WO2013046958A1 - 水素製造システム - Google Patents

水素製造システム Download PDF

Info

Publication number
WO2013046958A1
WO2013046958A1 PCT/JP2012/070467 JP2012070467W WO2013046958A1 WO 2013046958 A1 WO2013046958 A1 WO 2013046958A1 JP 2012070467 W JP2012070467 W JP 2012070467W WO 2013046958 A1 WO2013046958 A1 WO 2013046958A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen production
hydrogen
production system
switching element
voltage
Prior art date
Application number
PCT/JP2012/070467
Other languages
English (en)
French (fr)
Inventor
寛人 内藤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2013536049A priority Critical patent/JP5837081B2/ja
Publication of WO2013046958A1 publication Critical patent/WO2013046958A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • C25B9/66Electric inter-cell connections including jumper switches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to a hydrogen production system that produces hydrogen using electric power with output fluctuations such as generated power derived from renewable energy, and more particularly to a hydrogen production system using electrolysis.
  • Hydrogen can be produced by electrolysis using renewable energy typified by solar cells, wind power, and the like, and further, only water is generated by combustion. Therefore, hydrogen is a clean energy source that emits less environmental pollutants during production and use.
  • the amount of electric power that is, the amount of power generation
  • the amount of power generated by renewable energy usually varies depending on weather conditions.
  • the amount of power generation varies depending on the strength of the wind, and in the case of solar power generation using sunlight, the intensity of sunlight and the duration of sunlight.
  • Patent Document 1 includes a plurality of cell stacks including a plurality of water electrolysis cells, and the cell stacks are electrically connected to each other in series or in parallel.
  • a water electrolyzer, power supply means for supplying power to the water electrolyzer, a voltage control unit that variably controls the voltage of power supplied to the water electrolyzer, and power supplied to the water electrolyzer Accordingly, an energy-efficient hydrogen production facility using a generator as a power source is described by including a stack number control unit that selects a cell stack usage number accordingly.
  • the present invention has been made to solve the above-mentioned problems, and its purpose is the reverse of the water electrolysis apparatus resulting from the switching of the electrical connection configuration of the water electrolysis apparatus in accordance with fluctuations in the supplied power.
  • An object of the present invention is to provide a hydrogen production system capable of suppressing the occurrence of reaction.
  • the present inventors have found that by stopping the electrolysis in a state where a voltage is applied to the water electrolysis device, it is possible to suppress the progress of the reverse reaction that occurs when the electrolysis is stopped.
  • the headline, the present invention has been reached.
  • a hydrogen production system includes a plurality of hydrogen production apparatuses that are connected in series or in parallel to produce hydrogen gas using DC power, a plurality of switching elements that switch connection configurations of the plurality of hydrogen production apparatuses, Of the hydrogen production apparatus, voltage application means for applying a voltage, and the switching element and the voltage application means are controlled for the hydrogen production apparatus that stops production of hydrogen gas by switching the connection configuration by the switching element. And a control device.
  • the hydrogen production system of the present invention can suppress the occurrence of a reverse reaction of the water electrolysis apparatus due to the switching of the electrical connection configuration of the water electrolysis apparatus according to the fluctuation of the supplied power.
  • FIG. 1 is a schematic diagram of a circuit configuration of a hydrogen production system according to a first embodiment of the present invention. It is a schematic diagram of a structure of the hydrogen production system by 2nd Embodiment of this invention. It is a schematic diagram of a structure of the hydrogen production system by 3rd Embodiment of this invention. It is a figure explaining operation
  • FIG. 10 shows voltage-current characteristics in a water electrolysis device (water electrolysis device).
  • the present invention relates to a water electrolysis apparatus that stops electrolysis in a hydrogen production system that produces hydrogen using a water electrolysis apparatus using electric power whose output fluctuates, such as a power generation apparatus that converts renewable energy into electric energy. Further, a voltage applying means for applying a voltage is provided.
  • Examples of the voltage applying means include means for applying a voltage to the water electrolysis apparatus by an external power source, and means for applying a voltage to the water electrolysis apparatus by switching the circuit configuration when stopping the electrolysis of the water electrolysis apparatus. .
  • FIG. 1 is a diagram schematically showing the configuration of the hydrogen production system according to the first embodiment of the present invention.
  • a thick solid line represents an electrical wiring
  • a thin solid line represents a signal line (for example, a control signal, a measurement signal, etc.).
  • These lines are wirings for connecting the means to each other and represent transmission / reception of signals.
  • the hydrogen production system 100 produces hydrogen gas from renewable energy.
  • the hydrogen production system 100 includes a renewable energy power generation device 1, a hydrogen production device 2 (2a to 2n) as a hydrogen production means, and a protection device 3 (3a to 3n) that prevents a chemical reaction of the hydrogen production device 2.
  • switching elements 4 to 6 for adjusting the connection configuration of the hydrogen production apparatus 2 and a switching element 7 for adjusting the connection of the protection apparatus 3.
  • the protection device 3 and the switching element 7 serve as voltage application means for applying a voltage to the hydrogen production device 2 (water electrolysis device) that stops electrolysis.
  • Renewable energy represents, for example, renewable energy such as sunlight, wind power, geothermal power, and hydropower.
  • the renewable energy is not transported to the renewable energy power generation apparatus 1 through electrical or physical connection lines, piping, or the like, and is based on global weather conditions.
  • the renewable energy is, for example, sunlight
  • the renewable energy power generation apparatus 1 described later is, for example, a solar cell, a solar power generation system, or the like.
  • Renewable energy power generation device 1 (hereinafter, also simply referred to as “power generation device 1”) converts renewable energy such as sunlight and wind power into electric power.
  • the power generation device 1 is electrically connected to the hydrogen production device 2 so that the power generated by the power generation device 1 can be supplied to the hydrogen production device 2.
  • the hydrogen production device 2 (water electrolysis device) produces hydrogen using the electric power obtained by the power generation device 1. Specifically, the hydrogen production apparatus 2 generates hydrogen gas by electrolyzing water (or an aqueous solution) using supplied DC power. Therefore, the more electric power is supplied from the power generation device 1 to the hydrogen production device 2, the more hydrogen is produced (generated) in the hydrogen production device 2.
  • the hydrogen production device 2 is electrically connected to the power generation device 1.
  • the electric power obtained depending on the type of regenerative energy is DC power or AC power.
  • the DC power is supplied to the hydrogen production apparatus 2 after being converted into DC power by a rectifier.
  • the hydrogen production apparatus 2 supplies, for example, water, an electrolyte, an electrode catalyst for promoting a reaction provided so as to sandwich the electrolyte, and external power.
  • An electrolysis cell holding a current collector or the like is provided. Then, water is electrolyzed by this electrode catalyst, and hydrogen and oxygen are generated.
  • an electrolysis cell or an electrolysis stack in which electrolysis cells are laminated in multiple layers is defined as a hydrogen production apparatus 2.
  • the electrolyte is not particularly limited as long as at least hydrogen is generated by electrolysis, but a compound that exhibits alkalinity when dissolved in water, such as potassium hydroxide, is preferable. By using such a compound, the hydrogen production apparatus 2 that is inexpensive and hardly corrodes can be obtained. Further, as the electrolyte, for example, a solid polymer electrolyte such as Nafion (registered trademark) can be used.
  • Water electrolysis conditions are not particularly limited, and can be set arbitrarily as long as at least hydrogen can be generated.
  • the protection device 3 has an external power source, and is a device that operates to prevent or suppress the reverse reaction of the hydrogen production device 2 at the same time as the supply of generated power derived from renewable energy is shut off.
  • the protection device 3 includes a voltage application mechanism that sweeps an external power source in parallel to each hydrogen production device 2, and when power supply to the hydrogen production device 2 is stopped, a voltage is supplied from the external power source. Examples of the protective mechanism to be applied include. At this time, current is not necessarily required.
  • the switching elements 4 to 6 are switching elements that have a function of supplying the electric power generated by the power generation apparatus 1 to the hydrogen production apparatus 2 or cutting it off from the hydrogen production apparatus 2 and can control the driving state by an external signal.
  • Examples of the switching element include a relay element and a semiconductor element.
  • the switching element 7 has a function of energizing or shutting off the external power source of the protection device 3 from the hydrogen production device 2 when the supply of generated power derived from renewable energy to the hydrogen production device 2 is interrupted.
  • the switching element can control the driving state by an external signal. Examples of the switching element include a relay element and a semiconductor element. At this time, the external signal for the switching element 7 can be applied by sharing the external signal for the switching elements 4 to 6.
  • the control device 8 includes a signal processing unit, and controls the switching elements 4 to 7 based on the device configuration determined by the signal processing unit according to the amount of power generated by the renewable energy power generation device 1 and the electrical characteristics of the hydrogen production device 2. Any device that transmits an energization signal or a cut-off signal is not particularly limited.
  • the control device 8 controls the protection devices 3 and the switching devices 7 which are voltage application means by controlling the switching devices 4 to 7. ⁇ Operation> Next, the operation of each component of the hydrogen production system 100 of the present embodiment when producing hydrogen gas will be described with reference to FIG.
