WO2013035641A1 - ブロック共重合体の製造方法 - Google Patents

ブロック共重合体の製造方法 Download PDF

Info

Publication number
WO2013035641A1
WO2013035641A1 PCT/JP2012/072160 JP2012072160W WO2013035641A1 WO 2013035641 A1 WO2013035641 A1 WO 2013035641A1 JP 2012072160 W JP2012072160 W JP 2012072160W WO 2013035641 A1 WO2013035641 A1 WO 2013035641A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
block copolymer
reaction
general formula
pasp
Prior art date
Application number
PCT/JP2012/072160
Other languages
English (en)
French (fr)
Inventor
啓一朗 山本
正行 北川
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to CN201280043928.7A priority Critical patent/CN103874722B/zh
Priority to US14/241,924 priority patent/US9346923B2/en
Priority to ES12830758.4T priority patent/ES2635117T3/es
Priority to JP2013532568A priority patent/JP5711378B2/ja
Priority to RU2014114264A priority patent/RU2623426C2/ru
Priority to AU2012305405A priority patent/AU2012305405B2/en
Priority to CA2847114A priority patent/CA2847114C/en
Priority to EP12830758.4A priority patent/EP2754682B1/en
Priority to BR112014005452-5A priority patent/BR112014005452B1/pt
Priority to KR1020147006350A priority patent/KR101849142B1/ko
Publication of WO2013035641A1 publication Critical patent/WO2013035641A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/3311Polymers modified by chemical after-treatment with organic compounds containing oxygen containing a hydroxy group
    • C08G65/3314Polymers modified by chemical after-treatment with organic compounds containing oxygen containing a hydroxy group cyclic
    • C08G65/3315Polymers modified by chemical after-treatment with organic compounds containing oxygen containing a hydroxy group cyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33331Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing imide group
    • C08G65/33334Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing imide group acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/10Alpha-amino-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/40Polyamides containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a micelle preparation containing a block copolymer and a drug using the same, and further to a method for producing a block copolymer in an anticancer agent containing the micelle preparation as an active ingredient.
  • Drugs especially anticancer drugs, are often hydrophobic compounds that are hardly soluble in water. In order to obtain a desired therapeutic effect using such a drug, the drug is usually solubilized and administered to a patient. Therefore, solubilization of poorly water-soluble drugs, particularly poorly water-soluble anticancer agents, is important in oral or parenteral preparations, particularly intravenous preparations.
  • Patent Document 1 Patent Document 2, or Patent Document 3 describes a method using a block copolymer that forms micelles as a drug carrier.
  • Patent Document 4 Patent Document 5 and Patent Document 6 describe paclitaxel-encapsulated micelles using a block copolymer having a polyethylene glycol (PEG) structure portion and a polyamino acid structure portion as a drug carrier.
  • PEG polyethylene glycol
  • Patent Document 5 discloses that a paclitaxel-encapsulated micelle having a high antitumor effect can be obtained by converting the structure of the polyamino acid structure portion of the block copolymer forming the micelle used in Patent Document 4. Are listed.
  • Patent Document 6 the residual carboxylic acid structure in the structure of the polyamino acid structure portion of the block copolymer that forms micelles by a production method different from Patent Document 5 is reduced, and the paclitaxel-encapsulated micelle described in Patent Document 5 It is described that the toxicity is reduced in comparison.
  • PEG-pAsp (polyaspartic acid) -Ac produced by the method described in Patent Document 2 may be substituted with an aryl ( C1-C8)
  • An alkyl alcohol is introduced and the product is isolated. Thereafter, introduction of a urea transfer form of pAsp and a cyclization reaction are performed to reduce the residual carboxyl group of pAsp.
  • the aryl (C1 to C8) alkyl alcohol which may have a substituent is partially eliminated by this second stage heating reaction.
  • Patent Document 5 As a result of intensive studies to solve the above problems, the present inventors have surprisingly found that, in the method for producing a block copolymer described in Patent Document 5, by applying specific limited reaction conditions, Patent Document The manufacturing method by the one pot of the block copolymer of 6 was discovered. Furthermore, the difficulty in production was solved and the present invention was completed.
  • R1 represents a hydrogen atom or a (C1 to C5) alkyl group
  • R2 represents a (C1 to C5) alkylene group
  • R3 represents a methylene group or an ethylene group
  • R4 represents a hydrogen atom or (C1 to C4)
  • n represents 20 to 500
  • x represents 0 to 100
  • y represents 0 to 100.
  • the sum of x and y is 2 to 200.
  • R1 represents a hydrogen atom or a (C1 to C5) alkyl group
  • R2 represents a (C1 to C5) alkylene group
  • R3 represents a methylene group or an ethylene group
  • R4 represents a hydrogen atom or (C1 to C4)
  • R5 represents a hydroxyl group
  • C3-C6) may be substituted with a cyclic alkyl group or a tertiary amino group (C1-C5) represents an alkyl group).
  • n 20 to 500
  • m 2 to 200
  • a 0 to 100
  • b 0 to 100.
  • the sum of a and b is not less than 1 and not greater than m.
  • the proportion of R5 being a hydroxyl group is 0 to 5% of m
  • the proportion of optionally substituted aryl (C1 to C8) alkoxy groups is 10 to 80% of m
  • —N (R6 ) —CO—NHR7 is 11-30% of m] It is a manufacturing method of the block copolymer represented by these.
  • R1 is a methyl group
  • R2 is a trimethylene group
  • R3 is a methylene group
  • R4 is an acetyl group
  • n is 80 to 400
  • m is 15 to 60
  • a is 5 to 60
  • b is 5 to 60 It is a manufacturing method of the block copolymer as described in 1).
  • the reaction temperature in the production method described in Patent Document 5 is strictly controlled, and the carbodiimide compound is converted into the amount of the carboxyl group (x and y in the general formula (2)).
  • the block copolymer described in Patent Document 6 is obtained instead of the block copolymer described in Patent Document 5. That's it.
  • the production method of the block copolymer of the present invention can adjust the introduction rate of the aryl (C1 to C8) alkyl alcohol optionally having a substituent into the compound represented by the general formula (2). This is because once introduced aryl (C1-C8) alkyl alcohol does not leave by cyclization as in the production method described in Patent Document 6, and free aryl (C1-C8) alkyl alcohol in the reaction solution does not increase. It depends. As a result, the number of unreacted carboxyl groups of pAsp of the compound represented by the general formula (2) can be surely reduced. Therefore, as compared with the production method described in Patent Document 6, the production method of the block copolymer of the present invention is an industrially excellent production method in which the production of the product can be easily controlled by a one-step reaction.
  • the present invention provides the following general formula (2) having a polyethylene glycol (PEG) structure portion and a polyamino acid structure portion, wherein R1 represents a hydrogen atom or a (C1 to C5) alkyl group, and R2 represents (C1 to C5).
  • R1 represents a hydrogen atom or a (C1 to C5) alkyl group
  • R2 represents (C1 to C5).
  • R3 represents a methylene group or an ethylene group
  • R4 represents a hydrogen atom or a (C1-C4) acyl group.
  • n represents 20 to 500
  • x represents 0 to 100
  • y represents 0 to 100.
  • the sum of x and y is 2 to 200.
  • Each numerical value is an average value.
  • R5 Represents a hydroxyl group, an aryl (C1 to C8) alkoxy group optionally having substituent (s) or —N (R6) —CO—NHR7 (wherein R6 and R7 may be the same or different, (C3 ⁇ C6) Cyclic Alky It may be substituted with a group or tertiary amino group showing a (C1 ⁇ C5) alkyl group).
  • n 20 to 500
  • m 2 to 200
  • a 0 to 100
  • b 0 to 100.
  • the sum of a and b is not less than 1 and not greater than m.
  • the proportion of R5 being a hydroxyl group is 0 to 5% of m
  • the proportion of optionally substituted aryl (C1 to C8) alkoxy groups is 10 to 80% of m
  • —N (R6 ) —CO—NHR7 is 11 to 30% of m].
  • examples of R1 include a hydrogen atom or a (C1-C5) alkyl group, and a (C1-C5) alkyl group is preferable.
  • Specific examples of the (C1 to C5) alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a s-butyl group, a t-butyl group, and an n-pentyl group.
  • a methyl group is particularly preferable.
  • (C1 to C5) alkylene group for R2 include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, and the like, and an ethylene group and a trimethylene group are preferable.
  • R3 includes a methylene group or an ethylene group, and a methylene group is preferable.
  • R4 includes a hydrogen atom or a (C1-C4) acyl group, preferably a (C1-C4) acyl group, and specifically includes a formyl group, an acetyl group, a propionyl group, a butyroyl group, and the like. Is particularly preferred.
  • n is 20 to 500, preferably 80 to 400, x is 0 to 100, preferably 5 to 60, y is 0 to 100, preferably 5 to 60, x The sum of y and y is 2 to 200, preferably 10 to 100, particularly preferably 5 to 60.
  • the aryl (C1 to C8) alkoxy group in R5 is a straight chain or branched chain (C1 to C8) to which an aromatic hydrocarbon group such as a phenyl group or a naphthyl group is bonded.
  • C8 An alkoxy group is mentioned.
  • benzyloxy group, phenethyloxy group, phenylpropoxy group, phenylbutoxy group, phenylpentyloxy group, phenylhexyloxy group, phenylheptyloxy group, phenyloctyloxy group, naphthylethoxy group, naphthylpropoxy group, A naphthyl butoxy group, a naphthyl pentyloxy group, etc. are mentioned.
  • Examples of the substituent in the aryl (C1 to C8) alkoxy group which may have a substituent include a lower alkoxy group such as a methoxy group, an ethoxy group, an isopropoxy group, an n-butoxy group and a t-butoxy group, a fluorine atom , Halogen atoms such as chlorine atom and bromine atom, nitro group, cyano group and the like. Substituents in which the number of substitutions of the substituent is from 1 to the maximum number that can be substituted, and in all substitutable positions are included in the present invention, but unsubstituted is preferred.
  • Examples of the optionally substituted aryl (C1 to C8) alkoxy group include unsubstituted phenyl (C1 to C6) alkoxy groups.
  • Examples thereof include an unsubstituted benzyloxy group, an unsubstituted phenethyloxy group, an unsubstituted phenylpropoxy group, an unsubstituted phenylbutoxy group, an unsubstituted phenylpentyloxy group, and an unsubstituted phenylhexyloxy group.
  • An unsubstituted benzyloxy group and an unsubstituted phenylbutoxy group are preferred.
  • Specific examples of the (C1-C5) alkyl group optionally substituted with a (C3-C6) cyclic alkyl group or a tertiary amino group in R6 and R7 include, for example, a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, methyl Group, ethyl group, isopropyl group, n-butyl group, 3-dimethylaminopropyl group, 5-dimethylaminopentyl group and the like.
  • ethyl group, isopropyl group, cyclohexyl group and 3-dimethylaminopropyl group are preferable.
  • an isopropyl group is preferable.
  • n is preferably in the same range as the general formula (2), and m is 2 to 100, preferably 10 to 100, particularly preferably 15 to 60.
  • the sum of a and b is not less than 1 and not greater than m.
  • m means the number of polymerized amino acid structural units in the polyamino acid structural portion.
  • R5 in the general formula (1) is a hydroxyl group, an aryl (C1-C8) alkoxy group optionally having substituent (s) or —N (R6) —CO—NHR7;
  • a structural unit having a cyclic imide structure is included.
