場合と比較して装置を小型化できる。 As described above, according to the fourth embodiment of the present invention, since they are mixed, uniform mixing can be realized. In addition, since the ejector 4D is used for the mixing, the mixing can be easily realized even if the pressures are different from each other, and the apparatus is smaller than the case of using a general mixer. Can be
 また、常温窒素ガスNNGと液化窒素LNを、第1熱交換器5Dにより、温度差の減少した熱交換後窒素ガスCNNGと液化窒素気化ガスLNGに変換し、それらを混合しているので、常温窒素ガスNNG及び液化窒素気化ガスLNGの流量調整による低温窒素ガス冷媒CNGの温度制御が安定する。特に混合不良による温度の脈動的変化に起因する流量の脈動制御が回避されるので、制御が安定化する。また、低温窒素ガス冷媒CNGの目標温度が変わっても、適切にその値に追従できる。一方、液化窒素LNの冷熱を、効率よく低温窒素ガス冷媒CNGの生成に利用できる。 Moreover, since normal temperature nitrogen gas NNG and liquefied nitrogen LNG are converted into nitrogen gas CNNG and liquefied nitrogen vaporized gas LNG after heat exchange with reduced temperature difference by the first heat exchanger 5D, and they are mixed, Temperature control of the low-temperature nitrogen gas refrigerant CNG by adjusting the flow rates of the nitrogen gas NNG and the liquefied nitrogen vaporized gas LNG is stabilized. In particular, since flow rate pulsation control caused by temperature pulsation changes due to poor mixing is avoided, control is stabilized. Moreover, even if the target temperature of the low-temperature nitrogen gas refrigerant CNG changes, the value can be appropriately followed. On the other hand, the cold energy of the liquefied nitrogen LN can be efficiently used for generating the low temperature nitrogen gas refrigerant CNG.
 また、温度が安定している低温窒素ガス冷媒CNGを第2熱交換器22に導入することにより、熱媒循環経路21を巡廻する熱媒HMの温度を正確に、かつ安定的に制御しているので、熱媒HMの凝固点を念頭においた熱媒HMの目標温度をより理想的に設定できる。つまり、第2熱交換器22内で熱媒HMの凍結を発生させることなく、熱媒HMの目標温度をその凝固点近くに設定することができる。これにより、凍結による熱媒循環経路21の閉塞とそれによる経路内の圧力損失を防止でき、過度の熱侵入を抑え、装置全体として省力化できる。 Further, by introducing the low-temperature nitrogen gas refrigerant CNG having a stable temperature into the second heat exchanger 22, the temperature of the heat medium HM circulating in the heat medium circulation path 21 can be controlled accurately and stably. Therefore, the target temperature of the heating medium HM can be set more ideally with the freezing point of the heating medium HM in mind. That is, the target temperature of the heat medium HM can be set near its freezing point without causing the heat medium HM to freeze in the second heat exchanger 22. This can prevent the heat medium circulation path 21 from being blocked due to freezing and the resulting pressure loss in the path, suppress excessive heat penetration, and save labor as the entire apparatus.
 また、その凝固点に近いまでの低温に正確に安定的に制御された熱媒HMを、低温反応槽31が使用すれば、反応槽をより低温で安定に制御でき、幅広い温度制御が可能となる。 Moreover, if the low-temperature reaction tank 31 uses the heating medium HM that is accurately and stably controlled at a low temperature close to its freezing point, the reaction tank can be stably controlled at a lower temperature, and a wide range of temperature control is possible. .
