WO2013031587A1 - 熱間鍛造用圧延棒鋼又は線材 - Google Patents

熱間鍛造用圧延棒鋼又は線材 Download PDF

Info

Publication number
WO2013031587A1
WO2013031587A1 PCT/JP2012/071118 JP2012071118W WO2013031587A1 WO 2013031587 A1 WO2013031587 A1 WO 2013031587A1 JP 2012071118 W JP2012071118 W JP 2012071118W WO 2013031587 A1 WO2013031587 A1 WO 2013031587A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
fatigue strength
less
ferrite
test
Prior art date
Application number
PCT/JP2012/071118
Other languages
English (en)
French (fr)
Inventor
聡 志賀
雅之 堀本
大藤 善弘
秀樹 今高
佑介 臼井
徹也 大橋
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020147008500A priority Critical patent/KR101552449B1/ko
Priority to CN201280042519.5A priority patent/CN103797144B/zh
Priority to IN2151DEN2014 priority patent/IN2014DN02151A/en
Priority to JP2013531225A priority patent/JP5561436B2/ja
Priority to US14/241,556 priority patent/US20140363329A1/en
Publication of WO2013031587A1 publication Critical patent/WO2013031587A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a steel bar or wire, and more particularly to a rolled steel bar or wire for hot forging.
  • Mechanical parts such as gears and pulleys are used in automobiles or industrial machines. Many of these mechanical parts are manufactured in the following manner.
  • the material has a chemical composition corresponding to, for example, JIS standard SCr420, SCM420, or SNCM420.
  • the material is, for example, hot rolled steel bar or wire.
  • Hot forging is performed on the material to produce intermediate products. Normalize the intermediate product as necessary.
  • cutting is performed on the intermediate product.
  • Surface hardening treatment is performed on the cut intermediate product.
  • the surface hardening treatment is, for example, carburizing quenching, carbonitriding quenching, or induction quenching. Tempering is carried out at a tempering temperature of 200 ° C. or lower on the surface-cured intermediate product.
  • a shot peening treatment is performed on the intermediate product after tempering as necessary.
  • a machine part is manufactured by the above process.
  • JP-A-60-21359 In the steel for gears disclosed in JP-A-60-21359, it is specified that Si: 0.1% or less and P: 0.01% or less. According to such regulations, JP-A-60-21359 describes that gear steel has high strength, is strong and has high reliability.
  • the gear steel disclosed in Japanese Patent Application Laid-Open No. 7-242994 contains Cr: 1.50 to 5.0%, and if necessary, 7.5%> 2.2 ⁇ Si (%) + 2 0.5 ⁇ Mn (%) + Cr (%) + 5.7 ⁇ Mo (%) is satisfied, and Si: 0.40 to 1.0% is contained.
  • JP-A-7-242994 discloses that the gear steel has excellent tooth surface strength by having such a chemical composition.
  • the steel for carburized gears disclosed in JP-A-7-126803 contains Si: 0.35 to 3.0% or less, V: 0.05 to 0.5%, and the like.
  • Japanese Patent Laid-Open No. 7-126803 discloses that gear steel has high bending fatigue strength and high surface fatigue strength by having such a chemical composition.
  • JP-A-60-21359 does not discuss surface fatigue strength. For this reason, the surface fatigue strength of the gear steel disclosed in JP-A-60-21359 may be low.
  • Japanese Patent Laid-Open No. 7-242994 does not discuss bending fatigue strength. For this reason, the bending fatigue strength of the gear steel disclosed in JP-A-7-242994 may be low.
  • the gear steel disclosed in JP-A-7-126803 contains V. V increases the hardness of the steel after hot forging. Therefore, the machinability of the steel after hot forging may be reduced.
  • JP-A-60-21359, JP-A-7-242994, and JP-A-7-126803 have excellent bending fatigue strength, surface fatigue strength and wear resistance, and Steel with excellent machinability is not disclosed.
  • An object of the present invention is to provide a rolled steel bar or wire rod for hot forging having excellent bending fatigue strength, surface fatigue strength, wear resistance and machinability even after hot forging.
  • the rolled steel bar or wire rod for hot forging according to the present invention has a chemical composition of mass%, C: 0.1 to 0.25%, Si: 0.30 to 0.60%, Mn: 0.50 to 1.0%, S: 0.003 to 0.05%, Cr: 1.50 to 2.00%, Mo: 0.10% or less (including 0%), Al: 0.025 to 0.05 %, N: 0.010 to 0.025%, the balance is made of Fe and impurities, and P, Ti and O in the impurities are respectively P: 0.025% or less, Ti: 0.003% or less , O (oxygen): 0.002% or less, and fn1 defined by the formula (1) is 1.60 to 2.10.
  • the structure of the rolled steel bar or wire rod for hot forging described above is composed of a ferrite / pearlite structure, a ferrite / pearlite / bainite structure, or a ferrite / bainite structure.
  • the maximum value / minimum value of the average ferrite particle diameter obtained by measuring 15 visual fields with an area of 62500 ⁇ m 2 per visual field is 2.0 or less.
  • fn1 Cr + 2 ⁇ Mo (1)
  • the content (mass%) of the corresponding element is substituted for each element symbol in the formula (1).
  • the steel bar or wire for hot forging according to the present invention has excellent bending fatigue strength, surface fatigue strength, wear resistance and machinability.
  • the rolled steel bar or wire rod for hot forging according to the present invention may contain Nb: 0.08% or less in mass% instead of part of Fe.
  • FIG. 1 is a side view of a small roller test piece for a roller pitching test produced in the example.
  • FIG. 2 is a side view of the Ono rotary bending fatigue test piece with a notch produced in the example.
  • FIG. 3 is a diagram illustrating carburizing and quenching conditions in the examples.
  • FIG. 4 is a front view of a large roller for a roller pitching test in the embodiment.
  • the present inventors investigated and studied the bending fatigue strength, surface fatigue strength, wear resistance, and machinability of rolled steel bars or wires for hot forging (hereinafter simply referred to as bars or wires). As a result, the present inventors obtained the following knowledge.
  • the ferrite average grain size ratio is defined as follows. From the cross section of the steel bar or the wire rod, 15 visual fields having an area of each visual field of 62500 ⁇ m 2 are selected from the region excluding the surface decarburized layer. Image analysis is performed for each of the selected 15 fields of view. Specifically, the ferrite average particle diameter is measured in each visual field. The ferrite average particle diameter of each visual field is measured according to the cutting method defined in JIS G0551 (2005).
  • the maximum value and the minimum value are selected from the average ferrite grain sizes determined in each of the 15 visual fields. Then, the maximum value / minimum value is obtained.
  • % of the content of elements constituting the chemical composition means “mass%”.
  • C 0.1 to 0.25%
  • Carbon (C) enhances carburizing and quenching or carbonitriding and quenching. Therefore, C increases the strength of the steel. In particular, C increases the strength of the core part of the machine part after carburizing or carbonitriding. On the other hand, if C is contained excessively, the deformation amount of the machine part after carburizing and quenching or carbonitriding is significantly increased. Therefore, the C content is 0.1 to 0.25%.
  • the lower limit of the preferable C content is higher than 0.1%, more preferably 0.15% or more, and further preferably 0.18% or more.
  • the upper limit of the preferable C content is less than 0.25%, more preferably 0.23% or less, and still more preferably 0.20% or less.
  • Si 0.30 to 0.60%
  • Silicon (Si) enhances the hardenability of the steel. Si further increases the temper softening resistance of the steel. Therefore, Si increases the surface fatigue strength and wear resistance of steel.
  • Si is excessively contained, the strength of the steel after hot forging becomes excessively high. As a result, the machinability of steel decreases. If Si is excessively contained, the bending fatigue strength further decreases. Therefore, the Si content is 0.30 to 0.60%.
  • the minimum of preferable Si content is higher than 0.30%, More preferably, it is 0.40% or more, More preferably, it is 0.45% or more.
  • the upper limit of the Si content is preferably less than 0.60%, more preferably 0.57% or less, and further preferably 0.55% or less.
  • Mn 0.50 to 1.0%
  • Manganese (Mn) increases the hardenability of the steel and increases the strength of the steel. Therefore, Mn increases the strength of the core of machine parts that have been carburized or carbonitrided.
  • Mn increases the strength of the core of machine parts that have been carburized or carbonitrided.
  • Mn is contained excessively, the machinability of the steel after hot forging is lowered.
  • Mn oxide is generated on the surface of the steel.
  • the carburizing abnormal layer is, for example, a grain boundary oxide layer and an incompletely quenched layer. If the depth of the carburized abnormal layer is increased, the bending fatigue strength and the pitting strength of the steel are lowered.
  • the Mn content is 0.50 to 1.0%.
  • the minimum of preferable Mn content is higher than 0.50%, More preferably, it is 0.55% or more, More preferably, it is 0.60% or more.
  • the upper limit with preferable Mn content is less than 1.0%, More preferably, it is 0.95% or less, More preferably, it is 0.9% or less.
  • S 0.003 to 0.05% Sulfur (S) combines with Mn to form MnS.
  • MnS increases the machinability of steel.
  • coarse MnS is formed.
  • Coarse MnS lowers the bending fatigue strength and surface fatigue strength of steel. Therefore, the S content is 0.003 to 0.05%.
  • the lower limit of the preferable S content is higher than 0.003%, more preferably 0.005% or more, and still more preferably 0.01% or more.
  • the upper limit of the preferable S content is less than 0.05%, more preferably 0.03% or less, and further preferably 0.02% or less.
  • Chromium (Cr) increases the hardenability of the steel and the temper softening resistance of the steel. Therefore, Cr increases the bending fatigue strength, surface fatigue strength, and wear resistance of steel. On the other hand, if Cr is excessively contained, the formation of bainite is promoted in the steel after hot forging or after normalization. Therefore, the machinability of the steel is reduced. Therefore, the Cr content is 1.50 to 2.00%.
  • the lower limit of the preferable Cr content is higher than 1.50%, more preferably 1.70% or more, and further preferably 1.80% or more.
  • the upper limit of preferable Cr content is less than 2.00%, More preferably, it is 1.95% or less, More preferably, it is 1.90% or less.
  • Mo Molybdenum
  • Mo Molybdenum
  • Mo may not be contained. Mo increases the hardenability and temper softening resistance of the steel. Therefore, Mo increases the bending fatigue strength, surface fatigue strength, and wear resistance of steel. On the other hand, if Mo is contained excessively, bainite generation is promoted in steel after hot forging or after normalization. Therefore, the machinability of the steel is reduced. Therefore, the Mo content is 0.10% or less (including 0%). The minimum of preferable Mo content is 0.02% or more. The upper limit of the preferable Mo content is less than 0.10%, more preferably 0.08% or less, and still more preferably 0.05% or less.
  • Al 0.025 to 0.05%
  • Aluminum (Al) deoxidizes steel. Al further combines with N to form AlN. AlN suppresses the coarsening of austenite crystal grains due to carburizing heating. On the other hand, if Al is contained excessively, a coarse Al oxide is formed. Coarse Al oxide reduces the bending fatigue strength of steel. Therefore, the Al content is 0.025 to 0.05%.
  • the lower limit of the preferable Al content is higher than 0.025%, more preferably 0.027% or more, and further preferably 0.030% or more.
  • the upper limit of the preferable Al content is less than 0.05%, more preferably 0.045% or less, and further preferably 0.04% or less.
  • N 0.010 to 0.025%
  • Nitrogen (N) combines with Al or Nb to form AlN or NbN.
  • AlN or NbN suppresses the coarsening of austenite crystal grains due to carburizing heating.
  • the N content is 0.010 to 0.025%.
  • the minimum of preferable N content is higher than 0.010%, More preferably, it is 0.012% or more, More preferably, it is 0.013% or more.
  • the upper limit of the preferable N content is less than 0.025%, more preferably 0.020% or less, and still more preferably 0.018% or less.
  • the balance of the chemical composition of the steel bar or wire according to the present invention consists of Fe and impurities.
  • the impurity in this specification means the element mixed from the ore and scrap utilized as a raw material of steel, or the environment of a manufacturing process.
  • the contents of P, Ti, and O (oxygen) as impurities are limited as follows.
  • P 0.025% or less Phosphorus (P) segregates at the grain boundaries and embrittles the grain boundaries. Therefore, P reduces the fatigue strength of steel. Therefore, the P content is preferably as low as possible.
  • the P content is 0.025% or less.
  • P content is preferably less than 0.025%, more preferably 0.020% or less.
  • Ti 0.003% or less Titanium (Ti) combines with N to form coarse TiN. Coarse TiN reduces the fatigue strength of steel. Therefore, the Ti content is preferably as low as possible. Ti content is 0.003% or less. A preferable Ti content is less than 0.003%, more preferably 0.002% or less.
  • Oxygen (O) combines with Al to form oxide inclusions. Oxide inclusions reduce the bending fatigue strength of steel. Therefore, it is preferable that the O content is as low as possible.
  • the O content is 0.002% or less.
  • the preferable O content is less than 0.002%, and more preferably 0.001% or less.
  • the chemical composition of the steel bar or wire according to the invention further satisfies the formula (2). 1.60 ⁇ Cr + 2 ⁇ Mo ⁇ 2.10 (2) Here, the content (mass%) of the corresponding element is substituted for the element symbol in the formula (2).
  • fn1 is less than 1.60, at least one of the bending fatigue strength, surface fatigue strength, and wear resistance of the steel becomes low. On the other hand, if fn1 exceeds 2.10, the formation of bainite is promoted in the steel after hot forging or normalization. Therefore, the machinability of the steel is reduced. If fn1 is 1.60 to 2.10, it is possible to increase the bending fatigue strength, surface fatigue strength, and wear resistance of the steel while suppressing the deterioration of the machinability of the steel. A preferred lower limit of fn1 is 1.80 or more. A preferable upper limit of fn1 is less than 2.00.