  • the ratio of R5 in the general formula (1) being a hydroxyl group is 0 to 5%, preferably 0 to 3% of m.
  • the proportion of aryl (C1 to C8) alkoxy groups which may have a substituent is 10 to 80%, preferably 20 to 80% of m.
  • the proportion of —N (R6) —CO—NHR7 is 11 to 30% of m.
  • the ratio of R5 of the compound represented by the general formula (1) being a hydroxyl group is particularly preferably 0% of m.
  • the proportion of hydroxyl group is 0% of m means that all the carboxyl groups of the polyamino acid structure portion of the compound represented by the general formula (2) may have a substituent (C1-C8) alkoxy group and / or Or it means substituted with —N (R6) —CO—NHR7.
  • the ratio of the hydroxyl group of m can be analyzed by a high performance liquid chromatograph using an anion exchange column, and indicates that m is 0% when not retained on the column. Further, in the present invention, the ratio of the hydroxyl group of m is analyzed by a potentiometric titration method with a base, and when m is 0%, it is indicated by 0.1 mmol / g or less.
  • each amino acid structural unit part is bonded in a block form even though they are bonded randomly. May be.
  • the aryl (C1 to C8) alkyl alcohol optionally having a substituent used in the present invention is an alcohol corresponding to the aryl (C1 to C8) alkoxy group optionally having the above substituent. is there.
  • aryl (C1-C8) alkyl alcohol which may have a substituent
  • a commercially available compound may be used.
  • a compound prepared by a known organic synthesis method or a compound prepared by applying a known organic reaction can also be used.
  • This reaction is carried out in a solvent.
  • the solvent used include polar solvents such as dimethylformamide (DMF), dimethyl sulfoxide (DMSO), acetonitrile, tetrahydrofuran and dioxane, and non-solvents such as benzene, n-hexane and diethyl ether.
  • polar solvent such as dimethylformamide (DMF), dimethyl sulfoxide (DMSO), acetonitrile, tetrahydrofuran and dioxane, and non-solvents such as benzene, n-hexane and diethyl ether.
  • a polar solvent is mentioned, Furthermore, water or those mixed solvents etc. are not specifically limited.
  • the solvent is usually used in an amount of about 1 to 100 times the weight of the raw material compound.
  • Examples of the carbodiimide compound used in this reaction include a carbodiimide compound having a (C3 to C6) cyclic alkyl group or a (C1 to C5) alkyl group optionally substituted with a tertiary amino group.
  • a carbodiimide compound having a (C3 to C6) cyclic alkyl group or a (C1 to C5) alkyl group optionally substituted with a tertiary amino group Specifically, for example, diethylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC ⁇ HCl), dicyclohexyl Examples thereof include carbodiimide (DCC) and diisopropylcarbodiimide (DIPCI). Among these, DCC or DIPCI is preferable, and DIPCI
  • the amount of the carbodiimide compound used in this reaction is 2 (x + y) equivalents or more, more preferably 2 (x + y) equivalents relative to the amount of carboxyl groups (sum of x and y) in the general formula (2). ⁇ 5 (x + y) equivalents.
  • the carbodiimide compound may be added to the reaction system from the beginning of the reaction or may be divided and added as appropriate during the reaction.
  • a carbodiimide compound of 2 (x + y) equivalent or more was used, and an aryl (C1-C8) alkyl alcohol which may have a substituent, a urea transition product, and a cyclization reaction were performed.
  • a carbodiimide compound of 0.5 (x + y) equivalent or more is added so that all the carboxyl groups of the polyamino acid structure portion of the compound represented by the general formula (1) react to introduce a urea transfer product. Complete the reaction and cyclization reaction.
  • N-hydroxysuccinimide 1-hydroxybenzotriazole (HOBt)
  • N-hydroxy-5-norbornene-2,3-dicarboxylic acid Reaction aids such as imide (HOBN), 4-dimethylaminopyridine (DMAP), N, N-diisopropylethylamine, triethylamine may coexist, with DMAP being preferred.
  • the amount used is about 0.1 (x + y) to 5 (x + y) equivalent to the amount of carboxyl group (sum of x and y) in the general formula (2), preferably About 0.2 (x + y) to 2 (x + y) equivalent.
  • the amount of the aryl (C1 to C8) alkyl alcohol used in this reaction is 0.4 to 1.0 molar equivalent relative to 1 mol of the carboxyl group of the compound represented by the general formula (2).
  • the amount of aryl (C1 to C8) alkyl alcohol introduced is adjusted by adjusting the amount of aryl (C1 to C8) alkyl alcohol used according to the average number of polymerizations of the compound represented by formula (2). it can.
  • the reaction temperature is usually 15 to 30 ° C., preferably 20 to 30 ° C., particularly preferably 22 to 27 ° C.
  • the reaction time is 2 to 48 hours, preferably 6 to 36 hours.
  • the calculation of the reaction rate of 4-phenyl-1-butanol (PhBuOH) in the examples is as follows. ⁇ Calculation of reaction rate of 4-phenyl-1-butanol> Q1 is the total mass of the reaction solution before DIPCI charging. Let Q2 be the mass of the entire reaction solution after DIPCI preparation, The peak area value obtained by the following reversed phase HPLC obtained with the sample solution (sampling amount P1) before DIPCI was charged was AS, The peak area value obtained by the following reversed phase HPLC obtained with the sample solution after DIPCI charging (sampling amount P2) is AT, , (Both sample solutions used the same volumetric flask) are represented by the following formula.
  • the anion exchange HPLC measurement conditions in the examples are as follows. In addition, when the reaction product has a carboxyl group in anion exchange HPLC, the reaction product is retained on the column.
  • the mixture was washed with DMF (60 mL) and reacted at 25 ° C. for 22 hours.
  • the reaction rate of the ester bond of 4-phenyl-1-butanol was constant 20 hours after the start of the reaction.
  • anion exchange HPLC the reaction product was retained on the column.
  • the adhering part at the time of preparation was washed with DMF (75 mL) and stirred for 3 hours.
  • the cation exchange resin Dowex 50w8 was filtered off while washing with ethyl acetate, and the resulting reaction solution was added dropwise to a mixture of heptane and ethyl acetate and stirred. The mixture was allowed to stand overnight, and the resulting precipitate was collected by filtration and dried under reduced pressure to obtain 73.5 g of block copolymer 1.
  • Block copolymer 1 (17.60 mg) was dissolved in 1 mL of acetonitrile, and 1 mL of water and 2 mL of 0.5N aqueous sodium hydroxide solution were added. After stirring for 60 minutes at room temperature to hydrolyze the ester bond, the solution was neutralized with 1 mL of 4% phosphoric acid aqueous solution, and the liquid volume was adjusted to 25 mL with 50% aqueous acetonitrile. The prepared solution was quantified for 4-phenyl-1-butanol released by reverse phase HPLC. As a result of analysis, ester-linked 4-phenyl-1-butanol was 16.3% (w / w) of PEG-pAsp-Ac-1.
  • reaction rate of ester bond of 4-phenyl-1-butanol was 82.4%, and the introduction rate of 4-phenyl-1-butanol was 55.2% of the carboxyl groups of PEG-pAsp-Ac-1. is there.
  • Block copolymer 1 (501.4 mg) was accurately weighed, added with 25 mL of ethanol and suspended, and then dissolved with 35 mL of water. This block copolymer 1 solution was titrated with a 0.1 mol / L potassium hydroxide solution (potentiometric titration method), and the number of carboxyl groups per 1 g of the block copolymer 1 was calculated by the following formula. As a result, it was 0.05 mmol / g. As described above, when the carboxyl group is 0%, it is 0.1 mmol / g or less, so that the block copolymer 1 has no residual carboxyl group.
  • Block copolymer 1 (25.18 mg) was accurately weighed, and the internal standard solution was added to make exactly 1 mL to obtain a sample solution.
  • isopropyl isocyanate was precisely weighed in a container in which 5 mL of the internal standard solution had been placed in advance, and the internal standard solution was added to make exactly 20 mL. 2.5 mL of this solution was accurately weighed and the internal standard solution was added to make exactly 50 mL, which was used as a standard solution.
  • the sample solution and 1 ⁇ L of the standard solution are subjected to gas chromatography under the following conditions to determine the ratios Q T and Q S of the isopropyl isocyanate peak area to the peak area of the internal standard substance, respectively.
  • the amount of diisopropyl urea (% (w / w)) in 1 was calculated. As a result, it was 3.5% (w / w).
  • the adhering part at the time of preparation was washed with DMF (27 mL) and added, and further reacted at 25 ° C. for 22 hours.
  • the reaction rate of the ester bond of 4-phenyl-1-butanol was constant 18 hours after the start of the reaction.
  • the reaction product was retained in the column.
  • the block copolymer 2 was hydrolyzed in the same manner as in Example 1 and measured by reverse-phase HPLC. As a result, ester-linked 4-phenyl-1-butanol was found to be 15.5% of PEG-pAsp-Ac-2. (W / w). The reaction rate of ester bond of 4-phenyl-1-butanol is 77.3%, and the introduction rate of 4-phenyl-1-butanol is 56.4% of the carboxyl group of PEG-pAsp-Ac-2. .
  • the block copolymer 3 was hydrolyzed in the same manner as in Example 1 and measured by reverse phase HPLC.
  • ester-linked 4-phenyl-1-butanol was 17.2% of PEG-pAsp-Ac-3. (W / w).
  • the reaction rate of ester bond of 4-phenyl-1-butanol is 86.8%, and the introduction rate of 4-phenyl-1-butanol is 53.0% of the carboxy group of PEG-pAsp-Ac-3. .
  • the block copolymer 3 was titrated with a 0.1 mol / L potassium hydroxide solution in the same manner as in Example 1 (potentiometric titration method), the number of carboxyl groups per gram was 0.05 mmol / g. As described above, when the carboxyl group is 0%, it is 0.1 mmol / g or less, so that the block copolymer 3 has no residual carboxyl group.
  • the block copolymer 4 was hydrolyzed in the same manner as in Example 1 and measured by reverse phase HPLC.
  • ester-linked 4-phenyl-1-butanol was found to be 16.6% of PEG-pAsp-Ac-4 ( w / w). Therefore, the reaction rate of the ester bond of 4-phenyl-1-butanol used was 81.4%, and the introduction rate of 4-phenyl-1-butanol was 54.5% of the carboxyl groups of PEG-pAsp-Ac-4. %.
  • the block copolymer was hydrolyzed in the same manner as in Example 1 and measured by reverse phase HPLC. As a result, ester-linked 4-phenyl-1-butanol was found to be 15.5% (w / W). The reaction rate of ester bond of 4-phenyl-1-butanol is 49.0%, and the introduction rate of 4-phenyl-1-butanol is 49.0% of the carboxy group of PEG-pAsp-Ac-5. .
  • the block copolymer 5 was measured by anion exchange HPLC under the same conditions as in Example 1, and a peak was detected at a retention time of 14.3 minutes.
  • ester-linked 4-phenyl-1-butanol was found to be 17.0% (w / w) of the above general formula (2). )Met.
  • the reaction rate of ester bond of 4-phenyl-1-butanol is 77.0%, and the introduction rate of 4-phenyl-1-butanol is 53.9% of the carboxy group of PEG-pAsp-Ac-6. .
  • the crude crystals were measured by anion exchange HPLC under the same conditions as in Example 1, and a peak was detected at a retention time of 16.9 minutes.
  • the block copolymer 6 was hydrolyzed in the same manner as in Example 1 and measured by reverse phase HPLC. As a result, ester-bonded 4-phenyl-1-butanol was found to be 15.8% of the above general formula (2) ( w / w). The introduction rate of 4-phenyl-1-butanol was 50% after the second stage reaction.
  • the block copolymer 6 was titrated with a 0.1 mol / L potassium hydroxide solution in the same manner as in Example 1 (potentiometric titration method), the number of carboxyl groups per gram was 0.04 mol / g. As described above, when the carboxyl group is 0%, it is 0.1 mmol / g or less, so that the block copolymer 6 has no residual carboxyl group.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Polyamides (AREA)
  • Polyethers (AREA)
  • Medicinal Preparation (AREA)