 ところで、上述した第2実施形態の低温ガス供給装置100B、熱媒冷却装置200B、及び低温反応制御装置300Bは、温度検出器6Bで検出した低温窒素ガス冷媒CNGの温度(すなわち、混合経路3Bにおけるエゼクタ4Bの下流を流れる低温窒素ガス冷媒CNGの温度)に基づいて、常温経路1Bに導入する常温窒素ガスNNG及び低温経路2Bに導入する液化窒素気化ガスLNGの流量を調整する構成となっている。このため、温度検出器6Bで検出した低温窒素ガス冷媒CNGの温度が所望の範囲内となった後は、エゼクタ4Bから導出される低温窒素ガス冷媒CNGの流量は変動することはなく安定するという利点がある。 By the way, the low-temperature gas supply device 100B, the heat medium cooling device 200B, and the low-temperature reaction control device 300B of the second embodiment described above have the temperature of the low-temperature nitrogen gas refrigerant CNG detected by the temperature detector 6B (that is, in the mixing path 3B). Based on the temperature of the low-temperature nitrogen gas refrigerant CNG flowing downstream of the ejector 4B), the flow rates of the normal-temperature nitrogen gas NNG introduced into the normal-temperature path 1B and the liquefied nitrogen vaporized gas LNG introduced into the low-temperature path 2B are adjusted. . For this reason, after the temperature of the low-temperature nitrogen gas refrigerant CNG detected by the temperature detector 6B falls within a desired range, the flow rate of the low-temperature nitrogen gas refrigerant CNG derived from the ejector 4B is stable without fluctuation. There are advantages.
 一方、低温反応制御装置300Bにおいて、低温反応槽31での負荷が増大することによって熱媒HMで必要な冷熱が増大した場合には、熱媒HMと熱交換させるための低温窒素ガス冷媒CNGの流量を増やす必要が生じる場合がある。第2実施形態の低温ガス供給装置100B、熱媒冷却装置200B、及び低温反応制御装置300Bでは、流量調整弁26の開度を最大にした場合に、低温窒素ガス冷媒CNGの流量が最大となる。 On the other hand, in the low-temperature reaction control device 300B, when the required cold heat in the heating medium HM increases due to an increase in the load in the low-temperature reaction tank 31, the low-temperature nitrogen gas refrigerant CNG for heat exchange with the heating medium HM It may be necessary to increase the flow rate. In the low temperature gas supply device 100B, the heat medium cooling device 200B, and the low temperature reaction control device 300B of the second embodiment, the flow rate of the low temperature nitrogen gas refrigerant CNG becomes maximum when the flow rate adjustment valve 26 is maximized. .
 これに対して、第4の実施形態の低温ガス供給装置100D、熱媒冷却装置200D、及び低温反応制御装置300Dによれば、第2温度検出器24で検出した熱媒HMの温度(すなわち、熱媒循環経路21における第2熱交換器22の下流を流れる熱媒HMの温度)に基づいて、低温窒素ガス冷媒CNGの流量を増減させるためのベース流量となる常温窒素ガスNNGの流量を調整する構成となっている。このため、低温反応槽31での負荷が増大することによって熱媒HMで必要な冷熱が増大し、熱媒HMと熱交換させるための低温窒素ガス冷媒CNGの流量を増やす必要が生じる場合に、エゼクタ4Dから導出される低温窒素ガス冷媒CNGの流量を、熱媒HMの温度に応じて所望の値に増減させることができる。したがって、熱媒HMの冷却に必要な冷熱を得るために低温窒素ガス冷媒CNGの温度及び流量の両方を調整し、熱媒HMのより安定な温度制御を実現できる。 In contrast, according to the low temperature gas supply device 100D, the heat medium cooling device 200D, and the low temperature reaction control device 300D of the fourth embodiment, the temperature of the heat medium HM detected by the second temperature detector 24 (that is, Based on the temperature of the heat medium HM flowing downstream of the second heat exchanger 22 in the heat medium circulation path 21), the flow rate of the room temperature nitrogen gas NNG serving as a base flow rate for increasing or decreasing the flow rate of the low temperature nitrogen gas refrigerant CNG is adjusted. It is the composition to do. For this reason, when the load in the low temperature reaction tank 31 increases, the cooling