WO2013035362A1 - Ion-elution-resistant semiconductor nanoparticle assembly - Google Patents

Ion-elution-resistant semiconductor nanoparticle assembly Download PDF

Info

Publication number
WO2013035362A1
WO2013035362A1 PCT/JP2012/056871 JP2012056871W WO2013035362A1 WO 2013035362 A1 WO2013035362 A1 WO 2013035362A1 JP 2012056871 W JP2012056871 W JP 2012056871W WO 2013035362 A1 WO2013035362 A1 WO 2013035362A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
matrix
semiconductor
surfactant
semiconductor nanoparticles
Prior art date
Application number
PCT/JP2012/056871
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 優
敬三 高野
中野 寧
Original Assignee
コニカミノルタエムジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタエムジー株式会社 filed Critical コニカミノルタエムジー株式会社
Priority to JP2013532467A priority Critical patent/JP5880563B2/en
Publication of WO2013035362A1 publication Critical patent/WO2013035362A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a semiconductor nanoparticle assembly having high luminance and no ion elution in an aqueous solution. More specifically, the present invention relates to a matrix-coated assembly in which a semiconductor nanoparticle assembly containing semiconductor nanoparticles having a core / shell structure and a surfactant are coated with a silica matrix, and a method for producing the same.
  • III-V group semiconductor nanoparticles As semiconductor nanoparticles emitting fluorescence, II-VI group and III-V group semiconductor nanoparticles are widely known. However, when these semiconductor nanoparticles are used as a fluorescent diagnostic agent, the problem is that the brightness per particle is still insufficient, and that ions constituting the semiconductor nanoparticles leak out in an aqueous solution. Yes.
  • the brightness of the particles is extremely low with the core semiconductor nanoparticles alone, as compared with the semiconductor nanoparticles having a core / shell structure.
  • quantum wells are formed, and the luminance is significantly improved by the quantum confinement effect.
  • a method of increasing the brightness a method of increasing the brightness per particle by integrating the core / shell semiconductor nanoparticles can be considered.
  • Patent Document 1 discloses that a silica bead surface is converted to an amino group by silane coupling treatment, and a carboxyl group-terminated semiconductor nanoparticle is reacted to bond the silica bead and the semiconductor nanoparticle by an amide bond. Techniques for making them disclosed are disclosed. However, cadmium ion elution is observed even in the semiconductor nanoparticle assembly produced in this way. For example, when used for labeling a substance, elution of cadmium into cells causes a decrease in safety and further deterioration of the phosphor. It is done.
  • An object of the present invention is to provide a semiconductor nanoparticle assembly in which ions constituting the semiconductor nanoparticles are less likely to elute in an aqueous solvent.
  • the present inventors obtain the core / shell structure semiconductor nanoparticles thus precipitated by stirring with a higher amine as a surfactant and water and then hydrolyzing TEOS with ethanol and NH 3.
  • the present inventors have found that the matrix-covered aggregate (semiconductor nanoparticle-encapsulated particles) has less elution of ions forming the core portion, and has completed the present invention.
  • the present invention includes the following matters.
  • a semiconductor nanoparticle aggregate containing semiconductor nanoparticles having a core / shell structure, to which a surfactant is bound, and the semiconductor nanoparticle aggregate to which the surfactant is bound A matrix-coated assembly comprising a silica matrix.
  • the silica matrix is obtained by adding ethanol, ammonia [NH 3 ] and tetraethoxysilane [TEOS] in this order to the water-soluble semiconductor nanoparticle aggregate obtained in the step (X) [ 4] or the production method according to [5].
  • the elution of ions forming the core portion is 100 ppm or less, preferably 50 ppm or less, more preferably 10 ppm or less.
  • An integrated body and a manufacturing method thereof can be provided.
  • the present invention can provide a matrix-covered aggregate with high emission luminance and a method for producing the same without reducing the emission intensity even if the concentration of the semiconductor nanoparticle aggregate that emits fluorescence is below a certain level.
  • the matrix-covered aggregate of the present invention includes a semiconductor nanoparticle aggregate containing semiconductor nanoparticles having a core / shell structure, to which a surfactant is bound, and the semiconductor nanoparticle to which the surfactant is bound. And a silica matrix covering the particle aggregate.
  • a semiconductor nanoparticle aggregate by hydrolyzing semiconductor nanoparticles with TEOS in the presence of a surfactant such as amine.
  • the “semiconductor nanoparticle having a core / shell structure” used in the present invention is a particle having a nanosize (1 to 1000 nm) particle size containing a material (material) for forming a semiconductor, which will be described later, A particle having a multiple structure composed of a (core part) and a shell part (covering part) covering the core part.
  • Examples of the material for forming the core portion (also referred to as “core particle”) according to the present invention include silicon [Si], germanium [Ge], indium nitride [InN], indium phosphide [InP], and arsenic.
  • InP, CdTe or CdSe is particularly preferably used.
  • II-VI group, III-V group, and IV group inorganic semiconductors can be used as a material for forming the shell portion according to the present invention.
  • a semiconductor having a band gap larger than that of each core-forming inorganic material such as Si, Ge, InN, InP, GaAs, AlSe, CdSe, AlAs, GaP, ZnTe, CdTe, InAs, etc., or a non-toxic semiconductor is formed.
  • Raw materials are preferred.
  • ZnS is applied as a shell part to the core part of InP, CdTe or CdSe.
  • Method for producing semiconductor nanoparticles As a method for producing semiconductor nanoparticles according to the present invention, a liquid phase method can be employed.
  • liquid phase method examples include a precipitation method, a coprecipitation method, a sol-gel method, a uniform precipitation method, and a reduction method.
  • reverse micelle method and the supercritical hydrothermal synthesis method are also excellent methods for producing semiconductor nanoparticles (for example, Japanese Patent Application Laid-Open Nos. 2002-322468, 2005-239775, and Hei 10). No. -371070, JP 2000-104058, etc.).
  • the semiconductor precursor according to the present invention is a compound containing an element used as the semiconductor material, for example, when the semiconductor is Si, and the like SiCl 4 as semiconductor precursor.
  • Other semiconductor precursors include InCl 3 , P (SiMe 3 ) 3 , ZnMe 2 , CdMe 2 , GeCl 4 , tributylphosphine selenium and the like.
  • the reaction temperature of the reaction precursor is not particularly limited as long as it is not lower than the boiling point of the semiconductor precursor and not higher than the boiling point of the solvent, but is preferably in the range of 70 to 110 ° C.
  • Reducing agent that reduces the semiconductor precursor As such a reducing agent, various conventionally known reducing agents can be selected and used according to the reaction conditions.
  • lithium aluminum hydride [LiAlH 4 ] sodium borohydride [NaBH 4 ], bis (2-methoxyethoxy) aluminum hydride, tri (sec- Preferred are reducing agents such as lithium (butyl) boron [LiBH (sec-C 4 H 9 ) 3 ] and potassium tri (sec-butyl) borohydride, lithium triethylborohydride.
  • lithium aluminum hydride [LiAlH 4 ] is preferable because of its reducing power.
  • Surfactant used for reaction of semiconductor precursor various conventionally known surfactants can be used, and anionic, nonionic, cationic, and amphoteric surfactants are included. Of these, tetrabutylammonium chloride, bromide or hexafluorophosphate, tetraoctylammonium bromide [TOAB] or tributylhexadecylphosphonium bromide, which are quaternary ammonium salts, are preferred. Tetraoctyl ammonium bromide is particularly preferable.
  • the reaction by the liquid phase method varies greatly depending on the state of the compound containing the solvent in the liquid (* described later).
  • special care must be taken.
  • the size and state of the reverse micelle serving as a reaction field vary depending on the concentration and type of the surfactant, so that the conditions under which nanoparticles are formed are limited. Therefore, an appropriate combination of surfactant and solvent is required.
  • Solvent used in the liquid phase method Various known solvents can be used as the solvent for dispersing the semiconductor precursor.
  • Alcohols such as ethyl alcohol, sec-butyl alcohol, and t-butyl alcohol; hydrocarbon solvents such as toluene, decane, and hexane are used. It is preferable to use it.
  • a hydrophobic solvent such as toluene is particularly preferable as the dispersion solvent.
  • the semiconductor nanoparticle assembly used in the present invention is an assembly of semiconductor nanoparticles containing semiconductor nanoparticles having a core / shell structure.
  • the calculation of the number of semiconductor nanoparticles included in the aggregate is performed as follows. First, the element ratio of semiconductor nanoparticles is measured using ICP-AEC (ICPS-7500, Shimadzu Corporation), and the number of moles is calculated from the dry weight. Further, the molar extinction coefficient is obtained by measuring the absorbance. Thereafter, the dry weight of the semiconductor nanoparticle assembly is calculated and the absorbance is measured. Since the density of the semiconductor nanoparticle and the semiconductor nanoparticle assembly constituent compound is known, the concentration can be estimated together with the average particle size calculated by the dynamic light scattering method and the absorbance of the semiconductor nanoparticle assembly.
  • a liquid phase method may be used as described above, or another manufacturing method may be used.
  • other manufacturing methods include gas phase methods such as sputtering. Among these, from the viewpoint of particle size uniformity, a method for producing a semiconductor nanoparticle assembly by a liquid phase method is preferred.
  • surfactant examples include higher amines such as dodecylamine, hexadecylamine and octadecylamine, and organic phosphorus compounds such as trioctylphosphine and trioctylphosphine oxide. For this reason, higher amines are preferred.
  • the method for producing a matrix-covered aggregate of the present invention includes at least the following steps (X) and (Y).
  • the semiconductor nanoparticles are water-solubilized with a surfactant (step (X)).
  • a surfactant an amine compound can be used as the surfactant, and it is particularly preferable to use a higher amine such as dodecylamine.
  • the semiconductor nanoparticles solubilized with this surfactant are added with ethanol, ammonia [NH 3 ] and tetraethoxysilane [TEOS] in this order to hydrolyze TEOS, and the semiconductor nanoparticles are coated with a silica matrix.
  • a body, that is, a matrix-coated aggregate can be obtained (step (Y)). Note that the matrix-covered aggregate contains little or no water that acts as a catalyst for the TEOS reaction.
  • dodecylamine is added in an amount exceeding the limit amount that dissolves in water (for example, 78 mg / L at 25 ° C.).
  • an amount exceeding the limit amount for dissolving the surfactant in water is preferable in that the semiconductor nanoparticles having a core / shell structure are water-solubilized.
  • the semiconductor nanoparticles having a core / shell structure are water-solubilized.
  • a surfactant other than an amine compound or an organic phosphorus compound is added to water
  • the semiconductor nanoparticles having a core / shell structure are water-solubilized.
  • dodecylamine is used as the surfactant
  • the semiconductor nanoparticles do not become water-soluble unless a large amount of the surfactant exists because the water solubility of dodecylamine itself is extremely low.
  • dodecylamine is added in an amount that dissolves in water, the semiconductor nanoparticles are not mixed with water and completely separated from the aqueous phase.
  • dodecylamine when added in an amount exceeding 100 times that of the semiconductor nanoparticles by a molar ratio, it is separated into a dodecylamine phase and an aqueous phase in which the semiconductor nanoparticles are present.
  • the molar ratio is 100 times or less, the semiconductor nanoparticles are also present in the dodecylamine phase. This can be confirmed visually by irradiating with a UV lamp.
  • the surfactant used in the present invention with respect to semiconductor nanoparticles having a core / shell structure is preferably 10 to 400, more preferably in molar ratio [(surfactant) / (the semiconductor nanoparticles)]. Is added to water in an amount satisfying 50 to 200, most preferably about 100.
  • TEOS hydrolysis is represented by the following reaction formula.
  • Such a matrix-covered aggregate of the present invention is excellent in that in the ion elution test, elution of ions forming the core portion is extremely small, specifically 100 ppm or less, preferably 50 ppm or less, more preferably 10 ppm or less. It has the effect.
  • the matrix-coated aggregate is dispersed in an aqueous solvent at 0.1 ⁇ M, and is allowed to stand overnight (for example, 8 to 16 hours, to 24 hours, etc.), and then the core / shell that has oozed into the supernatant.
  • the amount of ions of constituent elements of the semiconductor nanoparticles having a structure is measured, and the degree of elution of ions of the matrix-covered aggregate is evaluated. The amount of ions was measured by using an inductively coupled plasma-atomic emission spectrometer (ICP-AES).
  • the outline of the matrix-coated aggregate, the method for producing the matrix-coated aggregate, and the outline of the ion elution test of the matrix-coated aggregate have been described above.
  • the matrix-coated assembly of the present invention can be applied to a biological material fluorescent labeling agent. Further, by adding the biological material labeling agent according to the present invention to a living cell or living body having a target (tracking) substance, the target substance is bound or adsorbed, and excitation light having a predetermined wavelength is applied to the conjugate or adsorbent. By irradiating and detecting fluorescence of a predetermined wavelength emitted from the semiconductor nanoparticles according to the excitation light, fluorescence dynamic imaging of the target (tracking) substance can be performed.
  • biomaterial labeling agent using the present invention can be used for bioimaging methods (technical means for visualizing biomolecules constituting the biomaterial and dynamic phenomena thereof).
  • the biological substance labeling agent using the present invention is obtained by binding the matrix-coated aggregate subjected to the hydrophilic treatment as described above and a molecular labeling substance (* described later) via an organic molecule (* described later). It is preferred that * Molecular labeling substance:
  • the biological substance labeling agent using the present invention can be labeled with a biological substance when the molecular labeling substance specifically binds and / or reacts with the target biological substance.
  • the molecular labeling substance examples include nucleotide chains, antibodies, antigens, cyclodextrins and the like.
  • Organic molecules In the biological material labeling agent using the present invention, the matrix-coated aggregate subjected to the hydrophilization treatment and the molecular labeling material are bound by organic molecules.
  • the organic molecule is not particularly limited as long as it is an organic molecule that can bind the matrix-covered aggregate and the molecular labeling substance.
  • proteins such as albumin, myoglobin, casein, or avidin that is a kind of protein. It is also suitable to use with biotin.
  • the form of the bond is not particularly limited, and examples thereof include a covalent bond, an ionic bond, a hydrogen bond, a coordinate bond, physical adsorption, and chemical adsorption.
  • a bond having a strong bonding force such as a covalent bond is preferable from the viewpoint of bond stability.
  • the matrix-coated aggregate is hydrophilized with mercaptoundecanoic acid
  • avidin and biotin can be used as organic molecules.
  • the carboxyl group of the matrix-coated assembly subjected to the hydrophilic treatment is preferably covalently bonded to avidin, the avidin is further selectively bonded to biotin, and biotin is further bonded to the biological material labeling agent to thereby bind the biological material labeling agent. It becomes.
  • the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
  • the ratio of the element in an Example and a comparative example shows molar ratio.
  • the InP / ZnS core / shell semiconductor nanoparticles thus obtained were particles having a maximum emission wavelength at 630 nm.
  • CdSe / ZnS core / shell semiconductor nanoparticles were synthesized by adding 15 g of TOPO to the obtained CdSe core particles and heating, followed by adding a solution of 1.1 g of zinc diethyldithiocarbamate in 10 mL of trioctylphosphine at 270 ° C. / ZnS core / shell semiconductor nanoparticles were obtained.
  • the CdTe core particles were synthesized according to the method according to Hemy, Volume 100, page 1772 (1996).
  • the CdTe core particles thus obtained were particles having a maximum emission wavelength at 640 nm.
  • AOT hydrophobic organic solvent
  • TEOS tetraethoxysilane
  • APS 3-aminopropyltrimethoxysilane
  • This dispersion was stirred for 2 days to obtain a semiconductor nanoparticle aggregate in which CdTe / ZnS was present in the silica matrix.
  • the CdTe / ZnS semiconductor nanoparticles were swollen in polystyrene by adding carboxyl group-terminated polystyrene particles (300 nm) of Invitrogen to this water-soluble semiconductor nanoparticle solution and stirring for 1 h.
  • Example 1 Acetone, which is a poor solvent, was added to the solution of InP / ZnS core / shell semiconductor nanoparticles synthesized in Comparative Example 1 to precipitate the semiconductor nanoparticles.
  • Example 2 In Example 1, the same procedure as in Example 1 was used except that the CdSe / ZnS core / shell semiconductor nanoparticles synthesized in Comparative Example 2 were used instead of the InP / ZnS core / shell semiconductor nanoparticles synthesized in Comparative Example 1. A matrix coating assembly was produced.
  • Example 3 In Example 1, the same procedure as in Example 1 was used except that the CdTe / ZnS core / shell semiconductor nanoparticles synthesized in Comparative Example 3 were used instead of the InP / ZnS core / shell semiconductor nanoparticles synthesized in Comparative Example 1. A matrix coating assembly was produced.
  • Example 4 In Example 1, the CdTe / ZnS core / shell semiconductor nanoparticles synthesized in Comparative Example 3 were used instead of the InP / ZnS core / shell semiconductor nanoparticles synthesized in Comparative Example 1, and instead of dodecylamine as a surfactant. A matrix-coated assembly was produced in the same manner as in Example 1 except that trioctylphosphine [TOP] was used.
  • TOP trioctylphosphine
  • the semiconductor nanoparticles synthesized in Comparative Examples 1 to 3 were precipitated with acetone as a poor solvent, the solvent was removed by centrifugation, 1 mL of ultrapure water and 1 ⁇ M mercaptopropionic acid were added, and the concentration of the semiconductor nanoparticles was 0. . Solubilized to 1 ⁇ M. After standing for 1 day, acetone was added again to precipitate water-soluble semiconductor nanoparticles, and the amount of ions eluted from the supernatant was calculated using ICP-AES.

