JP2013015308A - Recovery device for vaporization heat of liquefied gas - Google Patents

Recovery device for vaporization heat of liquefied gas Download PDF

Info

Publication number
JP2013015308A
JP2013015308A JP2011160316A JP2011160316A JP2013015308A JP 2013015308 A JP2013015308 A JP 2013015308A JP 2011160316 A JP2011160316 A JP 2011160316A JP 2011160316 A JP2011160316 A JP 2011160316A JP 2013015308 A JP2013015308 A JP 2013015308A
Authority
JP
Japan
Prior art keywords
control valve
heat exchanger
flow rate
flow path
liquefied gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011160316A
Other languages
Japanese (ja)
Inventor
Toshiyuki Nagashima
利幸 長島
Natsuko Odagiri
七都子 小田切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Gas Products Corp
Original Assignee
Showa Denko Gas Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Gas Products Co Ltd filed Critical Showa Denko Gas Products Co Ltd
Priority to JP2011160316A priority Critical patent/JP2013015308A/en
Publication of JP2013015308A publication Critical patent/JP2013015308A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a recovery device for vaporization heat which stabilizes the flow rate of a liquefied gas supplied to a heat exchanger and efficiently preforms heat exchange while preventing the freezing of water or brine.SOLUTION: The recovery device for vaporization heat includes a first bypass channel L3 with a first flow rate adjusting valve 41 interposed to adjust the liquefied gas flowing into the heat exchanger by changing the degree of opening of the flow rate adjusting valve according to the supply situation of water or brine and the performance of the heat exchanger, thereby preventing the freezing of water or brine in the heat exchanger and the deviation of the flow rate of the liquefied gas to the bypass channel to stably recover cold heat.

Description

本発明は、液化二酸化炭素、液化窒素、液化天然ガス、プロパンガス等の液化ガスを気化させるときに生じる気化熱(冷熱)を回収する気化熱回収装置に関する。  The present invention relates to a vaporization heat recovery apparatus that recovers the heat of vaporization (cold heat) generated when vaporizing a liquefied gas such as liquefied carbon dioxide, liquefied nitrogen, liquefied natural gas, and propane gas.

従来、食品工場や飲料工場、半導体工場、化学品製造工場等の広範な工業分野で、気体状の二酸化炭素、窒素、液化天然ガス、プロパンガス等が、プロセスガスやシールドガス、原料ガス、燃料ガスとして使用されていた。
これらのガスは貯蔵タンク内に液化ガスの状態で貯蔵されていた。
これらを使用する際には、貯蔵タンクから液化ガスの状態で取り出して気化し、気体状に変える気化工程が必要であった。
この気化工程において、液化ガスを加熱するために、スチームまたは電力を用いる気化器(蒸発器)が使用されていた。
Conventionally, in a wide range of industrial fields such as food factories, beverage factories, semiconductor factories, chemicals manufacturing factories, etc., gaseous carbon dioxide, nitrogen, liquefied natural gas, propane gas, etc., process gas, shield gas, raw material gas, fuel It was used as a gas.
These gases were stored in a liquefied gas state in a storage tank.
When using these, the vaporization process which takes out from the storage tank in the state of liquefied gas, vaporizes, and changes it into a gaseous state was required.
In this vaporization step, a vaporizer (evaporator) using steam or electric power has been used to heat the liquefied gas.

一方、製品や原料の冷却、冷却加工、空調等の冷却工程に、チルド水、あるいはプロピレングリコールまたはエチレングリコールなどを成分とする冷却されたブライン流体を用いていた。このチルド水やブライン流体自体は、冷凍機を用いて冷却されていた。  On the other hand, chilled water or a cooled brine fluid containing propylene glycol or ethylene glycol as a component has been used for cooling processes such as cooling of products and raw materials, cooling processing, and air conditioning. The chilled water and the brine fluid itself were cooled using a refrigerator.

液化ガスを気化する気化工程と、製品や原料の冷却、冷却加工、空調等の冷却工程とは、別々に行われており、それぞれの工程にエネルギーが必要であった。  The vaporization process for vaporizing the liquefied gas and the cooling processes such as cooling of products and raw materials, cooling processing, and air conditioning are performed separately, and each process requires energy.

無駄に消費されるエネルギーを減らしてエネルギー効率を高めるために、液化二酸化炭素を気化する気化工程で発生する気化熱(冷熱)を、冷却工程に有効利用することが提案されている。  In order to reduce energy consumed in vain and increase energy efficiency, it has been proposed to effectively use the heat of vaporization (cold heat) generated in the vaporization process for vaporizing liquefied carbon dioxide in the cooling process.

例えば、特開2009−185959号には、液化二酸化炭素の気化熱を水やブライン流体で熱回収するシステムが開示されている。  For example, JP 2009-185959A discloses a system for recovering heat of vaporization of liquefied carbon dioxide with water or brine fluid.

