WO2012147429A1 - Glass particles containing enclosed semiconductor nanoparticles, and process for producing glass particles containing enclosed semiconductor nanoparticles - Google Patents

Glass particles containing enclosed semiconductor nanoparticles, and process for producing glass particles containing enclosed semiconductor nanoparticles Download PDF

Info

Publication number
WO2012147429A1
WO2012147429A1 PCT/JP2012/056865 JP2012056865W WO2012147429A1 WO 2012147429 A1 WO2012147429 A1 WO 2012147429A1 JP 2012056865 W JP2012056865 W JP 2012056865W WO 2012147429 A1 WO2012147429 A1 WO 2012147429A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
glass particles
semiconductor nanoparticles
semiconductor nanoparticle
core
Prior art date
Application number
PCT/JP2012/056865
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 優
敬三 高野
中野 寧
Original Assignee
コニカミノルタエムジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタエムジー株式会社 filed Critical コニカミノルタエムジー株式会社
Priority to JP2013511973A priority Critical patent/JPWO2012147429A1/en
Publication of WO2012147429A1 publication Critical patent/WO2012147429A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/588Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with semiconductor nanocrystal label, e.g. quantum dots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks

Definitions

  • the present invention relates to glass particles containing semiconductor nanoparticles used for fluorescent labeling members such as biological material fluorescent labeling agents.
  • semiconductor nanoparticles are used as phosphors.
  • Semiconductors used as phosphors include II-VI group semiconductors (cadmium sulfide (CdS), zinc selenide (ZnSe), cadmium selenide (CdSe), zinc telluride (ZnTe), cadmium telluride (CdTe)) and Group III-V semiconductor nanoparticles are widely known.
  • semiconductor nanoparticles it is known that semiconductor nanoparticles having a shell layer on a core layer are advantageously used particularly from the viewpoint of luminance (for example, see Patent Document 1).
  • semiconductor nanoparticles synthesized in solution have a deterioration in light emission characteristics over time, which is thought to be caused by particle aggregation, interaction with water, and so on. There was a problem that it was difficult to use.
  • An object of the present invention is to provide semiconductor nanoparticle-containing glass particles that provide highly sensitive semiconductor nanoparticles (nanoparticle aggregates), and a method for producing the same.
  • Semiconductor nanoparticle-containing glass particles enclosing core-shell type semiconductor nanoparticles A having a core-shell structure, wherein the core-shell type semiconductor nanoparticles A have an amino compound having an amino group and a hydrophobic group on the surface.
  • a semiconductor nanoparticle-containing glass particle which is a nanoparticle A.
  • a method for producing semiconductor nanoparticle-encapsulated glass particles comprising producing the semiconductor nanoparticle-encapsulated glass particles according to any one of 1 to 3, (1) a step of attaching an amino compound having an amino group and a hydrophobic group to the surface of a core-shell type semiconductor nanoparticle to form the semiconductor nanoparticle A having the amino compound on the surface; (2) A glass particle forming step of producing glass particles using a glass precursor in the presence of the semiconductor nanoparticles A to produce semiconductor nanoparticle A-encapsulating glass particles containing the semiconductor, The manufacturing method of the semiconductor nanoparticle inclusion
  • inner_cover glass particle characterized by having.
  • semiconductor nanoparticle-containing glass particles having high sensitivity by maintaining the linear relationship between the content and the emission intensity even in a region where the content of semiconductor nanoparticles is low, and a method for producing the same. There is to do.
  • the present invention relates to semiconductor nanoparticle-containing glass particles enclosing core-shell type semiconductor nanoparticles A having a core-shell structure, the core-shell type semiconductor nanoparticles A having amino groups and hydrophobic groups on the surface. It is the semiconductor nanoparticle A which has a compound, It is characterized by the above-mentioned.
  • the present invention in particular, by using the semiconductor nanoparticles that have been subjected to the specific treatment in advance, by producing glass particles that enclose the semiconductor nanoparticles, even in a region where the content of the semiconductor nanoparticles is low, the content and emission intensity By maintaining the linearity of the relationship, it is possible to provide semiconductor nanoparticle-containing glass particles having high sensitivity and a method for producing the same.
  • the core-shell type semiconductor nanoparticle is a particle containing a semiconductor forming material (raw material) to be described later and having a multiple structure composed of a core part (core part) and a shell part (covering part) covering it. And the particle diameter is 1000 nm or less.
  • Core part forming material examples include semiconductors such as Si, Ge, InN, InP, GaAs, AlSe, CdSe, AlAs, GaP, ZnTe, CdTe, and InAs. Or the raw material which forms these can be used.
  • InP, CdTe, and CdSe are particularly preferably used.
  • Shell forming material As a material for forming the shell portion according to the present invention, II-VI group, III-V group inorganic semiconductors, group IV inorganic semiconductors and oxides can be used.
  • each core-forming inorganic material such as Si, SiO 2 , Ge, GeO 2 , InN, InP, GaAs, AlSe, CdSe, AlAs, GaP, ZnS, ZnTe, CdTe, InAs.
  • Semiconductors that do not, or the raw materials that form them are preferred.
  • ZnS is applied as a shell to InP, CdTe, and CdSe.
  • Method for producing semiconductor nanoparticle A As a method for producing semiconductor nanoparticles according to the present invention, a liquid phase method can be employed.
  • liquid phase method examples include a precipitation method, a coprecipitation method, a sol-gel method, a uniform precipitation method, and a reduction method.
  • the reverse micelle method, the supercritical hydrothermal synthesis method, and the like are also excellent methods for producing nanoparticles (for example, JP 2002-322468, JP 2005-239775, JP 10-310770 A). No., JP 2000-104058 A, etc.).
  • the semiconductor precursor according to the present invention is a compound containing an element used as the semiconductor material.
  • the semiconductor precursor includes SiCl 4 .
  • Other semiconductor precursors include InCl 3 , P (SiMe 3 ) 3 , ZnMe 2 , CdMe 2 , GeCl 4 , tributylphosphine selenium and the like.
  • the reaction temperature of the reaction precursor is not particularly limited as long as it is not lower than the boiling point of the semiconductor precursor and not higher than the boiling point of the solvent, but is preferably in the range of 70 to 110 ° C.
  • reducing agent for reducing the semiconductor precursor various conventionally known reducing agents can be selected and used according to the reaction conditions.
  • lithium aluminum hydride (LiAlH 4 ) is preferable because of its reducing power.
  • solvents can be used as the solvent for dispersing the semiconductor precursor.
  • Alcohols such as ethyl alcohol, sec-butyl alcohol, and t-butyl alcohol, and hydrocarbon solvents such as toluene, decane, and hexane are used. It is preferable to use it.
  • a hydrophobic solvent such as toluene is particularly preferable as the dispersion solvent.
  • surfactant various conventionally known surfactants can be used, and anionic, nonionic, cationic, and amphoteric surfactants are included.
  • tetrabutylammonium chloride bromide or hexafluorophosphate
  • tetraoctylammonium bromide TOAB
  • tributylhexadecylphosphonium bromide which are quaternary ammonium salts
  • tetraoctyl ammonium bromide is preferable.
  • reaction by the liquid phase method varies greatly depending on the state of the compound containing the solvent in the liquid.
  • special care must be taken.
  • the size and state of the reverse micelle serving as a reaction field vary depending on the concentration and type of the surfactant, so that the conditions under which nanoparticles are formed are limited. Therefore, a suitable surfactant needs to be combined with a solvent.
  • the hydrophobic group according to the present invention refers to a hydrocarbon group, and examples thereof include an alkyl group and an aromatic hydrocarbon group.
  • alkyl group examples include an alkyl group having 6 to 30 carbon atoms, and an alkyl group having 8 to 20 carbon atoms can be particularly preferably used.
  • aromatic group examples include a phenyl group and a naphthyl group.
  • Examples of the compound having an amino group and a hydrophobic group include n-heptylamine, nonylamine, dodecylamine, hexadecanamine and the like.
  • the amino compound In order to attach the amino compound to the surface of the semiconductor nanoparticles, it can be obtained by mixing and stirring the solvent, the semiconductor nanoparticles, and the amino compound having an amino group and a hydrophobic group.
  • an organic solvent is used, and alcohols and ketones can be used, but alcohols are preferable, and lower alcohols having 1 to 4 carbon atoms are particularly preferable.
  • the amount of the semiconductor nanoparticles in the solvent is preferably 0.001% by mass to 1% by mass, and particularly preferably 0.01% by mass to 0.1% by mass with respect to the solvent.
  • the content of the compound having an amino group and a hydrophobic group in the solvent is preferably 0.01% by mass to 10% by mass, and particularly preferably 0.1% by mass to 1% by mass with respect to the solvent.
  • the semiconductor nanoparticles A are present in the above-mentioned solvent, but it is preferable to move to the following glass particle forming step in a solution state.
  • glass particle forming step glass particles are generated using a glass precursor in the presence of the semiconductor nanoparticles A, and a semiconductor nanoparticle-containing glass particle glass precursor containing a semiconductor is produced. .
  • the formation of glass particles can be obtained by hydrolyzing the glass precursor. Hydrolysis is obtained by hydrolyzing the glass precursor in an alkaline solvent.
  • the semiconductor nanoparticles are contained in the alkaline solvent so that the semiconductor is contained.
  • Semiconductor nanoparticle A-encapsulating glass particles can be produced.
  • Silicon alkoxide is used as the glass precursor.
  • silicon alkoxide examples include tetraethoxysilane (TEOS) and tetramethoxysilane.
  • solvent used examples include alcohols and ketones, but ethanol is preferably used.
  • Alkaline state can be obtained by adding ammonia or the like.
  • the temperature for the hydrolysis can be in the range of 5 ° C to 80 ° C, but the hydrolysis is preferably performed at 25 ° C.
  • the concentration of the glass precursor in the solvent can be in the range of 40 to 80% by mass.
  • particles having a particle size of approximately 10 nm to 100 nm can be formed.
  • the glass particles there are a plurality of semiconductor nanoparticles A in a state where the semiconductor nanoparticles A are taken in and encapsulated.
  • the number of semiconductor nanoparticles A in the glass particles depends on the particle size of the semiconductor nanoparticles A used and the particle size of the glass particles to be formed, but those contained in the range of approximately 2 to 20 are preferably used. In particular, those containing 4 to 15 and glass particles having a particle size of 10 to 50 nm are preferably used.
  • Calculation of the number (inclusion number) contained in the glass of the semiconductor nanoparticles A can be performed as follows.
  • the element ratio of the semiconductor nanoparticles A is measured using ICP-AEC (ICPS-7500, Shimadzu Corporation), and the number of moles is calculated from the dry weight. Further, the molar extinction coefficient is obtained by measuring the absorbance.
  • the dry weight of the semiconductor nanoparticle assembly is calculated and the absorbance is measured. Since the density of the semiconductor nanoparticle and the compound constituting the semiconductor nanoparticle assembly is known, it can be obtained by calculating the concentration together with the average particle diameter calculated by the dynamic light scattering method and the absorbance of the semiconductor nanoparticle assembly. Is possible.
  • the semiconductor nanoparticles when the semiconductor nanoparticles are exposed to a solvent such as xylene at a low concentration, the solvent is adsorbed on the surface of the semiconductor nanoparticles and the surface state changes, resulting in a decrease in emission intensity.
  • the semiconductor nanoparticles dispersed in glass particles as described in the comparative example described below are exposed to a solvent such as xylene at a low concentration, the surface of the semiconductor nanoparticles and the —O—Si—O— matrix are chemically bonded. Since they are bonded at the base, it is presumed that the interaction between the semiconductor nanoparticle surface and —O—Si—O—matrix occurs and the emission intensity decreases.
  • the semiconductor particles are more uniformly incorporated into the stitch structure formed of —O—Si—O— in the glass particles at the stage of producing the glass particles. This is presumably because the semiconductor particles are contained in a well dispersed state without agglomerating in the glass particles. Further, it is considered that amine is attached to the surface and dispersed in the glass particles, and it is presumed that the semiconductor nanoparticles are not dispersed on a chemical bond basis. Therefore, since it does not interact with the stitch structure formed of —O—Si—O—, it is assumed that the emission intensity does not decrease even when exposed to a solvent such as xylene at a low concentration.
  • the semiconductor nanoparticle A-encapsulating glass particles obtained by the production method of the present invention can be used for the following uses.
  • the glass particles (semiconductor nanoparticle assembly) according to the present invention can be applied to a biological material fluorescent labeling agent.
  • the biological material labeling agent according to the present invention by adding the biological material labeling agent according to the present invention to a living cell or living body having a target (tracking) substance, the target substance is bound or adsorbed, and excitation light having a predetermined wavelength is applied to the conjugate or adsorbent.
  • excitation light having a predetermined wavelength By irradiating and detecting fluorescence of a predetermined wavelength generated from the fluorescent semiconductor fine particles according to the excitation light, fluorescence dynamic imaging of the target (tracking) substance can be performed.
  • the biological material labeling agent can be used for a bioimaging method (technical means for visualizing a biological molecule constituting the biological material and its dynamic phenomenon).
  • the surface of the glass particle (semiconductor nanoparticle assembly) described above is generally hydrophilic, but when it is hydrophobic, for example, when used as a biological material labeling agent, the water dispersibility is poor as it is, Since there are problems such as aggregation of the semiconductor nanoparticle aggregate, it is preferable to subject the surface of the semiconductor nanoparticle aggregate to a hydrophilic treatment.
  • hydrophilic treatment method for example, there is a method of chemically and / or physically binding a surface modifier to the surface of the semiconductor nanoparticle assembly after removing the lipophilic group on the surface with pyridine or the like.
  • those having a carboxyl group / amino group as a hydrophilic group are preferably used, and specific examples include mercaptopropionic acid, mercaptoundecanoic acid, aminopropanethiol and the like.
  • 10 ⁇ 5 g of Ge / GeO 2 type nanoparticles are dispersed in 10 ml of pure water in which 0.2 g of mercaptoundecanoic acid is dissolved, and stirred at 40 ° C. for 10 minutes to treat the surface of the shell. By doing so, the surface of the shell of the inorganic nanoparticles can be modified with a carboxyl group.
  • the biological substance labeling agent is obtained by bonding the above-described hydrophilic nanoparticle aggregate that has been subjected to the hydrophilic treatment, the molecular labeling substance, and the organic molecule.
  • the biological substance labeling agent can label the biological substance by specifically binding and / or reacting with the target biological substance.
  • Examples of the molecular labeling substance include nucleotide chains, antibodies, antigens, and cyclodextrins.
  • a preferred embodiment of the biological material labeling agent is a mode in which the hydrophilically treated glass particles (semiconductor nanoparticle aggregates) and the molecular labeling substance are bound by organic molecules.
  • the organic molecule is not particularly limited as long as it is capable of binding the semiconductor nanoparticle aggregate and the molecular labeling substance.
  • proteins albumin, myoglobin, casein, etc. It is also preferably used together.
  • the form of the bond is not particularly limited, and examples thereof include covalent bond, ionic bond, hydrogen bond, coordination bond, physical adsorption and chemical adsorption.
  • a bond having a strong bonding force such as a covalent bond is preferable from the viewpoint of the stability of the bond.
  • the semiconductor nanoparticle aggregate is hydrophilized with mercaptoundecanoic acid
  • avidin and biotin can be used as organic molecules.
  • the carboxyl group of the nanoparticles subjected to hydrophilic treatment is preferably covalently bonded to avidin, and avidin further selectively binds to biotin, and biotin further binds to the biological material labeling agent to become a biological material labeling agent.
  • the thus obtained InP / ZnS core / shell semiconductor nanoparticles (Comparative Particle 1) were particles having a maximum emission wavelength at 630 nm.
  • CdSe / ZnS core / shell semiconductor nanoparticles were synthesized by adding 15 g of TOPO to the obtained CdSe core particles and heating, followed by adding a solution of 1.1 g of zinc diethyldithiocarbamate in 10 ml of trioctylphosphine at 270 ° C. / ZnS core / shell semiconductor nanoparticles (Comparative Particle 2) were obtained.
  • the CdTe core particles were synthesized according to the method according to Hemy, Volume 100, page 1772 (1996).
  • the CdTe core particles thus obtained were particles having a maximum emission wavelength at 640 nm.
  • Comparative Example 4 According to Example 1 described in JP-A-2005-281019, semiconductor nanoparticle-containing glass particles (comparative particles 4) having CdTe / ZnS present in a silica matrix were prepared.
  • AOT hydrophobic organic solvent
  • TEOS tetraethoxysilane
  • APS aminopropyltrimethoxysilane
  • the dispersion was stirred for 2 days to obtain semiconductor nanoparticles-containing glass particles (comparative particles 4) in which CdTe / ZnS was present in the silica matrix.
  • Comparative semiconductor nanoparticles 1 to 3 in Comparative Examples 1 to 3 are precipitated with acetone, which is a poor solvent, and the solvent is removed by centrifugation and replaced with xylene / ethanol to 0.001 to 1 ⁇ M (FIGS. 1 to 3). 3).
  • comparative particles 4 and semiconductor nanoparticles A-containing glass particles 1 to 3 the particles are centrifuged, and after removing the solvent, the solvent is replaced with xylene / ethanol to make 0.001 to 1 ⁇ M.
  • FIG. 4-7 comparative particle 4 corresponds to FIG. 4).
  • the sample of each concentration is replaced with xylene / ethanol and left to stand for 1 h, and then the emission intensity is measured.
  • the emission intensity is measured using F-7000 manufactured by Hitachi High-Tech.
  • the emission intensity of the semiconductor nanoparticles A-containing glass particles 1 to 3 increases linearly with respect to the concentration (FIGS. 5 to 7). Even in a region where the content is low, the relationship between the content of the semiconductor nanoparticle aggregate and the light emission intensity remains linear. On the other hand, in the comparative example (FIGS. 1 to 4), it is clear that the relationship between the content of the semiconductor nanoparticle aggregate and the emission intensity does not maintain linearity in a low concentration region.

