WO2013047551A1 - ねじり試験装置 - Google Patents

ねじり試験装置 Download PDF

Info

Publication number
WO2013047551A1
WO2013047551A1 PCT/JP2012/074634 JP2012074634W WO2013047551A1 WO 2013047551 A1 WO2013047551 A1 WO 2013047551A1 JP 2012074634 W JP2012074634 W JP 2012074634W WO 2013047551 A1 WO2013047551 A1 WO 2013047551A1
Authority
WO
WIPO (PCT)
Prior art keywords
output shaft
torque
specimen
drive unit
torsion test
Prior art date
Application number
PCT/JP2012/074634
Other languages
English (en)
French (fr)
Inventor
繁 松本
博至 宮下
一宏 村内
正伸 長谷川
友隆 坂上
Original Assignee
国際計測器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国際計測器株式会社 filed Critical 国際計測器株式会社
Priority to CN201280053776.9A priority Critical patent/CN103907006B/zh
Priority to IN3168DEN2014 priority patent/IN2014DN03168A/en
Priority to KR1020147010413A priority patent/KR101835833B1/ko
Priority to JP2013536318A priority patent/JP6071888B2/ja
Priority to EP12834972.7A priority patent/EP2762853B1/en
Publication of WO2013047551A1 publication Critical patent/WO2013047551A1/ja
Priority to US14/228,701 priority patent/US9442052B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/22Investigating strength properties of solid materials by application of mechanical stress by applying steady torsional forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/021Gearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/025Test-benches with rotational drive means and loading means; Load or drive simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/025Test-benches with rotational drive means and loading means; Load or drive simulation
    • G01M13/026Test-benches of the mechanical closed-loop type, i.e. having a gear system constituting a closed-loop in combination with the object under test