  • the power generation device 1 for example, a solar cell
  • the generated electric power is supplied to the hydrogen production apparatus 2.
  • the electrical connection configuration of the serial number and / or the parallel number of the hydrogen production apparatus 2 is determined and switched by the signal processing unit of the control device 8 according to the generated power and the electrical characteristics of the hydrogen production apparatus 2. While the electrical connection configuration is switched, the hydrogen production apparatus 2 starts electrolysis of water according to the supplied generated power and generates hydrogen.
  • the control device 8 and the switching elements 4 to 6 are switched to the connection mode of the water electrolysis means for obtaining the maximum hydrogen gas amount.
  • the protection apparatus 3 When the generated power is reduced due to fluctuations in renewable energy, it is necessary to reduce the number of connections of the hydrogen production apparatus 2.
  • the protection apparatus 3 When stopping the hydrogen production apparatus 2 in operation, the protection apparatus 3 is operated by an external power source in order to suppress and prevent a chemical reaction using the remaining gas.
  • the voltage value of the external power supply may be such that the electric double layer formed inside the hydrogen production apparatus 2 is maintained, and can be swept to such an extent that no current flows inside the hydrogen production apparatus 2.
  • it may be the Eeq point in the voltage-current characteristic of the hydrogen production apparatus 2 shown in FIG. 10, or may be a voltage value within the range indicated by ⁇ E.
  • FIG. 2 is a diagram showing an ON-OFF time chart of the switching elements 4 to 6 in the hydrogen production system 100 according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing an ON-OFF time chart of the switching elements 4 to 6 in the hydrogen production system 100 according to the first embodiment of the present invention.
  • FIG. 3 is an electrical equivalent circuit diagram of the hydrogen production system 100 at the timings (1) to (4) described in FIG.
  • the input voltage derived from renewable energy is V0
  • the resistances of the equivalent circuits of the hydrogen production apparatuses 2a, 2b, and 2c are R2a, R2b, and R2c, respectively
  • the currents flowing through the hydrogen production apparatuses are I2a, I2b, and I2c.
  • the external power supply voltage was defined as Eeq.
  • FIGS. 2 and 3 only three apparatuses, hydrogen production apparatuses 2a to 2c, are shown for simplification, but the number of hydrogen production apparatuses is not limited.
  • the external power source of the protection device 3 is swept to all the hydrogen production devices. While S401 to S403 are in the ON state, S101 to S103, S201 to S203, and S301 to S303 are in the OFF state.
  • the configuration of the hydrogen production apparatus is determined according to the amount of electric power.
  • (1) assumes a parallel configuration of two hydrogen production apparatuses 2a and 2b, and S101, S102, S201, and S202 are switched to the ON state, and S401 and S402 are switched to the OFF state.
  • This is shown in an electrical equivalent circuit diagram as shown in FIG.
  • Current flows into the hydrogen production apparatuses 2a and 2b by electric power derived from renewable energy (voltage is V0), and hydrogen gas is generated.
  • the external protection device 3 (3c) is driven by an external power source, and a voltage value in a range in which no current flows is swept so that gas flows into the hydrogen production device 2c, hydrogen The reverse reaction in the production apparatus 2c is prevented.
  • (2) in FIG. 2 assumes a configuration of only one device of the hydrogen production device 2b, and S401 is switched to an ON state and S101 and S201 are switched to an OFF state as compared with (1).
  • This is shown in an electrical equivalent circuit diagram as shown in FIG. Compared with FIG. 3 (1), the hydrogen production apparatus 2a stops, the electric power derived from renewable energy is applied only to the hydrogen production apparatus 2b, and hydrogen gas is produced only by the hydrogen production apparatus 2b.
  • the external protection device 3 (3a, 3c) is driven by an external power source, and the voltage value in a range in which no current flows is swept. Gas inflow and reverse reaction in the hydrogen production apparatuses 2a and 2c are prevented.
  • (3) in FIG. 2 assumes a serial configuration of two hydrogen production apparatuses 2b and 2c.
  • S203 and S302 are in the ON state, and S202 and S403 are in the OFF state. Switch to.
  • This is shown in an electrical equivalent circuit diagram as shown in FIG.
  • Current flows into the hydrogen production apparatuses 2b and 2c by the electric power derived from renewable energy (voltage is V0), and hydrogen gas is generated.
  • the external protection device 3 (3a) is driven by an external power source, and a voltage value in a range in which no current flows is swept, so that gas flows into the hydrogen production apparatus 2a, hydrogen The reverse reaction in the production apparatus 2a is prevented.
  • FIG. 2 assumes the configuration of only one hydrogen production apparatus 2c.
  • S103 and S402 are turned off, and S102 and S302 are turned off. Change.
  • This is shown in an electrical equivalent circuit diagram as shown in FIG.
  • the hydrogen production apparatus 2b is stopped, the electric power derived from renewable energy is applied only to the hydrogen production apparatus 2c, and hydrogen gas is produced only by the hydrogen production apparatus 2c.
  • the hydrogen production apparatuses 2a and 2b that are stopped are driven by the external protection device 3 (3a, 3b) by an external power source, and the voltage value in a range in which no current flows is swept. Gas inflow and reverse reaction in the hydrogen production apparatuses 2a and 2b are prevented.
  • one protection device 3 is connected to each hydrogen production device.
  • the control device 8 determines whether the switching element 7 is opened or closed based on the control signal transmitted to the switching element 4 and the switching element 6, and transmits the control signal to the switching element 7.
  • a voltage is applied from the protection device 3 when the hydrogen production apparatus 2 is stopped, electrode deterioration of the hydrogen production apparatus 2 is suppressed. Subsequent operations are the same as those in FIG. 1, and a detailed description thereof will be omitted.
  • the hydrogen production system 200 according to the second embodiment also copes with fluctuations in the supply amount of renewable energy, suppresses deterioration of the hydrogen production apparatus, and uses hydrogen gas without waste using renewable energy. Can be manufactured.
  • a hydrogen production system 300 according to the third embodiment will be described with reference to FIG. In FIG. 5, the same reference numerals as those in FIG. 1 denote the same components, and detailed description thereof is omitted.
  • the switching element 4 and the switching element 7 are removed from the configuration with respect to FIG. 1, and the protection devices 3 (3a to 3n) are electrically connected in series with the hydrogen production apparatus. It is a configuration.
  • the protection device 3 (3a to 3n) in FIG. 5 is configured to be electrically connected in series to the hydrogen production device 2 (2a to 2n), for example, a variable resistor.
  • the hydrogen production device 2 (2a to 2n) for example, a variable resistor.
  • the hydrogen production apparatus in which the series resistor is inserted is electrically connected in parallel, the voltage of the renewable energy power generation is swept, and the chemical reaction can be prevented or suppressed. That is, by adjusting the resistance value inserted and connected, only the voltage can be applied to the hydrogen production apparatus to be stopped.
  • FIG. 6 is a diagram showing an ON-OFF time chart of the switching elements 5 and 6 in the hydrogen production system 300 according to the third embodiment of the present invention.
  • FIG. 7 is an electrical equivalent circuit diagram of the hydrogen production system 300 at the timings (1) to (4) described in FIG.
  • the input voltage derived from renewable energy is V0
  • the resistances of the equivalent circuits of the hydrogen production apparatuses 2a, 2b, and 2c are R2a, R2b, and R2c, respectively
  • the currents flowing through the hydrogen production apparatuses are I2a, I2b, and I2c.
  • the voltages applied to each hydrogen production apparatus were defined as V2a, V2b, and V2c.
  • the variable resistance type protection devices 3 (3a to 3c) electrically connected in series to the hydrogen production device were defined as R3a, R3b, and R3c, respectively, and applied voltages were defined as V3a, V3b, and V3c.
  • FIGS. 6 and 7 only three apparatuses, hydrogen production apparatuses 2a to 2c, are shown for simplification, but the number of hydrogen production apparatuses is not limited.
  • variable resistance type protection devices 3 As shown in FIG. 6, first, in a state where the electric power derived from the renewable energy power generation apparatus 1 is not input to the hydrogen production system 300, the variable resistance type protection devices 3 (3a to 3c) connected in series to all the hydrogen production apparatuses This shows a resistance value close to infinity, so that no current flows through each hydrogen production apparatus. At this time, S201 to S203 are in the ON state, while S301 to S303 are in the OFF state.
  • the configuration of the hydrogen production apparatus is determined according to the amount of electric power.
  • FIG. 6 (1) a parallel configuration of two hydrogen production apparatuses 2a and 2b is assumed, and there is no change in the ON / OFF of the switching element in the case of parallel driving.
  • the protection devices 3a and 3b are controlled so that the resistance value takes a value close to zero, and the protection device 3c has (a) a current I2c flowing through the hydrogen production device 2c.
  • V0 voltage derived from renewable energy
  • hydrogen gas is generated.
  • the protective device 3c having the resistance value R3c that satisfies the conditions (a) and (b) described above causes the voltage value in a range in which no current flows to be swept, so that the hydrogen production apparatus 2c Prevents gas inflow and reverse reaction.
  • (2) in FIG. 6 assumes the configuration of only one device of the hydrogen production device 2b, and at this time, there is no change in ON / OFF of the switching element as compared with (1).
  • the protection device 3b is controlled so that the resistance value R3b takes a value close to zero, and the protection devices 3a and 3c have the resistance values R3a and R3c as (a) a hydrogen production device.
  • FIG. 7 (2) compared with FIG. 7 (1), the hydrogen production apparatus 2a is stopped, and electric power derived from renewable energy is applied only to the hydrogen production apparatus 2b to produce hydrogen gas. Is done.
  • (3) in FIG. 6 assumes a serial configuration of two apparatuses, hydrogen production apparatuses 2b and 2c, and S302 is switched to an ON state and S202 is switched to an OFF state as compared with (2).
  • the protection device 3b is controlled so that the resistance value R3b takes a value close to zero
  • the protection device 3c is controlled to take a resistance value R3c that is almost infinite, so that the current I2c is reduced to zero. Set to a value close to.