Abstract

[Problem] To provide glass particles containing semiconductor nanoparticles enclosed therein, the glass particles giving high-sensitivity semiconductor nanoparticles (aggregates), and a process for producing the glass particles. [Solution] Glass particles containing enclosed semiconductor nanoparticles, the glass particles containing, enclosed therein, core/shell type semiconductor nanoparticles A that have a core/shell structure, characterized in that the core/shell type semiconductor nanoparticles A are semiconductor nanoparticles A having, on the surface, an amino compound having an amino group and a hydrophobic group.

Description

半導体ナノ粒子内包ガラス粒子、半導体ナノ粒子内包ガラス粒子の製造方法Semiconductor nanoparticle-encapsulated glass particles, method for producing semiconductor nanoparticle-encapsulated glass particles
 本発明は、生体物質蛍光標識剤などの蛍光標識部材に用いられる半導体ナノ粒子を含有するガラス粒子に関する。 The present invention relates to glass particles containing semiconductor nanoparticles used for fluorescent labeling members such as biological material fluorescent labeling agents.
 近年、半導体ナノ粒子は、医用分野における標識剤、高精細ディスプレイなどの用途で注目されている。 In recent years, semiconductor nanoparticles have attracted attention in applications such as labeling agents and high-definition displays in the medical field.
 このような用途で、半導体ナノ粒子は蛍光体として用いられる。 In such applications, semiconductor nanoparticles are used as phosphors.
 蛍光体として用いられる半導体としては、II-VI族半導体(硫化カドミウム(CdS)、セレン化亜鉛(ZnSe)、セレン化カドミウム(CdSe)、テルル化亜鉛(ZnTe)、テルル化カドミウム(CdTe))およびIII-V族の半導体ナノ粒子が広く知られている。 Semiconductors used as phosphors include II-VI group semiconductors (cadmium sulfide (CdS), zinc selenide (ZnSe), cadmium selenide (CdSe), zinc telluride (ZnTe), cadmium telluride (CdTe)) and Group III-V semiconductor nanoparticles are widely known.
 また、半導体ナノ粒子としては、コア層上にシェル層を有する半導体ナノ粒子が、特に輝度の面から有利に用いられることが知られている(例えば特許文献1参照)。 Further, as semiconductor nanoparticles, it is known that semiconductor nanoparticles having a shell layer on a core layer are advantageously used particularly from the viewpoint of luminance (for example, see Patent Document 1).
 このような半導体ナノ粒子を作製する方法としては、溶液中で合成する方法が開発されている。 As a method for producing such semiconductor nanoparticles, a method for synthesis in a solution has been developed.
 しかしながら、溶液中で合成した半導体ナノ粒子は、粒子の凝集、水との相互作用などに起因すると思われる、経時での発光特性の劣化があり、ナノ粒子の溶液のままでは、材料として工学的に利用しにくいという問題があった。 However, semiconductor nanoparticles synthesized in solution have a deterioration in light emission characteristics over time, which is thought to be caused by particle aggregation, interaction with water, and so on. There was a problem that it was difficult to use.
 そのため、半導体ナノ粒子を透明なガラス粒子中に含有させて、発光特性の劣化を防止する方法が知られている(特許文献2および3参照)。 Therefore, a method is known in which semiconductor nanoparticles are contained in transparent glass particles to prevent deterioration of light emission characteristics (see Patent Documents 2 and 3).
 しかしながら、このようなガラス粒子に含有させて半導体ナノ粒子を用いる方法においても、特に生体物質蛍光標識剤として用いるような場合には、標識物質の使用量を低減するために低濃度で使用する場合、低濃度領域においては、蛍光特性の劣化を生じ添加量と蛍光特性の線形関係を保持することが難しく、結果として高感度な生体物質蛍光標識剤を作製することは難しかった。 However, even in the method of using semiconductor nanoparticles contained in such glass particles, particularly when used as a biological material fluorescent labeling agent, when using at a low concentration to reduce the amount of labeling substance used In the low concentration region, it is difficult to maintain the linear relationship between the addition amount and the fluorescence property due to the deterioration of the fluorescence property. As a result, it is difficult to produce a highly sensitive biological substance fluorescent labeling agent.
再表2007-86501号公報No. 2007-86501 国際公開第04/000971号パンフレットInternational Publication No. 04/000971 Pamphlet 特開2005-281019号公報JP 2005-281019 A
 本発明の目的は、高感度な半導体ナノ粒子(ナノ粒子集積体)を与える、半導体ナノ粒子内包ガラス粒子、およびその製造方法を提供することにある。 An object of the present invention is to provide semiconductor nanoparticle-containing glass particles that provide highly sensitive semiconductor nanoparticles (nanoparticle aggregates), and a method for producing the same.
 本発明に係る上記課題は、下記手段により解決できる。 The above-mentioned problem according to the present invention can be solved by the following means.
 1.コアシェル構造を有するコアシェル型の半導体ナノ粒子Aを内包する、半導体ナノ粒子内包ガラス粒子であって、該コアシェル型の半導体ナノ粒子Aは、表面に、アミノ基および疎水基を有するアミノ化合物を有する半導体ナノ粒子Aであることを特徴とする半導体ナノ粒子内包ガラス粒子。 1. Semiconductor nanoparticle-containing glass particles enclosing core-shell type semiconductor nanoparticles A having a core-shell structure, wherein the core-shell type semiconductor nanoparticles A have an amino compound having an amino group and a hydrophobic group on the surface. A semiconductor nanoparticle-containing glass particle, which is a nanoparticle A.
 2.前記コアシェル型の半導体ナノ粒子Aのコア部が、リン化インジウム(InP)、セレン化カドミウム(CdSe)またはテルル化カドミウム(CdTe)を含有することを特徴とする前記1に記載の半導体ナノ粒子内包ガラス粒子。 2. 2. The semiconductor nanoparticle inclusion according to 1, wherein the core portion of the core-shell type semiconductor nanoparticle A contains indium phosphide (InP), cadmium selenide (CdSe), or cadmium telluride (CdTe). Glass particles.
 3.前記半導体ナノ粒子内包ガラス粒子が、前記半導体ナノ粒子Aを複数内包することを特徴とする前記1または2に記載の半導体ナノ粒子内包ガラス粒子。 3. 3. The semiconductor nanoparticle-encapsulated glass particle according to 1 or 2, wherein the semiconductor nanoparticle-encapsulated glass particle includes a plurality of the semiconductor nanoparticles A.
 4.前記1から3のいずれか1項に記載の半導体ナノ粒子内包ガラス粒子を製造する、半導体ナノ粒子内包ガラス粒子の製造方法であって、
(1)コアシェル型の半導体ナノ粒子の表面に、アミノ基および疎水基を有するアミノ化合物を付着させ、表面に該アミノ化合物を有する半導体ナノ粒子Aを形成する工程および、
(2)該半導体ナノ粒子Aの存在下に、ガラス前駆体を用いガラス粒子を生成し、該半導体を含有する半導体ナノ粒子A内包ガラス粒子を作製するガラス粒子形成工程、
を有することを特徴とする半導体ナノ粒子内包ガラス粒子の製造方法。
4). A method for producing semiconductor nanoparticle-encapsulated glass particles, comprising producing the semiconductor nanoparticle-encapsulated glass particles according to any one of 1 to 3,
(1) a step of attaching an amino compound having an amino group and a hydrophobic group to the surface of a core-shell type semiconductor nanoparticle to form the semiconductor nanoparticle A having the amino compound on the surface;
(2) A glass particle forming step of producing glass particles using a glass precursor in the presence of the semiconductor nanoparticles A to produce semiconductor nanoparticle A-encapsulating glass particles containing the semiconductor,
The manufacturing method of the semiconductor nanoparticle inclusion | inner_cover glass particle characterized by having.
 本発明の上記手段により、半導体ナノ粒子の含有量が低い領域においても、含有量と発光強度と関係が線形性を保つことで高感度である半導体ナノ粒子内包ガラス粒子、およびその製造方法を提供することにある。 By the above means of the present invention, there are provided semiconductor nanoparticle-containing glass particles having high sensitivity by maintaining the linear relationship between the content and the emission intensity even in a region where the content of semiconductor nanoparticles is low, and a method for producing the same. There is to do.
半導体ナノ粒子濃度と発光強度の関係を示すグラフ(比較例)の例である。It is an example of the graph (comparative example) which shows the relationship between a semiconductor nanoparticle density | concentration and emitted light intensity. 半導体ナノ粒子濃度と発光強度の関係を示すグラフ(比較例)の他の例である。It is another example of the graph (comparative example) which shows the relationship between a semiconductor nanoparticle density | concentration and emitted light intensity. 半導体ナノ粒子濃度と発光強度の関係を示すグラフ(比較例)の他の例である。It is another example of the graph (comparative example) which shows the relationship between a semiconductor nanoparticle density | concentration and emitted light intensity. 半導体ナノ粒子濃度と発光強度の関係を示すグラフ(比較例)の他の例である。It is another example of the graph (comparative example) which shows the relationship between a semiconductor nanoparticle density | concentration and emitted light intensity. 半導体ナノ粒子濃度と発光強度の関係を示すグラフ(本発明)の例である。It is an example of the graph (this invention) which shows the relationship between a semiconductor nanoparticle density | concentration and emitted light intensity. 半導体ナノ粒子濃度と発光強度の関係を示すグラフ(本発明)の他の例である。It is another example of the graph (this invention) which shows the relationship between a semiconductor nanoparticle density | concentration and emitted light intensity. 半導体ナノ粒子濃度と発光強度の関係を示すグラフ(本発明)の他の例である。It is another example of the graph (this invention) which shows the relationship between a semiconductor nanoparticle density | concentration and emitted light intensity.