  • the chemical composition of the rolled steel bar or wire rod for hot forging according to the present invention may contain Nb instead of a part of Fe.
  • Niobium (Nb) is a selective element. Nb combines with C and N to form Nb carbide, Nb nitride or Nb carbonitride. Nb carbide, Nb nitride, and Nb carbonitride suppress the coarsening of austenite crystal grains during carburizing heating, as with Al nitride. If Nb is contained even a little, the above effect can be obtained. On the other hand, if Nb is contained excessively, Nb carbonitride, Nb nitride and Nb carbonitride become coarse. Therefore, coarsening of austenite crystal grains cannot be suppressed during carburizing heating. Therefore, the Nb content is 0.08% or less. The minimum with preferable Nb content is 0.01% or more. The upper limit of the preferable Nb content is less than 0.08%, and more preferably 0.05% or less.
  • the microstructure of the steel bar or wire according to the present invention comprises a ferrite / pearlite structure, a ferrite / pearlite / bainite structure, or a ferrite / bainite structure.
  • the “ferrite / pearlite structure” means a two-phase structure in which a matrix (matrix) is composed of ferrite and pearlite.
  • the “ferrite / pearlite / bainite structure” means a three-phase structure in which the matrix is composed of ferrite, pearlite, and bainite.
  • the “ferrite bainite structure” means a two-phase structure in which the matrix is composed of ferrite and bainite.
  • the microstructure of the steel bar or wire according to the present invention does not contain martensite. Martensite is hard and reduces the ductility of the steel. Accordingly, when a steel bar or wire containing martensite is transported or corrected, cracks are likely to occur in the steel bar or wire. Since the microstructure of the steel bar or wire according to the present invention does not contain martensite, cracking is unlikely to occur during correction or conveyance.
  • Each phase described above is identified by the following method.
  • a sample including the center of a cross section (cross section) perpendicular to the longitudinal direction of the steel bar or wire is cut out.
  • the surface (including the center part) of the cut sample is mirror-polished. Corrodes the polished surface with nital.
  • the corroded surface is observed with a microstructure using an optical microscope with a magnification of 400 times.
  • 15 visual fields are arbitrarily selected from the region excluding the steel bar or the surface decarburized layer of the wire rod. Each field of view is observed to identify the microstructure. If bainite is included in any of the 15 visual fields, it is determined that bainite is included in the microstructure of the steel. The same judgment is made for ferrite and pearlite.
  • the ferrite average particle size ratio defined by the formula (3) is 2.0 or less in the cross section.
  • Execute image analysis for each of the above 15 fields of view Specifically, the ferrite phase is identified in each visual field. Measure the ferrite grain size in the identified ferrite phase. The average ferrite grain size in each field of view is measured according to the cutting method defined in JIS G0551 (2005).
  • a ferrite average particle diameter ratio (the maximum value of a ferrite average particle diameter / the minimum value of a ferrite average particle diameter) is calculated
  • the crystal grain size is non-uniform in the steel material after hot rolling (that is, as-rolled steel), the crystal grain size remains non-uniform even after hot forging, which is a subsequent process, or after carburizing and quenching. It is. If the crystal grain size is not uniform, bending fatigue strength and surface fatigue strength are reduced. Therefore, it is preferable that the crystal grain size in the hot-rolled material is as uniform as possible. In order to evaluate the degree of uniformity of the crystal grain size, it is preferable to evaluate the ferrite average grain size ratio. The ferrite particle diameter can be easily observed by etching as compared with pearlite or bainite.
  • the degree of uniformity of the average ferrite grain size (that is, the ratio of average ferrite grain diameter) is examined, it is easy to evaluate the degree of crystal grain uniformity in the structure. Furthermore, fatigue fracture occurs starting from the lowest strength part. Therefore, using the maximum value / minimum value of the ferrite average particle size as an index is more suitable for evaluating the bending fatigue strength and the surface fatigue strength than using the standard deviation of the ferrite average particle size as an index.
  • the microstructure is composed of various mixed structures including the above-mentioned ferrite and the ferrite average particle size ratio is 2.0 or less, the variation in crystal particle size in the steel bar or wire is small. Therefore, the bending fatigue strength and surface fatigue strength of the steel after hot forging or after carburizing and quenching are increased.
  • the ferrite average particle size ratio is preferably 1.6 or less.
  • the ferrite average particle size ratio exceeds 2.0, one or more of the bending fatigue strength and surface fatigue strength of the steel will be low.
  • a molten steel having the above chemical composition and satisfying the formula (2) is manufactured.
  • a slab (slab or bloom) is produced by continuous casting using molten steel. In the continuous casting method, a reduction is applied to the slab in the middle of solidification. Next, the slab is heated. The heating temperature at this time is 1250 to 1300 ° C., and the heating time is 10 hours or more. The heated cast slab is subjected to block rolling with a block mill to produce a steel slab (billet).
  • the steel slab is hot-rolled to produce hot forging bar or wire. Specifically, the steel piece is heated. The heating temperature at this time is 1150 to 1200 ° C., and the heating time is 1.5 hours or more.
  • the heated steel slab is hot-rolled to produce a steel bar or wire.
  • the finishing temperature in hot rolling is set to 900 to 1000 ° C. Water cooling is not performed before finish rolling.
  • the steel bar or wire is cooled at a cooling rate equal to or lower than that in the air (hereinafter simply referred to as “cooling”) until the surface temperature reaches 600 ° C. or lower.
  • the cross-section reduction rate (%) defined by the formula (4) is set to 87.5% or more.
  • Cross-section reduction rate ⁇ 1 ⁇ (section area of bar, wire rod / section area of steel slab) ⁇ ⁇ 100 (4)
  • the bar or wire rod may be cooled at a higher cooling rate than that of cooling, such as air cooling, mist cooling, or water cooling.
  • the above-mentioned heating temperature means an average value of the furnace temperature of the heating furnace.
  • the above heating time means the in-furnace time at the above heating temperature.
  • the finishing temperature means the surface temperature of the steel bar and wire immediately after finish rolling.
  • finish rolling means rolling at the last stand among a plurality of stands used for rolling in a continuous mill.
  • the cooling rate after finishing means the surface cooling rate of steel bars and wire rods.
  • An example of a method of manufacturing a machine part using hot-rolled steel bar or wire rod for hot forging is as follows.
  • Hot forging is performed on rolled steel bars or wire rods for hot forging to produce coarse intermediate products.
  • a tempering treatment may be performed on the intermediate product.
  • the tempering process is, for example, normalizing.
  • the intermediate product is machined into a predetermined shape. Machining is, for example, cutting or drilling.
  • Surface hardening treatment may be performed on the intermediate product after machining.
  • the surface hardening treatment is, for example, carburizing treatment, nitriding treatment or induction hardening treatment. Finishing is performed on the intermediate product that has been subjected to the surface hardening treatment to produce a machine part.
  • the steel bar or wire manufactured by the above process has excellent bending fatigue strength, surface fatigue strength, wear resistance and excellent machinability even after hot forging.
  • a 400 mm ⁇ 300 mm slab (bloom) was manufactured by continuous casting using molten steel of steels A to C. The produced bloom was allowed to cool to 600 ° C. in the atmosphere. In the continuous casting process, the slab in the middle of solidification was reduced.
  • the “heating temperature” column in the “slab” column of Table 2 indicates the heating temperature (° C.) of the slab under each condition.
  • the “heating time” column in the “slab” column of Table 2 shows the heating time (minutes) of the slab in each condition.
  • the “heating temperature” column in the “steel” column of Table 2 shows the heating temperature (° C.) of the steel slab under each condition.
  • the “heating time” column in the “steel” column shows the heating time (minutes) of the steel slab under each condition.
  • the “water cooling before finish rolling” column in the “rolling conditions” column indicates whether or not the steel slabs are water cooled before finish rolling in each condition. “Yes” in the column indicates that water cooling was performed.
  • “None” indicates that water cooling was not performed.
  • the “finishing temperature” column in the “rolling conditions” column indicates the finishing temperature (° C.) under each condition.
  • the “cooling condition” column in the “rolling condition” column shows the cooling condition after finish rolling in each condition.
  • the steel slab shown in Table 3 was heated under the manufacturing conditions shown in Table 3 (heating temperature and heating time of the slab). The heated slab was rolled into blocks to produce a steel slab of 180 mm ⁇ 180 mm. The produced steel slab was cooled to room temperature (25 ° C.).
  • the steel slab was heated under the manufacturing conditions shown in Table 3 (heating temperature and heating time of the steel slab).
  • the heated steel slab was hot-rolled under the production conditions shown in Table 3 (water cooling before finish rolling, finishing temperature, cooling conditions) to produce steel bars having a diameter of 50 mm and a diameter of 70 mm.
  • the rolled steel bar was allowed to cool to room temperature in the atmosphere. In other words, the steel bar was a hot rolled material.
  • the microstructure of any test number did not contain martensite.
  • the microstructure of each test number was either a ferrite / pearlite structure, a ferrite / pearlite / bainite structure, or a ferrite / bainite structure.
  • the microstructure observation results are shown. “F + P” in the table indicates that the microstructure of the corresponding test number is a ferrite pearlite structure.
  • F + P + B indicates a ferrite / pearlite / bainite structure.
  • F + B indicates a ferrite bainite structure.
  • Carburizing and quenching was performed on the prepared test pieces under the conditions shown in FIG. 3 using a gas carburizing furnace. After quenching, tempering was performed at 150 ° C. for 1.5 hours. For the small roller test piece and the Ono type rotating bending fatigue test piece, the gripping part was finished for the purpose of removing heat treatment strain.
  • the large roller shown in FIG. 4 is made of steel that satisfies the standard of JIS standard SCM420H, and is a general manufacturing process, that is, normalization, test piece processing, eutectoid carburization with a gas carburizing furnace, low temperature tempering and polishing. Made by.
  • the rotation speed of the small roller test piece was 1000 rpm
  • the slip rate was ⁇ 40%
  • the contact surface pressure between the large roller and the small roller test piece under test was 4000 MPa
  • the number of repetitions was 2.0 ⁇ 10. It was set to 7 cycles.
  • a lubricant commercial oil for automatic transmission
  • the number of tests in the roller pitching test was six.
  • an SN diagram was prepared with the surface pressure on the vertical axis and the number of repetitions until the occurrence of pitching on the horizontal axis.
  • the highest surface pressure was defined as the surface fatigue strength of the test number.
  • the area of the largest thing became 1 mm ⁇ 2 > or more among the places where the surface of a small roller test piece was damaged, it defined as generating pitting.
  • Table 3 shows the surface fatigue strength obtained by the test. With respect to the surface fatigue strength in Table 3, the surface fatigue strength of Test No. 1 was set as a reference value (100%). And the surface fatigue strength of each test number was shown by ratio (%) with respect to a reference value. If the surface fatigue strength was 120% or more, it was judged that excellent surface fatigue strength was obtained.
  • the bending fatigue strength test was determined by an Ono type rotating bending fatigue test. The number of tests in the Ono rotary bending fatigue test was 8 for each test number. The rotational speed at the time of the test was 3000 rpm, and the others were tested by ordinary methods. Among those that did not break until the number of repetitions of 1.0 ⁇ 10 4 and 1.0 ⁇ 10 7 , the highest stress was defined as medium cycle and high cycle rotational bending fatigue strength, respectively.
  • Table 3 shows the bending fatigue strength of medium and high cycles.
  • the bending fatigue strength of test number 1 in the middle cycle and high cycle was defined as a reference value (100%).
  • the bending fatigue strength of the middle cycle and the high cycle of each test number was shown by ratio (%) with respect to a reference value. It was judged that an excellent bending fatigue strength was obtained when the bending fatigue strength was 115% or more in both the middle cycle and the high cycle.
  • a cutting test was conducted to evaluate machinability.
  • a cutting specimen was obtained by the following method.
  • a steel bar having a diameter of 70 mm for each test number was heated at a heating temperature of 1250 ° C. for 30 minutes.
  • the heated steel bar was hot forged at a finishing temperature of 950 ° C. or higher to obtain a round bar having a diameter of 60 mm.
  • a cutting test piece having a diameter of 55 mm and a length of 450 mm was obtained from this round bar by machining.
  • a cutting test was performed using the cutting test piece under the following conditions.
  • Cutting test (turning) Insert Base material: Carbide P20 grade, coating None Conditions: peripheral speed 200m / min, feed 0.30mm / rev, cutting 1.5mm, water-soluble cutting oil used Measurement item: flank after 10 minutes of cutting time Main cutting edge wear amount