  • R3a resistance value
  • the hydrogen production apparatus 2a in a stopped state is a range in which no current flows by the protection devices 3a and 3c having the resistance value R3a that satisfies the above conditions (a) and (b) and the resistance value R3c that is close to infinity, respectively. Is swept away to prevent gas inflow and reverse reaction to the hydrogen production apparatus 2a.
  • FIG. 7 (4) This is shown in an electrical equivalent circuit diagram as shown in FIG. 7 (4) (same view as FIG. 7 (2)).
  • the hydrogen production apparatus 2b is stopped, and the renewable energy-derived power is applied only to the hydrogen production apparatus 2c to produce hydrogen gas.
  • the voltage values in a range in which no current flows are swept by the protection apparatuses 3a and 3b having the resistance values R3a and R3b that satisfy the above conditions (a) and (b).
  • the protection apparatuses 3a and 3b having the resistance values R3a and R3b that satisfy the above conditions (a) and (b).
  • the switching element 6 is removed from the configuration of the hydrogen production system 300 of the present embodiment shown in FIG. 5, and the hydrogen production apparatuses 2 (2a to 2n) are connected in series.
  • the protective device 3 (3a to 3m) is provided on the wiring.
  • the protection device 3 (3a to 3m) in FIG. For example, consider a case where a configuration in which three hydrogen production apparatuses 2a to 2c are connected in parallel is switched to a parallel connection of only one hydrogen production apparatus 2a, that is, two apparatuses are stopped. First, electric power derived from renewable energy is input to the hydrogen production apparatuses 2a to 2c to produce hydrogen gas. At this time, the switching elements S101 to S103 and S201 to S203 are in the on state, and the protection devices 3a to 3c are in the high resistance state.
  • the two apparatuses (hydrogen production apparatuses 2b and 2c) are stopped, the switching elements S102 and S203 are left in the on state, S202 and S103 are in the off state, and the hydrogen production apparatuses 2b and 2c are configured in series.
  • the voltage within the range of Eeq or ⁇ E is swept to the hydrogen production apparatuses 2b and 2c, and the resistance value of the protection apparatus 3b in the range where no current flows to the hydrogen production apparatuses 2b and 2c is controlled. Reaction can be prevented or suppressed.
  • the hydrogen production system 400 according to the fourth embodiment also copes with fluctuations in the supply amount of renewable energy, suppresses deterioration of the hydrogen production apparatus, and uses hydrogen gas without waste using renewable energy. Can be manufactured.
  • a hydrogen production system 500 according to the fifth embodiment will be described with reference to FIG. 9, the same reference numerals as those in FIG. 1 denote the same components, and the detailed description thereof is omitted.
  • the hydrogen production system 500 of this embodiment shows a system configuration capable of storing hydrogen produced by the hydrogen production apparatus 2 (2a to 2n) as saturated hydrocarbons.
  • the hydrogen production system 100 shown in FIG. 1 further includes a buffer tank 9, a hydrogenation device 10, a saturated hydrocarbon storage tank 11, and an unsaturated hydrocarbon storage tank 12. is there.
  • the specific configuration of the buffer tank 9 is not particularly limited, the purpose is to increase the purity of the hydrogen generated in the hydrogen production apparatus 2 by removing water from the hydrogen before being supplied to the hydrogenation apparatus 10 (described later).
  • An apparatus for removing moisture is exemplified.
  • a gas-liquid separator or the like corresponds to this.
  • the specific configuration of the gas-liquid separation device is not particularly limited, but for example, gas-liquid separation by cooling, a hydrogen separation membrane, or the like can be used, and it is preferable to use a hydrogen separation membrane.
  • the removed water is circulated in the hydrogen production apparatus 2 and is electrolyzed.
  • the hydrogen after moisture removal is supplied to the hydrogenation apparatus 10 connected by gas piping.
  • hydrogen after moisture removal may be directly supplied to the hydrogenation apparatus 10
  • the hydrogenation efficiency can be further improved by supplying this hydrogen to the hydrogenation apparatus 10 via a pressure regulator.
  • renewable energy can be stored without waste.
  • this hydrogen can be temporarily stored in a hydrogen storage means such as a high-pressure tank.
  • a hydrogen storage means such as a high-pressure tank.
  • the specific configuration of the hydrogen gas hydrogen storage means is not particularly limited.
  • a known hydrogen cylinder, a pressure vessel for high pressure gas, or the like can be used. These may be provided alone or in any combination of two or more.
  • the material constituting the hydrogen storage means include, for example, a steel plate, a plastic reinforced with carbon fiber, and the like, and it is particularly preferable to use a pressure resistant container having a pressure higher than that applied to the hydrogen production apparatus 2.
  • a hydrogen storage alloy can be used as the hydrogen storage means.
  • the hydrogen storage alloy include an AB5 type alloy such as a rare earth metal-nickel system, and an alloy having a body-centered cubic (BCC) structure such as a titanium system or a chromium system.
  • BCC body-centered cubic
  • the buffer tank 9 and the hydrogenation apparatus 10 are connected by a gas pipe (pipeline). However, it is not always necessary that these are connected by gas piping.
  • the produced hydrogen may be transported to the hydrogenation apparatus 10 (that is, supplied to the hydrogenation apparatus 10) using a high-pressure tank or the like.
  • the hydrogenation device 10 adds hydrogen produced by the hydrogen production device 2 to unsaturated hydrocarbons.
  • the hydrogenation apparatus 10 is connected to the buffer tank 9 and the gas pipe as described above, and is connected to a saturated hydrocarbon storage tank 11 and an unsaturated hydrocarbon storage tank 12 (both described later) by a liquid pipe. Yes. Therefore, the unsaturated hydrocarbon is supplied from the unsaturated hydrocarbon storage tank 12 to the hydrogenation apparatus 10.
  • the specific kind of unsaturated hydrocarbon used in the hydrogenation apparatus 10 is not particularly limited, for example, a liquid aromatic compound such as methylbenzene can be suitably used.
  • a liquid aromatic compound such as methylbenzene
  • the resulting saturated hydrocarbon is methylcyclohexane, and the amount of hydrogen molecules that can be stored per mole of methylbenzene is 2.5 moles.
  • anthracene, phenanthrene, and the like may become liquid.
  • these aromatic compounds may be used. By using these aromatic compounds, more hydrogen can be stored.
  • an aromatic compound is liquid at room temperature, it can be easily stored, and there is an advantage that a reaction interface becomes large when a hydrogenation reaction is performed. Further, by using an aromatic compound, the amount of hydrogen that can be added per molecule of the aromatic compound can be increased, and more hydrogen can be stored with a smaller amount of unsaturated hydrocarbons.
  • an unsaturated hydrocarbon may be used by 1 type and may use 2 or more types by arbitrary ratios and combinations.
  • hydrogen is usually added to the unsaturated hydrocarbon using a catalyst.
  • a catalyst include metals such as Ni, Pd, Pt, Rh, Ir, Re, Ru, Mo, W, V, Os, Cr, Co, and Fe, and alloys thereof.
  • the metal which comprises a catalyst, and those alloys may be used individually by 1 type, and 2 or more types may be used by arbitrary ratios and combinations.
  • these catalysts are preferably finely divided from the viewpoint of further cost reduction by reducing the amount of catalyst and an increase in reaction surface area.
  • a finely divided catalyst it may be supported on an arbitrary carrier from the viewpoint of preventing a reduction in surface area due to aggregation of the fine particle catalyst.
  • the method for supporting is not particularly limited, and for example, a coprecipitation method, a thermal decomposition method, an electroless plating method, or the like can be used.
  • the type of carrier is not particularly limited, and for example, in addition to carbon materials such as activated carbon, carbon nanotubes, and graphite, alumina silicate such as silica, alumina, and zeolite can be used.
  • One type of carrier may be used, or two or more types may be used in any ratio and combination.
  • the hydrogenation reaction conditions for unsaturated hydrocarbons in the hydrogenation apparatus 10 are not particularly limited and may be set arbitrarily.
  • hydrogen can be added even at a reaction temperature of room temperature (about 25 ° C.), but it is preferable to add hydrogen at a temperature of about 100 ° C. to 400 ° C. from the viewpoint of shortening the reaction time.
  • the reaction pressure during the addition reaction is not particularly limited, the pressure during hydrogen addition is 1 to 50 atm (gauge pressure) from the viewpoint of increasing the efficiency of the addition reaction and shortening the reaction time. That is, the pressure is preferably 0.1 MPa or more and 5 MPa or less. Therefore, a pressure regulator can be provided between the buffer tank 9 and the hydrogenation device 10 in order to increase the pressure during hydrogen addition.
  • saturated hydrocarbon As described above, hydrogen can be added to the unsaturated hydrocarbon, and a saturated hydrocarbon is obtained.
  • the obtained saturated hydrocarbon (so-called organic hydride) is stored in a saturated hydrocarbon storage tank 11 described later.
  • the saturated hydrocarbon storage tank 11 stores the saturated hydrocarbon generated in the hydrogenation apparatus 10. Therefore, the saturated hydrocarbon storage tank 11 is connected to the hydrogenation apparatus 10 by liquid piping. Further, between the saturated hydrocarbon storage tank 11 and the hydrogenation apparatus 10, an apparatus for controlling the supply amount of saturated hydrocarbons to the saturated hydrocarbon storage tank 11, such as a flow rate adjusting valve and a flow meter, is provided. Also good.
  • the unsaturated hydrocarbon storage tank 12 stores unsaturated hydrocarbons supplied to the hydrogenation apparatus 10.
  • the unsaturated hydrocarbon storage tank 12 is connected to the hydrogenation apparatus 10 by a liquid pipe.
  • the hydrogen production system 100 shown in FIG. 1 further includes a buffer tank 9, a hydrogenation device 10, a saturated hydrocarbon storage tank 11, and an unsaturated hydrocarbon storage tank 12.
  • the hydrogen production system described with reference to FIGS. 4, 5, and 8 further includes a buffer tank 9, a hydrogenation device 10, a saturated hydrocarbon storage tank 11, and an unsaturated hydrocarbon storage tank 12. Configuration can be adopted.
  • the hydrogen production system that produces hydrogen by the water electrolysis apparatus using the fluctuating power from the power generation device that converts the renewable energy into electric power has been described as an example.
  • the fluctuating power is derived from the renewable energy. It is not limited to the electric power.
  • it may be a hydrogen production system that uses surplus power of the power system as fluctuating power supplied to the water electrolysis apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