Definitions

  • the present invention relates to a torsion test apparatus for evaluating the performance of a power transmission device.
  • a fatigue test of a power transmission device such as a propeller shaft is performed by fixing the output shaft of a specimen to a reaction force plate and applying dynamic or static torque (torsional load) to the input shaft by a torque load means such as a servo motor. It was done by the method of loading.
  • the present invention has been made in view of the above circumstances.
  • a torsion test apparatus is a torsion test apparatus that applies torque to an input / output shaft of a specimen that is a power transmission device, and includes a first drive unit connected to the input shaft of the specimen, A second drive unit connected to the output shaft of the specimen, wherein the first and second drive units are a servo motor, a speed reducer that decelerates and outputs the rotation of the output shaft of the servo motor, and A chuck to which an input shaft or an output shaft is attached and transmits the output of the speed reducer to the input shaft or output shaft of the specimen, and a torque sensor that transmits the output of the speed reducer to the chuck and detects the torque output from the speed reducer And a tachometer for detecting the number of rotations of the chuck.
  • the first and second drive units are a servo motor, a speed reducer that decelerates and outputs the rotation of the output shaft of the servo motor, and A chuck to which an input shaft or an output shaft is attached and transmits the
  • the reduction gear includes a spindle that couples the torque sensor and the chuck, and a bearing portion that rotatably supports the spindle.
  • the speed reducer includes a gear case, a bearing, and a gear mechanism that is supported by the gear case via the bearing. And a load of a power transmission shaft including a gear mechanism of a speed reducer that transmits the driving force of the servo motor to the specimen, a torque sensor, and a spindle may be supported by the gear mechanism of the spindle and the speed reducer.
  • the power transmission shaft that transmits the driving force of the servo motor to the specimen is particularly heavy, and the power transmission shaft is supported in the immediate vicinity of the gear mechanism and the chuck disposed at both ends of the power transmission shaft.
  • a torsional testing device that is capable of performing an accurate test without being greatly strained on the power transmission shaft and having excellent durability is provided.
  • a slip ring attached between the output shaft of the reduction gear and the chuck, connected to a signal line extending from the torque sensor, and fixed to the base plate of the torsion test apparatus in contact with the rotating slip ring, It is good also as a structure provided with the brush provided with the terminal which outputs the signal of the torque sensor input via the slip ring.
  • the signal of the torque sensor that rotates at high speed together with the input / output shaft of the specimen can be taken out to the outside by wire.
  • control unit includes a control unit that controls driving of the first drive unit and the second drive unit, and the control unit drives one of the first drive unit and the second drive unit at a predetermined rotational speed while driving the first drive unit. And it is good also as a structure which performs the rotational torsion test of a test body by driving the other of a 2nd drive part by predetermined
  • a plurality of second drive units are provided, and the control unit individually controls each of the plurality of output shafts of the specimen while driving the first drive unit so that the input shaft of the specimen rotates at a predetermined rotational speed. It is good also as a structure which drives several 2nd drive parts so that the torque set to (2) may be given.
  • This configuration makes it possible to perform a test that gives a load close to the actual use conditions even for a specimen having a plurality of output shafts.
  • control unit includes a setting value recording unit that records a setting value of a rotational speed difference of the plurality of second driving units, a setting value of a sum of torques of the plurality of second driving units, and a setting value of the rotational speed difference. It is good also as a structure provided with the torque setting means which each sets individually the torque given to the several output shaft of a test body based on the setting value of the sum of torque.
  • a rotation speed difference measuring unit that acquires a measurement value of a rotation speed difference of the plurality of second drive units based on detection results of the tachometers of the plurality of second drive units is provided, and the torque setting unit stores the set value As a configuration for correcting the setting value of the torque applied to the plurality of output shafts of the specimen based on the setting value of the rotation speed difference recorded in the means and the measurement value of the rotation speed difference acquired by the rotation speed difference measurement means. Also good.
  • a plurality of first drive units are provided, and a plurality of first drive units are used to give individually set torques to a plurality of input shafts of the specimen, or individually set rotation speeds. It is good also as a structure rotated by.
  • This configuration makes it possible to perform a test that gives a load close to actual use conditions even for a specimen having a plurality of input shafts (for example, a power distribution mechanism of a hybrid vehicle).
  • Provide a torsion testing device that can accurately evaluate the performance of a power transmission device under actual use conditions in which a torsional load is applied to each input / output shaft while the input / output shaft is rotated.
  • FIG. 1 is a side view of a torsion test apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a side view of the first drive unit of the torsion test apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a plan view of a torsion test apparatus according to the second embodiment of the present invention.
  • FIG. 4 is a plan view of a torsion test apparatus according to the third embodiment of the present invention.
  • FIG. 5 is a plan view of a torsion test apparatus according to the fourth embodiment of the present invention.
  • FIG. 6 is a flowchart showing the procedure of the rotational torsion test by the torsion test apparatus according to the fourth embodiment of the present invention.
  • FIG. 1 is a side view of a torsion test apparatus 100 according to the first embodiment of the present invention.
  • the torsion test apparatus 100 of this embodiment is an apparatus that performs a rotational torsion test of a specimen T1 (for example, a FR vehicle transmission unit) having two rotation shafts. That is, the torsion test apparatus 100 rotates the two rotation shafts of the specimen T1 while applying torque by applying a phase difference to the rotations of the two rotation shafts while synchronously rotating the two rotation shafts of the specimen T1.
  • the torsion test apparatus 100 of this embodiment includes a controller C that integrally controls the operations of the first drive unit 110, the second drive unit 120, and the torsion test apparatus 100.
  • FIG. 2 is a side view in which a part of the first driving unit 110 is cut away.
  • the first drive unit 110 includes a main body 110a and a base 110b that supports the main body 110a at a predetermined height.
  • the main body 110a includes a servo motor 112, a speed reducer 113, a case 114, a spindle 115, a chuck device 116, a torque sensor 117, a slip ring 119a, and a brush 119b.
  • the main body 110a is horizontally disposed on the top of the base 110b. Assembled on the movable plate 111.
  • the servo motor 112 is fixed on the movable plate 111 with an output shaft (not shown) directed in the horizontal direction. Further, the movable plate 111 of the base 110b is provided so as to be slidable in the output shaft direction (left and right direction in FIG. 1) of the servo motor 112.
  • the output shaft (not shown) of the servo motor 112 is coupled to the input shaft (not shown) of the speed reducer 113 by coupling (not shown).
  • the output shaft 113 a of the speed reducer 113 is connected to one end of the torque sensor 117.
  • the other end of the torque sensor 117 is connected to one end of the spindle 115.
  • the spindle 115 is rotatably supported by a bearing 114a fixed to the frame 114b of the case 114.
  • the other end of the spindle 115 is fixed with a chuck device 116 for attaching one end (one of the rotating shafts) of the specimen T1 to the first driving unit 110.
  • the rotational movement of the output shaft of the servo motor 112 is decelerated by the speed reducer 113 and then transmitted to one end of the specimen T1 via the torque sensor 117, the spindle 115, and the chuck device 116. It is like that. Further, a rotary encoder (not shown) for detecting the rotation angle of the spindle 115 is attached to the spindle 115.
  • the speed reducer 113 is fixed to the frame 114b of the case 114.
  • the speed reducer 113 includes a gear case and a gear mechanism rotatably supported by the gear case via a bearing (not shown). That is, the case 114 covers a power transmission shaft from the speed reducer 113 to the chuck device 116, and also has a function as a device frame that rotatably supports the power transmission shaft at the positions of the speed reducer 113 and the spindle 115. That is, the gear mechanism of the speed reducer 113 to which one end of the torque sensor 117 is connected and the spindle 115 to which the other end of the torque sensor 117 is connected are rotatably supported by the frame 114b of the case 114 via bearings. ing.
  • a plurality of slip rings 119 a are formed on the cylindrical surface on one end side of the torque sensor 117.
  • a brush holding frame 119c is fixed to the movable plate 111 so as to surround the slip ring 119a from the outer peripheral side.
  • a plurality of brushes 119b that are in contact with the corresponding slip rings 119a are attached to the inner periphery of the brush holding frame 119c.
  • the output signal of the torque sensor 117 is configured to be output to the slip ring 119a, and the output signal of the torque sensor 117 can be taken out of the first drive unit 110 via the brush 119b that contacts the slip ring 119a. It has become.
  • the second drive unit 120 (FIG. 1) has the same structure as the first drive unit 110, and when the servo motor 122 is driven, the chuck device 126 rotates. The other end (one of the rotating shafts) of the specimen T1 is fixed to the chuck device 126. The housing of the specimen T1 is fixed to the support frame S.
  • the torsion test apparatus 100 of the present embodiment includes an output shaft O and an input shaft I (engine side) of a specimen T1, which is a transmission unit for an FR vehicle, and chuck devices for a first drive unit 110 and a second drive unit 120, respectively. While being fixed to 116 and 126, the servomotors 112 and 122 are driven to rotate in synchronization, and the specimen T1 is twisted by giving a difference in the number of rotations (or phase of rotation) of both chuck devices 116 and 126. A load is applied.
  • the chuck device 126 of the second drive unit 120 is driven to rotate at a constant speed, and the chuck device 116 is driven to rotate so that the torque detected by the torque sensor 117 of the first drive unit 110 varies according to a predetermined waveform.
  • a periodically varying torque is applied to the specimen T1 which is a transmission unit.
  • the torsion test apparatus 100 can precisely drive both the input shaft I and the output shaft O of the transmission unit by the servo motors 122 and 112, so that the transmission unit is driven to rotate.
  • the test can be performed under conditions close to the actual driving state of the automobile.
  • the magnitudes of torque applied to the input shaft I and the output shaft O do not necessarily match. Therefore, in order to grasp the behavior of the specimen T1 during the torsion test more accurately, it is preferable that the torque can be individually measured on the input shaft I side and the output shaft O side.
  • the torque sensor since the torque sensor is provided in both the first drive unit 110 and the second drive unit 120 as described above, the input shaft I side and the output shaft O side of the transmission unit (specimen T1). And torque can be measured individually.
  • the input shaft I side of the transmission unit is rotated at a constant speed and torque is applied on the output shaft O side.
  • the present invention is not limited to the above example. That is, a configuration may be adopted in which the output shaft O side of the transmission unit is rotationally driven at a constant speed, and a variable torque is applied to the input shaft I side.
  • both the input shaft I side and the output shaft O side of the transmission unit may be driven to rotate at varying rotational speeds.
  • the torsion test apparatus 100 can adjust the distance between the chuck apparatuses 116 and 126 so as to be compatible with transmission units of various sizes.
  • the movable plate 111 of the first drive unit 110 can move in the direction of the rotation axis of the chuck device 116 (left and right in FIG. 1) with respect to the base 110b by a movable plate drive mechanism (not shown). ing.
  • the movable plate 111 is firmly fixed to the base 110b by a lock mechanism (not shown).
  • the second driving unit 120 also includes a movable plate driving mechanism similar to the first driving unit 110.
  • the torsion test apparatus 100 performs a rotational torsion test on a transmission unit for an FR vehicle.
  • the present invention is limited to the configuration of the first embodiment.
  • a device for performing a rotational torsion test of another power transmission mechanism is also included in the present invention.
  • the second, third, and fourth embodiments of the present invention described below are configuration examples of a torsional test apparatus suitable for testing transmission units for FF vehicles, differential gear units, and transmission units for 4WD vehicles, respectively. is there.
  • FIG. 3 is a plan view of a torsion test apparatus 200 according to the second embodiment of the present invention.
  • the present embodiment is a configuration example of a torsion test apparatus suitable for the rotational torsion test using the transmission unit for the FF vehicle as the specimen T2.
  • the specimen T2 is a transmission unit incorporating a differential gear, and has an input shaft I, a left output shaft OL, and a right output shaft OR.
  • the torsion test apparatus 200 of the present embodiment includes a first drive unit 210 that drives the input shaft I of the specimen T2, a second drive unit 220 that drives the left output shaft OL, and a third drive unit that drives the right output shaft OR. 230. Further, the torsion test apparatus 200 includes a controller C that integrally controls the operation thereof. Since the structures of the first driving unit 210, the second driving unit 220, and the third driving unit 230 are all the same as those of the first driving unit 110 and the second driving unit 120 of the first embodiment, overlapping specifics. The description of the configuration is omitted.
  • the first drive unit 210 drives the input shaft I at a predetermined rotational speed
  • the second drive unit 220 and the second drive unit 220 The left output shaft OL and the right output shaft OR are rotationally driven by the three driving unit 230 so that a predetermined torque is applied.
  • a variable torque is applied to each shaft of the transmission unit while the transmission unit is driven to rotate. Tests can be performed under conditions close to actual driving conditions.