  • Table 3 shows the amount of main cutting edge wear obtained.
  • the main cutting edge wear amount of test number 2 (using steel B) was set as a reference value (100%).
  • the amount of main cutting edge abrasion of each test number was shown by ratio (%) with respect to a reference value. If the main cutting edge wear amount was 80% or less, it was judged that excellent machinability was obtained.
  • the chemical composition (steel A) of the steel bar of test number 1 corresponded to JIS standard SCr420H. Therefore, the Si content and the Cr content of Test No. 1 were less than the lower limits of the Si content and the Cr content of the present invention. Furthermore, fn1 of test number 1 was less than the lower limit of formula (2). Therefore, the bending fatigue strength, surface fatigue strength, and wear resistance of Test No. 1 were low.
  • the chemical composition (steel B) of the steel bar of test number 2 corresponded to JIS standard SCM420H. Therefore, the Si content and the Cr content of Test No. 2 were less than the lower limits of the Si content and the Cr content of the present invention. Furthermore, the Mo content of Test No. 2 exceeded the upper limit of the Mo content of the present invention. Furthermore, fn1 of test number 2 was less than the lower limit of formula (2). Therefore, the bending fatigue strength of Test No. 2 was as low as less than 115%, and the machinability was also low.
  • test number 3 was within the range of the chemical composition of the present invention. Further, fn1 also satisfied the formula (2). However, since the heating time of the slab was too short (see production condition 1 in Table 2), the ferrite average particle size ratio exceeded 2.0. Therefore, the bending fatigue strength of the middle cycle and high cycle of test number 3 was less than 115% and was low.
  • test number 5 is within the range of the chemical composition of the present invention, and fn1 also satisfies the formula (2).
  • water cooling was performed before finish rolling (see production condition 3 in Table 2). Therefore, the ferrite average particle size ratio exceeded 2.0. Therefore, the bending fatigue strength of the middle cycle and the high cycle of test number 5 was less than 115% and was low.
  • test number 6 is within the range of the chemical composition of the present invention, and fn1 also satisfies the formula (2).
  • the steel bar after finish rolling was water-cooled to 800 ° C. (see production condition 4 in Table 2). Therefore, the ferrite average particle size ratio exceeded 2.0. Therefore, the bending fatigue strength of the middle cycle and the high cycle of test number 6 was both less than 115% and low. Furthermore, the surface fatigue strength was less than 120% and was low. Further, the wear amount exceeded 80%, and the wear resistance was low.
  • test number 7 is within the range of the chemical composition of the present invention, and fn1 also satisfies the formula (2).
  • the heating time of the slab was too short, and the heating time of the steel slab was too short (see manufacturing condition 5). Therefore, the ferrite average particle size ratio exceeded 2.0. Therefore, the bending fatigue strength of the middle cycle and the high cycle of test number 7 was both less than 115% and low.
  • test number 8 is within the range of the chemical composition of the present invention, and fn1 also satisfies the formula (2).
  • the heating temperature of the steel slab was too high, and the finishing temperature was too high (see production condition 6). Therefore, the ferrite average particle size ratio exceeded 2.0.
  • the bending fatigue strength of the middle and high cycles of test number 8 was both less than 115% and low.
  • the surface fatigue strength was less than 120% and was low. Further, the wear amount exceeded 80%, and the wear resistance was low.
  • test number 10 is within the range of the chemical composition of the present invention, and fn1 also satisfies the formula (2).
  • the heating temperature of the slab was too low (see production condition 8). Therefore, the ferrite average particle size ratio exceeded 2.0. Therefore, the bending fatigue strength in the middle cycle was less than 115% and was low.
  • Example 2 Under the same production conditions as in Example 1, steel bars with test numbers 11 to 42 shown in Table 6 were produced. The diameters of the steel bars were 50 mm and 70 mm. The test similar to Example 1 was implemented using the manufactured steel bar. Then, the bending fatigue strength, surface fatigue strength, wear resistance, and main cutting edge wear amount of medium cycle and high cycle were determined.
  • Table 6 shows the results obtained.
  • the chemical compositions of test numbers 17, 19, 21, 23, 31, 33, 41 and 42 were within the range of the chemical composition of the present invention, and fn1 satisfied the formula (2).
  • the ferrite average particle size ratios of these test numbers were all 2.0 or less. Therefore, the middle and high cycle bending fatigue strengths of these test numbers were 115% or more, and the surface fatigue strength was 120% or more. Furthermore, the amount of wear was 80% or less. Further, the main cutting edge wear amount was 80% or less.
  • test number 11 the Si content and the Cr content of the chemical composition of test number 11 (steel D) were less than the lower limits of the Si content and the Cr content of the present invention. Therefore, the surface fatigue strength of Test No. 11 was less than 120%, and the wear amount was higher than 80%.
  • Test number 12 used the same steel D as test number 11. Therefore, the surface fatigue strength and wear resistance were low.
  • the slab heating time was too short (manufacturing condition 1). Therefore, the ferrite average particle size ratio exceeded 2.0. Therefore, the bending fatigue strength in the middle cycle and the high cycle was less than 115% and was low.
  • test number 13 (steel E) was within the range of the chemical composition of the present invention, fn1 was less than the lower limit of formula (2). Therefore, the high cycle bending fatigue strength was less than 115%, which was low.
  • Test number 14 used the same steel E as test number 13. Therefore, the bending fatigue strength at a high cycle was low. In test No. 14, water cooling was further performed before finish rolling (manufacturing condition 3). Therefore, the ferrite average particle size ratio exceeded 2.0. Therefore, the bending fatigue strength in the middle cycle and the high cycle was lower than the test number 13.
  • the Si content of the chemical composition of test number 15 exceeded the upper limit of the Si content of the present invention. Therefore, the bending fatigue strength in the middle cycle and the high cycle was less than 115% and was low. Further, the amount of wear of the main cutting edge was higher than 80%, and the machinability was low.
  • Test number 16 used the same steel F as test number 15. Therefore, bending fatigue strength and machinability were low.
  • the steel bar after finish rolling was further water-cooled to 800 ° C. (production condition 4). Therefore, the ferrite average particle size ratio exceeded 2.0. Therefore, the bending fatigue strength was lower than test number 15. Furthermore, the surface fatigue strength was less than 120%, and the wear amount was higher than 80%.
  • test number 18 was within the scope of the present invention, and fn1 satisfied the formula (2).
  • the heating time of the slab was too short (manufacturing condition 1). Therefore, the ferrite average particle size ratio exceeded 2.0. Therefore, the bending fatigue strength in the middle cycle was less than 115% and was low. Furthermore, the surface fatigue strength was less than 120% and was low.
  • test number 20 was within the scope of the present invention, and fn1 satisfied the formula (2).
  • water cooling was performed before the finish rolling (production condition 3). Therefore, the ferrite average particle size ratio exceeded 2.0. Therefore, the bending fatigue strength in the middle cycle and the high cycle was less than 115% and was low.
  • the chemical composition (steel I) of test number 22 is within the scope of the present invention, and fn1 satisfies the formula (2).
  • the steel bar after finish rolling was water-cooled to 800 ° C. (Production condition 4). Therefore, the ferrite average particle size ratio exceeded 2.0. Therefore, the bending fatigue strength in the middle cycle and the high cycle was less than 115% and was low.
  • test number 24 (steel J) was within the scope of the present invention, and fn1 satisfied the formula (2).
  • the slab heating time and the steel slab heating time were too short (manufacturing condition 5). Therefore, the ferrite average particle size ratio exceeded 2.0. Therefore, the bending fatigue strength in the middle cycle was less than 115% and was low.
  • the Cr content of the chemical composition of test number 25 exceeded the upper limit of the Cr content of the present invention. Therefore, the main cutting edge wear amount was higher than 80% and the machinability was low. This is probably because the Cr content was too high and bainite was excessively generated in the steel.
  • Test No. 26 used the same steel K as Test No. 25. Therefore, machinability was low. In test number 26, the heating time of the slab and the heating time of the steel slab were too short (manufacturing condition 5). Therefore, the ferrite average particle size ratio exceeded 2.0. Therefore, the bending fatigue strength in the middle cycle and the high cycle was less than 115%, which was low.
  • the Cr content of the chemical composition of test number 27 was less than the lower limit of the Cr content of the present invention. Therefore, the bending fatigue strength in the middle cycle and the high cycle was less than 115% and was low. Furthermore, the surface fatigue strength was also low, less than 120%.
  • Test number 28 used the same steel L as test number 27. Therefore, the bending fatigue strength was low. Furthermore, in the test number 28, the heating temperature of the steel slab was too high, and the finishing temperature was too high (manufacturing condition 6). Therefore, the ferrite average particle size ratio exceeded 2.0. Therefore, the bending fatigue strength in the middle cycle and the high cycle was less than 115%, which was low. Furthermore, the surface fatigue strength was also low, less than 120%.
  • the Mo content of the chemical composition of test number 29 exceeded the upper limit of the Mo content of the present invention. Therefore, the main cutting edge wear amount of test number 29 exceeded 80%, and the machinability was low. This is probably because the Mo content was too high and bainite was excessively produced in the steel.
  • Test No. 30 used the same steel M as the test No. 29. Therefore, machinability was low. In test number 30, the heating temperature of the slab was too low (manufacturing condition 8). Therefore, the ferrite average particle size ratio exceeded 2.0. Therefore, the bending fatigue strength in the middle cycle and the high cycle was less than 115%, which was low.
  • test number 32 (steel N) is within the scope of the present invention, and fn1 satisfies the formula (2).
  • the heating temperature and finishing temperature of the steel slab were too high (manufacturing condition 6). Therefore, the ferrite average particle size ratio exceeded 2.0. Therefore, the bending fatigue strength in the middle cycle was less than 115% and was low.
  • test number 34 was within the scope of the present invention, and fn1 satisfied the formula (2).
  • the heating temperature of the slab was too low (manufacturing condition 8). Therefore, the ferrite average particle size ratio exceeded 2.0. Therefore, the bending fatigue strength in the middle cycle was less than 115% and was low.
  • the Mn content and Al content of the chemical composition of test number 35 were less than the lower limits of the Mn content and Al content of the present invention. Therefore, the bending fatigue strength in the middle cycle was less than 115% and was low. Furthermore, the surface fatigue strength was less than 120% and was low.
  • the test No. 36 used the same steel P as the test No. 35. Therefore, the bending fatigue strength and surface fatigue strength in the middle cycle were low.
  • the steel bar after finish rolling was further water-cooled to 800 ° C. (Production condition 4). Therefore, the ferrite average particle size ratio exceeded 2.0. Therefore, the bending fatigue strength at a high cycle was less than 115% and was low. Furthermore, the bending fatigue strength in the middle cycle was lower than the test number 35.
  • the Mn content and Al content of the chemical composition of test number 37 exceeded the upper limits of the Mn content and Al content of the present invention. Therefore, the bending fatigue strength at a high cycle was less than 115% and was low. Furthermore, the main cutting edge wear amount exceeded 80%, and the machinability was low.
  • the same steel Q as the test number 37 was used for the test number 38. Therefore, the bending fatigue strength at a high cycle was low and the machinability was also low. Furthermore, in the test number 38, the heating temperature and finishing temperature of the steel slab were too high. Therefore, the ferrite average particle size ratio exceeded 2.0. Therefore, the bending fatigue strength in the middle cycle was less than 115% and was low. Further, the high cycle bending fatigue strength was lower than the test number 37.
  • test number 39 (steel R) is within the range of the chemical composition of the present invention, fn1 exceeded the upper limit of the formula (2). Therefore, the machinability of the steel of test number 39 was low.
  • the test No. 40 used the same steel R as the test No. 39. Therefore, the machinability of the steel of test number 40 was low.
  • water cooling was further performed before rolling (Production Condition 3). Therefore, the ferrite average particle size ratio exceeded 2.0. Therefore, the bending fatigue strength at the middle cycle and the high cycle was lower than the test number 39.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 熱間鍛造後においても優れた曲げ疲労強度、面疲労強度、耐摩耗性及び被削性を有する、熱間鍛造用圧延棒鋼又は線材を提供する。発明による熱間鍛造用圧延棒鋼又は線材は、その化学組成が、C、Si、Mn、S、Cr、Mo(含まなくてもよい)、Al、Nを含有し、残部がFeおよび不純物からなる。化学組成はさらに、式(1)で定義されるfn1が1.60~2.10である。上述の熱間鍛造用圧延棒鋼又は線材の組織は、フェライト・パーライト組織、フェライト・パーライト・ベイナイト組織、またはフェライト・ベイナイト組織からなる。横断面において、1視野あたりの面積62500μmでランダムに15視野観察測定したときの、フェライト平均粒径の最大値/最小値が2.0以下である。 fn1=Cr+2×Mo (1) ここで、式(1)中の各元素記号には、対応する元素の含有量(質量%)が代入される。