 再生可能エネルギの変動に応じて水素製造装置の接続構成を切替えることによって、電気分解を停止する水素製造装置の逆反応の発生を抑制可能な水素製造システムを提供する。本発明による水素製造システム(100)は、再生可能エネルギを電気エネルギに変換する発電装置(1)と、直列又は並列に接続され、発電装置(1)が得た電気エネルギを用いて水素ガスを製造する複数の水素製造装置(2a~2n)と、複数の水素製造装置(2a~2n)の接続構成を切替える切替素子(4~6)と、複数の水素製造装置(2a~2n)のうち、切替素子(4~6)による接続構成の切替えによって水素ガスの製造を停止する水素製造装置に対して、電圧を印加する電圧印加手段(3a~3n、7)と、切替素子(4~6)及び電圧印加手段(3a~3n、7)を制御する制御装置(8)とを備える。

Description

水素製造システム
 本発明は、再生可能エネルギ由来の発電電力等の出力変動のある電力を用いて水素を製造する水素製造システムに関し、特に電気分解を用いた水素製造システムに関する。
 化石燃料の大量消費が続き、例えば二酸化炭素等による地球温暖化、都市部の大気汚染等が深刻なものとなっている。このような中で、化石燃料に代わる次世代を担うエネルギ源として、水素が注目されている。水素は、例えば太陽電池、風力等に代表される再生可能エネルギを用いて、電気分解による製造が可能であり、さらには、燃焼することで水のみを生成する。従って、水素は、製造及び使用に伴う環境汚染物質の排出が少ない、クリーンなエネルギ源である。
 また、水素の製造方法として、化石燃料の水蒸気改質が工業的に広く利用されている。また、このほかにも、鉄又はソーダの製造に伴う副生水素や、熱分解、光触媒、微生物、及び水の電気分解を用いた反応により発生する水素等、水素には多数の製造方法が知られている。なかでも、水の電気分解に必要な電力としては、様々の供給源からの電力を利用することが可能である。従って、水の電気分解による水素の製造方法は、特定の地域に依存しないエネルギ源の製造方法として重要視されている。
 しかしながら、再生可能エネルギを利用した水素製造システムを構築するためには、再生可能エネルギにより発生する電力量(即ち発電量)を考慮しなければならない。つまり、再生可能エネルギによる発電量は、通常は気象条件によって変化する。例えば、再生可能エネルギとして風力を用いた風力発電の場合においては風の強弱、太陽光を用いた太陽光発電の場合には日照の強弱及び日照時間等により、発電量は変化することとなる。
 このような電力量の変化に対応するために、例えば特許文献1には、複数の水電解セルからなるセルスタックを複数有し、セルスタックが互いに電気的に直列又は並列に接続されて構成された水電解装置と、前記水電解装置に電力を供給する電力供給手段と、前記水電解装置に供給される電力の電圧を可変制御する電圧制御部と、前記水電解装置に供給される電力に応じてセルスタック使用数を選定するスタック数制御部とを備えることで、発電機を電力源としたエネルギ効率の良い水素製造設備が記載されている。
特開2005-126792号公報
 発電量の変化に対応するために、特許文献1等のように、再生可能エネルギの変動電力に応じて、水電解システムの電気的接続構成や供給電力を調整することは有効である。一方で、水電解装置では、電力供給を停止した際に、製造された残存ガス及び電気二重層に蓄えられた電荷によって、電気分解反応とは逆の発電反応が進行する。水電解装置では電力の供給と遮断により電気分解反応と発電反応が繰り返し行われることによって、電極の劣化が生じやすくなるという課題がある。また、発電反応が進行すると電気分解で製造したガスが消費されることによって、水電解装置で製造されたガスを排出する配管内のガスが逆流する問題もある。これに対して、配管に逆流防止の逆止弁を設けることも可能であるが、水電解装置の内部のガスが消費されることにより、内部ガス圧の不均衡が発生してしまう。
 このように、水電解システムへの電力の供給又は遮断のみでは、水電解装置の逆反応による電極の劣化、内部ガス圧不均衡などの課題を生じる。
 本発明は、前記の課題を解決するべく為されたものであり、その目的は、供給される電力の変動に応じた水電解装置の電気的接続構成の切替えに起因する、水電解装置の逆反応の発生を抑制可能な水素製造システムを提供することにある。
 本発明者らは、前記課題を解決するために鋭意検討した結果、水電解装置に電圧を印加した状態で電気分解を停止することによって、電気分解停止時に発生する逆反応の進行を抑制できることを見出し、本発明に至った。
 本発明による水素製造システムは、直列又は並列に接続され、直流電力を用いて水素ガスを製造する複数の水素製造装置と、複数の前記水素製造装置の接続構成を切替える切替素子と、複数の前記水素製造装置のうち、前記切替素子による接続構成の切替えによって水素ガスの製造を停止する前記水素製造装置に対して、電圧を印加する電圧印加手段と、前記切替素子及び前記電圧印加手段を制御する制御装置とを備えることを特徴とする。
 本発明の水素製造システムにより、供給される電力の変動に応じた水電解装置の電気的接続構成の切替えに起因する、水電解装置の逆反応の発生を抑制できる。
本発明の第1実施形態による水素製造システムの構成の模式図である。 本発明の第1実施形態による水素製造システムの動作を説明する図である。 本発明の第1実施形態による水素製造システムの回路構成の模式図である。 本発明の第2実施形態による水素製造システムの構成の模式図である。 本発明の第3実施形態による水素製造システムの構成の模式図である。 本発明の第3実施形態による水素製造システムの動作を説明する図である。 本発明の第3実施形態による水素製造システムの回路構成の模式図である。 本発明の第4実施形態による水素製造システムの構成の模式図である。 本発明の第5実施形態による水素製造システムの構成の模式図である。 水電解装置の電気分解における電圧電流特性を示す図である。
 以下、図面を適宜参照しながら、本発明の実施形態による水素製造システムを説明する。
 図10に、水電解装置(水電気分解装置)における電圧電流特性を示す。理論電解電圧に過電圧及び液体の電気抵抗を加えた電圧を電極間に対して印加することで、電流が流れ始めて電気分解が進行し、水素が発生する。水電解装置への電力供給を停止すると電圧が低下し、電気分解が停止する。この際、電気分解装置には、電気分解により発生したガスと電気二重層に蓄えられた電荷が存在する。この電気分解により発生したガスと電荷とが反応することで、電極電位が理論電解電圧よりも低下し、発電反応に移行する。本発明者らは、この水電解装置の電気分解を停止した際の逆反応(発電反応)の発生を抑制するため、鋭意検討した結果、水電解装置に対して電気分解反応が進行しない程度の電圧を印加することにより、逆反応の発生を抑制できることを見出した。
 本発明は、再生可能エネルギを電気エネルギに変換する発電装置等の出力変動のある電力を利用して水電解装置で水素を製造する水素製造システムにおいて、電気分解を停止する水電解装置に対して、電圧を印加する電圧印加手段を設けたことを特徴とする。
 電圧印加手段としては、外部電源によって水電解装置に電圧を印加する手段や、水電解装置の電気分解を停止する際に回路構成を切替えることで、水電解装置に電圧を印加する手段が挙げられる。
 以下、本発明の水素製造システムの実施形態について、具体例を用いて説明する。
[第1実施形態]
 図1は、本発明の第1実施形態による水素製造システムの構成を模式的に表す図である。図1において、太い実線は電気配線を、細い実線は信号線(例えば制御信号、計測信号等)を、それぞれ表している。これらの線は、各手段同士を接続する配線であって、信号の授受を表している。
 図1に示すように、第1実施形態による水素製造システム100は、再生可能エネルギから水素ガスを製造するものである。そして、水素製造システム100は、再生可能エネルギ発電装置1と、水素製造手段としての水素製造装置2(2a~2n)と、水素製造装置2の化学反応を防止する保護装置3(3a~3n)と、水素製造装置2の接続構成を調整する切替素子4~6と、保護装置3の接続を調整する切替素子7と、を少なくとも備える。本システムにおいて、保護装置3と切替素子7が、電気分解を停止する水素製造装置2(水電解装置)に対して、電圧を印加する電圧印加手段となる。
 再生可能エネルギは、例えば太陽光、風力、地熱、水力等の再生可能エネルギを表す。また、再生可能エネルギは、電気的若しくは物理的な接続線、配管等で再生可能エネルギ発電装置1へ輸送されず、地球気象条件に基づくものである。具体的には、再生可能エネルギが例えば太陽光である場合、後記する再生可能エネルギ発電装置1は例えば太陽電池、太陽光発電システム等となる。
 再生可能エネルギ発電装置1(以下、単に「発電装置1」とも称する)は、例えば太陽光、風力等の再生可能エネルギを電力に変換するものである。発電装置1は、水素製造装置2と電気的に接続され、発電装置1で発電した電力を水素製造装置2に供給できるようになっている。