Abstract

【課題】 一般式(2)で表される化合物から一般式(1)で表される化合物を製造する方法であって、置換基を有していてもよいアリール(C1~C8)アルキルアルコールの導入量及びpAsp(ポリアスパラギン酸)の残存カルボキシル基の量の制御を行う方法の提供。 【解決手段】 一般式(2)で表される化合物に、置換基を有していてもよいアリール(C1~C8)アルキルアルコールと、一般式(2)中のカルボキシル基の量(xとyの和)に対して2(x+y)当量以上のカルボジイミド系化合物とを溶媒中、15~30℃で2~48時間反応させることにより一般式(1)で表される化合物を得る製造方法。

Description

ブロック共重合体の製造方法
 本発明は、ブロック共重合体とそれを用いた薬物を含むミセル調製物、更に該ミセル調製物を有効成分とする抗癌剤におけるブロック共重合体の製造方法に関する。
 薬物、特に抗癌剤は水に殆ど溶解しない疎水性化合物が多い。この様な薬物を用いて所望の治療効果を得る為には、通常、薬物を可溶化して患者に投与する。従って、難水溶性薬物、特に難水溶性抗癌剤の可溶化は、経口用又は非経口用製剤、特に静脈内投与用製剤において重要である。
 難水溶性抗癌剤を可溶化させる方法の一つとして界面活性剤を添加する方法がある。例えば、パクリタキセルを可溶化するためのポリオキシエチレンヒマシ油誘導体(クレモホール)の使用が知られている。又、他の方法として、ミセルを形成するブロック共重合体を薬物担体として用いる方法が特許文献1、特許文献2又は特許文献3等に記載されている。特許文献4、特許文献5及び特許文献6にはポリエチレングリコール(PEG)構造部分とポリアミノ酸構造部分を有するブロック共重合体を薬物担体として用いるパクリタキセル封入ミセルが記載されている。
 特許文献5には、特許文献4で使用されているミセルを形成するブロック共重合体のポリアミノ酸構造部分の構造を変換することによって、優位に抗腫瘍効果の高いパクリタキセル封入ミセルが得られることが記載されている。
 特許文献6には、特許文献5とは異なる製造法によりミセルを形成するブロック共重合体のポリアミノ酸構造部分の構造中の残存カルボン酸構造が減少し、特許文献5に記載のパクリタキセル封入ミセルに比較して毒性が低下したことが記載されている。
特開平6-107565号公報 特開平6-206815号公報 特開平11-335267号公報 特開平2001-226294号公報 国際公開第2004/082718号 国際公開第2006/033296号
 特許文献6に記載のブロック共重合体の製造方法は、まず特許文献2に記載された方法により製造されたPEG-pAsp(ポリアスパラギン酸)-Acに置換基を有していてもよいアリール(C1~C8)アルキルアルコールを導入し、生成物を単離する。その後、pAspのウレア転移体の導入と環化反応を行い、pAspの残存カルボキシル基を減らしている。しかし、置換基を有していてもよいアリール(C1~C8)アルキルアルコールは、この2段階目の加温反応により一部脱離してしまう。このため、置換基を有していてもよいアリール(C1~C8)アルキルアルコールの導入量の調節は1段階目と2段階目の両方で行う必要があった。そのため、pAspの残存カルボキシル基及び置換基を有していてもよいアリール(C1~C8)アルキルアルコールの導入量の調節はこれまで困難であった。
 本発明者らは前記課題を解決するため鋭意検討した結果、驚くべきことに、特許文献5に記載のブロック共重合体の製造方法において、特定の限定した反応条件を適用することにより、特許文献6に記載のブロック共重合体のワンポットによる製造方法を見出した。更に、製造における前記困難さも解決し、本発明を完成した。
 即ち、本発明は、
1)下記一般式(2)
Figure JPOXMLDOC01-appb-C000003
[式中、R1は水素原子又は(C1~C5)アルキル基を示し、R2は(C1~C5)アルキレン基を示し、R3はメチレン基又はエチレン基を示し、R4は水素原子又は(C1~C4)アシル基を示す。nは20~500、xは0~100、yは0~100を示す。ただし、xとyの和は2~200である。]
で表される化合物と、置換基を有していてもよいアリール(C1~C8)アルキルアルコールと、一般式(2)中のカルボキシル基の量(xとyの和)に対して2(x+y)当量以上のカルボジイミド系化合物と溶媒中15~30℃で2~48時間反応させることを特徴とする、下記一般式(1)
Figure JPOXMLDOC01-appb-C000004
[式中、R1は水素原子又は(C1~C5)アルキル基を示し、R2は(C1~C5)アルキレン基を示し、R3はメチレン基又はエチレン基を示し、R4は水素原子又は(C1~C4)アシル基を示し、R5は水酸基、置換基を有していてもよいアリール(C1~C8)アルコキシ基又は-N(R6)-CO-NHR7を示す(ここで、R6及びR7は同一でも異なっていてもよく、(C3~C6)環状アルキル基若しくは三級アミノ基で置換されていてもよい(C1~C5)アルキル基を示す)。nは20~500、mは2~200、aは0~100、bは0~100を示す。ただし、aとbの和は1以上で且つmより大きくないものとする。R5が水酸基である割合がmの0~5%であり、置換基を有していてもよいアリール(C1~C8)アルコキシ基である割合がmの10~80%であり、-N(R6)-CO-NHR7である割合がmの11~30%である]
で表されるブロック共重合体の製造方法である。
2)R1がメチル基、R2がトリメチレン基、R3がメチレン基、R4がアセチル基であり、nが80~400、mは15~60、aは5~60、bは5~60である上記1)に記載のブロック共重合体の製造方法である。
3)カルボジイミド系化合物が、ジエチルカルボジイミド、ジイソプロピルカルボジイミド、ジシクロヘキシルカルボジイミド、又は、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド若しくはその無機酸塩である上記1)又は2)に記載のブロック共重合体の製造方法である。
4)カルボジイミド系化合物がジイソプロピルカルボジイミドである上記1)~3)のいずれか1つに記載のブロック共重合体の製造方法である。
 本発明のブロック共重合体の製造方法は、特許文献5記載の製造方法において反応温度を厳密に制御し、かつ、カルボジイミド系化合物を、一般式(2)中のカルボキシル基の量(xとyの和)に対して2(x+y)当量以上用いて反応を行うと、予想に反して、特許文献5に記載のブロック共重合体ではなく、特許文献6に記載のブロック共重合体が得られるというものである。
 本発明のブロック共重合体の製造方法は、置換基を有していてもよいアリール(C1~C8)アルキルアルコールの一般式(2)で表される化合物への導入率が調節できる。これは一旦導入されたアリール(C1~C8)アルキルアルコールが特許文献6に記載の製造方法のように環化で離脱せず、反応液中のフリーのアリール(C1~C8)アルキルアルコールが増加しないことによる。この結果、一般式(2)で表される化合物のpAspの未反応のカルボキシル基数を確実に減らすことができる。従って特許文献6に記載の製造法と比較して、本発明のブロック共重合体の製造方法は1段階の反応で容易に生成物の製造コントロールができる工業的に優れた製造方法である。
 その結果、特許文献6記載のブロック共重合体の製造方法と比較して、反応及び単離回数が1回となり、製造期間が短縮でき、更に使用する溶媒量を約半分に低減できる。
 本発明は、ポリエチレングリコール(PEG)構造部分とポリアミノ酸構造部分を有する下記一般式(2)[式中、R1は水素原子又は(C1~C5)アルキル基を示し、R2は(C1~C5)アルキレン基を示し、R3はメチレン基又はエチレン基を示し、R4は水素原子又は(C1~C4)アシル基を示す。nは20~500、xは0~100、yは0~100を示す。ただし、xとyの和は2~200である。なお、各数値は平均値である。]で表される化合物と、置換基を有していてもよいアリール(C1~C8)アルキルアルコールと、一般式(2)中のカルボキシル基の量(xとyの和)に対して2(x+y)当量以上のカルボジイミド系化合物とを溶媒中で15~30℃、好ましくは20~30℃で2~48時間反応させることを特徴とする、下記一般式(1)[式中、R1は水素原子又は(C1~C5)アルキル基を示し、R2は(C1~C5)アルキレン基を示し、R3はメチレン基又はエチレン基を示し、R4は水素原子又は(C1~C4)アシル基を示し、R5は水酸基、置換基を有していてもよいアリール(C1~C8)アルコキシ基又は-N(R6)-CO-NHR7を示す(ここで、R6及びR7は同一でも異なっていてもよく、(C3~C6)環状アルキル基若しくは三級アミノ基で置換されていてもよい(C1~C5)アルキル基を示す)。nは20~500、mは2~200、aは0~100、bは0~100を示す。ただし、aとbの和は1以上で且つmより大きくないものとする。R5が水酸基である割合がmの0~5%であり、置換基を有していてもよいアリール(C1~C8)アルコキシ基である割合がmの10~80%であり、-N(R6)-CO-NHR7である割合がmの11~30%である]で表されるブロック共重合体の製造方法である。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 本発明に使用される前記一般式(1)及び(2)で表される化合物において、R1としては、水素原子又は(C1~C5)アルキル基が挙げられるが、(C1~C5)アルキル基が好ましい。(C1~C5)アルキル基としては、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基等が挙げられるが、特にメチル基が好ましい。
 R2の(C1~C5)アルキレン基としては、具体的には、メチレン基、エチレン基、トリメチレン基、テトラメチレン基等が挙げられ、エチレン基、トリメチレン基が好ましい。
 R3としてはメチレン基又はエチレン基が挙げられ、メチレン基が好ましい。
 R4としては水素原子又は(C1~C4)アシル基が挙げられ、(C1~C4)アシル基が好ましく、具体的には、ホルミル基、アセチル基、プロピオニル基、ブチロイル基等が挙げられ、アセチル基が特に好ましい。
 前記一般式(2)で表される化合物において、nは20~500、好ましくは80~400、xは0~100、好ましくは5~60、yは0~100、好ましくは5~60、xとyの和は2~200、好ましくは10~100、特に好ましくは5~60である。
 前記一般式(1)で表される化合物において、R5におけるアリール(C1~C8)アルコキシ基としては、フェニル基、ナフチル基等の芳香族炭化水素基が結合した直鎖あるいは分岐鎖の(C1~C8)アルコキシ基が挙げられる。具体的には例えば、ベンジルオキシ基、フェネチルオキシ基、フェニルプロポキシ基、フェニルブトキシ基、フェニルペンチルオキシ基、フェニルヘキシルオキシ基、フェニルヘプチルオキシ基、フェニルオクチルオキシ基、ナフチルエトキシ基、ナフチルプロポキシ基、ナフチルブトキシ基、ナフチルペンチルオキシ基等が挙げられる。
 置換基を有していてもよいアリール(C1~C8)アルコキシ基における置換基としては、メトキシ基、エトキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基等の低級アルコキシ基、フッ素原子、塩素原子、臭素原子等のハロゲン原子、ニトロ基、シアノ基等が挙げられる。該置換基の置換数が1~置換可能な最大数までの、又、置換可能な全ての位置の置換体が本発明に含まれるが、無置換が好ましい。
 置換基を有していてもよいアリール(C1~C8)アルコキシ基としては、無置換フェニル(C1~C6)アルコキシ基が挙げられる。例えば、無置換ベンジルオキシ基、無置換フェネチルオキシ基、無置換フェニルプロポキシ基、無置換フェニルブトキシ基、無置換フェニルペンチルオキシ基、無置換フェニルヘキシルオキシ基等である。好ましくは無置換ベンジルオキシ基、無置換フェニルブトキシ基である。
 R6及びR7における(C3~C6)環状アルキル基若しくは三級アミノ基で置換されていてもよい(C1~C5)アルキル基として具体的には、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、メチル基、エチル基、イソプロピル基、n-ブチル基、3-ジメチルアミノプロピル基、5-ジメチルアミノペンチル基等が挙げられる、中でも、エチル基、イソプロピル基、シクロヘキシル基、3-ジメチルアミノプロピル基が好ましく、特にイソプロピル基が好ましい。
 前記一般式(1)で表される化合物において、nは前記一般式(2)と同様の範囲が好ましく、mは2~100、好ましくは10~100、特に好ましくは15~60である。aとbの和は1以上で且つmより大きくない。
 前記一般式(1)においてmは、ポリアミノ酸構造部分のアミノ酸構造単位の重合数を意味する。ポリアミノ酸構造部分には前記一般式(1)のR5が水酸基、置換基を有していてもよいアリール(C1~C8)アルコキシ基又は-N(R6)-CO-NHR7である各構造単位と環状イミド構造をとる構造単位が含まれる。
 前記一般式(1)のR5が水酸基である割合はmの0~5%、好ましくは0~3%である。置換基を有していてもよいアリール(C1~C8)アルコキシ基である割合はmの10~80%、好ましくは20~80%である。-N(R6)-CO-NHR7である割合はmの11~30%である。
 前記一般式(1)で表される化合物のR5が水酸基である割合がmの0%であることが殊更に好ましい。水酸基の割合がmの0%とは、一般式(2)で表される化合物のポリアミノ酸構造部分のカルボキシル基が全て置換基を有していてもよいアリール(C1~C8)アルコキシ基及び/又は-N(R6)-CO-NHR7で置換されていることを意味する。なお、mの水酸基の割合は陰イオン交換カラムを用いた高速液体クロマトグラフにより分析でき、カラムに保持されない場合はmが0%であることを示す。又、本発明では、mの水酸基の割合は塩基による電位差滴定法で分析し、mが0%の場合、0.1mmol/g以下であることで示される。