Description

熱間鍛造用圧延棒鋼又は線材
 本発明は棒鋼又は線材に関し、さらに詳しくは、熱間鍛造用圧延棒鋼又は線材に関する。
 歯車、プーリなどの機械部品は、自動車又は産業機械に利用される。これらの機械部品の多くは、次の方法で製造される。機械構造用合金鋼からなる素材を準備する。素材はたとえば、JIS規格のSCr420、SCM420又はSNCM420に相当する化学組成を有する。素材はたとえば、熱間圧延棒鋼又は線材である。素材に対して熱間鍛造を実施し、中間品を製造する。中間品に対して必要に応じて焼きならしを実施する。さらに、中間品に対して切削加工を実施する。切削された中間品に対して表面硬化処理を実施する。表面硬化処理はたとえば、浸炭焼入れ、浸炭窒化焼入れ、又は高周波焼入れである。表面硬化処理された中間品に対して200℃以下の焼戻し温度で焼戻しを実施する。焼戻し後の中間品に対して、必要に応じてショットピーニング処理を実施する。以上の工程により機械部品が製造される。
 近年、自動車の燃費向上やエンジンの高出力化に対応するために、機械部品が軽量化され、小型化されている。機械部品にかかる負荷は従来と比較して増加している。そのため、機械部品には、優れた曲げ疲労強度、面疲労強度(接触疲労強度)及び耐摩耗性が求められている。
 一方、機械部品の製造コストの低減も求められている。具体的には、製造コストの低減のために、ショットピーニング等の付加的な工程の省略が求められている。また、製造コストにおける切削加工コストの占める割合は大きい。そのため、製造コストの低減のために、機械部品の素材となる熱間鍛造用圧延棒鋼又は線材に対して、高い被削性が要求されている。
 したがって、機械部品の素材となる熱間鍛造用圧延棒鋼又は線材には、優れた曲げ疲労強度、面疲労強度及び耐摩耗性に加え、優れた被削性も求められる。
 機械部品の素材となる鋼の特性を改善する技術は、特開昭60-21359号公報、特開平7-242994号公報、及び、特開平7-126803号公報に提案されている。
 特開昭60-21359号公報に開示された歯車用鋼では、Si:0.1%以下、P:0.01%以下と規定する。このような規定により、歯車用鋼は高い強度を有し、強靱で信頼性が高いと特開昭60-21359号公報には記載されている。
 特開平7-242994号公報に開示された歯車用鋼は、Cr:1.50~5.0%を含有し、さらに必要に応じて、7.5%>2.2×Si(%)+2.5×Mn(%)+Cr(%)+5.7×Mo(%)を満たし、Si:0.40~1.0%を含有する。このような化学組成を有することにより、歯車用鋼は優れた歯面強度を有すると特開平7-242994号公報には記載されている。
 特開平7-126803号公報に開示された浸炭歯車用鋼は、Si:0.35~3.0%以下、V:0.05~0.5%等を含有する。このような化学組成を有することにより、歯車用鋼は、高い曲げ疲労強度と、高い面疲労強度とを有すると特開平7-126803号公報には記載されている。
 しかしながら、特開昭60-21359号公報では、面疲労強度について検討されていない。そのため、特開昭60-21359号公報に開示された歯車用鋼の面疲労強度が低い場合がある。特開平7-242994号公報では、曲げ疲労強度について検討されていない。そのため、特開平7-242994号公報に開示された歯車用鋼の曲げ疲労強度が低い場合がある。特開平7-126803号公報に開示された歯車用鋼はVを含有する。Vは熱間鍛造後の鋼の硬さを高める。そのため、熱間鍛造後の鋼の被削性が低下する場合がある。要するに、特開昭60-21359号公報、特開平7-242994号公報、及び、特開平7-126803号公報には、優れた曲げ疲労強度、面疲労強度及び耐摩耗性を有し、かつ、優れた被削性を有する鋼が開示されていない。
 本発明の目的は、熱間鍛造後においても優れた曲げ疲労強度、面疲労強度、耐摩耗性及び被削性を有する、熱間鍛造用圧延棒鋼又は線材を提供することである。
 本発明による熱間鍛造用圧延棒鋼又は線材は、その化学組成が、質量%で、C:0.1~0.25%、Si:0.30~0.60%、Mn:0.50~1.0%、S:0.003~0.05%、Cr:1.50~2.00%、Mo:0.10%以下(0%を含む)、Al:0.025~0.05%、N:0.010~0.025%を含有し、残部はFeおよび不純物からなり、不純物中のP、TiおよびOがそれぞれ、P:0.025%以下、Ti:0.003%以下、O(酸素):0.002%以下であり、式(1)で定義されるfn1が1.60~2.10である。上述の熱間鍛造用圧延棒鋼又は線材の組織は、フェライト・パーライト組織、フェライト・パーライト・ベイナイト組織、又は、フェライト・ベイナイト組織からなる。横断面において1視野あたりの面積62500μmで15視野を測定して得られたフェライト平均粒径の最大値/最小値は2.0以下である。
 fn1=Cr+2×Mo (1)
 ここで、式(1)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
 本発明による熱間鍛造用棒鋼又は線材は、優れた曲げ疲労強度、面疲労強度、耐摩耗性及び被削性を有する。
 本発明による熱間鍛造用圧延棒鋼又は線材は、Feの一部に代えて、質量%で、Nb:0.08%以下を含有してもよい。
図1は、実施例で作製したローラピッチング試験用の小ローラ試験片の側面図である。 図2は、実施例で作製した切欠き付き小野式回転曲げ疲労試験片の側面図である。 図3は、実施例における浸炭焼入れ条件を示す図である。 図4は、実施例におけるローラピッチング試験用の大ローラの正面図である。
 本発明者らは、熱間鍛造用圧延棒鋼又は線材(以下、単に棒鋼又は線材という)の曲げ疲労強度、面疲労強度、耐摩耗性及び被削性に関して調査及び研究した。その結果、本発明者らは以下の知見を得た。
 (a)Si含有量が高ければ、鋼の面疲労強度及び耐摩耗性が高くなる。さらに、Cr含有量及びMo含有量が高ければ、鋼の曲げ疲労強度、面疲労強度及び耐摩耗性が高くなる。
 (b)一方、Mo含有量が高すぎれば、熱間鍛造後の鋼、及び、熱間鍛造してさらに焼きならしした後の鋼において、ベイナイトの生成が促進される。同様に、Moが含有されない場合であってもCr含有量が高すぎれば、ベイナイトの生成が促進される。ベイナイトは鋼の被削性を低下する。そのため、ベイナイトの生成を抑制し、鋼の被削性の低下を抑制できる方が好ましい。
 (c)以上より、優れた曲げ疲労強度、面疲労強度及び耐摩耗性と、優れた被削性とを得るためには、Si含有量、Mo含有量及びCr含有量を調整するのが好ましい。特に、曲げ疲労強度、面疲労強度及び耐摩耗性を高めつつ、被削性も高めるためには、Cr含有量とMo含有量との総量を調整するのが好ましい。具体的には、鋼の化学組成が式(2)を満たせば、優れた曲げ疲労強度、面疲労強度、耐摩耗性及び被削性が得られる。
 1.60≦Cr+2×Mo≦2.10 ・・・(2)
 ここで、式(2)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
 (d)棒鋼又は線材中の結晶粒径のばらつきが大きければ、曲げ疲労強度が低下する。結晶粒径のばらつきが大きければさらに、面疲労強度も低下する場合がある。結晶粒径のばらつきの程度を示す指標として、フェライト平均粒径比を次のとおり定義する。棒鋼又は線材の横断面のうち、表層の脱炭層を除く領域から、各視野の面積が62500μmである15視野を選択する。選択された15視野の各々について画像解析を実施する。具体的には、各視野においてフェライト平均粒径を測定する。各視野のフェライト平均粒径はJIS G0551(2005)に規定された切断法に準拠して測定する。
 15視野の各々で決定されたフェライト平均粒径のうち、最大値と最小値とを選択する。そして、最大値/最小値を求める。求めた値をフェライト平均粒径比と定義する。つまり、フェライト平均粒径比は、以下の式(3)で定義される。
 フェライト平均粒径比=15視野で得られたフェライト平均粒径のうちの最大値/15視野で得られたフェライト平均粒径のうちの最小値 (3)
 フェライト平均粒径比が2.0以下である場合、鋼中の結晶粒のばらつきが小さい。そのため、鋼の曲げ疲労強度及び面疲労強度が高い。
 本発明による熱間鍛造用圧延棒鋼又は線材は、上述の知見に基づいて完成された。以下、本発明による熱間鍛造用圧延棒鋼又は線材について詳しく説明する。以下、化学組成を構成する元素の含有量の「%」は「質量%」を意味する。
 [化学組成]
 本発明による棒鋼又は線材の化学組成は、以下の元素を含有する。
 C:0.1~0.25%
 炭素(C)は、浸炭焼入れ、又は浸炭窒化焼入れ性を高める。そのため、Cは、鋼の強度を高める。特に、Cは、浸炭焼入れ又は浸炭窒化焼入れ後の機械部品の芯部の強度を高める。一方、Cが過剰に含有されれば、浸炭焼入れ、又は浸炭窒化焼入れ後の機械部品の変形量が顕著に増加する。したがって、C含有量は0.1~0.25%である。好ましいC含有量の下限は0.1%よりも高く、さらに好ましくは、0.15%以上であり、さらに好ましくは、0.18%以上である。好ましいC含有量の上限は、0.25%未満であり、さらに好ましくは、0.23%以下であり、さらに好ましくは、0.20%以下である。
 Si:0.30~0.60%
 珪素(Si)は、鋼の焼入れ性を高める。Siはさらに、鋼の焼戻し軟化抵抗を高める。したがって、Siは、鋼の面疲労強度及び耐摩耗性を高める。一方、Siが過剰に含有されれば、鋼の熱間鍛造後の強度が過剰に高くなる。その結果、鋼の被削性が低下する。Siが過剰に含有されればさらに、曲げ疲労強度が低下する。したがって、Si含有量は0.30~0.60%である。好ましいSi含有量の下限は0.30%よりも高く、さらに好ましくは0.40%以上であり、さらに好ましくは0.45%以上である。好ましいSi含有量の上限は0.60%未満であり、さらに好ましくは0.57%以下であり、さらに好ましくは0.55%以下である。
 Mn:0.50~1.0%
 マンガン(Mn)は、鋼の焼入れ性を高め、鋼の強度を高める。したがって、Mnは、浸炭焼入れ又は浸炭窒化焼入れされた機械部品の芯部の強度を高める。一方、Mnが過剰に含有されれば、熱間鍛造後の鋼の被削性が低下する。さらに、Mnが過剰に含有されれば、鋼の表面にMn酸化物が生成される。その結果、浸炭焼入れ又は浸炭窒化焼入れ後の浸炭異常層の深さが大きくなる。浸炭異常層はたとえば、粒界酸化層及び不完全焼入れ層である。浸炭異常層の深さが大きくなれば、鋼の曲げ疲労強度及びピッチング強度が低下する。ピッチングは、面疲労の破壊形態の一つである。したがって、ピッチング強度が低ければ、面疲労強度も低くなる。したがって、Mn含有量は、0.50~1.0%である。好ましいMn含有量の下限は0.50%よりも高く、さらに好ましくは0.55%以上であり、さらに好ましくは0.60%以上である。Mn含有量の好ましい上限は1.0%未満であり、さらに好ましくは0.95%以下であり、さらに好ましくは0.9%以下である。
 S:0.003~0.05%