  • the transmission unit that performs the test using the torsion test apparatus 200 of the present embodiment is an apparatus in which the input shaft I, the left output shaft OL, and the right output shaft OR are connected via a gear or the like, and its torsion test.
  • the magnitudes of torque applied to the input shaft I, the left output shaft OL, and the right output shaft OR do not match. Further, the torque applied to the left output shaft OL and the right output shaft OR does not always match. Therefore, in order to grasp the behavior of the specimen T2 during the torsion test more accurately, it is preferable that the torque applied to the input shaft I, the left output shaft OL, and the right output shaft OR can be individually measured.
  • the second drive unit 220 and the third drive unit 230 may be controlled such that the torque of the left output shaft OL and the torque of the right output shaft OR draw the same waveform, and the two are different (
  • the first drive unit 210, the second drive unit 220, and the third drive unit 230 may be controlled so as to draw a waveform having an opposite phase.
  • the left output shaft OL and the right output shaft OR may be driven to rotate at a constant speed, and the input shaft I may be driven so that the speed fluctuates at a constant cycle.
  • all of the input shaft I, the left output shaft OL, and the right output shaft OR may be driven so that the rotation speed varies individually.
  • FIG. 4 is a plan view of a torsion test apparatus 300 according to the third embodiment of the present invention.
  • the present embodiment is a configuration example of a torsion test apparatus suitable for a rotational torsion test using a differential gear unit for an FR vehicle as a specimen T3.
  • the specimen T3 has an input shaft I, a left output shaft OL, and a right output shaft OR.
  • the torsion test apparatus 300 of the present embodiment includes a first drive unit 310 that drives the input shaft I of the specimen T3, a second drive unit 320 that drives the left output shaft OL, and a third drive unit that drives the right output shaft OR. 330 is provided. Further, the torsion test apparatus 300 includes a controller C that integrally controls its operation. Since the structures of the first drive unit 310, the second drive unit 320, and the third drive unit 330 are all the same as those of the first drive unit 110 and the second drive unit 120 of the first embodiment, they have overlapping specific configurations. Description is omitted.
  • the input shaft I is driven at a predetermined rotational speed by the first drive unit 310, and at the same time, the second drive unit 320 and the third drive are driven.
  • the unit 330 drives the left output shaft OL and the right output shaft OR so that torque is applied thereto.
  • a variable torque is applied to each axis of the specimen T3 while rotating each axis of the specimen T3.
  • the test can be performed under conditions close to the actual use state.
  • the differential gear unit is a device in which the input shaft I, the left output shaft OL, and the right output shaft OR are connected via a gear.
  • the differential gear unit is connected to the input shaft I.
  • the magnitude of the applied torque does not match the magnitude of the torque applied to the left output shaft OL and the right output shaft OR. Further, the magnitudes of torque applied to the left output shaft OL and the right output shaft OR do not always match. Therefore, in order to grasp the behavior of the specimen T3 during the test more accurately, it is desirable that the torques of the input shaft I, the left output shaft OL, and the right output shaft OR can be individually measured.
  • the input shaft I and left output of the differential gear unit (specimen T3).
  • the torque applied to each of the shaft OL and the right output shaft OR can be individually measured.
  • the second drive unit 320 and the third drive unit 330 may be controlled so that the rotation speed of the input shaft I and the rotation speed of the left output shaft OL and the right output shaft OR draw the same waveform.
  • the second drive unit 320 and the third drive unit 330 may be controlled so as to draw different waveforms (for example, such that the speed difference from the input shaft I is in opposite phase).
  • the left output shaft OL and the right output shaft OR may be driven to rotate at a constant speed, and the input shaft I may be driven so that the speed fluctuates at a constant period.
  • all of the input shaft I, the left output shaft OL, and the right output shaft OR may be driven so that the rotation speed varies.
  • FIG. 5 is a plan view of a torsion test apparatus 400 according to the fourth embodiment of the present invention.
  • the torsion test apparatus 400 of this embodiment is a configuration example of a torsion test apparatus suitable for a rotation torsion test of a specimen T4 having four rotation axes.
  • the specimen T4 is an FF-based electronically controlled 4WD system including a transmission, a front differential gear, a transfer, and an electronically controlled multi-plate clutch (not shown).
  • the specimen T4 is connected to an input shaft I connected to the engine, a left output shaft OL and a right output shaft OR connected to left and right front wheel drive shafts, and a propeller shaft that transmits power to the rear wheels. It has a rear output shaft OP.
  • the driving force input from the input shaft I to the specimen T4 is decelerated by a transmission provided in the specimen T4, and then distributed to the left output shaft OL and the right output shaft OR via the front differential gear. Further, a part of the driving force transmitted to the front differential gear is configured to be branched by transfer and output from the rear output shaft OP.
  • the torsion test apparatus 400 of the present embodiment includes a first drive unit 410 that drives the input shaft I of the specimen T4, a second drive unit 420 that drives the left output shaft OL, and a third drive unit that drives the right output shaft OR. 430 and the 4th drive part 440 which drives rear part output axis OP are provided. Further, the torsion test apparatus 400 includes a controller C that integrally controls the operation thereof. Since the structures of the first drive unit 410, the second drive unit 420, the third drive unit 430, and the fourth drive unit 440 are all the same as the first drive unit 110 and the second drive unit 120 of the first embodiment, A description of overlapping specific configurations is omitted.
  • the specimen T4 is provided with a front differential gear (not shown), and the rotational speed between the left output shaft OL and the right output shaft OR due to the difference in torque applied to the left output shaft OL and the right output shaft OR. It is comprised so that a difference may arise.
  • the front differential gear built in the specimen T4 is differentiated (that is, the rotational speed difference is given to the left output shaft OL and the right output shaft OR). The rotational torsion test of T4 is performed.
  • the left output shaft OL and the right output shaft OR are driven with a rotational speed difference while rotating the input shaft I at a constant rotational speed, and the performance of the specimen T4 is evaluated. .
  • control is performed so that the sum of torques applied to the left output shaft OL and the right output shaft OR is constant.
  • FIG. 6 is a flowchart showing the procedure of the rotational torsion test by the torsion test apparatus 400.
  • the left output shaft OL and the right output shaft OR rotate at a predetermined rotational speed difference while driving the input shaft I at a constant rotation speed, and are added to the left output shaft OL and the right output shaft OR.
  • a rotational torsion test is performed by applying a torque load to the left output shaft OL and the right output shaft OR so that the total torque is constant.
  • the process shown in FIG. 6 is executed by the controller C.
  • various preset values test conditions
  • Table 1 shows examples of various setting values read in S1.
  • the first drive unit 410 is controlled with the rotation speed as a controlled variable, and the second drive unit 420, the third drive unit 430, and the fourth drive unit 440 are controlled. Torque control using the torque as a control amount is performed. In addition, about the 2nd drive part 420 and the 3rd drive part 430, since it is necessary to control a rotation speed difference, it is normal that rotation speed control is applied. However, the operation of the front differential gear (not shown) built in the specimen T4 changes abruptly due to a slight torque difference applied to the left output shaft OL and the right output shaft OR.
  • the target value of the torque to be applied to the left output shaft OL and the right output shaft OR is calculated based on the set value of the rotational speed difference applied to the left output shaft OL and the right output shaft OR.
  • a configuration in which torque control is performed on the second drive unit 420 and the third drive unit 430 is employed.
  • torque control target values for the second drive unit 420 and the third drive unit 430 are calculated (S2).
  • S2 first, predicted values of the rotational speed N2 of the second drive unit 420 and the rotational speed N3 of the third drive unit 430 are calculated.
  • the gear ratio r of the front wheel of the specimen T4 is expressed by the following formula 1 using the rotational speed N1 of the input shaft I, the rotational speed N2 of the left output shaft OL, and the rotational speed N3 of the right output shaft OR.
  • Equation 2 When transforming Equation 1, the following Equation 2 is obtained.
  • Rotational speeds N2 and N3 are represented by the following equations 4 and 5, which are solutions of simultaneous equations consisting of the above equations 2 and 3.
  • initial values of target values of the torque Tm2 of the second drive unit 420 and the torque Tm3 of the third drive unit 430 are calculated.
  • the torques Tm2 and Tm3 need to be set to the same target value in order to make the rotational speed difference ⁇ N constant. Therefore, the target values of the torques Tm2 and Tm3 are calculated by the following formula 6.
  • the controller C outputs a drive command including the target value of the rotation speed N1 to the first drive unit 410 (S3).
  • the controller C outputs a drive command including the target value of the torque Tm4 to the fourth drive unit 440 (S4).
  • the controller C outputs a drive command including target values of the torques Tm3 and Tm4 to the second drive unit 420 and the third drive unit 430 (S5).
  • the controller C selects each drive unit based on signals from encoders (not shown) provided in the first drive unit 410, the second drive unit 420, the third drive unit 430, and the fourth drive unit 440, respectively.
  • the rotation speeds N1, N2, N3 and N4 (unit: rpm) are measured (S6).
  • the controller C determines the torque of each drive unit based on signals from the torque sensors 117 provided in the first drive unit 410, the second drive unit 420, the third drive unit 430, and the fourth drive unit 440, respectively.
  • Tm1, Tm2, Tm3, and Tm4 (unit: N ⁇ m) are measured (S7).
  • the controller C records the rotational speeds N1, N2, N3, and N4 and the torques Tm1, Tm2, Tm3, and Tm4, which are the measurement results in the processes S6 and S7, in a memory built in the controller C (S8). ).
  • the measurement result of the rotation speed difference ⁇ N obtained in the process S9 is compared with the set value (Table 1), and if the difference between the measurement result and the set value exceeds a predetermined range, the rotation It is determined that the number difference ⁇ N is not properly controlled (S10: NO), the target values of the torque Tm2 of the second drive unit 420 and the torque Tm3 of the third drive unit 430 are corrected (S12), and then the process goes to step S3. It returns and gives a drive command to each drive part again.
  • the correction of the target values of the torques Tm2 and Tm3 is performed by adding or subtracting the correction value ⁇ to the torques Tm2 and Tm3 as shown in the following equations 7 and 8.
  • the rotational speed difference ⁇ N and the torque load sum (Tm2 + Tm3) between the second drive unit 420 (left output shaft OL) and the third drive unit 430 (right output shaft OR) are constant.
  • the structure which carries out torque control of the 2nd drive part 420 and the 3rd drive part 430 is employ
  • the control method of this invention is not limited to this structure.
  • it may be configured to apply preset static or dynamic torques Tm2 and Tm3 to the second drive unit 420 and the third drive unit 430, respectively.
  • the second drive unit 420 and the third drive unit 430 may be configured to control the rotational speed so that the rotational speed difference ⁇ N is maintained without setting a condition for making the sum of torque loads (Tm2 + Tm3) constant. .
  • the first drive unit 410 is driven at a constant rotational speed.
  • the rotational torsion test is performed by changing the rotational speed of the first drive unit 410 according to, for example, a predetermined waveform.
  • the second drive unit 420 and the third drive unit 430 may be controlled such that the rotation speed of the left output shaft OL and the rotation speed of the right output shaft OR change according to the same waveform.
  • the second drive unit 420 and the third drive unit 430 may be controlled so as to change according to waveforms that are different from each other (for example, such that the speed difference from the input shaft I has an opposite phase).
  • the fourth drive unit 440 is driven with a constant torque.
  • the rotational torsion test may be performed by changing the torque of the first drive unit 410 according to, for example, a predetermined waveform.
  • the difference in rotational speed between the left output shaft OL and the right output shaft OR is controlled to be constant.
  • the rotational speed difference between the left output shaft OL and the right output shaft OR is, for example, a predetermined value. It is good also as a structure which is made to vary according to this waveform and performs a rotation torsion test.
  • the specimen T4 of the fourth embodiment is a device in which the input shaft I, the left output shaft OL, the right output shaft OR, and the rear output shaft OP are connected via a gear or the like.
  • the magnitude of torque applied to each axis does not match. Therefore, in order to grasp the behavior of the specimen T4 during the torsion test more accurately, it is preferable to individually measure the torques of the input shaft I, the left output shaft OL, the right output shaft OR, and the rear output shaft OP.
  • the input shaft I of the specimen T4 the left side Torque applied to the output shaft OL, the right output shaft OR, and the rear output shaft OP can be individually measured.
  • the left output shaft OL, the right output shaft OR, and the rear output shaft OP may be driven to rotate at a constant speed, and the input shaft I may be driven so that the rotational speed varies at a constant cycle.
  • all of the input shaft I, the left output shaft OL, the right output shaft OR, and the rear output shaft OP may be driven so that the rotation speed varies.
  • each of the above-described embodiments is an example in which a rotational torsion test is performed. It can also be used for normal torsion testing.
  • Torsion test device 110 210, 310, 410 First drive unit 110a Main body 110b Base 111 Movable plate 112, 122 Servo motor 113 Reducer 114 Case 115 Spindle 116, 126 Chuck device 117 Torque sensor 119a Slip Ring 119b Brush 120, 320, 420 Second drive unit 230, 330, 430 Third drive unit 440 Fourth drive unit T Specimen I Input shaft O Output shaft OL Left output shaft OR Right output shaft OP Rear output shaft