 本発明に使用される前記一般式(1)及び一般式(2)で表される化合物のポリアミノ酸構造部分において、各々のアミノ酸構造単位部分はランダムに結合していてもブロック状に結合していてもよい。
 本発明に使用される置換基を有していてもよいアリール(C1~C8)アルキルアルコールとは、前記の置換基を有していてもよいアリール(C1~C8)アルコキシ基に対応するアルコールである。
 置換基を有していてもよいアリール(C1~C8)アルキルアルコールは、市販されている化合物を用いてもよい。又、公知の有機合成法により調製される化合物、公知の有機反応を適用して調製される化合物を用いることもできる。
 次に、前記一般式(2)で表される化合物とカルボジイミド系化合物との反応について説明する。
 本反応は溶媒中で行うが、使用する溶媒としては、例えば、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、アセトニトリル、テトラヒドロフラン、ジオキサン等の極性溶媒、ベンゼン、n-ヘキサン、ジエチルエーテル等の非極性溶媒が挙げられ、更に水あるいはそれらの混合溶媒等、特に限定されない。溶媒の使用量は、通常、原料化合物に対して1~100重量倍程度用いる。
 本反応に使用するカルボジイミド系化合物としては、(C3~C6)環状アルキル基若しくは三級アミノ基で置換されていてもよい(C1~C5)アルキル基を有するカルボジイミド系化合物が挙げられる。具体的には例えば、ジエチルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDC)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC・HCl)、ジシクロヘキシルカルボジイミド(DCC)、ジイソプロピルカルボジイミド(DIPCI)等が挙げられる。これらのうち好ましくはDCC又はDIPCIであり、特に好ましくはDIPCIである。
 本反応におけるカルボジイミド系化合物の使用量は、前記一般式(2)中のカルボキシル基の量(xとyの和)に対して2(x+y)当量以上であり、更に好ましくは2(x+y)当量~5(x+y)当量である。過剰量のカルボジイミド系化合物を反応温度15℃~30℃で用いることにより、前記一般式(2)で表される化合物のポリアミノ酸構造部分にウレア転移体の導入と環化反応を、置換基を有していてもよいアリール(C1~C8)アルキルアルコールの脱離を起こさずに行うことができる。カルボジイミド系化合物は反応当初から全量を反応系に加えても、分割して反応の途中で適宜添加して用いることでもよい。好ましくは、2(x+y)当量以上のカルボジイミド系化合物を用い、置換基を有していてもよいアリール(C1~C8)アルキルアルコールの導入反応、ウレア転移体の導入反応、環化反応を行った後、前記一般式(1)で表される化合物のポリアミノ酸構造部分のカルボキシル基がすべて反応するように、0.5(x+y)当量以上のカルボジイミド系化合物を追加して、ウレア転移体の導入反応と環化反応を完了させる。
 前記一般式(2)で表される化合物とカルボジイミド系化合物との反応の際、N-ヒドロキシサクシンイミド、1-ヒドロキシベンゾトリアゾール(HOBt)、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボン酸イミド(HOBN)、4-ジメチルアミノピリジン(DMAP)、N,N-ジイソプロピルエチルアミン、トリエチルアミン等の反応助剤を共存させてもよく、中でもDMAPが好ましい。反応助剤を使用する場合、その使用量は前記一般式(2)中のカルボキシル基の量(xとyの和)に対して0.1(x+y)~5(x+y)当量程度、好ましくは0.2(x+y)~2(x+y)当量程度である。
 本反応に使用するアリール(C1~C8)アルキルアルコールの使用量は、前記一般式(2)で表される化合物のカルボキシル基1モルに対して、0.4~1.0モル当量である。前記一般式(2)で表される化合物の平均重合数に応じて使用するアリール(C1~C8)アルキルアルコールの使用量を調節することで、アリール(C1~C8)アルキルアルコールの導入量を調節できる。
 反応温度は通常15~30℃であり、20~30℃で行うのが好ましく、特に好ましくは22~27℃である。反応時間は2~48時間、好ましくは6~36時間である。
 以下、具体的な実施例を示し、本発明を説明するが、本発明は以下の例によって限定されるものではない。
 実施例における4-フェニル-1-ブタノール(PhBuOH)の反応率の算出は以下のとおりである。
<4-フェニル-1-ブタノールの反応率の算出>
 DIPCI仕込前の反応液全体の質量をQ1、
 DIPCI仕込後の反応液全体の質量をQ2、とし、
 DIPCI仕込前の試料溶液(サンプリング量P1)で得られる下記の逆相HPLCにて求めたピーク面積値をAS、
 DIPCI仕込後の試料溶液(サンプリング量P2)で得られる下記の逆相HPLCにて求めたピーク面積値をAT、
とするとき、(両試料溶液とも同じメスフラスコを使用した)以下の式で表される。
Figure JPOXMLDOC01-appb-C000007
 実施例における陰イオン交換HPLC測定条件は以下のとおりである。なお、陰イオン交換HPLCにおいて反応物がカルボキシル基を有すると反応物がカラムに保持される。
<陰イオン交換HPLC測定条件>
 カラム:TSKgel DEAE-5PW(東ソー株式会社製)
 サンプル濃度:5mg/mL
 注入量:20μL
 カラム温度:40℃
 移動相
  (A)20mMトリス塩酸緩衝液(pH8.0):アセトニトリル=80:20
  (B)20mMトリス塩酸緩衝液+1M塩化ナトリウム水溶液(pH8.0):アセトニトリル=80:20
 流速:1mL/min
 グラジエント条件 B%(分):10(0)、10(5)、100(40)、
                10(40.1)、stop(50.1)
 検出器:紫外可視分光光度計検出器(検出波長260nm)
 実施例における逆相HPLC測定条件は以下のとおりである。なお、4-フェニル-1-ブタノールの反応率も同じ条件で測定を行った。
<逆相HPLC測定条件>
 [HPLC]-絶対検量線法-
  カラム:Inertsil ODS-3 5μm(4.6 mmI.D.×150 mmL)
  注入量:20 μL
  カラム温度:40℃
  移動相:0.1%HPO/(HO:CHCN=60:40)
  流速:1.0 mL/min.
  検出器:紫外可視分光光度計検出器(検出波長260nm)
実施例1
ブロック共重合体1の製造
 特許文献2に記載された方法にて製造したPEG(平均分子量12000)-pAsp(ポリアスパラギン酸;平均重合数41.6)-Ac(前記一般式(2)のR1がメチル基、R2がトリメチレン基、R3がメチレン基、R4がアセチル基、nが約272、xが約10.4、yが約31.2、以下PEG-pAsp-Ac-1と略す)65.0gにDMF(1132mL)を加え、35℃で溶解し、DMAP(19.2g)及び4-フェニル-1-ブタノール(15.9g:0.106モル:PEG-pAsp-Ac-1のカルボシキル基1モルに対し、0.67モル当量)を加え、仕込み時の付着分をDMF(66mL)で洗いこんだ。溶解確認後、反応液を25℃とし、DIPCI(39.7g:PEG-pAsp-Ac-1のカルボシキル基に対して2(x+y)当量=83.2当量)を添加、仕込み時の付着分をDMF(60mL)で洗いこみ、25℃で22時間反応させた。このとき、反応開始20時間後で、4-フェニル-1-ブタノールのエステル結合の反応率は一定になっていた。一方、陰イオン交換HPLCによる分析で、反応物はカラムに保持されていた。反応22時間後にDIPCI(9.92g:PEG-pAsp-Ac-1のカルボシキル基に対して0.5(x+y)当量=20.8当量)を添加し反応を継続させた。反応物が陰イオン交換HPLCによる分析においてカラムに保持されなくなることを確認し、反応開始26時間後に反応を終了させた。反応液をヘプタンと酢酸エチルの混液に滴下し、撹拌した。一晩静置し、得られた沈殿をろ過回収して減圧乾燥し、粗結晶76.2gを得た。
 この粗結晶(75.0g)をDMF(1050mL)に溶解後、陽イオン交換樹脂ダウエックス50w8(248mL)を加えた。さらに仕込み時の付着分をDMF(75mL)で洗いこんで加え、3時間撹拌した。陽イオン交換樹脂ダウエックス50w8を酢酸エチルで洗いながらろ去後、得られた反応液をヘプタンと酢酸エチルの混液に滴下し、撹拌した。一晩静置し、得られた沈殿をろ過回収して減圧乾燥し、ブロック共重合体1を73.5g得た。
 ブロック共重合体1(17.60mg)をアセトニトリル1mLに溶解し、水1mL及び0.5N水酸化ナトリウム水溶液2mLを加えた。室温で60分攪拌してエステル結合を加水分解した後、4%リン酸水溶液1mLで中和し、50%含水アセトニトリルで液量を25mLに調製した。調製液を逆相HPLCにて遊離した4-フェニル-1-ブタノールを定量した。分析の結果、エステル結合した4-フェニル-1-ブタノールはPEG-pAsp-Ac-1の16.3%(w/w)であった。4-フェニル-1-ブタノールのエステル結合の反応率は82.4%であり、4-フェニル-1-ブタノールの導入率はPEG-pAsp-Ac-1のカルボキシル基のうちの55.2%である。
 このブロック共重合体1を下記測定条件における陰イオン交換HPLCで測定したところ、カラムに保持されるピークは認められなかった。
 ブロック共重合体1(501.4mg)を精密に量り、エタノール25mLを加えて懸濁後、水35mLを加え溶解した。0.1mol/L水酸化カリウム液でこのブロック共重合体1溶液を滴定(電位差滴定法)し、以下の式でブロック共重合体1の1gあたりのカルボキシル基数を算出した。その結果、0.05mmol/gであった。前記したとおり、カルボキシル基が0%の場合は0.1mmol/g以下であるため、ブロック共重合体1には残存カルボキシル基は存在しない。
Figure JPOXMLDOC01-appb-C000008
  注)f:0.1mol/L 水酸化カリウム液のファクター
 ブロック共重合体中のウレア転移体の結合量を確認するため、ブロック共重合体中のジイソプロピルウレア量を測定した。ブロック共重合体1(25.18mg)を精密に量り、内標準溶液を加えて正確に1mLとし、試料溶液とした。別に、あらかじめ内標準溶液5mLを入れた容器に、イソシアン酸イソプロピルを精密に量り、内標準溶液を加えて正確に20mLとした。この液2.5mLを正確に量り、内標準溶液を加えて正確に50mLとし、標準溶液とした。試料溶液及び標準溶液1μLにつき、以下の条件でガスクロマトグラフィーを行い、内標準物質のピーク面積に対するイソシアン酸イソプロピルのピーク面積の比Q及びQをそれぞれ求め、次式により、ブロック共重合体1中のジイソプロピルウレア量(%(w/w))を算出した。その結果、3.5%(w/w)であった。
Figure JPOXMLDOC01-appb-C000009
 内標準溶液:酢酸エチルのアセトニトリル溶液(1→2000)
 試験条件
  検出器:水素炎イオン化検出器
  カラム:内径0.53mm、長さ30mのフューズドシリカ管の内面にガスクロマトグラフィー用ポリエチレングリコールを厚さ1.0μmで被覆
  カラム温度:50℃を8分間、その後、毎分25℃で200℃まで昇温
  注入口温度:270℃付近の一定温度
  検出器温度:250℃付近の一定温度
  キャリヤーガス:ヘリウム
  流量:3.5mL/min
  スプリット比: 1:50
  面積測定範囲:10分
実施例2
ブロック共重合体2の製造
 特許文献2に記載された方法にて製造したPEG(平均分子量12000)-pAsp(ポリアスパラギン酸;平均重合数36.4)-Ac(前記一般式(2)のR1がメチル基、R2がトリメチレン基、R3がメチレン基、R4がアセチル基、nが約272、xが約9.1、yが約27.3、以下PEG-pAsp-Ac-2と略す)30.0gにDMF(536mL)を加え、35℃で溶解し、DMAP(8.18g)及び4-フェニル-1-ブタノール(7.35g:0.049モル:PEG-pAsp-Ac-2のカルボシキル基1モルに対し、0.73モル当量)を加え、仕込み時の付着分をDMF(27mL)で洗いこんだ。溶解確認後、反応液を25℃とし、DIPCI(16.9g:PEG-pAsp-Ac-2のカルボシキル基に対して2(x+y)当量=72.8当量)を添加した。仕込み時の付着分をDMF(27mL)で洗いこんで加え、さらに25℃で22時間反応させた。このとき、反応開始18時間後で、4-フェニル-1-ブタノールのエステル結合の反応率は一定になっていた。一方、陰イオン交換カラムを用いた高速液体クロマトグラフによる分析で、反応物はカラムに保持されていた。反応22時間後にDIPCI(4.23g:PEG-pAsp-Ac-2のカルボシキル基に対して0.5(x+y)当量=18.2当量)を添加し反応を継続させ、反応物が陰イオン交換HPLCによる分析においてカラムに保持されなくなることを確認し、反応開始後26時間後に反応を終了させた。反応液をヘプタンと酢酸エチルの混液に滴下し、撹拌した。一晩静置し、得られた沈殿をろ過回収して減圧乾燥し、粗結晶34.3gを得た。
 この粗結晶(33.5g)をDMF(469mL)に溶解後、陽イオン交換樹脂ダウエックス50w8(111mL)を加え、仕込み時の付着分をDMF(34mL)で洗いこみ、3時間撹拌した。陽イオン交換樹脂ダウエックス50w8を酢酸エチルで洗いながらろ去後、得られた反応液をヘプタンと酢酸エチルの混液に滴下し、撹拌した。一晩静置し、得られた沈殿をろ過回収して減圧乾燥し、ブロック共重合体2を32.2g得た。
 ブロック共重合体2を実施例1と同様の方法で加水分解し、逆相HPLCにて測定したところ、エステル結合した4-フェニル-1-ブタノールはPEG-pAsp-Ac-2の15.5%(w/w)であった。4-フェニル-1-ブタノールのエステル結合の反応率は77.3%であり、4-フェニル-1-ブタノールの導入率はPEG-pAsp-Ac-2のカルボキシル基のうち56.4%である。
 ブロック共重合体2を実施例1と同様の条件で陰イオン交換HPLCにて測定したところ、カラムに保持されるピークは認められなかった。