 硫黄(S)はMnと結合してMnSを形成する。MnSは鋼の被削性を高める。一方、Sが過剰に含有されれば、粗大なMnSが形成される。粗大なMnSは鋼の曲げ疲労強度及び面疲労強度を低下する。したがって、S含有量は、0.003~0.05%である。好ましいS含有量の下限は0.003%よりも高く、さらに好ましくは0.005%以上であり、さらに好ましくは0.01%以上である。好ましいS含有量の上限は0.05%未満であり、さらに好ましくは0.03%以下であり、さらに好ましくは0.02%以下である。
 Cr:1.50~2.00%
 クロム(Cr)は、鋼の焼入れ性、及び、鋼の焼戻し軟化抵抗を高める。そのため、Crは鋼の曲げ疲労強度、面疲労強度及び耐摩耗性を高める。一方、Crが過剰に含有されれば、熱間鍛造後、又は、焼きならし後の鋼でベイナイトの生成が促進される。そのため、鋼の被削性が低下する。したがって、Cr含有量は1.50~2.00%である。好ましいCr含有量の下限は1.50%よりも高く、さらに好ましくは1.70%以上であり、さらに好ましくは1.80%以上である。好ましいCr含有量の上限は2.00%未満であり、さらに好ましくは1.95%以下であり、さらに好ましくは1.90%以下である。
 Mo:0.10%以下(0%を含む)
 モリブデン(Mo)は、含有されなくてもよい。Moは鋼の焼入れ性及び焼戻し軟化抵抗を高める。そのため、Moは鋼の曲げ疲労強度、面疲労強度及び耐摩耗性を高める。一方、Moが過剰に含有されれば、熱間鍛造後、又は、焼きならし後の鋼でベイナイト生成が促進される。そのため、鋼の被削性が低下する。したがって、Mo含有量は0.10%以下(0%を含む)である。好ましいMo含有量の下限は0.02%以上である。好ましいMo含有量の上限は0.10%未満であり、さらに好ましくは0.08%以下であり、さらに好ましくは0.05%以下である。
 Al:0.025~0.05%
 アルミニウム(Al)は鋼を脱酸する。Alはさらに、Nと結合してAlNを形成する。AlNは、浸炭加熱によるオーステナイト結晶粒の粗大化を抑制する。一方、Alが過剰に含有されれば、粗大なAl酸化物を形成する。粗大なAl酸化物は、鋼の曲げ疲労強度を低下する。したがって、Al含有量は0.025~0.05%である。好ましいAl含有量の下限は0.025%よりも高く、さらに好ましくは0.027%以上であり、さらに好ましくは0.030%以上である。好ましいAl含有量の上限は0.05%未満であり、さらに好ましくは0.045%以下であり、さらに好ましくは0.04%以下である。
 N:0.010~0.025%
 窒素(N)は、Al又はNbと結合して、AlN又はNbNを形成する。AlN又はNbNは、浸炭加熱によるオーステナイト結晶粒の粗大化を抑制する。一方、Nが過剰に含有されれば、製鋼工程において安定して製造しにくくなる。したがって、N含有量は0.010~0.025%である。好ましいN含有量の下限は0.010%よりも高く、さらに好ましくは0.012%以上であり、さらに好ましくは0.013%以上である。好ましいN含有量の上限は0.025%未満であり、さらに好ましくは0.020%以下であり、さらに好ましくは0.018%以下である。
 本発明による棒鋼または線材の化学組成の残部は、Fe及び不純物からなる。本明細書における不純物は、鋼の原料として利用される鉱石やスクラップ、又は製造工程の環境等から混入する元素を意味する。本発明においては、不純物としてのP、Ti及びO(酸素)の含有量は、次のとおりに制限される。
 P:0.025%以下
 燐(P)は粒界に偏析して粒界を脆化する。そのため、Pは鋼の疲労強度を低下する。したがって、P含有量はなるべく低い方が好ましい。P含有量は0.025%以下である。好ましいP含有量は0.025%未満であり、さらに好ましくは0.020%以下である。
 Ti:0.003%以下
 チタン(Ti)は、Nと結合して粗大なTiNを形成する。粗大なTiNは、鋼の疲労強度を低下する。したがって、Ti含有量はなるべく低い方が好ましい。Ti含有量は0.003%以下である。好ましいTi含有量は0.003%未満であり、さらに好ましくは0.002%以下である。
 O(酸素):0.002%以下
 酸素(O)は、Alと結合して酸化物系介在物を形成する。酸化物系介在物は、鋼の曲げ疲労強度を低下する。したがって、O含有量はなるべく低い方が好ましい。O含有量は0.002%以下である。好ましいO含有量は0.002%未満であり、さらに好ましくは0.001%以下である。
 本発明による棒鋼又は線材の化学組成はさらに、式(2)を満たす。
 1.60≦Cr+2×Mo≦2.10 (2)
 ここで、式(2)中の元素記号には、対応する元素の含有量(質量%)が代入される。
 上述のとおり、Cr及びMoはともに、鋼の焼入れ性及び焼戻し軟化抵抗を高める。そのため、Cr及びMoは、鋼の曲げ疲労強度、面疲労強度及び耐摩耗性を高める。MoとCrとを比較して、MoはCrの半分の含有量で、Crと同程度の効果(曲げ疲労強度、面疲労強度及び耐摩耗性の向上)を奏する。したがって、fn1=Cr+2Moと定義する。fn1中の各元素記号には、対応する元素(Cr又はMo)の含有量(質量%)が代入される。
 fn1が1.60未満であれば、鋼の曲げ疲労強度、面疲労強度及び耐摩耗性のうちの少なくとも1種以上が低くなる。一方、fn1が2.10を超えれば、熱間鍛造後又は焼きならし後の鋼中でベイナイトの生成が促進される。そのため、鋼の被削性が低下する。fn1が1.60~2.10であれば、鋼の被削性の低下を抑えつつ、鋼の曲げ疲労強度、面疲労強度及び耐摩耗性を高めることができる。fn1の好ましい下限は1.80以上である。fn1の好ましい上限は2.00未満である。
 本発明による熱間鍛造用圧延棒鋼または線材の化学組成は、Feの一部に代えて、Nbを含有してもよい。
 Nb:0.08%以下
 ニオブ(Nb)は選択元素である。Nbは、C、Nと結合してNb炭化物、Nb窒化物又はNb炭窒化物を形成する。Nb炭化物、Nb窒化物及びNb炭窒化物は、Al窒化物と同様に、浸炭加熱時においてオーステナイト結晶粒が粗大化するのを抑制する。Nbが少しでも含有されれば、上記効果が得られる。一方、Nbが過剰に含有されれば、Nb炭窒化物、Nb窒化物及びNb炭窒化物が粗大化する。そのため、浸炭加熱時においてオーステナイト結晶粒の粗大化を抑制できない。したがって、Nb含有量は、0.08%以下である。好ましいNb含有量の下限は0.01%以上である。好ましいNb含有量の上限は、0.08%未満であり、さらに好ましくは、0.05%以下である。
 [ミクロ組織]
 本発明による棒鋼又は線材のミクロ組織は、フェライト・パーライト組織、フェライト・パーライト・ベイナイト組織、又は、フェライト・ベイナイト組織からなる。ここで、「フェライト・パーライト組織」とは、マトリックス(母相)が、フェライトとパーライトとからなる2相組織を意味する。「フェライト・パーライト・ベイナイト組織」は、マトリックスが、フェライトと、パーライトと、ベイナイトとからなる3相組織を意味する。「フェライト・ベイナイト組織」は、マトリックスが、フェライトとベイナイトとからなる2相組織を意味する。
 要するに、本発明による棒鋼又は線材のミクロ組織は、マルテンサイトを含有しない。マルテンサイトは硬質であり、鋼の延性を低下する。したがって、マルテンサイトを含有する棒鋼又は線材を搬送するとき、又は、矯正するとき、棒鋼又は線材に割れが発生しやすくなる。本発明による棒鋼又は線材のミクロ組織はマルテンサイトを含有しないため、矯正時又は搬送時に割れが発生しにくい。
 上述の各相は、次の方法で同定される。棒鋼又は線材の長手方向に垂直な断面(横断面)の中心部を含むサンプルを切り出す。切り出されたサンプルの表面(中心部を含む)を鏡面研磨する。研磨された表面をナイタールで腐食する。腐食された表面を、倍率400倍の光学顕微鏡でミクロ組織観察する。具体的には、腐食された表面のうち、棒鋼又は線材の表層の脱炭層を除く領域から任意に15視野を選択する。そして、各視野を観察して、ミクロ組織を同定する。15視野のいずれかにベイナイトが含まれれば、その鋼のミクロ組織にはベイナイトが含まれると判断する。フェライト及びパーライトについても同様に判断する。各視野の大きさは250ミクロン(μm)×250ミクロン(μm)=62500μmである。
 上記ミクロ組織ではさらに、横断面において、式(3)により定義されたフェライト平均粒径比が2.0以下である。
 上述の15視野の各々について画像解析を実施する。具体的には、各視野においてフェライト相を同定する。同定されたフェライト相内のフェライト粒径を測定する。各視野のフェライト平均粒径はJIS G0551(2005)に規定された切断法に準拠して測定する。
 15視野各々で決定されたフェライト平均粒径(合計15個)のうち、最大値と最小値とを選択する。そして、上記式(3)に基づいて、フェライト平均粒径比=(フェライト平均粒径の最大値/フェライト平均粒径の最小値)を求める。
 熱間圧延後の鋼材(つまり、熱間圧延まま材)において結晶粒径が不均一である場合、後工程である熱間鍛造後、又は浸炭焼入れ後においても、結晶粒径は不均一なままである。結晶粒径が不均一であれば、曲げ疲労強度及び面疲労強度が低下する。したがって、熱間圧延まま材における結晶粒径はなるべく均一である方が好ましい。結晶粒径の均一度合いを評価するには、フェライト平均粒径比を評価するのが好ましい。フェライト粒径は、パーライトやベイナイトと比較して、エッチングにより容易に観察できる。そのため、フェライト平均粒径の均一度合い(つまり、フェライト平均粒径比)を調べれば、組織内の結晶粒径の均一度合いを評価しやすい。さらに、疲労破壊は最も強度が低い部分を起点として発生する。そのため、フェライト平均粒径の標準偏差を指標とするよりも、フェライト平均粒径の最大値/最小値を指標とした方が、曲げ疲労強度及び面疲労強度の評価に適する。
 ミクロ組織が上述のフェライトを含む各種混合組織からなり、かつ、フェライト平均粒径比が2.0以下であれば、棒鋼又は線材内の結晶粒径のバラツキが小さい。そのため、熱間鍛造後又は浸炭焼き入れ後における鋼の曲げ疲労強度及び面疲労強度が高まる。フェライト平均粒径比は、好ましくは、1.6以下である。
 一方、フェライト平均粒径比が2.0を超えると、鋼の曲げ疲労強度及び面疲労強度のうちの1種以上が低くなる。
 [製造方法]
 本発明の棒鋼または線材の製造方法の一例、及び、歯車及びプーリに代表される機械部品の製造方法の一例を説明する。なお、製造方法は下記に限定されない。
 上述の化学組成を有し、かつ、式(2)を満たす溶鋼を製造する。溶鋼を用いて連続鋳造法により鋳片(スラブ又はブルーム)を製造する。連続鋳造法では、凝固途中の鋳片に圧下を加える。次に、鋳片を加熱する。このときの加熱温度は1250~1300℃であり、加熱時間は10時間以上である。加熱された鋳片を分塊圧延機で分塊圧延して、鋼片(ビレット)を製造する。
 鋼片を熱間圧延して熱間鍛造用棒鋼又は線材を製造する。具体的には、鋼片を加熱する。このときの加熱温度は1150~1200℃であり、加熱時間は1.5時間以上である。加熱された鋼片を熱間圧延して棒鋼又は線材を製造する。熱間圧延における仕上げ温度を900~1000℃にする。仕上げ圧延前には水冷を実施しない。仕上げ圧延後、棒鋼又は線材を大気中での放冷(以下、単に放冷という)以下の冷却速度で、表面温度が600℃以下になるまで冷却する。熱間圧延において、式(4)で定義される断面減少率(%)を87.5%以上にする。