 水素製造装置2(水電解装置)は、発電装置1によって得られた電力を用いて水素を製造するものである。具体的には、水素製造装置2は、供給される直流電力を用いて水(若しくは水溶液)を電気分解することにより、水素ガスを発生するものである。従って、発電装置1から水素製造装置2に供給される電力が多ければ多いほど、水素製造装置2において製造される(発生する)水素の量も多くなるようになっている。水素製造装置2は、発電装置1と電気的に接続されている。ここで、再生エネルギの種類によって得られる電力が直流電力の場合と交流電力の場合がある。得られる電力が交流電力の場合には整流器によって直流電力に変換した後、直流電力が水素製造装置2に供給される。
 水素製造装置2の具体的な構成は特に制限されないが、水素製造装置2は、例えば、水と、電解質と、この電解質を挟むように設けられた反応促進用の電極触媒と、外部電力を供給する集電体等を保持した電気分解セルを有している。そして、この電極触媒により水が電気分解され、水素及び酸素が発生するようになっている。本発明では、電気分解セル又は、電気分解セルを多層積層した電気分解スタックを水素製造装置2と定義している。
 電解質としては、電気分解することにより少なくとも水素が発生するものであれば特に制限はないが、例えば水酸化カリウム等の、水に溶解させたときにアルカリ性を示す化合物が好ましい。このような化合物を用いることにより、安価かつ腐食しにくい水素製造装置2とすることができる。また、電解質としては、例えばナフィオン(登録商標)等の固体高分子型電解質を用いることもできる。
 水の電気分解条件は、特に制限されず、少なくとも水素を発生させることができれば任意の設定にすることができる。
 保護装置3は、外部電源を有し、再生可能エネルギ由来の発電電力供給が遮断されると同時に、水素製造装置2の逆反応を防止又は抑制させるために稼働する装置である。具体例としては、保護装置3は、各水素製造装置2に対して並列に外部電源を掃引する電圧印加機構を備え、水素製造装置2への電力供給が停止した際に、外部電源から電圧を印加する保護機構が挙げられる。この際、必ずしも電流は必要としない。
 切替素子4~6は、発電装置1によって発電された電力を水素製造装置2に通電する又は水素製造装置2から遮断する機能を有し、外部信号により駆動状態を制御できるスイッチング素子である。スイッチング素子としては、例えばリレー素子や、半導体素子等が挙げられる。
 切替素子7は、水素製造装置2に対する再生可能エネルギ由来の発電電力の供給が遮断された際に、保護装置3の外部電源を水素製造装置2に通電又は水素製造装置2から遮断する機能を有し、外部信号により駆動状態を制御できるスイッチング素子である。スイッチング素子としては、例えばリレー素子や、半導体素子等が挙げられる。このとき、切替素子7に対する外部信号は、切替素子4~6に対する外部信号を共有して適用することができる。
 制御装置8は、信号処理部を備え、再生可能エネルギ発電装置1の発電量や水素製造装置2の電気特性に応じて信号処理部が決定する装置構成に基づき、切替素子4~7に対して通電信号又は遮断信号を送信する装置であれば特に制限されない。制御装置8は、切替素子4~7を制御することで、電圧印加手段である保護装置3と切替素子7を制御する。
<動作>
 次に、水素ガスを製造する際の、本実施形態の水素製造システム100の各構成要素の動作について、図1を参照しながら説明する。
 はじめに、例えば太陽光等の再生可能エネルギを利用し、発電装置1(例えば太陽電池等)が電力を発電する。発電された電力は、水素製造装置2に供給される。
 水素製造装置2の直列数及び/又は並列数の電気的接続構成は、発電電力及び水素製造装置2の電気特性に応じて制御装置8の信号処理部で決定され、切替えられる。水素製造装置2は、電気的接続構成が切替えられながら、供給された発電電力に応じて水の電気分解を開始し、水素を発生させる。ここで、制御装置8及び切替素子4~6によって、最大水素ガス量を得る水電解手段の接続形態に切替えられる。
 再生可能エネルギの変動に伴い発電電力が低減した際、水素製造装置2の接続数を減少させる必要がある。稼働中の水素製造装置2を停止する際、残存するガスを用いた化学反応を抑制及び防止するため、外部電源により保護装置3を稼働させる。外部電源の電圧値は、水素製造装置2の内部に形成された電気二重層を維持する程度でも良く、水素製造装置2の内部に電流が流れない程度に掃引することができる。例えば、図10に示す水素製造装置2の電圧電流特性におけるEeq点でもよいし、ΔEで示す範囲内の電圧値であってもよい。
 また、これら一連の動作が行われる環境は、特に制限されず、前記課題を解決することができるのであれば任意の環境で行うことができる。また、全ての構成要素が同じ場所に設置される必要は必ずしもなく、例えば水素製造装置2は室内に設置し水添装置10(図1には示さず、後記する)は室外に設置する等、任意に設置することができる。
<外部電源による保護装置3の稼働制御>
 次に、図2及び図3を参照しながら保護装置3の稼働制御について説明する。図2は、本発明の第1実施形態による水素製造システム100における、切替素子4~6のON-OFFタイムチャートを示す図である。また、図3は、図2中に記載した(1)~(4)のタイミングにおける水素製造システム100の電気的な等価回路図である。図3において、再生可能エネルギ由来の入力電圧をV0、水素製造装置2a、2b、2cの等価回路の抵抗を各々R2a、R2b、R2cとし、各水素製造装置に流れる電流をI2a、I2b、I2cと定義し、外部電源電圧をEeqと定義した。なお、図2、図3のいずれにおいても、簡略化のため水素製造装置2a~2cの3つの装置のみ記載してあるが、水素製造装置の数に限りはない。
 図2に示すように、はじめに、再生可能エネルギ発電装置1由来の電力が水素製造システム100に入力されない状態では、全ての水素製造装置に保護装置3の外部電源が掃引された状態であるため、S401~S403がON状態にある一方で、S101~S103、S201~S203、S301~S303はOFF状態である。
 このとき、再生可能エネルギ由来の電力が水素製造システム100に入力されると、電力量に応じて水素製造装置の構成が決定される。図2における(1)では、水素製造装置2a、2bの2装置の並列構成を想定しており、S101、S102、S201、S202がON状態に、S401、S402がOFF状態に切替わる。これを電気的等価回路図で示すと、図3(1)のようになる。再生可能エネルギ由来の電力(電圧はV0)により水素製造装置2a及び2bに電流が流入し、水素ガスが発生する。一方で、停止中の水素製造装置2cには、外部電源により外部保護装置3(3c)が駆動し、電流の流れない範囲の電圧値が掃引され、水素製造装置2cへのガス流入と、水素製造装置2cでの逆反応とを防止する。
 次に、図2における(2)では、水素製造装置2bの1装置のみの構成を想定しており、(1)と比べて、S401がON状態に、S101、S201がOFF状態に切替わる。これを電気的等価回路図で示すと、図3(2)のようになる。図3(1)に比べて、水素製造装置2aが停止し、水素製造装置2bのみに再生可能エネルギ由来の電力が印加され、水素製造装置2bのみで水素ガスを製造している。一方で、停止した水素製造装置2a及び2cには、外部電源により外部保護装置3(3a、3c)が駆動し、電流の流れない範囲の電圧値が掃引され、水素製造装置2a及び2cへのガス流入と、水素製造装置2a及び2cでの逆反応とを防止する。
 次に、図2における(3)では、水素製造装置2b、2cの2装置の直列構成を想定しており、(2)と比べて、S203、S302がON状態に、S202、S403がOFF状態に切替わる。これを電気的等価回路図で示すと、図3(3)のようになる。再生可能エネルギ由来の電力(電圧はV0)により水素製造装置2b及び2cに電流が流入し、水素ガスが発生する。一方で、停止中の水素製造装置2aには、外部電源により外部保護装置3(3a)が駆動し、電流の流れない範囲の電圧値が掃引され、水素製造装置2aへのガス流入と、水素製造装置2aでの逆反応とを防止する。
 最後に、図2における(4)では、水素製造装置2cの1装置のみの構成を想定しており、(3)と比べて、S103、S402がON状態に、S102、S302がOFF状態に切替わる。これを電気的等価回路図で示すと、図3(4)のようになる。図3(3)に比べて、水素製造装置2bが停止し、水素製造装置2cのみに再生可能エネルギ由来の電力が印加され、水素製造装置2cのみで水素ガスを製造している。一方で、停止した水素製造装置2a及び2bには、外部電源により外部保護装置3(3a、3b)が駆動し、電流の流れない範囲の電圧値が掃引され、水素製造装置2a及び2bへのガス流入と、水素製造装置2a及び2bでの逆反応とを防止する。
<まとめ>
 以上のように、第1実施形態による水素製造システム100によれば、再生可能エネルギの供給量の変動に対応するとともに、水素製造装置の劣化を抑制し、再生可能エネルギを用いて無駄なく水素ガスを製造することができる。