このようなシステムで通常使用されるブライン流体の凍結温度は、一般的に−10℃程度であり、また水の凍結温度は0℃である。
それに対して、液化二酸化炭素の蒸発圧力を1.7MPaG〜2.0MPaGとすると、液化二酸化炭素の蒸発温度は、−23℃〜−17℃、同様に液化窒素では1.0MPaGで−163℃、プロパンガスでは0.2MPaG、で−13℃、液化天然ガスの成分ではメタン4.5MPaGで−82.6℃、エタン1.7MPaGで−15.7℃となる。
このように、水またはブライン流体の凍結温度が、液化ガスの蒸発温度より高いために、液化ガスの気化熱を利用して水またはブライン流体を冷却する場合、熱交換器内で水またはブライン流体が凍結する問題があった。
The freezing temperature of the brine fluid normally used in such systems is generally on the order of −10 ° C., and the freezing temperature of water is 0 ° C.
On the other hand, when the evaporation pressure of liquefied carbon dioxide is 1.7 MPaG to 2.0 MPaG, the evaporation temperature of liquefied carbon dioxide is −23 ° C. to −17 ° C. Similarly, in liquefied nitrogen, 1.0 MPaG is −163 ° C. Propane gas is 0.2 MPaG at -13 ° C, and liquefied natural gas components are methane 4.5 MPaG at -82.6 ° C and ethane 1.7 MPaG at -15.7 ° C.
Thus, when the water or brine fluid is cooled using the heat of vaporization of the liquefied gas because the freezing temperature of the water or brine fluid is higher than the evaporation temperature of the liquefied gas, the water or brine fluid is cooled in the heat exchanger. Had the problem of freezing.

前述の特開2009−185959号では、水やブラインの温度や流速が低下すると、液化ガスの流路を切り替えることで熱交換器をバイパスさせ、水やブラインの凍結を防止するシステムが開示されている。
このようなシステムでは、切り替わりの際の熱交換器内の温度変化が大きく、水やブラインの温度が安定しない問題があった。
JP-A-2009-185959 described above discloses a system for preventing the freezing of water and brine by switching the flow path of liquefied gas to bypass the heat exchanger when the temperature or flow rate of water or brine decreases. Yes.
In such a system, there is a problem that the temperature in the heat exchanger during switching is large and the temperature of water or brine is not stable.

また、液化ガスの流量の急激な増減へ対応が難しいことや、バイパスと熱交換器の両方に液化ガスを通過させようとすると、熱交換器や弁等の圧力損失により、液化ガスが熱交換器を通過せずバイパスのみに流れる等、熱交換器へ流入する液化ガスの流量をコントロールすることができないため、安定的に冷熱を回収できない問題があった。  In addition, it is difficult to cope with a sudden increase or decrease in the flow rate of the liquefied gas, or if the liquefied gas is allowed to pass through both the bypass and the heat exchanger, the liquefied gas is subjected to heat exchange due to pressure loss of the heat exchanger and valves. Since the flow rate of the liquefied gas flowing into the heat exchanger cannot be controlled, such as flowing only through the bypass without passing through the vessel, there has been a problem that cold heat cannot be stably recovered.

特開2009−185959号公報JP 2009-185959 A

本発明は、以上のような従来の欠点に鑑み、液化ガスを気化する気化工程で発生する気化熱(冷熱)を用いて水またはブライン流体を冷却する気化熱回収装置および方法であって、中間媒体を使用することなく水またはブライン流体を直接冷却できるとともに、冷却装置内で水またはブライン流体が凍結する問題を解消し、さらに水又はブライン流体を安定的に冷却し、安定的に冷熱を回収する装置を提供することを目的としている。  The present invention is a vaporization heat recovery apparatus and method for cooling water or brine fluid using heat of vaporization (cold heat) generated in a vaporization step of vaporizing a liquefied gas in view of the above-described conventional drawbacks, The water or brine fluid can be directly cooled without using a medium, and the problem of freezing of the water or brine fluid in the cooling device can be eliminated, and the water or brine fluid can be stably cooled to stably recover the cold energy. It aims at providing the device which performs.

本発明の前記ならびにそのほかの目的と新規な特徴は次の説明を添付図面と照らし合わせて読むと、より完全に明らかになるであろう。
ただし、図面はもっぱら解説のためのものであって、本発明の技術的範囲を限定するものではない。
The above and other objects and novel features of the present invention will become more fully apparent when the following description is read in conjunction with the accompanying drawings.
However, the drawings are for explanation only and do not limit the technical scope of the present invention.

請求項1に係る発明によれば、液化ガスを貯蔵する第1の貯蔵タンクと、第1の貯蔵タンクに貯蔵された液化ガスを第1の熱交換器を介して第2の熱交換器へ送るための第1の流路と、水またはブライン流体を貯蔵する第2の貯蔵タンクと、第2の貯蔵タンクに貯蔵された水またはブライン流体を第1の熱交換器を介して送るための第2の流路と、第2の流路を通して水またはブライン流体を送るためのポンプと、液化ガスと水またはブライン流体との熱交換を行う熱交換器と、第1の流路の貯蔵タンクと熱交換器の間で分岐し第1の流路の第1の熱交換器と第2の熱交換器の間に合流する第1のバイパス流路を備える気化熱回収装置において、前記第1のバイパス流路に第1の流量調節弁を介装することを特徴とする。  According to the first aspect of the present invention, the first storage tank that stores the liquefied gas and the liquefied gas stored in the first storage tank are transferred to the second heat exchanger via the first heat exchanger. A first flow path for sending, a second storage tank for storing water or brine fluid, and for sending the water or brine fluid stored in the second storage tank via the first heat exchanger A second flow path, a pump for sending water or brine fluid through the second flow path, a heat exchanger for exchanging heat between the liquefied gas and water or brine fluid, and a storage tank for the first flow path In the vaporization heat recovery apparatus comprising a first bypass channel that branches between the first heat exchanger and the first heat exchanger of the first channel and joins between the first heat exchanger and the second heat exchanger. A first flow rate control valve is interposed in the bypass flow path.