Abstract

[Problem] To provide semiconductor nanoparticles which do not undergo the elution of ions of elements constituting the semiconductor nanoparticles therefrom in an aqueous solution. [Solution] Provided is a semiconductor nanoparticle assembly having a water-soluble surface, in which semiconductor nanoparticles each having a core-shell structure therein are encapsulated together with a surfactant. The semiconductor nanoparticle assembly can solve the above-mentioned problem.

Description

耐イオン溶出性半導体ナノ粒子集積体Ion-resistant semiconductor nanoparticle assembly
 本発明は、輝度が高く水溶液中でイオン溶出がない半導体ナノ粒子集積体に関する。さらに詳細には、本発明は、コア/シェル構造を有する半導体ナノ粒子を含有する半導体ナノ粒子集積体と界面活性剤とが、シリカマトリックスによって被覆されているマトリックス被覆集積体およびその製造方法に関する。 The present invention relates to a semiconductor nanoparticle assembly having high luminance and no ion elution in an aqueous solution. More specifically, the present invention relates to a matrix-coated assembly in which a semiconductor nanoparticle assembly containing semiconductor nanoparticles having a core / shell structure and a surfactant are coated with a silica matrix, and a method for producing the same.
 標識剤として蛍光発光する半導体ナノ粒子を用いる場合、一粒子当たりの輝度が大きいほど感度が高くなることから、一粒子当たりの輝度のより高い粒子が望まれている。 When semiconductor nanoparticles that fluoresce as a labeling agent are used, the higher the luminance per particle, the higher the sensitivity. Therefore, particles with higher luminance per particle are desired.
 蛍光発光する半導体ナノ粒子としては、II-VI族、およびIII-V族の半導体ナノ粒子が広く知られている。しかしながら、これらの半導体ナノ粒子を蛍光診断薬として使用するとなると、一粒子当たりの輝度がまだまだ足りないこと、さらには水溶液中で半導体ナノ粒子を構成するイオンの漏れ出しがあることが課題となっている。 As semiconductor nanoparticles emitting fluorescence, II-VI group and III-V group semiconductor nanoparticles are widely known. However, when these semiconductor nanoparticles are used as a fluorescent diagnostic agent, the problem is that the brightness per particle is still insufficient, and that ions constituting the semiconductor nanoparticles leak out in an aqueous solution. Yes.
 一方、一般的に、コア/シェル構造を有する半導体ナノ粒子に比べ、コア半導体ナノ粒子だけでは粒子の輝度は極めて低い。コア粒子よりもバンドギャップの広い半導体材料をシェルとして用いることにより、量子井戸が形成され量子閉じ込め効果により輝度は著しく向上する。 On the other hand, generally, the brightness of the particles is extremely low with the core semiconductor nanoparticles alone, as compared with the semiconductor nanoparticles having a core / shell structure. By using a semiconductor material having a wider band gap than the core particles as the shell, quantum wells are formed, and the luminance is significantly improved by the quantum confinement effect.
 したがって、高輝度化する方法として、コア/シェル半導体ナノ粒子を集積させ一粒子当たりの輝度を上げる方法が考えられる。 Therefore, as a method of increasing the brightness, a method of increasing the brightness per particle by integrating the core / shell semiconductor nanoparticles can be considered.
 例えば、特許文献1には、シリカビーズ表面をシランカップリング処理することにより末端をアミノ基化し、カルボキシル基末端の半導体ナノ粒子を反応させることで、シリカビーズと半導体ナノ粒子間がアミド結合で結合させる技術が開示されている。しかしながら、このように作製された半導体ナノ粒子集積体でもカドミウムイオンの溶出が見られ、例えば物質標識に用いると、細胞内へのカドミウムの溶出により安全性の低下、さらには蛍光体の劣化が見られる。 For example, Patent Document 1 discloses that a silica bead surface is converted to an amino group by silane coupling treatment, and a carboxyl group-terminated semiconductor nanoparticle is reacted to bond the silica bead and the semiconductor nanoparticle by an amide bond. Techniques for making them disclosed are disclosed. However, cadmium ion elution is observed even in the semiconductor nanoparticle assembly produced in this way. For example, when used for labeling a substance, elution of cadmium into cells causes a decrease in safety and further deterioration of the phosphor. It is done.
特開2005-281019号公報JP 2005-281019 A
 本発明は、半導体ナノ粒子を構成するイオンが水溶媒中に溶出しにくい半導体ナノ粒子集積体を提供することを課題とする。 An object of the present invention is to provide a semiconductor nanoparticle assembly in which ions constituting the semiconductor nanoparticles are less likely to elute in an aqueous solvent.
 本発明者らは、沈殿させたコア/シェル構造の半導体ナノ粒子を、界面活性剤である高級アミンと水とともに撹拌した後、TEOSをエタノールとNH3とを用いて加水分解することによって得られるマトリックス被覆集積体(半導体ナノ粒子内包粒子)が、コア部を形成するイオンの溶出が少ないことを見出し、本発明を完成させるに至った。 The present inventors obtain the core / shell structure semiconductor nanoparticles thus precipitated by stirring with a higher amine as a surfactant and water and then hydrolyzing TEOS with ethanol and NH 3. The present inventors have found that the matrix-covered aggregate (semiconductor nanoparticle-encapsulated particles) has less elution of ions forming the core portion, and has completed the present invention.
 すなわち、本発明には下記の事項が包含される。 That is, the present invention includes the following matters.
 [1]コア/シェル構造を有する半導体ナノ粒子を含有する半導体ナノ粒子集積体であって界面活性剤が結合しているものと、該界面活性剤が結合した該半導体ナノ粒子集積体を被覆するシリカマトリックスとを含んでなることを特徴とするマトリックス被覆集積体。 [1] A semiconductor nanoparticle aggregate containing semiconductor nanoparticles having a core / shell structure, to which a surfactant is bound, and the semiconductor nanoparticle aggregate to which the surfactant is bound A matrix-coated assembly comprising a silica matrix.
 [2]上記界面活性剤が、高級アミンである[1]に記載のマトリックス被覆集積体。 [2] The matrix-coated assembly according to [1], wherein the surfactant is a higher amine.
 [3]上記コア/シェル構造のコア部が、リン化インジウム〔InP〕,セレン化カドミウム〔CdSe〕またはテルル化カドミウム〔CdTe〕である[1]または[2]に記載のマトリックス被覆集積体。 [3] The matrix-coated aggregate according to [1] or [2], wherein the core part of the core / shell structure is indium phosphide [InP], cadmium selenide [CdSe], or cadmium telluride [CdTe].
 [4]水に溶解する限界量を超える量の界面活性剤を用いて、コア/シェル構造を有する半導体ナノ粒子を含有する半導体ナノ粒子集積体を水溶化させる工程(X);および
 工程(X)で得られる水溶化した半導体ナノ粒子集積体の周囲をシリカマトリックスにより被覆する工程(Y)を含むことを特徴とするマトリックス被覆集積体の製造方法。
[4] Step (X) of water-solubilizing a semiconductor nanoparticle aggregate containing semiconductor nanoparticles having a core / shell structure using an amount of a surfactant that exceeds a limit amount that dissolves in water; and step (X And a step (Y) of coating the periphery of the water-solubilized semiconductor nanoparticle aggregate obtained in (1) with a silica matrix.
 [5]上記界面活性剤が、高級アミンである[4]に記載の製造方法。 [5] The production method according to [4], wherein the surfactant is a higher amine.
 [6]上記シリカマトリックスが、上記工程(X)で得られる水溶化した半導体ナノ粒子集積体に、エタノール,アンモニア〔NH3〕およびテトラエトキシシラン〔TEOS〕をこの順に添加することによって得られる[4]または[5]に記載の製造方法。 [6] The silica matrix is obtained by adding ethanol, ammonia [NH 3 ] and tetraethoxysilane [TEOS] in this order to the water-soluble semiconductor nanoparticle aggregate obtained in the step (X) [ 4] or the production method according to [5].
 [7]上記コア/シェル構造のコア部が、リン化インジウム〔InP〕、セレン化カドミウム〔CdSe〕またはテルル化カドミウム〔CdTe〕である[4]~[6]のいずれかに記載の製造方法。 [7] The method according to any one of [4] to [6], wherein the core portion of the core / shell structure is indium phosphide [InP], cadmium selenide [CdSe], or cadmium telluride [CdTe]. .
 本発明は、0.1μMのマトリックス被覆集積体を含む水溶液を1日静置した際、コア部を形成するイオンの溶出が、100ppm以下、好ましくは50ppm以下、より好ましくは10ppm以下であるマトリックス被覆集積体およびその製造方法を提供することができる。 In the present invention, when an aqueous solution containing a 0.1 μM matrix-coated aggregate is allowed to stand for 1 day, the elution of ions forming the core portion is 100 ppm or less, preferably 50 ppm or less, more preferably 10 ppm or less. An integrated body and a manufacturing method thereof can be provided.
 さらに、本発明は、蛍光発光する半導体ナノ粒子集積体をある一定以下の濃度にしても発光強度が低下せずに、発光輝度の高いマトリックス被覆集積体およびその製造方法を提供することができる。 Furthermore, the present invention can provide a matrix-covered aggregate with high emission luminance and a method for producing the same without reducing the emission intensity even if the concentration of the semiconductor nanoparticle aggregate that emits fluorescence is below a certain level.
 以下、本発明とその構成要素、および本発明を実施するための形態・態様について詳細な説明をする。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail.
             <マトリックス被覆集積体>
 本発明のマトリックス被覆集積体は、コア/シェル構造を有する半導体ナノ粒子を含有する半導体ナノ粒子集積体であって界面活性剤が結合しているものと、該界面活性剤が結合した該半導体ナノ粒子集積体を被覆するシリカマトリックスとを含んでなることを特徴とする。
<Matrix coating assembly>
The matrix-covered aggregate of the present invention includes a semiconductor nanoparticle aggregate containing semiconductor nanoparticles having a core / shell structure, to which a surfactant is bound, and the semiconductor nanoparticle to which the surfactant is bound. And a silica matrix covering the particle aggregate.
 本発明の実施態様としては、半導体ナノ粒子をアミンなどの界面活性剤存在下でTEOSと加水分解させて半導体ナノ粒子集積体を作製することが好ましい。 As an embodiment of the present invention, it is preferable to produce a semiconductor nanoparticle aggregate by hydrolyzing semiconductor nanoparticles with TEOS in the presence of a surfactant such as amine.