 本発明は、コアシェル構造を有するコアシェル型の半導体ナノ粒子Aを内包する、半導体ナノ粒子内包ガラス粒子であって、該コアシェル型の半導体ナノ粒子Aは、表面に、アミノ基および疎水基を有するアミノ化合物を有する半導体ナノ粒子Aであることを特徴とする。 The present invention relates to semiconductor nanoparticle-containing glass particles enclosing core-shell type semiconductor nanoparticles A having a core-shell structure, the core-shell type semiconductor nanoparticles A having amino groups and hydrophobic groups on the surface. It is the semiconductor nanoparticle A which has a compound, It is characterized by the above-mentioned.
 本発明では特に、予め上記特定の処理をした半導体ナノ粒子を用い、半導体ナノ粒子を内包するガラス粒子を作製することにより、半導体ナノ粒子の含有量が低い領域においても、含有量と発光強度と関係が線形性を保つことで高感度である半導体ナノ粒子内包ガラス粒子およびその製造方法が提供できる。 In the present invention, in particular, by using the semiconductor nanoparticles that have been subjected to the specific treatment in advance, by producing glass particles that enclose the semiconductor nanoparticles, even in a region where the content of the semiconductor nanoparticles is low, the content and emission intensity By maintaining the linearity of the relationship, it is possible to provide semiconductor nanoparticle-containing glass particles having high sensitivity and a method for producing the same.
 (コアシェル型半導体ナノ粒子)
 コアシェル型半導体ナノ粒子とは、後述する半導体形成材料(素材)を含有する粒子であって、コア部(芯部)とそれを被覆するシェル部(被覆部)で構成される多重構造を有する粒子であり、その粒径が1000nm以下の粒子をいう。
(Core-shell type semiconductor nanoparticles)
The core-shell type semiconductor nanoparticle is a particle containing a semiconductor forming material (raw material) to be described later and having a multiple structure composed of a core part (core part) and a shell part (covering part) covering it. And the particle diameter is 1000 nm or less.
 (コア部形成素材)
 本発明に係るコア部(「コア粒子」ともいう。)を形成するための素材としては、Si、Ge、InN、InP、GaAs、AlSe、CdSe、AlAs、GaP、ZnTe、CdTe、InAsなどの半導体又はこれらを形成する原料を用いることができる。
(Core part forming material)
Examples of the material for forming the core portion (also referred to as “core particle”) according to the present invention include semiconductors such as Si, Ge, InN, InP, GaAs, AlSe, CdSe, AlAs, GaP, ZnTe, CdTe, and InAs. Or the raw material which forms these can be used.
 本発明においては、特に、InP、CdTe、CdSeがより好ましく用いられる。 In the present invention, InP, CdTe, and CdSe are particularly preferably used.
 (シェル部形成素材)
 本発明に係るシェル部を形成するための素材としては、II-VI族、III-V族の無機半導体、IV族の無機半導体および酸化物を用いることができる。
(Shell forming material)
As a material for forming the shell portion according to the present invention, II-VI group, III-V group inorganic semiconductors, group IV inorganic semiconductors and oxides can be used.
 例えば、Si、SiO2、Ge、GeO2、InN、InP、GaAs、AlSe、CdSe、AlAs、GaP、ZnS、ZnTe、CdTe、InAsなどの各コア部形成無機材料よりバンドギャップが大きく、毒性を有さない半導体又はこれらを形成する原料が好ましい。 For example, it has a larger band gap and toxicity than each core-forming inorganic material such as Si, SiO 2 , Ge, GeO 2 , InN, InP, GaAs, AlSe, CdSe, AlAs, GaP, ZnS, ZnTe, CdTe, InAs. Semiconductors that do not, or the raw materials that form them are preferred.
 より好ましくは、InP、CdTe、及びCdSeにはZnSがシェルとして適用される。 More preferably, ZnS is applied as a shell to InP, CdTe, and CdSe.
 (半導体ナノ粒子Aの製造方法)
 本発明に係る半導体ナノ粒子の製造方法としては、液相法による方法を採用できる。
(Method for producing semiconductor nanoparticle A)
As a method for producing semiconductor nanoparticles according to the present invention, a liquid phase method can be employed.
 液相法の製造方法としては、沈殿法、共沈法、ゾル-ゲル法、均一沈殿法、還元法などがある。 Examples of the liquid phase method include a precipitation method, a coprecipitation method, a sol-gel method, a uniform precipitation method, and a reduction method.
 そのほかに、逆ミセル法、超臨界水熱合成法、などもナノ粒子を作製する上で優れた方法である(例えば、特開2002-322468号、特開2005-239775号、特開平10-310770号、特開2000-104058号公報等を参照。)。 In addition, the reverse micelle method, the supercritical hydrothermal synthesis method, and the like are also excellent methods for producing nanoparticles (for example, JP 2002-322468, JP 2005-239775, JP 10-310770 A). No., JP 2000-104058 A, etc.).
 なお、液相法により、半導体ナノ粒子の集合体を製造する場合においては、当該半導体の前駆体を還元反応により還元する工程を有する製造方法であることも好ましい。 In addition, when manufacturing the aggregate | assembly of a semiconductor nanoparticle by a liquid phase method, it is also preferable that it is a manufacturing method which has the process of reduce | restoring the said semiconductor precursor by a reductive reaction.
 また、当該半導体前駆体の反応は界面活性剤の存在下で行う工程を有する態様が好ましい。なお、本発明に係る半導体前駆体は、上記の半導体材料として用いられる元素を含む化合物であり、たとえば半導体がSiの場合、半導体前駆体としてはSiCl4などが挙げられる。その他半導体前駆体としては、InCl3、P(SiMe33、ZnMe2、CdMe2、GeCl4、トリブチルホスフィンセレンなどが挙げられる。 Moreover, the aspect which has the process performed in reaction of the said semiconductor precursor in presence of surfactant is preferable. The semiconductor precursor according to the present invention is a compound containing an element used as the semiconductor material. For example, when the semiconductor is Si, the semiconductor precursor includes SiCl 4 . Other semiconductor precursors include InCl 3 , P (SiMe 3 ) 3 , ZnMe 2 , CdMe 2 , GeCl 4 , tributylphosphine selenium and the like.
 反応前駆体の反応温度としては、半導体前駆体の沸点以上かつ溶媒の沸点以下であれば、特に制限はないが、70~110℃の範囲が好ましい。 The reaction temperature of the reaction precursor is not particularly limited as long as it is not lower than the boiling point of the semiconductor precursor and not higher than the boiling point of the solvent, but is preferably in the range of 70 to 110 ° C.
 〈還元剤〉
 半導体前駆体を還元する還元剤としては、従来周知の種々の還元剤を反応条件に応じて選択し用いることができる。本発明においては、還元力の強さの観点から、水素化アルミニウムリチウム(LiAlH4)、水素化ホウ素ナトリウム(NaBH4)、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム、水素化トリ(sec-ブチル)ホウ素リチウム(LiBH(sec-C493)及び水素化トリ(sec-ブチル)ホウ素カリウム、水素化トリエチルホウ素リチウムなどの還元剤が好ましい。特に、還元力の強さから水素化アルミニウムリチウム(LiAlH4)が好ましい。
<Reducing agent>
As the reducing agent for reducing the semiconductor precursor, various conventionally known reducing agents can be selected and used according to the reaction conditions. In the present invention, from the viewpoint of the strength of reducing power, lithium aluminum hydride (LiAlH 4 ), sodium borohydride (NaBH 4 ), sodium bis (2-methoxyethoxy) aluminum hydride, trihydride (sec- Preferred are reducing agents such as lithium (butyl) boron (LiBH (sec-C 4 H 9 ) 3 ), potassium tri (sec-butyl) borohydride, lithium triethylborohydride. In particular, lithium aluminum hydride (LiAlH 4 ) is preferable because of its reducing power.
 〈溶媒〉
 半導体前駆体の分散用溶媒としては、従来周知の種々の溶媒を使用できるが、エチルアルコール、sec-ブチルアルコール、t-ブチルアルコール等のアルコール類、トルエン、デカン、ヘキサンなどの炭化水素類溶媒を使用することが好ましい。本発明においては、特に、トルエン等の疎水性の溶媒が分散用溶媒として好ましい。
<solvent>
Various known solvents can be used as the solvent for dispersing the semiconductor precursor. Alcohols such as ethyl alcohol, sec-butyl alcohol, and t-butyl alcohol, and hydrocarbon solvents such as toluene, decane, and hexane are used. It is preferable to use it. In the present invention, a hydrophobic solvent such as toluene is particularly preferable as the dispersion solvent.
 〈界面活性剤〉
 界面活性剤としては、従来周知の種々の界面活性剤を使用でき、陰イオン、非イオン、陽イオン、両性界面活性剤が含まれる。
<Surfactant>
As the surfactant, various conventionally known surfactants can be used, and anionic, nonionic, cationic, and amphoteric surfactants are included.
 なかでも第四級アンモニウム塩系である、テトラブチルアンモニウムクロリド、ブロミド又はヘキサフルオロホスフェート、テトラオクチルアンモニウムブロミド(TOAB)、またはトリブチルヘキサデシルホスホニウムブロミドが好ましい。 Of these, tetrabutylammonium chloride, bromide or hexafluorophosphate, tetraoctylammonium bromide (TOAB), or tributylhexadecylphosphonium bromide which are quaternary ammonium salts are preferable.
 特に、テトラオクチルアンモニウムブロミドが好ましい。 In particular, tetraoctyl ammonium bromide is preferable.
 なお、液相法による反応は、液中の溶媒を含む化合物の状態により大きく変化する。単分散性の優れたナノサイズの粒子を製造する際には、特に注意を要する必要がある。 The reaction by the liquid phase method varies greatly depending on the state of the compound containing the solvent in the liquid. When producing nano-sized particles with excellent monodispersity, special care must be taken.
 例えば、逆ミセル反応法では、界面活性剤の濃度や種類により、反応場となる逆ミセルの大きさや状態が変わってくるため、ナノ粒子が形成される条件が限られてしまう。したがって、適切な界面活性剤は溶媒との組み合わせが必要となる。 For example, in the reverse micelle reaction method, the size and state of the reverse micelle serving as a reaction field vary depending on the concentration and type of the surfactant, so that the conditions under which nanoparticles are formed are limited. Therefore, a suitable surfactant needs to be combined with a solvent.