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

 供試体の入力軸に接続される第1駆動部と、供試体の出力軸に接続される第2駆動部とを備える。第1及び第2駆動部は、サーボモータと、サーボモータの出力軸の回転を減速して出力する減速機と、供試体の入力軸又は出力軸が取り付けられ、減速機の出力を供試体の入力軸又は出力軸に伝達するチャックと、減速機の出力をチャックへ伝達すると共に、減速機が出力するトルクを検出するトルクセンサと、チャックの回転数を検出する回転計とを備える。

Description

ねじり試験装置
 本発明は、動力伝達装置の性能を評価するためのねじり試験装置に関する。
 従来、プロペラシャフト等の動力伝達装置の疲労試験は、供試体の出力軸を反力盤に固定し、入力軸にサーボモータ等のトルク負荷手段により動的又は静的なトルク(ねじり荷重)を負荷する方法により行われていた。
特開2007-107955号公報
 動力伝達装置は、自動車等に搭載されて実際に使用される際には、動力伝達軸が回転した状態で、入出力軸にそれぞれ荷重が加えられる。しかしながら、上記の従来の試験方法では、動力伝達軸は試験中に静止した状態におかれるため、実際の使用環境下での性能を正確に評価することができなかった。
 本発明は、上記の事情に鑑みて為されたものである。
 本発明の実施形態に係るねじり試験装置は、動力伝達装置である供試体の入出力軸にトルクを与えるねじり試験装置であって、供試体の入力軸に接続される第1駆動部と、供試体の出力軸に接続される第2の駆動部とを備え、第1及び第2駆動部は、サーボモータと、サーボモータの出力軸の回転を減速して出力する減速機と、供試体の入力軸又は出力軸が取り付けられ、減速機の出力を供試体の入力軸又は出力軸に伝達するチャックと、減速機の出力をチャックへ伝達すると共に、減速機が出力するトルクを検出するトルクセンサと、チャックの回転数を検出する回転計と、を備える。
 この構成によれば、入出力軸が回転した状態で各入出力軸にねじり荷重が加えられるという動力伝達装置の実際の使用条件に近い負荷を供試体に与えることができるため、供試体の性能のより正確な評価が可能になる。また、各入出力軸のトルクと回転数が検出されるため、試験時の供試体の状態を詳細に把握することができる。
 また、トルクセンサとチャックとを連結するスピンドルと、スピンドルを回転自在に支持する軸受部とを備え、減速機は、ギアケースと、軸受と、軸受を介してギアケースに支持されたギア機構とを備え、サーボモータの駆動力を供試体まで伝達する減速機のギア機構、トルクセンサ、及びスピンドルを含む動力伝達軸の荷重が、スピンドル及び減速機のギア機構において支持される構成としてもよい。
 この構成によれば、サーボモータの駆動力を供試体まで伝達する動力伝達軸において特に重量が大きく、かつ動力伝達軸の両端部に配置されるギア機構及びチャックの直近において動力伝達軸が支持されるため、動力伝達軸に大きな歪みが加わらず、正確な試験が可能になると共に、耐久性に優れたねじり試験装置が提供される。
 また、減速機の出力軸とチャックとの間に取り付けられ、トルクセンサから延びる信号線に接続されたスリップリングと、回転するスリップリングと接触した状態でねじり試験装置のベースプレートに対して固定され、スリップリングを介して入力されたトルクセンサの信号を出力する端子を備えたブラシと、を備えた構成としてもよい。
 この構成によれば、供試体の入出力軸と共に高速で回転するトルクセンサの信号を有線で外部に取り出すことが可能になる。
 また、第1駆動部及び第2駆動部の駆動を制御する制御部を備え、制御部は、第1駆動部及び第2駆動部の一方を所定の回転数で駆動させながら、第1駆動部及び第2駆動部の他方を所定のトルクで駆動させることで、供試体の回転ねじり試験を行う構成としてもよい。
 また、複数の第2の駆動部を備え、制御部は、供試体の入力軸が所定の回転数で回転するように第1駆動部を駆動させながら、供試体の複数の出力軸にそれぞれ個別に設定されたトルクを与えるように複数の第2駆動部を駆動させる構成としてもよい。
 この構成によれば、複数の出力軸を有する供試体に対しても、実際の使用条件に近い負荷を与える試験が可能になる。
 また、制御部は、複数の第2駆動部の回転数差の設定値と、複数の第2駆動部のトルクの和の設定値を記録する設定値記録手段と、回転数差の設定値とトルクの和の設定値に基づいて、供試体の複数の出力軸に与えるトルクをそれぞれ個別に設定するトルク設定手段と、を備える構成としてもよい。
 また、複数の第2駆動部の回転計の検出結果に基づいて、複数の第2駆動部の回転数差の計測値を取得する回転数差計測手段を備え、トルク設定手段は、設定値記録手段に記録された回転数差の設定値と、回転数差計測手段により取得された回転数差の計測値に基づいて、供試体の複数の出力軸に与えるトルクの設定値を補正する構成としてもよい。
 これらの構成によれば、例えばディファレンシャルギアを含む供試体について、ディファレンシャルギアを差動させた状態での回転ねじり試験を適切に行うことが可能になる。
 また、複数の第1駆動部を備え、複数の第1駆動部により、供試体の複数の入力軸に対して、それぞれ個別に設定されたトルクを与えるか、又はそれぞれ個別に設定された回転数で回転させる構成としてもよい。
 この構成によれば、複数の入力軸を有する供試体(例えば、ハイブリッド自動車の動力分配機構等)に対しても、実際の使用条件に近い負荷を与える試験が可能になる。
 入出力軸が回転した状態で各入出力軸にねじり荷重が加わる実際の使用条件下での動力伝達装置の性能を正確に評価可能なねじり試験装置を提供する。
図1は、本発明の第1の実施の形態のねじり試験装置の側面図である。 図2は、本発明の第1の実施の形態のねじり試験装置の、第1駆動部の側面図である。 図3は、本発明の第2の実施の形態のねじり試験装置の平面図である。 図4は、本発明の第3の実施の形態のねじり試験装置の平面図である。 図5は、本発明の第4の実施の形態のねじり試験装置の平面図である。 図6は、本発明の第4の実施の形態のねじり試験装置による回転ねじり試験の手順を表すフローチャートである。
(第1実施形態)
 以下、本発明の実施形態について図面を参照しながら説明する。図1は、本発明の第1実施形態に係るねじり試験装置100の側面図である。本実施形態のねじり試験装置100は、2つの回転軸を有する供試体T1(例えばFR車用トランスミッションユニット)の回転ねじり試験を行う装置である。すなわち、ねじり試験装置100は、供試体T1の2つの回転軸を同期回転させながら2つの回転軸の回転に位相差を与えることで、トルクを負荷しながら供試体T1の2つの回転軸を回転させる。本実施形態のねじり試験装置100は、第1駆動部110、第2駆動部120、及びねじり試験装置100の動作を統合的に制御するコントローラCを備えている。
 先ず、第1駆動部110の構造について説明する。図2は、第1駆動部110の一部を切り欠いた側面図である。第1駆動部110は、本体110aと、この本体110aを所定の高さで支持するベース110bを備えている。本体110aは、サーボモータ112、減速機113、ケース114、スピンドル115、チャック装置116、トルクセンサ117、スリップリング119a及びブラシ119bを備えており、本体110aはベース110bの最上部に水平に配置された可動プレート111上に組み立てられている。サーボモータ112は、出力軸(不図示)を水平方向に向けて、可動プレート111上に固定されている。また、ベース110bの可動プレート111は、サーボモータ112の出力軸方向(図1における左右方向)にスライド移動可能に設けられている。
 サーボモータ112の出力軸(不図示)は、カップリング(不図示)により減速機113の入力軸(不図示)に連結されている。減速機113の出力軸113aは、トルクセンサ117の一端に連結されている。トルクセンサ117の他端は、スピンドル115の一端に連結されている。スピンドル115は、ケース114のフレーム114bに固定された軸受114aにより回転自在に支持されている。スピンドル115の他端には、供試体T1の一端(回転軸の一つ)を第1駆動部110に取り付ける為のチャック装置116が固定されている。サーボモータ112を駆動すると、サーボモータ112の出力軸の回転運動が、減速機113によって減速された後、トルクセンサ117、スピンドル115及びチャック装置116を介して、供試体T1の一端に伝達されるようになっている。また、スピンドル115には、スピンドル115の回転角を検出するロータリーエンコーダ(不図示)が取り付けられている。
 図2に示されるように、減速機113は、ケース114のフレーム114bに固定されている。また、減速機113は、ギアケースと、軸受を介してギアケースにより回転自在に支持されたギア機構とを備えている(不図示)。すなわち、ケース114は、減速機113からチャック装置116に至る動力伝達軸を覆うと共に、この動力伝達軸を減速機113及びスピンドル115の位置で回転自在に支持する装置フレームとしての機能も有する。すなわち、トルクセンサ117の一端が接続される減速機113のギア機構と、トルクセンサ117の他端が接続されるスピンドル115は、いずれも軸受を介してケース114のフレーム114bに回転自在に支持されている。そのため、トルクセンサ117には、減速機113のギア機構やスピンドル115(及びチャック装置116)の重量による曲げモーメントが加わらず、試験荷重(ねじり荷重)のみが加わるため、高い精度で試験荷重を検出することができる。
 トルクセンサ117の一端側の円筒面には、複数のスリップリング119aが形成されている。一方、可動プレート111には、スリップリング119aを外周側から囲むようにブラシ保持フレーム119cが固定されている。ブラシ保持フレーム119cの内周には、それぞれ対応するスリップリング119aと接触する複数のブラシ119bが取り付けられている。サーボモータ112が駆動して、トルクセンサ117が回転している状態では、ブラシ119bは、スリップリング119aとの接触を保ちつつ、スリップリング119a上でスリップする。トルクセンサ117の出力信号はスリップリング119aに出力されるよう構成されており、スリップリング119aと接触するブラシ119bを介して、トルクセンサ117の出力信号を第1駆動部110の外部に取り出せるようになっている。
 第2駆動部120(図1)は、第1駆動部110と同一の構造となっており、サーボモータ122を駆動するとチャック装置126が回転する。チャック装置126には、供試体T1の他端(回転軸の一つ)が固定される。なお、供試体T1のハウジングは、支持フレームSに固定されている。
 本実施形態のねじり試験装置100は、FR車用のトランスミッションユニットである供試体T1の出力軸Oと入力軸I(エンジン側)を、夫々第1駆動部110と第2駆動部120のチャック装置116、126に固定した状態で、サーボモータ112、122によって同期させて回転駆動すると共に、両チャック装置116、126の回転数(あるいは回転の位相)に差を持たせることにより供試体T1にねじり荷重を加えるものである。例えば、第2駆動部120のチャック装置126を等速回転駆動させると共に、第1駆動部110のトルクセンサ117が検出するトルクが所定の波形に従って変動するようにチャック装置116を回転駆動して、トランスミッションユニットである供試体T1に周期的に変動するトルクが加わるようにする。