heat necessary for the heating medium HM increases, and it becomes necessary to increase the flow rate of the low temperature nitrogen gas refrigerant CNG for heat exchange with the heating medium HM. The flow rate of the low-temperature nitrogen gas refrigerant CNG derived from the ejector 4D can be increased or decreased to a desired value according to the temperature of the heating medium HM. Therefore, both the temperature and flow rate of the low-temperature nitrogen gas refrigerant CNG are adjusted in order to obtain cold heat necessary for cooling the heat medium HM, and more stable temperature control of the heat medium HM can be realized.
 さらに、第2の実施形態で用いた流量調整弁26を省略することができるため、装置の小型化及び低コスト化が可能となる。 Furthermore, since the flow rate adjustment valve 26 used in the second embodiment can be omitted, the apparatus can be reduced in size and cost.
<各実施形態の変形例>
 上述した第1~第4の実施形態に係る低温ガス供給装置100A~100Dは、熱媒冷却装置200A~200Dの他に、以下の装置にも適用することができる。
<Modification of each embodiment>
The low-temperature gas supply devices 100A to 100D according to the first to fourth embodiments described above can be applied to the following devices in addition to the heat medium cooling devices 200A to 200D.
 すなわち、食品凍結や金属熱処理を行う冷却槽に適用でき、予め温度調整された低温ガスを槽内に供給することで、攪拌ファンなどを必要とせず対象物を均一に冷却することができる。また、反応液を貯留する反応槽と、反応槽周囲のジャケット又は反応槽内に設置された熱交換器と有し、ジャケット又は熱交換器に低温ガスを供給する低温反応制御装置に適用でき、予め温度調整された低温ガスを供給することで伝熱面において反応液を凍結させることなく冷却することができる。更に、コイル管又はその他の熱交換器を使用して蒸気を冷却、凝縮又は凝固させるコールドトラップに適用でき、予め温度調整された低温ガスを熱交換器内部に通すことにより精度よく均一な温度で凝縮及び凝固させることができる。 That is, it can be applied to a cooling bath that performs food freezing or metal heat treatment, and by supplying a low-temperature gas whose temperature has been adjusted in advance into the bath, the object can be uniformly cooled without the need for a stirring fan or the like. In addition, it has a reaction tank that stores the reaction liquid, a jacket around the reaction tank or a heat exchanger installed in the reaction tank, and can be applied to a low-temperature reaction control device that supplies low-temperature gas to the jacket or the heat exchanger. By supplying a low-temperature gas whose temperature has been adjusted in advance, the reaction liquid can be cooled on the heat transfer surface without freezing. Furthermore, it can be applied to cold traps that use coiled tubes or other heat exchangers to cool, condense, or solidify the steam. Can be condensed and solidified.
 なお、以上の本発明の各実施形態の説明においては、常温窒素ガスNNGの流量調整手段及び液化窒素気化ガスLNGの流量調整手段として流量調整弁を示しているが、これに限られることはなく、たとえばマスフローコントローラ等、適宜他の流量調整手段を採用できる。 In the above description of each embodiment of the present invention, the flow rate adjusting valve is shown as the flow rate adjusting means for the room temperature nitrogen gas NNG and the flow rate adjusting means for the liquefied nitrogen vaporized gas LNG. However, the present invention is not limited to this. For example, other flow rate adjusting means such as a mass flow controller can be used as appropriate.