 なお、半導体ナノ粒子の凝集体及び半導体ナノ粒子集積体の製造方法、溶剤耐性試験の概要については、上述したが、具体的方法は、実施例の説明において詳述する。 In addition, although the manufacturing method of the semiconductor nanoparticle aggregate, the semiconductor nanoparticle assembly, and the outline of the solvent resistance test have been described above, the specific method will be described in detail in the description of the examples.
 (1)半導体ナノ粒子Aを形成する工程
 半導体ナノ粒子Aを形成する工程では、上記の半導体ナノ粒子表面にアミノ基および疎水基を有する化合物を付着させ、半導体ナノ粒子Aを形成する。
(1) The process of forming the semiconductor nanoparticle A In the process of forming the semiconductor nanoparticle A, the compound having an amino group and a hydrophobic group is attached to the surface of the semiconductor nanoparticle to form the semiconductor nanoparticle A.
 (アミノ基および疎水基を有するアミノ化合物)
 本発明に係る疎水基とは、炭化水素基を指し、アルキル基、芳香族炭化水素基が挙げられる。
(Amino compound having amino group and hydrophobic group)
The hydrophobic group according to the present invention refers to a hydrocarbon group, and examples thereof include an alkyl group and an aromatic hydrocarbon group.
 アルキル基としては、炭素数6~30のアルキル基が挙げられ、特に8~20のアルキルが好ましく用いることができる。 Examples of the alkyl group include an alkyl group having 6 to 30 carbon atoms, and an alkyl group having 8 to 20 carbon atoms can be particularly preferably used.
 芳香族基としては、フェニル基、ナフチル基が挙げられる。 Examples of the aromatic group include a phenyl group and a naphthyl group.
 アミノ基および疎水基を有する化合物の例としては、例えばn-ヘプチルアミン、ノニルアミン、ドデシルアミン、ヘキサデカンアミンなどが挙げられる。 Examples of the compound having an amino group and a hydrophobic group include n-heptylamine, nonylamine, dodecylamine, hexadecanamine and the like.
 当該アミノ化合物を、半導体ナノ粒子の表面に付着させるには、溶媒中と半導体ナノ粒子と上記アミノ基および疎水基を有するアミノ化合物とを混合し攪拌することで得ることができる。 In order to attach the amino compound to the surface of the semiconductor nanoparticles, it can be obtained by mixing and stirring the solvent, the semiconductor nanoparticles, and the amino compound having an amino group and a hydrophobic group.
 溶媒としては、有機溶媒が用いられ、アルコール類、ケトン類などを用いることができるが、アルコール類が好ましく、特に炭素数1~4の低級アルコールが好ましく用いられる。 As the solvent, an organic solvent is used, and alcohols and ketones can be used, but alcohols are preferable, and lower alcohols having 1 to 4 carbon atoms are particularly preferable.
 溶媒中の半導体ナノ粒子の量は、溶媒に対して0.001質量%~1質量%が好ましく、特に0.01質量%~0.1質量%が好ましい。 The amount of the semiconductor nanoparticles in the solvent is preferably 0.001% by mass to 1% by mass, and particularly preferably 0.01% by mass to 0.1% by mass with respect to the solvent.
 アミノ基と疎水基を有する化合物の溶媒中の含有量は、溶媒に対して0.01質量%~10質量%が好ましく、特に0.1質量%~1質量%が好ましい。 The content of the compound having an amino group and a hydrophobic group in the solvent is preferably 0.01% by mass to 10% by mass, and particularly preferably 0.1% by mass to 1% by mass with respect to the solvent.
 本発明において、半導体ナノ粒子Aは上記溶媒中に存在するが、溶液状態のままで下記のガラス粒子形成工程に移行することが好ましい。 In the present invention, the semiconductor nanoparticles A are present in the above-mentioned solvent, but it is preferable to move to the following glass particle forming step in a solution state.
 (2)ガラス粒子形成工程
 ガラス粒子形成工程では、上記半導体ナノ粒子Aの存在下に、ガラス前駆体を用いガラス粒子を生成し、半導体を含有する半導体ナノ粒子内包ガラス粒子ガラス前駆体を作製する。
(2) Glass particle forming step In the glass particle forming step, glass particles are generated using a glass precursor in the presence of the semiconductor nanoparticles A, and a semiconductor nanoparticle-containing glass particle glass precursor containing a semiconductor is produced. .
 ガラス粒子の形成は、ガラス前駆体を加水分解することで得られる。加水分解は、アルカリ状態の溶媒中で、ガラス前駆体を加水分解することで得られるが、本発明では、このアルカリ状態の溶媒中に上記半導体ナノ粒子を存在させておくことで、半導体を含有する半導体ナノ粒子A内包ガラス粒子を作製することができる。 The formation of glass particles can be obtained by hydrolyzing the glass precursor. Hydrolysis is obtained by hydrolyzing the glass precursor in an alkaline solvent. In the present invention, the semiconductor nanoparticles are contained in the alkaline solvent so that the semiconductor is contained. Semiconductor nanoparticle A-encapsulating glass particles can be produced.
 ガラス前駆体としては、ケイ素アルコキシドが用いられる。 Silicon alkoxide is used as the glass precursor.
 ケイ素アルコキシドとしては、テトラエトキシシラン(TEOS)、テトラメトキシシラン、などを挙げることができる。 Examples of the silicon alkoxide include tetraethoxysilane (TEOS) and tetramethoxysilane.
 用いられる溶媒としては、アルコール類、ケトン類が挙げられるが、エタノールが好ましく用いられる。 Examples of the solvent used include alcohols and ketones, but ethanol is preferably used.
 アルカリ状態は、アンモニアなどを添加することで、得られる。 Alkaline state can be obtained by adding ammonia or the like.
 加水分解する際の温度としては、5℃から80℃の範囲で行うことができるが、25℃で加水分解することが好ましい。 The temperature for the hydrolysis can be in the range of 5 ° C to 80 ° C, but the hydrolysis is preferably performed at 25 ° C.
 溶媒中の、ガラス前駆体の濃度としては、40~80質量%の範囲で行うことができる。 The concentration of the glass precursor in the solvent can be in the range of 40 to 80% by mass.
 このような条件で、粒子を形成することにより、概ね10nm~100nmの粒径の粒子を形成することができる。 By forming particles under such conditions, particles having a particle size of approximately 10 nm to 100 nm can be formed.
 ガラス粒子中には、半導体ナノ粒子Aが取り込まれ内包された状態で半導体ナノ粒子Aが複数存在する。 In the glass particles, there are a plurality of semiconductor nanoparticles A in a state where the semiconductor nanoparticles A are taken in and encapsulated.
 ガラス粒子中の半導体ナノ粒子Aの数は、用いる半導体ナノ粒子Aの粒径と形成されるガラス粒子との粒径にもよるが、概ね2~20の範囲で含有されるものが好ましく用いられ、特に4~15の範囲で含有し、ガラス粒子の粒径が10~50nmであるものが好ましく用いられる。 The number of semiconductor nanoparticles A in the glass particles depends on the particle size of the semiconductor nanoparticles A used and the particle size of the glass particles to be formed, but those contained in the range of approximately 2 to 20 are preferably used. In particular, those containing 4 to 15 and glass particles having a particle size of 10 to 50 nm are preferably used.
 半導体ナノ粒子Aのガラス中に含まれる数(内包数)の計算は以下のようにして行うことができる。 Calculation of the number (inclusion number) contained in the glass of the semiconductor nanoparticles A can be performed as follows.
 まず、半導体ナノ粒子Aの元素比をICP-AEC(ICPS-7500 島津製作所)を用いて計測し乾燥重量からモル数を算出する。また、吸光度を測定することにより、モル吸光係数を求める。 First, the element ratio of the semiconductor nanoparticles A is measured using ICP-AEC (ICPS-7500, Shimadzu Corporation), and the number of moles is calculated from the dry weight. Further, the molar extinction coefficient is obtained by measuring the absorbance.
 その後、半導体ナノ粒子集積体の乾燥重量を計算し、吸光度を測定する。半導体ナノ粒子、半導体ナノ粒子集積体構成化合物の密度は既知なので、上記動的光散乱法で計算した平均粒径、半導体ナノ粒子集積体の吸光度と合わせて濃度を算出することで、求めることが可能である。 Then, the dry weight of the semiconductor nanoparticle assembly is calculated and the absorbance is measured. Since the density of the semiconductor nanoparticle and the compound constituting the semiconductor nanoparticle assembly is known, it can be obtained by calculating the concentration together with the average particle diameter calculated by the dynamic light scattering method and the absorbance of the semiconductor nanoparticle assembly. Is possible.
 本発明の製造方法で得られたガラス粒子が、低濃度領域において、含有量と蛍光発光強度との関係が良好な線形関係を保つ理由は、明確ではないが以下のように指定される。 The reason why the glass particles obtained by the production method of the present invention maintain a good linear relationship between the content and the fluorescence emission intensity in a low concentration region is not clear, but is specified as follows.