 このように、本実施形態のねじり試験装置100は、トランスミッションユニットの入力軸Iと出力軸Oの双方をサーボモータ122、112によって精密に駆動することが可能であるため、トランスミッションユニットを回転駆動させながら、トランスミッションユニットの各軸に変動トルクを加えることにより、自動車の実際の走行状態に近い条件で試験を行うことができる。
 トランスミッションユニットのように、入力軸Iと出力軸Oがギアなどを介して連結されている装置のねじり試験を行う場合、入力軸Iと出力軸Oに加わるトルクの大きさは必ずしも一致しない。そのため、ねじり試験時の供試体T1の挙動をより正確に把握する為には、入力軸I側と出力軸O側とで個別にトルクを計測できるようにすることが好ましい。本実施形態においては、上記のように第1駆動部110と第2駆動部120の双方にトルクセンサが設けられているため、トランスミッションユニット(供試体T1)の入力軸I側と出力軸O側とでトルクを個別に計測することができる。
 なお、上記の例ではトランスミッションユニットの入力軸I側を等速回転駆動し、出力軸O側でトルクを付与する構成としているが、本発明は上記の例に限定されるものではない。すなわち、トランスミッションユニットの出力軸O側を等速回転駆動すると共に、入力軸I側に変動トルクを加える構成としてもよい。或いは、トランスミッションユニットの入力軸I側と出力軸O側の双方を、それぞれ変動する回転数で回転駆動させる構成としてもよい。また、回転数では制御せず、各軸のトルクのみを制御する構成としてもよい。また、トルクや回転数を所定の波形に従って変動させる構成としてもよい。トルクや回転数は、例えばファンクションジェネレータで発生させた任意の波形に従って変動させることができる。また、実際の走行試験で計測したトルクや回転数の波形データに基づいて、供試体T1の各軸のトルクや回転数を制御することもできる。
 本実施形態のねじり試験装置100は、様々な寸法のトランスミッションユニットに対応できるように、チャック装置116と126との間隔を調整可能となっている。具体的には、可動プレート駆動機構(不図示)により、第1駆動部110の可動プレート111が、ベース110bに対してチャック装置116の回転軸方向(図1中左右方向)に移動可能となっている。なお、ねじり試験を行っている間は、図示しないロック機構によって可動プレート111はベース110bに強固に固定されている。また、第2駆動部120も、第1駆動部110と同様の可動プレート駆動機構を備えている。
 以上説明した本発明の第1の実施形態に係るねじり試験装置100は、FR車用のトランスミッションユニットに対して回転ねじり試験を行うものであるが、本発明は第1の実施形態の構成に限定されるものではなく、他の動力伝達機構の回転ねじり試験を行う為の装置も又、本発明に含まれる。以下に説明する本発明の第2、第3及び第4実施形態は、夫々FF車用のトランスミッションユニット、ディファレンシャルギアユニット、及び4WD車用のトランスミッションユニットの試験に適したねじり試験装置の構成例である。
(第2実施形態)
 図3は、本発明の第2実施形態に係るねじり試験装置200の平面図である。上述のように、本実施形態は、FF車用のトランスミッションユニットを供試体T2とする回転ねじり試験に適したねじり試験装置の構成例である。供試体T2は、ディファレンシャルギアを内蔵するトランスミッションユニットであり、入力軸Iと、左側出力軸OL及び右側出力軸ORを有している。
 本実施形態のねじり試験装置200は、供試体T2の入力軸Iを駆動する第1駆動部210、左側出力軸OLを駆動する第2駆動部220及び右側出力軸ORを駆動する第3駆動部230を備えている。また、ねじり試験装置200は、その動作を統合的に制御するコントローラCを備えている。第1駆動部210、第2駆動部220及び第3駆動部230の構造は、共に第1実施形態の第1駆動部110や第2駆動部120のものと同一であるため、重複する具体的構成の説明は省略する。
 本実施形態のねじり試験装置200を用いて供試体T2のねじり試験を行う場合は、例えば第1駆動部210によって入力軸Iを所定の回転数で駆動し、同時に、第2駆動部220及び第3駆動部230によって、所定のトルクが加わるように左側出力軸OL及び右側出力軸ORを回転駆動する。
 上記のように第1駆動部210、第2駆動部220及び第3駆動部230を制御することによって、トランスミッションユニットを回転駆動させながら、トランスミッションユニットの各軸に変動トルクを加えることにより、自動車の実際の走行状態に近い条件で試験を行うことができる。
 また、本実施形態のねじり試験装置200を使用して試験を行うトランスミッションユニットは、入力軸Iと左側出力軸OL及び右側出力軸ORがギアなどを介して連結された装置であり、そのねじり試験を行う場合は、入力軸Iと左側出力軸OL及び右側出力軸ORとに加わるトルクの大きさは一致しない。また、左側出力軸OLと右側出力軸ORに加わるトルクも、必ずしも一致するとは限らない。そのため、ねじり試験時の供試体T2の挙動をより正確に把握する為には、入力軸I、左側出力軸OL及び右側出力軸ORに加わるトルクを個別に計測できるようにすることが好ましい。本実施形態においては、第1駆動部210、第2駆動部220、第3駆動部230の全てにトルクセンサが設けられているため、トランスミッションユニット(供試体T2)の入力軸I、左側出力軸OL及び右側出力軸ORのそれぞれに加わるトルクを個別に計測することができる。
 なお、左側出力軸OLのトルクと右側出力軸ORのトルクとが同一の波形を描くように第2駆動部220及び第3駆動部230が制御される構成としてもよく、又、両者が異なる(例えば逆位相の)波形を描くように第1駆動部210、第2駆動部220及び第3駆動部230が制御される構成としてもよい。
 また、左側出力軸OLと右側出力軸ORを等速回転駆動し、速度が一定周期で変動するように入力軸Iを駆動する構成としてもよい。或いは、入力軸I、左側出力軸OL及び右側出力軸ORの全てを、回転数が個別に変動するよう駆動する構成としてもよい。
(第3実施形態)
 次に、本発明の第3実施形態について説明する。図4は、本発明の第3実施形態に係るねじり試験装置300の平面図である。本実施形態は、FR車用のディファレンシャルギアユニットを供試体T3とする回転ねじり試験に適したねじり試験装置の構成例である。第2の実施形態と同様に、供試体T3は、入力軸I、左側出力軸OL及び右側出力軸ORを有している。
 本実施形態のねじり試験装置300は、供試体T3の入力軸Iを駆動する第1駆動部310、左側出力軸OLを駆動する第2駆動部320及び右側出力軸ORを駆動する第3駆動部330を備えている。また、ねじり試験装置300は、その動作を統合的に制御するコントローラCを備えている。第1駆動部310、第2駆動部320及び第3駆動部330の構造は、共に第1実施形態の第1駆動部110や第2駆動部120と同一であるため、重複する具体的構成の説明は省略する。
 本実施形態のねじり試験装置300により供試体T3のねじり試験を行う場合は、例えば第1駆動部310によって入力軸Iを所定の回転数で駆動し、同時に、第2駆動部320及び第3駆動部330によって、左側出力軸OL及び右側出力軸ORにそれぞれトルクが加わるように駆動する。
 上記のように第1駆動部310、第2駆動部320及び第3駆動部330を制御することによって、供試体T3の各軸を回転駆動しながら供試体T3の各軸に変動トルクを加えることにより、実際の使用状態に近い条件で試験を行うことができる。
 ディファレンシャルギアユニットも又、トランスミッションユニットと同様に、入力軸Iと左側出力軸OL及び右側出力軸ORとがギアを介して連結された装置であり、そのねじり試験を行う場合は、入力軸Iに加わるトルクの大きさと左側出力軸OL及び右側出力軸ORに加わるトルクの大きさとは一致しない。また、左側出力軸OLと右側出力軸ORに加わるトルクの大きさも、必ずしも一致するとは限らない。そのため、試験時の供試体T3の挙動をより正確に把握する為には、入力軸I、左側出力軸OL及び右側出力軸ORのトルクを個別に計測できるようにすることが望ましい。本実施形態においては、第1駆動部310、第2駆動部320、第3駆動部330の全てにトルクセンサが設けられているため、ディファレンシャルギアユニット(供試体T3)の入力軸I、左側出力軸OL及び右側出力軸ORのそれぞれに加わるトルクを個別に計測することができる。
 なお、入力軸Iの回転数と左側出力軸OL及び右側出力軸ORの回転数とが同一の波形を描くように第2駆動部320及び第3駆動部330が制御される構成としてもよく、又、両者が異なる(例えば入力軸Iとの速度差が逆位相となるような)波形を描くように第2駆動部320及び第3駆動部330が制御される構成としてもよい。
 また、左側出力軸OL及び右側出力軸ORを等速回転駆動し、入力軸Iを速度が一定周期で変動するように駆動する構成としてもよい。或いは、入力軸I、左側出力軸OL及び右側出力軸ORの全てを、回転数が変動するよう駆動する構成としてもよい。
(第4実施形態)
 図5は、本発明の第4実施形態に係るねじり試験装置400の平面図である。本実施形態のねじり試験装置400は、4つの回転軸を有する供試体T4の回転ねじり試験に適したねじり試験装置の構成例である。以下、一例として、4WDシステムを供試体T4として試験を行う場合について説明する。供試体T4は、図示しないトランスミッション、フロントディファレンシャルギア、トランスファー及び電子制御多板クラッチを備えたFFベースの電子制御式4WDシステムである。供試体T4は、エンジンに接続される入力軸Iと、左右の前輪用のドライブシャフトに接続される左側出力軸OL及び右側出力軸ORと、後輪に動力を伝達するプロペラシャフトに接続される後部出力軸OPを有している。入力軸Iから供試体T4に入力された駆動力は、供試体T4に備わるトランスミッションにより減速された後、フロントディファレンシャルギアを介して、左側出力軸OLと右側出力軸ORに分配される。また、フロントディファレンシャルギアに伝達された駆動力の一部は、トランスファーにより分岐されて、後部出力軸OPから出力されるように構成されている。
 本実施形態のねじり試験装置400は、供試体T4の入力軸Iを駆動する第1駆動部410、左側出力軸OLを駆動する第2駆動部420、右側出力軸ORを駆動する第3駆動部430及び後部出力軸OPを駆動する第4駆動部440を備えている。また、ねじり試験装置400は、その動作を統合的に制御するコントローラCを備えている。第1駆動部410、第2駆動部420、第3駆動部430及び第4駆動部440の構造は、共に第1実施形態の第1駆動部110や第2駆動部120と同一であるため、重複する具体的構成の説明は省略する。