 また、第2熱交換器22としては、例えば、二重管式熱交換器、プレート式熱交換器、プレートフィン式熱交換器、シェル&チューブ式熱交換器、タンク&コイル式熱交換器を採用できる。特に、プレート式熱交換器が望ましい。高効率であり装置の小型化に貢献するからである。また、第1熱交換器としてはプレート式のような高効率な熱交換器が望ましい。温端温度差が小さくなるため、混合が容易となることと、小型化が可能であるからである。 Further, as the second heat exchanger 22, for example, a double tube heat exchanger, a plate heat exchanger, a plate fin heat exchanger, a shell & tube heat exchanger, a tank & coil heat exchanger, or the like. Can be adopted. In particular, a plate heat exchanger is desirable. This is because it is highly efficient and contributes to downsizing of the apparatus. Moreover, as a 1st heat exchanger, a highly efficient heat exchanger like a plate type is desirable. This is because the warm-end temperature difference is small, so that mixing is easy and miniaturization is possible.
 更に、上述の各実施形態においては、常温窒素ガスNNGと液化窒素LNを採用しているが、必ずしも同一種類である必要はなく、異種ガスを混合させてもよい。対象ガスとしては、窒素の他に、酸素、アルゴン、炭酸ガス、LNG、クロロフルオロカーボンやハイドロフルオロカーボン等のフッ素系冷媒等が使用可能である。また、低温液化ガスより高温であれば、常温に限らずいかなる温度のガスであっても低温液化ガスと混合させることができる。 Furthermore, in each of the above-described embodiments, the room temperature nitrogen gas NNG and the liquefied nitrogen LN are employed, but they are not necessarily the same type, and different gases may be mixed. As the target gas, in addition to nitrogen, oxygen, argon, carbon dioxide, LNG, fluorine-based refrigerants such as chlorofluorocarbon and hydrofluorocarbon, and the like can be used. Moreover, as long as the temperature is higher than that of the low-temperature liquefied gas, not only normal temperature but also any temperature gas can be mixed with the low-temperature liquefied gas.
 本発明の低温ガス供給装置、熱媒冷却装置、及び低温反応制御装置は、有機合成や晶析等の化学反応プロセスにおける温度制御に利用できる。 The low-temperature gas supply device, heat medium cooling device, and low-temperature reaction control device of the present invention can be used for temperature control in chemical reaction processes such as organic synthesis and crystallization.
100A,100B,100C,100D・・・低温ガス供給装置
1A,1B,1C,1D・・・常温経路
2A,2B,2C,2D・・・低温経路
3A,3B,3C,3D・・・混合経路
4A,4B,4C,4D・・・エゼクタ(混合手段)
5A,5B,5C,5D・・・第1熱交換器
6A,6B,6C,6D・・・第1温度検出器
7A,7B,7C,7D・・・第1温度調節器(第一制御手段)
8A,8B,8C,8D・・・流量調整弁
9A,9B,9C,9D・・・第1調節弁
200A,200B,200C,200D・・・熱媒冷却装置
21・・・熱媒循環経路
22・・・第2熱交換器
23・・・熱媒循環ポンプ
24・・・第2温度検出器
25・・・第2温度調節器
26・・・第2調節弁
27・・・リザーブタンク
300A,300B,300C,300D・・・低温反応制御装置
31・・・低温反応槽
31a・・・ジャケット
31b・・・攪拌モータ
100A, 100B, 100C, 100D ... Low temperature gas supply devices 1A, 1B, 1C, 1D ... Normal temperature paths 2A, 2B, 2C, 2D ... Low temperature paths 3A, 3B, 3C, 3D ... Mixing paths 4A, 4B, 4C, 4D ... Ejector (mixing means)
5A, 5B, 5C, 5D ... 1st heat exchanger 6A, 6B, 6C, 6D ... 1st temperature detector 7A, 7B, 7C, 7D ... 1st temperature regulator (1st control means) )
8A, 8B, 8C, 8D ... Flow rate regulating valves 9A, 9B, 9C, 9D ... First regulating valves 200A, 200B, 200C, 200D ... Heat medium cooling device 21 ... Heat medium circulation path 22 2nd heat exchanger 23 ... Heat medium circulation pump 24 ... 2nd temperature detector 25 ... 2nd temperature controller 26 ... 2nd control valve 27 ... Reserve tank 300A, 300B, 300C, 300D ... low temperature reaction control device 31 ... low temperature reaction tank 31a ... jacket 31b ... stirring motor