 半導体ナノ粒子単体をキシレン等の溶剤に低濃度でさらすと、半導体ナノ粒子表面に溶剤が吸着し、表面状態が変化することにより発光強度の低下が起こると推察される。また、後述の比較例にあるようなガラス粒子中に半導体ナノ粒子を分散させた粒子をキシレン等の溶剤に低濃度でさらすと、半導体ナノ粒子表面と-O-Si-O-マトリックスは化学結合ベースで結合しているため、半導体ナノ粒子表面と-O-Si-O-マトリックの相互作用が起こり、発光強度の低下が起こると推察される。一方、本発明に係る半導体ナノ粒子Aを用いることで、ガラス粒子を作製する段階で、ガラス粒子中の-O-Si-O-で形成される編み目構造中に、より均一に取り込まれ半導体粒子と半導体粒子とが、ガラス粒子の中で凝集することがなく良好な分散状態で含有されているためと推測される。さらに、表面にはアミンが付着した状態でガラス粒子中に分散していると考えられ、化学結合ベースで半導体ナノ粒子が分散してはいない、と推測される。そのため、-O-Si-O-で形成される編み目構造とも相互作用を起こさないため、キシレン等の溶剤に低濃度でさらしても発光強度の低下がおこらないと推察される。 It is inferred that when the semiconductor nanoparticles are exposed to a solvent such as xylene at a low concentration, the solvent is adsorbed on the surface of the semiconductor nanoparticles and the surface state changes, resulting in a decrease in emission intensity. In addition, when the semiconductor nanoparticles dispersed in glass particles as described in the comparative example described below are exposed to a solvent such as xylene at a low concentration, the surface of the semiconductor nanoparticles and the —O—Si—O— matrix are chemically bonded. Since they are bonded at the base, it is presumed that the interaction between the semiconductor nanoparticle surface and —O—Si—O—matrix occurs and the emission intensity decreases. On the other hand, by using the semiconductor nanoparticles A according to the present invention, the semiconductor particles are more uniformly incorporated into the stitch structure formed of —O—Si—O— in the glass particles at the stage of producing the glass particles. This is presumably because the semiconductor particles are contained in a well dispersed state without agglomerating in the glass particles. Further, it is considered that amine is attached to the surface and dispersed in the glass particles, and it is presumed that the semiconductor nanoparticles are not dispersed on a chemical bond basis. Therefore, since it does not interact with the stitch structure formed of —O—Si—O—, it is assumed that the emission intensity does not decrease even when exposed to a solvent such as xylene at a low concentration.
 (用途)
 本発明の製造方法により得られる半導体ナノ粒子A内包ガラス粒子は、以下のような用途に用いることができる。
(Use)
The semiconductor nanoparticle A-encapsulating glass particles obtained by the production method of the present invention can be used for the following uses.
 (生体物質標識剤とバイオイメージング)
 本発明に係るガラス粒子(半導体ナノ粒子集積体)は、生体物質蛍光標識剤に適応することができる。
(Biological substance labeling agents and bioimaging)
The glass particles (semiconductor nanoparticle assembly) according to the present invention can be applied to a biological material fluorescent labeling agent.
 また、標的(追跡)物質を有する生細胞もしくは生体に本発明に係る生体物質標識剤を添加することで、標的物質と結合もしくは吸着し、当該結合体もしくは吸着体に所定の波長の励起光を照射し、当該励起光に応じて蛍光半導体微粒子から発生する所定の波長の蛍光を検出することにより、上記標的(追跡)物質の蛍光動態イメージングを行うことができる。 Further, by adding the biological material labeling agent according to the present invention to a living cell or living body having a target (tracking) substance, the target substance is bound or adsorbed, and excitation light having a predetermined wavelength is applied to the conjugate or adsorbent. By irradiating and detecting fluorescence of a predetermined wavelength generated from the fluorescent semiconductor fine particles according to the excitation light, fluorescence dynamic imaging of the target (tracking) substance can be performed.
 すなわち、生体物質標識剤は、バイオイメージング法(生体物質を構成する生体分子やその動的現象を可視化する技術手段)に利用することができる。 That is, the biological material labeling agent can be used for a bioimaging method (technical means for visualizing a biological molecule constituting the biological material and its dynamic phenomenon).
 〔半導体ナノ粒子集積体の親水化処理〕
 上述したガラス粒子(半導体ナノ粒子集積体)表面は、一般的には、親水性であるが、疎水性である時、例えば生体物質標識剤として使用する場合は、このままでは水分散性が悪く、半導体ナノ粒子集積体が凝集してしまう等の問題があるため、半導体ナノ粒子集積体の表面を親水化処理することが好ましい。
[Hydrophilic treatment of semiconductor nanoparticle assembly]
The surface of the glass particle (semiconductor nanoparticle assembly) described above is generally hydrophilic, but when it is hydrophobic, for example, when used as a biological material labeling agent, the water dispersibility is poor as it is, Since there are problems such as aggregation of the semiconductor nanoparticle aggregate, it is preferable to subject the surface of the semiconductor nanoparticle aggregate to a hydrophilic treatment.
 親水化処理の方法としては例えば、表面の親油性基をピリジン等で除去した後に半導体ナノ粒子集積体表面に表面修飾剤を化学的および/または物理的に結合させる方法がある。 As a hydrophilic treatment method, for example, there is a method of chemically and / or physically binding a surface modifier to the surface of the semiconductor nanoparticle assembly after removing the lipophilic group on the surface with pyridine or the like.
 表面修飾剤としては、親水基として、カルボキシル基・アミノ基を持つものが好ましく用いられ、具体的にはメルカプトプロピオン酸、メルカプトウンデカン酸、アミノプロパンチオールなどがあげられる。具体的には、例えば、Ge/GeO2型ナノ粒子10-5gをメルカプトウンデカン酸0.2gが溶解した純水10ml中に分散させて、40℃、10分間攪拌し、シェルの表面を処理することで無機ナノ粒子のシェルの表面をカルボキシル基で修飾することができる。 As the surface modifier, those having a carboxyl group / amino group as a hydrophilic group are preferably used, and specific examples include mercaptopropionic acid, mercaptoundecanoic acid, aminopropanethiol and the like. Specifically, for example, 10 −5 g of Ge / GeO 2 type nanoparticles are dispersed in 10 ml of pure water in which 0.2 g of mercaptoundecanoic acid is dissolved, and stirred at 40 ° C. for 10 minutes to treat the surface of the shell. By doing so, the surface of the shell of the inorganic nanoparticles can be modified with a carboxyl group.
 〔生体物質標識剤〕
 生体物質標識剤は、上述した親水化処理された半導体ナノ粒子集積体と、分子標識物質と有機分子を介して結合させて得られる。
[Biological substance labeling agent]
The biological substance labeling agent is obtained by bonding the above-described hydrophilic nanoparticle aggregate that has been subjected to the hydrophilic treatment, the molecular labeling substance, and the organic molecule.
 〈分子標識物質〉
 生体物質標識剤は分子標識物質が目的とする生体物質と特異的に結合および/または反応することにより、生体物質の標識が可能となる。
<Molecular labeling substance>
The biological substance labeling agent can label the biological substance by specifically binding and / or reacting with the target biological substance.
 当該分子標識物質としては、例えば、ヌクレオチド鎖、抗体、抗原及びシクロデキストリン等が挙げられる。 Examples of the molecular labeling substance include nucleotide chains, antibodies, antigens, and cyclodextrins.
 〈有機分子〉
 生体物質標識剤は、親水化処理されたガラス粒子(半導体ナノ粒子集積体)と、分子標識物質とが有機分子により結合されている態様が好ましい態様である。
<Organic molecule>
A preferred embodiment of the biological material labeling agent is a mode in which the hydrophilically treated glass particles (semiconductor nanoparticle aggregates) and the molecular labeling substance are bound by organic molecules.
 当該有機分子としては半導体ナノ粒子集積体と分子標識物質とを結合できる有機分子であれば特に制限はないが、例えば、タンパク質中でも、アルブミン、ミオグロビンおよびカゼイン等、またタンパク質の一種であるアビジンをビオチンと共に用いることも好適に用いられる。 The organic molecule is not particularly limited as long as it is capable of binding the semiconductor nanoparticle aggregate and the molecular labeling substance. For example, among proteins, albumin, myoglobin, casein, etc. It is also preferably used together.
 上記結合の態様としては特に限定されず、共有結合、イオン結合、水素結合、配位結合、物理吸着および化学吸着等が挙げられる。 The form of the bond is not particularly limited, and examples thereof include covalent bond, ionic bond, hydrogen bond, coordination bond, physical adsorption and chemical adsorption.
 結合の安定性から共有結合などの結合力の強い結合が好ましい。 A bond having a strong bonding force such as a covalent bond is preferable from the viewpoint of the stability of the bond.
 具体的には、半導体ナノ粒子集積体をメルカプトウンデカン酸で親水化処理した場合は、有機分子としてアビジンおよびビオチンを用いることができる。この場合親水化処理されたナノ粒子のカルボキシル基はアビジンと好適に共有結合し、アビジンがさらにビオチンと選択的に結合し、ビオチンがさらに生体物質標識剤と結合することにより生体物質標識剤となる。 Specifically, when the semiconductor nanoparticle aggregate is hydrophilized with mercaptoundecanoic acid, avidin and biotin can be used as organic molecules. In this case, the carboxyl group of the nanoparticles subjected to hydrophilic treatment is preferably covalently bonded to avidin, and avidin further selectively binds to biotin, and biotin further binds to the biological material labeling agent to become a biological material labeling agent. .
 以下、実施例により本発明をより詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 (比較例1)
 (InP/ZnS、コア/シェル構造半導体ナノ粒子の合成)
 InPコア粒子の合成は、下記の加熱溶液法によって行った。
(Comparative Example 1)
(Synthesis of InP / ZnS, core / shell structure semiconductor nanoparticles)
InP core particles were synthesized by the following heated solution method.
 三つ口フラスコに6mlのオクタデセンを入れ、その溶媒中に1mlのオクタデセンに溶解させたIn(acac)3とトリス(トリメチルシリル)ホスフィンをInとPのモル比がIn/P=1/1となるように加え、アルゴン雰囲気中で300℃、1h反応させInPコア粒子(分散液)を得た。 6 ml of octadecene is placed in a three-necked flask, and the molar ratio of In (acac) 3 and tris (trimethylsilyl) phosphine dissolved in 1 ml of octadecene in the solvent is In / P = 1/1. In addition, the reaction was performed at 300 ° C. for 1 hour in an argon atmosphere to obtain InP core particles (dispersion).
 InP/ZnSコア/シェル粒子の合成は、300℃、1h反応後のInPコア粒子分散液を80℃まで放冷した後、その分散液に1mlのオクタデセンに溶解させたステアリン酸亜鉛+硫黄をIn、P、Zn、Sのモル比がIn/P/Zn/S=1/1/1/1となるように加え、80℃から230℃に昇温し、30分反応させることにより得た。このようにして得られたInP/ZnSコア/シェル半導体ナノ粒子(比較粒子1)は630nmに極大発光波長を持った粒子であった。 InP / ZnS core / shell particles were synthesized by allowing the InP core particle dispersion after the reaction at 300 ° C. for 1 hour to cool to 80 ° C., and then adding zinc stearate + sulfur dissolved in 1 ml of octadecene to the dispersion. , P, Zn and S were added so that the molar ratio of In / P / Zn / S = 1/1/1/1 was increased from 80 ° C. to 230 ° C. and reacted for 30 minutes. The thus obtained InP / ZnS core / shell semiconductor nanoparticles (Comparative Particle 1) were particles having a maximum emission wavelength at 630 nm.