請求項2に係る発明によれば、第1の流路の第1の熱交換器と第1のバイパス流路との合流点の間に逆止弁を介装することを特徴とする。  According to the invention which concerns on Claim 2, a non-return valve is interposed between the confluence | merging points of the 1st heat exchanger of a 1st flow path, and a 1st bypass flow path, It is characterized by the above-mentioned.

請求項3に係る発明によれば、第1の流路の第1のバイパス流路との分岐点と第1の熱交換器との間に第2の流量調節弁を介装することを特徴とする。  According to the invention which concerns on Claim 3, a 2nd flow control valve is interposed between the branch point of the 1st flow path and the 1st bypass flow path, and the 1st heat exchanger. And

請求項4に係る発明によれば、第1のバイパス流路の第1の流量調節弁が自動流量調節弁であり、自動流量調節弁前後に介装した圧力センサにより測定した圧力差、または自動流量調節弁の前後に接続した差圧計を用いて計測した圧力差により、前記自動流量調節弁の開度を自動調整することを特徴とする。  According to the invention which concerns on Claim 4, the 1st flow control valve of a 1st bypass flow path is an automatic flow control valve, and the pressure difference measured by the pressure sensor interposed before and behind the automatic flow control valve, or automatic The opening degree of the automatic flow control valve is automatically adjusted by a pressure difference measured using a differential pressure gauge connected before and after the flow control valve.

請求項5に係る発明によれば、第1のバイパス流路の第1の流量調節弁が自動流量調節弁であり、第1の流路の第1のバイパス流路との分岐点と第1の熱交換器との間に介装された流量計の流量により、前記自動流量調節弁の開度を自動調整することを特徴とする。  According to the invention which concerns on Claim 5, the 1st flow control valve of a 1st bypass flow path is an automatic flow control valve, and the 1st bypass flow path of a 1st flow path and the 1st bypass flow path and 1st The opening degree of the automatic flow control valve is automatically adjusted by the flow rate of a flow meter interposed between the heat exchanger and the heat exchanger.

請求項6に係る発明によれば、第1のバイパス流路(L3)の自動流量調節弁(45)の前の流路で分岐し前記自動流量調節弁の後の流路で合流する、第3の流量調節弁を介装した第2のバイパス流路を備えることを特徴とする。  According to the sixth aspect of the invention, the first bypass flow path (L3) branches in the flow path before the automatic flow control valve (45) and merges in the flow path after the automatic flow control valve. And a second bypass passage having three flow rate control valves interposed therebetween.

請求項7に係る発明によれば、第1の熱交換器が、プレート式または二重管式またはシェルチューブ式であることを特徴とする。  The invention according to claim 7 is characterized in that the first heat exchanger is of a plate type, a double pipe type or a shell tube type.

請求項8に係る発明によれば、液化ガスが液化二酸化炭素であることを特徴とする。  The invention according to claim 8 is characterized in that the liquefied gas is liquefied carbon dioxide.

請求項1に係る発明によって、第1の流量調節弁を介装した第1のバイパス流路を備えることで、水やブラインの供給状況や熱交換器の性能に合わせて前記流量調節弁の開度を変更することにより熱交換器へ流れる液化ガスを調整することで、熱交換器内での水やブラインの凍結やバイパス流路への液化ガスの流量の偏りを防止し、安定的に冷熱を回収することができる。  According to the first aspect of the present invention, by providing the first bypass flow path interposing the first flow control valve, the flow control valve is opened according to the supply status of water or brine and the performance of the heat exchanger. By adjusting the liquefied gas flowing to the heat exchanger by changing the degree, it is possible to prevent water and brine freezing in the heat exchanger and uneven flow of liquefied gas to the bypass flow path, and stably cool Can be recovered.

請求項2に係る発明によって、第1のバイパス流路から熱交換器への液化ガスの逆流を防止し、安定的に気化熱を回収することができる。  According to the invention of claim 2, the backflow of the liquefied gas from the first bypass flow path to the heat exchanger can be prevented, and the heat of vaporization can be recovered stably.

請求項3に係る発明によって、第2の流量調節弁と、第1の流量調節弁または第1の自動流量調節弁とをあわせて開度を変更することにより、より精密に熱交換器へ流れる液化ガスの量を調整することができる。  According to the third aspect of the present invention, the second flow rate control valve and the first flow rate control valve or the first automatic flow rate control valve are combined to change the opening, thereby allowing the heat exchanger to flow more precisely. The amount of liquefied gas can be adjusted.