 〔コア/シェル構造を有する半導体ナノ粒子〕
 本発明に用いる「コア/シェル構造を有する半導体ナノ粒子」とは、後述する半導体を形成する材料(素材)を含有するナノサイズ(1~1000nm)の粒径を有する粒子であって、コア部(芯部)とそれを被覆するシェル部(被覆部)で構成される多重構造を有する粒子をいう。
[Semiconductor nanoparticles having a core / shell structure]
The “semiconductor nanoparticle having a core / shell structure” used in the present invention is a particle having a nanosize (1 to 1000 nm) particle size containing a material (material) for forming a semiconductor, which will be described later, A particle having a multiple structure composed of a (core part) and a shell part (covering part) covering the core part.
 (コア部)
 本発明に係るコア部(「コア粒子」ともいう。)を形成するための素材としては、例えば、ケイ素〔Si〕、ゲルマニウム〔Ge〕、窒化インジウム〔InN〕、リン化インジウム〔InP〕、ヒ素化ガリウム〔GaAs〕、セレン化アルミニウム〔AlSe〕、セレン化カドミウム〔CdSe〕、ヒ素化アルミニウム〔AlAs〕、リン化ガリウム〔GaP〕、テルル化亜鉛〔ZnTe〕、テルル化カドミウム〔CdTe〕、ヒ素化インジウム〔InAs〕、インジウム-ガリウム-リン〔InGaP〕などの半導体またはこれらを形成する原料を用いることができる。
(Core part)
Examples of the material for forming the core portion (also referred to as “core particle”) according to the present invention include silicon [Si], germanium [Ge], indium nitride [InN], indium phosphide [InP], and arsenic. Gallium phosphide [GaAs], aluminum selenide [AlSe], cadmium selenide [CdSe], aluminum arsenide [AlAs], gallium phosphide [GaP], zinc telluride [ZnTe], cadmium telluride [CdTe], arsenic A semiconductor such as indium [InAs] or indium-gallium-phosphorus [InGaP] or a raw material for forming these can be used.
 本発明においては、特に、InP,CdTeまたはCdSeがより好ましく用いられる。 In the present invention, InP, CdTe or CdSe is particularly preferably used.
 (シェル部)
 本発明に係るシェル部を形成するための素材としては、II-VI族、III-V族、IV族の無機半導体を用いることができる。例えば、Si、Ge、InN、InP、GaAs、AlSe、CdSe、AlAs、GaP、ZnTe、CdTe、InAsなどの各コア部形成無機材料よりバンドギャップが大きく、毒性を有さない半導体またはこれらを形成する原料が好ましい。
(Shell part)
As a material for forming the shell portion according to the present invention, II-VI group, III-V group, and IV group inorganic semiconductors can be used. For example, a semiconductor having a band gap larger than that of each core-forming inorganic material such as Si, Ge, InN, InP, GaAs, AlSe, CdSe, AlAs, GaP, ZnTe, CdTe, InAs, etc., or a non-toxic semiconductor is formed. Raw materials are preferred.
 より好ましくは、InP、CdTeまたはCdSeのコア部に対してZnSをシェル部として適用される。 More preferably, ZnS is applied as a shell part to the core part of InP, CdTe or CdSe.
 以下、本明細書において、コア/シェル構造を有する半導体ナノ粒子の表記法として、例えば、コア部がCdSeであり、シェル部がZnSである場合、「CdSe/ZnS」と表記することがある。 Hereinafter, in this specification, as a notation method of the semiconductor nanoparticles having a core / shell structure, for example, when the core portion is CdSe and the shell portion is ZnS, it may be expressed as “CdSe / ZnS”.
 (半導体ナノ粒子の製造方法)
 本発明に係る半導体ナノ粒子の製造方法としては、液相法による方法を採用できる。
(Method for producing semiconductor nanoparticles)
As a method for producing semiconductor nanoparticles according to the present invention, a liquid phase method can be employed.
 液相法の製造方法としては、沈殿法、共沈法、ゾル-ゲル法、均一沈殿法、還元法などが挙げられる。その他に、逆ミセル法や超臨界水熱合成法なども半導体ナノ粒子を製造する上で優れた方法である(例えば、特開2002-322468号公報、特開2005-239775号公報、特開平10-310770号公報、特開2000-104058号公報等を参照。)。 Examples of the liquid phase method include a precipitation method, a coprecipitation method, a sol-gel method, a uniform precipitation method, and a reduction method. In addition, the reverse micelle method and the supercritical hydrothermal synthesis method are also excellent methods for producing semiconductor nanoparticles (for example, Japanese Patent Application Laid-Open Nos. 2002-322468, 2005-239775, and Hei 10). No. -371070, JP 2000-104058, etc.).
 なお、液相法により、後述する半導体ナノ粒子の集積体(半導体ナノ粒子集積体)を製造する場合においては、当該半導体の前駆体を還元反応により還元する工程を有する製造方法であることも好ましい。(※半導体前駆体を還元する還元剤については後述する。)
 また、当該半導体前駆体の反応を界面活性剤(※後述する。)の存在下で行う工程を有する態様が好ましい。なお、本発明に係る半導体前駆体は、上記の半導体材料として用いられる元素を含む化合物であり、例えば半導体がSiの場合、半導体前駆体としてはSiCl4などが挙げられる。その他半導体前駆体としては、InCl、P(SiMe3)、ZnMe、CdMe、GeCl、トリブチルホスフィンセレンなどが挙げられる。
In addition, when manufacturing the semiconductor nanoparticle aggregate | assembly (semiconductor nanoparticle aggregate | assembly) mentioned later by a liquid phase method, it is also preferable that it is a manufacturing method which has the process of reduce | restoring the said semiconductor precursor by a reductive reaction. . (* The reducing agent that reduces the semiconductor precursor will be described later.)
Moreover, the aspect which has the process of reacting the said semiconductor precursor in presence of surfactant (* mentioned later) is preferable. The semiconductor precursor according to the present invention is a compound containing an element used as the semiconductor material, for example, when the semiconductor is Si, and the like SiCl 4 as semiconductor precursor. Other semiconductor precursors include InCl 3 , P (SiMe 3 ) 3 , ZnMe 2 , CdMe 2 , GeCl 4 , tributylphosphine selenium and the like.
 反応前駆体の反応温度としては、半導体前駆体の沸点以上かつ溶媒の沸点以下であれば、特に制限はないが、70~110℃の範囲が好ましい。
※半導体前駆体を還元する還元剤:
 このような還元剤としては、従来周知の種々の還元剤を反応条件に応じて選択し用いることができる。本発明においては、還元力の強さの観点から、水素化アルミニウムリチウム〔LiAlH4〕、水素化ホウ素ナトリウム〔NaBH4〕、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム、水素化トリ(sec-ブチル)ホウ素リチウム〔LiBH(sec-C49)3〕および水素化トリ(sec-ブチル)ホウ素カリウム、水素化トリエチルホウ素リチウムなどの還元剤が好ましい。特に、還元力の強さから水素化アルミニウムリチウム〔LiAlH4〕が好ましい。
※半導体前駆体の反応に用いる界面活性剤:
 このような界面活性剤としては、従来周知の種々の界面活性剤を使用でき、陰イオン、非イオン、陽イオン、両性界面活性剤が含まれる。なかでも第四級アンモニウム塩系である、テトラブチルアンモニウムクロリド、ブロミドまたはヘキサフルオロホスフェート、テトラオクチルアンモニウムブロミド〔TOAB〕またはトリブチルヘキサデシルホスホニウムブロミドが好ましい。特に、テトラオクチルアンモニウムブロミドが好ましい。
The reaction temperature of the reaction precursor is not particularly limited as long as it is not lower than the boiling point of the semiconductor precursor and not higher than the boiling point of the solvent, but is preferably in the range of 70 to 110 ° C.
* Reducing agent that reduces the semiconductor precursor:
As such a reducing agent, various conventionally known reducing agents can be selected and used according to the reaction conditions. In the present invention, from the viewpoint of the strength of reducing power, lithium aluminum hydride [LiAlH 4 ], sodium borohydride [NaBH 4 ], bis (2-methoxyethoxy) aluminum hydride, tri (sec- Preferred are reducing agents such as lithium (butyl) boron [LiBH (sec-C 4 H 9 ) 3 ] and potassium tri (sec-butyl) borohydride, lithium triethylborohydride. In particular, lithium aluminum hydride [LiAlH 4 ] is preferable because of its reducing power.
* Surfactant used for reaction of semiconductor precursor:
As such a surfactant, various conventionally known surfactants can be used, and anionic, nonionic, cationic, and amphoteric surfactants are included. Of these, tetrabutylammonium chloride, bromide or hexafluorophosphate, tetraoctylammonium bromide [TOAB] or tributylhexadecylphosphonium bromide, which are quaternary ammonium salts, are preferred. Tetraoctyl ammonium bromide is particularly preferable.
 なお、液相法による反応は、液中の溶媒(※後述する。)を含む化合物の状態により大きく変化する。単分散性の優れたナノサイズの粒子を製造する際には、特に注意を要する必要がある。例えば、逆ミセル反応法では、界面活性剤の濃度や種類により、反応場となる逆ミセルの大きさや状態が変わってくるため、ナノ粒子が形成される条件が限られてしまう。したがって、適切な界面活性剤と溶媒との組み合わせが必要となる。
※液相法に用いる溶媒:
 半導体前駆体の分散用溶媒としては、従来周知の種々の溶媒を使用できるが、エチルアルコール、sec-ブチルアルコール、t-ブチルアルコール等のアルコール類;トルエン、デカン、ヘキサンなどの炭化水素類溶媒を使用することが好ましい。本発明においては、特に、トルエン等の疎水性の溶媒が分散用溶媒として好ましい。
The reaction by the liquid phase method varies greatly depending on the state of the compound containing the solvent in the liquid (* described later). When producing nano-sized particles with excellent monodispersity, special care must be taken. For example, in the reverse micelle reaction method, the size and state of the reverse micelle serving as a reaction field vary depending on the concentration and type of the surfactant, so that the conditions under which nanoparticles are formed are limited. Therefore, an appropriate combination of surfactant and solvent is required.
* Solvent used in the liquid phase method:
Various known solvents can be used as the solvent for dispersing the semiconductor precursor. Alcohols such as ethyl alcohol, sec-butyl alcohol, and t-butyl alcohol; hydrocarbon solvents such as toluene, decane, and hexane are used. It is preferable to use it. In the present invention, a hydrophobic solvent such as toluene is particularly preferable as the dispersion solvent.
 〔半導体ナノ粒子集積体〕
 本発明で用いる半導体ナノ粒子集積体は、コア/シェル構造を有する半導体ナノ粒子を含有する半導体ナノ粒子の集積体である。
[Semiconductor nanoparticle assembly]