 (比較例2)
 (CdSe/ZnS、コア/シェル半導体ナノ粒子の合成)
 CdSe/ZnSコア/シェル半導体ナノ粒子の合成は以下のように行った。
(Comparative Example 2)
(Synthesis of CdSe / ZnS, core / shell semiconductor nanoparticles)
CdSe / ZnS core / shell semiconductor nanoparticles were synthesized as follows.
 Ar気流下、トリ-n-オクチルホスフィンオキシド(TOPO)7.5gに、ステアリン酸2.9g、n-テトラデシルホスホン酸620mg、及び、酸化カドミニウム250mgを加え、370℃に加熱混合した。これを270℃まで放冷させた後、トリブチルフォスフィン2.5mlにセレン200mgを溶解させた溶液を加え、減圧乾燥し、TOPOで被覆されたCdSeコア半導体ナノ粒子を得た。 In an Ar stream, 2.9 g of stearic acid, 620 mg of n-tetradecylphosphonic acid, and 250 mg of cadmium oxide were added to 7.5 g of tri-n-octylphosphine oxide (TOPO), and the mixture was heated and mixed at 370 ° C. After allowing to cool to 270 ° C., a solution of 200 mg of selenium dissolved in 2.5 ml of tributylphosphine was added and dried under reduced pressure to obtain CdSe core semiconductor nanoparticles coated with TOPO.
 CdSe/ZnSコア/シェル半導体ナノ粒子合成は得られたCdSeコア粒子に、TOPO15gを加えて加熱し、引き続き270℃でトリオクチルホスフィン10mlにジエチルジチオカルバミン酸亜鉛1.1gを溶解した溶液を加え、CdSe/ZnSコア/シェル半導体ナノ粒子(比較粒子2)を得た。 CdSe / ZnS core / shell semiconductor nanoparticles were synthesized by adding 15 g of TOPO to the obtained CdSe core particles and heating, followed by adding a solution of 1.1 g of zinc diethyldithiocarbamate in 10 ml of trioctylphosphine at 270 ° C. / ZnS core / shell semiconductor nanoparticles (Comparative Particle 2) were obtained.
 (比較例3)
 (CdTe/ZnS、コア/シェル半導体ナノ粒子の合成)
 CdTe/ZnSコア/シェル半導体ナノ粒子に関しては特開2005-281019号公報の実施例1に従い合成した。
(Comparative Example 3)
(Synthesis of CdTe / ZnS, core / shell semiconductor nanoparticles)
CdTe / ZnS core / shell semiconductor nanoparticles were synthesized according to Example 1 of JP-A-2005-281019.
 CdTeコア粒子については、ヒェミー、100巻、1772頁(1996)による方法に従って合成した。 The CdTe core particles were synthesized according to the method according to Hemy, Volume 100, page 1772 (1996).
 すなわち、アルゴンガス雰囲気下、界面活性剤としてのチオグリコール酸(HOOCCH2SH)の存在下で25℃、pH=11.4に調整した過塩素酸カドミウム水溶液を激しく撹拌しながら、テルル化水素ガスを反応させた。この水溶液を大気雰囲気下で6日間還流することにより、CdTeコア粒子を得た。 That is, hydrogen telluride gas while vigorously stirring an aqueous cadmium perchlorate solution adjusted to 25 ° C. and pH = 11.4 in the presence of thioglycolic acid (HOOCCH 2 SH) as a surfactant under an argon gas atmosphere Was reacted. The aqueous solution was refluxed for 6 days in an air atmosphere to obtain CdTe core particles.
 このようにして得られたCdTeコア粒子は640nmに極大発光波長を持った粒子であった。 The CdTe core particles thus obtained were particles having a maximum emission wavelength at 640 nm.
 CdTe/ZnSコア/シェル粒子の合成は、この水溶液を80℃まで加熱した後、その溶液に1mlの水に溶解させたステアリン酸亜鉛+硫黄をCd、Te、Zn、Sのモル比がIn/P/Zn/S=1/1/1/1となるように加え、80℃から230℃に昇温し、30分反応させることにより得た(比較粒子3)。 The CdTe / ZnS core / shell particles were synthesized by heating this aqueous solution to 80 ° C., and then adding zinc stearate + sulfur dissolved in 1 ml of water to the molar ratio of Cd, Te, Zn, S to In / It was obtained by adding P / Zn / S = 1/1/1/1, raising the temperature from 80 ° C. to 230 ° C., and reacting for 30 minutes (Comparative Particle 3).
 (比較例4)
 特開2005-281019号公報記載の実施例1に従い、シリカマトリックス中にCdTe/ZnSが存在する半導体ナノ粒子含有ガラス粒子(比較粒子4)を作製した。
(Comparative Example 4)
According to Example 1 described in JP-A-2005-281019, semiconductor nanoparticle-containing glass particles (comparative particles 4) having CdTe / ZnS present in a silica matrix were prepared.
 CdTe/ZnSコア/シェル半導体ナノ粒子分散液を25℃、pH=10の条件下、界面活性剤としてチオグリコール酸を加えることにより水溶化した。その後、疎水性有機溶媒としてのイソオクタン(2,2,4-トリメチルペンタン)25mlに、逆ミセル(逆マイクロエマルジョン)を形成させるために必要な界面活性剤ビス(2-エチルヘキシル)スルホこはく酸ナトリウム(エーロゾルOT)(「AOT」とも表記する。)1.1115gを溶解し、次に、この溶液を撹拌しながら、水0.74mlと、上記の水溶化CdTe/ZnSコア/シェル半導体ナノ粒子溶液0.3ml加えて溶解した。次に、この溶液を撹拌しながら、ゾル-ゲルガラスの前駆体として、アルコキシドであるテトラエトキシシラン(TEOS)0.399ml、および、有機アルコキシシランである3-アミノプロピルトリメトキシシラン(APS)0.079mlを加えた。 The CdTe / ZnS core / shell semiconductor nanoparticle dispersion was water-solubilized by adding thioglycolic acid as a surfactant under the conditions of 25 ° C. and pH = 10. Thereafter, the surfactant bis (2-ethylhexyl) sulfosuccinate sodium (required for forming reverse micelle (reverse microemulsion) in 25 ml of isooctane (2,2,4-trimethylpentane) as a hydrophobic organic solvent (Aerosol OT) (also referred to as “AOT”) 1.1115 g was dissolved, and then the solution was stirred and 0.74 ml of water was mixed with the above water-soluble CdTe / ZnS core / shell semiconductor nanoparticle solution 0. 3 ml was added and dissolved. Next, with stirring this solution, 0.399 ml of tetraethoxysilane (TEOS), which is an alkoxide, and 0.3 aminopropyltrimethoxysilane (APS), which is an organoalkoxysilane, are used as a sol-gel glass precursor. 079 ml was added.
 この分散液を2日間撹拌することによりシリカマトリックス中にCdTe/ZnSが存在する半導体ナノ粒子含有ガラス粒子(比較粒子4)とした。 The dispersion was stirred for 2 days to obtain semiconductor nanoparticles-containing glass particles (comparative particles 4) in which CdTe / ZnS was present in the silica matrix.
 (半導体ナノ粒子含有ガラス粒子1~3の作製)
 比較例1~3にあるInP、CdSe、CdTe溶液に貧溶媒であるアセトンを加え沈殿させた。この沈殿0.1mgにドデシルアミン0.1mg、エタノール1mlを加え、1h強撹拌することにより水溶化半導体ナノ粒子溶液を得ることが出来る。この水溶化半導体ナノ粒子溶液にTEOS0.1mg、水0.01ml、NH3 0.03mlを加え加水分解を行うことで、各々InP、CdSe,CdTeを含有する半導体ナノ粒子含有ガラス粒子1~3を得ることが出来た。
(Preparation of semiconductor nanoparticles containing glass particles 1 to 3)
Acetone, a poor solvent, was added to the InP, CdSe, and CdTe solutions in Comparative Examples 1 to 3 to cause precipitation. By adding 0.1 mg of dodecylamine and 1 ml of ethanol to 0.1 mg of the precipitate, a water-soluble semiconductor nanoparticle solution can be obtained by stirring for 1 hour. This water-soluble semiconductor nanoparticle solution is subjected to hydrolysis by adding 0.1 mg of TEOS, 0.01 ml of water, and 0.03 ml of NH 3 , so that glass particles 1 to 3 containing semiconductor nanoparticles containing InP, CdSe, and CdTe are obtained. I was able to get it.
 (感度(低濃度線形性試験))
 下記のようにして、低濃度線形性試験を行い、感度の指標とした。
(Sensitivity (low concentration linearity test))
A low concentration linearity test was performed as follows and used as an index of sensitivity.
 低濃度線形性試験の溶媒にはキシレン/エタノールを用いた。比較例1~3にある比較半導体ナノ粒子1~3は貧溶媒であるアセトンで沈殿させ、遠心分離により溶媒を取り除き、0.001~1μMとなるようにキシレン/エタノールに置換する(図1~3)。比較粒子4、半導体ナノ粒子A含有ガラス粒子1~3では粒子を遠心分離し、溶媒を除去後、キシレン/エタノールに溶媒を置換し0.001~1μMとすることにより、低濃度線形性試験を行った(図4~7、比較粒子4は図4に対応)。評価法としては、それぞれの濃度の試料をキシレン/エタノールに置換後1h静置した後に、発光強度を計測することにより行っている。発光強度の測定は日立ハイテク社製F-7000を用いて行っている。 Xylene / ethanol was used as the solvent for the low concentration linearity test. Comparative semiconductor nanoparticles 1 to 3 in Comparative Examples 1 to 3 are precipitated with acetone, which is a poor solvent, and the solvent is removed by centrifugation and replaced with xylene / ethanol to 0.001 to 1 μM (FIGS. 1 to 3). 3). For comparative particles 4 and semiconductor nanoparticles A-containing glass particles 1 to 3, the particles are centrifuged, and after removing the solvent, the solvent is replaced with xylene / ethanol to make 0.001 to 1 μM. (FIGS. 4-7, comparative particle 4 corresponds to FIG. 4). As an evaluation method, the sample of each concentration is replaced with xylene / ethanol and left to stand for 1 h, and then the emission intensity is measured. The emission intensity is measured using F-7000 manufactured by Hitachi High-Tech.
 図1~7に示した結果から明らかなように、半導体ナノ粒子A含有ガラス粒子1~3は濃度に対して直線的に発光強度が増加しており(図5~7)、半導体ナノ粒子の含有量が低い領域においても、半導体ナノ粒子集積体の含有量と発光強度との関係が線形性を保っている。それに対して、比較例(図1~4)では、低濃度の領域で半導体ナノ粒子集積体の含有量と発光強度との関係が線形性を保っていないことは明らかである。 As is clear from the results shown in FIGS. 1 to 7, the emission intensity of the semiconductor nanoparticles A-containing glass particles 1 to 3 increases linearly with respect to the concentration (FIGS. 5 to 7). Even in a region where the content is low, the relationship between the content of the semiconductor nanoparticle aggregate and the light emission intensity remains linear. On the other hand, in the comparative example (FIGS. 1 to 4), it is clear that the relationship between the content of the semiconductor nanoparticle aggregate and the emission intensity does not maintain linearity in a low concentration region.