 ブロック共重合体2の溶液を実施例1と同様の方法で0.1mol/L水酸化カリウム液で滴定(電位差滴定法)したところ、1gあたりのカルボキシル基数は、0.05mmol/gであった。前記したとおり、カルボキシル基が0%の場合は0.1mmol/g以下であるため、ブロック共重合体2には残存カルボキシル基は存在しない。
 ブロック共重合体2を実施例1と同様の方法でブロック共重合体2中のジイソプロピルウレア量を算出したところ、3.0%(w/w)であった。
実施例3
ブロック共重合体3の製造
 特許文献2に記載された方法にて製造したPEG(平均分子量12000)-pAsp(ポリアスパラギン酸;平均重合数46.8)-Ac(前記一般式(1)のR1がメチル基、R2がトリメチレン基、R3がメチレン基、R4がアセチル基、nが約272、xが約11.7、yが約35.1、以下PEG-pAsp-Ac-3と略す)30.0gにDMF(570mL)を加え、35℃で溶解し、DMAP(9.68g)及び4-フェニル-1-ブタノール(7.29g:0.0486モル:(PEG-pAsp-Ac-3のカルボシキル基1モルに対し、0.61モル当量)を加え、仕込み時の付着分をDMF(32mL)で洗いこんだ。溶解確認後、反応液を25℃とし、DIPCI(20.00g:PEG-pAsp-Ac-3のカルボシキル基に対して2(x+y)当量=93.6当量)を添加、仕込み時の付着分をDMF(32mL)で洗いこみ、同温度で22時間反応させた。このとき、反応開始18時間後で、4-フェニル-1-ブタノールの反応率は一定になっていた。一方、陰イオン交換HPLCによる分析で、反応物は、カラムに保持されていた。反応開始22時間後にDIPCI(5.0g:PEG-pAsp-Acのカルボシキル基に対して0.5(x+y)当量=23.4当量)を添加し反応を継続させた。反応物が陰イオン交換カラムを用いた高速液体クロマトグラフによる分析においてカラムに保持されなくなることを確認し、反応開始29時間後に反応を終了した。反応液をヘプタンと酢酸エチルの混液に滴下し、撹拌した。一晩静置し、得られた沈殿をろ過回収して減圧乾燥し、粗結晶35.4gを得た。
 この粗結晶(34.5g)をDMF(483mL)に溶解後、陽イオン交換樹脂ダウエックス50w8(114mL)を加え、仕込み時の付着分をDMF(35mL)で洗いこんだ。その後3時間撹拌したのち陽イオン交換樹脂ダウエックス50w8を酢酸エチルで洗いながらろ去後、得られた反応液をヘプタンと酢酸エチルの混液に滴下し、撹拌した。一晩静置し、得られた沈殿をろ過回収して減圧乾燥し、ブロック共重合体3を33.1g得た。
 ブロック共重合体3を実施例1と同様の方法で加水分解し、逆相HPLCにて測定したところ、エステル結合した4-フェニル-1-ブタノールはPEG-pAsp-Ac-3の17.2%(w/w)であった。4-フェニル-1-ブタノールのエステル結合の反応率は86.8%であり、4-フェニル-1-ブタノールの導入率はPEG-pAsp-Ac-3のカルボシキル基のうち53.0%である。
 ブロック共重合体3を実施例1と同様の条件で陰イオン交換HPLCにて測定したところ、カラムに保持されるピークは認められなかった。
 ブロック共重合体3を実施例1と同様の方法で0.1mol/L水酸化カリウム液で滴定(電位差滴定法)したところ、1gあたりのカルボキシル基数は、0.05mmol/gであった。前記したとおり、カルボキシル基が0%の場合は0.1mmol/g以下であるため、ブロック共重合体3には残存カルボキシル基は存在しない。
 ブロック共重合体3を実施例1と同様の方法でジイソプロピルウレア量を算出したところ、ブロック共重合体3中、ジイソプロピルウレアは3.8%(w/w)であった。
実施例4
ブロック共重合体4の製造
 特許文献2に記載された方法にて製造したPEG(平均分子量12000)-pAsp(ポリアスパラギン酸;平均重合数41.6)-Ac(前記一般式(1)のR1がメチル基、R2がトリメチレン基、R3がメチレン基、R4がアセチル基、nが約272、xが約10.4、yが約31.2、以下PEG-pAsp-Ac-4と略す)62.0gにDMF(1102mL)を加え、35℃で溶解し、DMAP(18.69g)及び4-フェニル-1-ブタノール(15.50g:0.103モル:PEG-pAsp-Ac-4のカルボシキル基1モルに対し、0.67モル当量)を加え、仕込み時の付着分をDMF(61mL)で洗いこんだ。溶解確認後、反応液を25℃とし、DIPCI(38.62g:PEG-pAsp-Ac-4のカルボシキル基に対して2(x+y)当量=83.2当量)を添加、仕込み時の付着分をDMF(61mL)で洗いこみ、25℃で22時間反応させた。このとき、反応開始20時間後で、4-フェニル-1-ブタノールの反応率は一定になっていた。一方、陰イオン交換カラムを用いた高速液体クロマトグラフによる分析で、反応物は、カラムに保持されていた。反応22時間後にDIPCI(9.66g:PEG-pAsp-Acのカルボシキル基に対して0.5(x+y)当量=20.8当量)を添加し反応を継続させ、反応物が陰イオン交換HPLCによる分析においてカラムに保持されなくなることを確認し、反応開始25時間後に反応を終了し、反応液をヘプタンと酢酸エチルの混液に滴下し、撹拌した。一晩静置し、得られた沈殿をろ過回収して減圧乾燥し、粗結晶72.9gを得た。
 この粗結晶(71.5g)をDMF(1001mL)に溶解後、陽イオン交換樹脂ダウエックス50w8(236mL)を加え、仕込み時の付着分をDMF(72mL)で洗いこみ、3時間撹拌した。陽イオン交換樹脂ダウエックス50w8を酢酸エチルで洗いながらろ去後、得られた反応液をヘプタンと酢酸エチルの混液に滴下し、撹拌した。一晩静置し、得られた沈殿をろ過回収して減圧乾燥し、ブロック共重合体4を69.7g得た。
 ブロック共重合4を実施例1と同様の方法で加水分解し、逆相HPLCにて測定したところ、エステル結合した4-フェニル-1-ブタノールはPEG-pAsp-Ac-4の16.6%(w/w)であった。従って用いた4-フェニル-1-ブタノールのエステル結合の反応率は81.4%であり、4-フェニル-1-ブタノールの導入率はPEG-pAsp-Ac-4のカルボキシル基のうち54.5%である。
 ブロック共重合体4を実施例1と同様の条件で陰イオン交換HPLCにて測定したところ、カラムに保持されるピークは認められなかった。
 ブロック共重合体4の溶液を実施例1と同様の方法で0.1mol/L水酸化カリウム液で滴定(電位差滴定法)したところ、1gあたりのカルボキシル基数は、0.05mmol/gであった。前記したとおり、カルボキシル基が0%の場合は0.1mmol/g以下であるため、ブロック共重合体4には残存カルボキシル基は存在しない。
 ブロック共重合体4を実施例1と同様の方法でジイソプロピルウレア量を算出したところ、ブロック共重合体4中、ジイソプロピルウレアは3.3%(w/w)であった。
比較例1(上記特許文献5実施例記載の製造法による製造)
ブロック共重合体5の製造
 特許文献2に記載された方法にて製造したPEG(平均分子量12000)-pAsp(ポリアスパラギン酸;平均重合数43.2)-Ac(上記一般式(2)のR1がメチル基、R2がトリメチレン基、R3がメチレン基、R4がアセチル基、nが約272、xが約10.8、yが約32.4、以下PEG-pAsp-Ac-5と略す)3.50gにDMF(70mL)を加え、35℃で溶解し、DMAP(0.87g)及び4-フェニル-1-ブタノール(1.34g:0.0089モル:PEG-pAsp-Ac-5のカルボシキル基1モルに対して1.00モル当量)、DIPCI(1.12g:PEG-pAsp-Ac-5のカルボシキル基1モルに対して1当量)を添加し、35℃で26時間反応させた。この反応液をジイソプロピルエーテルとエタノールの混液に滴下し、沈殿をろ過回収して減圧乾燥し、粗結晶3.70gを得た。この粗結晶を50%アセトニトリル水溶液に溶解後、陽イオン交換樹脂ダウエックス50w8(40mL)に通液し、更に、50%アセトニトリルで洗浄した。溶出液を減圧濃縮後、凍結乾燥してブロック共重合体5を3.72g得た。
 ブロック共重合体を実施例1と同様の方法で加水分解し、逆相HPLCにて測定したところ、エステル結合した4-フェニル-1-ブタノールは上記一般式(2)の15.5%(w/w)であった。4-フェニル-1-ブタノールのエステル結合の反応率は49.0%であり、4-フェニル-1-ブタノールの導入率はPEG-pAsp-Ac-5のカルボシキル基のうち49.0%である。
 ブロック共重合体5を実施例1と同様の条件で陰イオン交換HPLCにて測定し、保持時間14.3分にピークが検出された。
 ブロック共重合体5を実施例1と同様の方法で0.1mol/L水酸化カリウム液で滴定(電位差滴定法)したところ、1gあたりのカルボキシル基数を算出は、0.23mmol/gであった。前記したとおり、カルボキシル基が0%の場合は0.1mmol/g以下であるため、ブロック共重合体5にはカルボキシル基が残存していることがわかる。
 ブロック共重合体5を実施例1と同様の方法でジイソプロピルウレア量を算出したところ、2.3%(w/w)であった。
比較例2(上記特許文献6実施例記載の製造法による製造)
ブロック共重合体6の製造
 特許文献2に記載された方法にて製造したPEG(平均分子量12000)-pAsp(ポリアスパラギン酸;平均重合数41.0)-Ac(前記一般式(2)のR1がメチル基、R2がトリメチレン基、R3がメチレン基、R4がアセチル基、nが約272、xが約10.3、yが約30.8、以下PEG-pAsp-Ac-6と略す)1.73kgにDMF(13.0L)を加え、35℃で溶解し、DMAP(412g、DMFによる洗いこみ8.7L)及び4-フェニル-1-ブタノール(443g:2.95モル:PEG-pAsp-Ac-6のカルボシキル基1モルに対して0.70モル当量、DMFによる洗いこみ2.2L)を加え、反応液を22.5℃に冷却した。DIPCI(532g:PEG-pAsp-Ac-6のカルボシキル基1モルに対して1当量、DMFによる洗いこみ2.2L)を添加し、22.5℃で22時間反応させた。反応液に酢酸エチルとヘプタンを加えて撹拌し、得られた沈殿をろ過回収して減圧乾燥し、粗結晶2.08kgを得た。
 粗結晶を実施例1と同様の方法で加水分解し、逆相HPLCにて測定したところ、エステル結合した4-フェニル-1-ブタノールは上記一般式(2)の17.0%(w/w)であった。4-フェニル-1-ブタノールのエステル結合の反応率は77.0%であり、4-フェニル-1-ブタノールの導入率はPEG-pAsp-Ac-6のカルボシキル基のうち53.9%である。
 粗結晶を実施例1と同様の条件で陰イオン交換HPLCにて測定し、保持時間16.9分にピークが検出された。
 上記で得られた粗結晶(1.94kg)にDMF14.6Lを加え、31℃で溶解し、DMAP(307g、DMFによる洗いこみ9.7L)及びDIPCI(491g:PEG-pAsp-Acのカルボシキル基に対して1当量、DMFによる洗いこみ4.9L)を添加し、31℃で20時間反応させた。反応液に酢酸エチルとヘプタンを加えて撹拌し、得られた沈殿をろ過回収して減圧乾燥し、粗結晶1.85kgを得た。この粗結晶1.83kgをDMF(22.0L)に溶解後、陽イオン交換樹脂ダウエックス50w8(6.0L)を加え、仕込み時の付着分をDMF(5.5mL)で洗いこみ、1時間撹拌した。陽イオン交換樹脂ダウエックス50w8を酢酸エチル(69L)で洗いながらろ去後、得られた反応液に酢酸エチルとヘプタンを加えて撹拌し、得られた沈殿をろ過回収して減圧乾燥し、ブロック共重合体6を1.79kg得た。
 ブロック共重合体6を実施例1と同様の方法で加水分解し、逆相HPLCにて測定したところ、エステル結合した4-フェニル-1-ブタノールは上記一般式(2)の15.8%(w/w)であった。4-フェニル-1-ブタノールの導入率は二段階目の反応後には50%となった。
 ブロック共重合体6を実施例1と同様の条件で陰イオン交換HPLCにて測定したところ、カラムに保持されるピークは認められなかった。
 ブロック共重合体6を実施例1と同様の方法で0.1mol/L水酸化カリウム液で滴定(電位差滴定法)したところ、1gあたりのカルボキシル基数は、0.04mol/gであった。前記したとおり、カルボキシル基が0%の場合は0.1mmol/g以下であるため、ブロック共重合体6には残存カルボキシル基は存在しない。
 ブロック共重合体6を実施例1と同様の方法でジイソプロピルウレア量を算出したところ、3.6%(w/w)であった。
 実施例1~4及び比較例1~2で得られたブロック共重合体について結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000010
 注)陰イオン交換HPLCにおける未検出とは、保持されたピークが認められなかったことを意味する。
 表1に示すようにいずれのブロック共重合体も同様の4-フェニル-1-ブタノール含量を示した。一方で、ブロック共重合体1、2、3、4及び6は、陰イオン交換HPLCでの測定においてカラムに保持されず、同等の残存カルボキシル基数を示しており、これらの結果は、実質的にカルボキシル基を有しないことを示している。ジイソプロピルウレア量については、ブロック共重合体5のみ、その含量が小さい。以上の結果より、本発明のブロック共重合体は、特許文献5記載のブロック共重合体とは異なり、特許文献6記載のブロック共重合体6と同じであることが示された。
 比較例2に記載のブロック共重合体の製造法では、一度目的とする4-フェニル-1-ブタノール含量より多くの4-フェニル-1-ブタノールを導入し、2段階目の反応で4-フェニル-1-ブタノールを切り出すことで導入量を調整しているため、2つの異なる反応を制御するものである。さらに2段階目の反応では、pAspの残存カルボキシル基の調節も必要であることから、製造コントロールが複雑で実際上困難である。一方、本発明では、1つの反応でブロック共重合体を製造することで4-フェニル-1-ブタノール含量を制御できる。従って、本発明による製造法は特許文献6記載の製造法と比較して、生成物の製造コントロールが容易な工業的に優れた製造方法であることが示された。