 次に、ねじり試験装置400を用いた供試体T4の回転ねじり試験において実行される制御の一例を説明する。上述のように、供試体T4はフロントディファレンシャルギア(不図示)を備えており、左側出力軸OLと右側出力軸ORに加わるトルクの差により、左側出力軸OLと右側出力軸ORとの回転数差が生じるように構成されている。以下に説明する回転ねじり試験は、供試体T4に内蔵されたフロントディファレンシャルギアを差動させた状態(すなわち、左側出力軸OLと右側出力軸ORに回転数差を与えた状態)で、供試体T4の回転ねじり試験を行うものである。具体的には、入力軸Iを一定の回転数で回転させながら、左側出力軸OLと右側出力軸ORを回転数差を与えた状態で駆動し、供試体T4の性能を評価するものである。また、以下に説明する本実施形態の回転ねじり試験では、左側出力軸OLと右側出力軸ORに加えられるトルクの和が一定となるような制御が行われる。
 図6は、ねじり試験装置400による回転ねじり試験の手順を表すフローチャートである。本実施形態では、入力軸Iを一定の回転数で駆動しながら、左側出力軸OLと右側出力軸ORが所定の回転数差で回転し、且つ、左側出力軸OLと右側出力軸ORに加わるトルクの合計が一定となるように、左側出力軸OL及び右側出力軸ORにトルク負荷を加えて回転ねじり試験が行われる。なお、図6に示される処理は、コントローラCによって実行される。
 図6に示されるねじり試験装置400の制御では、まず、予め設定された各種設定値(試験条件)が、コントローラCが備える記憶装置(不図示)から読み取られる(S1)。設定値には、例えば、第1駆動部410(入力軸I)の回転数N1、第2駆動部420(左側出力軸OL)と第3駆動部430(右側出力軸OR)の回転数差(ΔN=N2-N3)及びトルク負荷の和(Tm2+Tm3)、第4駆動部440(後部出力軸OP)のトルクTm4が含まれる。表1は、S1において読み込まれる各種設定値の例を示す。
Figure JPOXMLDOC01-appb-T000001
 なお、本実施形態では、第1駆動部410に対しては回転数を制御量とする回転数制御を行い、第2駆動部420、第3駆動部430及び第4駆動部440に対してはトルクを制御量とするトルク制御が行われる。なお、第2駆動部420と第3駆動部430については、回転数差を制御する必要があるため、回転数制御が適用されるのが通常である。しかしながら、供試体T4に内蔵されるフロントディファレンシャルギア(不図示)は、左側出力軸OLと右側出力軸ORに加わる僅かなトルク差により動作が急激に変化するため、制御(直接的には制御値の検出)の遅れが大きい回転数制御では、実際に自動車に搭載されたときに供試体T4に加えられる負荷を高い精度で再現することができないことが本発明者の研究によって判明した。そこで、本実施形態では、左側出力軸OLと右側出力軸ORに与える回転数差の設定値に基づいて、左側出力軸OLと右側出力軸ORに加えるべきトルクの目標値を計算して、第2駆動部420と第3駆動部430に対してトルク制御を行う構成が採用されている。
 上記の設定値の読み込み(S1)に続いて、第2駆動部420及び第3駆動部430に対するトルク制御の目標値が計算される(S2)。処理S2においては、まず第2駆動部420の回転数N2及び第3駆動部430の回転数N3の予測値が計算される。
 供試体T4の前輪の変速比rは、入力軸Iの回転数N1、左側出力軸OLの回転数N2及び右側出力軸ORの回転数N3を用いて、次の数式1により表される。
Figure JPOXMLDOC01-appb-M000002
 数式1を変形すると、次の数式2が得られる。
Figure JPOXMLDOC01-appb-M000003
 また、回転数差ΔNの定義より、次の数式3が得られる。
Figure JPOXMLDOC01-appb-M000004
 回転数N2及びN3は、上記の数式2と数式3からなる連立方程式の解である次の数式4及び数式5により、それぞれ表される。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 第2駆動部420、第3駆動部430の回転数の設定値N2、N3は、上記の数式4、数式5に、処理S1において取得された設定値N1、ΔN(表1)及び既知の変速比r=0.1を代入して算出される。本実施形態では、N2=6rpm、N3=4rpmとなる。
 次に、第2駆動部420のトルクTm2及び第3駆動部430のトルクTm3の目標値の初期値が計算される。本実施形態では、回転数差ΔNを一定にするために、トルクTm2とTm3は同一の目標値に設定する必要がある。従って、トルクTm2及びTm3の目標値は、次の数式6により計算される。
Figure JPOXMLDOC01-appb-M000007
 次に、コントローラCは、第1駆動部410に対して回転数N1の目標値を含む駆動指令を出力する(S3)。
 次に、コントローラCは、第4駆動部440に対して、トルクTm4の目標値を含む駆動指令を出力する(S4)。
 次に、コントローラCは、第2駆動部420、第3駆動部430に対して、それぞれのトルクTm3、Tm4の目標値を含む駆動指令を出力する(S5)。
 次に、コントローラCは、第1駆動部410、第2駆動部420、第3駆動部430及び第4駆動部440にそれぞれ設けられたエンコーダ(不図示)からの信号に基づいて、各駆動部の回転数N1、N2、N3及びN4(単位:rpm)を計測する(S6)。
 次に、コントローラCは、第1駆動部410、第2駆動部420、第3駆動部430及び第4駆動部440にそれぞれ設けられたトルクセンサ117からの信号に基づいて、各駆動部のトルクTm1、Tm2、Tm3及びTm4(単位:N・m)を計測する(S7)。
 次に、コントローラCは、上記の処理S6、S7における計測結果である回転数N1、N2、N3、N4及びトルクTm1、Tm2、Tm3、Tm4を、コントローラCに内蔵されたメモリに記録する(S8)。
 次に、コントローラCは、上記の処理S6において取得された回転数N2、N3の計測結果から、回転数差ΔN=N2-N3を計算する(S9)。そして、処理S9において得られた回転数差ΔNの計測結果が適正か否かが判断される(S10)。具体的には、処理S9において得られた回転数差ΔNの計測結果をその設定値(表1)と比較して、計測結果と設定値との差が所定の範囲を超えていれば、回転数差ΔNが適正に制御されていないと判断し(S10:NO)、第2駆動部420のトルクTm2及び第3駆動部430のトルクTm3の目標値を補正(S12)した後、処理S3に戻って再び各駆動部に駆動指令を与える。
 処理S12において、トルクTm2及びTm3の目標値の補正は、次の数式7及び数式8にそれぞれ示されるように、トルクTm2及びTm3に対して補正値αを加減することによって行われる。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 また、補正値αは、次の数式9により計算される。但し、ΔNset及びΔNmeas.は、それぞれ第2駆動部420と第3駆動部430の回転数差(ΔN=N2-N3)の設定値及び計測結果である。
Figure JPOXMLDOC01-appb-M000010
 回転数差ΔNの計測結果と設定値との差が所定の範囲内であれば、回転数差ΔNが適正に制御されていると判断する(S10:YES)。ねじり試験装置400の制御を終了せずに継続する場合には(S11:NO)、各種設定値(表1)に更新があったか否かが確認される(S13)。設定値が更新されていれば(S13:YES)、処理S1に戻って設定値を再び読み取る。また、設定値が更新されていなければ(S13:NO)、処理S3に戻って各駆動部に駆動指令を与える。
 上記のように第1駆動部410、第2駆動部420、第3駆動部430及び第4駆動部440を制御することによって、左側出力軸OLと右側出力軸ORに回転数差が与えられた状態での供試体T4の回転ねじり試験が可能になる。
 なお、上記の第4実施形態では、第2駆動部420(左側出力軸OL)と第3駆動部430(右側出力軸OR)の回転数差ΔN及びトルク負荷の和(Tm2+Tm3)を一定とする条件下で第2駆動部420及び第3駆動部430をトルク制御する構成が採用されているが、本発明の制御方法はこの構成に限定されない。例えば、回転数差ΔNの条件を設定せず、予め設定した静的又は動的トルクTm2及びTm3を第2駆動部420及び第3駆動部430にそれぞれ加える構成としてもよい。また、トルク負荷の和(Tm2+Tm3)を一定とする条件を設定せず、回転数差ΔNが維持されるように、第2駆動部420及び第3駆動部430を回転数制御する構成としてもよい。
 また、上記の第4実施形態では、第1駆動部410が一定の回転数で駆動されるが、第1駆動部410の回転数を例えば所定の波形に従って変動させて回転ねじり試験を行う構成としてもよい。例えば、左側出力軸OLの回転数と右側出力軸ORの回転数とが同一の波形に従って変化するように第2駆動部420及び第3駆動部430が制御される構成としてもよく、又、両者が異なる(例えば入力軸Iとの速度差が逆位相となるような)波形に従って変化するように第2駆動部420及び第3駆動部430が制御される構成としてもよい。
 また、上記の第4実施形態では、第4駆動部440が一定のトルクで駆動されるが、第1駆動部410のトルクを例えば所定の波形に従って変動させて回転ねじり試験を行う構成としてもよい。また、上記の第4実施形態では、左側出力軸OLと右側出力軸ORの回転数差が一定になるように制御されるが、左側出力軸OLと右側出力軸ORの回転数差を例えば所定の波形に従って変動させて回転ねじり試験を行う構成としてもよい。
 また、上記の第4実施形態の供試体T4は、入力軸I、左側出力軸OL、右側出力軸OR及び後部出力軸OPがギアなどを介して連結されている装置であるため、回転ねじり試験において各軸に加わるトルクの大きさは一致しない。そのため、ねじり試験時の供試体T4の挙動をより正確に把握する為には、入力軸I、左側出力軸OL、右側出力軸OR及び後部出力軸OPのトルクを個別に計測することが好ましい。本実施形態においては、第1駆動部410、第2駆動部420、第3駆動部430、第4駆動部440の全てにトルクセンサが設けられているため、供試体T4の入力軸I、左側出力軸OL、右側出力軸OR及び後部出力軸OPに加わるトルクを個別に計測することができる。
 また、左側出力軸OL、右側出力軸OR及び後部出力軸OPを等速回転駆動し、入力軸Iを回転数が一定周期で変動するように駆動する構成としてもよい。或いは、入力軸I、左側出力軸OL、右側出力軸OR及び後部出力軸OPの全てを、回転数が変動するよう駆動する構成としてもよい。
 また、上記の各実施形態は、いずれも回転ねじり試験を行う例であるが、いずれかの駆動部の回転を止めて反力部とすることにより、ねじり試験装置100、200、300、400を使用して通常のねじり試験を行うこともできる。
 以上が本発明の実施形態の説明であるが、本発明は、上記の実施形態の構成に限定されるものではなく、その技術的思想の範囲内で様々な変形が可能である。
100、200、300、400 ねじり試験装置
110、210、310、410 第1駆動部
110a 本体
110b ベース
111 可動プレート
112、122 サーボモータ
113 減速機
114 ケース
115 スピンドル
116、126 チャック装置
117 トルクセンサ
119a スリップリング
119b ブラシ
120、320、420 第2駆動部
230、330、430 第3駆動部
440 第4駆動部
  T 供試体
  I 入力軸
  O 出力軸
 OL 左側出力軸
 OR 右側出力軸
 OP 後部出力軸