Claims (4)

  1.  コアシェル構造を有するコアシェル型の半導体ナノ粒子Aを内包する、半導体ナノ粒子内包ガラス粒子であって、該コアシェル型の半導体ナノ粒子Aは、表面に、アミノ基および疎水基を有するアミノ化合物を有する半導体ナノ粒子Aであることを特徴とする半導体ナノ粒子内包ガラス粒子。 Semiconductor nanoparticle-containing glass particles enclosing core-shell type semiconductor nanoparticles A having a core-shell structure, wherein the core-shell type semiconductor nanoparticles A have an amino compound having an amino group and a hydrophobic group on the surface. A semiconductor nanoparticle-containing glass particle, which is a nanoparticle A.
  2.  前記コアシェル型の半導体ナノ粒子Aのコア部が、リン化インジウム(InP)、セレン化カドミウム(CdSe)またはテルル化カドミウム(CdTe)を含有することを特徴とする請求項1に記載の半導体ナノ粒子内包ガラス粒子。 2. The semiconductor nanoparticle according to claim 1, wherein the core portion of the core-shell type semiconductor nanoparticle A contains indium phosphide (InP), cadmium selenide (CdSe), or cadmium telluride (CdTe). Encapsulated glass particles.
  3.  前記半導体ナノ粒子内包ガラス粒子が、前記半導体ナノ粒子Aを複数内包することを特徴とする請求項1または2に記載の半導体ナノ粒子内包ガラス粒子。 The semiconductor nanoparticle-encapsulated glass particles according to claim 1 or 2, wherein the semiconductor nanoparticle-encapsulated glass particles include a plurality of the semiconductor nanoparticles A.
  4.  請求項1から3のいずれか1項に記載の半導体ナノ粒子内包ガラス粒子を製造する、半導体ナノ粒子内包ガラス粒子の製造方法であって、
    (1)コアシェル型の半導体ナノ粒子の表面に、アミノ基および疎水基を有するアミノ化合物を付着させ、表面に該アミノ化合物を有する半導体ナノ粒子Aを形成する工程および、
    (2)該半導体ナノ粒子Aの存在下に、ガラス前駆体を用いガラス粒子を生成し、該半導体を含有する半導体ナノ粒子A内包ガラス粒子を作製するガラス粒子形成工程、
    を有することを特徴とする半導体ナノ粒子内包ガラス粒子の製造方法。
    It is a manufacturing method of semiconductor nanoparticle inclusion glass particles which manufactures semiconductor nanoparticle inclusion glass particles given in any 1 paragraph of Claims 1-3,
    (1) a step of attaching an amino compound having an amino group and a hydrophobic group to the surface of a core-shell type semiconductor nanoparticle to form the semiconductor nanoparticle A having the amino compound on the surface;
    (2) A glass particle forming step of producing glass particles using a glass precursor in the presence of the semiconductor nanoparticles A to produce semiconductor nanoparticle A-containing glass particles containing the semiconductor,
    The manufacturing method of the semiconductor nanoparticle inclusion | inner_cover glass particle characterized by having.
PCT/JP2012/056865 2011-04-26 2012-03-16 Glass particles containing enclosed semiconductor nanoparticles, and process for producing glass particles containing enclosed semiconductor nanoparticles WO2012147429A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013511973A JPWO2012147429A1 (en) 2011-04-26 2012-03-16 Semiconductor nanoparticle-encapsulated glass particles, method for producing semiconductor nanoparticle-encapsulated glass particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011097989 2011-04-26
JP2011-097989 2011-04-26