Claims (4)

  1.  下記一般式(2)
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1は水素原子又は(C1~C5)アルキル基を示し、R2は(C1~C5)アルキレン基を示し、R3はメチレン基又はエチレン基を示し、R4は水素原子又は(C1~C4)アシル基を示す。nは20~500、xは0~100、yは0~100を示す。ただし、xとyの和は2~200である。]
    で表される化合物と、置換基を有していてもよいアリール(C1~C8)アルキルアルコールと、一般式(2)中のカルボキシル基の量(xとyの和)に対して2(x+y)当量以上のカルボジイミド系化合物と溶媒中15~30℃で2~48時間反応させることを特徴とする下記一般式(1)
    Figure JPOXMLDOC01-appb-C000002
    [式中、R1は水素原子又は(C1~C5)アルキル基を示し、R2は(C1~C5)アルキレン基を示し、R3はメチレン基又はエチレン基を示し、R4は水素原子又は(C1~C4)アシル基を示し、R5は水酸基、置換基を有していてもよいアリール(C1~C8)アルコキシ基又は-N(R6)-CO-NHR7を示す(ここで、R6及びR7は同一でも異なっていてもよく、(C3~C6)環状アルキル基若しくは三級アミノ基で置換されていてもよい(C1~C5)アルキル基を示す)。nは20~500、mは2~200、aは0~100、bは0~100を示す。ただし、aとbの和は1以上で且つmより大きくないものとする。R5が水酸基である割合がmの0~5%であり、置換基を有していてもよいアリール(C1~C8)アルコキシ基である割合がmの10~80%であり、-N(R6)-CO-NHR7である割合がmの11~30%である]
    で表されるブロック共重合体の製造方法。
  2.  R1がメチル基、R2がトリメチレン基、R3がメチレン基、R4がアセチル基であり、nが80~400、mは15~60、aは5~60、bは5~60である請求項1に記載のブロック共重合体の製造方法。
  3.  カルボジイミド系化合物が、ジエチルカルボジイミド、ジイソプロピルカルボジイミド、ジシクロヘキシルカルボジイミド、又は、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド若しくはその無機酸塩である請求項1又は2に記載のブロック共重合体の製造方法。
  4.  カルボジイミド系化合物がジイソプロピルカルボジイミドである請求項1~3のいずれか1項に記載のブロック共重合体の製造方法。
PCT/JP2012/072160 2011-09-11 2012-08-31 ブロック共重合体の製造方法 WO2013035641A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN201280043928.7A CN103874722B (zh) 2011-09-11 2012-08-31 嵌段共聚物的制造方法
US14/241,924 US9346923B2 (en) 2011-09-11 2012-08-31 Method for manufacturing block copolymer
ES12830758.4T ES2635117T3 (es) 2011-09-11 2012-08-31 Método para la fabricación de un copolímero de bloques
JP2013532568A JP5711378B2 (ja) 2011-09-11 2012-08-31 ブロック共重合体の製造方法
RU2014114264A RU2623426C2 (ru) 2011-09-11 2012-08-31 Способ получения блок-сополимера
AU2012305405A AU2012305405B2 (en) 2011-09-11 2012-08-31 Method for manufacturing block copolymer
CA2847114A CA2847114C (en) 2011-09-11 2012-08-31 Method for manufacturing block copolymer
EP12830758.4A EP2754682B1 (en) 2011-09-11 2012-08-31 Method for manufacturing block copolymer
BR112014005452-5A BR112014005452B1 (pt) 2011-09-11 2012-08-31 método de produção de copolímero de bloco
KR1020147006350A KR101849142B1 (ko) 2011-09-11 2012-08-31 블록 공중합체의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-197760 2011-09-11
JP2011197760 2011-09-11

Publications (1)

Publication Number Publication Date
WO2013035641A1 true WO2013035641A1 (ja) 2013-03-14

Family

ID=47832088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072160 WO2013035641A1 (ja) 2011-09-11 2012-08-31 ブロック共重合体の製造方法

Country Status (13)