The semiconductor nanoparticle assembly used in the present invention is an assembly of semiconductor nanoparticles containing semiconductor nanoparticles having a core / shell structure.
 該集積体における半導体ナノ粒子の内包数の計算は以下のようにして行う。まず、半導体ナノ粒子の元素比をICP-AEC(ICPS-7500 島津製作所)を用いて計測し乾燥重量からモル数を算出する。また、吸光度を測定することにより、モル吸光係数を求める。その後、半導体ナノ粒子集積体の乾燥重量を計算し、吸光度を測定する。半導体ナノ粒子、半導体ナノ粒子集積体構成化合物の密度は既知なので、動的光散乱法で計算した平均粒径、半導体ナノ粒子集積体の吸光度と合わせて濃度を見積もることが可能である。 The calculation of the number of semiconductor nanoparticles included in the aggregate is performed as follows. First, the element ratio of semiconductor nanoparticles is measured using ICP-AEC (ICPS-7500, Shimadzu Corporation), and the number of moles is calculated from the dry weight. Further, the molar extinction coefficient is obtained by measuring the absorbance. Thereafter, the dry weight of the semiconductor nanoparticle assembly is calculated and the absorbance is measured. Since the density of the semiconductor nanoparticle and the semiconductor nanoparticle assembly constituent compound is known, the concentration can be estimated together with the average particle size calculated by the dynamic light scattering method and the absorbance of the semiconductor nanoparticle assembly.
 (半導体ナノ粒子集積体の製造方法)
 半導体ナノ粒子集積体の製造方法としては、上記のように液相法を用いてもよいし、他の製造方法を用いてもよい。他の製造方法としては、例えば、スパッタ法などの気相法が挙げられる。これらのうち、粒径の均一性という観点から、液相法による半導体ナノ粒子集積体の製造方法が好ましい。
(Manufacturing method of semiconductor nanoparticle assembly)
As a manufacturing method of the semiconductor nanoparticle assembly, a liquid phase method may be used as described above, or another manufacturing method may be used. Examples of other manufacturing methods include gas phase methods such as sputtering. Among these, from the viewpoint of particle size uniformity, a method for producing a semiconductor nanoparticle assembly by a liquid phase method is preferred.
 〔界面活性剤〕
 本発明で用いる界面活性剤としては、例えば、ドデシルアミン、ヘキサデシルアミン、オクタデシルアミン等の高級アミンや、トリオクチルホスフィン、トリオクチルホスフィンオキシド等の有機リン化合物などが挙げられ、後述するイオン溶出性の理由から、高級アミンが好ましい。
[Surfactant]
Examples of the surfactant used in the present invention include higher amines such as dodecylamine, hexadecylamine and octadecylamine, and organic phosphorus compounds such as trioctylphosphine and trioctylphosphine oxide. For this reason, higher amines are preferred.
       <マトリックス被覆集積体の製造方法>
 本発明のマトリックス被覆集積体の製造方法は、少なくとも下記工程(X)および(Y)を含むことを特徴とする。
<Method for producing matrix-coated assembly>
The method for producing a matrix-covered aggregate of the present invention includes at least the following steps (X) and (Y).
 工程(X):水に溶解する限界量を超える量の界面活性剤を用いて、コア/シェル構造を有する半導体ナノ粒子を含有する半導体ナノ粒子集積体を水溶化させる工程。 Step (X): A step of water-solubilizing a semiconductor nanoparticle aggregate containing semiconductor nanoparticles having a core / shell structure using an amount of a surfactant that exceeds the limit amount that dissolves in water.
 工程(Y):工程(X)で得られる水溶化した半導体ナノ粒子集積体の周囲をマトリックスにより被覆する工程。 Step (Y): A step of coating the periphery of the water-soluble semiconductor nanoparticle aggregate obtained in step (X) with a matrix.
 上記の界面活性剤およびマトリックスは、上述したものと同様である。 The above surfactant and matrix are the same as those described above.
 マトリックスとしてシリカを用いる場合の、マトリックス被覆集積体の製造方法として、具体的には、まず、半導体ナノ粒子を界面活性剤で水溶化させる(工程(X))。ここで、界面活性剤はアミン系化合物を用いることができ、特にドデシルアミンといった高級アミンを用いることが好ましい。この界面活性剤で水溶化させた半導体ナノ粒子をエタノール,アンモニア〔NH3〕およびテトラエトキシシラン〔TEOS〕をこの順に添加することによってTEOSを加水分解させ、シリカマトリックスによって被覆された半導体ナノ粒子集積体、すなわちマトリックス被覆集積体を得ることができる(工程(Y))。なお、当該マトリックス被覆集積体には、TEOS反応の触媒として作用する水はほとんど含まれないか、または一切含まれない。 Specifically, as a method for producing a matrix-covered aggregate when silica is used as the matrix, first, the semiconductor nanoparticles are water-solubilized with a surfactant (step (X)). Here, an amine compound can be used as the surfactant, and it is particularly preferable to use a higher amine such as dodecylamine. The semiconductor nanoparticles solubilized with this surfactant are added with ethanol, ammonia [NH 3 ] and tetraethoxysilane [TEOS] in this order to hydrolyze TEOS, and the semiconductor nanoparticles are coated with a silica matrix. A body, that is, a matrix-coated aggregate can be obtained (step (Y)). Note that the matrix-covered aggregate contains little or no water that acts as a catalyst for the TEOS reaction.
 界面活性剤としてドデシルアミンを用いる場合の工程(X)において、ドデシルアミンは、水に溶解する限界量(例えば、25℃で78mg/Lなど)を超える量を添加する。界面活性剤を水に溶解する限界量を超える量を用いると、コア/シェル構造を有する半導体ナノ粒子が水溶化する点で好ましい。 In the step (X) in the case of using dodecylamine as a surfactant, dodecylamine is added in an amount exceeding the limit amount that dissolves in water (for example, 78 mg / L at 25 ° C.). Use of an amount exceeding the limit amount for dissolving the surfactant in water is preferable in that the semiconductor nanoparticles having a core / shell structure are water-solubilized.
 なお、一般的に、アミン系化合物や有機リン化合物以外の界面活性剤を水に少量加えると、コア/シェル構造を有する半導体ナノ粒子は水溶化する。しかしながら、界面活性剤として例えばドデシルアミンを用いた場合、ドデシルアミン自体の水溶解性が極めて低いためか、多量の界面活性剤が存在しないと該半導体ナノ粒子は水溶化しない。水に溶解する量程度のドデシルアミンの添加では、該半導体ナノ粒子は水と混じらずに完全に水相と分離してしまう。 In general, when a small amount of a surfactant other than an amine compound or an organic phosphorus compound is added to water, the semiconductor nanoparticles having a core / shell structure are water-solubilized. However, for example, when dodecylamine is used as the surfactant, the semiconductor nanoparticles do not become water-soluble unless a large amount of the surfactant exists because the water solubility of dodecylamine itself is extremely low. When dodecylamine is added in an amount that dissolves in water, the semiconductor nanoparticles are not mixed with water and completely separated from the aqueous phase.
 また、ドデシルアミンをモル比で該半導体ナノ粒子の100倍を超える量添加することによって、ドデシルアミンの相と、該半導体ナノ粒子が存在している水相とに分かれてしまう。一方、当該モル比で100倍以下にすると、ドデシルアミンの相にも該半導体ナノ粒子が存在する。これはUVランプを照射することにより目視で確認できる。 Further, when dodecylamine is added in an amount exceeding 100 times that of the semiconductor nanoparticles by a molar ratio, it is separated into a dodecylamine phase and an aqueous phase in which the semiconductor nanoparticles are present. On the other hand, when the molar ratio is 100 times or less, the semiconductor nanoparticles are also present in the dodecylamine phase. This can be confirmed visually by irradiating with a UV lamp.
 すなわち、コア/シェル構造を有する半導体ナノ粒子に対して、本発明で用いる界面活性剤を、モル比[(界面活性剤)/(当該半導体ナノ粒子)]で、好ましくは10~400、より好ましくは50~200、最も好ましくは100程度を満たす量で水に添加する。 That is, the surfactant used in the present invention with respect to semiconductor nanoparticles having a core / shell structure is preferably 10 to 400, more preferably in molar ratio [(surfactant) / (the semiconductor nanoparticles)]. Is added to water in an amount satisfying 50 to 200, most preferably about 100.
 TEOSの加水分解は、以下のような反応式で表される。 TEOS hydrolysis is represented by the following reaction formula.
 加水分解:
 {Si(OC25)4}+x{H2O}→{Si(OH)(xOC25)4-x}+{C25OH}
 脱水:
 {-Si-OH}+{HO-Si-}→{-Si-O-Si-}+{H2O}
 脱アルコール:
 {-Si-OC25}+{HO-Si-}→{-Si-O-Si-}+{C25OH}
 このような加水分解,脱水および脱アルコールの反応を繰り返し、TEOSから、シリカマトリックスを構成するSiO2が生成する。
Hydrolysis:
{Si (OC 2 H 5 ) 4 } + x {H 2 O} → {Si (OH) (xOC 2 H 5 ) 4-x } + {C 2 H 5 OH}
dehydration:
{-Si-OH} + {HO-Si-} → {-Si-O-Si-} + {H 2 O}
Dealcohol:
{-Si-OC 2 H 5 } + {HO-Si-} → {-Si-O-Si-} + {C 2 H 5 OH}
By repeating such hydrolysis, dehydration and dealcoholization reactions, SiO 2 constituting the silica matrix is produced from TEOS.
 TEOSの加水分解全体の反応式を以下に示す。 The overall reaction formula of TEOS hydrolysis is shown below.
 {Si(OC25)4}+2{H2O}→{SiO2}+4{C25OH}
 このような本発明のマトリックス被覆集積体は、イオン溶出試験において、コア部を形成するイオンの溶出が極めて少ない、具体的には100ppm以下、好ましくは50ppm以下、より好ましくは10ppm以下であるという優れた効果を有する。このイオン溶出試験とは、マトリックス被覆集積体を水溶媒中に0.1μMで分散させ、一昼夜(例えば、8~16時間,~24時間など)静置後、上澄み液にしみ出したコア/シェル構造を有する半導体ナノ粒子の構成元素のイオン量を測定し、当該マトリックス被覆集積体が有するイオンの溶出の程度を評価する試験である。また、イオン量の測定は、誘導結合プラズマ発光分光分析装置〔ICP-AES;Inductively Coupled Plasma-Atomic Emission Spectrometry〕を用いた。
{Si (OC 2 H 5 ) 4 } +2 {H 2 O} → {SiO 2 } +4 {C 2 H 5 OH}
Such a matrix-covered aggregate of the present invention is excellent in that in the ion elution test, elution of ions forming the core portion is extremely small, specifically 100 ppm or less, preferably 50 ppm or less, more preferably 10 ppm or less. It has the effect. In this ion elution test, the matrix-coated aggregate is dispersed in an aqueous solvent at 0.1 μM, and is allowed to stand overnight (for example, 8 to 16 hours, to 24 hours, etc.), and then the core / shell that has oozed into the supernatant. In this test, the amount of ions of constituent elements of the semiconductor nanoparticles having a structure is measured, and the degree of elution of ions of the matrix-covered aggregate is evaluated. The amount of ions was measured by using an inductively coupled plasma-atomic emission spectrometer (ICP-AES).