 断面減少率={1-(棒鋼、線材の断面積/鋼片の断面積)}×100 (4)
 仕上げ圧延後の棒鋼又は線材を放冷以下の冷却速度で室温まで冷却しなくてもよい。棒鋼又は線材の表面温度が600℃以下となった後、空冷、ミスト冷却、水冷など、放冷よりも高い冷却速度で棒鋼又は線材を冷却してもよい。
 上述の加熱温度は、加熱炉の炉内温度の平均値を意味する。上述の加熱時間は、上述の加熱温度での在炉時間を意味する。仕上げ温度とは、仕上げ圧延直後の棒鋼、線材の表面温度を意味する。仕上げ圧延とはたとえば、連続ミルにおいて、圧延に利用する複数のスタンドのうち、末尾のスタンドでの圧延を意味する。仕上げ加工後の冷却速度は、棒鋼、線材の表面冷却速度を意味する。
 熱間鍛造用圧延棒鋼又は線材を用いて機械部品を製造する方法の一例は次のとおりである。
 熱間鍛造用圧延棒鋼又は線材に対して熱間鍛造を実施し、粗形状の中間品を製造する。中間品に対して調質処理を実施してもよい。調質処理はたとえば、焼きならしである。中間品を機械加工して所定の形状にする。機械加工はたとえば、切削又は穿孔である。
 機械加工後の中間品に対して表面硬化処理を実施してもよい。表面硬化処理はたとえば、浸炭処理、窒化処理又は高周波焼入れ処理等である。表面硬化処理を実施された中間品に対して、仕上げ加工を実施して、機械部品が製造される。
 以上の工程で製造された棒鋼又は線材は、熱間鍛造後においても優れた曲げ疲労強度、面疲労強度、耐摩耗性及び優れた被削性を有する。
 表1に示す化学成分を有する鋼A~Cを70トン転炉で溶製した。
Figure JPOXMLDOC01-appb-T000001
 鋼A~Cの溶鋼を用いて連続鋳造法により、400mm×300mmの鋳片(ブルーム)を製造した。製造されたブルームを600℃まで大気中で放冷した。なお、連続鋳造工程において、凝固途中の鋳片を圧下した。
 次に、表2に示す製造条件を設定した。
Figure JPOXMLDOC01-appb-T000002
 具体的には、表2の「鋳片」欄内の「加熱温度」欄には、各条件における鋳片の加熱温度(℃)を示す。表2の「鋳片」欄内の「加熱時間」欄には、各条件における鋳片の加熱時間(分)を示す。同様に、表2の「鋼片」欄中の「加熱温度」欄には、各条件における鋼片の加熱温度(℃)を示す。「鋼片」欄中の「加熱時間」欄には、各条件における鋼片の加熱時間(分)を示す。「圧延条件」欄中の「仕上げ圧延前の水冷」欄には、各条件における仕上げ圧延前における鋼片の水冷の有無を示す。欄中の「あり」は、水冷が実施されたことを示す。「なし」は水冷が実施されなかったことを示す。「圧延条件」欄中の「仕上げ温度」欄には、各条件のおける仕上げ温度(℃)を示す。「圧延条件」欄中の「冷却条件」欄には、各条件における仕上げ圧延後の冷却条件を示す。
 表1に示す鋼と、表2に示す製造条件に基づいて、表3に示す試験番号1~10の棒鋼を製造した。
Figure JPOXMLDOC01-appb-T000003
 具体的には、各試験番号において、表3に示す鋼の鋳片を、表3中に示す製造条件(鋳片の加熱温度、加熱時間)で加熱した。加熱された鋳片を分塊圧延して、180mm×180mmの鋼片を製造した。製造された鋼片を室温(25℃)まで冷却した。
 次に、鋼片を、表3中に示す製造条件(鋼片の加熱温度、加熱時間)で加熱した。加熱された鋼片を表3中に示す製造条件(仕上げ圧延前の水冷、仕上げ温度、冷却条件)で熱間圧延して、直径50mm及び直径70mmの棒鋼を製造した。圧延後の棒鋼はそのまま大気中で室温まで放冷した。つまり、棒鋼は熱間圧延まま材であった。
 [ミクロ組織観察試験]
 直径50mmの棒鋼を長手方向に垂直に切断した。切断面の中心部を含むサンプルを切り出した。サンプルの表面のうち、上述の中心部に相当する表面を鏡面に研磨した。研磨面をナイタールで腐食した。腐食面を倍率400倍の光学顕微鏡で、15視野観察した。15視野は、表層の脱炭層を除いた領域から任意に選択された。各視野の大きさは250μm×250μmであった。各視野においてミクロ組織を観察した。
 ミクロ組織観察試験の結果、いずれの試験番号のミクロ組織も、マルテンサイトを含まなかった。各試験番号のミクロ組織は、フェライト・パーライト組織、フェライト・パーライト・ベイナイト組織、フェライト・ベイナイト組織のいずれかであった。表3中の「ミクロ組織」欄に、ミクロ組織観察結果を示す。表中の「F+P」は、対応する試験番号のミクロ組織がフェライト・パーライト組織であることを示す。「F+P+B」は、フェライト・パーライト・ベイナイト組織であることを示す。「F+B」は、フェライト・ベイナイト組織であることを示す。
 [フェライト平均粒径測定]
 上述の15視野のフェライト平均粒径を、JIS G0551(2005)に規定された切断法に準拠して測定した。
 各視野のフェライト平均粒径(合計15個)のうち、最大値と最小値とを特定した。そして、式(3)に基づいて、フェライト平均粒径比(=最大値/最小値)を求めた。フェライト平均粒径比を表3に示す。
 [面疲労強度試験片及び曲げ疲労強度試験片の作製]
 各試験番号の棒鋼を、1200℃で30分加熱した。次に、仕上げ温度を950℃以上として熱間鍛造し、直径35mmの丸棒を製造した。直径35mmの丸棒を機械加工して、図1に示すローラピッチング小ローラ試験片(以下、単に小ローラ試験片という)と、図2に示す切欠き付き小野式回転曲げ疲労試験片(図1及び図2ともに、図中の寸法の単位はmm)を作製した。図1に示す小ローラ試験片は、中央に試験部(直径26mm、幅28mmの円柱部)を備えた。
 作成された各試験片に対して、ガス浸炭炉を用いて、図3に示す条件で浸炭焼入れを実施した。焼入れ後、150℃で1.5時間の焼戻しを実施した。小ローラ試験片、及び、小野式回転曲げ疲労試験片に対して、熱処理ひずみを除く目的で、つかみ部の仕上げ加工を実施した。
 [面疲労強度試験]
 ローラピッチング試験では、上記の小ローラ試験片と、図4に示す形状の大ローラ(図中の寸法の単位はmm)とを組合せた。図4に示す大ローラは、JIS規格SCM420Hの規格を満たす鋼からなり、一般的な製造工程、つまり、焼きならし、試験片加工、ガス浸炭炉による共析浸炭、低温焼戻し及び研磨、の工程によって作製された。
 小ローラ試験片と大ローラとを用いたローラピッチング試験を表4に示す条件で行った。
Figure JPOXMLDOC01-appb-T000004
 表4に示すとおり、小ローラ試験片の回転数を1000rpmとし、すべり率を-40%、試験中の大ローラと小ローラ試験片との接触面圧を4000MPa、繰り返し数を2.0×10cycleとした。大ローラの回転速度をV1m/sec、小ローラ試験片の回転速度をV2m/secとしたとき、すべり率(%)は、以下の式により求めた。
 すべり率=(V2-V1)/V2×100
 試験中、潤滑剤(市販のオートマチックトランスミッション用オイル)を油温90℃の条件で、大ローラと小ローラ試験片との接触部分(試験部の表面)に回転方向と反対の方向から吹き付けた。以上の条件でローラピッチング試験を実施し、面疲労強度を評価した。
 各試験番号について、ローラピッチング試験における試験数は6とした。試験後、縦軸に面圧、横軸にピッチング発生までの繰り返し数をとったS-N線図を作成した。繰り返し数2.0×10回までピッチングが発生しなかったもののうち、最も高い面圧を、その試験番号の面疲労強度と定義した。なお、小ローラ試験片の表面が損傷している箇所のうち、最大のものの面積が1mm以上になった場合をピッチング発生と定義した。
 表3に、試験により得られた面疲労強度を示す。表3中の面疲労強度では、試験番号1の面疲労強度を基準値(100%)とした。そして、各試験番号の面疲労強度を、基準値に対する比(%)で示した。面疲労強度が120%以上であれば、優れた面疲労強度が得られたと判断した。
 [耐摩耗性評価]
 ローラピッチング試験において、繰り返し数が1.0×10回となった小ローラ試験片の試験部の摩耗量を測定した。具体的には、JIS B0601(2001)に準拠して、最大高さ粗さ(Rz)を求めた。Rz値が小さいほど、耐摩耗性が高いことを示す。摩耗量の測定には、粗さ計を用いた。表3に、摩耗量を示す。表3中の摩耗量では、試験番号1の摩耗量を基準値(100%)とした。そして、各試験番号の摩耗量を基準値に対する比(%)で示した。摩耗量が80%以下であれば、優れた耐摩耗性が得られたと判断した。
 [曲げ疲労強度試験]
 曲げ疲労強度は、小野式回転曲げ疲労試験により求めた。小野式回転曲げ疲労試験での試験数は各試験番号ごとに8個とした。試験時の回転数は3000rpmとし、その他は通常の方法により試験を行った。繰り返し数1.0×10回、および1.0×10回まで破断しなかったもののうち、最も高い応力をそれぞれ中サイクル、および高サイクル回転曲げ疲労強度と定義した。
 表3に、中サイクル及び高サイクルの曲げ疲労強度を示す。中サイクル及び高サイクルの曲げ疲労強度では、試験番号1の中サイクル及び高サイクルの曲げ疲労強度を基準値(100%)とした。そして、各試験番号の中サイクル及び高サイクルの曲げ疲労強度を、基準値に対する比(%)で示した。中サイクル及び高サイクルともに、曲げ疲労強度が115%以上であれば、優れた曲げ疲労強度が得られたと判断した。
 [切削試験]
 切削試験を実施し、被削性を評価した。以下の方法により切削試験片を得た。各試験番号の直径70mmの棒鋼を1250℃の加熱温度で30分加熱した。加熱された棒鋼を950℃以上の仕上げ温度で熱間鍛造し、直径60mmの丸棒を得た。この丸棒から機械加工によって、直径55mm、長さ450mmの切削試験片を得た。切削試験片を用いて、下記の条件で切削試験を行った。
 切削試験(旋削)
 チップ:母材材質 超硬P20種グレード、コーティング なし
 条件:周速200m/分、送り0.30mm/rev、切り込み1.5mm、水溶性切削油を使用
 測定項目:切削時間10分後の逃げ面の主切刃摩耗量
 表3に、得られた主切刃摩耗量を示す。表3では、試験番号2(鋼B使用)の主切刃摩耗量を基準値(100%)とした。そして、各試験番号の主切刃摩耗量を、基準値に対する比(%)で示した。主切刃摩耗量が80%以下であれば、優れた被削性が得られたと判断した。
 [評価結果]
 表3を参照して、試験番号4及び9の棒鋼の化学組成(鋼C)は本発明の範囲内であり、かつ、fn1は、式(2)を満たした。さらに、試験番号4及び9のフェライト平均粒径比はいずれも2.0以下であった。そのため、試験番号4及び9の中サイクル及び高サイクルの曲げ疲労強度は115%以上であり、面疲労強度は120%以上であった。さらに、摩耗量は80%以下であった。さらに、主切刃摩耗量は80%以下であった。したがって、試験番号4及び9の棒鋼は、優れた曲げ疲労強度、面疲労強度、耐摩耗性及び被削性を有した。
 一方、試験番号1の棒鋼の化学組成(鋼A)は、JIS規格のSCr420Hに相当した。そのため、試験番号1のSi含有量及びCr含有量は、本発明のSi含有量及びCr含有量の下限未満であった。さらに、試験番号1のfn1は式(2)の下限未満であった。そのため、試験番号1の曲げ疲労強度、面疲労強度及び耐摩耗性は低かった。