Country Link
US (1) US9346923B2 (ja)
EP (1) EP2754682B1 (ja)
JP (1) JP5711378B2 (ja)
KR (1) KR101849142B1 (ja)
CN (1) CN103874722B (ja)
AU (1) AU2012305405B2 (ja)
BR (1) BR112014005452B1 (ja)
CA (1) CA2847114C (ja)
ES (1) ES2635117T3 (ja)
PT (1) PT2754682T (ja)
RU (1) RU2623426C2 (ja)
TW (1) TWI544012B (ja)
WO (1) WO2013035641A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1792927T3 (pl) * 2004-09-22 2013-09-30 Nippon Kayaku Kk Nowy kopolimer blokowy, preparat micelarny i lek przeciwnowotworowy zawierający ten preparat micelarny jako składnik czynny
USRE46190E1 (en) 2007-09-28 2016-11-01 Nippon Kayaku Kabushiki Kaisha High-molecular weight conjugate of steroids
CN101977631A (zh) * 2008-03-18 2011-02-16 日本化药株式会社 生理活性物质的高分子量偶联物
JP5366940B2 (ja) 2008-05-08 2013-12-11 日本化薬株式会社 葉酸若しくは葉酸誘導体の高分子結合体
CN103221054A (zh) 2010-11-17 2013-07-24 日本化药株式会社 新的胞苷类代谢拮抗剂的高分子衍生物
US10876152B2 (en) 2012-09-04 2020-12-29 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US11913065B2 (en) * 2012-09-04 2024-02-27 Guardent Health, Inc. Systems and methods to detect rare mutations and copy number variation
CA2990369A1 (en) 2015-06-24 2016-12-29 Nippon Kayaku Kabushiki Kaisha Novel platinum (iv) complex
RU2715048C2 (ru) * 2015-09-14 2020-02-25 Ниппон Каяку Кабусики Каися Полимерный конъюгат гексакоординированного комплекса платины
CA3009130A1 (en) * 2015-12-22 2017-06-29 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of sulfoxide derivative-coordinated platinum(ii) complex

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06107565A (ja) 1992-08-14 1994-04-19 Res Dev Corp Of Japan 物理吸着型高分子ミセル医薬
JPH06206815A (ja) 1992-10-26 1994-07-26 Nippon Kayaku Co Ltd ブロック共重合体−抗癌剤複合体医薬製剤
JPH11335267A (ja) 1998-05-27 1999-12-07 Nano Career Kk 水難溶性薬物を含有するポリマーミセル系
JP2001226294A (ja) 2000-02-09 2001-08-21 Nano Career Kk 薬物が封入されたポリマーミセルの製造方法および該ポリマーミセル組成物
WO2004082718A1 (ja) 2003-03-20 2004-09-30 Nippon Kayaku Kabushiki Kaisha 難水溶性抗癌剤と新規ブロック共重合体を含むミセル調製物
WO2006033296A1 (ja) 2004-09-22 2006-03-30 Nippon Kayaku Kabushiki Kaisha 新規ブロック共重合体、ミセル調製物及びそれを有効成分とする抗癌剤
JP2007191643A (ja) * 2006-01-20 2007-08-02 Mitsui Chemicals Inc 生体への定着性が付与されたポリアミノ酸誘導体
WO2007111211A1 (ja) * 2006-03-28 2007-10-04 Nippon Kayaku Kabushiki Kaisha タキサン類の高分子結合体
WO2009041570A1 (ja) * 2007-09-28 2009-04-02 Nippon Kayaku Kabushiki Kaisha ステロイド類の高分子結合体
WO2009142326A1 (ja) * 2008-05-23 2009-11-26 ナノキャリア株式会社 ドセタキセル高分子誘導体、並びにその製造方法及びその用途