 なお、マトリックス被覆集積体およびマトリックス被覆集積体の製造方法ならびにマトリックス被覆集積体のイオン溶出試験の概要については上述したが、具体的には実施例の説明において詳述する。 The outline of the matrix-coated aggregate, the method for producing the matrix-coated aggregate, and the outline of the ion elution test of the matrix-coated aggregate have been described above.
       <マトリックス被覆集積体の応用例>
 以下において、マトリックス被覆集積体の代表的な応用例について説明する。
<Application example of matrix coating assembly>
Below, the typical application example of a matrix coating | stacking assembly is demonstrated.
 〔生体物質標識剤とバイオイメージング〕
 本発明のマトリックス被覆集積体は、生体物質蛍光標識剤に適応することができる。また、標的(追跡)物質を有する生細胞もしくは生体に本発明に係る生体物質標識剤を添加することで、標的物質と結合もしくは吸着し、当該結合体もしくは吸着体に所定の波長の励起光を照射し、当該励起光に応じて半導体ナノ粒子から発する所定の波長の蛍光を検出することにより、上記標的(追跡)物質の蛍光動態イメージングを行うことができる。
[Biological substance labeling agents and bioimaging]
The matrix-coated assembly of the present invention can be applied to a biological material fluorescent labeling agent. Further, by adding the biological material labeling agent according to the present invention to a living cell or living body having a target (tracking) substance, the target substance is bound or adsorbed, and excitation light having a predetermined wavelength is applied to the conjugate or adsorbent. By irradiating and detecting fluorescence of a predetermined wavelength emitted from the semiconductor nanoparticles according to the excitation light, fluorescence dynamic imaging of the target (tracking) substance can be performed.
 すなわち、本発明を用いる生体物質標識剤は、バイオイメージング法(生体物質を構成する生体分子やその動的現象を可視化する技術手段)に利用することができる。 That is, the biomaterial labeling agent using the present invention can be used for bioimaging methods (technical means for visualizing biomolecules constituting the biomaterial and dynamic phenomena thereof).
 (生体物質標識剤)
 本発明を用いる生体物質標識剤は、上述のように親水化処理されたマトリックス被覆集積体と分子標識物質(※後述する。)とを、有機分子(※後述する)を介して結合させて得られることが好ましい。
※分子標識物質:
 本発明を用いる生体物質標識剤は、分子標識物質が目的とする生体物質と特異的に結合および/または反応することにより、生体物質の標識が可能となる。
(Biological substance labeling agent)
The biological substance labeling agent using the present invention is obtained by binding the matrix-coated aggregate subjected to the hydrophilic treatment as described above and a molecular labeling substance (* described later) via an organic molecule (* described later). It is preferred that
* Molecular labeling substance:
The biological substance labeling agent using the present invention can be labeled with a biological substance when the molecular labeling substance specifically binds and / or reacts with the target biological substance.
 当該分子標識物質としては、例えば、ヌクレオチド鎖、抗体、抗原、シクロデキストリン等が挙げられる。
※有機分子:
 本発明を用いる生体物質標識剤は、親水化処理されたマトリックス被覆集積体と分子標識物質とが有機分子により結合されている。当該有機分子としてはマトリックス被覆集積体と分子標識物質とを結合できる有機分子であれば特に制限はないが、例えば、タンパク質、中でも、アルブミン、ミオグロビン、カゼイン等、または、タンパク質の一種であるアビジンをビオチンとともに用いることも好適である。上記結合の態様としては、特に限定されず、共有結合、イオン結合、水素結合、配位結合、物理吸着、化学吸着等が挙げられる。結合の安定性から共有結合などの結合力の強い結合が好ましい。
Examples of the molecular labeling substance include nucleotide chains, antibodies, antigens, cyclodextrins and the like.
* Organic molecules:
In the biological material labeling agent using the present invention, the matrix-coated aggregate subjected to the hydrophilization treatment and the molecular labeling material are bound by organic molecules. The organic molecule is not particularly limited as long as it is an organic molecule that can bind the matrix-covered aggregate and the molecular labeling substance. For example, proteins such as albumin, myoglobin, casein, or avidin that is a kind of protein. It is also suitable to use with biotin. The form of the bond is not particularly limited, and examples thereof include a covalent bond, an ionic bond, a hydrogen bond, a coordinate bond, physical adsorption, and chemical adsorption. A bond having a strong bonding force such as a covalent bond is preferable from the viewpoint of bond stability.
 具体的には、マトリックス被覆集積体をメルカプトウンデカン酸で親水化処理した場合は、有機分子としてアビジンおよびビオチンを用いることができる。この場合親水化処理されたマトリックス被覆集積体のカルボキシル基はアビジンと好適に共有結合し、アビジンがさらにビオチンと選択的に結合し、ビオチンがさらに生体物質標識剤と結合することにより生体物質標識剤となる。 Specifically, when the matrix-coated aggregate is hydrophilized with mercaptoundecanoic acid, avidin and biotin can be used as organic molecules. In this case, the carboxyl group of the matrix-coated assembly subjected to the hydrophilic treatment is preferably covalently bonded to avidin, the avidin is further selectively bonded to biotin, and biotin is further bonded to the biological material labeling agent to thereby bind the biological material labeling agent. It becomes.
 以下、実施例により本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。なお、実施例および比較例における元素の比はモル比を示す。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. In addition, the ratio of the element in an Example and a comparative example shows molar ratio.
 [比較例1]コア/シェル構造がInP/ZnSである半導体ナノ粒子の合成:
 InPコア粒子は、下記の加熱溶液法に従って合成した。
[Comparative Example 1] Synthesis of semiconductor nanoparticles having a core / shell structure of InP / ZnS:
InP core particles were synthesized according to the following heated solution method.
 三つ口フラスコに6mLのオクタデセンを入れ、その溶媒中に1mLのオクタデセンに溶解させたIn(acac)3とトリス(トリメチルシリル)ホスフィンをInとPの比がIn/P=1/1となるように加え、アルゴン雰囲気中で300℃、1時間反応させInPコア粒子(分散液)を得た。 Put 6 mL of octadecene in a three-necked flask and dissolve In (acac) 3 and tris (trimethylsilyl) phosphine dissolved in 1 mL of octadecene in the solvent so that the ratio of In to P becomes In / P = 1/1. In addition, an InP core particle (dispersion) was obtained by reacting at 300 ° C. for 1 hour in an argon atmosphere.
 InP/ZnSコア/シェル粒子の合成は、300℃、1h反応後のInPコア粒子分散液を80℃まで放冷した後、その分散液に1mLのオクタデセンに溶解させたステアリン酸亜鉛+硫黄をIn、P、Zn、Sの比がIn/P/Zn/S=1/1/1/1となるように加え、80℃から230℃に昇温し、30分反応させることにより得た。 InP / ZnS core / shell particles were synthesized by allowing the InP core particle dispersion after reaction at 300 ° C. for 1 hour to cool to 80 ° C., and then adding zinc stearate + sulfur dissolved in 1 mL of octadecene to the dispersion. , P, Zn and S were added so that the ratio of In / P / Zn / S = 1/1/1/1 was increased from 80 ° C. to 230 ° C. and reacted for 30 minutes.
 このようにして得られたInP/ZnSコア/シェル半導体ナノ粒子は630nmに極大発光波長を持った粒子であった。 The InP / ZnS core / shell semiconductor nanoparticles thus obtained were particles having a maximum emission wavelength at 630 nm.
 [比較例2]コア/シェル構造がCdSe/ZnSである半導体ナノ粒子の合成:
 CdSe/ZnSコア/シェル半導体ナノ粒子は、以下のようにして合成した。
[Comparative Example 2] Synthesis of semiconductor nanoparticles having a core / shell structure of CdSe / ZnS:
CdSe / ZnS core / shell semiconductor nanoparticles were synthesized as follows.
 Ar気流下、トリ-n-オクチルホスフィンオキシド〔TOPO〕7.5gに、ステアリン酸2.9g、n-テトラデシルホスホン酸620mg、および、酸化カドミニウム250mgを加え、370℃に加熱混合した。これを270℃まで放冷させた後、トリブチルフォスフィン2.5mLにセレン200mgを溶解させた溶液を加え、減圧乾燥し、TOPOで被覆されたCdSeコア半導体ナノ粒子を得た。 Under an Ar stream, 2.9 g of stearic acid, 620 mg of n-tetradecylphosphonic acid, and 250 mg of cadmium oxide were added to 7.5 g of tri-n-octylphosphine oxide [TOPO], and the mixture was heated to 370 ° C. for mixing. After allowing this to cool to 270 ° C., a solution of 200 mg of selenium dissolved in 2.5 mL of tributylphosphine was added and dried under reduced pressure to obtain CdSe core semiconductor nanoparticles coated with TOPO.
 CdSe/ZnSコア/シェル半導体ナノ粒子合成は得られたCdSeコア粒子に、TOPO15gを加えて加熱し、引き続き270℃でトリオクチルホスフィン10mLにジエチルジチオカルバミン酸亜鉛1.1gを溶解した溶液を加え、CdSe/ZnSコア/シェル半導体ナノ粒子を得た。 CdSe / ZnS core / shell semiconductor nanoparticles were synthesized by adding 15 g of TOPO to the obtained CdSe core particles and heating, followed by adding a solution of 1.1 g of zinc diethyldithiocarbamate in 10 mL of trioctylphosphine at 270 ° C. / ZnS core / shell semiconductor nanoparticles were obtained.
 [比較例3]コア/シェル構造がCdTe/ZnSである半導体ナノ粒子の合成:
 CdTe/ZnSコア/シェル半導体ナノ粒子は、特開2005-281019号公報に記載の実施例1に従い合成した。
[Comparative Example 3] Synthesis of semiconductor nanoparticles having a core / shell structure of CdTe / ZnS:
CdTe / ZnS core / shell semiconductor nanoparticles were synthesized according to Example 1 described in JP-A-2005-281019.