Claims (8)

  1.  動力伝達装置である供試体の入出力軸にトルクを与えるねじり試験装置であって、
     前記供試体の入力軸に接続される第1駆動部と、
     前記供試体の出力軸に接続される第2駆動部と
    を備え、
     前記第1及び第2駆動部は、
      サーボモータと、
      前記サーボモータの出力軸の回転を減速する減速機と、
      前記供試体の入力軸又は出力軸が取り付けられ、前記減速機の出力を前記供試体の入力軸又は出力軸に伝達するチャックと、
      前記減速機の出力を前記チャックへ伝達すると共に、前記減速機が出力するトルクを検出するトルクセンサと、
      前記チャックの回転数を検出する回転計と、
    を備えたねじり試験装置。
  2.  前記トルクセンサと前記チャックとを連結するスピンドルと、
     前記スピンドルを回転自在に支持する軸受部と
    を備え、
     前記減速機は、ギアケースと、軸受と、該軸受を介して前記ギアケースに支持されたギア機構とを備え、
     前記サーボモータの駆動力を前記供試体まで伝達する前記減速機のギア機構、前記トルクセンサ、及び前記スピンドルを含む動力伝達軸の荷重が、前記スピンドル及び前記減速機のギア機構において支持される、ことを特徴とする請求項1に記載のねじり試験装置。
  3.  前記減速機の出力軸と前記チャックとの間に取り付けられ、前記トルクセンサから延びる信号線に接続されたスリップリングと、
     回転する前記スリップリングと接触した状態で前記ねじり試験装置のベースプレートに固定され、前記スリップリングを介して入力された前記トルクセンサの信号を出力する端子を備えたブラシと、
    を備えたことを特徴とする請求項1又は請求項2に記載のねじり試験装置。
  4.  前記第1駆動部及び前記第2駆動部の駆動を制御する制御部を備え、
     前記制御部は、前記第1駆動部及び前記第2駆動部の一方を所定の回転数で駆動させながら、前記第1駆動部及び前記第2駆動部の他方を所定のトルクで駆動させることで、前記供試体の回転ねじり試験を行う、
    ことを特徴とする請求項1に記載のねじり試験機。
  5.  複数の前記第2駆動部を備え、
     前記制御部は、前記供試体の入力軸が所定の回転数で回転するように前記第1駆動部を駆動させながら、前記供試体の複数の出力軸にそれぞれ個別に設定されたトルクを与えるように前記複数の第2駆動部を駆動させる、
    ことを特徴とする請求項4に記載のねじり試験装置。
  6.  前記制御部は、
      前記複数の第2駆動部の回転数差の設定値と、前記複数の第2駆動部のトルクの和の設定値を記録する設定値記録手段と、
      前記回転数差の設定値と前記トルクの和の設定値に基づいて、前記供試体の複数の出力軸に与えるトルクをそれぞれ個別に設定するトルク設定手段と、
    を備える、ことを特徴とする請求項5に記載のねじり試験装置。
  7.  前記複数の第2駆動部の回転計の検出結果に基づいて、前記複数の第2駆動部の回転数差の計測値を取得する回転数差計測手段を備え、
     前記トルク設定手段は、前記設定値記録手段に記録された前記回転数差の設定値と、前記回転数差計測手段により取得された前記回転数差の計測値に基づいて、前記供試体の複数の出力軸に与えるトルクの設定値を補正する、ことを特徴とする請求項6に記載のねじり試験装置。
  8.  複数の前記第1駆動部を備え、
     前記複数の第1駆動部により、前記供試体の複数の入力軸に対して、それぞれ個別に設定されたトルクを与えるか、又はそれぞれ個別に設定された回転数で回転させる、ことを特徴とする請求項1から請求項7のいずれか一項に記載のねじり試験装置。
PCT/JP2012/074634 2011-09-30 2012-09-26 ねじり試験装置 WO2013047551A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201280053776.9A CN103907006B (zh) 2011-09-30 2012-09-26 扭转测试装置
IN3168DEN2014 IN2014DN03168A (ja) 2011-09-30 2012-09-26
KR1020147010413A KR101835833B1 (ko) 2011-09-30 2012-09-26 비틀림 시험 장치
JP2013536318A JP6071888B2 (ja) 2011-09-30 2012-09-26 ねじり試験装置
EP12834972.7A EP2762853B1 (en) 2011-09-30 2012-09-26 Torsion test device
US14/228,701 US9442052B2 (en) 2011-09-30 2014-03-28 Torsion tester

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011218789 2011-09-30
JP2011-218789 2011-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/228,701 Continuation-In-Part US9442052B2 (en) 2011-09-30 2014-03-28 Torsion tester

Publications (1)

Publication Number Publication Date
WO2013047551A1 true WO2013047551A1 (ja) 2013-04-04

Family

ID=47995582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074634 WO2013047551A1 (ja) 2011-09-30 2012-09-26 ねじり試験装置

Country Status (8)

Country Link
US (1) US9442052B2 (ja)
EP (1) EP2762853B1 (ja)
JP (2) JP6071888B2 (ja)
KR (1) KR101835833B1 (ja)
CN (1) CN103907006B (ja)
IN (1) IN2014DN03168A (ja)
TW (1) TWI555979B (ja)
WO (1) WO2013047551A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010843A (ja) * 2013-06-26 2015-01-19 国際計測器株式会社 ねじり試験装置
CN104344996A (zh) * 2013-08-02 2015-02-11 三星显示有限公司 用于柔性装置的测试设备
CN107144427A (zh) * 2017-07-19 2017-09-08 苏州宝嘉新能源科技有限公司 蜗轮蜗杆驱动器寿命测试装置
CN113310688A (zh) * 2021-05-06 2021-08-27 中国第一汽车股份有限公司 一种电机转子轴扭转疲劳试验***