Family Cites Families (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1467587A (en) 1974-07-11 1977-03-16 Nestle Sa Preparation of an asparagine or a glutamine
GB8500209D0 (en) 1985-01-04 1985-02-13 Ceskoslovenska Akademie Ved Synthetic polymeric drugs
JPS6296088A (ja) 1985-10-22 1987-05-02 Kanebo Ltd 抗腫瘍性物質の製法
US4734512A (en) 1985-12-05 1988-03-29 Bristol-Myers Company Intermediates for the production of podophyllotoxin and related compounds and processes for the preparation and use thereof
CH667874A5 (fr) 1985-12-19 1988-11-15 Battelle Memorial Institute Polypeptide synthetique biodegradable et son utilisation pour la preparation de medicaments.
JPS6310789A (ja) 1986-07-01 1988-01-18 Nippon Kayaku Co Ltd 新規ポドフイロトキシン誘導体
JPS6323884A (ja) 1986-07-17 1988-02-01 Nippon Kayaku Co Ltd 新規ポドフイロトキシン誘導体
JPS6461423A (en) 1987-09-02 1989-03-08 Nippon Kayaku Kk Water-soluble polymeric carcinostatic agent
JPS6461422A (en) 1987-09-02 1989-03-08 Nippon Kayaku Kk Water-soluble polymeric carcinostatic agent
US5182203A (en) 1989-03-29 1993-01-26 E. I. Du Pont De Nemours And Company Bifunctional compounds useful in catalyzed reporter deposition
JP2517760B2 (ja) 1989-05-11 1996-07-24 新技術事業団 水溶性高分子化医薬製剤
US5543390A (en) 1990-11-01 1996-08-06 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University Covalent microparticle-drug conjugates for biological targeting
JP3310000B2 (ja) 1990-11-07 2002-07-29 靖久 桜井 水溶性高分子抗癌剤及び薬物担持用担体
JPH05117385A (ja) 1991-10-31 1993-05-14 Res Dev Corp Of Japan ブロツク共重合体の製造法、ブロツク共重合体及び水溶性高分子抗癌剤
WO1993024476A1 (en) 1992-06-04 1993-12-09 Clover Consolidated, Limited Water-soluble polymeric carriers for drug delivery
US5614549A (en) 1992-08-21 1997-03-25 Enzon, Inc. High molecular weight polymer-based prodrugs
JPH06206830A (ja) 1992-10-27 1994-07-26 Nippon Kayaku Co Ltd ブロック共重合体−薬剤複合体及び高分子ブロック共重合体
JP3268913B2 (ja) 1992-10-27 2002-03-25 日本化薬株式会社 高分子担体
FR2698543B1 (fr) 1992-12-02 1994-12-30 Rhone Poulenc Rorer Sa Nouvelles compositions à base de taxoides.
US5985548A (en) 1993-02-04 1999-11-16 E. I. Du Pont De Nemours And Company Amplification of assay reporters by nucleic acid replication
DE4307114A1 (de) 1993-03-06 1994-09-08 Basf Ag Verfahren zur Herstellung von Umsetzungsprodukten aus Polyasparaginsäureamid und Aminosäuren und ihre Verwendung
JP2894923B2 (ja) 1993-05-27 1999-05-24 日立造船株式会社 ウォータージェット式双胴船のジェット水吸込口部構造
US5880131A (en) 1993-10-20 1999-03-09 Enzon, Inc. High molecular weight polymer-based prodrugs
US5840900A (en) 1993-10-20 1998-11-24 Enzon, Inc. High molecular weight polymer-based prodrugs
JPH0848766A (ja) 1994-05-30 1996-02-20 Mitsui Toatsu Chem Inc 重合体及びその製造方法
US5571889A (en) 1994-05-30 1996-11-05 Mitsui Toatsu Chemicals, Inc. Polymer containing monomer units of chemically modified polyaspartic acids or their salts and process for preparing the same
US5552517A (en) 1995-03-03 1996-09-03 Monsanto Company Production of polysuccinimide in an organic medium
SG50747A1 (en) 1995-08-02 1998-07-20 Tanabe Seiyaku Co Comptothecin derivatives
JP2694923B2 (ja) 1995-08-21 1997-12-24 科学技術振興事業団 水溶性高分子化医薬製剤
WO1997033552A1 (en) 1996-03-12 1997-09-18 Pg-Txl Company, L.P. Water soluble paclitaxel prodrugs
JP4420472B2 (ja) 1996-04-15 2010-02-24 旭化成株式会社 薬物複合体
US5877205A (en) 1996-06-28 1999-03-02 Board Of Regents, The University Of Texas System Parenteral paclitaxel in a stable non-toxic formulation
WO1998002426A1 (fr) 1996-07-15 1998-01-22 Kabushiki Kaisha Yakult Honsha Derives de taxane et medicaments les contenant
DE69725877T2 (de) 1996-08-26 2004-07-22 Transgene S.A. Kationische lipid-nukleinsäure komplexe
GB9625895D0 (en) 1996-12-13 1997-01-29 Riley Patrick A Novel compound useful as therapeutic agents and assay reagents
EP0879604B1 (de) 1997-05-09 2003-04-09 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Konjugat, umfassend einen Folsäureantagonisten und einen Träger
EP1037649B1 (en) 1997-12-17 2009-09-30 Enzon, Inc. Polymeric prodrugs of amino- and hydroxyl-containing bioactive agents
US6824766B2 (en) 1998-04-17 2004-11-30 Enzon, Inc. Biodegradable high molecular weight polymeric linkers and their conjugates
US6153655A (en) 1998-04-17 2000-11-28 Enzon, Inc. Terminally-branched polymeric linkers and polymeric conjugates containing the same
IN191203B (ja) 1999-02-17 2003-10-04 Amarnath Prof Maitra
US6207832B1 (en) 1999-04-09 2001-03-27 University Of Pittsburgh Camptothecin analogs and methods of preparation thereof
US20010041189A1 (en) 1999-04-13 2001-11-15 Jingya Xu Poly(dipeptide) as a drug carrier
US6380405B1 (en) 1999-09-13 2002-04-30 Nobex Corporation Taxane prodrugs
US6713454B1 (en) 1999-09-13 2004-03-30 Nobex Corporation Prodrugs of etoposide and etoposide analogs
ES2240163T3 (es) 1999-09-14 2005-10-16 Tepha, Inc. Utilizaciones terapeuticas de polimeros y de oligomeros a base de gamma-hidroxibutirano (ghb).
US6376470B1 (en) 1999-09-23 2002-04-23 Enzon, Inc. Polymer conjugates of ara-C and ara-C derivatives
BRPI0014652B1 (pt) 1999-10-12 2016-08-09 Cell Therapeutics Inc fabricação de conjugados de agente terapêutico-poliglutamato
US20030054977A1 (en) 1999-10-12 2003-03-20 Cell Therapeutics, Inc. Manufacture of polyglutamate-therapeutic agent conjugates
WO2001064198A2 (en) 2000-02-29 2001-09-07 Janssen Pharmaceutica N.V. Farnesyl protein transferase inhibitor combinations with anti-tumor podophyllotoxin derivatives
US20020016285A1 (en) 2000-03-17 2002-02-07 Rama Bhatt Polyglutamic acid-camptothecin conjugates and methods of preparation
US20020161062A1 (en) 2001-11-06 2002-10-31 Biermann Paul J. Structure including a plurality of cells of cured resinous material, method of forming the structure and apparatus for forming the structure
AU7522601A (en) 2000-06-02 2001-12-11 Eidgenoess Tech Hochschule Conjugate addition reactions for the controlled delivery of pharmaceutically active compounds
JP2002069184A (ja) 2000-06-12 2002-03-08 Mitsui Chemicals Inc 重合体及びその製造方法
AU2001296215A1 (en) 2000-07-17 2002-01-30 Oxi-Gene, Inc. Efficient method of synthesizing combretastatin a-4 prodrugs
US20020099013A1 (en) 2000-11-14 2002-07-25 Thomas Piccariello Active agent delivery systems and methods for protecting and administering active agents
WO2002065986A2 (en) 2001-02-16 2002-08-29 Cellgate, Inc. Transporters comprising spaced arginine moieties
EP1361895B1 (en) 2001-02-20 2007-11-14 Enzon, Inc. Terminally-branched polymeric linkers and polymeric conjugates containing the same
AU2002251988A1 (en) 2001-02-20 2002-09-04 Enzon, Inc. Terminally-branched polymeric linkers and polymeric conjugates containing the same
PL222061B1 (pl) 2001-06-20 2016-06-30 Nippon Kayaku Kk Sposób produkcji kopolimeru blokowego, nośnik polimerowy oraz polimerowy preparat farmaceutyczny
WO2003035008A2 (en) 2001-10-26 2003-05-01 Oxigene, Inc. Functionalized stilbene derivatives as improved vascular targeting agents
EP1456180B1 (en) 2001-12-21 2007-10-03 Vernalis (Cambridge) Limited 3-(2,4)dihydroxyphenyl-4-phenylpyrazoles and their medical use
CA2476182A1 (en) 2002-03-01 2003-09-12 The Administrators Of The Tulane Educational Fund Conjugates of therapeutic or cytotoxic agents and biologically active peptides
CN100475269C (zh) 2002-03-05 2009-04-08 北京键凯科技有限公司 亲水性聚合物-谷氨酸寡肽与药物分子的结合物、包含该结合物的组合物及用途
CN100490817C (zh) 2002-03-26 2009-05-27 万有制药株式会社 抗肿瘤吲哚并吡咯并咔唑衍生物和其它抗肿瘤药物联合用药
US6596757B1 (en) 2002-05-14 2003-07-22 Immunogen Inc. Cytotoxic agents comprising polyethylene glycol-containing taxanes and their therapeutic use
JP2003342167A (ja) 2002-05-24 2003-12-03 Nano Career Kk カンプトテシン誘導体の製剤およびその調製方法
JP2003342168A (ja) 2002-05-24 2003-12-03 Nano Career Kk 注射用薬物含有ポリマーミセル製剤の製造方法
JP4270485B2 (ja) 2002-05-28 2009-06-03 第一三共株式会社 タキサン類の還元方法
JP2004010479A (ja) 2002-06-03 2004-01-15 Japan Science & Technology Corp ブロック共重合体とアンスラサイクリン系抗癌剤を含む新規固型製剤及びその製造法
JP4745664B2 (ja) 2002-10-31 2011-08-10 日本化薬株式会社 カンプトテシン類の高分子誘導体
GB0228417D0 (en) 2002-12-05 2003-01-08 Cancer Rec Tech Ltd Pyrazole compounds
GB0229618D0 (en) 2002-12-19 2003-01-22 Cancer Rec Tech Ltd Pyrazole compounds
US7169892B2 (en) 2003-01-10 2007-01-30 Astellas Pharma Inc. Lipid-peptide-polymer conjugates for long blood circulation and tumor specific drug delivery systems
JP4921162B2 (ja) 2003-02-11 2012-04-25 ヴァーナリス(ケンブリッジ)リミテッド 熱ショックタンパク質の阻害剤としてのイソオキサゾール化合物類
EP1594482A1 (en) 2003-03-26 2005-11-16 LTT Bio-Pharma Co., Ltd. Intravenous nanoparticles for targeting drug delivery and sustained drug release
GB0309637D0 (en) 2003-04-28 2003-06-04 Cancer Rec Tech Ltd Pyrazole compounds
GB0315111D0 (en) 2003-06-27 2003-07-30 Cancer Rec Tech Ltd Substituted 5-membered ring compounds and their use
EP1666064A4 (en) 2003-08-22 2008-12-17 Kyowa Hakko Kogyo Kk MEANS FOR THE TREATMENT OF DISEASES RELATED TO IMMUNOGLOBULIN GEN TRANSLATION
EP1680073B1 (en) 2003-10-21 2013-01-02 IGF Oncology, LLC Compounds and method for treating cancer
FR2862536B1 (fr) 2003-11-21 2007-11-23 Flamel Tech Sa Formulations pharmaceutiques pour la liberation prolongee de principe(s) actif(s), ainsi que leurs applications notamment therapeutiques
US7176185B2 (en) 2003-11-25 2007-02-13 Tsrl, Inc. Short peptide carrier system for cellular delivery of agent
EP2497785B1 (en) 2004-01-07 2018-09-12 Seikagaku Corporation Hyaluronic acid derivative and drug containing the same
CN101103144B (zh) 2004-11-16 2013-02-06 海珀里昂催化国际有限公司 制备负载在碳纳米管网络上的催化剂的方法
KR101374553B1 (ko) 2004-11-18 2014-03-17 신타 파마슈티칼스 코프. Hsp90 활성을 조절하는 트리아졸 화합물
KR20070112400A (ko) 2005-03-09 2007-11-23 니폰 가야꾸 가부시끼가이샤 신규의 hsp90 저해제
US8399464B2 (en) 2005-03-09 2013-03-19 Nippon Kayaku Kabushiki Kaisha HSP90 inhibitor
WO2006095668A1 (ja) 2005-03-09 2006-09-14 Toray Industries, Inc. 微粒子および医薬品組成物
JP2008137894A (ja) 2005-03-22 2008-06-19 Nippon Kayaku Co Ltd 新規なアセチレン誘導体
JPWO2006115293A1 (ja) 2005-04-22 2008-12-18 国立大学法人 東京大学 pH応答性高分子ミセルの調製に用いる新規ブロック共重合体及びその製造法
RU2404980C2 (ru) 2005-05-11 2010-11-27 Ниппон Каяку Кабусики Кайся Полимерное производное антиметаболита цитидина
EP1880721A4 (en) 2005-05-12 2009-05-27 Nipro Corp MEANS FOR IMPROVING CIRCULAR DISORDER
US20080280937A1 (en) 2005-08-19 2008-11-13 Christopher Paul Leamon Ligand Conjugates of Vinca Alkaloids, Analogs, and Derivatives
CN1800238A (zh) 2005-12-05 2006-07-12 中国科学院长春应用化学研究所 有生物功能的脂肪族聚酯—聚氨基酸共聚物及合成方法
JP2007182407A (ja) 2006-01-10 2007-07-19 Medgel Corp 徐放性ハイドロゲル製剤
CA2652656A1 (en) 2006-05-18 2007-11-29 Nippon Kayaku Kabushiki Kaisha High-molecular weight conjugate of podophyllotoxins
WO2008010463A1 (fr) 2006-07-19 2008-01-24 Nippon Kayaku Kabushiki Kaisha Conjugué polymère d'une combrétastatine
JP5548364B2 (ja) 2006-10-03 2014-07-16 日本化薬株式会社 レゾルシノール誘導体の高分子結合体
JP5503872B2 (ja) 2006-11-06 2014-05-28 日本化薬株式会社 核酸系代謝拮抗剤の高分子誘導体
EP2090607B1 (en) 2006-11-08 2015-05-20 Nippon Kayaku Kabushiki Kaisha Polymeric derivative of nucleic acid metabolic antagonist
CN101977631A (zh) * 2008-03-18 2011-02-16 日本化药株式会社 生理活性物质的高分子量偶联物
JP5366940B2 (ja) 2008-05-08 2013-12-11 日本化薬株式会社 葉酸若しくは葉酸誘導体の高分子結合体
JP5544357B2 (ja) 2009-05-15 2014-07-09 日本化薬株式会社 水酸基を有する生理活性物質の高分子結合体
CN103221054A (zh) 2010-11-17 2013-07-24 日本化药株式会社 新的胞苷类代谢拮抗剂的高分子衍生物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06107565A (ja) 1992-08-14 1994-04-19 Res Dev Corp Of Japan 物理吸着型高分子ミセル医薬
JPH06206815A (ja) 1992-10-26 1994-07-26 Nippon Kayaku Co Ltd ブロック共重合体−抗癌剤複合体医薬製剤
JPH11335267A (ja) 1998-05-27 1999-12-07 Nano Career Kk 水難溶性薬物を含有するポリマーミセル系
JP2001226294A (ja) 2000-02-09 2001-08-21 Nano Career Kk 薬物が封入されたポリマーミセルの製造方法および該ポリマーミセル組成物
WO2004082718A1 (ja) 2003-03-20 2004-09-30 Nippon Kayaku Kabushiki Kaisha 難水溶性抗癌剤と新規ブロック共重合体を含むミセル調製物
WO2006033296A1 (ja) 2004-09-22 2006-03-30 Nippon Kayaku Kabushiki Kaisha 新規ブロック共重合体、ミセル調製物及びそれを有効成分とする抗癌剤
JP2007191643A (ja) * 2006-01-20 2007-08-02 Mitsui Chemicals Inc 生体への定着性が付与されたポリアミノ酸誘導体
WO2007111211A1 (ja) * 2006-03-28 2007-10-04 Nippon Kayaku Kabushiki Kaisha タキサン類の高分子結合体
WO2009041570A1 (ja) * 2007-09-28 2009-04-02 Nippon Kayaku Kabushiki Kaisha ステロイド類の高分子結合体
WO2009142326A1 (ja) * 2008-05-23 2009-11-26 ナノキャリア株式会社 ドセタキセル高分子誘導体、並びにその製造方法及びその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2754682A4

Also Published As

Publication number Publication date
AU2012305405B2 (en) 2016-01-14
TWI544012B (zh) 2016-08-01
ES2635117T3 (es) 2017-10-02
BR112014005452B1 (pt) 2021-03-16
BR112014005452A2 (pt) 2017-03-21
KR20140068954A (ko) 2014-06-09
US9346923B2 (en) 2016-05-24
EP2754682B1 (en) 2017-06-07
JP5711378B2 (ja) 2015-04-30
JPWO2013035641A1 (ja) 2015-03-23
TW201319129A (zh) 2013-05-16
CN103874722B (zh) 2016-06-29
EP2754682A1 (en) 2014-07-16
PT2754682T (pt) 2017-08-29
CN103874722A (zh) 2014-06-18
EP2754682A4 (en) 2015-04-08
CA2847114C (en) 2018-08-21
US20140288244A1 (en) 2014-09-25
RU2623426C2 (ru) 2017-06-26
KR101849142B1 (ko) 2018-04-16
RU2014114264A (ru) 2015-10-20
CA2847114A1 (en) 2013-03-14
AU2012305405A1 (en) 2014-05-01

Similar Documents

Publication Publication Date Title
JP5711378B2 (ja) ブロック共重合体の製造方法
JP5369137B2 (ja) 新規ブロック共重合体、ミセル調製物及びそれを有効成分とする抗癌剤
USRE46190E1 (en) High-molecular weight conjugate of steroids
CN102159250A (zh) 多臂的聚合烷酸酯偶联物
EP3078699A1 (en) Multi-arm polyethylene glycol-nitrine derivative
US20240150379A1 (en) Boronated Multifunctional Targeting Drug Conjugates, Their Uses and Methods for Their Preparation
US20220024966A1 (en) Functionalized bile acids for therapeutic and material applications
KR100771100B1 (ko) 고순도의 메톡시폴리에틸렌글리콜에틸말레이미드의제조방법
US11912709B2 (en) Temozolomide compounds, polymers prepared therefrom, and method of treating a disease
KR20220134528A (ko) 치료 나노입자의 합성을 위한 방법 및 조성물
CN102336904B (zh) 一种喜树碱及其衍生物的多价peg修饰物及其用途
JP6817956B2 (ja) 新規なグルタミン酸誘導体とブロック共重合体を含有する組成物及びその用途
KR102138415B1 (ko) 신규 peg 유도체
Fattahi et al. Preparation and physicochemical characterization of camptothecin conjugated poly amino ester–methyl ether poly ethylene glycol copolymer
CN104650344A (zh) 一种peg化伊立替康的轭合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532568

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012830758

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2847114

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20147006350

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014114264

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14241924

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012305405

Country of ref document: AU

Date of ref document: 20120831

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014005452

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014005452

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140310