[第2実施形態]
 次に、図4を参照しながら、第2実施形態による水素製造システム200について説明する。なお、図4において図1と同じ符号を付すものは同じ構成要素を表すものとし、その詳細な説明を省略する。
 本実施形態の水素製造システム200では、1台の保護装置3が各水素製造装置に接続された構成である。
 図4において、制御装置8は、切替素子4及び切替素子6に送信する制御信号に基づき、切替素子7の開閉を判断し、切替素子7に制御信号を送信する。水素製造装置2が停止した際に保護装置3から電圧が印加されることにより、水素製造装置2の電極劣化が抑制される。以降の動作は図1と同様であり、その詳細な説明を省略する。
 このようにして、第2実施形態による水素製造システム200においても、再生可能エネルギの供給量の変動に対応するとともに、水素製造装置の劣化を抑制し、再生可能エネルギを用いて無駄なく水素ガスを製造することができる。
[第3実施形態]
 次に、図5を参照しながら、第3実施形態による水素製造システム300について説明する。なお、図5において図1と同じ符号を付すものは同じ構成要素を表すものとし、その詳細な説明を省略する。
 本実施形態の水素製造システム300では、図1に対して、切替素子4と切替素子7が構成から外され、保護装置3(3a~3n)が水素製造装置と電気的に直列に接続された構成である。
 図5における保護装置3(3a~3n)は、水素製造装置2(2a~2n)にそれぞれ電気的に直列接続した構成であり、例えば可変抵抗などが挙げられる。例えば、4つの水素製造装置が並列接続されている構成を3装置の並列接続に切替える場合、すなわち1つの装置を停止する場合を考える。その際、停止する水素製造装置に対して、慣習的な水素製造装置の内部抵抗よりも高い抵抗を電気的に直列に挿入し接続すると、分流則より他の3つの水素製造装置に電流が分流される。一方、直列抵抗が挿入された水素製造装置は、電気的に並列接続された構成であるため、再生可能エネルギ発電の電圧が掃引されている状態となり、化学反応を防止又は抑制できる。即ち、挿入し接続した抵抗値を調整することで、停止させたい水素製造装置に電圧のみを印加することもできる。
 <保護装置3の稼働制御>
 次に、図6及び図7を参照しながら保護装置3の稼働制御について説明する。図6は、本発明の第3実施形態による水素製造システム300における、切替素子5及び6のON-OFFタイムチャートを示す図である。また、図7は、図6中に記載した(1)~(4)のタイミングにおける水素製造システム300の電気的な等価回路図である。図7において、再生可能エネルギ由来の入力電圧をV0、水素製造装置2a、2b、2cの等価回路の抵抗を各々R2a、R2b、R2cとし、各水素製造装置に流れる電流をI2a、I2b、I2cとし、各水素製造装置に印加される電圧をV2a、V2b、V2cと定義した。また、水素製造装置に電気的に直列接続された可変抵抗型の保護装置3(3a~3c)を、各々、R3a、R3b、R3cとし、印加される電圧をV3a、V3b、V3cと定義した。なお、図6、図7のいずれにおいても、簡略化のため水素製造装置2a~2cの3つの装置のみ記載してあるが、水素製造装置の数に限りはない。
 図6に示すように、はじめに、再生可能エネルギ発電装置1由来の電力が水素製造システム300に入力されない状態では、全ての水素製造装置に直列接続された可変抵抗型保護装置3(3a~3c)の抵抗値が無限大に近い値を示し、各水素製造装置に電流が流れないようになる。このとき、S201~S203がON状態にある一方で、S301~S303はOFF状態である。
 このとき、再生可能エネルギ由来の電力が水素製造システム300に入力されると、電力量に応じて水素製造装置の構成が決定される。図6における(1)では、水素製造装置2a、2bの2装置の並列構成を想定しており、並列駆動であれば切替素子のON-OFFに変化はない。ただし、並列接続型の駆動が決定した際に、保護装置3a及び3bは抵抗値が零に近い数値をとるように制御され、保護装置3cは、(a)水素製造装置2cに流れる電流I2cが限りなく零に近い数値になるように、且つ、(b)V2c=V0×R2c/(R2c+R3c)がEeq又はΔEの範囲内となるように、保護装置3cの抵抗値R3cを制御する。これを電気的等価回路図で示すと図7(1)のようになり、再生可能エネルギ由来の電力(電圧はV0)により水素製造装置2a及び2bに電流が流入し、水素ガスが発生する。一方で、停止中の水素製造装置2cは、前記の条件(a)(b)を満足する抵抗値R3cを有する保護装置3cにより、電流の流れない範囲の電圧値が掃引され、水素製造装置2cへのガス流入と逆反応を防止する。
 次に、図6における(2)では、水素製造装置2bの1装置のみの構成を想定しており、このときも(1)と比べて切替素子のON-OFFに変化はない。ただし、1装置のみの構成に決定した際に、保護装置3bを抵抗値R3bが零に近い数値をとるように制御し、保護装置3a及び3cを抵抗値R3a及びR3cが(a)水素製造装置2a及び2cに流れる電流I2a及びI2cが限りなく零に近い数値になるように、且つ(b)V2a=V0×R2a/(R2a+R3a)及びV2c=V0×R2c/(R2c+R3c)がEeq又はΔEの範囲内となるように制御する。これを電気的等価回路図で示すと、図7(2)のようになる。図7(2)の電気的等価回路図では、図7(1)に比べて、水素製造装置2aが停止し、水素製造装置2bのみに再生可能エネルギ由来の電力が印加され、水素ガスが製造される。一方で、停止した水素製造装置2a及び2cには、前記の条件(a)(b)を満足する抵抗値R3a及びR3cを有する保護装置3a及び3cにより、電流の流れない範囲の電圧値が掃引され、水素製造装置2a及び2cへのガス流入と逆反応を防止する。
 次に、図6における(3)では、水素製造装置2b、2cの2装置の直列構成を想定しており、(2)と比べて、S302がON状態に、S202がOFF状態に切替わる。これと同時に、保護装置3bを抵抗値R3bが零に近い数値をとるように制御し、保護装置3cを限りなく無限大に近い抵抗値R3cをとるよう制御することで、電流I2cを限りなく零に近い数値にする。また、保護装置3aを抵抗値R3aが(a)水素製造装置2aに流れる電流I2aが限りなく零に近い数値になるように、且つ(b)V2a=V0×R2a/(R2a+R3a)がEeq又はΔEの範囲内となるように制御する。これを電気的等価回路図で示すと、図7(3)のようになる。再生可能エネルギ由来の電力(電圧はV0)により水素製造装置2b及び2cに電流が流入し、水素ガスが発生する。一方で、停止中の水素製造装置2aは、前記の条件(a)(b)を満足する抵抗値R3aと無限大に近い抵抗値R3cをそれぞれ有する保護装置3a及び3cにより、電流の流れない範囲の電圧値が掃引され、水素製造装置2aへのガス流入と逆反応を防止する。
 最後に、図6における(4)では、水素製造装置2cの1装置のみの構成を想定しており、(3)と比べて、S202がON状態に、S302がOFF状態に切替わる。これと同時に、保護装置3cを抵抗値R3cが零に近い数値をとるように制御し、保護装置3a及び3bを抵抗値R3a及びR3bが(a)水素製造装置2a及び2bに流れる電流I2a及びI2bが限りなく零に近い数値になるように、且つ(b)V2a=V0×R2a/(R2a+R3a)及びV2b=V0×R2b/(R2b+R3b)がEeq又はΔEの範囲内となるように制御する。これを電気的等価回路図で示すと、図7(4)のようになる(図7(2)と共通の図)。図7(4)の電気的等価回路図では、図7(3)に比べて、水素製造装置2bが停止し、水素製造装置2cのみに再生可能エネルギ由来電力が印加され、水素ガスが製造される。一方で、停止した水素製造装置2a及び2bには、前記の条件(a)(b)を満足する抵抗値R3a及びR3bを有する保護装置3a及び3bにより、電流の流れない範囲の電圧値が掃引され、水素製造装置2a及び2bへのガス流入と逆反応を防止する。
[第4実施形態]
 次に、図8を参照しながら、第4実施形態による水素製造システム400を説明する。なお、図8において図1や図5と同じ符号を付すものは同じ構成要素を表すものとし、その詳細な説明を省略する。
 本実施形態の水素製造システム400では、図5に示した本実施形態の水素製造システム300に対して、切替素子6が構成から外され、水素製造装置2(2a~2n)同士を直列に接続した配線に保護装置3(3a~3m)を設けた構成である。
 図8における保護装置3(3a~3m)としては、可変抵抗が挙げられる。例えば、3つの水素製造装置2a~2cが並列接続されている構成を、水素製造装置2aのみの1装置の並列接続に切替える場合、すなわち2つの装置を停止する場合を考える。まず初めに、再生可能エネルギ由来の電力は水素製造装置2a~2cに入力され、水素ガスが製造されている。この際、切替素子S101~S103、S201~S203はオン状態、また保護装置3a~3cは高抵抗状態にある。ここで、2つの装置(水素製造装置2b及び2c)を停止させ、切替素子S102、S203をオン状態のままとし、S202、S103をオフ状態とし、水素製造装置2b及び2cの直列構成をとる。これと同時に、水素製造装置2b及び2cにEeq又はΔEの範囲内となる電圧を掃引し、水素製造装置2b及び2cに電流が流れない範囲の保護装置3bの抵抗値を制御することで、化学反応を防止又は抑制できる。