請求項4に係る発明によって、第1の自動流量調整弁により第1のバイパスを通過する液化ガスの流量を、圧力センサまたは差圧計によって得られた第1の自動流量調整弁の前後の差圧により開度を決定して調整することで、急激な液化ガスの流量の変化がある場合であっても、自動で熱交換器へ流れる液化ガスの量を調整することができる。
また、圧力センサや差圧計は安価で、容易に設置が可能である利点がある。
According to the fourth aspect of the present invention, the flow rate of the liquefied gas passing through the first bypass by the first automatic flow rate adjusting valve is set to the differential pressure before and after the first automatic flow rate adjusting valve obtained by the pressure sensor or the differential pressure gauge. By determining and adjusting the opening, the amount of liquefied gas flowing to the heat exchanger can be automatically adjusted even when there is a sudden change in the flow rate of liquefied gas.
Further, the pressure sensor and the differential pressure gauge are inexpensive and have an advantage that they can be easily installed.

請求項5に係る発明によって、第1の自動流量調整弁により第1のバイパスを通過する液化ガスの流量を、流量計によって得られた熱交換器に流入する液化ガスの流量により開度を決定して調整することで、急激な液化ガスの流量の変化がある場合であっても、自動で熱交換器へ流れる液化ガスの量を調整することができる。
また、流量計はコリオリ式流量計等を使用して液状態の液化ガスを測定することで、正確な流量の調整が可能となる利点がある。
According to the invention of claim 5, the flow rate of the liquefied gas passing through the first bypass by the first automatic flow control valve is determined by the flow rate of the liquefied gas flowing into the heat exchanger obtained by the flow meter. Thus, even when there is a sudden change in the flow rate of the liquefied gas, the amount of the liquefied gas flowing to the heat exchanger can be adjusted automatically.
Further, the flow meter has an advantage that the flow rate can be accurately adjusted by measuring the liquefied gas in a liquid state using a Coriolis flow meter or the like.

請求項6に係る発明によって、第3の流量調節弁を一定の開度で開き、第2のバイパス流路に常に液化ガスの一部を通過させることによって、前記自動流量調節弁の開度が変更される際の前記自動流量調節弁の前後の差圧や流量計の流量のハンチングを最小限に抑え、安定して液化ガスの気化熱を回収することができる。  According to the sixth aspect of the present invention, the opening of the automatic flow control valve is controlled by opening the third flow control valve at a constant opening and always allowing a part of the liquefied gas to pass through the second bypass passage. It is possible to recover the heat of vaporization of the liquefied gas stably by minimizing the hunting of the differential pressure before and after the automatic flow control valve and the flow rate of the flow meter when changed.

請求項7に係る発明によって、熱交換器に単純な構造を有するプレート式または二重管構造式またはシェルチューブ式のいずれかを用いることで、装置の小型化や低コストで製作することができる。  According to the invention of claim 7, by using either a plate type, a double pipe structure type or a shell tube type having a simple structure for the heat exchanger, it is possible to manufacture the apparatus at a reduced size and at a low cost. .

請求項8に係る発明によって、液化ガスの蒸発温度が水やブラインの凍結温度に近く、蒸発熱量の大きい液化二酸化炭素を用いることで、効率的に熱回収することができる。  The invention according to claim 8 enables efficient heat recovery by using liquefied carbon dioxide in which the evaporation temperature of the liquefied gas is close to the freezing temperature of water or brine and the amount of heat of evaporation is large.

本発明を実施するための第1の形態の概略説明図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic explanatory drawing of the 1st form for implementing this invention. 本発明を実施するための第2の形態の概略説明図。Schematic explanatory drawing of the 2nd form for implementing this invention. 本発明を実施するための第3の形態の概略説明図。Schematic explanatory drawing of the 3rd form for implementing this invention. 本発明を実施するための第4の形態の概略説明図。Schematic explanatory drawing of the 4th form for implementing this invention. 自動流量調節弁の前後の差圧と第1の熱交換器へ供給される液化ガスの流量を示すグラフ。The graph which shows the differential pressure | voltage before and behind an automatic flow control valve, and the flow volume of the liquefied gas supplied to a 1st heat exchanger.

以下、図面に示す本発明を実施するための形態により、本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings.

図1に示す本発明を実施するための第1の形態において、気化熱回収装置1は、第1の熱交換器を備え、液化ガスの気化熱と水やブラインとの熱交換を行い、気化熱を回収している。液化ガスは第1の貯蔵タンクに貯蔵され、プロセスガスやシールドガス、原料ガス、燃料ガスとして使用される分だけ液体の状態で第1の流路L1を通り、第1の熱交換器にて気化熱を回収後、気体あるいは気液混合状態で第2の熱交換器に供給され、完全に気化して使用される。水やブラインは第2の貯蔵タンク4より第2の供給ラインL2とポンプ21を通って第1の熱交換器10に供給されて冷熱を回収し、第2の貯蔵タンク4に循環されている。  In the first embodiment for carrying out the present invention shown in FIG. 1, the vaporization heat recovery apparatus 1 includes a first heat exchanger, performs heat exchange between the heat of vaporization of the liquefied gas and water or brine, and vaporizes. Heat is recovered. The liquefied gas is stored in the first storage tank, passes through the first flow path L1 in the liquid state as much as it is used as process gas, shield gas, raw material gas, and fuel gas, and then in the first heat exchanger. After recovering the heat of vaporization, it is supplied to the second heat exchanger in a gas or gas-liquid mixed state and completely vaporized before use. Water and brine are supplied from the second storage tank 4 to the first heat exchanger 10 through the second supply line L2 and the pump 21 to collect the cold heat and are circulated to the second storage tank 4. .