Claims (8)

  1.  低温液化ガスが気化した気化ガス及び前記低温液化ガスよりも温度の高いガスが混合された混合ガスと前記低温液化ガスとを導入して互いに熱交換させることにより、前記混合ガスを低温ガス冷媒として排出するとともに、前記低温液化ガスを前記気化ガスとして排出する第一熱交換器と、
     前記ガスと、前記第一熱交換器から排出された前記気化ガスとを混合して、前記混合ガスとして排出する混合手段と、
     前記低温ガス冷媒について検出された温度と、その目標温度との差異に基づき、前記混合手段に導入される前記ガス及び前記気化ガスのそれぞれの量を調整して、前記低温ガス冷媒の温度を前記目標温度に制御する第一制御手段と、を備える低温ガス供給装置。
    A gas mixture obtained by mixing a vaporized gas obtained by vaporizing a low-temperature liquefied gas and a gas having a temperature higher than that of the low-temperature liquefied gas and the low-temperature liquefied gas are introduced into each other to exchange heat with each other. A first heat exchanger for discharging and discharging the low-temperature liquefied gas as the vaporized gas;
    Mixing means for mixing the gas and the vaporized gas discharged from the first heat exchanger and discharging the mixed gas as the mixed gas;
    Based on the difference between the temperature detected for the low-temperature gas refrigerant and its target temperature, the respective amounts of the gas and the vaporized gas introduced into the mixing means are adjusted so that the temperature of the low-temperature gas refrigerant is And a first control means for controlling to a target temperature.
  2.  低温液化ガス及び前記低温液化ガスよりも温度の高いガスを導入して互いに熱交換させることにより、それぞれ前記低温液化ガスが気化した気化ガス及び熱交換後の前記ガスである熱交換後ガスとして排出する第一熱交換器と、
     前記第一熱交換器から排出された前記熱交換後ガスと前記気化ガスとを混合して、低温ガス冷媒として排出する混合手段と、
     前記低温ガス冷媒について検出された温度と、その目標温度との差異に基づき、前記第一熱交換器に導入される前記低温液化ガスよりも温度の高いガスの量と、前記混合手段に導入される前記気化ガスの量を調整して、前記低温ガス冷媒の温度を前記目標温度に制御する第一制御手段と、を備える低温ガス供給装置。
    By introducing a low-temperature liquefied gas and a gas having a temperature higher than that of the low-temperature liquefied gas and exchanging heat with each other, the low-temperature liquefied gas is discharged as a vaporized gas that is vaporized and a heat-exchanged gas that is the gas after heat exchange, respectively. A first heat exchanger to
    Mixing means for mixing the gas after heat exchange discharged from the first heat exchanger with the vaporized gas and discharging it as a low-temperature gas refrigerant;
    Based on the difference between the temperature detected for the low-temperature gas refrigerant and its target temperature, the amount of gas having a temperature higher than that of the low-temperature liquefied gas introduced into the first heat exchanger and the mixing means are introduced. A first control means for adjusting the amount of the vaporized gas to control the temperature of the low-temperature gas refrigerant to the target temperature.
  3.  前記混合手段は、エゼクタである請求項1又は2に記載の低温ガス供給装置。 The low-temperature gas supply device according to claim 1 or 2, wherein the mixing means is an ejector.
  4.  請求項1に記載の低温ガス供給装置又は請求項2に記載の低温ガス供給装置と、
     前記低温ガス供給装置から排出される、前記温度制御された前記低温ガス冷媒と、循環経路を巡廻する熱媒とを互いに熱交換させる第二熱交換器と、
     前記熱媒について検出された温度と、その熱媒目標温度との差異に基づき、前記第二熱交換器に導入される前記低温ガス冷媒の量を調整して、前記熱媒の温度を前記熱媒目標温度に制御する第二制御手段と、を備える熱媒冷却装置。
    The low temperature gas supply device according to claim 1 or the low temperature gas supply device according to claim 2,