 このようにして、第4実施形態による水素製造システム400においても、再生可能エネルギの供給量の変動に対応するとともに、水素製造装置の劣化を抑制し、再生可能エネルギを用いて無駄なく水素ガスを製造することができる。
[第5実施形態]
 次に、図9を参照しながら、第5実施形態による水素製造システム500について説明する。なお、図9において図1と同じ符号を付すものは同じ構成要素を表すものとし、その詳細な説明を省略する。
 本実施形態の水素製造システム500は、水素製造装置2(2a~2n)が製造した水素を飽和炭化水素として貯蔵することができるシステム構成を示したものである。具体的には、図1に示した水素製造システム100に対して、バッファタンク9と、水添装置10と、飽和炭化水素貯蔵槽11と、不飽和炭化水素貯蔵槽12とをさらに備える構成である。
 バッファタンク9の具体的な構成は特に制限されないが、水素製造装置2において発生した水素の水分除去による高純度化が目的であり、水添装置10(後記する)に供給される前に水素から水分を除去する装置が挙げられる。例えば気液分離装置などが、それに当たる。気液分離装置の具体的な構成としては、特に制限されないが、例えば冷却による気液分離、水素分離膜等を用いることができ、なかでも水素分離膜を用いることが好ましい。なお、除去された水分は、水素製造装置2内を循環して電気分解されるようになっている。
 そして、水分除去後の水素は、ガス配管によって接続された水添装置10に供給されるようになっている。なお、水分除去後の水素は直接水添装置10に供給されるようにしてもよいが、この水素を圧力調整器を介して水添装置10に供給することで、水素添加効率をさらに高めることができ、換言すると、再生可能エネルギを無駄なく貯蔵できる。
 また、図9に示した実施形態に図示していないが、この水素を例えば高圧タンク等の水素貯蔵手段に一時的に貯蔵することもできる。水素ガス水素貯蔵手段の具体的な構成は、特に制限されるものではないが、例えば公知の水素ボンベ、高圧ガス用の圧力容器等を用いることができる。これらは、1種を単独で設けてもよく、2種以上を任意に組み合わせて用いてもよい。水素貯蔵手段を構成する材料としては、例えば鋼板、カーボン繊維で強化されたプラスチック等が挙げられ、水素製造装置2にかかる圧力以上の耐圧容器を用いることが特に好ましい。
 また、水素貯蔵手段としては、水素吸蔵合金を用いることもできる。水素吸蔵合金としては、例えば希土類金属-ニッケル系等のAB5型合金、チタン系、クロム系等の体心立方(BCC)構造を有する合金等が挙げられる。これらの水素吸蔵合金を上記の容器等内に存在させることにより、水素貯蔵量を増加させることができる。また、同一体積の水素を貯蔵する場合には、水素貯蔵手段の圧力を低下させてもよい。
 バッファタンク9と水添装置10とはガス配管(パイプライン)によって接続されていることが好ましい。ただし、これらがガス配管によって接続されている必要は必ずしもなく、例えば高圧タンク等を用いて、製造した水素を水添装置10まで運搬(即ち水添装置10に供給)するようにしてもよい。
 水添装置10は、水素製造装置2によって製造された水素を不飽和炭化水素に対して付加させるものである。水添装置10は、前記のようにバッファタンク9とガス配管によって接続されているほか、飽和炭化水素貯蔵槽11及び不飽和炭化水素貯蔵槽12(いずれも後記する)と液体配管によって接続されている。従って、不飽和炭化水素は不飽和炭化水素貯蔵槽12から水添装置10に供給される。
 水添装置10において用いられる不飽和炭化水素の具体的な種類は、特に制限されないが、例えばメチルベンゼン等の室温で液体の芳香族化合物を好適に用いることができる。例えば不飽和炭化水素としてメチルベンゼンを用いる場合、得られる飽和炭化水素はメチルシクロヘキサンであり、メチルベンゼン1モルあたりに貯蔵可能な水素分子の物質量は2.5モルとなる。ただし、付加反応時の条件によっては、例えばアントラセン、フェナントレン等も液体になることもあるため、そのような条件で付加反応を行う場合には、これらの芳香族化合物を用いてもよい。これらの芳香族化合物を用いることにより、よりさらに多くの水素を貯蔵することができる。
 このような芳香族化合物は室温で液体であるため貯蔵が容易であり、また、水素付加反応を行わせるときの反応界面が大きくなる利点がある。また、芳香族化合物を用いることにより芳香族化合物1分子あたりに付加しうる水素の物質量を多くすることができ、より多くの水素を少ない不飽和炭化水素量で貯蔵することができる。なお、不飽和炭化水素は1種で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
 水添装置10において、不飽和炭化水素に対して水素を付加する具体的な方法に特に制限はない。ただし、低コスト及び反応時間が短いという観点から、通常は触媒を用いて不飽和炭化水素に水素を付加させる。このような触媒としては、例えばNi、Pd、Pt、Rh、Ir、Re、Ru、Mo、W、V、Os、Cr、Co、Fe等の金属、及びこれらの合金が挙げられる。触媒を構成する金属及びそれらの合金は、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いられてもよい。
 また、これらの触媒は、触媒量の低減による更なる低コスト化と反応表面積の増大化の観点から、微粒子化されていることが好ましい。微粒子化された触媒を用いる場合、微粒子触媒の凝集による表面積の減少を防止する観点から、任意の担体に担持してもよい。担体に触媒を担持させる場合、担持させる方法に特に制限はなく、例えば、共沈法、熱分解法、無電解めっき法等を用いることができる。また、担体の種類も特に制限はなく、例えば活性炭、カーボンナノチューブ、黒鉛等の炭素材料のほか、シリカ、アルミナ、ゼオライト等のアルミナシリケート等を用いることもできる。担体は1種を用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
 水添装置10における、不飽和炭化水素への水素付加反応条件は特に制限されず、任意に設定すればよい。例えば反応温度は室温(約25℃)でも水素を付加させることができるが、反応時間をより短くする観点から、100℃以上400℃以下程度の温度で付加させることが好ましい。
 また、付加反応時の反応圧力も特に制限されないものの、付加反応効率を上げ、反応時間をより短くすることができるという観点から、水素付加時の圧力を、ゲージ圧で1気圧以上50気圧以下(即ち0.1MPa以上5MPa以下)とすることが好ましい。従って、水素付加時の圧力を高めるために、バッファタンク9と水添装置10との間には、圧力調整器を備えることができる。
 以上のようにして、不飽和炭化水素に水素を付加させることができ、飽和炭化水素が得られる。得られた飽和炭化水素(所謂有機ハイドライド)は、後記する飽和炭化水素貯蔵槽11に貯蔵される。
 飽和炭化水素貯蔵槽11は、水添装置10において生成した飽和炭化水素を収容するものである。従って、飽和炭化水素貯蔵槽11は液体配管によって水添装置10と接続されている。また、飽和炭化水素貯蔵槽11と水添装置10との間に、飽和炭化水素の飽和炭化水素貯蔵槽11への供給量を制御するための装置、例えば流量調整バルブ、流量計等を設けてもよい。
 不飽和炭化水素貯蔵槽12は、水添装置10に供給する不飽和炭化水素を貯蔵するものである。不飽和炭化水素貯蔵槽12は液体配管によって水添装置10と接続されている。また、不飽和炭化水素貯蔵槽12から水添装置10への供給量を制御するための装置、例えば流量調整バルブ、流量計等を設けてもよい。
 本実施形態では、図1に示した水素製造システム100に対して、バッファタンク9と、水添装置10と、飽和炭化水素貯蔵槽11と、不飽和炭化水素貯蔵槽12とをさらに備える構成を示したが、図4、図5、図8で説明した水素製造システムも、バッファタンク9と、水添装置10と、飽和炭化水素貯蔵槽11と、不飽和炭化水素貯蔵槽12とをさらに備える構成を採用できる。
 以上の実施形態では、再生可能エネルギを電力に変換する発電装置からの変動電力を利用して水電気分解装置で水素を製造する水素製造システムを例として説明したが、変動電力は再生可能エネルギ由来の電力に限られるものではない。例えば、水電気分解装置に供給される変動電力として電力系統の余剰電力を利用する水素製造システムであってもよい。
1 再生可能エネルギ発電装置,2 水素製造装置,3 保護装置,4~7 切替素子,8 制御装置,9 バッファタンク,10 水添装置,11 飽和炭化水素貯蔵槽,12 不飽和炭化水素貯蔵槽