このようなシステムでは、水やブラインの凍結点より低温な液化ガスが過大な流量で第1の熱交換器に供給されると水やブラインが凍結してしまい、熱交換を行うことができなくなるばかりか機器が破損するおそれもある。そこで、第1のバイパス流路L3を設けることにより過大な流量の液化ガスが第1の熱交換器10に供給されることを防ぐことができるが、第1のバイパス流路への液化ガスの切り替えを先行技術に記載の切り替え弁で行うと第1の流路または第1のバイパス流路の一方のみにしか液化ガスを供給できないため、さらに第1の流量調節弁を設けることにより、第1の熱交換器へ供給される液化ガスの量を適度に調節することが可能となる。  In such a system, when liquefied gas having a temperature lower than the freezing point of water or brine is supplied to the first heat exchanger at an excessive flow rate, the water or brine is frozen and heat exchange cannot be performed. In addition, the equipment may be damaged. Therefore, by providing the first bypass flow path L3, it is possible to prevent an excessive flow of liquefied gas from being supplied to the first heat exchanger 10, but the liquefied gas flowing into the first bypass flow path can be prevented. When the switching is performed with the switching valve described in the prior art, the liquefied gas can be supplied only to one of the first flow path or the first bypass flow path. It is possible to adjust the amount of liquefied gas supplied to the heat exchanger appropriately.

[発明を実施するための異なる形態]
次に、図2から図4に示す本発明を実施するための異なる形態について説明する。なお、この本発明を実施するための異なる形態の説明に当って、前記本発明を実施するための第1の形態と同一構成部分には同一符号を付して重複説明を省略する。
[Different forms for carrying out the invention]
Next, different modes for carrying out the present invention shown in FIGS. 2 to 4 will be described. In the description of the different modes for carrying out the present invention, the same components as those in the first embodiment for carrying out the present invention are denoted by the same reference numerals, and redundant description is omitted.

図2に示す本発明を実施するための第2の形態において、前記本発明を実施するための第1の形態と主に異なる点は、第1の流量調節弁41を自動流量調節弁42にし、その前後の流路に圧力測定装置を設けて測定した差圧に応じて前記自動流量調節弁42の開度を調整できるようにした点で、これにより液化ガスの使用量が変化した場合でも、簡易で安価な装置で第1の熱交換器10へ供給される液化ガスの流量を自動調節することが可能となる。また、第1の流路L1に設けた第2の流量調節弁44により、自動流量調節弁とあわせて調節することでさらに液化ガスの流量の調節を精密に行うことができ、逆止弁43を設けたことにより、第1の流路と第1のバイパス流路と合流点から、第1の熱交換器への液化ガスの逆流を防ぐことが可能となる。  The second embodiment for carrying out the present invention shown in FIG. 2 differs from the first embodiment for carrying out the present invention mainly in that the first flow control valve 41 is an automatic flow control valve 42. Even when the amount of liquefied gas used is changed, the opening of the automatic flow control valve 42 can be adjusted in accordance with the differential pressure measured by providing a pressure measuring device in the flow path before and after that. It becomes possible to automatically adjust the flow rate of the liquefied gas supplied to the first heat exchanger 10 with a simple and inexpensive device. Further, the flow rate of the liquefied gas can be further precisely adjusted by adjusting the flow rate of the liquefied gas with the automatic flow rate control valve by the second flow rate control valve 44 provided in the first flow path L1. By providing the above, it becomes possible to prevent the backflow of the liquefied gas from the joining point of the first flow path and the first bypass flow path to the first heat exchanger.

図3に示す本発明を実施するための第3の形態において、前記本発明を実施するための第1から第2の形態と主に異なる点は、前記自動流量調節弁42の前後の差圧の計測に差圧計33を用いた点で、これによりさらに容易な設計で差圧の測定が可能となる。また、第3の流量調節弁45を介装した第2のバイパス流路L4を備えることにより、液化ガスの使用量が変化して前記自動流量調節弁の開度が変更される際のハンチングを最小に抑えることが可能となる。  The third embodiment for carrying out the present invention shown in FIG. 3 is mainly different from the first to second embodiments for carrying out the present invention in that the differential pressure across the automatic flow control valve 42 is different. This makes it possible to measure the differential pressure with a simpler design because the differential pressure gauge 33 is used for the measurement. Further, by providing the second bypass flow path L4 interposing the third flow rate control valve 45, hunting when the amount of liquefied gas used is changed and the opening degree of the automatic flow rate control valve is changed is performed. It can be minimized.