 CdTeコア粒子については、ヒェミー、100巻、1772頁(1996)による方法に従って合成した。 The CdTe core particles were synthesized according to the method according to Hemy, Volume 100, page 1772 (1996).
 すなわち、アルゴンガス雰囲気下、界面活性剤としてのチオグリコール酸〔HOOCCH2SH〕の存在下で25℃、pH=11.4に調整した過塩素酸カドミウム水溶液を激しく撹拌しながら、テルル化水素ガスを反応させた。この水溶液を大気雰囲気下で6日間還流することにより、CdTeコア粒子を得た。 That is, hydrogen telluride gas while vigorously stirring an aqueous cadmium perchlorate solution adjusted to pH = 11.4 at 25 ° C. in the presence of thioglycolic acid [HOOCCH 2 SH] as a surfactant under an argon gas atmosphere Was reacted. The aqueous solution was refluxed for 6 days in an air atmosphere to obtain CdTe core particles.
 このようにして得られたCdTeコア粒子は640nmに極大発光波長を持った粒子であった。 The CdTe core particles thus obtained were particles having a maximum emission wavelength at 640 nm.
 CdTe/ZnSコア/シェル半導体ナノ粒子の合成は、この水溶液を80℃まで加熱した後、その溶液に1mLの水に溶解させたステアリン酸亜鉛+硫黄をCd、Te、Zn、Sの比がIn/P/Zn/S=1/1/1/1となるように加え、80℃から230℃に昇温し、30分反応させることにより得た。 CdTe / ZnS core / shell semiconductor nanoparticles were synthesized by heating this aqueous solution to 80 ° C., and then adding zinc stearate + sulfur dissolved in 1 mL of water to the solution so that the ratio of Cd, Te, Zn, S was In. It was obtained by adding / P / Zn / S = 1/1/1/1, raising the temperature from 80 ° C. to 230 ° C., and reacting for 30 minutes.
 [比較例4]シリカマトリックス中にCdTe/ZnSが存在する半導体ナノ粒子集積体の作製:
 特開2005-281019号公報に記載の実施例1に従い、シリカマトリックス中にCdTe/ZnSが存在する半導体ナノ粒子集積体を作製した。
[Comparative Example 4] Fabrication of semiconductor nanoparticle assembly in which CdTe / ZnS is present in a silica matrix:
According to Example 1 described in JP-A-2005-281019, a semiconductor nanoparticle assembly in which CdTe / ZnS is present in a silica matrix was produced.
 CdTe/ZnSコア/シェル半導体ナノ粒子分散液を25℃、pH=10の条件下、界面活性剤としてチオグリコール酸を加えることにより水溶化した。その後、疎水性有機溶媒としてのイソオクタン(2,2,4-トリメチルペンタン)25mLに、逆ミセル(逆マイクロエマルジョン)を形成させるために必要なビス(2-エチルヘキシル)スルホこはく酸ナトリウム(エーロゾルOT)(「AOT」とも表記する。)1.1115gを溶解し、次に、この溶液を撹拌しながら、水0.74mLと、上記の水溶化CdTe/ZnSコア/シェル半導体ナノ粒子溶液0.3mL加えて溶解した。次に、この溶液を撹拌しながら、ゾル-ゲルガラスの前駆体として、アルコキシドであるテトラエトキシシラン〔TEOS〕0.399mL、および、有機アルコキシシランである3-アミノプロピルトリメトキシシラン〔APS〕0.079mLを加えた。 The CdTe / ZnS core / shell semiconductor nanoparticle dispersion was water-solubilized by adding thioglycolic acid as a surfactant under the conditions of 25 ° C. and pH = 10. Thereafter, sodium bis (2-ethylhexyl) sulfosuccinate (aerosol OT) necessary for forming reverse micelles (reverse microemulsion) in 25 mL of isooctane (2,2,4-trimethylpentane) as a hydrophobic organic solvent (Also referred to as “AOT”) 1.1115 g was dissolved, and then 0.74 mL of water and 0.3 mL of the water-soluble CdTe / ZnS core / shell semiconductor nanoparticle solution were added while stirring the solution. And dissolved. Next, while stirring this solution, as a sol-gel glass precursor, 0.399 mL of tetraethoxysilane [TEOS] as an alkoxide and 3-aminopropyltrimethoxysilane [APS] 0. 079 mL was added.
 この分散液を2日間撹拌することによりシリカマトリックス中にCdTe/ZnSが存在する半導体ナノ粒子集積体とした。 This dispersion was stirred for 2 days to obtain a semiconductor nanoparticle aggregate in which CdTe / ZnS was present in the silica matrix.
 [比較例5]ポリスチレンマトリックス中にCdTe/ZnSとドデシルアミンとが膨潤した半導体ナノ粒子の作製:
 比較例3で合成したCdTe/ZnSコア/シェル半導体ナノ粒子を用い、コア/シェル半導体ナノ粒子の溶液に、貧溶媒であるアセトンを加え、該半導体ナノ粒子を沈殿させた。
[Comparative Example 5] Preparation of semiconductor nanoparticles in which CdTe / ZnS and dodecylamine were swollen in a polystyrene matrix:
Using the CdTe / ZnS core / shell semiconductor nanoparticles synthesized in Comparative Example 3, acetone, which is a poor solvent, was added to the core / shell semiconductor nanoparticle solution to precipitate the semiconductor nanoparticles.
 この沈殿0.1mgに、界面活性剤であるドデシルアミン0.1mgおよび超純水1mLを加え、1h強撹拌することにより水溶化半導体ナノ粒子溶液を得た。 To 0.1 mg of this precipitate, 0.1 mg of dodecylamine as a surfactant and 1 mL of ultrapure water were added, and stirred for 1 hour to obtain a water-soluble semiconductor nanoparticle solution.
 この水溶化半導体ナノ粒子溶液に、Invitrogen社のカルボキシル基末端ポリスチレン粒子(300nm)を加え、1h強撹拌することにより、ポリスチレン中にCdTe/ZnS半導体ナノ粒子を膨潤させた。 The CdTe / ZnS semiconductor nanoparticles were swollen in polystyrene by adding carboxyl group-terminated polystyrene particles (300 nm) of Invitrogen to this water-soluble semiconductor nanoparticle solution and stirring for 1 h.
 [実施例1]
 比較例1で合成したInP/ZnSコア/シェル半導体ナノ粒子の溶液に、貧溶媒であるアセトンを加え、該半導体ナノ粒子を沈殿させた。
[Example 1]
Acetone, which is a poor solvent, was added to the solution of InP / ZnS core / shell semiconductor nanoparticles synthesized in Comparative Example 1 to precipitate the semiconductor nanoparticles.
 この沈殿0.1mgに、界面活性剤であるドデシルアミン0.1mgおよび超純水1mLを加え、1h強撹拌することにより水溶化半導体ナノ粒子溶液が得られた。 To 0.1 mg of this precipitate, 0.1 mg of dodecylamine as a surfactant and 1 mL of ultrapure water were added and stirred for 1 hour to obtain a water-soluble semiconductor nanoparticle solution.
 この水溶化半導体ナノ粒子溶液に、TEOS0.1mgとエタノール0.01mLとNH30.03mLとをこの順に添加し、TEOSを加水分解することで、マトリックス被覆集積体が得られた。 To this water-soluble semiconductor nanoparticle solution, 0.1 mg of TEOS, 0.01 mL of ethanol, and 0.03 mL of NH 3 were added in this order, and TEOS was hydrolyzed to obtain a matrix-covered aggregate.
 [実施例2]
 実施例1において、比較例1で合成したInP/ZnSコア/シェル半導体ナノ粒子の代わりに比較例2で合成したCdSe/ZnSコア/シェル半導体ナノ粒子を用いた以外は実施例1と同様にしてマトリックス被覆集積体を製造した。
[Example 2]
In Example 1, the same procedure as in Example 1 was used except that the CdSe / ZnS core / shell semiconductor nanoparticles synthesized in Comparative Example 2 were used instead of the InP / ZnS core / shell semiconductor nanoparticles synthesized in Comparative Example 1. A matrix coating assembly was produced.
 [実施例3]
 実施例1において、比較例1で合成したInP/ZnSコア/シェル半導体ナノ粒子の代わりに比較例3で合成したCdTe/ZnSコア/シェル半導体ナノ粒子を用いた以外は実施例1と同様にしてマトリックス被覆集積体を製造した。
[Example 3]
In Example 1, the same procedure as in Example 1 was used except that the CdTe / ZnS core / shell semiconductor nanoparticles synthesized in Comparative Example 3 were used instead of the InP / ZnS core / shell semiconductor nanoparticles synthesized in Comparative Example 1. A matrix coating assembly was produced.
 [実施例4]
 実施例1において、比較例1で合成したInP/ZnSコア/シェル半導体ナノ粒子の代わりに比較例3で合成したCdTe/ZnSコア/シェル半導体ナノ粒子を用い、界面活性剤としてドデシルアミンの代わりにトリオクチルホスフィン〔TOP〕を用いた以外は実施例1と同様にしてマトリックス被覆集積体を製造した。
[Example 4]
In Example 1, the CdTe / ZnS core / shell semiconductor nanoparticles synthesized in Comparative Example 3 were used instead of the InP / ZnS core / shell semiconductor nanoparticles synthesized in Comparative Example 1, and instead of dodecylamine as a surfactant. A matrix-coated assembly was produced in the same manner as in Example 1 except that trioctylphosphine [TOP] was used.
 <イオン溶出試験>
 実施例1~4および比較例1~5において、イオン溶出試験を以下のようにして実施した。
<Ion dissolution test>
In Examples 1 to 4 and Comparative Examples 1 to 5, ion elution tests were performed as follows.
 比較例1~3それぞれで合成した半導体ナノ粒子を貧溶媒であるアセトンで沈殿させ、遠心分離により溶媒を取り除き、超純水1mLと1μMのメルカプトプロピオン酸を加えて、半導体ナノ粒子の濃度が0.1μMとなるようにして水溶化した。1日静置後再びアセトンを加えて水溶化半導体ナノ粒子を沈殿させ、ICP-AESを用いて上澄み液のイオン溶出量を計算した。 The semiconductor nanoparticles synthesized in Comparative Examples 1 to 3 were precipitated with acetone as a poor solvent, the solvent was removed by centrifugation, 1 mL of ultrapure water and 1 μM mercaptopropionic acid were added, and the concentration of the semiconductor nanoparticles was 0. . Solubilized to 1 μM. After standing for 1 day, acetone was added again to precipitate water-soluble semiconductor nanoparticles, and the amount of ions eluted from the supernatant was calculated using ICP-AES.
 比較例4で作製したシリカマトリックス中にCdTe/ZnSが存在する半導体ナノ粒子集積体、比較例5で作製したポリスチレンマトリックス中にCdTe/ZnSとドデシルアミンとが膨潤した半導体ナノ粒子および、実施例1~4それぞれで製造したマトリックス被覆集積体を1日静置後、遠心分離し、ICP-AESを用いて上澄み液のイオン溶出量を測定した。 Semiconductor nanoparticle aggregate in which CdTe / ZnS is present in the silica matrix produced in Comparative Example 4, semiconductor nanoparticles in which CdTe / ZnS and dodecylamine are swollen in the polystyrene matrix produced in Comparative Example 5, and Example 1 The matrix-coated aggregates produced in 4 to 4 were allowed to stand for 1 day, centrifuged, and the amount of ions eluted from the supernatant was measured using ICP-AES.
 これらの結果を表1に示す。 These results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果から明らかなように、実施例1~4のマトリックス被覆集積体の溶剤耐性は、比較例に比べ、優れていることが分かる。 As is clear from the results shown in Table 1, it can be seen that the solvent resistance of the matrix-coated assemblies of Examples 1 to 4 is superior to that of the comparative example.