Claims (7)

  1.  直列又は並列に接続され、直流電力を用いて水素ガスを製造する複数の水素製造装置と、
     複数の前記水素製造装置の接続構成を切替える切替素子と、
     複数の前記水素製造装置のうち、前記切替素子による接続構成の切替えによって水素ガスの製造を停止する水素製造装置に対して、電圧を印加する電圧印加手段と、
     前記切替素子及び前記電圧印加手段を制御する制御装置と、を備えることを特徴とする水素製造システム。
  2.  請求項1に記載の水素製造システムにおいて、
     前記電圧印加手段は、外部電源と、前記外部電源を前記水素製造装置に通電又は前記水素製造装置から遮断するスイッチング素子とで構成されることを特徴とする水素製造システム。
  3.  請求項2に記載の水素製造システムにおいて、
     前記制御装置は、前記切替素子による接続構成の切替えによって水素ガスの製造を停止する前記水素製造装置に対して、前記外部電源が電圧を印加するように前記スイッチング素子を制御することを特徴とする水素製造システム。
  4.  請求項1に記載の水素製造システムにおいて、
     前記電圧印加手段は、可変抵抗を含むことを特徴とする水素製造システム。
  5.  請求項4に記載の水素製造システムにおいて、
     前記制御装置は、前記切替素子による接続構成の切替えによって水素ガスの製造を停止する前記水素製造装置と直列に接続された前記可変抵抗の抵抗値を増加させる制御を行うことを特徴とする水素製造システム。
  6.  請求項1に記載の水素製造システムにおいて、
     前記水素製造装置が製造した水素ガスを高純度化するバッファタンクと、
     前記バッファタンクから供給される水素ガスを不飽和炭化水素に付加して飽和炭化水素を生成する水添装置と、
     前記水添装置が生成した飽和炭化水素を貯蔵する飽和炭化水素貯蔵手段と、
    を備えることを特徴とする水素製造システム。
  7.  請求項1に記載の水素製造システムにおいて、
     前記直流電力は、再生可能エネルギを電気エネルギに変換する発電装置によって供給されることを特徴とする水素製造システム。
PCT/JP2012/070467 2011-09-30 2012-08-10 水素製造システム WO2013046958A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013536049A JP5837081B2 (ja) 2011-09-30 2012-08-10 水素製造システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011215904 2011-09-30
JP2011-215904 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013046958A1 true WO2013046958A1 (ja) 2013-04-04

Family

ID=47995010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070467 WO2013046958A1 (ja) 2011-09-30 2012-08-10 水素製造システム

Country Status (2)

Country Link
JP (1) JP5837081B2 (ja)
WO (1) WO2013046958A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151561A (ja) * 2014-02-12 2015-08-24 高砂熱学工業株式会社 水素製造装置及びその運転方法
JP2016098387A (ja) * 2014-11-19 2016-05-30 株式会社東芝 水素製造装置、水素製造方法及び電力貯蔵システム
JP2016526608A (ja) * 2013-07-01 2016-09-05 サステイナブル イノベーションズ エルエルシーSustainable Innovations,Llc 水素システム及び動作の方法
JP2017507239A (ja) * 2013-12-03 2017-03-16 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 有効な電力がない状態においてメタンの生成のためにsoecタイプのスタック反応器を作動させる方法
JP2018165392A (ja) * 2017-03-28 2018-10-25 東京瓦斯株式会社 水電解システム
JP2018178175A (ja) * 2017-04-07 2018-11-15 富士通株式会社 電解システム、電解制御装置及び電解システムの制御方法
JP2021063280A (ja) * 2019-10-16 2021-04-22 株式会社豊田中央研究所 水電解システム
US11028492B2 (en) 2017-11-02 2021-06-08 Fujitsu Limited Electrolytic system, electrolytic control circuit, and control method for electrolytic system
JP2021181605A (ja) * 2020-05-20 2021-11-25 株式会社豊田中央研究所 水電解システム、および水電解システムの制御方法
WO2022124309A1 (ja) * 2020-12-07 2022-06-16 旭化成株式会社 アルカリ水電解システム、およびアルカリ水電解システムの運転方法
TWI805275B (zh) * 2022-03-11 2023-06-11 長庚大學 一種以光重整製造氫的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102289504B1 (ko) * 2019-10-31 2021-08-13 고등기술연구원연구조합 캐스케이드 방식 고압수소 제조 수전해 시스템 및 고압수소 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794586A (en) * 1980-12-03 1982-06-12 Chlorine Eng Corp Ltd Method for stopping conduction of electricity of electrolytic cell
JPH02156099A (ja) * 1988-12-08 1990-06-15 Permelec Electrode Ltd 直流電源回路
JP2005126792A (ja) * 2003-10-27 2005-05-19 Ishikawajima Harima Heavy Ind Co Ltd 水素製造設備
JP2009007647A (ja) * 2007-06-29 2009-01-15 Hitachi Ltd 有機ハイドライド製造装置、及び、それを用いた分散電源と自動車

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4561949A (en) * 1983-08-29 1985-12-31 Olin Corporation Apparatus and method for preventing activity loss from electrodes during shutdown

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794586A (en) * 1980-12-03 1982-06-12 Chlorine Eng Corp Ltd Method for stopping conduction of electricity of electrolytic cell
JPH02156099A (ja) * 1988-12-08 1990-06-15 Permelec Electrode Ltd 直流電源回路
JP2005126792A (ja) * 2003-10-27 2005-05-19 Ishikawajima Harima Heavy Ind Co Ltd 水素製造設備
JP2009007647A (ja) * 2007-06-29 2009-01-15 Hitachi Ltd 有機ハイドライド製造装置、及び、それを用いた分散電源と自動車

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016526608A (ja) * 2013-07-01 2016-09-05 サステイナブル イノベーションズ エルエルシーSustainable Innovations,Llc 水素システム及び動作の方法
JP2017507239A (ja) * 2013-12-03 2017-03-16 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 有効な電力がない状態においてメタンの生成のためにsoecタイプのスタック反応器を作動させる方法
JP2015151561A (ja) * 2014-02-12 2015-08-24 高砂熱学工業株式会社 水素製造装置及びその運転方法
JP2016098387A (ja) * 2014-11-19 2016-05-30 株式会社東芝 水素製造装置、水素製造方法及び電力貯蔵システム
JP2018165392A (ja) * 2017-03-28 2018-10-25 東京瓦斯株式会社 水電解システム
JP2018178175A (ja) * 2017-04-07 2018-11-15 富士通株式会社 電解システム、電解制御装置及び電解システムの制御方法
US11028492B2 (en) 2017-11-02 2021-06-08 Fujitsu Limited Electrolytic system, electrolytic control circuit, and control method for electrolytic system
JP2021063280A (ja) * 2019-10-16 2021-04-22 株式会社豊田中央研究所 水電解システム
JP7168541B2 (ja) 2019-10-16 2022-11-09 株式会社豊田中央研究所 水電解システム
JP2021181605A (ja) * 2020-05-20 2021-11-25 株式会社豊田中央研究所 水電解システム、および水電解システムの制御方法
JP7180637B2 (ja) 2020-05-20 2022-11-30 株式会社豊田中央研究所 水電解システム、および水電解システムの制御方法
WO2022124309A1 (ja) * 2020-12-07 2022-06-16 旭化成株式会社 アルカリ水電解システム、およびアルカリ水電解システムの運転方法
JP7441332B2 (ja) 2020-12-07 2024-02-29 旭化成株式会社 アルカリ水電解システム、およびアルカリ水電解システムの運転方法
TWI805275B (zh) * 2022-03-11 2023-06-11 長庚大學 一種以光重整製造氫的方法

Also Published As

Publication number Publication date
JP5837081B2 (ja) 2015-12-24
JPWO2013046958A1 (ja) 2015-03-26

Similar Documents

Publication Publication Date Title
JP5837081B2 (ja) 水素製造システム
JP5653452B2 (ja) 自然エネルギ貯蔵システム
JP6257911B2 (ja) 水素製造手段を備えた太陽光発電システム
JP5618952B2 (ja) 再生可能エネルギ貯蔵システム
Chisholm et al. Hydrogen from water electrolysis
EP2905359B1 (en) Renewable energy storage system
Meda et al. Generation of green hydrogen using self-sustained regenerative fuel cells: Opportunities and challenges
JP7297710B2 (ja) 二酸化炭素反応装置
JP2009007647A (ja) 有機ハイドライド製造装置、及び、それを用いた分散電源と自動車
US20110086280A1 (en) Systems for the on-demand production of power as a sole source or aiding other power sources, in the transportation and housing field.
JP2009077457A (ja) 分散型電源の運転システムおよびその運転方法
CN102569850A (zh) 备用电源用燃料电池供氢***
JP5548032B2 (ja) 有機ハイドライド脱水素システム
Hu et al. Efficiency and stability of seawater electrolysis through flat-tube solid oxide cell stack without air
JP5982253B2 (ja) コージェネレーションシステム
Wilson et al. Hydrogen production using solar energy
JP2000054173A (ja) 水電解蓄電池
CN202434641U (zh) 备用电源用燃料电池供氢***
Driver Making a material difference in energy
WO2022172682A1 (ja) 水素生成システム、及び水素燃料利用システム
EP4249639A1 (en) Carbon dioxide electrolytic device
Sadeq et al. Hydrogen energy systems: Technologies, trends, and future prospects
Tsoutsos Hybrid wind–hydrogen energy systems
Sharma et al. FUEL CELL-MOST EFFICIENT AND CLEAN SOURCE OF POWER
Kumaragurubaran et al. Recent development in fuel cell as an alternate fuel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835681

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536049

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835681

Country of ref document: EP

Kind code of ref document: A1