図4に示す本発明を実施するための第4の形態において、前記本発明を実施するための第1から第3の形態と主に異なる点は、自動流量調節弁42の開度調整に流量計34にて測定した流量を使用する点で、これによりさらに精密な第1の熱交換器10に供給される液化ガスの流量を調節することが可能となる。  The fourth embodiment for carrying out the present invention shown in FIG. 4 is mainly different from the first to third embodiments for carrying out the present invention in that the flow rate is adjusted for the opening degree of the automatic flow control valve 42. This makes it possible to adjust the flow rate of the liquefied gas supplied to the first heat exchanger 10 in a more precise manner in that the flow rate measured by the meter 34 is used.

図5は、図3に示す形態の気化熱回収試験装置1において、第2の熱交換器に流入する液化ガス流量(全体の流量に相当)を40kg/hから80、100、120と5分おきに変化させたときの、第1の熱交換器に流入する液化ガスの流量の変化を示したもので、差圧計33の値が15kPaおよび15kPaになるように自動流量調節弁42を制御した場合と、前記自動流量調節弁を全開に固定した場合について測定した結果である。これにより、前記差圧計の値を維持するように前記自動流量調節弁を制御することで、第1の熱交換器に流入する液化ガスの流量を一定に保つことができることが確認できる。  FIG. 5 shows that in the vaporization heat recovery test apparatus 1 of the form shown in FIG. 3, the liquefied gas flow rate (corresponding to the total flow rate) flowing into the second heat exchanger is changed from 40 kg / h to 80, 100, 120 and 5 minutes. This shows the change in the flow rate of the liquefied gas flowing into the first heat exchanger when it is changed every other time, and the automatic flow control valve 42 is controlled so that the value of the differential pressure gauge 33 becomes 15 kPa and 15 kPa. It is the result measured about the case and the case where the said automatic flow control valve is fixed to full open. Accordingly, it can be confirmed that the flow rate of the liquefied gas flowing into the first heat exchanger can be kept constant by controlling the automatic flow rate control valve so as to maintain the value of the differential pressure gauge.

1 気化熱回収装置
2 第1の貯蔵タンク
4 第2の貯蔵タンク
10 第1の熱交換器
11 第2の熱交換器
21 ポンプ
31、32 圧力センサ
33 差圧計
34 流量計
41 第1の流量調節弁
42 自動流量調節弁
43 逆止弁
44 第2の流量調節弁
45 第3の流量調節弁
L1 第1の流路
L2 第2の流路
L3 第1のバイパス流路
L4 第2のバイパス流路
DESCRIPTION OF SYMBOLS 1 Evaporative heat recovery apparatus 2 1st storage tank 4 2nd storage tank 10 1st heat exchanger 11 2nd heat exchanger 21 Pump 31, 32 Pressure sensor 33 Differential pressure gauge 34 Flowmeter 41 1st flow control Valve 42 Automatic flow control valve 43 Check valve 44 Second flow control valve 45 Third flow control valve L1 First flow path L2 Second flow path L3 First bypass flow path L4 Second bypass flow path

Claims (8)