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141170A1 (ja) * 2011-04-12 2012-10-18 国際計測器株式会社 回転ねじり試験機
CN103499499B (zh) * 2013-06-19 2015-12-02 吉林大学 一种微观视场下双侧动力原位微扭转材料力学性能测试仪
CN104155193B (zh) * 2014-08-14 2016-08-17 浙江巨人控股有限公司 一种电梯主轴测试装置
FR3031722B1 (fr) * 2015-01-21 2017-02-10 Continental Automotive France Dispositif de determination du couple applique a un axe de pedalier
CN105675282A (zh) * 2016-03-16 2016-06-15 骆伟法 一种稳固的轴类零件检测装置及其使用方法
CN106226072B (zh) * 2016-08-28 2018-08-10 泰尔重工股份有限公司 传动设备的内力封闭式试验台
CN106679968B (zh) * 2016-11-18 2018-08-03 天津大学 一种精密减速器综合性能立式多自由度高精度检测仪
CN106584436B (zh) * 2016-12-30 2023-09-26 深圳市优必选科技有限公司 舵机虚位测试装置及舵机虚位测试***
CN107101816B (zh) * 2017-05-15 2023-04-18 吉林大学 半浮式半轴复合加载疲劳试验台
CN109297836B (zh) * 2018-12-10 2024-03-01 强芯科技(南通)有限公司 一种材料扭转实验机
CN110132589B (zh) * 2019-06-14 2024-05-17 安徽哈工湛庐科技装备有限公司 一种弯矩可调测试减速机寿命的试验台
CN110487544A (zh) * 2019-09-25 2019-11-22 北京工业大学 一种可移动组件式精密减速器综合性能试验台
CN114526908A (zh) * 2021-11-29 2022-05-24 清华大学 一种混合动力缓速器试验***及其试验方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03200043A (ja) * 1989-12-28 1991-09-02 Saginomiya Seisakusho Inc 回転捩り試験機における捩り角度検出装置
JPH10142103A (ja) * 1996-11-12 1998-05-29 Toyota Motor Corp 変速機の試験装置
JP2000105171A (ja) * 1998-09-29 2000-04-11 Automax Kk 動力伝達系機器用試験装置
JP2000193574A (ja) * 1998-12-24 2000-07-14 Shimadzu Corp 回転体用ねじり試験機
JP2004286609A (ja) * 2003-03-24 2004-10-14 Shinko Electric Co Ltd トランスミッションの試験装置
JP2006064668A (ja) * 2004-08-30 2006-03-09 Toyota Motor Corp ねじり試験装置およびねじり試験方法
JP2007107955A (ja) 2005-10-12 2007-04-26 Ntn Corp 捩り疲労試験機
JP2008267939A (ja) * 2007-04-19 2008-11-06 Kokusai Keisokki Kk ねじり試験装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2057347C3 (de) * 1970-11-21 1975-03-20 Aviatest Gmbh, 4000 Duesseldorf Vorrichtung zur Prüfung umlaufender Werkstücke bezüglich ihres Verhaltens bei unterschiedlichen Drehzahlen und Drehmomenten
US4159642A (en) * 1978-03-02 1979-07-03 Avco Corporation Aircraft transmission test set
JPS5838833A (ja) * 1981-08-31 1983-03-07 Mitsubishi Electric Corp 自動変速機用試験装置における制御方法
JPH063994B2 (ja) * 1984-10-05 1994-01-12 株式会社日立製作所 複数台デイジタルサーボの制御方法
US4989686A (en) * 1988-07-07 1991-02-05 Borg-Warner Automotive, Inc. System for controlling torque transmission in a four wheel drive vehicle
JPH02163626A (ja) * 1988-12-16 1990-06-22 Matsushita Electric Ind Co Ltd トルク検出装置
JP2692383B2 (ja) * 1990-12-28 1997-12-17 神鋼電機株式会社 捩じり回転加振機
JPH0552704A (ja) * 1991-08-28 1993-03-02 Aisin Chem Co Ltd 自動変速機用クラツチの試験装置
JP3123851B2 (ja) * 1993-02-10 2001-01-15 富士重工業株式会社 自動車用ディファレンシャルユニットのバックラッシュ計測方法及びその装置
JPH06281537A (ja) * 1993-03-29 1994-10-07 Shinko Electric Co Ltd ねじり加振装置
JPH06308016A (ja) * 1993-04-27 1994-11-04 Shinko Zoki Kk トラクション性能試験装置
JPH0712683A (ja) * 1993-06-23 1995-01-17 Mazda Motor Corp 差動制限装置の試験装置及び試験方法
JPH076743U (ja) * 1993-06-30 1995-01-31 株式会社明電舎 ディファレンシャルギヤの試験装置
JPH07225177A (ja) * 1993-12-13 1995-08-22 Honda Motor Co Ltd 継手装置の検査方法
JPH07181110A (ja) * 1993-12-22 1995-07-21 Meidensha Corp 4wd車の試験装置
JPH09196822A (ja) * 1996-01-12 1997-07-31 Mitsubishi Motors Corp 車両駆動系装置の試験装置
JP3536582B2 (ja) * 1997-04-04 2004-06-14 神鋼電機株式会社 4軸ディファレンシャルギヤ耐久試験機の出力軸に連結される負荷用直流モータの速度補正回路及びトルク補正回路
JPH10323086A (ja) * 1997-05-13 1998-12-04 Shinko Electric Co Ltd 3軸ディファレンシャルギヤ耐久試験機の出力軸に連結される負荷用直流モータの速度補正回路及びトルク補正回路
EP0947258B1 (en) * 1998-04-02 2006-08-16 Nissei Co. Ltd. Round die type form rolling apparatus
US7204161B2 (en) * 1998-06-29 2007-04-17 Veri-Tek International Corp. Isolation arrangement for system under test
DE10149525A1 (de) 2000-10-26 2002-05-02 Heidelberger Druckmasch Ag Verfahren zur Kompensation mechanischer Schwingungen in Maschinen
US7165465B2 (en) * 2004-09-29 2007-01-23 Raytheon Company Dynamic load fixture for application of torsion loads for rotary mechanical systems
JP4631688B2 (ja) * 2005-12-09 2011-02-16 トヨタ自動車株式会社 噛合伝達誤差測定装置
GB2436621B (en) * 2006-03-31 2010-06-16 Geo Kingsbury Machine Tools Ltd Testing components of drive trains
CN1869625B (zh) * 2006-06-30 2010-05-12 中国船舶重工集团公司第七一一研究所 伺服电机式动态扭矩发生***及其方法
WO2008066069A1 (fr) * 2006-11-30 2008-06-05 Kabushiki Kaisha Yaskawa Denki Dispositif de test d'appareil
JP2008145197A (ja) * 2006-12-07 2008-06-26 Toyota Motor Corp 歯車伝達機構の噛合い伝達誤差測定装置
WO2008133187A1 (ja) * 2007-04-19 2008-11-06 Kokusai Keisokuki Kabushiki Kaisha 万能試験装置及び直動アクチュエータ、並びにねじり試験装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03200043A (ja) * 1989-12-28 1991-09-02 Saginomiya Seisakusho Inc 回転捩り試験機における捩り角度検出装置
JPH10142103A (ja) * 1996-11-12 1998-05-29 Toyota Motor Corp 変速機の試験装置
JP2000105171A (ja) * 1998-09-29 2000-04-11 Automax Kk 動力伝達系機器用試験装置
JP2000193574A (ja) * 1998-12-24 2000-07-14 Shimadzu Corp 回転体用ねじり試験機
JP2004286609A (ja) * 2003-03-24 2004-10-14 Shinko Electric Co Ltd トランスミッションの試験装置
JP2006064668A (ja) * 2004-08-30 2006-03-09 Toyota Motor Corp ねじり試験装置およびねじり試験方法
JP2007107955A (ja) 2005-10-12 2007-04-26 Ntn Corp 捩り疲労試験機
JP2008267939A (ja) * 2007-04-19 2008-11-06 Kokusai Keisokki Kk ねじり試験装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2762853A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010843A (ja) * 2013-06-26 2015-01-19 国際計測器株式会社 ねじり試験装置
CN104344996A (zh) * 2013-08-02 2015-02-11 三星显示有限公司 用于柔性装置的测试设备
CN104344996B (zh) * 2013-08-02 2019-03-26 三星显示有限公司 用于柔性装置的测试设备
CN107144427A (zh) * 2017-07-19 2017-09-08 苏州宝嘉新能源科技有限公司 蜗轮蜗杆驱动器寿命测试装置
CN107144427B (zh) * 2017-07-19 2023-08-18 苏州宝嘉新能源科技有限公司 蜗轮蜗杆驱动器寿命测试装置
CN113310688A (zh) * 2021-05-06 2021-08-27 中国第一汽车股份有限公司 一种电机转子轴扭转疲劳试验***

Also Published As

Publication number Publication date
JP6461897B2 (ja) 2019-01-30
JP2017058380A (ja) 2017-03-23
TWI555979B (zh) 2016-11-01
KR101835833B1 (ko) 2018-03-08
US9442052B2 (en) 2016-09-13
CN103907006A (zh) 2014-07-02
EP2762853A4 (en) 2015-08-05
EP2762853A1 (en) 2014-08-06
TW201319562A (zh) 2013-05-16
JP6071888B2 (ja) 2017-02-08
US20140208863A1 (en) 2014-07-31
CN103907006B (zh) 2017-10-03
EP2762853B1 (en) 2017-05-10
KR20140078684A (ko) 2014-06-25
IN2014DN03168A (ja) 2015-05-22
JPWO2013047551A1 (ja) 2015-03-26

Similar Documents

Publication Publication Date Title
JP6461897B2 (ja) ねじり試験装置
US8984965B2 (en) Rotational torsion tester
JP3338214B2 (ja) ダイナモメーター
EP2787337B1 (en) Traveling test apparatus for vehicle
CA2107794A1 (en) Axially compact torque transducer
WO2012086547A1 (ja) 転がり抵抗試験機に備えられた多分力検出器の校正方法
JP2006200984A (ja) 遊星歯車機構の動特性測定装置及び動特性測定方法
JP2010071864A (ja) カップリング試験装置及び方法
WO2016143492A1 (ja) 車両試験装置、車両試験方法及び車両試験装置用プログラム
CN110793690B (zh) 一种在混合动力总成台架上测试电机效率的方法
JP2004361255A (ja) 動力計測システムの電気慣性制御方式
CN107478437B (zh) 一种道路阻力与车速关系的测试方法、装置及设备
JP6250960B2 (ja) ねじり試験装置
JP4525415B2 (ja) エンジンバランス測定装置および方法
KR102223101B1 (ko) 통합 드라이브 액슬 시험기
JPH06109565A (ja) モータのコギングトルク測定装置及び測定方法
CN106482882A (zh) 一种给定扭矩下的转动轴破坏性试验方法及其装置
WO2019155728A1 (ja) 試験システムの機械特性推定方法及び機械特性推定装置
KR100628388B1 (ko) 차동제한장치용 마찰성능 시험기
JP2023517360A (ja) 圧電トルクセンサを調整するための方法
JP4034899B2 (ja) 回転式加速度発生装置における加速度センサの偏心誤差のキャンセル装置およびその方法
JP2000193574A (ja) 回転体用ねじり試験機
JPH0444686B2 (ja)
JPH08145829A (ja) 操作力検出装置
JP2010043948A (ja) タイヤ試験機の駆動制御方法及びタイヤ試験機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834972

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013536318

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147010413

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012834972

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012834972

Country of ref document: EP