 試験番号2の棒鋼の化学組成(鋼B)は、JIS規格のSCM420Hに相当した。そのため、試験番号2のSi含有量及びCr含有量は本発明のSi含有量及びCr含有量の下限未満であった。さらに試験番号2のMo含有量は本発明のMo含有量の上限を超えた。さらに試験番号2のfn1は式(2)の下限未満であった。そのため、試験番号2の曲げ疲労強度が115%未満と低く、被削性も低かった。
 試験番号3の化学組成(鋼C)は、本発明の化学組成の範囲内であった。さらに、fn1も式(2)を満たした。しかしながら、鋳片の加熱時間が短すぎたため(表2中の製造条件1参照)、フェライト平均粒径比が2.0を超えた。そのため、試験番号3の中サイクル及び高サイクルの曲げ疲労強度は115%未満であり、低かった。
 試験番号5の化学組成は本発明の化学組成の範囲内であり、fn1も式(2)を満たした。しかしながら、試験番号5では、仕上げ圧延前に水冷を実施した(表2中の製造条件3参照)。そのため、フェライト平均粒径比が2.0を超えた。そのため、試験番号5の中サイクル及び高サイクルの曲げ疲労強度は115%未満であり、低かった。
 試験番号6の化学組成は本発明の化学組成の範囲内であり、fn1も式(2)を満たした。しかしながら、試験番号6では、仕上げ圧延後の棒鋼を800℃まで水冷した(表2中の製造条件4参照)。そのため、フェライト平均粒径比が2.0を超えた。そのため、試験番号6の中サイクル及び高サイクルの曲げ疲労強度はいずれも115%未満であり、低かった。さらに、面疲労強度は120%未満であり、低かった。さらに、摩耗量は80%を超え、耐摩耗性が低かった。
 試験番号7の化学組成は本発明の化学組成の範囲内であり、fn1も式(2)を満たした。しかしながら、試験番号7では、鋳片の加熱時間が短すぎ、鋼片の加熱時間も短すぎた(製造条件5参照)。そのため、フェライト平均粒径比が2.0を超えた。そのため、試験番号7の中サイクル及び高サイクルの曲げ疲労強度はいずれも115%未満であり、低かった。
 試験番号8の化学組成は本発明の化学組成の範囲内であり、fn1も式(2)を満たした。しかしながら、試験番号8では、鋼片の加熱温度が高すぎ、かつ、仕上げ温度も高すぎた(製造条件6参照)。そのため、フェライト平均粒径比が2.0を超えた。そのため、試験番号8の中サイクル及び高サイクルの曲げ疲労強度はいずれも115%未満であり、低かった。さらに、面疲労強度は120%未満であり、低かった。さらに、摩耗量は80%を超え、耐摩耗性が低かった。
 試験番号10の化学組成は本発明の化学組成の範囲内であり、fn1も式(2)を満たした。しかしながら、試験番号10は、鋳片の加熱温度が低すぎた(製造条件8参照)。そのため、フェライト平均粒径比が2.0を超えた。そのため、中サイクルの曲げ疲労強度が115%未満であり、低かった。
 表5に示すD~Sの化学組成を有する溶鋼を、実施例1と同様に製造した。
Figure JPOXMLDOC01-appb-T000005
 そして、実施例1と同様の製造条件で、表6に示す試験番号11~42の棒鋼を製造した。棒鋼の直径は50mm及び70mmであった。製造された棒鋼を利用して、実施例1と同様の試験を実施した。そして、中サイクル及び高サイクルの曲げ疲労強度、面疲労強度、耐摩耗性及び主切刃摩耗量をそれぞれ求めた。
Figure JPOXMLDOC01-appb-T000006
 求めた結果を表6に示す。表6を参照して、試験番号17、19、21、23、31、33、41及び42の化学組成は本発明の化学組成の範囲内であり、fn1が式(2)を満たした。さらに、これらの試験番号のフェライト平均粒径比はいずれも、2.0以下であった。そのため、これらの試験番号の中サイクル及び高サイクルの曲げ疲労強度は115%以上であり、面疲労強度は120%以上であった。さらに、摩耗量は80%以下であった。さらに、主切刃摩耗量は80%以下であった。
 一方、試験番号11の化学組成(鋼D)のSi含有量及びCr含有量は、本発明のSi含有量及びCr含有量の下限未満であった。そのため、試験番号11の面疲労強度は120%未満であり、摩耗量は80%よりも高かった。試験番号12は試験番号11と同じ鋼Dを用いた。そのため、面疲労強度及び耐摩耗性は低かった。試験番号12ではさらに、鋳片の加熱時間が短すぎた(製造条件1)。そのため、フェライト平均粒径比が2.0を超えた。そのため、中サイクル及び高サイクルでの曲げ疲労強度は115%未満であり、低かった。
 試験番号13の化学組成(鋼E)は本発明の化学組成の範囲内であるものの、fn1が式(2)の下限未満であった。そのため、高サイクルの曲げ疲労強度が115%未満であり、低かった。試験番号14は試験番号13と同じ鋼Eを用いた。そのため、高サイクルでの曲げ疲労強度が低かった。試験番号14ではさらに、仕上げ圧延前に水冷を実施した(製造条件3)。そのため、フェライト平均粒径比が2.0を超えた。そのため、中サイクル及び高サイクルでの曲げ疲労強度が、試験番号13よりも低くなった。
 試験番号15の化学組成(鋼F)のSi含有量は、本発明のSi含有量の上限を超えた。そのため、中サイクル及び高サイクルでの曲げ疲労強度が115%未満であり低かった。さらに、主切刃摩耗量が80%よりも高くなり、被削性が低かった。
 試験番号16は、試験番号15と同じ鋼Fを用いた。そのため、曲げ疲労強度及び被削性が低かった。試験番号16ではさらに、仕上げ圧延後の棒鋼を800℃まで水冷した(製造条件4)。そのため、フェライト平均粒径比が2.0を超えた。そのため、曲げ疲労強度は試験番号15よりも低かった。さらに、面疲労強度は120%未満であり、摩耗量は80%よりも高かった。
 試験番号18の化学組成(鋼G)は本発明の範囲内であり、かつ、fn1が式(2)を満たした。しかしながら、鋳片の加熱時間が短すぎた(製造条件1)。そのため、フェライト平均粒径比が2.0を超えた。そのため、中サイクルでの曲げ疲労強度が115%未満であり低かった。さらに、面疲労強度が120%未満であり低かった。
 試験番号20の化学組成(鋼H)は本発明の範囲内であり、かつ、fn1が式(2)を満たした。しかしながら、仕上げ圧延前に水冷を実施した(製造条件3)。そのため、フェライト平均粒径比が2.0を超えた。そのため、中サイクル及び高サイクルでの曲げ疲労強度が115%未満であり低かった。
 試験番号22の化学組成(鋼I)は本発明の範囲内であり、かつ、fn1が式(2)を満たした。しかしながら、仕上げ圧延後の棒鋼を800℃まで水冷した(製造条件4)。そのため、フェライト平均粒径比が2.0を超えた。そのため、中サイクル及び高サイクルでの曲げ疲労強度が115%未満であり低かった。
 試験番号24の化学組成(鋼J)は本発明の範囲内であり、かつ、fn1が式(2)を満たした。しかしながら、鋳片の加熱時間及び鋼片の加熱時間が短すぎた(製造条件5)。そのため、フェライト平均粒径比が2.0を超えた。そのため、中サイクルでの曲げ疲労強度が115%未満であり低かった。
 試験番号25の化学組成(鋼K)のCr含有量は、本発明のCr含有量の上限を超えた。そのため、主切刃摩耗量が80%よりも高く、被削性が低かった。Cr含有量が高すぎて鋼中にベイナイトが過剰に生成したためと考えられる。
 試験番号26は、試験番号25と同じ鋼Kを用いた。そのため、被削性が低かった。試験番号26ではさらに、鋳片の加熱時間及び鋼片の加熱時間が短すぎた(製造条件5)。そのため、フェライト平均粒径比が2.0を超えた。そのため、中サイクル及び高サイクルでの曲げ疲労強度が115%未満であり、低かった。
 試験番号27の化学組成(鋼L)のCr含有量は、本発明のCr含有量の下限未満であった。そのため、中サイクル及び高サイクルでの曲げ疲労強度は115%未満であり、低かった。さらに、面疲労強度も120%未満であり、低かった。
 試験番号28は試験番号27と同じ鋼Lを用いた。そのため、曲げ疲労強度が低かった。さらに、試験番号28では、鋼片の加熱温度が高すぎ、かつ、仕上げ温度も高すぎた(製造条件6)。そのため、フェライト平均粒径比が2.0を超えた。そのため、中サイクル及び高サイクルでの曲げ疲労強度が115%未満であり、低かった。さらに、面疲労強度も120%未満であり、低かった。
 試験番号29の化学組成(鋼M)のMo含有量は、本発明のMo含有量の上限を超えた。そのため、試験番号29の主切刃摩耗量は80%を超え、被削性が低かった。Mo含有量が高すぎて、鋼中にベイナイトが過剰に生成されたためと考えられる。
 試験番号30は、試験番号29と同じ鋼Mを用いた。そのため、被削性が低かった。試験番号30ではさらに、鋳片の加熱温度が低すぎた(製造条件8)。そのため、フェライト平均粒径比が2.0を超えた。そのため、中サイクル及び高サイクルでの曲げ疲労強度が115%未満であり、低かった。
 試験番号32の化学組成(鋼N)は、本発明の範囲内であり、かつ、fn1が式(2)を満たした。しかしながら、鋼片の加熱温度及び仕上げ温度が高すぎた(製造条件6)。そのため、フェライト平均粒径比が2.0を超えた。そのため、中サイクルでの曲げ疲労強度が115%未満であり、低かった。
 試験番号34の化学組成(鋼O)は、本発明の範囲内であり、かつ、fn1が式(2)を満たした。しかしながら、鋳片の加熱温度が低すぎた(製造条件8)。そのため、フェライト平均粒径比が2.0を超えた。そのため、中サイクルでの曲げ疲労強度が115%未満であり、低かった。
 試験番号35の化学組成(鋼P)のMn含有量及びAl含有量は本発明のMn含有量及びAl含有量の下限未満であった。そのため、中サイクルでの曲げ疲労強度が115%未満であり、低かった。さらに面疲労強度が120%未満であり、低かった。
 試験番号36は、試験番号35と同じ鋼Pを用いた。そのため、中サイクルでの曲げ疲労強度及び面疲労強度が低かった。試験番号35ではさらに、仕上げ圧延後の棒鋼を800℃まで水冷した(製造条件4)。そのため、フェライト平均粒径比が2.0を超えた。そのため、高サイクルでの曲げ疲労強度が115%未満であり、低かった。さらに、中サイクルでの曲げ疲労強度は、試験番号35よりも低かった。
 試験番号37の化学組成(鋼Q)のMn含有量及びAl含有量は、本発明のMn含有量及びAl含有量の上限を超えた。そのため、高サイクルでの曲げ疲労強度が115%未満であり低かった。さらに、主切刃摩耗量が80%を超え、被削性が低かった。
 試験番号38は試験番号37と同じ鋼Qを用いた。そのため、高サイクルでの曲げ疲労強度が低く、被削性も低かった。試験番号38ではさらに、鋼片の加熱温度及び仕上げ温度が高すぎた。そのため、フェライト平均粒径比が2.0を超えた。そのため、中サイクルでの曲げ疲労強度が115%未満であり、低かった。さらに、高サイクルの曲げ疲労強度は、試験番号37よりも低かった。
 試験番号39の化学組成(鋼R)は本発明の化学組成の範囲内であるものの、fn1が式(2)の上限を超えた。そのため、試験番号39の鋼の被削性は低かった。試験番号40は試験番号39と同じ鋼Rを用いた。そのため、試験番号40の鋼の被削性は低かった。試験番号40ではさらに、圧延前に水冷を実施した(製造条件3)。そのため、フェライト平均粒径比が2.0を超えた。そのため、中サイクル及び高サイクルでの曲げ疲労強度が試験番号39よりも低かった。
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。