    A second heat exchanger for exchanging heat between the temperature-controlled low-temperature gas refrigerant discharged from the low-temperature gas supply device and a heat medium circulating in a circulation path;
    Based on the difference between the detected temperature of the heat medium and the target temperature of the heat medium, the amount of the low-temperature gas refrigerant introduced into the second heat exchanger is adjusted to control the temperature of the heat medium. And a second control means for controlling to the medium target temperature.
  5.  請求項4に記載の熱媒冷却装置と、
     前記循環経路を循環する、前記温度制御された前記熱媒を導入して、反応槽内部の反応液を所望温度に冷却調整するように構成された低温反応槽と、を備える低温反応制御装置。
    The heat medium cooling device according to claim 4;
    A low-temperature reaction control apparatus comprising: a low-temperature reaction tank configured to introduce the temperature-controlled heating medium that circulates in the circulation path and to cool and adjust the reaction liquid inside the reaction tank to a desired temperature.
  6.  低温液化ガスが気化した気化ガス及び前記低温液化ガスよりも温度の高いガスが混合された混合ガスと前記低温液化ガスとを導入して互いに熱交換させることにより、前記混合ガスを低温ガス冷媒として排出するとともに、前記低温液化ガスを前記気化ガスとして排出する第一熱交換器と、
     前記ガスと、前記第一熱交換器から排出された前記気化ガスとを混合して、前記混合ガスとして排出する混合手段と、
     前記低温ガス冷媒について検出された温度と、その目標温度との差異に基づき、前記混合手段に導入される前記ガスの量を調整して、前記低温ガス冷媒の温度を前記目標温度に制御する第一制御手段と、
     前記第一熱交換器から排出される、前記温度制御された前記低温ガス冷媒と、循環経路を巡廻する熱媒とを互いに熱交換させる第二熱交換器と、
     前記熱媒について検出された温度と、その熱媒目標温度との差異に基づき、前記ガスの量を調整して、前記熱媒の温度を前記熱媒目標温度に制御する第二制御手段とを備える熱媒冷却装置。
    A gas mixture obtained by mixing a vaporized gas obtained by vaporizing a low-temperature liquefied gas and a gas having a temperature higher than that of the low-temperature liquefied gas and the low-temperature liquefied gas are introduced into each other to exchange heat with each other. A first heat exchanger for discharging and discharging the low-temperature liquefied gas as the vaporized gas;
    Mixing means for mixing the gas and the vaporized gas discharged from the first heat exchanger and discharging the mixed gas as the mixed gas;
    The temperature of the low temperature gas refrigerant is controlled to the target temperature by adjusting the amount of the gas introduced into the mixing means based on the difference between the temperature detected for the low temperature gas refrigerant and the target temperature. A control means;
    A second heat exchanger for exchanging heat between the temperature-controlled low-temperature gas refrigerant discharged from the first heat exchanger and a heat medium circulating in a circulation path;
    Second control means for adjusting the amount of the gas based on the difference between the temperature detected for the heat medium and the heat medium target temperature, and controlling the temperature of the heat medium to the heat medium target temperature; Heat medium cooling device provided.
  7.  低温液化ガス及び前記低温液化ガスよりも温度の高いガスを導入して互いに熱交換させることにより、それぞれ前記低温液化ガスが気化した気化ガス及び熱交換後の前記ガスである熱交換後ガスとして排出する第一熱交換器と、
     前記第一熱交換器から排出された前記熱交換後ガスと前記気化ガスとを混合して、低温ガス冷媒として排出する混合手段と、