Claims (7)

  1.  コア/シェル構造を有する半導体ナノ粒子を含有する半導体ナノ粒子集積体であって界面活性剤が結合しているものと、
     該界面活性剤が結合した該半導体ナノ粒子集積体を被覆するシリカマトリックスとを含んでなることを特徴とするマトリックス被覆集積体。
    A semiconductor nanoparticle assembly containing semiconductor nanoparticles having a core / shell structure, and a surfactant bonded thereto;
    A matrix-covered aggregate comprising a silica matrix covering the semiconductor nanoparticle aggregate to which the surfactant is bound.
  2.  上記界面活性剤が、高級アミンである請求項1に記載のマトリックス被覆集積体。 The matrix-coated assembly according to claim 1, wherein the surfactant is a higher amine.
  3.  上記コア/シェル構造のコア部が、リン化インジウム〔InP〕,セレン化カドミウム〔CdSe〕またはテルル化カドミウム〔CdTe〕である請求項1または2に記載のマトリックス被覆集積体。 3. The matrix-covered aggregate according to claim 1, wherein the core part of the core / shell structure is indium phosphide [InP], cadmium selenide [CdSe], or cadmium telluride [CdTe].
  4.  水に溶解する限界量を超える量の界面活性剤を用いて、コア/シェル構造を有する半導体ナノ粒子を含有する半導体ナノ粒子集積体を水溶化させる工程(X);および
     工程(X)で得られる水溶化した半導体ナノ粒子集積体の周囲をシリカマトリックスにより被覆する工程(Y)
    を含むことを特徴とするマトリックス被覆集積体の製造方法。
    Obtained by water-solubilizing a semiconductor nanoparticle aggregate containing semiconductor nanoparticles having a core / shell structure using an amount of a surfactant that exceeds the limit amount dissolved in water; and step (X). The periphery of the water-soluble semiconductor nanoparticle aggregate to be coated with a silica matrix (Y)
    A process for producing a matrix-covered aggregate comprising the steps of:
  5.  上記界面活性剤が、高級アミンである請求項4に記載の製造方法。 The production method according to claim 4, wherein the surfactant is a higher amine.
  6.  上記シリカマトリックスが、上記工程(X)で得られる水溶化した半導体ナノ粒子集積体に、エタノール,アンモニア〔NH3〕およびテトラエトキシシラン〔TEOS〕をこの順に添加することによって得られる請求項4または5に記載の製造方法。 The silica matrix is obtained by adding ethanol, ammonia [NH 3 ] and tetraethoxysilane [TEOS] in this order to the water-soluble semiconductor nanoparticle aggregate obtained in the step (X). 5. The production method according to 5.
  7.  上記コア/シェル構造のコア部が、リン化インジウム〔InP〕,セレン化カドミウム〔CdSe〕またはテルル化カドミウム〔CdTe〕である請求項4~6のいずれか一項に記載の製造方法。 The method according to any one of claims 4 to 6, wherein the core portion of the core / shell structure is indium phosphide [InP], cadmium selenide [CdSe], or cadmium telluride [CdTe].
PCT/JP2012/056871 2011-09-09 2012-03-16 Ion-elution-resistant semiconductor nanoparticle assembly WO2013035362A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013532467A JP5880563B2 (en) 2011-09-09 2012-03-16 Method for producing ion-resistant semiconductor nanoparticle assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-197334 2011-09-09
JP2011197334 2011-09-09