Publications (1)

Publication Number Publication Date
WO2012147429A1 true WO2012147429A1 (en) 2012-11-01

Family

ID=47071955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056865 WO2012147429A1 (en) 2011-04-26 2012-03-16 Glass particles containing enclosed semiconductor nanoparticles, and process for producing glass particles containing enclosed semiconductor nanoparticles

Country Status (2)

Country Link
JP (1) JPWO2012147429A1 (en)
WO (1) WO2012147429A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015077372A1 (en) 2013-11-19 2015-05-28 Qd Vision, Inc. Luminescent particle, materials and products including same, and methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034877A1 (en) * 2005-09-22 2007-03-29 National Institute Of Advanced Industrial Science And Technology Semiconductor nanoparticles dispersed glass fine particles and process for preparing the same
JP2008094968A (en) * 2006-10-12 2008-04-24 Sharp Corp Nanocrystal particle phosphor, coated nanocrystal particle phosphor and manufacturing method of the coated nanocrystal particle phosphor
JP2010138367A (en) * 2008-04-23 2010-06-24 National Institute Of Advanced Industrial Science & Technology Water-dispersible nanoparticles having high luminous efficiency and method of producing the same
WO2010128604A1 (en) * 2009-05-08 2010-11-11 コニカミノルタエムジー株式会社 Silica nanoparticle having quantum dots encapsulated therein, method for producing same and biological labeling agent using same
JP2011026472A (en) * 2009-07-27 2011-02-10 Sharp Corp Semiconductor phosphor nanoparticle
JP2011074221A (en) * 2009-09-30 2011-04-14 Sharp Corp Semiconductor phosphor nanoparticle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034877A1 (en) * 2005-09-22 2007-03-29 National Institute Of Advanced Industrial Science And Technology Semiconductor nanoparticles dispersed glass fine particles and process for preparing the same
JP2008094968A (en) * 2006-10-12 2008-04-24 Sharp Corp Nanocrystal particle phosphor, coated nanocrystal particle phosphor and manufacturing method of the coated nanocrystal particle phosphor
JP2010138367A (en) * 2008-04-23 2010-06-24 National Institute Of Advanced Industrial Science & Technology Water-dispersible nanoparticles having high luminous efficiency and method of producing the same
WO2010128604A1 (en) * 2009-05-08 2010-11-11 コニカミノルタエムジー株式会社 Silica nanoparticle having quantum dots encapsulated therein, method for producing same and biological labeling agent using same
JP2011026472A (en) * 2009-07-27 2011-02-10 Sharp Corp Semiconductor phosphor nanoparticle
JP2011074221A (en) * 2009-09-30 2011-04-14 Sharp Corp Semiconductor phosphor nanoparticle

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Ryoshi Dot o Funyu shita Bisho Glass Capsule", AIST TODAY, vol. 10, no. 10, October 2010 (2010-10-01), pages 10 *
CHI-TSU YUAN ET AL.: "Study of fluorescence enhancement of colloidal CdSe/ZnS quantum dots bound to hexadecylamine by single-molecule measurements", J. PHYS. CHEM., vol. 111, 2007, pages 15166 - 15172 *
JOSEPH A. GAUNT ET AL.: "Stability and quantum yield effects of small molecule additives on solutions of semiconductor nanoparticles", JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 290, 2005, pages 437 - 443, XP005018825 *
PING YANG ET AL.: "Bright, non-blinking, and less-cytotoxic Si02 beads with multiple CdSe/ ZnS nanocrustals", CHEM. COMMUN., vol. 46, 2010, pages 4595 - 4597 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015077372A1 (en) 2013-11-19 2015-05-28 Qd Vision, Inc. Luminescent particle, materials and products including same, and methods
KR20160086918A (en) * 2013-11-19 2016-07-20 큐디 비젼, 인크. Luminescent particle, materials and products including same, and methods
JP2016540852A (en) * 2013-11-19 2016-12-28 キユーデイー・ビジヨン・インコーポレーテツド Luminescent particles, materials and products containing the same, and methods
US10221354B2 (en) 2013-11-19 2019-03-05 Samsung Electronics Co., Ltd. Luminescent particle, materials and products including same, and methods
EP3071667B1 (en) * 2013-11-19 2020-03-11 Samsung Electronics Co., Ltd. Luminescent particle, materials and products including same, and methods
KR102393203B1 (en) * 2013-11-19 2022-04-29 삼성전자주식회사 Luminescent particle, materials and products including same, and methods

Also Published As

Publication number Publication date
JPWO2012147429A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5907544B2 (en) Method for producing nanoparticles
JP5709188B2 (en) Fluorescent fine particles comprising thin film silica glass coated quantum dots and method for producing the same
JP5392768B2 (en) Nanoparticle-dispersed fine glass beads having cavities inside and method for producing the same
Lou et al. Functionalized magnetic-fluorescent hybrid nanoparticles for cell labelling
JP2010209314A (en) Nanoparticle-porous composite bead and method for producing the same
KR20150121722A (en) Preparation of particles with quantum dots
JPWO2010128604A1 (en) Quantum dot-encapsulating silica nanoparticles, method for producing the same, and biological material labeling agent using the same
US20100117029A1 (en) Forming crosslinked-glutathione on nanostructure
KR20070068871A (en) Mesoporous silica nano particle which contains inorganic nanoparticles and preparation process for the same
Brichkin et al. Hydrophilic semiconductor quantum dots
JP5915529B2 (en) Manufacturing method of semiconductor nanoparticle assembly
Zhang et al. A novel method to enhance quantum yield of silica-coated quantum dots for biodetection
Moussodia et al. Synthesis and characterization of water-soluble ZnO quantum dots prepared through PEG-siloxane coating
KR20140114922A (en) Quantum dot contained nanocomposite particles and method of fabrication thereof
JP5880563B2 (en) Method for producing ion-resistant semiconductor nanoparticle assembly
JP5716029B2 (en) Semiconductor nanoparticle assembly
JP5790570B2 (en) Semiconductor nanoparticle assembly
WO2012147429A1 (en) Glass particles containing enclosed semiconductor nanoparticles, and process for producing glass particles containing enclosed semiconductor nanoparticles
Yang et al. Phase transfer of hydrophobic QDs for water-soluble and biocompatible nature through silanization
Barik Synthetic developments of semiconductor quantum dot for biological applications
JP2013057630A (en) Semiconductor nanoparticle assembly containing enhancement particle
Wan et al. Facile and efficient synthesis of magnetic fluorescent nanocomposites based on carbon nanotubes
JP5200931B2 (en) III-V type semiconductor / SiO2 type nanoparticle and biological material labeling agent
JP5761102B2 (en) High-brightness semiconductor nanoparticle assembly
JPWO2009011194A1 (en) Aggregation of semiconductor nanoparticle phosphor, method for producing the same, and single molecule observation method using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013511973

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12776225

Country of ref document: EP

Kind code of ref document: A1