     前記低温ガス冷媒について検出された温度と、その目標温度との差異に基づき、前記混合手段に導入される前記気化ガスの量を調整して、前記低温ガス冷媒の温度を前記目標温度に制御する第一制御手段と、
     前記第一熱交換器から排出される、前記温度制御された前記低温ガス冷媒と、循環経路を巡廻する熱媒とを互いに熱交換させる第二熱交換器と、
     前記熱媒について検出された温度と、その熱媒目標温度との差異に基づき、前記ガスの量を調整して、前記熱媒の温度を前記熱媒目標温度に制御する第二制御手段とを備える熱媒冷却装置。
    By introducing a low-temperature liquefied gas and a gas having a temperature higher than that of the low-temperature liquefied gas and exchanging heat with each other, the low-temperature liquefied gas is discharged as a vaporized gas that is vaporized and a heat-exchanged gas that is the gas after heat exchange, respectively. A first heat exchanger to
    Mixing means for mixing the gas after heat exchange discharged from the first heat exchanger with the vaporized gas and discharging it as a low-temperature gas refrigerant;
    Based on the difference between the temperature detected for the low-temperature gas refrigerant and the target temperature, the amount of the vaporized gas introduced into the mixing means is adjusted to control the temperature of the low-temperature gas refrigerant to the target temperature. First control means;
    A second heat exchanger for exchanging heat between the temperature-controlled low-temperature gas refrigerant discharged from the first heat exchanger and a heat medium circulating in a circulation path;
    Second control means for adjusting the amount of the gas based on the difference between the temperature detected for the heat medium and the heat medium target temperature, and controlling the temperature of the heat medium to the heat medium target temperature; Heat medium cooling device provided.
  8.  請求項6に記載の熱媒冷却装置又は請求項7に記載の熱媒冷却装置と、
     前記循環経路を循環する、前記温度制御された前記熱媒を導入して、反応槽内部の反応液を所望温度に冷却調整するように構成された低温反応槽と、を備える低温反応制御装置。
    The heat medium cooling device according to claim 6 or the heat medium cooling device according to claim 7,
    A low-temperature reaction control apparatus comprising: a low-temperature reaction tank configured to introduce the temperature-controlled heating medium that circulates in the circulation path and to cool and adjust the reaction liquid inside the reaction tank to a desired temperature.
PCT/JP2012/076315 2011-10-11 2012-10-11 Low temperature gas supply device, heat transfer medium-cooling device, and low temperature reaction control device WO2013054844A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11201400732RA SG11201400732RA (en) 2011-10-11 2012-10-11 Low temperature gas supply device, heat transfer medium-cooling device, and low temperature reaction control device
CN201280048779.3A CN103874898B (en) 2011-10-11 2012-10-11 Cryogenic gas feedway, thermophore cooling device and low-temp reaction control device
JP2013538566A JP5651246B2 (en) 2011-10-11 2012-10-11 Low temperature gas supply device, heat medium cooling device, and low temperature reaction control device
US14/345,523 US20140366575A1 (en) 2011-10-11 2012-10-11 Low-temperature gas supply device, heat transfer medium-cooling device, and low-temperature reaction control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011223716 2011-10-11
JP2011-223716 2011-10-11