液化ガスを貯蔵する第1の貯蔵タンク(2)と、第1の貯蔵タンク(2)に貯蔵された液化ガスを第1の熱交換器(10)を介して第2の熱交換器へ送るための第1の流路(L1)と、水またはブライン流体を貯蔵する第2の貯蔵タンク(4)と、第2の貯蔵タンク(4)に貯蔵された水またはブライン流体を第1の熱交換器(10)を介して送るための第2の流路(L2)と、第2の流路(L2)を通して水またはブライン流体を送るためのポンプ(21)と、液化ガスと水またはブライン流体との熱交換を行う熱交換器(10)と、第1の流路(L1)の貯蔵タンク(2)と熱交換器(10)の間で分岐し第1の流路(L1)の第1の熱交換器(10)と第2の熱交換器の間に合流する第1のバイパス流路(L3)を備える気化熱回収装置(1)において、前記第1のバイパス流路に第1の流量調節弁(41)を介装することを特徴とする気化熱回収装置。  The 1st storage tank (2) which stores liquefied gas, and sends the liquefied gas stored in the 1st storage tank (2) to the 2nd heat exchanger via the 1st heat exchanger (10). A first flow path (L1), a second storage tank (4) for storing water or brine fluid, and water or brine fluid stored in the second storage tank (4) for the first heat A second flow path (L2) for sending through the exchanger (10), a pump (21) for sending water or brine fluid through the second flow path (L2), liquefied gas and water or brine A heat exchanger (10) that performs heat exchange with the fluid, and a branch between the storage tank (2) of the first flow path (L1) and the heat exchanger (10), and the first flow path (L1) Vaporization heat recovery apparatus comprising a first bypass channel (L3) that merges between the first heat exchanger (10) and the second heat exchanger (1) In the vaporization heat recovery apparatus, characterized in that the interposed first flow rate control valve (41) in the first bypass passage. 第1の流路(L1)の第1の熱交換器(10)と第1のバイパス流路(L3)との合流点の間に逆止弁(43)を介装することを特徴とする、請求項1に記載の気化熱回収装置。  A check valve (43) is interposed between the junctions of the first heat exchanger (10) and the first bypass channel (L3) in the first channel (L1). The vaporization heat recovery device according to claim 1. 第1の流路(L1)の第1のバイパス流路(L3)との分岐点と第1の熱交換器(10)との間に第2の流量調節弁(44)を介装することを特徴とした、請求項1または2に記載の気化熱回収装置。  A second flow control valve (44) is interposed between the branch point of the first flow path (L1) with the first bypass flow path (L3) and the first heat exchanger (10). The vaporization heat recovery device according to claim 1 or 2, characterized by the above. 第1のバイパス流路(L3)の第1の流量調節弁が自動流量調節弁(42)であり、自動流量調節弁前後に介装した圧力センサ(31)(32)により測定した圧力差、または自動流量調節弁の前後に接続した差圧計(33)を用いて計測した圧力差により、前記自動流量調節弁の開度を自動調整することを特徴とする、請求項1から3のいずれか一項に記載の気化熱回収装置。  The first flow rate control valve of the first bypass channel (L3) is an automatic flow rate control valve (42), and a pressure difference measured by pressure sensors (31) and (32) interposed before and after the automatic flow rate control valve, The opening degree of the automatic flow control valve is automatically adjusted by a pressure difference measured using a differential pressure gauge (33) connected before and after the automatic flow control valve. The vaporization heat recovery device according to one item. 第1のバイパス流路(L3)の第1の流量調節弁が自動流量調節弁(42)であり、第1の流路(L1)の第1のバイパス流路との分岐点と第1の熱交換器(10)との間に介装された流量計(34)の流量により、前記自動流量調節弁の開度を自動調整することを特徴とする、請求項1から3のいずれか一項に記載の気化熱回収装置。  The first flow rate control valve of the first bypass channel (L3) is an automatic flow rate control valve (42), the branch point of the first channel (L1) with the first bypass channel and the first flow rate control valve (42). The degree of opening of the automatic flow control valve is automatically adjusted by the flow rate of a flow meter (34) interposed between the heat exchanger (10) and the heat exchanger (10). The vaporization heat recovery device according to item. 第1のバイパス流路(L3)の自動流量調節弁(42)の前の流路で分岐し、前記自動流量調節弁の後の流路で合流する、第3の流量調節弁(45)を介装した第2のバイパス流路(L4)を備えることを特徴とする、請求項4または5に記載の気化熱回収装置。  A third flow rate control valve (45) branching in the flow path before the automatic flow rate control valve (42) of the first bypass flow path (L3) and joining in the flow path after the automatic flow rate control valve is provided. The vaporization heat recovery apparatus according to claim 4 or 5, further comprising an interposed second bypass flow path (L4). 第1の熱交換器(10)が、プレート式または二重管式またはシェルチューブ式であることを特徴とする、請求項1から6のいずれか一項に記載の気化熱回収装置。  The vaporization heat recovery device according to any one of claims 1 to 6, characterized in that the first heat exchanger (10) is of a plate type, a double tube type or a shell tube type. 液化ガスが液化二酸化炭素であることを特徴とする、請求項1から7のいずれか一項に記載の気化熱回収装置。  The vaporization heat recovery apparatus according to any one of claims 1 to 7, wherein the liquefied gas is liquefied carbon dioxide.
JP2011160316A 2011-07-05 2011-07-05 Recovery device for vaporization heat of liquefied gas Pending JP2013015308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011160316A JP2013015308A (en) 2011-07-05 2011-07-05 Recovery device for vaporization heat of liquefied gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011160316A JP2013015308A (en) 2011-07-05 2011-07-05 Recovery device for vaporization heat of liquefied gas

Publications (1)

Publication Number Publication Date
JP2013015308A true JP2013015308A (en) 2013-01-24

Family

ID=47688134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011160316A Pending JP2013015308A (en) 2011-07-05 2011-07-05 Recovery device for vaporization heat of liquefied gas

Country Status (1)

Country Link
JP (1) JP2013015308A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015001940A1 (en) * 2013-07-01 2015-01-08 株式会社神戸製鋼所 Gas vaporization device having cold heat recovery function, and cold heat recovery device
JP2015155787A (en) * 2014-02-20 2015-08-27 潮冷熱株式会社 Refrigerant circulation device for air conditioner of ship using cold heat of lng
KR101549745B1 (en) 2013-08-16 2015-09-02 현대중공업 주식회사 A Treatment System of Liquefied Gas
WO2019117108A1 (en) * 2017-12-15 2019-06-20 ブランテック株式会社 Cold recovery system and cold recovery method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10238842A (en) * 1997-02-25 1998-09-08 Matsushita Electric Works Ltd Air-conditioning controller and air-conditioning control method using the device
JP2000055506A (en) * 1998-08-11 2000-02-25 Zexel Corp Air conditioner
JP2001263894A (en) * 2000-03-23 2001-09-26 Ishikawajima Harima Heavy Ind Co Ltd Cryogenic liquid storage facility
US20050050905A1 (en) * 2003-03-26 2005-03-10 Bonaquist Dante Patrick Method for providing cooling to superconducting cable
US20060016189A1 (en) * 2004-07-22 2006-01-26 Johnson Larry L Fuel system used for cooling purposes
JP2006038379A (en) * 2004-07-29 2006-02-09 Toyo Netsu Kogyo Kk Cold and hot water control method of cold and hot heat source machine
JP2006105307A (en) * 2004-10-06 2006-04-20 Tokiko Techno Kk Gas supply device
EP1659355A2 (en) * 2004-11-17 2006-05-24 Air Liquide Deutschland GmbH Cooling process and cooling apparatus for refrigerated vehicles
JP2008089164A (en) * 2006-10-05 2008-04-17 Ishikawajima Plant Construction Co Ltd Lng gasifying apparatus
JP2009185959A (en) * 2008-02-08 2009-08-20 Showa Tansan Co Ltd Device and method for collecting vaporization heat from liquefied carbon dioxide
JP2011112277A (en) * 2009-11-26 2011-06-09 Yamatake Corp System and method for controlling water supply pressure