Publications (1)

Publication Number Publication Date
WO2013035362A1 true WO2013035362A1 (en) 2013-03-14

Family

ID=47831829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056871 WO2013035362A1 (en) 2011-09-09 2012-03-16 Ion-elution-resistant semiconductor nanoparticle assembly

Country Status (2)

Country Link
JP (1) JP5880563B2 (en)
WO (1) WO2013035362A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190257A1 (en) * 2014-06-11 2015-12-17 コニカミノルタ株式会社 Semiconductor nanoparticle assembly and method for producing same
WO2017012688A1 (en) 2015-07-17 2017-01-26 Merck Patent Gmbh Luminescent particle, ink formulation, polymer composition, optical device, fabrication of thereof, and use of the luminescent particle
WO2023182221A1 (en) * 2022-03-25 2023-09-28 日本化学工業株式会社 Method for producing quantum dots

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281019A (en) * 2004-03-29 2005-10-13 National Institute Of Advanced Industrial & Technology Fluorescent glass dispersed with semiconductor-nanoparticle, and manufacturing method therefor
JP2007284284A (en) * 2006-04-14 2007-11-01 National Institute Of Advanced Industrial & Technology Core/shell type particle and its manufacturing method
JP2010138367A (en) * 2008-04-23 2010-06-24 National Institute Of Advanced Industrial Science & Technology Water-dispersible nanoparticles having high luminous efficiency and method of producing the same
WO2010128604A1 (en) * 2009-05-08 2010-11-11 コニカミノルタエムジー株式会社 Silica nanoparticle having quantum dots encapsulated therein, method for producing same and biological labeling agent using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4840823B2 (en) * 2005-09-22 2011-12-21 独立行政法人産業技術総合研究所 Semiconductor nanoparticle-dispersed glass particles and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281019A (en) * 2004-03-29 2005-10-13 National Institute Of Advanced Industrial & Technology Fluorescent glass dispersed with semiconductor-nanoparticle, and manufacturing method therefor
JP2007284284A (en) * 2006-04-14 2007-11-01 National Institute Of Advanced Industrial & Technology Core/shell type particle and its manufacturing method
JP2010138367A (en) * 2008-04-23 2010-06-24 National Institute Of Advanced Industrial Science & Technology Water-dispersible nanoparticles having high luminous efficiency and method of producing the same
WO2010128604A1 (en) * 2009-05-08 2010-11-11 コニカミノルタエムジー株式会社 Silica nanoparticle having quantum dots encapsulated therein, method for producing same and biological labeling agent using same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Bright, non-blinking, and less-cytotoxic Si02 beads with multiple CdSe/ZnS nanocrystals", CHEM. COMMUN., vol. 46, 2010, pages 4595 - 4597 *
"Ryoshi Dot o Funyu shita Bisho Glass Capsule", AIST TODAY, vol. 10, no. 10, October 2010 (2010-10-01), pages 10 *
PING YANG ET AL.: "Si02 beads with quantum dots:Synthesis and bioapplication", ADVANCED MATERALS RESEARCH, vol. 306-307, 2011, pages 16 - 19 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190257A1 (en) * 2014-06-11 2015-12-17 コニカミノルタ株式会社 Semiconductor nanoparticle assembly and method for producing same
JPWO2015190257A1 (en) * 2014-06-11 2017-04-20 コニカミノルタ株式会社 Semiconductor nanoparticle assembly and manufacturing method thereof
WO2017012688A1 (en) 2015-07-17 2017-01-26 Merck Patent Gmbh Luminescent particle, ink formulation, polymer composition, optical device, fabrication of thereof, and use of the luminescent particle
WO2023182221A1 (en) * 2022-03-25 2023-09-28 日本化学工業株式会社 Method for producing quantum dots

Also Published As

Publication number Publication date
JPWO2013035362A1 (en) 2015-03-23
JP5880563B2 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
JP5907544B2 (en) Method for producing nanoparticles
KR102009927B1 (en) Semiconductor structure having nanocrystalline core and nanocrystalline shell
KR101651798B1 (en) Preparation of particles with quantum dots
JP5686096B2 (en) Quantum dot-encapsulating silica nanoparticles, method for producing the same, and biological material labeling agent using the same
JP5709188B2 (en) Fluorescent fine particles comprising thin film silica glass coated quantum dots and method for producing the same
US8747517B2 (en) Methods for isolating and purifying nanoparticles from a complex medium
Brichkin et al. Hydrophilic semiconductor quantum dots
JP5915529B2 (en) Manufacturing method of semiconductor nanoparticle assembly
KR101575396B1 (en) Quantum dot contained nanocomposite particles and method of fabrication thereof
Zhang et al. A novel method to enhance quantum yield of silica-coated quantum dots for biodetection
JP5880563B2 (en) Method for producing ion-resistant semiconductor nanoparticle assembly
US20070178308A1 (en) Germanium nanoparticles and biosubstance labeling agent by use thereof
JP5556973B2 (en) Semiconductor nanoparticle integrated structure
US8901535B2 (en) Semiconductor nanoparticle assembly
JP5790570B2 (en) Semiconductor nanoparticle assembly
US20070098988A1 (en) Method of preparing biocompatible silicon nanoparticles
WO2012147429A1 (en) Glass particles containing enclosed semiconductor nanoparticles, and process for producing glass particles containing enclosed semiconductor nanoparticles
Barik Synthetic developments of semiconductor quantum dot for biological applications
JP5200931B2 (en) III-V type semiconductor / SiO2 type nanoparticle and biological material labeling agent
JP5761102B2 (en) High-brightness semiconductor nanoparticle assembly
JP2013057630A (en) Semiconductor nanoparticle assembly containing enhancement particle
WO2011158531A1 (en) Semiconductor nanoparticle aggregate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532467

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12829802

Country of ref document: EP

Kind code of ref document: A1