Claims (3)

  1.  化学組成が、質量%で、
     C:0.1~0.25%、
     Si:0.30~0.60%、
     Mn:0.50~1.0%、
     S:0.003~0.05%、
     Cr:1.50~2.00%、
     Mo:0.10%以下(0%を含む)、
     Al:0.025~0.05%、
     N:0.010~0.025%を含有し、残部がFeおよび不純物からなり、
     前記不純物中のP、TiおよびOがそれぞれ、
     P:0.025%以下、
     Ti:0.003%以下、
     O(酸素):0.002%以下であり、
     式(1)で定義されるfn1が1.60~2.10であり、
     組織が、フェライト・パーライト組織、フェライト・パーライト・ベイナイト組織、またはフェライト・ベイナイト組織からなり、
     横断面において、1視野あたりの面積62500μmで15視野観察測定して得られたフェライト平均粒径の最大値/最小値が2.0以下である、熱間鍛造用圧延棒鋼又は線材。
     fn1=Cr+2×Mo (1)
     ここで、式(1)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
  2.  fn1が1.80以上である、請求項1に記載の熱間鍛造用圧延棒鋼又は線材。
  3.  Feの一部に代えて、質量%で、Nb:0.08%以下を含有する、請求項1又は2に記載の熱間鍛造用圧延棒鋼又は線材。
PCT/JP2012/071118 2011-08-31 2012-08-22 熱間鍛造用圧延棒鋼又は線材 WO2013031587A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147008500A KR101552449B1 (ko) 2011-08-31 2012-08-22 열간 단조용 압연 봉강 또는 선재
CN201280042519.5A CN103797144B (zh) 2011-08-31 2012-08-22 热锻用轧制棒钢或线材
IN2151DEN2014 IN2014DN02151A (ja) 2011-08-31 2012-08-22
JP2013531225A JP5561436B2 (ja) 2011-08-31 2012-08-22 熱間鍛造用圧延棒鋼又は線材
US14/241,556 US20140363329A1 (en) 2011-08-31 2012-08-22 Rolled steel bar or wire rod for hot forging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-189668 2011-08-31
JP2011189668 2011-08-31

Publications (1)

Publication Number Publication Date
WO2013031587A1 true WO2013031587A1 (ja) 2013-03-07

Family

ID=47756079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071118 WO2013031587A1 (ja) 2011-08-31 2012-08-22 熱間鍛造用圧延棒鋼又は線材

Country Status (6)

Country Link
US (1) US20140363329A1 (ja)
JP (1) JP5561436B2 (ja)
KR (1) KR101552449B1 (ja)
CN (1) CN103797144B (ja)
IN (1) IN2014DN02151A (ja)
WO (1) WO2013031587A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159392A1 (ja) * 2015-03-31 2016-10-06 新日鐵住金株式会社 熱間圧延棒線材、部品および熱間圧延棒線材の製造方法
JP2016183399A (ja) * 2015-03-26 2016-10-20 新日鐵住金株式会社 浸炭機械構造部品
JP2017106079A (ja) * 2015-12-10 2017-06-15 山陽特殊製鋼株式会社 耐結晶粒粗大化特性、耐曲げ疲労強度および耐衝撃強度に優れた機械構造用鋼
WO2022071420A1 (ja) * 2020-09-30 2022-04-07 日本製鉄株式会社 鋼材
WO2022071419A1 (ja) * 2020-09-30 2022-04-07 日本製鉄株式会社 鋼材

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5790517B2 (ja) * 2012-01-25 2015-10-07 新日鐵住金株式会社 熱間鍛造用圧延棒鋼または線材
CN114574751B (zh) * 2022-03-15 2022-08-30 建龙北满特殊钢有限责任公司 一种建筑用hrb400e抗震钢筋的生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150191A (ja) * 1997-08-05 1999-02-23 Nippon Steel Corp 浸炭軸状部品とその製造方法
JP2001303174A (ja) * 2000-04-26 2001-10-31 Nippon Steel Corp 結晶粒粗大化防止特性に優れた高温浸炭部品用素形材とその製造方法
JP2008189989A (ja) * 2007-02-05 2008-08-21 Sumitomo Metal Ind Ltd 高温浸炭用鋼材
JP2009052062A (ja) * 2007-08-24 2009-03-12 Sumitomo Metal Ind Ltd 熱間圧延棒鋼または線材

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4445561B2 (ja) * 2008-07-15 2010-04-07 新日本製鐵株式会社 鋼の連続鋳造鋳片およびその製造方法
JP5348249B2 (ja) * 2009-11-05 2013-11-20 新日鐵住金株式会社 熱間圧延棒鋼または線材
JP5521970B2 (ja) * 2010-10-20 2014-06-18 新日鐵住金株式会社 冷鍛窒化用鋼、冷鍛窒化用鋼材および冷鍛窒化部品
JP5597563B2 (ja) * 2011-02-01 2014-10-01 新日鐵住金株式会社 窒化用鋼および窒化部品
JP5656908B2 (ja) * 2012-04-18 2015-01-21 Dowaサーモテック株式会社 窒化鋼部材およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150191A (ja) * 1997-08-05 1999-02-23 Nippon Steel Corp 浸炭軸状部品とその製造方法
JP2001303174A (ja) * 2000-04-26 2001-10-31 Nippon Steel Corp 結晶粒粗大化防止特性に優れた高温浸炭部品用素形材とその製造方法
JP2008189989A (ja) * 2007-02-05 2008-08-21 Sumitomo Metal Ind Ltd 高温浸炭用鋼材
JP2009052062A (ja) * 2007-08-24 2009-03-12 Sumitomo Metal Ind Ltd 熱間圧延棒鋼または線材

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183399A (ja) * 2015-03-26 2016-10-20 新日鐵住金株式会社 浸炭機械構造部品
WO2016159392A1 (ja) * 2015-03-31 2016-10-06 新日鐵住金株式会社 熱間圧延棒線材、部品および熱間圧延棒線材の製造方法
JPWO2016159392A1 (ja) * 2015-03-31 2018-02-08 新日鐵住金株式会社 熱間圧延棒線材、部品および熱間圧延棒線材の製造方法
EP3279361A4 (en) * 2015-03-31 2018-10-24 Nippon Steel & Sumitomo Metal Corporation Hot-rolled bar member, part, and hot-rolled bar member manufacturing method
US20180355455A1 (en) * 2015-03-31 2018-12-13 Nippon Steel & Sumitomo Metal Corporation Hot rolled bar or hot rolled wire rod, component, and manufacturing method of hot rolled bar or hot rolled wire rod
JP2017106079A (ja) * 2015-12-10 2017-06-15 山陽特殊製鋼株式会社 耐結晶粒粗大化特性、耐曲げ疲労強度および耐衝撃強度に優れた機械構造用鋼
WO2022071420A1 (ja) * 2020-09-30 2022-04-07 日本製鉄株式会社 鋼材
WO2022071419A1 (ja) * 2020-09-30 2022-04-07 日本製鉄株式会社 鋼材
JP7385160B2 (ja) 2020-09-30 2023-11-22 日本製鉄株式会社 鋼材
JP7417171B2 (ja) 2020-09-30 2024-01-18 日本製鉄株式会社 鋼材

Also Published As

Publication number Publication date
JP5561436B2 (ja) 2014-07-30
US20140363329A1 (en) 2014-12-11
IN2014DN02151A (ja) 2015-05-15
CN103797144A (zh) 2014-05-14
KR101552449B1 (ko) 2015-09-10
CN103797144B (zh) 2016-07-06
KR20140056378A (ko) 2014-05-09
JPWO2013031587A1 (ja) 2015-03-23

Similar Documents

Publication Publication Date Title
JP5333682B2 (ja) 熱間鍛造用圧延棒鋼または線材
JP5561436B2 (ja) 熱間鍛造用圧延棒鋼又は線材
JP5742801B2 (ja) 熱間圧延棒鋼または線材
JP5790517B2 (ja) 熱間鍛造用圧延棒鋼または線材
JP6652019B2 (ja) 高周波焼入用の機械構造用鋼及び高周波焼入鋼部品
JP6384630B2 (ja) 高周波焼入れ用鋼
JP6384627B2 (ja) 高周波焼入れ用鋼
JP5617798B2 (ja) 熱間鍛造用圧延棒鋼又は線材
JP5737154B2 (ja) 熱間鍛造用圧延棒鋼又は線材
JP6465206B2 (ja) 熱間圧延棒線材、部品および熱間圧延棒線材の製造方法
JP6521089B2 (ja) 機械構造用鋼及び高周波焼入鋼部品
JP7139692B2 (ja) 高周波焼入れ用鋼、高周波焼入れ部品の素形材及び高周波焼入れ部品
JP7135485B2 (ja) 浸炭用鋼及び部品
JP7323850B2 (ja) 鋼材及び浸炭鋼部品
JP7417059B2 (ja) 高周波焼入れ窒化処理用鋼および高周波焼入れ窒化処理部品
JP7368723B2 (ja) 浸炭鋼部品用鋼材
CN113646448B (zh) 钢轴部件
JP7368724B2 (ja) 浸炭鋼部品用鋼材
JP7156021B2 (ja) 浸炭鋼部品用鋼材
JP2022080369A (ja) 鋼材、及び、浸炭鋼部品
JP2022080398A (ja) 鋼材、及び、浸炭鋼部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531225

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14241556

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147008500

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12827876

Country of ref document: EP

Kind code of ref document: A1