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10238842A (en) * 1997-02-25 1998-09-08 Matsushita Electric Works Ltd Air-conditioning controller and air-conditioning control method using the device
JP2000055506A (en) * 1998-08-11 2000-02-25 Zexel Corp Air conditioner
JP2001263894A (en) * 2000-03-23 2001-09-26 Ishikawajima Harima Heavy Ind Co Ltd Cryogenic liquid storage facility
US20050050905A1 (en) * 2003-03-26 2005-03-10 Bonaquist Dante Patrick Method for providing cooling to superconducting cable
US20060016189A1 (en) * 2004-07-22 2006-01-26 Johnson Larry L Fuel system used for cooling purposes
JP2006038379A (en) * 2004-07-29 2006-02-09 Toyo Netsu Kogyo Kk Cold and hot water control method of cold and hot heat source machine
JP2006105307A (en) * 2004-10-06 2006-04-20 Tokiko Techno Kk Gas supply device
EP1659355A2 (en) * 2004-11-17 2006-05-24 Air Liquide Deutschland GmbH Cooling process and cooling apparatus for refrigerated vehicles
JP2008089164A (en) * 2006-10-05 2008-04-17 Ishikawajima Plant Construction Co Ltd Lng gasifying apparatus
JP2009185959A (en) * 2008-02-08 2009-08-20 Showa Tansan Co Ltd Device and method for collecting vaporization heat from liquefied carbon dioxide
JP2011112277A (en) * 2009-11-26 2011-06-09 Yamatake Corp System and method for controlling water supply pressure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015001940A1 (en) * 2013-07-01 2015-01-08 株式会社神戸製鋼所 Gas vaporization device having cold heat recovery function, and cold heat recovery device
JP2015010683A (en) * 2013-07-01 2015-01-19 株式会社神戸製鋼所 Gas vaporizer with cold heat recovery function and cold heat recovery device
KR101796397B1 (en) 2013-07-01 2017-11-09 가부시키가이샤 고베 세이코쇼 Gas vaporization device having cold heat recovery function, and cold heat recovery device
KR101549745B1 (en) 2013-08-16 2015-09-02 현대중공업 주식회사 A Treatment System of Liquefied Gas
JP2015155787A (en) * 2014-02-20 2015-08-27 潮冷熱株式会社 Refrigerant circulation device for air conditioner of ship using cold heat of lng
WO2019117108A1 (en) * 2017-12-15 2019-06-20 ブランテック株式会社 Cold recovery system and cold recovery method
JP2019108910A (en) * 2017-12-15 2019-07-04 ブランテック株式会社 Cold recovery system and cold recovery method

Similar Documents

Publication Publication Date Title
RU2648312C2 (en) Device for cooling a consumer with super-cooled liquid in cooling circuit
JP5148319B2 (en) Liquefied gas reliquefaction apparatus, liquefied gas storage equipment and liquefied gas carrier equipped with the same, and liquefied gas reliquefaction method
KR101707501B1 (en) Reliquefaction System And Method For Boiled-Off Gas
US20150068246A1 (en) Liquid hydrogen production device
JP2007511717A (en) Apparatus and method for boil-off gas temperature control
US7024885B2 (en) System and method for storing gases at low temperature using a cold recovery system
JP2013088031A (en) Cooling system, and method for controlling the same
JP2011174528A (en) Method for filling hydrogen gas in hydrogen gas packing equipment
JP2013015308A (en) Recovery device for vaporization heat of liquefied gas
CN104913593B (en) A kind of liquefied technique of BOG and device
US10775080B2 (en) LNG gasification systems and methods
JP4563269B2 (en) Refrigeration capacity control device for turbine-type refrigerator
CN205860582U (en) A kind of liquid storage regulation device and refrigeration system
US20130269785A1 (en) Indirect-injection method for managing the supply of cryogenic liquid to a truck for transporting heat-sensitive products
JP2008051495A (en) Cooler
KR101647465B1 (en) Integrated Cooling and Vaporizing System for a Ship and a Marine Structure
KR20140049800A (en) Lpg reliquefaction apparatus using lng production apparatus
JP7108168B2 (en) Liquid cold heat recovery system
KR20130065255A (en) Natural gas liquefaction system
CN206618150U (en) A kind of peculiar to vessel LNG cryogenic energy utilization system fresh-keeping for fishing goods
JP2020148211A (en) Lng cold recovery system
JP2020148210A (en) Lng cold recovery system
CN112562915B (en) Liquid nitrogen circulating pipeline structure and cooling circulating system
JP2008057974A (en) Cooling apparatus
CN216048612U (en) System for use cryogenic liquids system subcooled water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150127