Publications (1)

Publication Number Publication Date
WO2013054844A1 true WO2013054844A1 (en) 2013-04-18

Family

ID=48081897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076315 WO2013054844A1 (en) 2011-10-11 2012-10-11 Low temperature gas supply device, heat transfer medium-cooling device, and low temperature reaction control device

Country Status (5)

Country Link
US (1) US20140366575A1 (en)
JP (1) JP5651246B2 (en)
CN (1) CN103874898B (en)
SG (1) SG11201400732RA (en)
WO (1) WO2013054844A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106482418B (en) * 2015-08-28 2022-11-04 楚天科技股份有限公司 Gas/liquid nitrogen refrigerating system for freeze dryer
CN109550416B (en) * 2018-12-15 2021-09-10 力合科技(湖南)股份有限公司 Dynamic gas distribution and supply device
CN116422222B (en) * 2023-06-13 2023-09-01 福建德尔科技股份有限公司 Flow control system for automatically mixing fluorine gas and nitrogen gas

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747251A (en) * 1993-08-06 1995-02-21 Toho Asechiren Kk Generation of mixed gas
JPH09166376A (en) * 1995-09-15 1997-06-24 L'air Liquide Refrigeration system and cooling method
JPH09206572A (en) * 1996-02-02 1997-08-12 Kyodo Sanso Kk Production of mixed gas
JPH1137623A (en) * 1997-07-17 1999-02-12 Nippon Sanso Kk Coolant cooler
JP2007127334A (en) * 2005-11-04 2007-05-24 Taiyo Nippon Sanso Corp Heating medium heating and cooling device
JP2009287822A (en) * 2008-05-28 2009-12-10 Taiyo Nippon Sanso Corp Refrigerant cooling device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456084A (en) * 1993-11-01 1995-10-10 The Boc Group, Inc. Cryogenic heat exchange system and freeze dryer
US6622496B2 (en) * 2001-07-12 2003-09-23 Praxair Technology, Inc. External loop nonfreezing heat exchanger
DE102005004665A1 (en) * 2005-02-02 2006-08-10 Messer Group Gmbh Method and device for filling pressure vessels with non-liquefied gases or gas mixtures
EP2209885B1 (en) * 2007-11-09 2012-12-26 Praxair Technology, Inc. Method and system for controlled rate freezing of biological material
US8474273B2 (en) * 2009-10-29 2013-07-02 Air Products And Chemicals, Inc. Apparatus and method for providing a temperature-controlled gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747251A (en) * 1993-08-06 1995-02-21 Toho Asechiren Kk Generation of mixed gas
JPH09166376A (en) * 1995-09-15 1997-06-24 L'air Liquide Refrigeration system and cooling method
JPH09206572A (en) * 1996-02-02 1997-08-12 Kyodo Sanso Kk Production of mixed gas
JPH1137623A (en) * 1997-07-17 1999-02-12 Nippon Sanso Kk Coolant cooler
JP2007127334A (en) * 2005-11-04 2007-05-24 Taiyo Nippon Sanso Corp Heating medium heating and cooling device
JP2009287822A (en) * 2008-05-28 2009-12-10 Taiyo Nippon Sanso Corp Refrigerant cooling device

Also Published As

Publication number Publication date
CN103874898A (en) 2014-06-18
SG11201400732RA (en) 2014-09-26
JP5651246B2 (en) 2015-01-07
US20140366575A1 (en) 2014-12-18
JPWO2013054844A1 (en) 2015-03-30
CN103874898B (en) 2016-03-30

Similar Documents

Publication Publication Date Title
JP6586338B2 (en) Precooler and precooling method for hydrogen gas filling equipment
JP5651246B2 (en) Low temperature gas supply device, heat medium cooling device, and low temperature reaction control device
US11891188B2 (en) Fuel tank inerting system and method
WO2009145078A1 (en) Refrigerant cooler
JP4723468B2 (en) Liquefied gas vaporization system and control method thereof
JP2009052724A (en) Heating or vaporizing device for low temperature fluid, and method for operation thereof
Chen et al. Experimental study on the heat transfer characteristics of saturated liquid nitrogen flow boiling in small-diameter horizontal tubes
JP2019082280A (en) Liquid temperature adjusting apparatus and temperature adjusting method using the same
US10654583B2 (en) Fuel tank inerting system and method
JP5840938B2 (en) Heat medium cooling device and operation method of heat medium cooling device
JP2013015308A (en) Recovery device for vaporization heat of liquefied gas
KR102188286B1 (en) Chiller control apparatus for semiconductor process
JP2010096442A (en) Refrigerating cycle
JP2021021433A (en) Liquefied gas vaporizer
WO2023047937A1 (en) Liquid hydrogen vaporizer, and generation method for generating hydrogen
EP3286515B1 (en) Methods of dynamically exchanging heat and systems
JPH08190925A (en) Cooling system of fuel cell power generating equipment
JP7227710B2 (en) Apparatus and method for refilling a container with pressurized gas
JP7352336B2 (en) Apparatus and method for replenishing containers with pressurized gas
WO2019187894A1 (en) Liquefied natural gas vaporization system
JP2009059576A (en) Fuel supply system for fuel battery
KR20100048419A (en) Temperature control unit having precooling and preheating function
JP6371881B1 (en) Gas cooling system
JP2020020412A (en) Device and method of supplying pressurized gas to container
JP2020020414A (en) Device and method for supplying pressurized gas to container

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280048779.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013538566

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14345523

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12839923

Country of ref document: EP

Kind code of ref document: A1